LONGHORN ARMY AMMUNITION PLANT KARNACK, TEXAS

ADMINISTRATIVE RECORD

Volume 38

2018

Bate Stamp Numbers 00893762 – 00895335

Prepared for

Department of the Army Longhorn Army Ammunition Plant

1976 - 2018

LONGHORN ARMY AMMUNITION PLANT KARNACK, TEXAS ADMINISTRATIVE RECORD – CHRONOLOGICAL INDEX

VOLUME 38

2018

A. Title: Report (cont'd) – Draft Final, Third Annual Remedial Action Operation

Report, LHAAP-50, Former Sump Water Tank (LAB DATA)

Author(s): Department of the Army

Recipient: Environmental Protection Agency

Date: August 14, 2018

Bate Stamp: 00893762 - 00893824

B. Title: Minutes – Final Minutes, Monthly Manager's Meeting (MMM), July 19, 2018

Author(s): Department of the Army

Recipient: Environmental Protection Agency

Date: August 21, 2018 Bate Stamp: 00893825 – 00893835

C. Title: Report – Final Technical Memorandum Semi-Annual Groundwater

Sampling Methodology and Analytical Results for Year 1 (Oct 2015-Apr 2016), Year 2 (Oct 2016 & Apr 2017), and Year 3 (Nov 2017 & Apr 2018),

Site LHAAP-02, Vacuum Truck and Overnight Parking

Author(s): Department of the Army

Recipient: Texas Commission on Environmental Quality

Date: August 21, 2018

Bate Stamp: 00893836 - 00895335

s.dataFile Page 2 of 2

Data File	LM37787.wiff	Result Table	121716_JWR.rdb
Acquisition Date	12/17/2016 4:21:40 AM	Algorithm Used	Analyst Classic
Acquisition Method	062911.dam	Instrument Name	API 4000
Project	Perchlorate\2009_07_22		

Sample Name	WG595142-03 CCV (1.0ug/L)	Injection Vial	5.00
Data File	LM37787.wiff	Injection Volume	10.00
Acquisition Date	12/17/2016 4:21:40 AM	Algorithm Used	Analyst Classic
Acquisition Method	062911.dam	Sample Type	Quality Control
Instrument Name	API 4000	Result Table	121716_JWR.rdb
Sample ID	WG595142-03	Dilution Factor	1.00
Sample Comment	1,1 STD78249	Weight to Volume	0.00

Internal Standard	Area (cps)	RT (min)	Target conc. (ug/L)	Calc. Conc. (ug/L)
O18LP	3.260e+05	9.54	5.00	-

Target Analyte	Area (cps)	RT	Target conc.	Calc. Conc.
		(min)	(ug/L)	(ug/L)
Perchlorate	1.060e+05	9.55	1.00	0.97
Perchlorate conf	3.710e+04	9.54	1.00	1.00

s.dataFile Page 1 of 2

s.dataFile Page 2 of 2

Data File	LM37796.wiff	Result Table	121716_JWR.rdb
Acquisition Date	12/17/2016 7:12:04 AM	Algorithm Used	Analyst Classic
Acquisition Method	062911.dam	Instrument Name	API 4000
Project	Perchlorate\2009_07_22		

Sample Name	WG595142-05 CCV (1.0ug/L)	Injection Vial	5.00
Data File	LM37796.wiff	Injection Volume	10.00
Acquisition Date	12/17/2016 7:12:04 AM	Algorithm Used	Analyst Classic
Acquisition Method	062911.dam	Sample Type	Quality Control
Instrument Name	API 4000	Result Table	121716_JWR.rdb
Sample ID	WG595142-05	Dilution Factor	1.00
Sample Comment	1,1 STD78249	Weight to Volume	0.00

Internal Standard	Area (cps)	RT (min)	Target conc. (ug/L)	Calc. Conc. (ug/L)
O18LP	3.280e+05	9.54	5.00	-

Target Analyte	Area (cps)	RT	Target conc.	Calc. Conc.
		(min)	(ug/L)	(ug/L)
Perchlorate	1.090e+05	9.56	1.00	0.996
Perchlorate conf	3.770e+04	9.54	1.00	1.01

s.dataFile Page 1 of 2

Perchlorate (98.8/83.3 amu) Nee 109e 05 counts Hei ght 9512 601 cps RT 956 min RT (Exp. 9.56 (9.56) min RT): 9000 0.996 ng/ml Calculated conc: 8000 Area Ratio: 0.334 Sample (Quality Control) 7000 Type: 6000 5000 4000 3000 2000 1000 0 Time'min New 377 e CD4 counts Height: 332A CLB cps RT: 954 min Perchlorate conf (100.8/85.2 amu) RT (Exp. 9.54 (9.56) min 3200 RT): 954 Calculated 1.01 ng/ml 3000 conc: 2800 Area Ratio: 0.115 2600 Sample (Quality Control) Type: 2400 2200 2000 1800 1600 1400 1200 1000 800 600 400 200 Time min

s.dataFile Page 2 of 2

Data File	LM37776.wiff	Result Table	121716_JWR.rdb
Acquisition Date	12/17/2016 12:53:22 AM	Algorithm Used	Analyst Classic
Acquisition Method	062911.dam	Instrument Name	API 4000
Project	Perchlorate\2009_07_22		

Sample Name	WG595135-07 MRL (0.2ug/L)	Injection Vial	3.00
Data File	LM37776.wiff	Injection Volume	10.00
Acquisition Date	12/17/2016 12:53:22 AM	Algorithm Used	Analyst Classic
Acquisition Method	062911.dam	Sample Type	Unknown
Instrument Name	API 4000	Result Table	121716_JWR.rdb
Sample ID	WG595135-07	Dilution Factor	1.00
Sample Comment	1,1 STD78249	Weight to Volume	0.00

Internal Standard	Area (cps)	RT (min)	Target conc. (ug/L)	Calc. Conc. (ug/L)
O18LP	3.150e+05	9.56	5.00	-

Target Analyte	Area (cps)	RT	Target conc.	Calc. Conc.
		(min)	(ug/L)	(ug/L)
Perchlorate	2.150e+04	9.56	N/A	0.199
Perchlorate conf	7.030e+03	9.54	N/A	0.183

s.dataFile Page 1 of 2

s.dataFile Page 2 of 2

Data File	LM37788.wiff	Result Table	121716_JWR.rdb
Acquisition Date	12/17/2016 4:40:37 AM	Algorithm Used	Analyst Classic
Acquisition Method	062911.dam	Instrument Name	API 4000
Project	Perchlorate\2009_07_22		

Sample Name	WG595135-08 MRL (0.2ug/L)	Injection Vial	3.00
Data File	LM37788.wiff	Injection Volume	10.00
Acquisition Date	12/17/2016 4:40:37 AM	Algorithm Used	Analyst Classic
Acquisition Method	062911.dam	Sample Type	Unknown
Instrument Name	API 4000	Result Table	121716_JWR.rdb
Sample ID	WG595135-08	Dilution Factor	1.00
Sample Comment	1,1 STD78249	Weight to Volume	0.00

Internal Standard	Area (cps)	RT (min)	Target conc. (ug/L)	Calc. Conc. (ug/L)
O18LP	3.230e+05	9.54	5.00	-

Target Analyte	Area (cps)	RT	Target conc.	Calc. Conc.
		(min)	(ug/L)	(ug/L)
Perchlorate	2.170e+04	9.56	N/A	0.196
Perchlorate conf	8.020e+03	9.54	N/A	0.205

s.dataFile Page 1 of 2

s.dataFile Page 2 of 2

Data File	LM37797.wiff	Result Table	121716_JWR.rdb
Acquisition Date	12/17/2016 7:31:00 AM	Algorithm Used	Analyst Classic
Acquisition Method	062911.dam	Instrument Name	API 4000
Project	Perchlorate\2009_07_22		

Sample Name	WG595135-09 MRL (0.2ug/L)	Injection Vial	3.00
Data File	LM37797.wiff	Injection Volume	10.00
Acquisition Date	12/17/2016 7:31:00 AM	Algorithm Used	Analyst Classic
Acquisition Method	062911.dam	Sample Type	Unknown
Instrument Name	API 4000	Result Table	121716_JWR.rdb
Sample ID	WG595135-09	Dilution Factor	1.00
Sample Comment	1,1 STD78249	Weight to Volume	0.00

Internal Standard	Area (cps)	RT (min)	Target conc. (ug/L)	Calc. Conc. (ug/L)
O18LP	3.390e+05	9.55	5.00	-

Target Analyte	Area (cps)	RT	Target conc.	Calc. Conc.
		(min)	(ug/L)	(ug/L)
Perchlorate	2.250e+04	9.56	N/A	0.193
Perchlorate conf	7.620e+03	9.55	N/A	0.184

s.dataFile Page 1 of 2

s.dataFile Page 2 of 2

Data File	LM37774.wiff	Result Table	121716_JWR.rdb
Acquisition Date	12/17/2016 12:15:30 AM	Algorithm Used	Analyst Classic
Acquisition Method	062911.dam	Instrument Name	API 4000
Project	Perchlorate\2009_07_22		

Sample Name	WG595142-01 CCB	Injection Vial	1.00
Data File	LM37774.wiff	Injection Volume	10.00
Acquisition Date	12/17/2016 12:15:30 AM	Algorithm Used	Analyst Classic
Acquisition Method	062911.dam	Sample Type	Unknown
Instrument Name	API 4000	Result Table	121716_JWR.rdb
Sample ID	WG595142-01	Dilution Factor	1.00
Sample Comment	11.00	Weight to Volume	0.00

Internal Standard	Area (cps)	RT	Target conc.	Calc. Conc.
		(min)	(ug/L)	(ug/L)
O18LP	3.150e+05	9.55	5.00	-

Target Analyte	Area (cps)	RT	Target conc.	Calc. Conc.
		(min)	(ug/L)	(ug/L)
Perchlorate	0.000e+00	0.00	N/A	No Peak
Perchlorate conf	0.000e+00	0.00	N/A	No Peak

s.dataFile Page 1 of 2

s.dataFile Page 2 of 2

Data File	LM37789.wiff	Result Table	121716_JWR.rdb
Acquisition Date	12/17/2016 4:59:32 AM	Algorithm Used	Analyst Classic
Acquisition Method	062911.dam	Instrument Name	API 4000
Project	Perchlorate\2009_07_22		

Sample Name	WG595142-04 CCB	Injection Vial	1.00
Data File	LM37789.wiff	Injection Volume	10.00
Acquisition Date	12/17/2016 4:59:32 AM	Algorithm Used	Analyst Classic
Acquisition Method	062911.dam	Sample Type	Unknown
Instrument Name	API 4000	Result Table	121716_JWR.rdb
Sample ID	WG595142-04	Dilution Factor	1.00
Sample Comment	11.00	Weight to Volume	0.00

Internal Standard	Area (cps)	RT (min)	Target conc. (ug/L)	Calc. Conc. (ug/L)
O18LP	3.490e+05	9.55	5.00	-

Target Analyte	Area (cps)	RT	Target conc.	Calc. Conc.
		(min)	(ug/L)	(ug/L)
Perchlorate	0.000e+00	0.00	N/A	No Peak
Perchlorate conf	0.000e+00	0.00	N/A	No Peak

s.dataFile Page 1 of 2

s.dataFile Page 2 of 2

Data File	LM37798.wiff	Result Table	121716_JWR.rdb
Acquisition Date	12/17/2016 7:49:55 AM	Algorithm Used	Analyst Classic
Acquisition Method	062911.dam	Instrument Name	API 4000
Project	Perchlorate\2009_07_22		

Sample Name	WG595142-06 CCB	Injection Vial	1.00
Data File	LM37798.wiff	Injection Volume	10.00
Acquisition Date	12/17/2016 7:49:55 AM	Algorithm Used	Analyst Classic
Acquisition Method	062911.dam	Sample Type	Unknown
Instrument Name	API 4000	Result Table	121716_JWR.rdb
Sample ID	WG595142-06	Dilution Factor	1.00
Sample Comment	11.00	Weight to Volume	0.00

Internal Standard	Area (cps)	RT	Target conc.	Calc. Conc.
		(min)	(ug/L)	(ug/L)
O18LP	3.490e+05	9.55	5.00	-

Target Analyte	Area (cps)	RT	Target conc.	Calc. Conc.
		(min)	(ug/L)	(ug/L)
Perchlorate	0.000e+00	0.00	N/A	No Peak
Perchlorate conf	0.000e+00	0.00	N/A	No Peak

s.dataFile Page 1 of 2

s.dataFile Page 2 of 2

Created with Analyst Reporter Printed: 12/17/2016 2:15 PM

Data File	LM37777.wiff	Result Table	121716_JWR.rdb
Acquisition Date	12/17/2016 1:12:17 AM	Algorithm Used	Analyst Classic
Acquisition Method	062911.dam	Instrument Name	API 4000
Project	Perchlorate\2009_07_22		

Sample Name	WG595135-01 MCT (0.2ug/L)	Injection Vial	10.00
Data File	LM37777.wiff	Injection Volume	10.00
Acquisition Date	12/17/2016 1:12:17 AM	Algorithm Used	Analyst Classic
Acquisition Method	062911.dam	Sample Type	Unknown
Instrument Name	API 4000	Result Table	121716_JWR.rdb
Sample ID	WG595135-01	Dilution Factor	1.00
Sample Comment	1,1 STD78251	Weight to Volume	0.00

Internal Standard	Area (cps)	RT	Target conc.	Calc. Conc.
		(min)	(ug/L)	(ug/L)
O18LP	2.960e+05	8.95	5.00	-

Target Analyte	Area (cps)	RT (min)	Target conc. (ug/L)	Calc. Conc. (ug/L)
Perchlorate	2.050e+04	8.97	N/A	0.202
Perchlorate conf	7.290e+03	8.96	N/A	0.204

s.dataFile Page 1 of 2

Created with Analyst Reporter Printed: 12/17/2016 2:15 PM

s.dataFile Page 2 of 2

C lected by: N/A E.ectronic Signature: no Operator: lcms1 Printing Date: Saturday, December 17, 2016

#4 JWR/12/17/16

12.19.1V

Collected by: N/A Electronic Signature: no Operator: lcms1

TO THE STATE OF TH

2.1.1.5 Raw QC Data

Data File	LM37778.wiff	Result Table	121716_JWR.rdb
Acquisition Date	12/17/2016 1:31:16 AM	Algorithm Used	Analyst Classic
Acquisition Method	062911.dam	Instrument Name	API 4000
Project	Perchlorate\2009_07_22		

Sample Name	WG595135-02 BLANK	Injection Vial	11.00
Data File	LM37778.wiff	Injection Volume	10.00
Acquisition Date	12/17/2016 1:31:16 AM	Algorithm Used	Analyst Classic
Acquisition Method	062911.dam	Sample Type	Unknown
Instrument Name	API 4000	Result Table	121716_JWR.rdb
Sample ID	WG595135-02	Dilution Factor	1.00
Sample Comment	11.00	Weight to Volume	0.00

Internal Standard	Area (cps)	RT (min)	Target conc. (ug/L)	Calc. Conc. (ug/L)
O18LP	3.380e+05	9.55	5.00	-

Target Analyte	Area (cps)	RT	Target conc.	Calc. Conc.
		(min)	(ug/L)	(ug/L)
Perchlorate	0.000e+00	0.00	N/A	No Peak
Perchlorate conf	1.990e+02	9.61	N/A	< 0

s.dataFile Page 1 of 2

Created with Analyst Reporter Printed: 12/17/2016 2:16 PM

Perchlorate (98.8/83.3 amu) (peak not found) RT (Exp. 0.00 (9.56) min 200 RT): 803 Calculated No Peak ng/ml 180 conc: Area Ratio: 0.00 160 Sample (Unknown) Type: 140 120 100 80 60 40 20 0 Time min Nesi 199e'CD counts Height: 31916 cps RT-961 min Perchlorate conf (100.8/85.2 amu) RT (Exp. 9.61 (9.56) min 803 RT): 160 Calculated < 0 ng/ml conc: 0.001 Area Ratio: 140 Sample (Unknown) Type: 120 100 80 60 40 20 Time'min

s.dataFile Page 2 of 2

Data File	LM37779.wiff	Result Table	121716_JWR.rdb
Acquisition Date	12/17/2016 1:50:11 AM	Algorithm Used	Analyst Classic
Acquisition Method	062911.dam	Instrument Name	API 4000
Project	Perchlorate\2009_07_22		

Sample Name	WG595135-03 LCS (0.2ug/L)	Injection Vial	12.00
Data File	LM37779.wiff	Injection Volume	10.00
Acquisition Date	12/17/2016 1:50:11 AM	Algorithm Used	Analyst Classic
Acquisition Method	062911.dam	Sample Type	Unknown
Instrument Name	API 4000	Result Table	121716_JWR.rdb
Sample ID	WG595135-03	Dilution Factor	1.00
Sample Comment	1,1 STD78251	Weight to Volume	0.00

Internal Standard	Area (cps)	RT	Target conc.	Calc. Conc.
		(min)	(ug/L)	(ug/L)
O18LP	3.300e+05	9.54	5.00	-

Target Analyte	Area (cps)	RT	Target conc.	Calc. Conc.
		(min)	(ug/L)	(ug/L)
Perchlorate	2.260e+04	9.56	N/A	0.20
Perchlorate conf	8.110e+03	9.54	N/A	0.203

s.dataFile Page 1 of 2

s.dataFile Page 2 of 2

3.0 Attachments

Microbac Laboratories Inc. Ohio Valley Division Analyst List December 19, 2016

001 - BIO-CHEM TESTING WVDEP 220 002 - REIC Consultants, Inc. WVDEP 060 003 - Sturm Environmental 004 - MICROBAC PITTSBURGH 005 - ES LABORATORIES 006 - ALCOSAN LABORATORIES 007 - ALS LABORATORIES
010 - MICROBAC CHICAGOLAND
CANTER 008 - BENCHMARK LABORATORIES AC - AMBER R. CARMICHAEL ADG - APRIL D. GREENE AED - ALLEN E. DAVIS ALS - ADRIANE L. STEED AMA - ALEXANDRA M. ALFRED AWE - ANDREW W. ESSIG AZH - AFTER HOURS BJO - BRIAN J. OGDEN BUC - BRIAN J. OGDEN

BKT - BRENDAN TORRENCE

BLG - BRENDA L. GREENWAL

BNB - Brandi N. Bentley

BRG - BRENDA R. GREGORY

CAA - CASSIE A. AUGENSTEIN

CAF - CHERYL A. FLOWERS

CAS - Craig A. Smith

CEB - CHAD E. BARNES BLG - BRENDA L. GREENWALT CAS - Craig A. Smith

CJQ - Cameron J. Quick

CLC - CHRYS L. CRAWFORD

CLS - CARA L. STRICKLER

CPD - CHAD P. DAVIS

CRW - CHRISTINA R. WILSON

CSH - CHRIS S. HILL

CV - Carl Volkman

DAK - DEAN A. KETELSEN

DEV - DAVID E. VANDENBERG

DLB - DAVID L. BUMGARNER

DLP - DOROTHY L. PAYNE

DSM - DAVID S. MOSSOR

DTG - DOMINIC T. GEHRET

ECL - ERIC C. LAWSON

EMW - ERIC M. WILKEN

ENY - EMILY N. YOAK

ERP - ERIN R. PORTER

FJB - FRANCES J. BOLDEN

JDH - JUSTIN D. HESSON

JDS - JARED D. SMITH

JKP - JACQUELINE K. PARSONS

JLD - JESSICA L. DELONG

JLL - JOHN L. LENT

JTP - JOSHUA T. PEMBERTON

JWR - JOHN W. RICHARDS JLD - JESSICA L. DELONG

JLL - JOHN L. LENT JMW - JEANA M. WHITE

JTP - JOSHUA T. PEMBERTON JWR - JOHN W. RICHARDS

JWS - JACK W. SHEAVES JYH - JI Y. HU

KAK - KATHY A. KIRBY KAT - KATHY A. TUCKER

KDD - Katelyn D. Daley KDW - KATHRYN D. WELCH

KEB - KATIE E. BARNES KHR - KIM H. RHODES

KKB - KERRI K. BUCK KRA - KATHY R. ALBERTSON

KRB - KAELY R. BECKER KRP - KATHY R. PARSONS

LJH - Lacey J. Hendershot KRP - KATHY R. PARSONS
LKN - LINDA K. NEDEFF
LSB - LESLIE S. BUCINA LJH - Lacey J. Hendershot LLS - LARRY L. STEPHENS LSJ - LAURA S. JONES MAP - MARLA A. PORTER MDA - MIKE D. ALBERTSON
MES - MARY E. SCHILLING MBK - MORGAN B. KNOWLTON MDC - MIKE D. COCHRAN MRT - MICHELLE R. TAYLOR MMB - MAREN M. BEERY MSW - MATT S. WILSON NPH - Natalie P. Hart PIT - MICROBAC WARRENDALE PDM - PIERCE D. MORRIS RAH - ROY A. HALSTEAD RLB - BOB BUCHANAN SAV - SARAH A. VANDENBERG QX - QIN XU REK - BOB E. KYER RNP - RICK N. PETTY SCB - SARAH C. BOGOLIN SDC - SHALYN D. CONLEY
SLM - STEPHANIE L. MOSSBURG SLP - SHERI L. PFALZGRAF TGF - TIM G. FELTON TB - TODD BOYLE TMM - TAMMY M. MORRIS TMB - TIFFANY M. BAILEY WJB - WILL J. BEASLEY VC - VICKI COLLIER WTD - WADE T. DELONG XXX - UNAVAILABLE OR SUBCONTRACT

Microbac Laboratories Inc. List of Valid Qualifiers December 19, 2016

Qualkey: DOD

Qualifier	Description
*	Surrogate or spike compound out of range
+	Correlation coefficient for the MSA is less than 0.995
<	Result is less than the associated numerical value.
>	Greater than
>,H1	Result is greater than the associated numerical value. Sample analysis performed past holding time.
A B	See the report narrative The reported result is associated with a contaminated method blank.
B,H1	Analyte present in method blank. Sample analysis performed past holding time.
B1	Target analyte detected in method blank at or above the method reporting limit
B3	Target analyte detected in calibration blank at or above the method reporting limit
B4	The BOD unseeded dilution water blank exceeded 0.2 mg/L
С	Confirmed by GC/MS
CG	Confluent growth
CT1	Cooler temperature at sample reciept exceeded regulatory limit.
DL	Surrogate or spike compound was diluted out
E E,CT1	Estimated concentration due to sample matrix interference Estimated results. The cooler temperature at receipt exceeded regulatory guidelines for requested testing.
EDL	Elevated sample reporting limits, presence of non-target analytes
EMPC	Estimated Maximum Possible Concentration
F, S	Estimated result below quantitation limit; method of standard additions(MSA)
F,CT1	Estimated value; the analyte concentration was less than the RL/LOQ. The cooler temperature at receipt exceeded regula
FL	Free Liquid
FP1	Did not ignite.
H1	Sample analysis performed past holding time.
H1,CT1	Sample analysis performed past holding time. The cooler temperature at receipt exceeded regulatory guidelines for reque
I J	Semiquantitative result (out of instrument calibration range) Estimated concentration; sample matrix interference.
J	Estimated value; the analyte concentration was greater than the highest standard
Ĵ	Estimated value ; the analyte concentration was less than the LOQ.
Ĵ	The reported result is an estimated value.
J,B	Analyte detected in both the method blank and sample above the MDL.
J,CT1	Estimated value; the analyte concentration was less than the LOQ. Cooler temperature at sample reciept exceeded regu
J,H1	Estimated value; the analyte concentration was less than the LOQ. Sample analysis performed past holding time.
J,H1	The reported result is an estimated value. Sample was analyzed past holding time.
J,P J,S	Estimate; columns don't agree to within 40% Estimated concentration; analyzed by method of standard addition (MSA)
JB	The reported result is an estimated value. The reported result is also associated with a contaminated method blank.
ĴQ	The reported result is an estimated value and one or more quality control criteria failed. See narrative.
L	Sample reporting limits elevated due to matrix interference
L1	The associated blank spike (LCS) recovery was above the laboratory acceptance limits.
L2	The associated blank spike (LCS) recovery was below the laboratory acceptance limits.
M	Matrix effect; the concentration is an estimate due to matrix effect.
N	Nontarget analyte; the analyte is a tentativlely identified compound (TIC) by GC/MS
NA ND	Not applicable Not detected at or above the reporting limit (RL)
ND, B	Not detected at or above the reporting limit (RL). Analyte present in method blank.
ND, CT1	Analyte was not detected. The concentration is below the reported LOD. The cooler temperature at receipt exceeded reg
NĎ, L	Not detected; sample reporting limit (RL) elevated due to interference
ND, S	Not detected; analyzed by method of standard addition (MSA)
ND,H1	Not detected; Sample analysis performed past holding time.
ND,H1,CT1	Not detected; Sample analysis performed past holding time. The cooler temperature at receipt exceeded regulatory guide
NF NFL	Not found by library search
NI	No free liquid Non-ignitable
NR	Analyte is not required to be analyzed
NS	Not spiked
Р	Concentrations >40% difference between the two GC columns
Q	One or more quality control criteria failed. See narrative.
Q,H1	One or more quality control criteria failed. Sample analyzed past holding time. See narrative.
QNS	Quantity of sample not sufficient to perform analysis
RA RE	Reanalysis confirms reported results Reanalysis confirms sample matrix interference
S	Analyzed by method of standard addition (MSA)
SMI	Sample matrix interference on surrogate
SP	Reported results are for spike compounds only
T5	Laboratory not licensed for this parameter
TIC	Library Search Compound

Microbac Laboratories Inc. List of Valid Qualifiers December 19, 2016

Qualkey: DOD

Too numerous to count
Too numerous to count. Analyte present in method blank.
Too numerous to count. The cooler temperature at receipt exceeded regulatory guidelines for requested testing.
Too numerous to count. Sample analysis performed past holding time.
Analyte was not detected. The concentration is below the reported LOD.
Analyte was not detected. The concentration is below the reported LOD. Cooler temperature at sample reciept exceeded
Not detected; Sample analysis performed past holding time.
Undetected; the MDL and RL are estimated due to quality control discrepancies.
Undetected; the analyte was analyzed for, but not detected.
Post-digestion spike for furnace AA out of control limits
Exceeds regulatory limit
Exceeds regulatory limit; method of standard additions (MSA)
Cannot be resolved from isomer - see below

	AMCOM				Chain of Custody Record	of C	ustoc	ly Re	cord					C	COC Number			
Laboratory:	Microbac POC: Stephanie Mossburg	sburg		Project Manager:	ger:	De	Debra Richmann	mann					Mail to:		I inda Raahe	ahe e		Г
Address:	158 Starlite Drive			Phone/Fax Number:	ımber:	210	210-296-2000	2						, '	110 Fact Decan	5	STE 400	T
	Marietta, OH 45750			Sampler (print):	ä	i V	Scott Beasinger	nger						, *	Con Ante	ביים לביים	1 400	Т
Phone:	1-800-373-4071					<u> </u>	All Decs	<u> </u>						- 1,,	210-296-2000	7000 2000	cnz8/	Т
Client:	AECOM			Signature:									Fed Ex A	Fed Ex Airbill No:				Т
Address:	112 East Pecan Ste. 400					-												
	San Antonio, TX 78205							-		F	F	F	0.00					T
Turn Around Time:	Time: STANDARD			Ä				SJ					riogram					
Project Name/Location:				<u>.</u>														
Project Number:								r Cor hlors						ERPIN	IS REQUI	ERPIMS REQUIRED FIELDS	SQ	T
Site Name	Sample ID/I ocation ID	Cas	G G	į	 	 	Τ''-	o tedmi					∋ac	al 1	LOT C	LOT CONTROL NUMBERS	IMBERS	T
		dae	SED	Date	e E	noວ	JeM	ηN		· · · · ·			SA CC	Coole	ABLOT	EBLOT	TBLOT	Γ.
∀	HBW 7 - 112916			11/29/16	8:13	×	≥	×						1				Т
9 ə.	HBW 10 - 112916			11/29/16	8:27	×	3	×										Т
ာ	HBW 1 - 112916			11/29/16	8:35	×	≥	×										T
əin	GPW 1 - 112916			11/29/16	8:28	×	┼—	×		-								Т.
e1	GPW 3 - 112916			11/29/16	9:10	×	>	×										Τ
d (╁	┿		+	1	-	\dagger	1				Т
98						\mp	_ -	+		+	+	1	1	+				Т
00						-	\int	-		1	+		\dashv	+				T
ອ						\perp		-										
8												-						
no						-												T -
γe						-												T
e u						\blacksquare												
osin																		- 1
Har	Comments: STANDARD TAT									1]		1				
Relinguished by:	(Date	۔ ا	Time	Received by: (Signature)	(Signatu	<u>e</u>			1			į			atture)	6	33
(Signature)	TOUTH HAS	2	20/16	15:00					= 	Microbac OVD	oso ox	;; 60 0 F ;	32	•	420A0000		6	
Relinquished by: (Signature)))	Date			Received for Laboratory by (Signature)	Laborato	ory by:			eceived y: BREN	Received: 11/30/20' By: BRENDA GREGORY	Received: 11/30/2010 US: Received: GREGORY By: BRENDA GREGORY		221	0.0000000000000000000000000000000000000	I		00
-Homogenize a	Homogenize all composite samples prior to analysis						Distribution: White	on: Whit		Loun	Aunda Arean	7.00			- manager	e,		189379
										•								92

Cooler ID 1024

COOLER TEMP >6° C LOG

	Bottle 1	Bottle 2	Bottle 3	Bottle 4	Bottle 5	Bottle 6
SAMPLE ID	°C	°C	°C	°C	°C	°C
· · · · · · · · · · · · · · · · · · ·						
				1.		
			100	0		
			111111			
		0				
	1	169 ·				
	. ,					

pH Lot #	HC581	117
		

pH Exceptions

SAMPLE ID	Bottle 1	Bottle 2	Bottle 3	Bottle 4	Bottle 5	Bottle 6
			······································			
***	 		· · · · · · · · · · · · · · · · · · ·			
			,			
			12	All		
		<u> </u>	$-\pi$			
·	 					
						
			-			
						· · · · · · · · · · · · · · · · · · ·
	 	PRESE	RVATI\ PTIONS	/F		
	 		····			
		EXCE	:FIIONS	5		

Document Control # 1957 Last 10-07-2016 _NONE _AS NOTED

Issued to: Document Master File

Microbac Laboratories Inc.

Internal Chain of Custody Report

Login: L16111326

Account: 2551 **Project:** 2551.096

Samples: 5

Due Date: 09-DEC-2016

 Samplenum
 Container ID
 Products

 L16111326-01
 834862
 6850

Bottle: 1

Seq.	Purpose	From	То	Date/Time	Accept	Relinquish	На
1	LOGIN	COOLER	W1	30-NOV-2016 10:08	BRG		
2	ANALYZ	W1	SEM	15-DEC-2016 14:34	JWR	BRG	
3	STORE	SEM	A1	17-DEC-2016 18:31	AZH	JWR	

<u>Samplenum</u> <u>Container ID</u> <u>Products</u> <u>L16111326-02</u> 834863 6850

Bottle: 1

Seq.	Purpose	From	То	Date/Time	Accept	Relinquish	Нд
1	LOGIN	COOLER	W1	30-NOV-2016 10:08	BRG		
2	ANALYZ	W1	SEM	15-DEC-2016 14:34	JWR	BRG	
3	STORE	SEM	A1	17-DEC-2016 18:31	AZH	JWR	

<u>Samplenum</u> <u>Container ID</u> <u>Products</u> <u>L16111326-03</u> 834864 6850

Bottle: 1

Seq.	Purpose	From	То	Date/Time	Accept	Relinquish	pН
1	LOGIN	COOLER	W1	30-NOV-2016 10:08	BRG		
2	ANALYZ	W1	SEM	15-DEC-2016 14:34	JWR	BRG	
3	STORE	SEM	A1	17-DEC-2016 18:31	AZH	JWR	

<u>Samplenum</u> <u>Container ID</u> <u>Products</u> <u>L16111326-04</u> 834865 6850

Bottle: 1

Seq.	Purpose	From	То	Date/Time	Accept	Relinquish	рН
1	LOGIN	COOLER	W1	30-NOV-2016 10:08	BRG		
2	ANALYZ	W1	SEM	15-DEC-2016 14:34	JWR	BRG	
3	STORE	SEM	A1	17-DEC-2016 18:31	AZH	JWR	

A1 - Sample Archive (COLD)

A2 - Sample Archive (AMBIENT)

F1 - Volatiles Freezer in Login

V1 - Volatiles Refrigerator in Login

W1 - Walkin Cooler in Login

Microbac Laboratories Inc.

Internal Chain of Custody Report

Login: L16111326 Account: 2551 Project: 2551.096

Samples: 5

Due Date: 09-DEC-2016

<u>Samplenum</u> <u>Container ID</u> <u>Products</u> <u>L16111326-05</u> 834866 6850

Bottle: 1

Seq.	Purpose	From	То	Date/Time	Accept	Relinquish	рН
1	LOGIN	COOLER	W1	30-NOV-2016 10:08	BRG		
2	ANALYZ	W1	SEM	15-DEC-2016 14:34	JWR	BRG	
3	STORE	SEM	A1	17-DEC-2016 18:31	AZH	JWR	

A1 - Sample Archive (COLD)

A2 - Sample Archive (AMBIENT)

F1 - Volatiles Freezer in Login

V1 - Volatiles Refrigerator in Login

W1 - Walkin Cooler in Login

NELAP Addendum - January 4, 2016

Non-NELAP LIMS Product and Description

The following is a list of those tests that are not included in the Microbac – OVD NELAP Scope of Accreditation:

Heat of Combustion (BTU)
Total Halide by Bomb Combustion (TX)
Particle Sizing - 200 Mesh (PS200)
Specific Gravity/Density (SPGRAV)
Total Residual Chlorine (CL-TRL)
Total Volatile Solids (all forms) (TVS)
Total Coliform Bacteria (all methods)
Fecal Coliform Bacteria (all methods)
Sulfite (SO3)
Propionaldehyde (HPLC-UV)

SOLID AND HAZARDOUS CHEMICALS

Nitrogen, Ammonia by Method 350.1 Chromium, Hexavalent, Leachable by SM3500 Cr-B 2009 Phenolics, Total by Method 420.1 ASTM D3987-06

NELAP Accreditation by Laboratory SOP

NONPOTABLE WATER

OVD HPLC02/HPLC-UV

Nitroglycerin Acetic acid Butyric acid Lactic acid Propionic acid Pyruvic acid

OVD MSS01/GC-MS

1,4-Phenylenediamine
1-Methylnaphthalene
1,4-Dioxane
Atrazine
Benzaldehyde
Biphenyl
Caprolactam
Hexamethylphosphoramide (HMPA)
Pentachlorobenzene
Pentachloroethane

NELAP Accreditation by Laboratory SOP

NONPOTABLE WATER

OVD MSV01/GC-MS

1, 1, 2-Trichloro-1,2,2-trifluoroethane

1,3-Butadiene

Cyclohexane

Cyclohexanone

Dimethyl disulfide

Dimethylsulfide

Ethyl-t-butylether (ETBE)

Isoprene

Methylacetate

Methylcyclohexane

T-amylmethylether (TAME)

Tetrahydrofuran (THF)

OVD HPLC07/HPLC-MS-MS

Hexamethylphosphoramide (XMPA-LCMS)

OVD HPLC12/HPLC/UV

Acetate

Formate

OVD RSK01/GC-FID

Acetylene

Propane

OVD K9305/ISE

Fluoroborate

SOLID AND HAZARDOUS CHEMICALS

OVD MSS0I/GC-MS

1-Methylnaphthalene

Benzaldehyde

Biphenyl

Caprolactam

Pentachloroethane

NELAP Accreditation by Laboratory SOP

SOLID AND HAZARDOUS CHEMICALS

OVD MSV0I/GC-MS

1.3-Butadiene
Cyclohexane
Cyclohexanone
Dimethyl disulfide
Dimethylsulfide
Ethyl-t-butylether (ETBE)
Isoprene
Methylacetate
Methylcyclohexane
n-Hexane
T-amylmethylether (TAME)

A=COM

Chain of Custody Record

COC Number:

				7															COC	Number:		
Laboratory:	Microbac POC: Stephanie Mo	ssburg		Project Mana	ager:		Deb	ora Ric	chma	ann							Mail to: Linda Raabe					
Address:	158 Starlite Drive			Phone/Fax N	umber:		210	-296-	2000	1										112 East F	Pecan STE	E. 400
	Marietta, OH 45750			Sampler (pri	nt):		Sco	tt Bee	esing	er					- 3				1.5	San Anton	io, TX 782	205
Phone:	1-800-373-4071								30-70.1)	A							210-296-2000					
Client:	AECOM	(6)		Signature:	(-	1	D-	0.0	_							Fed	Ex Ai	irbill N	0:		
Address:	112 East Pecan Ste. 400				0	iet	0	7	ll:	بعر	ge	~										
	San Antonio, TX 78205																Prog	gram:				
Turn Around T	STANDARD			pH:					ers													
Project Name/I	Longhorn Longhorn								ntair	ate												
Project Numbe	er: 60256135.0009AA	0009AA			ber of Contai					-	ERPII	VIS REQUI	RED FIELI	DS								
O'to No.	Complete ID/Leasting ID	000	000			-du	qp	rix	Number of Containers	Per							ODF		er ID	LOT C	ONTROL NUI	MBERS
Site Name	Sample ID/Location ID	SBD	SED	Date	Time	Comp-	Grab	Matrix	ž								SACODE		Cooler ID	ABLOT	EBLOT	TBLOT
×	HBW 7 - 082316			8/23/16	8:25		Х	W	1	Х												
.ee	HBW 10 - 082316			8/23/16	8:30		X	W	1	X												
Goose Prarie Creek	HBW 1 - 082316			8/23/16	8:50		Х	W	1	Х												
rie	GPW 1 - 082316			8/23/16	9:08		х	W	1	X												
<u>a</u>	GPW 3 - 082316			8/23/16	9:20		Х	W	1	х		\neg	\top	\neg	\top							
۵	01 44 0 - 002010	_	-	0/23/10	3.20		^	- 00	+ '	1^		+	\dashv	+	+	\dashv	+	+				
90			-	-				-	-	-	\vdash	\dashv	+	+	+	_	-	+				
ő												_		_								
0																						
									Γ													
n			<u> </u>						_			\dashv	\neg	\dashv	\neg							
0			+						-	-		\dashv	+	+	+	-	+	+				
a			-						-	-		\dashv	+	+	_	_	-	-				
Harrison Bayou &																						
on																						
.0																						
ar.	Comments: STANDAR	D TA																				
Ï	Comments: STANDAR	DIA																				
		0.10	ate,	Time	Received	by: (8	Signa	ture)				Tr	 7	-71	(0)		TE		- •	q	by: (Signatur	e)
Relinquished by (Signature)	COLOR OSCI	8/2	3/16	12:00							licro	bac	: 0٧	D								
Relinquished by	Jan	THE RESIDENCE OF THE PERSON NAMED IN COLUMN 1	ate	Time	Received	for La	abora	tory by		= F	Receiv	ed: (28/24	/201	6 10:	10						
(Signature)	8				(Signatur	e)				E-19-12-20	By: BRI					0			000090			
•Homogenize	all composite samples prior to analysis							Distri	bu =		BI	0		1	1	AL	298	100			nger	
1 Torriogeriize	an composite sumples prior to analysis							510011			N		N		1		10	(2	2	30,	

AECOM

Chain of Custody Record

COC Number:

Microbac POC: Stephanie Mossb	ourg		Project Manager: Debra Richmann										Mail	to:		Linda Raa	be				
158 Starlite Drive			Phone/Fax	Number		210-	296-2	2000											112 East F	ecan STE	. 400
Marietta, OH 45750			Sampler (p	rint):		Scot	tt Bee	singe	er												05
1-800-373-4071																					
AECOM			Signature:		(Sai	A	Ro	20							Fed	Ex /	Airbiii N	0:		
112 East Pecan Ste. 400				an susign																	
San Antonio, TX 78205										Prog	gram):									
SIANDAND			pH: 발																		
Longnon								ontai	rate			33							white the same of		
Project Number: 60256135.0009AA			2				ğ	S 용									ERPI	MS REQUI	RED FIELD	os	
Site Name Sample ID/Location ID SBD SED								per	Per							H	1	0	LOT CONTROL N		WBERS
Sample ID/Location ID	SBD	SED	Date	Time	Сошр	Grab	Matri	Mun								SACO	3	Cooler	ABLOT	EBLOT	TBLOT
HBW 7 - 022516			2/25/16	12:40		Х	W	1	Х												
HBW 10 - 022516			2/25/16	12:50		х	W	1	Х												
HBW 1 - 022516			2/25/16	13:05		х	W	1	х												
GPW 3 - 022516			2/25/16	13:20		х	W	1	х												
GPW 1 - 022516			2/25/16	13:40		Х	W	1	Х				\perp	_							
																		l line			
													+	\dashv					publication		
								-	-	-	\vdash	\dashv	\dashv	+	-						
														-					2000		
								_													
1000000																					
														T							
														\top							
OTANDADD	C TE	USDE IT	5 4 12 6 2	1, Same 5 2	4116	1 65	tada.		234		NG L	week.					94		HERRIE		
Comments: SIANUARD	IA																				
Statu Beecing	,			Received	by: (S	Signati	иге)					Recei	ved by	r: (Sigr	nature)	Da	ate	Time	Relinquished	by: (Signatur	е)
						borat	tory by:					Da	te		400		Tin	ne	Remarks:		
	158 Starlite Drive Marietta, OH 45750 1-800-373-4071 AECOM 112 East Pecan Ste. 400 San Antonio, TX 78205 me: STANDARD .ocation: Longhorn r: 60256135.0009AA Sample ID/Location ID HBW 7 - 022516 HBW 10 - 022516 GPW 3 - 022516 GPW 1 - 022516 GPW 1 - 022516 GPW 1 - 022516 Comments: STANDARD	158 Starlite Drive Marietta, OH 45750 1-800-373-4071 AECOM 112 East Pecan Ste. 400 San Antonio, TX 78205 me: STANDARD .ocation: Longhorn F: 60256135.0009AA Sample ID/Location ID HBW 7 - 022516 HBW 1 - 022516 GPW 3 - 022516 GPW 1 - 022516 GPW 1 - 022516 GPW 1 - 022516 GPW 1 - 022516 GPW 1 - 022516 GPW 1 - 022516 GPW 1 - 022516	158 Starlite Drive Marietta, OH 45750 1-800-373-4071 AECOM 112 East Pecan Ste. 400 San Antonio, TX 78205 me: STANDARD coation: Longhorn r: 60256135.0009AA Sample ID/Location ID SBD SED HBW 10 - 022516 HBW 10 - 022516 GPW 3 - 022516 GPW 1 - 022516 GPW 1 - 022516 GPW 1 - 022516 GPW 1 - 022516 GPW 1 - 022516 GPW 3 - 022516 GPW 1 - 022516	158 Starlite Drive Marietta, OH 45750 1-800-373-4071 AECOM 112 East Pecan Ste. 400 San Antonio, TX 78205 me: STANDARD .ocation: Longhorn r: 60256135.0009AA Sample ID/Location ID SBD SED Date HBW 7 - 022516 HBW 1 - 022516 GPW 3 - 022516 GPW 1 - 022516 GPW 1 - 022516 GPW 1 - 022516 GPW 1 - 022516 Comments: STANDARD Comments: STANDARD Date Date Date Time Longhorn The comments of the	Phone/Fax Number Phone/Fax Number Sampler (print):	Total Starlite Drive Phone/Fax Number: Sampler (print):	Phone/Fax Number: 210. Sampler (print): Scot	Time Standard St	Time STANDARD ST	Marietta, OH 45750	Section Standard Standard	Second Standard Standard	Phone/Fax Number: 210-296-2000	Marietta, OH 45750	Marietta, OH 45750	Phone/Fax Number: 210-296-2000 Sampler (print): Scott Beesinger	Microback PUC: Stephanie Mossburg	Secure Comments: STANDARD Time Comments: STANDARD Comments: ST	Microbac PUC: Signame Mossourg	Microbac Policy Segregation Microbac Policy Pronoff as Number: 210-268-2000 112 East East San Anton 210-296-21 12-600-373-4071 1-600-37	Delta Richards PUC: Stephane Mossourg Puchane

QUALITY CONTROL SUMMARY REPORT LONGHORN ARMY AMMUNITION PLANT KARNACK, TEXAS

Prepared For:

U.S. Army Corps of Engineers

Prepared By:

AECOM Technical Services

June 2016

Table of Contents

1	INTRO	ODUCTION	1
	1.1 In	tended Use of Data	1
		eservation and Holding Times	
		alibrations	
	1.3.1	Continuing Calibration Verifications (CCV)	
	1.3.2	Blanks	
	1.3.3	Surrogates	1
		Laboratory Control Sample (LCS)	
2		USABILITY SUMMARY	

List of Tables

Table 1: Completeness by Method

Table 2: Field Sample Identification and Laboratory Identification

1 INTRODUCTION

AECOM reviewed four data packages from Microbac Laboratory Services, Marietta, OH. Surface and groundwater samples were collected November 19, December 29, 2015 and February 25, 2016 at Longhorn Army Ammunition Plant (LHAAP), Karnack, Texas. Data were reviewed for conformance to the requirements of the following guidance documents: Automated Data Review by Laboratory Data Consultants (ADR.net), United States Environmental Protection Agency (EPA) Contract Laboratory Program National Functional Guidelines for Inorganic Data Review, (EPA, July 2002), and EPA Contract Laboratory Program National Functional Guidelines for Low Concentration Organic Data Review, (EPA, June 2001).

1.1 Intended Use of Data

Groundwater treatment activities consist of monitoring of treated water to ensure compliance with the discharge limitations.

Analyses requested included:

• SW6850 – Perchlorates by LC/MS/MS

Table 2 lists the sample identifications and their associated laboratory identifications.

1.2 Preservation and Holding Times

Sample identification data were evaluated for agreement with the chain-of-custody (COC). All samples were received in appropriate containers, within the proper temperature range, in good condition, and with the required signatures.

1.3 Calibrations

Initial calibration criteria modification includes RSD< or = to 30%, two compounds allowed up to 40%. If the continuing calibration verification (CCV) compound exceeds 30% drift, the compound is checked in the LCS, if both are outside recovery limits, the compound is rejected, R. If only the CCV exceeds recovery criteria and is less than \pm 40% drift, then the compound is qualified J or UJ.

1.3.1 Continuing Calibration Verifications (CCV)

CCVs within control limits.

1.3.2 Blanks

Where contamination by a target analyte of one of the various blanks was found, if the sample result for an associated sample was non-detect or less than 5X (10X for common laboratory contaminants) the analyte concentration in the blank, the corresponding sample result for the analyte was qualified B. Where the sample result for the affected analyte was greater than 5X the amount in the blank, no qualifier was applied.

No blank contamination found.

1.3.3 Surrogates

All surrogates are within criteria.

June 2016

1.3.4 Laboratory Control Sample (LCS)

All LCS are within criteria.

2 DATA USABILITY SUMMARY

The data are usable for the intended purposes of the project. The data quality objectives have been met for the project.

Table 1: Completeness by Method

Method	Total Analytes	No. of Rejected Results	% Completeness
SW6850	13	0	100

Table 2: Field Sample Identification and Laboratory Identification

Client Sample ID	Lab Sample ID	Collected	SW6850
HBW7-111915	L1511223-01	11/19/15	X
HBW10-111915	L1511223-02	11/19/15	X
HBW1-111915	L1511223-03	11/19/15	X
GPW1-111915	L1511223-04	11/19/15	X
GPW3-111915	L1511223-05	11/19/15	X
PW133-122915	L15121571-01	12/29/15	X
PW134-122915	L15121571-02	12/29/15	X
HBW 7-022516	L16021328-01	2/25/16	X
HBW 10-022516	L16021328-02	2/25/16	X
HBW 1-022516	L16021328-03	2/25/16	X
GPW 3-022516	L16021328-04	2/25/16	X
GPW 1-022516	L16021328-05	2/25/16	X

QUALITY CONTROL SUMMARY REPORT LHAAP-50, FORMER SUMP WATER TANK FOR LONGHORN ARMY AMMUNITION PLANT KARNACK, TEXAS

Prepared For:

U.S. Army Corps of Engineers

Prepared By:

AECOM Technical Services

Table of Contents

1	IN'	TRODUCTION	2
	1.1	Intended Use of Data	
	1.2	Preservation and Holding Times	
	1.3	Calibrations	
		3.1 Continuing Calibration Verifications (CCV)	
	1	.3.1.1 SW8260B	
	1.4	Blanks	
		.1 SW8260B	
	1.5	Surrogates	
	1.6	Laboratory Control Sample (LCS)/Laboratory Control Sample Duplicate (LCSD))
	1.6		
	1.7	Matrix Spike/Matrix Spike Duplicate (MS/MSD)	5
	1.7		
	1.8	Field Duplicate Precision	
)	DA	TA USABILITY SUMMARY	

List of Tables

Table 1: Field Sample Identification and Laboratory Identification

Table 2: Qualified Analytical Data Table 3: Completeness by Method

1 INTRODUCTION

AECOM reviewed seven data packages from Microbac Laboratory Services (Microbac), Marietta, OH. Groundwater samples were collected May 18-31, 2016 and November 1-4, 2016 at the LHAAP-50 site at the Longhorn Army Ammunition Plant (LHAAP), Karnack, Texas. Data were reviewed for conformance to the requirements of the following guidance documents: Automated Data Review by Laboratory Data Consultants (ADR.net), United States Environmental Protection Agency (EPA) Contract Laboratory Program National Functional Guidelines for Inorganic Data Review, (EPA, January 2017), and EPA Contract Laboratory Program National Functional Guidelines for Low Concentration Organic Data Review, (EPA, January 2017).

1.1 Intended Use of Data

The objective of this sampling event was to collect data for the Remedial Action Completion Report.

Analyses requested included:

- SW8260B Volatiles
- SW6850 Perchlorate
- RSK 175 Dissolved gases (methane, ethane, ethene, CO₂)
- E365.4 Total Phosphorus
- E415.1 Total Organic Carbon
- · SW6010C Fe (total and dissolved)
- SW6020A –Mn (dissolved)
- SW9056 Common Anions (chloride, sulfate, nitrate, nitrite)
- E310.1 Alkalinity
- · SM4500-S(-2) Sulfide

Table 1 lists the sample identifications and their associated laboratory identifications. **Table 2** lists qualified results with the associated quality control parameter that was exceeded.

1.2 Preservation and Holding Times

Sample identification data were evaluated for agreement with the chain-of-custody (COC). All samples submitted for analyses were received in appropriate containers, within the proper temperature range, in good condition, and with the required signatures excepted as noted below.

1.3 Calibrations

Initial calibration acceptance criteria are a relative standard deviation (RSD) less than or equal to 15 percent (%) or a correlation coefficient $(r^2) > 0.99$. All calibration curves met criteria.

1.3.1 Continuing Calibration Verifications (CCV)

1.3.1.1 SW8260B

If the continuing calibration verification (CCV) compound exceeds 20% difference, the compound is checked in the LCS, if both are outside recovery limits, the compound is rejected, R. If only the CCV exceeds recovery criteria (80% to 120%) and is less than \pm 20% difference, then the compound is qualified J or UJ

CCV WG568232-02 run on 5/10/16 had a chloromethane recovery of 78.8%, below the lower control limit of 80%. This compound is not detected in the associated samples and the results are qualified UJ.

CCV WG569560-02 run on 5/19/16 had a bromoform recovery of 120.4%, above the upper control limit of 120%. This compound is not detected in the associated samples; therefore, no qualification is necessary.

CCV WG569785-02 run on 5/21/16 had recoveries for carbon tetrachloride, dichlorodifluoromethane, 1,2-dichloroethane, 2,2-dichloropropane, and trichlorofluoromethane above the upper control limit of 120%. The results for these compounds in the associated sample are non-detects so no qualification is necessary. In addition, the CCV recovery for hexachlorobutadiene is 77.8%, below the lower control limit of 80%. This compound is not detected in the associated samples and the results are qualified UJ.

CCV WG569788-02 run on 5/21/16 had a bromomethane recovery of 70.2%, below the lower control limit of 80% This compound is not detected in the associated sample and the results are qualified UJ.

CCV WG596792-02 run on 5/22/16 had recoveries for carbon tetrachloride, dichlorodifluoromethane, 2,2-dichloropropane, 1,1,1-trichloroethane, and trichlorofluoroemthane above the upper control limits. The results for these compounds in the associated sample are non-detects so no qualification is necessary.

CCV WG590132-02 run on 11/2/16 had a 2-chlorotoluene recovery of 125.2%, above the upper control limit. The result for the associated sample is non-detect so no qualification is necessary. In addition, the CCV recoveries for 2-hexanone (75.4%) and 4-methyl-2-pentanone (77%) are below the lower control limit. These compounds are not detected in the associated samples and the results are qualified UJ.

CCV WG590291-02 run on 11/3/16 had a 2-chlorotoluene recovery of 123.4%, above the upper control limit. The results for the associated samples are non-detect so no qualification is necessary. In addition, the CCV recovery for 2-hexanone (77%) is below the lower control limit. This compound is not detected in the associated samples and the results are qualified UJ.

CCV WG591384-02 run on 11/11/16 had CCV recoveries for 4-chlorotoluene of 79.4%, 2-hexanone of 76.6%, and 1,2,3-trichlorobenzene of 79.4%, all below the lower control limit of 80%. These compounds are not detected in the associated sample and the results are qualified UJ.

Table 2 shows qualified analytical data.

1.4 Blanks

Where contamination by a target analyte of one of the various blanks was found, if the sample result for an associated sample was non-detect or less than 5X (10X for common laboratory contaminants) the analyte concentration in the blank, the corresponding sample result for the analyte was qualified J. Where the sample result for the affected analyte was greater than 5X (10X) the amount in the blank, no qualifier was applied.

1.4.1 SW8260B

The following analytes were detected in blanks associated with the project samples:

Blank	Analyte	Result	Units
Method Blank -	Bromobenzene	0.158	μg/L
WG569773-01 (5/20/16)	n-Butylbenzene	0.408	μg/L
	Chlorobenzene	0.139	μg/L
	2-Chlorotoluene	0.147	mg/L
	1,2-Dichlorobenzene	0.182	μg/L
	1,3-Dichlorobenzene	0.304	μg/L
	1,4-Dichlorobenzene	0.331	μg/L
	Hexachlorobutadiene	0.468	μg/L
	Naphthalene	0.306	μg/L
	n-Propylbenzene	0.207	μg/L
	1,2,3-Trichlorobenzene	0.461	μg/L
	1,2,4-Trichlorobenzene	0.575	μg/L
Method Blank -	1,4-Dichlorobenzene	0.144	μg/L
WG569789-01 (5/21/16)	1,2,3-Trichlorobenzene	0.241	μg/L
	1,2,4-Trichlorobenzene	0.281	μg/L
Trip Blank (11/01/16)	Chloromethane	0.526	μg/L
Trip Blank (11/14/16)	Acetone	2.79	μg/L

Table 2 shows qualified analytical data.

1.5 Surrogates

Surrogates were evaluated using limits defined by method in project-specific QAPP in Worksheet 28.

The recoveries for two SW8260B surrogate compounds were above the acceptance criteria in sample 50WW26-051216. Target compounds were not detected in the sample; therefore no data were qualified due to the high surrogate recoveries.

All other surrogates are within criteria.

1.6 Laboratory Control Sample (LCS)/Laboratory Control Sample Duplicate (LCSD)

LCS/LCSD recoveries were evaluated using limits defined by method in project-specific QAPP in Worksheet 15.

1.6.1 SW8260B

LCS duplicate sample (LCSD) was spiked double the concentration of the following five compounds - 2-butanone, 2-hexanone, 4-methyl-2-pentaone, acetone, and carbon disulfide - as was spiked into LCS WG569561-03 run on 5/19/16 (associated with sample 50WW11-051016). The LCS and LCSD recoveries are within control limits; however the %RPDs were not within acceptance criteria for the aforementioned analytes. Since the LCS/LCSD variability for these compounds is due to an assignable laboratory error and not indicative of a laboratory or matrix effects; these results were not used to qualify the associated sample data.

LCS/LCSD pairs WG590133-02/03 and WG590292-02/03 have recoveries for several compounds above control limits. The affected compounds were not detected in the associated samples, so no qualification is necessary.

LCS WG590443-02/03 had average recoveries of 121% for benzene and of 125.5% for dibromomethane, which are above the upper control limits for these analytes. These compounds were not detected in the associated samples so no qualification is necessary.

Table 2 shows qualified analytical data.

1.7 Matrix Spike/Matrix Spike Duplicate (MS/MSD)

MS/MSD recoveries were evaluated using limits defined by method in project-specific QAPP in Worksheet 15.

1.7.1 SW8260B

Two MS/MSDs were analyzed in SW8260B Batch WG569773. Therefore, these MS/MSD results were used to qualify the associated parent samples only:

50WW07-051116 was spiked for the MS/MSD. Recoveries for 1,1,2,2-tetrachloroethane (133% and 131%) are above the upper control limit of 130%. The analyte is non-detect in the parent sample; therefore, no qualification is necessary.

50WW27-051216 was spiked for the MS/MSD. Recoveries for 1,1-dichloroethene (68.6% and 66.9%) and 1,1-dichloropropene (75% and 73.4%) are below the lower control limit of 70% for 1,1-dichloroethene and 75% for 1,1,-dichloropropene. These analytes are non-detected in the parent sample and are qualified UJ.

50WW05-110316 was spiked for the MS/MSD. Recoveries for 1,1,-dichloroethene (67.4% and 68.3%) and cis-1,2-dichloroethene (37.3% and 36.6%) are below the control limits. These analytes are non-detected in the parent sample and are qualified UJ. In addition, the trichloroethene concentrations in the parent sample are more than 4X the spike amount; therefore, the MS/MSD results for this analyte were not used to qualify associated sample results.

Table 2 shows qualified analytical data.

1.8 Field Duplicate Precision

Precision is the measure of variability of individual sample measurements. Evaluation of field duplicates for precision was done using the Relative Percent Difference (RPD). The RPD is defined as the difference between two duplicate samples divided by the mean and expressed as a percent. Field duplicate RPD limits were set at $\pm 25\%$ for groundwater matrices.

The variability for tetrachloroethane (69%) and trichloroethene (29%) were outside the acceptance criteria of \pm 25% in sample 50WW15-110216 and its field duplicate. These results were qualified with J.

Table 2 shows qualified analytical data.

2 DATA USABILITY SUMMARY

The data are usable for the intended purposes of the project (see Table 3). The data quality objectives have been met for the project.

Table 1: Field Sample Identification and Laboratory Identification

Client Sample ID	Laboratory Sample ID	SW6850	SW8260B	SW6010C	SW6020A	RSK 175	SW9056	E310.2	E365.4	SM4500-S(-2)	E415.1	
	May 2016											
50WW14-050316	L16050151-03	X	X			X	X	X	X	X	X	
50WW14FF-050316	L16050151-04			X	X							
50WW08-050316	L16050151-05	X	X			X	X	X	X	X	X	
50WW08FF-050316	L16050151-06			X	X							
50WW18-050316	L16050151-07	X	X			X	X	X	X	X	X	
50WW18FF-050316	L16050151-08			X	X							
50WW25-050316	L16050151-09	X	X			X	X	X	X	X	X	
50WW25FF-050316	L16050151-10			X	X							
Trip Blank	L16050151-11		X									
50WW22-051016	L16050571-01	X	X			X	X	X	X	X	X	
50WW22FF-051016	L16050571-02			X	X							
50WW11-051016	L16050571-03	X	X			X	X	X	X	X	X	
50WW11FF-051016	L16050571-04			X	X							
50WW06-051016	L16050571-05	X	X			X	X	X	X	X	X	
50WW06FF-051016	L16050571-06			X	X							
50WW12-051016	L16050571-07	X	X			X	X	X	X	X	X	
50WW12FF-051016	L16050571-08			X	X							
50WW24-051016	L16050571-09	X	X			X	X	X	X	X	X	
50WW24FF-051016	L16050571-10			X	X							
50WW23-051016	L16050571-11	X	X			X	X	X	X	X	X	

Client Sample ID	Laboratory Sample ID	SW6850	SW8260B	SW6010C	SW6020A	RSK 175	SW9056	E310.2	E365.4	SM4500-S(-2)	E415.1
50WW23FF-051016	L16050571-12			X	X						
Trip Blank	L16050571-13		X								
50WW07-051116	L16050763-01	X	X								
50WW28-051116	L16050763-04	X	X								
50WW20-051116	L16050763-05	X	X								
50WW05-051116	L16050763-06	X	X								
50WW05FD-051116	L16050763-07	X	X								
50WW16-051116	L16050763-08	X	X								
50WW01-051216	L16050763-09	X	X								
50WW09-051216	L16050763-10	X	X								
50WW10-051216	L16050763-11	X	X								
50WW10FD-051216	L16050763-12	X	X								
50WW15-051216	L16050763-13	X	X								
50WW27-051216	L16050763-14	X	X								
50WW21-051216	L16050763-17	X	X								
50WW12FD-051216	L16050763-18	X	X								
50WW26-051216	L16050763-19	X	X								
Trip Blank	L16050763-20		X								
50WW19T-051316	L16050972-01	X	X								
50WW19M-051316	L16050972-02	X	X								
50WW19B-051316	L16050972-03	X	X								
50WW17T-051316	L16050972-04	X	X								
50WW17M-051316	L16050972-05	X	X								
50WW17B-051316	L16050972-06	X	X								
50WW13T-051316	L16050972-07	X	X								
50WW13B-051316	L16050972-08	X	X								
Trip Blank	L16050972-09		X								
	Nov	ember	2016								
50WW13-110116	L16110074-01	X	X			X	X	X	X	X	X
50WW13FF-110116	L16110074-02			X	X						
50WW14-110116	L16110074-03	X	X			X	X	X	X	X	X
50WW14FF-110116	L16110074-04			X	X						
50WW11-110116	L16110074-05	X	X			X	X	X	X	X	X
50WW11FF-110116	L16110074-06			X	X						
50WW06-110116	L16110074-07	X	X			X	X	X	X	X	X
50WW06FF-110116	L16110074-08			X	X						
50WW12-110116	L16110074-09	X	X			X	X	X	X	X	X

Client Sample ID	Laboratory Sample ID	SW6850	SW8260B	SW6010C	SW6020A	RSK 175	SW9056	E310.2	E365.4	SM4500-S(-2)	E415.1
50WW12FF-110116	L16110074-10			X	X						
50WW23-110116	L16110074-11	X	X			X	X	X	X	X	X
50WW23FF-110116	L16110074-12			X	X						
Trip Blank	L16110074-13		X								
50WW08-110216	L16110144-01	X	X			X	X	X	X	X	X
50WW08FF-110216	L16110144-02			X	X						
50WW22-110216	L16110144-03	X	X			X	X	X	X	X	X
50WW22FF-110216	L16110144-04			X	X						
50WW16-110216	L16110144-05	X	X			X	X	X	X	X	X
50WW16FF-110216	L16110144-06			X	X						
50WW27-110216	L16110144-07	X	X								
50WW15-110216	L16110144-08	X	X								
50WW15FD-110216	L16110144-09	X	X								
Trip Blank	L16110144-10		X								
50WW09-110316	L16110321-01	X	X								
50WW10-110316	L16110321-02	X	X								
50WW10FD-110316	L16110321-03	X	X								
50WW05-110316	L16110321-04	X	X								
50WW21-110316	L16110321-07	X	X								
50WW24-110316	L16110321-08	X	X								
50WW18-110316	L16110321-09	X	X								
50WW19-110416	L16110321-10	X	X								
50WW17-110416	L16110321-11	X	X								
Trip Blank	L16110321-12		X								

 $[\]label{eq:continuous} E-U.S.\ Environmental\ Protection\ Agency\ method.$ $Laboratory-Micorbac\ Laboratories\ in\ Marietta,\ Ohio\ (groundwater).$

SM – Standard Methods for the Examination of Water and Wastewater. SW-846 - Test Methods for Evaluating Solid Waste, Physical/Chemical Methods.

X – Sample analyzed for indicated parameter.

Table 2: Qualified Analytical Data

Client Sample ID	Laboratory Sample ID	Analyte Name	Result	Units	Data Validation Qualifier	Reason for qualification
50WW14-050316	L17060151-03	Chloromethane	<1.00	μg/L	UJ	CCV below control limits
50WW08-050316	L17060151-05	Chloromethane	<1.00	μg/L	UJ	CCV below control limits
50WW18-050316	L17060151-07	Chloromethane	<1.00	μg/L	UJ	CCV below control limits
50WW25-050316	L17060151-09	Chloromethane	<1.00	μg/L	UJ	CCV below control limits
50WW07-051116	L16050763-01	1,2,4-Trichlorobenzene	0.311	μg/L	U	Method blank contamination
		1,4-Dichlorobenzene	0.194	μg/L	U	Method blank contamination
		1,2,3-Trichlorobenzene	0.221	μg/L	U	Method blank contamination
50WW28-051116	L16050763-04	1,2,4-Trichlorobenzene	0.207	μg/L	U	Method blank contamination
		1,4-Dichlorobenzene	0.137	μg/L	U	Method blank contamination
50WW16-051116	L16050763-08	Bromomethane	<1.00	μg/L	UJ	CCV below control limits
50WW10-051216	L16050763-11	Bromomethane	<1.00	μg/L	UJ	CCV below control limits
50WW27-051216	L16050763-14	1,2,4-Trichlorobenzene	0.256	μg/L	U	Method blank contamination
		1,1-Dichloroethene	<1.00	μg/L	UJ	MS/MSD below control limits
		1,1-Dichloropropene	< 0.500	μg/L	UJ	MS/MSD below control limits
		1,4-Dichlorobenzene	0.165	μg/L	U	Method blank contamination
		1,2,3-Trichlorobenzene	0.184	μg/L	U	Method blank contamination
50WW26-051216	L16050763-19	Hexachlorobutadiene	< 0.500	μg/L	UJ	CCV below control limits
50WW13-110116	L16110074-01	2-Hexanone	<250	μg/L	UJ	CCV below control limits
50WW14-110116	L16110074-03	2-Hexanone	< 5.00	μg/L	UJ	CCV below control limits
50WW11-110116	L16110074-05	2-Hexanone	< 5.00	μg/L	UJ	CCV below control limits
		4-Methyl-2-pentanone	< 5.00	μg/L	UJ	CCV below control limits
		Chloromethane	0.554	μg/L	U	Trip blank contamination
50WW06-110116	L16110074-07	2-Hexanone	< 5.00	μg/L	UJ	CCV below control limits
50WW12-110116	L16110074-09	2-Hexanone	< 5.00	μg/L	UJ	CCV below control limits
50WW23-110116	L16110074-11	4-Chlorotoluene	< 0.500	μg/L	UJ	CCV below control limits
		2-Hexanone	< 5.00	μg/L	UJ	CCV below control limits
		1,2,3-Trichlorobenzene	< 0.300	μg/L	UJ	CCV below control limits
50WW15-110216	L16110144-08	Tetrachloroethane	1.89	μg/L	J	Field precision outside criteria
		Trichloroethene	9.52	μg/L	J	Field precision outside criteria

Client Sample ID	Laboratory Sample ID	Analyte Name	Result	Units	Data Validation Qualifier	Reason for qualification
50WW15FD-110216	L16110144-09	Tetrachloroethane	0.917	μg/L	J	Field precision outside criteria
		Trichloroethene	7.10	μg/L	J	Field precision outside criteria
50WW09-110316	L16110321-01	Acetone	4.50	μg/L	U	Trip blank contamination
50WW10-110316	L16110321-02	Acetone	4.19	μg/L	U	Trip blank contamination
50WW10FD-110316	L16110321-03	Acetone	3.67	μg/L	U	Trip blank contamination
50WW05-110316	L16110321-04	1,1-Dichloroethene	1.78	μg/L	J	MS/MSD recoveries below the control limits
		cis-1,2-Dichloroethene	66.7	μg/L	J	MS/MSD recoveries below the control limits

Table 3: Completeness by Method

Method	No. of Rejected Results	% Completeness
SW6850	0	100
SW8260	0	100
SW6010C	0	100
SW6020A	0	100
RSK 175	0	100
SW9056	0	100
E310.2	0	100
E365.4	0	100
SM4500-S(-2)	0	100
E415.1	0	100

E – U.S. Environmental Protection Agency method.

SM – Standard Methods for the Examination of Water and Wastewater.

SW-846 - Test Methods for Evaluating Solid Waste, Physical/Chemical Methods.

QUALITY CONTROL SUMMARY REPORT SURFACE WATER 2016 LONGHORN ARMY AMMUNITION PLANT KARNACK, TEXAS

Prepared For:

U.S. Army Corps of Engineers

Prepared By:

AECOM Technical Services

November 2017

Table of Contents

1	IN	TRODUCTION	1
	1.1	Intended Use of Data	1
	1.2	Preservation and Holding Times	
	1.3	Calibrations	
		3.1 Continuing Calibration Verifications (CCV)	
	1.4	Blanks	
	1.5		
	1.6	Matrix Spike (MS)/Matrix Spike Duplicate Sample (MSD)	
	1.7	Internal Standards.	
	1.8	Field Precision	
		ATA IISARII ITY SIIMMARY	

List of Tables

Table 1: Field Sample Identification and Laboratory Identification

Table 2: Qualified Analytical Data Table 3: Completeness by Method

1 INTRODUCTION

AECOM reviewed three data packages from Microbac Laboratory Services, Marietta, OH. Surface water samples were collected May 27, August 23, and November 29, 2016 at Goose Prairie Creek and Harrison Bayou at the Longhorn Army Ammunition Plant (LHAAP), Karnack, Texas. Data were reviewed for conformance to the requirements of the following guidance documents: Automated Data Review by Laboratory Data Consultants (ADR.net), United States Environmental Protection Agency (EPA) Contract Laboratory Program National Functional Guidelines for Inorganic Data Review, (EPA, January 2017), and EPA Contract Laboratory Program National Functional Guidelines for Low Concentration Organic Data Review, (EPA, January 2017).

1.1 Intended Use of Data

Groundwater treatment activities consist of monitoring of treated water to ensure compliance with the discharge limitations.

Analyses requested included:

SW6850 – Perchlorate by LC/MS/MS

Table 1 lists the sample identification numbers (IDs) and their associated laboratory IDs. **Table 2** lists qualified results with the associated quality control parameter that was exceeded.

1.2 Preservation and Holding Times

Sample identification data were evaluated for agreement with the chain-of-custody (COC). All samples were received in appropriate containers, within the proper temperature range, in good condition, and with the required signatures.

1.3 Calibrations

Initial calibration acceptance criteria are specified in Worksheet 24 of the project-specific QAPP. For perchlorate, the methods criteria are a relative standard deviation (RSD) less than or equal to 20 percent (%) or a correlation coefficient $(r^2) \ge 0.99$. All calibrations met the method criteria.

1.3.1 Continuing Calibration Verifications (CCV)

The continuing calibration verification (CCV) acceptance criteria are specified in Worksheet 24 of the project-specific QAPP. For perchlorate, the methods criteria are if the CCV exceeds 15% difference (%D), the compound is checked in the LCS, if both are outside recovery limits, the compound is rejected, R. If only the CCV exceeds recovery criteria and is less than \pm 15% difference, then the compound is qualified J or UJ.

All CCVs were within the acceptance criteria.

1.4 Blanks

If the sample result for an associated sample was non-detect or less than 5X (10X for common laboratory contaminants) the analyte concentration in the blank, the corresponding sample result for the analyte was qualified U. Where the sample result for the affected analyte was greater than 5X (10X) the amount in the blank, no qualifier was applied.

Perchlorate was not detected in the blanks.

1.5 Laboratory Control Sample (LCS)/Laboratory Control Sample Duplicate (LCSD)

LCS/LCSD recoveries were evaluated using limits defined for each method in Worksheet 15 of the project-specific QAPP.

All LCS/LCSD recoveries were within the control limits.

1.6 Matrix Spike (MS)/Matrix Spike Duplicate Sample (MSD)

MS/MSD recoveries were evaluated using limits defined for each method in Worksheet 15 of the project-specific QAPP. An MS/MSD was not run on a client sample. Therefore, matrix-specific accuracy and variability were not evaluated.

1.7 Internal Standards.

When the percent recovery for an internal standard in a sample is outside the laboratory limits, the associated sample is qualified for the analyte(s) associated with the internal standard(s) outside of the acceptance criteria.

Internal standard recoveries were within the acceptance criteria.

1.8 Field Precision

Precision is the measure of variability of individual sample measurements. Evaluation of field duplicates for precision was done using the Relative Percent Difference (RPD). The RPD is defined as the difference between two duplicate samples divided by the mean and expressed as a percent. Field duplicate RPD limits were set at 0-25% for groundwater matrices. Field duplicate samples were not submitted with this sample set; therefore, field duplicate variability was not evaluated.

2 DATA USABILITY SUMMARY

The data are usable for the intended purposes of the project (see Table 3). The data quality objectives have been met for the project.

Table 1: Field Sample Identification and Laboratory Identification

Client Sample ID	Laboratory Sample ID	SW6850
GPW1-052716	L16051583-01	X
GPW3-052716	L16051583-02	X
HBW1-052716	L16051583-03	X
HBW10-052716	L16051583-04	X
HBW7-052716	L16051583-05	X
HBW 7 - 082316	L16081156-01	X
HBW 10 - 082316	L16081156-02	X
HBW 1 - 082316	L11081156-03	X
GPW 1 - 082316	L11081156-04	X
GPW 3 - 082316	L11081156-05	X
HBW7-112916	L16111326-01	X
HBW10-112916	L16111326-02	X
HBW1-112916	L16111326-03	X
GPW1-112916	L16111326-04	X
GPW3-112916	L16111326-05	X

Laboratory - Microbac Laboratories in Marietta, Ohio

SW-846 - Test Methods for Evaluating Solid Waste, Physical/Chemical Methods.

X – Sample analyzed for indicated parameter.

Table 2: Qualified Analytical Data

Client Sample ID	Laboratory Sample ID	Analyte Name	Data Validation Qualifier	Reason for Qualification
N/A	N/A	N/A	N/A	N/A

N/A - Not applicable.

Table 3: Completeness by Method

Method	No. of Rejected Results	% Completeness
SW6850	0	100

SW-846 - Test Methods for Evaluating Solid Waste, Physical/Chemical Methods.

AECOM

Chain of Custody Record

COC Number:

oratory: Microbac POC: Stephanie Mossburg				Debra Richmann												Mail to: Linda Raabe						
ddress: 158 Starlite Drive					Phone/Fax Number: 210-296-2000												112 East Pecan STE, 400					
Marietta, OH 45750						Sampler (print): Scott Beesinger										Ì					05	
Phone: 1-800-373-4071																				000		
AECOM			Signature:		<	7.5	-	C	20) — (Fed Ex	Airbill N	o:			
112 East Pecan Ste. 400					\leq	ンし		F	34		عم	<u>~</u>								-		
San Antonio, TX 78205											7						Progran	n:				
SIMIDAND			pH:					ners														
Longhorn Longhorn								omtai	ate											Tel Charles Compa	- Englisher	
er: 60256135.0009AA								Ş	왕					1900		٠		ERPI	MS REQUI	RED FIELD	os	
					à	Q	ix	ape.	Per					SHOOT STATE			DE	ð	LOT CO	ONTROL NUI	MBERS	
Sample ID/Location ID	SBD	SED	Date	Time	Com	Gra	Matr	N									SACC	Coole	ABLOT	EBLOT	TBLOT	
GPW 1 - 052716			5/27/16	8:50		Х	W	1	Х													
GPW 3 - 052716			5/27/16	9:05		Х	W	1	х						L.							
HBW 1 - 022516			5/27/16	9:20		Х	W	1	х													
HBW 10 - 052716			5/27/16	9:33		Х	W	1	Х													
HBW 7 - 052716			5/27/16	9:50		Х	W	1	X	_												
																	and the second	10 10 10 10 10 10 10 10				
																			1 8 8			
1 0 150 to to																			7 - 10			
								\vdash							_					9		
								-			-							Divine A				
				- 1		*, *			<u> </u>							_						
																	3 2 3					
CTANDADD	LTAE	JUEB		N. Page	WES.		100	(d)		Files	Harris.	Magy		2.7			Inc. all					
Comments: SIANDARD																						
Relinquished by: Date				Received	by: (Signat	ture)					Rece	eived t	y: (Si	gnatu	re)	Date	Time	Relinquished	l by: (Signatur	re)	
(Signature) Relinquished by: (Signature)		Time Received for Laboratory by: (Signature)								Date					T	ime	Remarks:					
	Marietta, OH 45750 1-800-373-4071 AECOM 112 East Pecan Ste. 400 San Antonio, TX 78205 ime: STANDARD cocation: Longhorn 60256135.0009AA Sample ID/Location ID GPW 1 - 052716 GPW 3 - 052716 HBW 1 - 022516 HBW 7 - 052716 HBW 7 - 052716 Comments: STANDARD	Marietta, OH 45750 1-800-373-4071 AECOM 112 East Pecan Ste. 400 San Antonio, TX 78205 ime: STANDARD Cocation: Longhorn PT: 60256135.0009AA Sample ID/Location ID GPW 1 - 052716 GPW 3 - 052716 HBW 10 - 052716 HBW 7 - 052716 HBW 7 - 052716 Comments: STANDARD Comments: STANDARD TA	158 Starlite Drive Marietta, OH 45750 1-800-373-4071 AECOM 112 East Pecan Ste. 400 San Antonio, TX 78205 Ime: STANDARD STANDARD Sample ID/Location ID SBD SED SED	158 Starlite Drive	Phone/Fax Number Sampler (print): Sampler (pr	Sample ID/Location ID SBD SED Date Time Signature Signature ID/Location ID Signature ID/Location ID	Startite Drive	Time Starille Drive Phone/Fax Number: 210-296-2 210-296-	Time Time	Time STANDARD September Secretary Secretary	Second S	Second Standard Standard	Second S	Second S	Second	Second S	Microsca Pot: Stephanie Mossourg	Microback POC: Stephanie Mossourg	Microbac Pote Stephanie Mossourg ProneFax Number 210-296-2000	Microback PUC: Stephanle Micseoury Phone/Fax Number: 210-268-2000 112 East Food 14750 Sampler (print): Scott Beesinger Fed Ex Arbiti No: 1400-373-4071 210-268-2000 12 East Pecan Site. 400 San Antonio, TX 78205 Fed Ex Arbiti No: Program: Prog	Delay Full Find Facility Find Fi	

AECOM

Chain of Custody Record

Laboratory:	1000		·	Dunia at St																Number:			
Microbac FOC. Stephanie Wossburg					Debid Neimain											Mail to: Linda Raabe							
	158 Starlite Drive			210-296-2000										_		112 East	Pecan STI	E. 400					
Phone:	Marietta, OH 45750 1-800-373-4071			Sampler (prin	π):		Sco	tt Be	esing	er								1		San Antor	nio, TX 782	205	
Client:				01																210-296-2	2000		
Address:	AECOM			Signature:													Fed Ex	x Airbill I	No:	,			
	112 East Pecan Ste. 400						<u> </u>				-,	,											
Turn Around T	San Antonio, TX 78205			4			1				1				İ			Progra	m:				
Project Name/	J ocation:			pH:																			
Project Number	Longhorn			1					ntai	rate	1												
rioject Numbe	60256135.0009AA	_					 		Number of Containers	Perchlorate									ERP	IMS REQUIRED FIELDS			
						Γ.		J	ğ	Per	ļ							Щ	₽	LOT CONTROL NUMBERS			
Site Name	Sample ID/Location ID	SBD	SED	Date	Time	Comp	Grab	Matrix	NEW									SA CODE	Cooler I	ABLOT	EBLOT	TBLOT	
¥	HBW 7 - 112916			11/29/16	8:13		х	w	1	х							 					<u> </u>	
. Ge	HBW 10 - 112916			11/29/16	8:27		х	w	1	х													
Goose Prarie Creek	HBW 1 - 112916			11/29/16	8:35		Х	w	1	х				-					<u> </u>				
rie	GPW 1 - 112916			11/29/16	8:58		х	W	1	х													
<u>ē</u>	GPW 3 - 112916			11/29/16	9:10		Х	W	<u> </u>	X			_						-				
۵		1		11/23/10	3.10		^	VV	1	_									-		ļ		
Se		 										_											
Ö		ļ							<u> </u>														
ဗွ							ĺ]]												
්								-					\neg										
Ď		ļ					-,					\dashv	\dashv			_							
् ।													\dashv										
Harrison Bayou &																							
ш												Ì	ı										
ō																							
<u>.</u>						\neg	\dashv					\dashv	\dashv	\dashv	一十								
E	STANDAGE		- 10 Table		2.154.8850		1	77.3.20	11.800	1,1872,18			37863	JI Covid				Zoraki i Frinc	332 0.030	2 1 2 2 2 2 2 2 2 2 2 2 2 2			
Ϋ́	Comments: STANDARD	IAI									Carlo M										والمتعدد		
		Da	ıte.	Time	Doggiyad	L., (C	1	4.33) 						. A Samuel Commence				
Relinquished by: Signature)	and the same	1	j)	15:00	Received	by: (S	igriatu	re)		(,-	_			oVD)					ature))	
	Jaco Hasin	1 ZB	7/16	Time	Dossituad i	faala	 			\ 		Mic	SPOE	н. 1	1/30/	/2016	3 09:	:32 221000094024					
Relinquished by: Signature)	\mathcal{O}	Ja	(C	riille	Received (Signature		oorato	ry by: Distribi				Rec	BRE	NDA	GREG	ORY							
					Signature)						E 0y.											
mornogenize a	III composite samples prior to analysis						l	Distribi	ution:	Whit	e 🚍									, _ manage	er		

Subject: Final Minutes, Monthly Managers' Meeting (MMM),

Longhorn Army Ammunition Plant (LHAAP)

Location of Meeting: LHAAP Site Trailer and Via Conference Call-In 515-603-3155

with Code 1063533#

Date of Meeting: July 19, 2018 – 10:00 AM Central Daylight Time (CDT)

Attendees:

Army BRAC: Rose Zeiler (RMZ) and Tom Lederle (TL) Chief, ACSIM BRAC Division

EPA: Rich Mayer (RM) and Dorelle Harrison

TCEQ: April Palmie (AP)

USFWS: Paul Bruckwicki (PB) on the phone and Eric Duerkop (ED)

USACE: Aaron Williams (AW)
AEC: Nick Smith (NS)
Bhate: Kim Nemmers (KN)

APTIM: Bill Foss (BF) in person and Susan Watson (SW) and Praveen Srivastav (PS) on the

phone

Action Items

Army

• RMZ welcomed TL, who is the ACSIM BRAC Division Chief. Longhorn is under the administrative control of the BRAC Division.

• LHAAP Enforceable Schedule:

- RMZ handed out the enforceable schedule and stated that the copy should say draft final. The dates listed for several sites were discussed, including LHAAP-16, -17, -18/24 and -29. Several date changes were discussed and there were no objections. The schedule will be submitted as final.
- o **Site LHAAP-17**: A Draft Pre-Design Investigation (PDI) Report was sent out as an electronic copy on Monday but there are still 13 soil samples to be collected in the wet area. BF stated that the soil is now dry. Sampling is planned for August to tie into the LHAAP-16 well installation. AP asked how the data will be provided if it is not included in the PDI Report. The samples that will be collected at LHAAP-17 were discussed and it was stated that the data from the samples would be included in the LHAAP-17 Remedial Design (RD)/Remedial Action Work Plan (RAWP). RMZ explained that adding the data to the RD/RAWP will push out the delivery date. PS stated that the report would be pushed out approximately 30 days and should be ready for delivery in December 2018.
- Site LHAAP-18/24: RMZ discussed the deliverables listed for the Site LHAAP-18/24. RMZ explained that the Army has a new procedure requiring document review by an assessment panel in addition to legal review, which adds time to the Army review process. TL mentioned that he plans to hold a briefing session on what is being completed in the next 6 months so that he can delegate signature responsibility. This briefing session will likely be held in August 2018 and this should help with scheduling assessment panel reviews. RMZ stated that she is most concerned with LHAAP-18/24, which is going to be an expensive site. The draft Proposed Plan (PP) is planned for November 2018 for LHAAP-18/24. To allow flexibility during the remedial design phase and to carry out the vision of the April 2018 strawman developed by the regulators and Army, the proposed plan is being written with generalities in size and design. The goal for submittal of the Site 18/24

- Draft Proposed Plan is still October 12, but the enforceable date is November 12 moving the Draft ROD out one month as well.
- o **Site LHAAP-29:** The LHAAP-29 Proposed Plan is in Army legal review. Although the goal for submittal of the draft to regulators is still September 14, the enforceable has been changed to October 14. This results in the revised ROD) for Site LHAAP-29 being pushed out a month also.
- o **Site LHAAP-47:** Groundwater sampling is being completed again at Site LHAAP-47 and many of the wells are dry in the shallow zone. The final installation of monitoring wells is planned for the week of July 30th. The Draft PDI Report is pushed out at month. AW confirmed that the delivery dates are good and that there is no anticipated impact on the schedule for submittal of the Revised DF ROD.

United States Fish and Wildlife Service (USFWS)

• PB stated that he had provided copies, via email, of the annual inspections and certification documents for the last five years in support of the five-year review. PB stated that he only had three but RMZ stated that it was good.

Defense Environmental Restoration Program (DERP) Performance Based Remediation (PBR) Update

KN asked everyone to refer to the Document and Issues Tracking Table dated July 19, 2018.

- Task 1 (Project Management) -
 - KN stated that the prior meeting minutes for the June 2018 MMM will be finalized and sent out.
 - AP stated that she does not need hard copies for the Restoration Advisory Board (RAB). KN stated that she will correct her distribution sheet information.
 - KN stated that responses to the Regulatory comments on the revisions to the Standard Operating Procedures (SOP) A19 were prepared and are under Army review.
- Task 2 (LHAAP-02 Semi-Annual Groundwater Monitoring Report) KN stated that the Technical Memorandum for Site LHAAP-002 was sent out on 9 July 2018. RMZ clarified that LHAAP-02 is a non-National Priorities List (NPL) site
- Task 3 (LHAAP-03 ROD and Explanation of Significant Difference [ESD]) PS stated that the ROD has been sent to the regulators for signature and concurrence. AP stated that the TCEQ letter is being routed for signature. EPA's statement regarding the Site 3 ROD, that the Army is required to consider and comply with CERCLA decision-making requirements. including all appropriate information, which would include the Texas Risk Reduction Program soil cleanup concentrations, was discussed by the group with TCEQ stating that the dispute was not about soil, but was about groundwater. TL stated that he is concerned that the EPA seems to think that there is ambiguity in what was covered by the Dispute Resolution. RM stated that the EPA needs to review the TCEQ guidance to determine protectiveness. AP stated that Texas considers the Texas Risk Reduction Rule (TRRR) Medium Specific Concentrations (MSCs) to be protective and that the burden is on the EPA to do the comparison. A brief discussion regarding who is responsible for the comparison occurred. RM stated that the EPA wants to make sure that the values used are protective. However, RM indicated that the TRRR values are protective for the current usage at Site 3. AP suggested that the EPA review values at the PP phase instead of the ROD. NS stated that the risk should be evaluated in the Remedial Investigation (RI)/Feasibility Study (FS) phase. AP stated that this is not a Texas Risk Reduction Program (TRRP) site. RMZ stated

that she needs to know who is expected to do the evaluation of protectiveness for the next RODs. Rich stated that he would follow-up with that action.

PS stated that the ESD for moving the groundwater from LHAAP-03 to LHAAP-58 is ready for signature. BF provided the hard copy of the ESD to TL, who signed. AP stated that a letter for concurrence will be issued. AP requested that a date be placed on the document tracker line for the ESD instead of not applicable (NA).

- Task 4 (LHAAP-04 RD/RAWP) PS explained that Bhate is working on a response to the Request for Proposal (RFP) for the additional investigation work at LHAAP-04, which will include a technical memorandum (tech memo). The sketch for the agreed upon work was discussed, but Bhate was not aware of the sketch. RMZ stated that the sketch will be provided. AP asked about the tech memo. BF stated that the tech memo will be the work plan. AP asked if the data will be in the report. BF confirmed that the data will be provided in the RD and then stated that each of the 12 locations will have two points. One point will be used to document the lithology and the other will be used for hydropunch sampling. PS asked if this information should be put into the proposal assumptions to which AW confirmed.
- Task 5 (LHAAP-12 Annual Remedial Action Operation [RA-O] Report) PS stated that the draft RA-O Report was sent to the Regulators on 10 July 2018. RM noted that concentrations were low, and RMZ pointed out that groundwater elevations were also low.
- Task 6 (LHAAP-16 RAWP) PS stated that the Draft Final RAWP was issued 21 June 2018. KN stated that a change page for the Response to Comments (RTCs) was needed. PS asked KN about the annual compliance sampling data. KN stated that the LHAAP-16 annual compliance sampling data is included in the First Quarter 2018 Report for the Groundwater Treatment Plant (GWTP) that is currently under Army Review.
- Task 7 (LHAAP-17 PDI Report) PS stated that the PDI Report was released and that the RD data to be collected from the previously wet area was already discussed.
- Task 9 (LHAAP-37) PS stated that ³/₄ of the Year 1 data has been collected and that the most recently validated data is being provided for this meeting.
- Task 10 (LHAAP-46) Year 4 RA-O Report PS stated that sampling is scheduled for August. RM stated that there are lots of dry wells. RMZ clarified that the dry wells are primarily in the production plant areas. Drought has cleared up, but dry wells are still being observed at LHAAP-50 and LHAAP-47 in addition to LHAAP-46, but not necessarily LHAAP-58 and -16. RMZ stated that the observed dry wells could be associated with reduced water leakage from discontinued former plant operations since the sites are near each other. AP stated that the well should not be abandoned as they could produce in the future. RM stated that the monitoring wells are more reliable when they are deeper. RMZ stated that most of the groundwater at LHAAP-47 is now found in the shallow intermediate zone which is where the current drilling is occurring. The depth to groundwater is approximately 30 feet below ground surface. RMZ believes that the production plant might have affected the shallow. Regarding possible water line leakage also influencing LHAAP-04 groundwater, RMZ stated that radial groundwater contour is not likely correct – that actually topography may be the influencing factor. RM stated that it is strange that some of the monitoring wells have had no contamination and then have an elevated detection. The discontinuous nature of the aquifer was discussed. PS stated that the annual report will be prepared and the monitored natural attenuation (MNA) remedy will be evaluated once the last quarter event is completed this year.

- Task 11 (LHAAP-50 RA-O Report) PS stated that comments were received on the Year 3 RA-O Report from by the EPA and TCEQ on June 22nd. Comments will be provided by Friday, 20 July 2018. RMZ stated that the Army concurs with the need for a contingency remedy and AW noted that the ESD will be issued this year. KN clarified that a hard copy of the clean Draft Final RAWP needed to be submitted along with the compact disc (CD) that contains the clean copy of the Draft Final RAWP, a redlined strikeout of the draft file and the RTCs. KN then asked PS if the submittal date would be 23 July 2018. SW and PS stated that additional time was needed and that the copies would be sent out on 23 July 2018. AP stated that providing just the draft RTCs is appropriate only if there are questions or need for clarification or discussions but the process of providing the clean Draft Final version with the redlined strikeout and the final RTCs helps facilitate reviews and is required for concurrence. RMZ stated that acknowledgement of approval, if no comments, needs to be included in the RTCs also. PS stated that the Year 4 RA-O Report is currently being prepared.
- Task 12 (LHAAP-58) KN stated that groundwater sampling had been completed on Wednesday 18 July 2018. RMZ asked if the blackish groundwater (indicating the presence of substrate) was observed. KN stated that within the eastern plume that the blackish groundwater was present though some wells appeared to have a reduced blackish color. Also, KN stated that the monitoring wells in the western plume had a milky white color with a fermenting odor that indicates that the substrate is treating the wells. KN noted that sodium lactate had been used in the eastern portion of the plume and that emulsified vegetable oil (EVO) was used in the western plume. The recent groundwater sampling included groundwater samples that are being analyzed for microbes. KN hoped to have at least the microbial data ahead of the next MMM. KN stated that the Remedial Action Completion Report (RACR) for the injections was issued on 13 July 2018. KN clarified that the RACR does not include the recent sampling but does present the actions completed for the injections.
- Task 13 (LHAAP-67) PS stated that the Year 4 RA-O Report is currently being prepared.
- Task 16 (GWTP) KN stated that the Fluidized Bed Reactor (FBR) was not repaired as planned due to issues with the potable water line. KN indicated that the holding tank for the FBR was plumbed and could be seen at the GWTP. KN stated that the plan is to remobilize 30 July 2018 to complete the repairs. KN then explained that the potable water supply well pressure had dropped to about 15 pounds per square inch (PSI) whereas it is typically at 60 PSI. Currently, the system is at approximately 45 PSI. This issue has occurred before and is likely due to recent overuse with the ongoing drilling activities. KN confirmed that rush turn-around perchlorate samples continue to be collected prior to discharge to the INF pond. KN stated that there is a repair that is needed to the GWTP piping, which is leaking, before the GWTP can run. Therefore, no groundwater extraction is occurring as of 18 July 2018.
- Task 19 (Surface Water) KN stated that the creeks were dry by the time that surface water was planned for sampling so no surface water samples were collected but a sample will be collected if water is observed.
- Administrative Record (AR) BF provided CDs to AW, RMZ, AP, KN and RM of the AR. Hard copies for the trailer will be sent separately. KN stated that the posting of the AR to the website will lag about a week or two weeks behind due to the website process.

Field Work in July and August 2018

• BF stated that Scott Beesinger believes that the LHAAP-16 area is dry enough to bulldoze. RMZ reminded everyone that Erik needs to be involved and coordinated with for the bulldozing. BF stated that the bulldozing is planned for the first full week in August. Erik

stated that there is no bulldozing over the creek. BF stated that the plan is to come in from site LHAAP-18/24. RMZ asked for a revised schedule for the injections.

Other Site Updates

- **Site LHAAP-47** RMZ discussed the results to date. RM stated that he didn't recall receiving the cross-section figure. RMZ passed the cross section around to the group and explained the figures that were going to be presented at the RAB meeting.
- **Site LHAAP-29** RMZ indicated that the PP is currently with Army Legal along with a summary of the prior version.
- **Site LHAAP 18/24** RMZ indicated that the PP is under Army review.
- **Five Year Review (FYR)** Draft FYR will be provided November 2018. Baltimore USACE contacted RM with a questionnaire.

Schedule Next Managers' Meeting

The August 2018 MMM will be held on August 15, 2018 at LHAAP at 1:00 PM CDT.

ACRONYM LIST

AEC United States Army Environmental Command

AP April Palmie

AR Administrative Record

AW Aaron Williams

BF Bill Foss

Bhate Environmental Associates, Inc.

BRAC Base Realignment and Closure

CD Compact Disc

CDT Central Daylight Time

DERP Defense Environmental Restoration Program

ED Eric Duerkop

EPA United States Environmental Protection Agency

ESD Explanation of Significant Differences

EVO Emulsified Vegetable Oil
FBR Fluidized bed reactor
FS Feasibility Study
FYR Five Year Review

GWTP Ground Water Treatment Plant

KN Kim Nemmers

LHAAP Longhorn Army Ammunition Plant

MMM Monthly Managers' Meeting
MNA Monitored Natural Attenuation
MSC Medium Specific Concentrations

NA Not applicable

NPL National Priorities List

NS Nick Smith
PB Paul Bruckwicki

PBR Performance-Based Remediation

PDI Pre-Design Investigation

PP Proposed Plan PS Praveen Srivastav PSI Pounds per square inch

RACR Remedial Action Completion Report

RA Remedial Action

RAB Restoration Advisory Board RA-O remedial action – operation RAWP Remedial Action Work Plan

RD Remedial Design
RFP Request for Proposal
RI Remedial Investigation
ROD Record of Decision

RM Rich Mayer RMZ Rose M. Zeiler

RRS Risk Reduction Standards
RTC Response to Comment
SOP standard operating procedure

SW Susan Watson TCE Trichloroethene

TCEQ Texas Commission on Environmental Quality

TL Tom Lederle

TRRP Texas Risk Reduction Program
TRRR Texas Risk Reduction Rule

USACE United States Army Corps of Engineers USFWS United States Fish and Wildlife Service

LHAAP Validated Data Packages for July 2018 Monthly Manager's Meeting

LHAAP Area	Analytic Method	
LHAAP-37	Year 1 Quarter 3, May 2018	
	VOCs (SW8260)	

	L	ocation Code		35BV	VW01		35BV	VW04	35B\	WW05	35BV	VW06	35BV	VW07	35BV	80WV
		Sample ID	35BWW0	1-180524	35BWW01	-180524FD	35BWW0	14-180522	35BWW0)5-180521	35BWW0	06-180521	35BWW0	7-180523	35BWW0	08-180523
		Sample Date	5/24/	/2018	5/24	/2018	5/22/	/2018	5/21	/2018	5/21/	/2018	5/23/	/2018	5/23/2018	
	Locatio	n Description		w zone,		w zone,	Shallow zon			ne, impacted,		allow zone,		e, unimpacted		w zone,
			•	I, within site ndary		d, within site ndary	within site	boundary	within site	e boundary		d, within site ndary	downg	radient	•	d, within site ndary
Parameter	Units	MCL/PCL	Result	Val Qual	Result	Val Qual	Result	Val Qual	Result	Val Qual	Result	Val Qual	Result	Val Qual	Result	Val Qual
VOCs																
1,1-Dichloroethene	μg/L	7	< 0.5	U	< 0.5	U	< 0.5	U	< 0.5	U	< 0.5	U	< 0.5	U	< 0.5	U
cis-1,2-Dichloroethene	μg/L	70	< 0.5	U	< 0.5	U	< 0.5	U	< 0.5	U	< 0.5	U	< 0.5	U	< 0.5	U
Tetrachloroethene	μg/L	5	< 0.5	U	< 0.5	U	5.3		2		< 0.5	U	< 0.5	U	< 0.5	U
Trichloroethene	μg/L	5	< 0.5	U	< 0.5	U	< 0.5	U	8.5		< 0.5	U	< 0.5	U	< 0.5	U
Vinyl Chloride	μg/L	2	< 0.5	U	< 0.5	U	< 0.5	U	< 0.5	U	< 0.5	U	< 0.5	U	< 0.5	U

Notes:

Blue highlighted/**bold** results indicate concentrations above the MCL/PCL.

Some samples may have been diluted due to the concentration(s) of one or more analytes exceeding the upper limit of the calibration curve.

estimation due to discrepancies in meeting certain analyte-specific quality control criteria.

U - Undetected. The analyte was analyzed for, but not detected.

 μ g/L - micrograms per liter

ID - identification

MCL - maximum contaminant limit

PCL – Texas Risk Reduction Program (TRRP) Tier 1 Groundwater Residential

Protective Concentration Level (for Perchlorate only).

Val Qual - validation qualifier

	L	ocation Code	35BV	VW09	35BV	VW10	35BV	VW11		35BV	VW12		35BV	VW13	35BV	WW14
		Sample ID	35BWW0	9-180521	35BWW1	0-180524	35BWW1	1-180521	35BWW1	12-180523	35BWW12	-180523FD	35BWW1	13-180524	35BWW1	14-180522
		Sample Date	5/21	/2018	5/24	/2018	5/21	/2018	5/23	/2018	5/23/	/2018	5/24	/2018	5/22	/2018
	Locatio	n Description		•		oacted, within		one, v. low		w zone,		w zone,		one, v. low		ne, impacted,
			outside sit	e boundary	site bo	undary	impact, v bour	vithin site ndary		d, within site ndary		d, within site ndary	impact, cro	ossgradient	within site	e boundary
Parameter	Units	MCL/PCL	Result	Val Qual	Result	Val Qual	Result	Val Qual	Result	Val Qual	Result	Val Qual	Result	Val Qual	Result	Val Qual
VOCs																
1,1-Dichloroethene	μg/L	7	< 0.5	U	< 0.5	U	< 0.5	U	< 0.5	U	< 0.5	U	< 0.5	U	5.1	
cis-1,2-Dichloroethene	μg/L	70	0.96	J	< 0.5	U	< 0.5	U	< 0.5	U	< 0.5	U	< 0.5	U	2.6	
Tetrachloroethene	μg/L	5	< 0.5	U	30		< 0.5	U	6.2		7		< 0.5	U	30	
Trichloroethene	μg/L	5	240		36		< 0.5	U	< 0.5	U	< 0.5	U	< 0.5	U	23	
Vinyl Chloride	μg/L	2	< 0.5	U	< 0.5	U	< 0.5	U	< 0.5	U	< 0.5	U	< 0.5	U	< 0.5	U

Notes:

Blue highlighted/**bold** results indicate concentrations above the MCL/PCL.

Some samples may have been diluted due to the concentration(s) of one or more analytes exceeding the upper limit of the calibration curve.

estimation due to discrepancies in meeting certain analyte-specific quality control criteria.

U - Undetected. The analyte was analyzed for, but not detected.

 μ g/L - micrograms per liter

ID - identification

MCL - maximum contaminant limit

PCL – Texas Risk Reduction Program (TRRP) Tier 1 Groundwater Residential

Protective Concentration Level (for Perchlorate only).

Val Qual - validation qualifier

	L	ocation Code	35BV	VW15	35BV	VW16	35BV	VW17	35B\	WW18	35BV	VW19	35BV	VW20	35BV	VW23
		Sample ID	35BWW1	5-180521	35BWW1	6-180524	35BWW1	7-180524	35BWW1	18-180521	35BWW1	9-180521	35BWW2	20-180524	35BWW23-180522	
		Sample Date	5/21/	/2018	5/24	/2018	5/24	/2018	5/21	/2018	5/21	/2018	5/24	/2018	5/22	/2018
	Locatio	n Description				ne, impacted,		w zone,	Shallo	w zone,	Shallo	w zone,	Shallow zor	•		w zone,
			within site	boundary	outside sit	e boundary	•	l, within site	•	, outside site		, outside site	within site	boundary		, outside site
							bour	ndary	boui	ndary	bour	ndary			bour	ndary
Parameter	Units	MCL/PCL	Result	Val Qual	Result	Val Qual	Result	Val Qual	Result	Val Qual	Result	Val Qual	Result	Val Qual	Result	Val Qual
VOCs																
1,1-Dichloroethene	μg/L	7	3.4		< 0.5	U	< 0.5	U	< 0.5	U	< 0.5	U	< 0.5	U	< 0.5	U
cis-1,2-Dichloroethene	μg/L	70	< 0.5	U	< 0.5	U	< 0.5	U	< 0.5	U	< 0.5	U	< 0.5	U	< 0.5	U
Tetrachloroethene	μg/L	5	13		7.8		< 0.5	U	< 0.5	U	< 0.5	U	29		< 0.5	U
Trichloroethene	μg/L	5	13		4		< 0.5	U	< 0.5	U	< 0.5	U	6.3		< 0.5	U
Vinyl Chloride	μg/L	2	< 0.5	U	< 0.5	U	< 0.5	U	< 0.5	U	< 0.5	U	< 0.5	U	< 0.5	U

Notes:

Blue highlighted/**bold** results indicate concentrations above the MCL/PCL.

Some samples may have been diluted due to the concentration(s) of one or more analytes exceeding the upper limit of the calibration curve.

estimation due to discrepancies in meeting certain analyte-specific quality control criteria.

U - Undetected. The analyte was analyzed for, but not detected.

 μ g/L - micrograms per liter

ID - identification

MCL - maximum contaminant limit

PCL – Texas Risk Reduction Program (TRRP) Tier 1 Groundwater Residential

Protective Concentration Level (for Perchlorate only).

Val Qual - validation qualifier

	L	ocation Code	35BV	VW24		35BV	VW25		35BV	VW26	LHSI	MW58
		Sample ID	35BWW2	4-180524	35BWW2	25-180523	35BWW25	-180523FD	35BWW2	6-180522	LHSMW5	58-180524
		Sample Date	5/24	/2018	5/23	/2018	5/23	/2018	5/22/	/2018	5/24	/2018
	Locatio	n Description	unimpacted	w zone, , outside site ndary		ne, impacted, e boundary		ne, impacted, e boundary	unimpacted	w zone, I, within site ndary		ne, impacted, e boundary
Parameter	Units	MCL/PCL	Result	Val Qual	Result	Val Qual	Result	Val Qual	Result	Val Qual	Result	Val Qual
VOCs												
1,1-Dichloroethene	μg/L	7	< 0.5	U	< 0.5	U	< 0.5	U	< 0.5	U	< 0.5	U
cis-1,2-Dichloroethene	μg/L	70	< 0.5	U	< 0.5	U	< 0.5	U	< 0.5	U	< 0.5	U
Tetrachloroethene	μg/L	5	< 0.5	U	< 0.5	U	< 0.5	U	< 0.5	U	12	
Trichloroethene	μg/L	5	< 0.5	U	5.5		5.1		< 0.5	U	1.4	
Vinyl Chloride	μg/L	2	< 0.5	U	< 0.5	U	< 0.5	U	< 0.5	U	< 0.5	U

Notes:

Blue highlighted/bold results indicate concentrations above the MCL/PCL.

Some samples may have been diluted due to the concentration(s) of one or more analytes exceeding the upper limit of the calibration curve.

estimation due to discrepancies in meeting certain analyte-specific quality control criteria.

U - Undetected. The analyte was analyzed for, but not detected.

μg/L - micrograms per liter

ID - identification

MCL - maximum contaminant limit

PCL – Texas Risk Reduction Program (TRRP) Tier 1 Groundwater Residential

Protective Concentration Level (for Perchlorate only).

Val Qual - validation qualifier

DEPARTMENT OF THE ARMY LONGHORN ARMY AMMUNITION PLANT POST OFFICE BOX 220 RATCLIFF, AR 72951

August 21, 2018

DAIM-ODB-LO

Ms. April Palmie Texas Commission on Environmental Quality Superfund Section, MC-136 12100 Park 35 Circle, Bldg D Austin, TX 78753

Re: Final Technical Memorandum Semi-Annual Groundwater Sampling Methodology and Analytical Results for Year 1 (October 2015 and April 2016), Year 2 (October 2016 and April 2017), and Year 3 (November 2017 and April 2018), Site LHAAP-02, Vacuum Truck and Overnight Parking Longhorn Army Ammunition Plant, Karnack, Texas, August 2018

Dear Ms. Palmie,

The above-referenced document is being transmitted to you for your records.

The document was prepared by Bhate Environmental Associates, Inc., (Bhate) on behalf of the Army as part of Bhate's Performance Based Remediation contract for the facility. I ask that Kim Nemmers, Bhate's Project Manager, be copied on any communications related to the project.

The point of contact for this action is the undersigned. I may be contacted at 479-635-0110, or by email at rose.m.zeiler.civ@mail.mil.

Sincerely,

Rose M. Zeiler, Ph.D.

Roem - Zilu

Longhorn AAP Site Manager

Copies furnished:

R. Mayer, USEPA Region 6, Dallas, TX

P. Bruckwicki, Caddo Lake NWR, TX

A. Williams, USACE, Tulsa District, OK

N. Smith, USAEC, San Antonio, TX

K. Nemmers, Bhate, Lakewood, CO (for project files)

MEMORANDUM FOR RECORD

SUBJECT: Semi-Annual Groundwater Sampling Methodology and Analytical Results

for Year 1 (October 2015 and April 2016), Year 2 (October 2016 and April 2017), and Year 3 (November 2017 and April 2018), Site LHAAP-02,

Vacuum Truck and Overnight Parking

Longhorn Army Ammunition Plant (LHAAP), Karnack, Texas

DATE: August 21, 2018

INTRODUCTION AND OBJECTIVES

In accordance with the Final Decision Document for LHAAP-02 Vacuum Truck Overnight Parking, Longhorn Army Ammunition Plant, Karnack, Texas (Shaw Environmental and Infrastructure, Inc. [Shaw], July 2010), no remediation is necessary for LHAAP-02. As per the LHAAP-02 Decision Document, the site does not present unacceptable risks for the anticipated future use as part of the Caddo Lake National Wildlife Refuge which is considered an industrial use scenario. As required by the Decision Document which was signed by the Army and approved by the Texas Commission on Environmental Quality (TCEQ), semi-annual groundwater monitoring was conducted at one well (35AWW13) at LHAAP-02 for 3 years. Six semi-annual groundwater sampling events (October 2015 through April 2018) were conducted to evaluate the concentrations of arsenic and lead with respect to their Safe Drinking Water Maximum Contaminant Levels (MCLs).

This Memorandum presents the methodology and analytical results for 3 years of semi-annual groundwater sampling conducted at LHAAP-02 from October 2015 to April 2018. The MCLs are 0.01 milligrams per liter (mg/L) for arsenic and 0.015 mg/L for lead. The single groundwater monitoring well sampled at LHAAP-02 (35AWW13) is screened in the Shallow Zone.

SITE HISTORY AND DESCRIPTION

Site LHAAP-02 is located in the northwestern portion of the LHAAP within the shops area known as LHAAP-35A(58). LHAAP-02 was a parking lot for the vacuum trucks that were used to pump out various sumps around LHAAP (**Figure 1**). It was in use beginning approximately in 1942 through 1997 and has a history of metals contamination (i.e. arsenic and lead in soils exceeding Texas Risk Reduction Standard No. 2 medium-specific concentrations [MSCs] for industrial use), as indicated by sampling in July 2009 and earlier (Shaw, January 2009).

SEMI-ANNUAL GROUNDWATER SAMPLING METHODOLOGY (YEARS 1, 2, AND 3)

During Years 1 through 3 the sampling rationale and methodology followed the procedures documented in the Installation-Wide Work Plan (IWWP) (AECOM, July 2014). Sampling for arsenic and lead was conducted based on the requirements of the Final Decision Document for LHAAP-02 (Shaw, July 2010). Groundwater samples were collected from monitoring well 35AWW13 using low-flow sampling techniques. Prior to sampling, the depth to groundwater and total depth of the monitoring well were measured using a Solinst Model 101 water level meter. The construction log for monitoring well 35AWW13 was used to identify the screened interval in

the monitoring well. A bladder pump was lowered into the well and placed within the screened interval, then pumped at a rate of approximately 200 milliliters (mL) or less per minute. The groundwater was pumped through a flow-through cell where field parameters including temperature, pH, conductivity, oxygen reduction potential (ORP), dissolved oxygen (DO), and turbidity were measured using a U-52 Horiba water quality meter. After the groundwater parameters stabilized within the ranges specified in the IWWP (AECOM, July 2014), each groundwater sample was filtered using a 10 micron filter into a 250-mL clear plastic bottle. The bottles were labelled and placed in coolers containing ice for temporary storage and shipment to the selected off-site laboratory following chain-of-custody procedures. Groundwater samples collected from monitoring well 35AWW13 were analyzed for arsenic and lead using USEPA Method SW6020A.

Quality control (QC) samples, including a field duplicate, matrix spike (MS), and matrix spike duplicate (MSD), were collected as prescribed in the IWWP (AECOM, July 2014) to assess the precision, accuracy, and representativeness of the analytical results. The groundwater samples were analyzed within the maximum holding time for Method SW6020A. Analytical data received from the selected off-site laboratory were validated in accordance with quality assurance (QA)/QC requirements for this project and were determined to be usable for their intended purpose.

LHAAP-02 SEMI-ANNUAL GROUNDWATER RESULTS (YEARS 1, 2, AND 3)

There were no exceedances of lead or arsenic above their respective MCLs during the Year 1 (October 2015 and April 2016), Year 2 (October 2016 and April 2017), and Year 3 (November 2017 and April 2018) semi-annual groundwater sampling events. The groundwater analytical results and laboratory data packages for Year 1 are provided in **Table 1** and **Attachment A-1**, respectively. The groundwater analytical results and the laboratory data packages for Year 2 are presented in **Table 2** and **Attachment A-2**, respectively.

During the Year 3 semi-annual groundwater sampling events, arsenic and lead were detected in the samples collected from 35AWW13 in November 2017 and in April 2018. However, arsenic and lead did not exceed their respective MCLs during either sampling event. The groundwater analytical results for arsenic and lead for November 2017 and April 2018 are presented in **Table 3**. The Year 3 Groundwater Sample Collection Forms are provided in **Attachment B**, data validation information is summarized in the Quality Control Summary Report (QCSR) presented in **Attachment C**, and the laboratory data reports for the groundwater samples are provided in **Attachment D**.

CONCLUSIONS AND RECOMMENDATIONS

During the past six semi-annual groundwater sampling events (October 2015, April 2016, October 2016, April 2017, November 2017, and April 2018), detected arsenic and lead concentrations from monitoring well 35AWW13 have remained below their respective MCLs. Therefore, in accordance with the LHAAP-02 Decision Document (Shaw, July 2010), groundwater monitoring will cease. The only remaining requirement of the Decision Document is limited monitoring in the form of Letters of Certification to the State of Texas every 5 years to certify that the land use remains nonresidential.

REFERENCES

AECOM. July 2014. Final Installation-Wide Work Plan for Longhorn Army Ammunition Plant, Karnack, Texas.

Shaw Environmental and Infrastructure, Inc. (Shaw). January 2009. Final Site Investigation Report LHAAP-02, Vacuum Truck Overnight Parking Lot, Longhorn Army Ammunition Plant, Karnack, Texas.

Shaw. July 2010. Final Decision Document for LHAAP-02, Vacuum Truck Overnight Parking, Longhorn Army Ammunition Plant, Karnack, Texas.

TABLES

Table 1. LHAAP-02 Year 1 Semi-Annual Groundwater Sampling Results - October 2015 and April 2016

	Location ID: Sample Date:	Units	MCL	35AWW13F-101515 10/15/2015	35AWW13-042916 4/29/2016	35AWW13FD-042916 4/29/2016
Metals (6020A)						
Arsenic		mg/L	0.01	0.0017 J	0.00237	0.00242
Lead		mg/L	0.015	0.00139 J	<0.001 U	<0.001 U

Notes:

J - Estimated: The analyte was positively identified, the quantitation is an estimation due to discrepancies in meeting certain analyte-specific quality control criteria.

MCL - Maximum Contaminant Limit

mg/L - milligrams per liter

U - Undetected: The analyte was analyzed for, but not detected.

Table 2. LHAAP-02 Year 2 Semi-Annual Groundwater Sampling - October 2016 and April 2017

Location ID: Sample Date:	Units	MCL	35AWW13F-100616 10/6/2016	35AWW13FDF-100616 10/6/2016	35AWW13F-041917 4/19/2017	35AWW13FDF-041917 4/19/2017
Loc	cation De	scription	Shallow zone, unimpacted downgradient. Field filtered with 10 micron filter.	Shallow zone, unimpacted downgradient. Field filtered with 10 micron filter. Field duplicate.	Shallow zone, unimpacted downgradient. Field filtered with 10 micron filter.	Shallow zone, unimpacted downgradient. Field filtered with 10 micron filter. Field duplicate.
Metals (6020A)	etals (6020A)					
Arsenic	mg/L	0.01	0.00173 J	0.00173 J	0.00218	0.00214
Lead	mg/L	0.015	<0.001 U	<0.001 U	<0.001 U	<0.001 U

Notes:

MCL - Maximum Contaminant Limit

mg/L - milligrams per liter

U - Undetected: The analyte was analyzed for, but not detected.

J - Estimated: The analyte was positively identified, the quantitation is an estimation due to discrepancies in meeting certain analyte-specific quality control criteria.

Table 3. LHAAP-02 Year 3 Semi-Annual Groundwater Sampling Results - November 2017 and April 2018

	Locatio	n Identification: Sample Date:		35AWW13_111617_a 11/16/17	35AWW13_040418 4/4/18	35AWW13_040418_a 4/4/18
		Sample Type:	Parent	Field Duplicate	Parent	Field Duplicate
	Locat	ion Description:	Shallow zone, unimpacted downgradient. Field filtered with 10 micron filter.	Shallow zone, unimpacted downgradient. Field filtered with 10 micron filter. Field Duplicate	Shallow zone, unimpacted downgradient. Field filtered with 10 micron filter.	Shallow zone, unimpacted downgradient. Field filtered with 10 micron filter. Field Duplicate
Metals (By Method 6020A)	Units	USEPA MCL				
Arsenic	mg/L	0.01	0.00117 J	0.00120 J	0.000986 J	0.000895 J
Lead	mg/L	0.015	0.00306	0.00353	0.00122 J	0.00109 J

Notes:

mg/L - milligrams per liter

J - estimated value between the limit of quantitation and the detection limit

USEPA - United States Environmental Protection Agency

MCL - Maximum Contaminant Level

FIGURES

ATTACHMENT A-1 YEAR 1 SEMIANNUAL GROUNDWATER ANALYTICAL DATA (OCTOBER 2015 AND APRIL 2016)

DEPARTMENT OF THE ARMY LONGHORN ARMY AMMUNITION PLANT POST OFFICE BOX 220 RATCLIFF, AR 72951

October 27, 2016

DAIM-ODB-LO

Mr. Rich Mayer US Environmental Protection Agency Federal Facilities Section R6 1445 Ross Avenue Dallas, TX 75202-2733

Re: Technical Memorandum for Groundwater Sampling Methodology and Analytical Results for Year 1 (October 2015 and April 2016 Semi-Annual Events), LHAAP-02, Vacuum

Truck Overnight Parking at Longhorn Army Ammunition Plant, Karnack, Texas

Dear Mr. Mayer,

The above-referenced document is being transmitted to you for your records.

The document was prepared by AECOM on behalf of the Army as part of AECOM's Performance Based Remediation contract for the facility. I ask that Debra Richmann, AECOM's Project Manager, be copied on any communications related to the project.

The point of contact for this action is the undersigned. I may be contacted at 479-635-0110, or by email at rose.m.zeiler.civ@mail.mil.

Sincerely,

Rose M. Zeiler, Ph.D.

Longhorn AAP Site Manager

RoseM.Zjiler

Copies furnished:

A. Palmie, TCEQ, Austin, TX

P. Bruckwicki, Caddo Lake NWR, TX

R. Smith, USACE, Tulsa District, OK

A. Williams, USACE, Tulsa District, OK

N. Smith, USAEC, San Antonio, TX

D. Richmann, AECOM – San Antonio, TX (for project files)

DEPARTMENT OF THE ARMY LONGHORN ARMY AMMUNITION PLANT POST OFFICE BOX 220 RATCLIFF, AR 72951

October 27, 2016

DAIM-ODB-LO

Ms. April Palmie Texas Commission on Environmental Quality Superfund Section, MC-136 12100 Park 35 Circle, Bldg D Austin, TX 78753

Re: Technical Memorandum for Groundwater Sampling Methodology and Analytical Results for Year 1 (October 2015 and April 2016 Semi-Annual Events), LHAAP-02, Vacuum Truck Overnight Parking at Longhorn Army Ammunition Plant, Karnack, Texas

Dear Ms. Palmie,

The above-referenced document is being transmitted to you for your records.

The document was prepared by AECOM on behalf of the Army as part of AECOM's Performance Based Remediation contract for the facility. I ask that Debra Richmann, AECOM's Project Manager, be copied on any communications related to the project.

The point of contact for this action is the undersigned. I may be contacted at 479-635-0110, or by email at <u>rose.m.zeiler.civ@mail.mil</u>.

Sincerely.

Rose M. Zeiler, Ph.D. Longhorn AAP Site Manager

RoseM.Zjiler

Copies furnished:

- R. Mayer, USEPA Region 6, Dallas, TX
- P. Bruckwicki, Caddo Lake NWR, TX
- R. Smith, USACE, Tulsa District, OK
- A. Williams, USACE, Tulsa District, OK
- N. Smith, USAEC, San Antonio, TX
- D. Richmann, AECOM, San Antonio, TX (for project files)

MEMORANDUM FOR RECORD

October 27, 2016

SUBJECT: Groundwater Sampling Methodology and Analytical Results for Year 1

(October 2015 and April 2016 Semi-Annual Events), LHAAP-02, Vacuum Truck Overnight Parking, at Longhorn Army Ammunition

Plant, Karnack, Texas

This memorandum presents the methodology and analytical results for two semi-annual groundwater sampling events conducted at LHAAP-02 on October 15, 2015 and April 29, 2016. The purpose of the groundwater sampling and analysis is to determine the presence or absence of arsenic and lead at concentrations above their respective groundwater United States Environmental Protection Agency (USEPA) Safe Drinking Water Act Maximum Contaminant Levels (MCLs). The MCLs are 0.01 mg/L for arsenic and 0.015 mg/L for lead. The single groundwater monitoring well sampled at LHAAP-02 (35AWW13) is screened in the Shallow Zone. The sampling rationale and methodology followed the procedures documented in the Installation-Wide Work Plan (IWWP) (AECOM, July 2014). Sampling for arsenic and lead was conducted based on the requirements of the Final Decision Document for LHAAP-02 dated July 2010.

Groundwater samples were collected from Shallow Zone monitoring well 35AWW13 and analyzed for arsenic and lead, using EPA Method SW6020A. The LHAAP-02 site served as the former vacuum truck overnight parking area and has a history of metals contamination (i.e. arsenic and lead in soils exceeding Texas Risk Reduction Standard No. 2 medium-specific concentrations (MSCs) for industrial use), as indicated by sampling in July 2009 and earlier (Shaw, 2009).

Groundwater samples were collected utilizing low-flow sampling techniques. Prior to sampling, the depth to groundwater and total depth of the monitoring well were measured using a Solinst Model 101 water level meter. The construction log for monitoring well 35AWW13 was used to identify the screened interval in the monitoring well. A bladder pump was lowered into the well and placed within the screened interval, then pumped at a rate of approximately 200 milliliters (mL) or less per minute. The groundwater was pumped through a flow-through cell where field parameters including temperature, pH, conductivity, oxygen reduction potential (ORP), dissolved oxygen (DO), and turbidity were measured using a U-52 Horiba water quality meter. After the groundwater parameters stabilized within the ranges specified in the IWWP (AECOM, 2014), each groundwater sample was collected in a 250-mL clear plastic bottle. The bottles were labelled and placed in coolers containing ice for temporary storage and shipment to the Microbac laboratory located in Marietta, Ohio following Chain-of-Custody procedures. **Appendix A** provides the field sampling forms.

Quality control (QC) samples, including a field duplicate, matrix spike (MS), and matrix spike duplicate (MSD), were collected as prescribed in the IWWP (July, 2014) to assess the precision, accuracy, and representativeness of the analytical results.

The groundwater samples were analyzed within the maximum holding time for Method SW 6020A. Analytical data received from Microbac were validated in accordance with quality assurance/quality control (QA/QC) requirements for this project and were determined to be usable for their intended purpose. The data validation information is summarized in the Quality Control Summary Report (QCSR) presented in **Appendix B**. **Appendix C** provides the laboratory reports for the groundwater samples.

Arsenic and lead were detected in the samples collected from 35AWW13F (F indicates a filtered sample) in October 2015 and 35AWW13F in April 2016. Arsenic and lead did not exceed their respective MCLs during the April 2016 sampling event. The groundwater analytical results for arsenic and lead for October 2015 and April 2016 are presented in **Table 1.**

REFERENCES

- AECOM, 2014. Final Installation-Wide Work Plan for Longhorn Army Ammunition Plant, Karnack, Texas, July.
- Shaw Environmental and Infrastructure, Inc. (Shaw), 2009. Final Site Investigation Report LHAAP-02, Vacuum Truck Overnight Parking Lot, Longhorn Army Ammunition Plant, Karnack, Texas, January.
- Shaw Environmental and Infrastructure, Inc. (Shaw), 2010. Results of Additional Sampling at Site LHAAP-02 (Former Vacuum Truck Overnight Parking), Longhorn Army Ammunition Plant, Karnack, Texas, February.
- Shaw Environmental and Infrastructure, Inc. (Shaw), 2010. Final Decision Document for LHAAP-02, Vacuum Truck Overnight Parking, Longhorn Army Ammunition Plant, Karnack, Texas, July.

Table 1: LHAAP-02 Year 1 Sampling Results - October 2015 and April 2016

	Location ID: Sample Date:	Units	MCL	35AWW13F- 101515 10/15/2015	35AWW13- 042916 4/29/2016	35AWW13FD- 042916 4/29/2016
Metals (6020A)						
ARSENIC		mg/L	0.01	0.0017 J	0.00237	0.00242
LEAD		mg/L	0.015	0.00139 J	<0.001 U	<0.001 U

J - Estimated: The analyte was positively identified, the quantitation is an estimation due to discrepancies in meeting certain analyte-specific quality control criteria.

MCL - Maximum Contaminant Limit

mg/L - milligrams per liter

U - Undetected: The analyte was analyzed for, but not detected.

AECOM

MONITORING WELL SAMPLE COLLECTION FORM

														1		
1	LOCATION Site: 02 Project: Longhorn Army Ammunition Plant Water Quality Meter Type/ID #: Horiba U-52						LocID: 35	AWW13				Date: /	0/15/	15		
	LUCATION		norn Army Ammui	nition Plant			Project No.	6027418	5.0012SOV	V12		Recorded By	: Scott Bees	inger	Chec	ked By:
							Water Interfac	na Proha:	Water Level II	dicator: Solinst	ID#- 101	Min Rechame	Level = (TD-D	TW/0 80)) - T	D	
	CANLWELLI	Unit #	2120				Sampling Equ	_	Bladder Pump		ID#:	man recrisinge	1000 - (10-1	7111(0.00)) = 1		
				3-				-				 		4110	0	<u>-</u>
	WELL	Casing I.D. (in):		110 5	-		Static Water I	evel Reading	(ft) from TOC:	24,6		Weather Cond		CLAA		
	INFO	Total Well Depth	h (ft) from TOC:	40.2	.3			val (ft) from TC				Condition of V	Vell/Remarks:	600	7	
					- Matte A Re		Pump Placen	ent (ft) from T	0C: 3	2.50				-		
		Casing I.D. (in):				0.75	1.5	2.0	2.2	3.0	4.0	4.3	5.0	6.0	7.0	8.0
	INFO	Unit Casing Volu	ume (gal/lin ft):			0.023	0.09	0.16	0.20	0.37	0.65	0.75	1.0	1.5	2.0	2.6
					Т		1				2.55				-	
			Water	Pumping					:							
	D-4-	Time	Level	Rate	Temp.	-ti	Cond	DO (mo/l)	Turb. (NTU)	ORP				Remarks		
	Date	(24 hr)	(FTOC)	(mL/mln)	(°C)	pH	(µS/cm)	(mg/L)		(mv)				(odor, clarity, etc	.]	
	10 15/15	1315	24,67	00	26.43		1.50	1.46	308	154	ļ					
	1)	1320	24,75	100	36.84	5,42	1.65	0.62	221	137						
		1325	24,81	100	36.81	5134	1113	0.30	144	134						
	- 11	1330	24,85	100	18.95	5,33		0.22	130	13)	0.0					
	- 11	1335	24.87	100	26.87	5,32	1.87	0.12	109	400	29					
	"	1340	24.89	100	27.10	5,34		0.07	69.9	127						<u></u>
	- 11	1345	24,90	100	27.12	6.34	1.96	0.00	64.1	127				· · · · · · · · · · · · · · · · · · ·		
	- 11	1350	24.91	100	27.10	5.33	1.97	ტ.00	63.9	126						
	[1	1355	24.91	100	27.09		1,98	0.00	63.5	125						
	N.	1400	24,91	100	27.09	5,33	1.98	00.A	63.1	125						
8																
																· · · · · · · · · · · · · · · · · · ·
													. 1			<u> </u>
			100											`		
9																
															-	
			m; <0.33 ft Measur		Stabilization:	+/-10% C, +/-0.1	pH, +/-3% Co	nd, +/-10% DO,						- 22	W 103	-50-12200y
a	SAMPLE ID: 2	SAWW	13-10 50	_ TIME	1400	No. Containe					Filter (Y/N)	Pump OR Ba	iler	Parameter(s		<u> </u>
			10 10 00)	• •	1 - 500 n	nL plastic			HNO3	У	Pump		Total Met	als	
	İ										·					
DUPLICATE (D): NO										ļ	ļ					
	MATRIX SPIKE (_											4 4-		
	MATRIX DUPLIC	ATE (MD): N	0									-				
								17/3-1							5)	
		CO=	LEL=	OXY=	H2S=						1	1				10 23

AECOM

CO=

LEL=

OXY=

H2S=

MONITORING WELL SAMPLE COLLECTION FORM

	Site: 02					LociD: 35	AWW13				Date:	4/29/201	6			
LOCATION		norn Army Ammu	nition Plant		· · · · · · · · · · · · · · · · · · ·	Project No.		5.0012SOV	V12		Recorded By	y: Scott Bee	singer	Checked	d By:	
-	Water Quality M		Horiba U-52			Water Interfa	ce Probe:	Water Level b	ndicator: Solinst	: ID#: 101	Min Recharge	e Level = (TD-	DTW(0.80)) - TD)		
EQUIPMENT	Unit#	21099				Sampling Eq	-	Bladder Pump		ID#:						
\ \ \	Casing I.D. (in):	2"			y muse	Static Water	Level Reading	(ft) from TOC:	23.7	7	Weather Con	ditions C	Loudy	RAIN		
WELL	Total Well Depti		40.2	Q			val (ft) from TO					Well/Remarks:		X		
INFO	1000 1100	. (1.) 11 0111 1 0 01	40.0	-		_	nent (ft) from T		32.98	}					···	
CASING	Casing I.D. (in):			The stable and the	0.75	1.5	2.0	2.2	3.0	4.0	4.3	5.0	6.0	7.0	8.0	
INFO	Unit Casing Vol				0.023	0.09	0.16	0.20	0.37	0.65	0.75	1.0	1.5	2.0	2.6	j
	a a						1	1								
		Water	Pumping													
Date	Time (24 hr)	Level (FTOC)	Rate (mL/min)	Temp. (°C)	pH	Cond (µS/cm)	DO (mg/L)	Turb. (NTU)	ORP (mv)				Remarks (odor, clarity, etc	-1		
4/29/16	1355	23.74	100	22 45	5.97	1,24	1.54	10.5	149				(Odor, Clarity, ex	<u>~ </u>		
7101114	1400	23.80	100	23.16	5.93	1.25	1.01	12.1	136	 						
	1405	33.87	100	23,05		1.24	0.85	11.5	132							
	1410	23-92	100	22.95	5.77	1.23	0.67	10.2	131							
	14/5	23.95	100	22.83	5.70	1.22	0.67	9.7	137							
	1420	23.97	100	12.81	5.70	1.22	0.67	9.1	138							
	1425	23.98	100		5.69	1.22	0.67	8.8	139							
<u> </u>	1430	23.99	100	37.80	2.68	1.22	0.66	85	139						-2	
						ļ									1	
				-	-	<u> </u>				 	_					~
-	-			+		 				 						-
-	-			+		-		-	ļ	 						
		4		 	 	 	+		 	 						
							 		 				35000000			
										12. (2. =10).						
	ump Rate: <=0,5 L/min Drawdown: <0,33 ft Measurements: 3-5 min Stabilization: +/-10% C							-/-10%Turb(<=1								
SAMPLE ID:	111111111111111111111111111111111111111					Containers/Volume/Type Preserv				Filter (Y/N)	Pump OR B	ailer	Parameter(
	5 - 50					mL plastic	C		HNO3	N	Pump		Total Me	tals		
DUDI ICATE (D)	DUDI ICATE IDV. VEC							_	-	+			+			
1	DUPLICATE (D): YES MATRIX SPIKE (MS): YES									 			+			
	MATRIX DUPLICATE (MD): YES							-	i	†						
									1	1	1					

QUALITY CONTROL SUMMARY REPORT LHAAP-02 (OCTOBER 2015 AND APRIL 2016) FOR LONGHORN ARMY AMMUNITION PLANT KARNACK, TEXAS

Prepared For:

U.S. Army Corps of Engineers
Tulsa District

Prepared By:

AECOM Technical Services

September 2016

Table of Contents

1	I	NTRODUCTION	1
	1.1	Intended Use of Data	1
	1.2	Preservation and Holding Times	1
	1.3	Calibrations	
		.3.1 Continuing Calibration Verifications (CCV)	
		1.3.1.1 SW6010	
	1.4	Blanks	1
	1.5	Surrogates	2
	1.6	Laboratory Control Sample (LCS)	2
	1.7	Matrix Spike/Matrix Spike Duplicate (MS/MSD)	
		1.7.1.1 SW6010	
	1.8		
		DATA USABILITY SUMMARY	

List of Tables

- Table 1: Completeness by Method
- Table 2: Field Sample Identification and Laboratory Identification
- Table 3: Qualified Analytical Data

1 INTRODUCTION

AECOM reviewed two (2) data packages from Microbac Laboratory Services, Marietta, OH. Groundwater samples were collected in October 2015 and April 2016 at LHAAP-02 Longhorn Army Ammunition Plant (LHAAP), Karnack, Texas. Data were reviewed for conformance to the requirements of the following guidance documents: Automated Data Review by Laboratory Data Consultants (ADR.net), United States Environmental Protection Agency (EPA) Contract Laboratory Program National Functional Guidelines for Inorganic Data Review, (EPA, July 2002), and EPA Contract Laboratory Program National Functional Guidelines for Low Concentration Organic Data Review, (EPA, June 2001).

1.1 Intended Use of Data

Groundwater sampling was implemented at the LHAAP-02 site to monitor levels of metals including arsenic and lead:

- SW6010 Metals
- SW6020 Metals
- 7470A- Hg by cold vapor atomic absorption

Table 2 lists the sample identifications and their associated laboratory identifications. **Table 3** lists qualified results with the associated quality control parameter that was exceeded.

1.2 Preservation and Holding Times

Sample identification data were evaluated for agreement with the chain-of-custody (COC). All samples were received in appropriate containers, within the proper temperature range, in good condition, and with the required signatures.

1.3 Calibrations

Initial calibration criteria modification includes RSD< or = to 30%, two compounds allowed up to 40%. If the continuing calibration verification (CCV) compound exceeds 30% drift, the compound is checked in the LCS, if both are outside recovery limits, the compound is rejected, R. If only the CCV exceeds recovery criteria and is less than \pm 40% drift, then the compound is qualified J or UJ.

1.3.1 Continuing Calibration Verifications (CCV)

1.3.1.1 SW6010

CCV WG569211-12 reported a recovery for selenium of 89.9%. Recovery limits for selenium at 90-110% and the associated sample reported a concentration less than the reporting limit, therefore the concentration of selenium is estimated (UJ).

1.4 Blanks

Where contamination by a target analyte of one of the various blanks was found, if the sample result for an associated sample was non-detect or less than 5X (10X for common laboratory

September2016

contaminants) the analyte concentration in the blank, the corresponding sample result for the analyte was qualified B. Where the sample result for the affected analyte was greater than 5X the amount in the blank, no qualifier was applied.

All blanks were free of target analytes.

1.5 Surrogates

All Surrogates are within criteria.

1.6 Laboratory Control Sample (LCS)

All LCS/LCSDs are within criteria.

1.7 Matrix Spike/Matrix Spike Duplicate (MS/MSD)

1.7.1.1 SW6010

The MS/MSD for sample L16050013-01 yielded a recovery of 244% and 237%, respectively, for sodium in SDG L16050013. This is above the upper control limit of 120%. The parent sample has a detection of sodium above the limit of quantitation (LOQ) and is estimated (J).

Table 3 shows qualified analytical data.

1.8 Field Duplicate Precision

Precision is the measure of variability of individual sample measurements. Evaluation of field duplicates for precision was done using the Relative Percent Difference (RPD). The RPD is defined as the difference between two duplicate samples divided by the mean and expressed as a percent. Field duplicate RPD limits were set at 0-30% for groundwater matrices. No data required qualification based field duplicate RPD outliers. Overall field precision was acceptable.

2 DATA USABILITY SUMMARY

The data are usable for the intended purposes of the project. The data quality objectives have been met for the project.

Table 1: Completeness by Method

Method	No. of Rejected Results	% Completeness
SW6010	0	100
SW6020	0	100
7470A	0	100

September 2016

Table 2: Field Sample Identification and Laboratory Identification

ClientSampleID	LabSampleID	SW6010	SW6020	7470A
35AWW13F-101515	L15101055-01	X	X	X
35AWW13-042616	L16050013-01	X	X	X
35AWW13FD-042616	L16050013-02	X	X	X
35AWW13MS-042616	L16050013-03	X	X	X
35AWW13MSD-042616	L16050013-04	X	X	X
LHAAP02 Equipment Rinse-042916	L16050013-05	X	X	X

Table 3: Qualified Analytical Data

	ClientSampleID	LabSampleID	AnalyteName	DVQualOverall	Reason
	35AWW13-042616	L16050013-01	Sodium	J	MS/MSD %R Failure
3	35AWW13FD-042616	L16050013-02	Selenium	UJ	CCV %R Failure

Laboratory Report Number: L15101055

Kayla Teague AECOM Technical Services, Inc. 16000 Dallas Parkway Dallas, TX 75248

Please find enclosed the analytical results for the samples you submitted to Microbac Laboratories. Review and compilation of your report was completed by Microbac's Ohio Valley Division (OVD). If you have any questions, comments, or require further assistance regarding this report, please contact your service representative listed below.

Laboratory Contact: Stephanie Mossburg – Team Chemist/Data Specialist (740) 373-4071 Stephanie.Mossburg@microbac.com

I certify that all test results meet all of the requirements of the DoD QSM and other applicable contract terms and conditions. Any exceptions are attached to this cover page or addressed in the method narratives presented in the report. All results for soil samples are reported on a 'dry-weight' basis unless specified otherwise. Analytical results for water and wastes are reported on a 'as received' basis unless specified otherwise. A statement of uncertainty for each analysis is available upon request. This laboratory report shall not be reproduced, except in full, without the written approval of Microbac Laboratories, DoD ELAP certification number 2936.01. The reported results are related only to the samples analyzed as received.

This report was certified on October 30 2015

David E. Vardenberg

David Vandenberg - Managing Director

State of Origin: TX

Accrediting Authority: Texas Commission on Environmental Quality ID:T104704252-07-TX

QAPP: DOD Ver 4.1

Microbac Laboratories * Ohio Valley Division
158 Starlite Drive, Marietta, OH 45750 * T: (740) 373-4071 F: (740) 373-4835 * www.microbac.com

Χ

Yes

Yes

NA

Discrepancy

0.0

Gun

Н

Lab Report #: L15101055 **Lab Project #:** 2551.096

Project Name: Longhorn Army Ammunition

Lab Contact: Stephanie Mossburg

Resolution

J2317162191

Record of Sample Receipt and Inspection

Comments/Discrepancies

This is the record of the shipment conditions and the inspection records for the samples received and reported as a sample delivery group (SDG). All of the samples were inspected and observed to conform to our receipt policies, except as noted below.

There were no discrepancies.

00110489

10

11

12

Coolers					
Cooler #	Temperature	Temperature	COC#	Airbill #	Temp Required?

spection Che	ecklist	
#	Question	Result
1	Were shipping coolers sealed?	Yes
2	Were custody seals intact?	Yes
3	Were cooler temperatures in range of 0-6?	Yes
4	Was ice present?	Yes
5	Were COC's received/information complete/signed and dated?	Yes
6	Were sample containers intact and match COC?	Yes
7	Were sample labels intact and match COC?	Yes
8	Were the correct containers and volumes received?	Yes
9	Were samples received within EPA hold times?	Yes

Were correct preservatives used? (water only)

Were pH ranges acceptable? (voa's excluded)

Were VOA samples free of headspace (less than 6mm)?

Lab Report #: L15101055 **Lab Project #:** 2551.096

Project Name: Longhorn Army Ammunition

Lab Contact: Stephanie Mossburg

Samples Received				
	Client ID	Laboratory ID	Date Collected	Date Received
	35AWW13F-101515	L15101055-01	10/15/2015 14:00	10/16/2015 10:26

Microbac REPORT L15101055 PREPARED FOR AECOM Technical Services, Inc. WORK ID:

1.0 Summary Data	Ę
1.1 Narratives	
1.2 Certificate of Analysis	
2.0 Full Sample Data Package	
2.1 Metals Data	
2.1.1 Metals I C P Data	34
2.1.1.1 Summary Data	
2.1.1.2 QC Summary Data	
2.1.1.3 Raw Data	
2.1.2 Metals ICP-MS Data	
2.1.2.1 Summary Data	
2.1.2.2 QC Summary Data	
2.1.2.3 Raw Data	
2.1.3 Metals CVAA Data (Mercury)	
2.1.3.1 Summary Data	724
2.1.3.2 QC Summary	
2.1.3.3 Raw Data	
3.0 Attachments	752

1.0 Summary Data

1.1 Narratives

Laboratory Name:	Microbac OVD	Laboratory Log Number:	L15101055
Project Name:		Method:	6010
Prep Batch Number(s):	WG543718	Reviewer Name:	Maren Beery
LRC Date:	2015-10-30 00:00:00		

Laboratory Data Package Cover Page

R2 S	Field chain-of-custody documentation; Sample identification cross-reference; Test reports (analytical data sheets) for each environmental sample that includes: (a) Items consistent with NELAC Chapter 5, (b) dilution factors, (c) preparation methods, (d) cleanup methods, and (e) a.if required for the project, tentatively identified compounds (TICs). Surrogate recovery data including: (a) Calculated recovery (%R), and (b) the laboratory's surrogate QC limits.
R3	Test reports (analytical data sheets) for each environmental sample that includes: (a) Items consistent with NELAC Chapter 5, (b) dilution factors, (c) preparation methods, (d) cleanup methods, and (e) a.if required for the project, tentatively identified compounds (TICs). Surrogate recovery data including: (a) Calculated recovery (%R), and (b) the laboratory's surrogate QC
r	with NELAC Chapter 5, (b) dilution factors, (c) preparation methods, (d) cleanup methods, and (e) a.if required for the project, tentatively identified compounds (TICs). Surrogate recovery data including: (a) Calculated recovery (%R), and (b) the laboratory's surrogate QC
R4 9	
R5 -	Test reports/summary forms for blank samples;
	Test reports/summary forms for laboratory control samples (LCSs) including: (a) LCS spiking amounts, (b) calculated %R for each analyte, and (c) the laboratory's LCS QC limits.
\ 6	Test reports for project matrix spike/matrix spike duplicates (MS/MSDs) including: (a) samples associated with the MS/MSD clearly identified, (b) MS/MSD spiking compounds, (c) concentration of each MS/MSD analyte measured in the parent and spiked samples, (d) calculated %Rs and relative percent differences (RPDs), and (e) the laboratory's MS/MSD QC limits.
	Laboratory analytical duplicate (if applicable) recovery and precision: (a) the amount of analyte measured in the duplicate, (b) the calculated RPD, and (c) the laboratory's QC limits for analytical duplicates.
	List of method quantitation limits (MQLs) and detectability check sample results for each analyte for each method and matrix.
R10 (Other problems or anomalies.

Name (Printed)	Signature	Official Title (Printed)	Date
Maren Beery	Maren Beery	Metals Supervisor	2015-10-30 13:33:44

Laboratory Name:	Microbac OVD	Laboratory Log Number:	L15101055
Project Name:		Method:	6010
Prep Batch Number(s):	WG543718	Reviewer Name:	Maren Beery
LRC Date:	2015-10-30 00:00:00		

Description	Yes	No	NA	NR	ER#
Chain-of-custody (C-O-C)					
Did samples meet the laboratory's standard conditions of sample acceptability upon receipt?	Х				
Were all departures from standard conditions described in an exception report?	Х				
Sample and quality control (QC) identification	Х				
Are all field sample ID numbers cross-referenced to the laboratory ID numbers?	Х				
Are all laboratory ID numbers cross-referenced to the corresponding QC data?	Х				
Test reports	Х				
Were all samples prepared and analyzed within holding times?	Х				
Other than those results < MQL, were all other raw values bracketed by calibration standards?	Х				ER#1
Were calculations checked by a peer or supervisor?	Х				
Were all analyte identifications checked by a peer or supervisor?	Х				
Were sample detection limits reported for all analytes not detected?	Х				
Were all results for soil and sediment samples reported on a dry weight basis?	Х				
Were % moisture (or solids) reported for all soil and sediment samples?	Х				
Were bulk soils/solids samples for volatile analysis extracted with methanol per SW846 Method 5035?			Х		
If required for the project, are TICs reported?			Х		
Surrogate recovery data					
Were surrogates added prior to extraction?			Х		
Were surrogate percent recoveries in all samples within the laboratory QC limits?			Х		
Test reports/summary forms for blank samples					
Were appropriate type(s) of blanks analyzed?	Х				
Were blanks analyzed at the appropriate frequency?	Х				
Were method blanks taken through the entire analytical process, including preparation and, if applicable, cleanup procedures?	Х				
Were blank concentrations < MQL?	Х				
Laboratory control samples (LCS):	Х				
Were all COCs included in the LCS?	Х				

RG-366/TRRP-13 May 2010

Laboratory Name:	Microbac OVD	Laboratory Log Number:	L15101055
Project Name:		Method:	6010
Prep Batch Number(s):	WG543718	Reviewer Name:	Maren Beery
LRC Date:	2015-10-30 00:00:00		

Was each LCS taken through the entire analytical procedure, including prep and cleanup steps?	Х		
Were LCSs analyzed at the required frequency?	Х		
Were LCS (and LCSD, if applicable) %Rs within the laboratory QC limits?	Х		
Does the detectability check sample data document the laboratory's capability to detect the COCs at the MDL used to calculate the SDLs?	Х		
Was the LCSD RPD within QC limits?		Х	
Matrix spike (MS) and matrix spike duplicate (MSD) data			
Were the project/method specified analytes included in the MS and MSD?		Х	
Were MS/MSD analyzed at the appropriate frequency?		Х	
Were MS (and MSD, if applicable) %Rs within the laboratory QC limits?		Х	
Were MS/MSD RPDs within laboratory QC limits?		Х	
Analytical duplicate data			
Were appropriate analytical duplicates analyzed for each matrix?		Х	
Were analytical duplicates analyzed at the appropriate frequency?		Х	
Were RPDs or relative standard deviations within the laboratory QC limits?		Х	
Method quantitation limits (MQLs):			
Are the MQLs for each method analyte included in the laboratory data package?	Х		
Do the MQLs correspond to the concentration of the lowest non-zero calibration standard?	Х		
Are unadjusted MQLs and DCSs included in the laboratory data package?	Х		
Other problems/anomalies			
Are all known problems/anomalies/special conditions noted in this LRC and ER?	Х		
Was applicable and available technology used to lower the SDL to minimize the matrix interference effects on the sample results?	Х		
Is the laboratory NELAC-accredited under the Texas Laboratory Accreditation Program for the analytes, matrices and methods associated with this laboratory data package?	X		
Initial calibration (ICAL)			
Were response factors and/or relative response factors for each analyte within QC limits?	Х		
Were percent RSDs or correlation coefficient criteria met?	Х		

RG-366/TRRP-13 May 2010

Laboratory Name:	Microbac OVD	Laboratory Log Number:	L15101055
Project Name:		Method:	6010
Prep Batch Number(s):	WG543718	Reviewer Name:	Maren Beery
LRC Date:	2015-10-30 00:00:00		

Was the number of standards recommended in the method used for all analytes?	Х		
Were all points generated between the lowest and highest standard used to calculate the curve?			
Are ICAL data available for all instruments used?	Х		
Has the initial calibration curve been verified using an appropriate second source standard?	Х		
Initial and continuing calibration verification (ICCV and CCV) and continuing calibration blank (CCB):			
Was the CCV analyzed at the method-required frequency?	Х		
Were percent differences for each analyte within the method-required QC limits?	Х		
Was the ICAL curve verified for each analyte?	Х		
Was the absolute value of the analyte concentration in the inorganic CCB < MDL?	Х		
Mass spectral tuning			
Was the appropriate compound for the method used for tuning?		Х	
Were ion abundance data within the method-required QC limits?		Х	
Internal standards (IS)			
Were IS area counts and retention times within the method-required QC limits?		Х	
Raw data (NELAC Section 5.5.10)			
Were the raw data (for example, chromatograms, spectral data) reviewed by an analyst?	Х		
Were data associated with manual integrations flagged on the raw data?		Х	
Dual column confirmation			
Did dual column confirmation results meet the method-required QC?		X	
Tentatively identified compounds (TICs)			
If TICs were requested, were the mass spectra and TIC data subject to appropriate checks?		X	
Interference Check Sample (ICS) results			
Were percent recoveries within method QC limits?	Х		
Serial dilutions, post digestion spikes, and method of standard additions			
Were percent differences, recoveries, and the linearity within the QC limits specified in the method?	Х		
Method detection limit (MDL) studies			

RG-366/TRRP-13 May 2010

Laboratory Name:	Microbac OVD	Laboratory Log Number:	L15101055
Project Name:		Method:	6010
Prep Batch Number(s):	WG543718	Reviewer Name:	Maren Beery
LRC Date:	2015-10-30 00:00:00		

Was a MDL study performed for each reported analyte?	Х	
Is the MDL either adjusted or supported by the analysis of DCSs?	Х	
Proficiency test reports		
Was the laboratory's performance acceptable on the applicable proficiency tests or evaluation studies?	Х	
Standards documentation		
Are all standards used in the analyses NIST-traceable or obtained from other appropriate sources?	X	
Compound/analyte identification procedures		
Are the procedures for compound/analyte identification documented?	X	
Demonstration of analyst competency (DOC)		
Was DOC conducted consistent with NELAC Chapter 5?	Х	
Is documentation of the analyst's competency up-to-date and on file?	Х	
Verification/validation documentation for methods (NELAC Chapter 5)		
Are all the methods used to generate the data documented, verified, and validated, where applicable?	Х	
Laboratory standard operating procedures (SOPs)		
Are laboratory SOPs current and on file for each method performed	Х	

- 1. Items identified by the letter "R" must be included in the laboratory data package submitted in the TRRP-required report(s). Items identified by the letter "S" should be retained and made available upon request for the appropriate retention period;
- 2. O = organic analyses; I = inorganic analyses (and general chemistry, when applicable);
- 3. NA = Not applicable;
- 4. NR = Not reviewed;
- 5. ER# = Exception Report identification number (an Exception Report should be completed for an item if "NR" or "No" is checked).

The Exception Report for each "No" or "Not Reviewed (NR)" item in Laboratory Review Checklist and for each analyte, matrix, and method for which the laboratory does not hold NELAC accreditation under the Texas Laboratory Accreditation Program.

Release Statement: I am responsible for the release of this laboratory data package. This laboratory is NELAC accredited under the Texas Laboratory Accreditation Program for all the methods, analytes, and matrices reported in this data package except as noted in the Exception Reports. The data have been reviewed and are technically compliant with the requirements of the methods used, except where noted by the laboratory in the Exception Reports. By my signature

RG-366/TRRP-13 May 2010

Laboratory Name:	Microbac OVD	Laboratory Log Number:	L15101055
Project Name:		Method:	6010
Prep Batch Number(s):	WG543718	Reviewer Name:	Maren Beery
LRC Date:	2015-10-30 00:00:00		

below, I affirm to the best of my knowledge all problems/anomalies observed by the laboratory have been identified in the Laboratory Review Checklist, and no information affecting the quality of the data has been knowingly withheld.
Check, if applicable: [] This laboratory meets an exception under 30 TAC §25.6 and was last inspection by [] TCEQ or [] on (enter date of last inspection). Any findings affecting the data in this laboratory data package are noted in the Exception Reports herein. The official signing the cover page of the report in which these data are used is responsible for releasing this data package and is by signature affirming the above release statement is true.
Exceptions Report

ER#1 - Client sample 01 required dilution analysis in order to obtain a result for iron within the calibration range.

RG-366/TRRP-13 May 2010

Laboratory Name:	Microbac OVD	Laboratory Log Number:	L15101055
Project Name:		Method:	6020
Prep Batch Number(s):	WG543446	Reviewer Name:	Maren Beery
LRC Date:	2015-10-28 00:00:00		

Laboratory Data Package Cover Page

R2 S	Field chain-of-custody documentation; Sample identification cross-reference; Test reports (analytical data sheets) for each environmental sample that includes: (a) Items consistent with NELAC Chapter 5, (b) dilution factors, (c) preparation methods, (d) cleanup methods, and (e) a.if required for the project, tentatively identified compounds (TICs). Surrogate recovery data including: (a) Calculated recovery (%R), and (b) the laboratory's surrogate QC limits.
R3	Test reports (analytical data sheets) for each environmental sample that includes: (a) Items consistent with NELAC Chapter 5, (b) dilution factors, (c) preparation methods, (d) cleanup methods, and (e) a.if required for the project, tentatively identified compounds (TICs). Surrogate recovery data including: (a) Calculated recovery (%R), and (b) the laboratory's surrogate QC
r	with NELAC Chapter 5, (b) dilution factors, (c) preparation methods, (d) cleanup methods, and (e) a.if required for the project, tentatively identified compounds (TICs). Surrogate recovery data including: (a) Calculated recovery (%R), and (b) the laboratory's surrogate QC
R4 9	
R5 -	Test reports/summary forms for blank samples;
	Test reports/summary forms for laboratory control samples (LCSs) including: (a) LCS spiking amounts, (b) calculated %R for each analyte, and (c) the laboratory's LCS QC limits.
\ 6	Test reports for project matrix spike/matrix spike duplicates (MS/MSDs) including: (a) samples associated with the MS/MSD clearly identified, (b) MS/MSD spiking compounds, (c) concentration of each MS/MSD analyte measured in the parent and spiked samples, (d) calculated %Rs and relative percent differences (RPDs), and (e) the laboratory's MS/MSD QC limits.
	Laboratory analytical duplicate (if applicable) recovery and precision: (a) the amount of analyte measured in the duplicate, (b) the calculated RPD, and (c) the laboratory's QC limits for analytical duplicates.
	List of method quantitation limits (MQLs) and detectability check sample results for each analyte for each method and matrix.
R10 (Other problems or anomalies.

Name (Printed)	Signature	Official Title (Printed)	Date
Maren Beery	Maren Beery	Metals Supervisor	2015-10-28 15:14:13

Laboratory Name:	Microbac OVD	Laboratory Log Number:	L15101055
Project Name:		Method:	6020
Prep Batch Number(s):	WG543446	Reviewer Name:	Maren Beery
LRC Date:	2015-10-28 00:00:00		

Description	Yes	No	NA	NR	ER#
Chain-of-custody (C-O-C)					
Did samples meet the laboratory's standard conditions of sample acceptability upon receipt?	Х				
Were all departures from standard conditions described in an exception report?	Х				
Sample and quality control (QC) identification	Х				
Are all field sample ID numbers cross-referenced to the laboratory ID numbers?	Х				
Are all laboratory ID numbers cross-referenced to the corresponding QC data?	Х				
Test reports	Х				
Were all samples prepared and analyzed within holding times?	Х				
Other than those results < MQL, were all other raw values bracketed by calibration standards?	Х				ER#1
Were calculations checked by a peer or supervisor?	Х				
Were all analyte identifications checked by a peer or supervisor?	Х				
Were sample detection limits reported for all analytes not detected?	Х				
Were all results for soil and sediment samples reported on a dry weight basis?	Х				
Were % moisture (or solids) reported for all soil and sediment samples?	Х				
Were bulk soils/solids samples for volatile analysis extracted with methanol per SW846 Method 5035?			Х		
If required for the project, are TICs reported?			Х		
Surrogate recovery data					
Were surrogates added prior to extraction?			Х		
Were surrogate percent recoveries in all samples within the laboratory QC limits?			Х		
Test reports/summary forms for blank samples					
Were appropriate type(s) of blanks analyzed?	Х				
Were blanks analyzed at the appropriate frequency?	Х				
Were method blanks taken through the entire analytical process, including preparation and, if applicable, cleanup procedures?	Х				
Were blank concentrations < MQL?	Х				
Laboratory control samples (LCS):	Х				
Were all COCs included in the LCS?	Х				

RG-366/TRRP-13 May 2010

Laboratory Name:	Microbac OVD	Laboratory Log Number:	L15101055
Project Name:		Method:	6020
Prep Batch Number(s):	WG543446	Reviewer Name:	Maren Beery
LRC Date:	2015-10-28 00:00:00		

Was each LCS taken through the entire analytical procedure, including prep and cleanup steps?	Х		
Were LCSs analyzed at the required frequency?	Х		
Were LCS (and LCSD, if applicable) %Rs within the laboratory QC limits?	Х		
Does the detectability check sample data document the laboratory's capability to detect the COCs at the MDL used to calculate the SDLs?	Х		
Was the LCSD RPD within QC limits?		Х	
Matrix spike (MS) and matrix spike duplicate (MSD) data			
Were the project/method specified analytes included in the MS and MSD?		Х	
Were MS/MSD analyzed at the appropriate frequency?		Х	
Were MS (and MSD, if applicable) %Rs within the laboratory QC limits?		Х	
Were MS/MSD RPDs within laboratory QC limits?		X	
Analytical duplicate data			
Were appropriate analytical duplicates analyzed for each matrix?		Х	
Were analytical duplicates analyzed at the appropriate frequency?		Х	
Were RPDs or relative standard deviations within the laboratory QC limits?		Х	
Method quantitation limits (MQLs):			
Are the MQLs for each method analyte included in the laboratory data package?	Х		
Do the MQLs correspond to the concentration of the lowest non-zero calibration standard?	Х		
Are unadjusted MQLs and DCSs included in the laboratory data package?	Х		
Other problems/anomalies			
Are all known problems/anomalies/special conditions noted in this LRC and ER?	Х		
Was applicable and available technology used to lower the SDL to minimize the matrix interference effects on the sample results?	Х		
Is the laboratory NELAC-accredited under the Texas Laboratory Accreditation Program for the analytes, matrices and methods associated with this laboratory data package?	X		
Initial calibration (ICAL)			
Were response factors and/or relative response factors for each analyte within QC limits?	Х		
Were percent RSDs or correlation coefficient criteria met?	Х		

RG-366/TRRP-13 May 2010

Laboratory Name:	Microbac OVD	Laboratory Log Number:	L15101055
Project Name:		Method:	6020
Prep Batch Number(s):	WG543446	Reviewer Name:	Maren Beery
LRC Date:	2015-10-28 00:00:00		

Was the number of standards recommended in the method used for all analytes?	X		
Were all points generated between the lowest and highest standard used to calculate the curve?			
Are ICAL data available for all instruments used?	Х		
Has the initial calibration curve been verified using an appropriate second source standard?	Х		
Initial and continuing calibration verification (ICCV and CCV) and continuing calibration blank (CCB):			
Was the CCV analyzed at the method-required frequency?	Х		
Were percent differences for each analyte within the method-required QC limits?	Х		
Was the ICAL curve verified for each analyte?	Х		
Was the absolute value of the analyte concentration in the inorganic CCB < MDL?	Х		
Mass spectral tuning			
Was the appropriate compound for the method used for tuning?	Х		
Were ion abundance data within the method-required QC limits?	Х		
Internal standards (IS)			
Were IS area counts and retention times within the method-required QC limits?	Х		
Raw data (NELAC Section 5.5.10)			
Were the raw data (for example, chromatograms, spectral data) reviewed by an analyst?	Х		
Were data associated with manual integrations flagged on the raw data?		Х	
Dual column confirmation			
Did dual column confirmation results meet the method-required QC?		Х	
Tentatively identified compounds (TICs)			
If TICs were requested, were the mass spectra and TIC data subject to appropriate checks?		Х	
Interference Check Sample (ICS) results			
Were percent recoveries within method QC limits?	Х		
Serial dilutions, post digestion spikes, and method of standard additions			
Were percent differences, recoveries, and the linearity within the QC limits specified in the method?	Х		
Method detection limit (MDL) studies			

RG-366/TRRP-13 May 2010

Laboratory Name:	Microbac OVD	Laboratory Log Number:	L15101055
Project Name:		Method:	6020
Prep Batch Number(s):	WG543446	Reviewer Name:	Maren Beery
LRC Date:	2015-10-28 00:00:00		

Was a MDL study performed for each reported analyte?	Х	
Is the MDL either adjusted or supported by the analysis of DCSs?	Х	
Proficiency test reports		
Was the laboratory's performance acceptable on the applicable proficiency tests or evaluation studies?	Х	
Standards documentation		
Are all standards used in the analyses NIST-traceable or obtained from other appropriate sources?	X	
Compound/analyte identification procedures		
Are the procedures for compound/analyte identification documented?	X	
Demonstration of analyst competency (DOC)		
Was DOC conducted consistent with NELAC Chapter 5?	Х	
Is documentation of the analyst's competency up-to-date and on file?	Х	
Verification/validation documentation for methods (NELAC Chapter 5)		
Are all the methods used to generate the data documented, verified, and validated, where applicable?	Х	
Laboratory standard operating procedures (SOPs)		
Are laboratory SOPs current and on file for each method performed	Х	

- 1. Items identified by the letter "R" must be included in the laboratory data package submitted in the TRRP-required report(s). Items identified by the letter "S" should be retained and made available upon request for the appropriate retention period;
- 2. O = organic analyses; I = inorganic analyses (and general chemistry, when applicable);
- 3. NA = Not applicable;
- 4. NR = Not reviewed;
- 5. ER# = Exception Report identification number (an Exception Report should be completed for an item if "NR" or "No" is checked).

The Exception Report for each "No" or "Not Reviewed (NR)" item in Laboratory Review Checklist and for each analyte, matrix, and method for which the laboratory does not hold NELAC accreditation under the Texas Laboratory Accreditation Program.

Release Statement: I am responsible for the release of this laboratory data package. This laboratory is NELAC accredited under the Texas Laboratory Accreditation Program for all the methods, analytes, and matrices reported in this data package except as noted in the Exception Reports. The data have been reviewed and are technically compliant with the requirements of the methods used, except where noted by the laboratory in the Exception Reports. By my signature

RG-366/TRRP-13 May 2010

Laboratory Name:	Microbac OVD	Laboratory Log Number:	L15101055
Project Name:		Method:	6020
Prep Batch Number(s):	WG543446	Reviewer Name:	Maren Beery
LRC Date:	2015-10-28 00:00:00		

below, I affirm to the best of my knowledge all problems/anomalies observed by the laboratory have been identified in the Laboratory Review Checklist, and no information affecting the quality of the data has been knowingly withheld.
Check, if applicable: [] This laboratory meets an exception under 30 TAC §25.6 and was last inspection by [] TCEQ or [] on (enter date of last inspection). Any findings affecting the data in this laboratory data package are noted in the Exception Reports herein. The official signing the cover page of the report in which these data are used is responsible for releasing this data package and is by signature affirming the above release statement is true.
Exceptions Report
ER#1 - Client sample 01 required dilution analysis in order to obtain a result for manganese within the calibration range.

RG-366/TRRP-13 May 2010

Generated: 10/30/2015 10:11

Laboratory Name:	Microbac OVD	Laboratory Log Number:	L15101055
Project Name:		Method:	7471
Prep Batch Number(s):	WG543702	Reviewer Name:	Maren Beery
LRC Date:	2015-10-28 00:00:00		

Laboratory Data Package Cover Page

R2 S	Field chain-of-custody documentation; Sample identification cross-reference; Test reports (analytical data sheets) for each environmental sample that includes: (a) Items consistent with NELAC Chapter 5, (b) dilution factors, (c) preparation methods, (d) cleanup methods, and (e) a.if required for the project, tentatively identified compounds (TICs). Surrogate recovery data including: (a) Calculated recovery (%R), and (b) the laboratory's surrogate QC limits.
R3	Test reports (analytical data sheets) for each environmental sample that includes: (a) Items consistent with NELAC Chapter 5, (b) dilution factors, (c) preparation methods, (d) cleanup methods, and (e) a.if required for the project, tentatively identified compounds (TICs). Surrogate recovery data including: (a) Calculated recovery (%R), and (b) the laboratory's surrogate QC
r	with NELAC Chapter 5, (b) dilution factors, (c) preparation methods, (d) cleanup methods, and (e) a.if required for the project, tentatively identified compounds (TICs). Surrogate recovery data including: (a) Calculated recovery (%R), and (b) the laboratory's surrogate QC
R4 9	
R5 -	Test reports/summary forms for blank samples;
	Test reports/summary forms for laboratory control samples (LCSs) including: (a) LCS spiking amounts, (b) calculated %R for each analyte, and (c) the laboratory's LCS QC limits.
\ 6	Test reports for project matrix spike/matrix spike duplicates (MS/MSDs) including: (a) samples associated with the MS/MSD clearly identified, (b) MS/MSD spiking compounds, (c) concentration of each MS/MSD analyte measured in the parent and spiked samples, (d) calculated %Rs and relative percent differences (RPDs), and (e) the laboratory's MS/MSD QC limits.
	Laboratory analytical duplicate (if applicable) recovery and precision: (a) the amount of analyte measured in the duplicate, (b) the calculated RPD, and (c) the laboratory's QC limits for analytical duplicates.
	List of method quantitation limits (MQLs) and detectability check sample results for each analyte for each method and matrix.
R10 (Other problems or anomalies.

Name (Printed)	Signature	Official Title (Printed)	Date
Maren Beery	Maren Beery	Metals Supervisor	2015-10-28 15:15:29

Laboratory Name:	Microbac OVD	Laboratory Log Number:	L15101055
Project Name:		Method:	7471
Prep Batch Number(s):	WG543702	Reviewer Name:	Maren Beery
LRC Date:	2015-10-28 00:00:00		

Description	Yes	No	NA	NR	ER#
Chain-of-custody (C-O-C)					
Did samples meet the laboratory's standard conditions of sample acceptability upon receipt?	Х				
Were all departures from standard conditions described in an exception report?	Х				
Sample and quality control (QC) identification	Х				
Are all field sample ID numbers cross-referenced to the laboratory ID numbers?	Х				
Are all laboratory ID numbers cross-referenced to the corresponding QC data?	Х				
Test reports	Х				
Were all samples prepared and analyzed within holding times?	Х				
Other than those results < MQL, were all other raw values bracketed by calibration standards?	Х				
Were calculations checked by a peer or supervisor?	Х				
Were all analyte identifications checked by a peer or supervisor?	Х				
Were sample detection limits reported for all analytes not detected?	Х				
Were all results for soil and sediment samples reported on a dry weight basis?	Х				
Were % moisture (or solids) reported for all soil and sediment samples?	Х				
Were bulk soils/solids samples for volatile analysis extracted with methanol per SW846 Method 5035?			Х		
If required for the project, are TICs reported?			Х		
Surrogate recovery data					
Were surrogates added prior to extraction?			Х		
Were surrogate percent recoveries in all samples within the laboratory QC limits?			Х		
Test reports/summary forms for blank samples					
Were appropriate type(s) of blanks analyzed?	Х				
Were blanks analyzed at the appropriate frequency?	Х				
Were method blanks taken through the entire analytical process, including preparation and, if applicable, cleanup procedures?	Х				
Were blank concentrations < MQL?	Х				
Laboratory control samples (LCS):	Х				
Were all COCs included in the LCS?	Х				

RG-366/TRRP-13 May 2010

Laboratory Name:	Microbac OVD	Laboratory Log Number:	L15101055
Project Name:		Method:	7471
Prep Batch Number(s):	WG543702	Reviewer Name:	Maren Beery
LRC Date:	2015-10-28 00:00:00		

Was each LCS taken through the entire analytical procedure, including prep and cleanup steps?	Х		
Were LCSs analyzed at the required frequency?	Х		
Were LCS (and LCSD, if applicable) %Rs within the laboratory QC limits?	Х		
Does the detectability check sample data document the laboratory's capability to detect the COCs at the MDL used to calculate the SDLs?	Х		
Was the LCSD RPD within QC limits?		Х	
Matrix spike (MS) and matrix spike duplicate (MSD) data			
Were the project/method specified analytes included in the MS and MSD?		Х	
Were MS/MSD analyzed at the appropriate frequency?		Х	
Were MS (and MSD, if applicable) %Rs within the laboratory QC limits?		Х	
Were MS/MSD RPDs within laboratory QC limits?		X	
Analytical duplicate data			
Were appropriate analytical duplicates analyzed for each matrix?		Х	
Were analytical duplicates analyzed at the appropriate frequency?		Х	
Were RPDs or relative standard deviations within the laboratory QC limits?		Х	
Method quantitation limits (MQLs):			
Are the MQLs for each method analyte included in the laboratory data package?	Х		
Do the MQLs correspond to the concentration of the lowest non-zero calibration standard?	Х		
Are unadjusted MQLs and DCSs included in the laboratory data package?	Х		
Other problems/anomalies			
Are all known problems/anomalies/special conditions noted in this LRC and ER?	Х		
Was applicable and available technology used to lower the SDL to minimize the matrix interference effects on the sample results?	Х		
Is the laboratory NELAC-accredited under the Texas Laboratory Accreditation Program for the analytes, matrices and methods associated with this laboratory data package?	X		
Initial calibration (ICAL)			
Were response factors and/or relative response factors for each analyte within QC limits?	Х		
Were percent RSDs or correlation coefficient criteria met?	Х		

RG-366/TRRP-13 May 2010

Laboratory Name:	Microbac OVD	Laboratory Log Number:	L15101055
Project Name:		Method:	7471
Prep Batch Number(s):	WG543702	Reviewer Name:	Maren Beery
LRC Date:	2015-10-28 00:00:00		

M			
Was the number of standards recommended in the method used for all analytes?	X		
Were all points generated between the lowest and highest standard used to calculate the curve?			
Are ICAL data available for all instruments used?	Х		
Has the initial calibration curve been verified using an appropriate second source standard?	X		
Initial and continuing calibration verification (ICCV and CCV) and continuing calibration blank (CCB):			
Was the CCV analyzed at the method-required frequency?	Х		
Were percent differences for each analyte within the method-required QC limits?	Х		
Was the ICAL curve verified for each analyte?	Х		
Was the absolute value of the analyte concentration in the inorganic CCB < MDL?	Х		
Mass spectral tuning			
Was the appropriate compound for the method used for tuning?	Х		
Were ion abundance data within the method-required QC limits?	Х		
Internal standards (IS)			
Were IS area counts and retention times within the method-required QC limits?	Х		
Raw data (NELAC Section 5.5.10)			
Were the raw data (for example, chromatograms, spectral data) reviewed by an analyst?	X		
Were data associated with manual integrations flagged on the raw data?		Х	
Dual column confirmation			
Did dual column confirmation results meet the method-required QC?		X	
Tentatively identified compounds (TICs)			
If TICs were requested, were the mass spectra and TIC data subject to appropriate checks?		X	
Interference Check Sample (ICS) results			
Were percent recoveries within method QC limits?	Х		
Serial dilutions, post digestion spikes, and method of standard additions			
Were percent differences, recoveries, and the linearity within the QC limits specified in the method?	X		
Method detection limit (MDL) studies			
	1		

RG-366/TRRP-13 May 2010

Laboratory Name:	Microbac OVD	Laboratory Log Number:	L15101055
Project Name:		Method:	7471
Prep Batch Number(s):	WG543702	Reviewer Name:	Maren Beery
LRC Date:	2015-10-28 00:00:00		

X		
X		
Х		
X		
X		
X		
X		
Х		
X		
	X X X X X X	X

- 1. Items identified by the letter "R" must be included in the laboratory data package submitted in the TRRP-required report(s). Items identified by the letter "S" should be retained and made available upon request for the appropriate retention period;
- 2. O = organic analyses; I = inorganic analyses (and general chemistry, when applicable);
- 3. NA = Not applicable;
- NR = Not reviewed;
- 5. ER# = Exception Report identification number (an Exception Report should be completed for an item if "NR" or "No" is checked).

The Exception Report for each "No" or "Not Reviewed (NR)" item in Laboratory Review Checklist and for each analyte, matrix, and method for which the laboratory does not hold NELAC accreditation under the Texas Laboratory Accreditation Program.

Release Statement: I am responsible for the release of this laboratory data package. This laboratory is NELAC accredited under the Texas Laboratory Accreditation Program for all the methods, analytes, and matrices reported in this data package except as noted in the Exception Reports. The data have been reviewed and are technically compliant with

RG-366/TRRP-13 May 2010

Laboratory Name:	Microbac OVD	Laboratory Log Number:	L15101055
Project Name:		Method:	7471
Prep Batch Number(s):	WG543702	Reviewer Name:	Maren Beery
LRC Date:	2015-10-28 00:00:00		

Check, if applicable: [] This laboratory meets an exception under 30 TAC §25.6 and was last inspection by [] TCEQ or [] on (enter date of last inspection). Any findings affecting the data in this laboratory data package are noted in the Exception Reports herein. The official signing the cover page of the report in which these data are used	
s responsible for releasing this data package and is by signature affirming the above release statement is true.	

RG-366/TRRP-13 May 2010

1.2 Certificate of Analysis

Microbac

Lab Project #: 2551.096

Project Name: Longhorn Army Ammunition

Lab Contact: Stephanie Mossburg

Certificate of Analysis

 Sample #:
 L15101055-01
 PrePrep Method:
 N/A
 Instrument:
 ICP-THERMO3

 Client ID:
 35AWW13F-101515
 Prep Method:
 3015
 Prep Date:
 10/21/2015 09:19

 Matrix:
 Water
 Analytical Method:
 6010C
 Cal Date:
 10/23/2015 10:00

 Workgroup #:
 WG543782
 Analyst:
 JYH
 Run Date:
 10/23/2015 11:19

 Collect Date:
 10/15/2015 14:00
 Dilution:
 1
 File ID:
 T3.102315.111942

Sample Tag: 01 Units: mg/L

Analyte	CAS#	Result	Qual	LOQ	LOD	DL
Aluminum, Total	7429-90-5	0.100	U	0.200	0.100	0.0500
Beryllium, Total	7440-41-7	0.0100	U	0.0200	0.0100	0.00500
Iron, Total	7439-89-6	0.156	J	0.200	0.100	0.0500
Potassium, Total	7440-09-7	0.601	J	2.00	1.00	0.500
Selenium, Total	7782-49-2	0.00515	J	0.0200	0.0100	0.00500

J	Estimated value ; the analyte concentration was less than the LOQ.
U	Analyte was not detected. The concentration is below the reported LOD.

Page 1 of 6 Generated at Oct 30, 2015 10:22

Lab Project #: 2551.096

Project Name: Longhorn Army Ammunition

Lab Contact: Stephanie Mossburg

Certificate of Analysis

 Sample #:
 L15101055-01
 PrePrep Method:
 N/A
 Instrument:
 ICP-THERMO3

 Client ID:
 35AWW13F-101515
 Prep Method:
 3015
 Prep Date:
 10/21/2015 09:19

 Matrix:
 Water
 Analytical Method:
 6010C
 Cal Date:
 10/23/2015 10:00

 Workgroup #:
 WG543782
 Analyst:
 JYH
 Run Date:
 10/23/2015 11:27

Sample Tag: DL01 Units: mg/L

Analyte	CAS#	Result	Qual	LOQ	LOD	DL
Calcium, Total	7440-70-2	73.0		2.50	1.25	0.625
Magnesium, Total	7439-95-4	54.1		5.00	2.50	1.25
Sodium, Total	7440-23-5	254		5.00	2.50	1.25

U Analyte was not detected. The concentration is below the reported LOD.

Lab Project #: 2551.096

Project Name: Longhorn Army Ammunition

Lab Contact: Stephanie Mossburg

Certificate of Analysis

Sample #: L15101055-01 PrePrep Method: N/A Instrument: ICP-MS2

 Client ID:
 35AWW13F-101515
 Prep Method:
 3015
 Prep Date:
 10/19/2015 13:28

 Matrix:
 Water
 Analytical Method:
 6020A
 Cal Date:
 10/27/2015 13:15

 Workgroup #:
 WG543486
 Analyst:
 BKT
 Run Date:
 10/27/2015 13:57

 Collect Date:
 10/15/2015 14:00
 Dilution:
 1
 File ID:
 NI.102715.135713

Sample Tag: 01 Units: mg/L

Analyte	CAS#	Result	Qual	LOQ	LOD	DL
Antimony, Total	7440-36-0	0.00607		0.00200	0.00100	0.000500
Arsenic, Total	7440-38-2	0.00170	J	0.00200	0.00100	0.000500
Barium, Total	7440-39-3	0.0317		0.00600	0.00300	0.00150
Cadmium, Total	7440-43-9	0.000585	J	0.00120	0.000600	0.000300
Chromium, Total	7440-47-3	0.00357	J	0.00400	0.00200	0.00100
Cobalt, Total	7440-48-4	0.00465		0.00200	0.00100	0.000500
Copper, Total	7440-50-8	0.0116		0.00400	0.00200	0.00100
Lead, Total	7439-92-1	0.00139	J	0.00200	0.00100	0.000500
Nickel, Total	7440-02-0	0.0849		0.00800	0.00400	0.00200
Silver, Total	7440-22-4	0.00100	U	0.00200	0.00100	0.000500
Thallium, Total	7440-28-0	0.000200	U	0.000400	0.000200	0.000100
Vanadium, Total	7440-62-2	0.00110	J	0.00200	0.00100	0.000500
Zinc, Total	7440-66-6	0.116		0.0500	0.0250	0.0125

J	Estimated value ; the analyte concentration was less than the LOQ.
J	Estimated value ; the analyte concentration was greater than the highest standard
U	Analyte was not detected. The concentration is below the reported LOD.

Page 3 of 6 Generated at Oct 30, 2015 10:22

Microbac

Lab Project #: 2551.096

Project Name: Longhorn Army Ammunition

Lab Contact: Stephanie Mossburg

Certificate of Analysis

Sample #: L15101055-01 PrePrep Method: N/A Instrument: ICP-MS2

 Client ID:
 35AWW13F-101515
 Prep Method:
 3015
 Prep Date:
 10/19/2015 13:28

 Matrix:
 Water
 Analytical Method:
 6020A
 Cal Date:
 10/27/2015 13:15

 Workgroup #:
 WG543486
 Analyst:
 BKT
 Run Date:
 10/27/2015 14:03

 Collect Date:
 10/15/2015 14:00
 Dilution:
 5
 File ID:
 NI.102715.140335

Sample Tag: DL01 Units: mg/L

	Analyte	CAS#	Result	Qual	LOQ	LOD	DL	
Manganese, To	otal	7439-96-5	0.708		0.0200	0.0100	0.00500	

J Estimated value; the analyte concentration was less than the LOQ.
U Analyte was not detected. The concentration is below the reported LOD.

Microbac

Lab Project #: 2551.096

Project Name: Longhorn Army Ammunition

Lab Contact: Stephanie Mossburg

Certificate of Analysis

Sample #: L15101055-01 PrePrep Method: N/A Instrument: CVAA1

 Client ID:
 35AWW13F-101515
 Prep Method:
 7470A
 Prep Date:
 10/21/2015 07:09

 Matrix:
 Water
 Analytical Method:
 7470A
 Cal Date:
 10/21/2015 14:31

 Workgroup #:
 WG543786
 Analyst:
 PDM
 Run Date:
 10/21/2015 15:03

 Collect Date:
 10/15/2015 14:00
 Dilution:
 1
 File ID:
 M7.102115.150358

Sample Tag: 01 Units: mg/L

	Analyte	CAS#	Result	Qual	LOQ	LOD	DL
Mercury		7439-97-6	0.000200	U	0.000400	0.000200	0.000100
U Analyte was not detected. The concentration is below the reported LOD.							

Lab Project #: 2551.096

Project Name: Longhorn Army Ammunition

Lab Contact: Stephanie Mossburg

Page 6 of 6 Generated at Oct 30, 2015 10:22

2.0 Full Sample Data Package

2.1 Metals Data

2.1.1 Metals I C P Data

2.1.1.1 Summary Data

Microbac

Lab Project #: 2551.096

Project Name: Longhorn Army Ammunition

Lab Contact: Stephanie Mossburg

Certificate of Analysis

 Sample #:
 L15101055-01
 PrePrep Method:
 N/A
 Instrument:
 ICP-THERMO3

 Client ID:
 35AWW13F-101515
 Prep Method:
 3015
 Prep Date:
 10/21/2015 09:19

 Matrix:
 Water
 Analytical Method:
 6010C
 Cal Date:
 10/23/2015 10:00

 Workgroup #:
 WG543782
 Analyst:
 JYH
 Run Date:
 10/23/2015 11:19

Sample Tag: 01 Units: mg/L

Analyte	CAS#	Result	Qual	LOQ	LOD	DL
Aluminum, Total	7429-90-5	0.100	U	0.200	0.100	0.0500
Beryllium, Total	7440-41-7	0.0100	U	0.0200	0.0100	0.00500
Iron, Total	7439-89-6	0.156	J	0.200	0.100	0.0500
Potassium, Total	7440-09-7	0.601	J	2.00	1.00	0.500
Selenium, Total	7782-49-2	0.00515	J	0.0200	0.0100	0.00500

J	Estimated value ; the analyte concentration was less than the LOQ.
U	Analyte was not detected. The concentration is below the reported LOD.

Page 1 of 3 Generated at Oct 30, 2015 10:22

Lab Project #: 2551.096

Project Name: Longhorn Army Ammunition

Lab Contact: Stephanie Mossburg

Certificate of Analysis

 Sample #:
 L15101055-01
 PrePrep Method:
 N/A
 Instrument:
 ICP-THERMO3

 Client ID:
 35AWW13F-101515
 Prep Method:
 3015
 Prep Date:
 10/21/2015 09:19

 Matrix:
 Water
 Analytical Method:
 6010C
 Cal Date:
 10/23/2015 10:00

 Workgroup #:
 WG543782
 Analyst:
 JYH
 Run Date:
 10/23/2015 11:27

 Collect Date:
 10/15/2015 14:00
 Dilution:
 5
 File ID:
 T3.102315.112724

Sample Tag: DL01 Units: mg/L

Analyte		CAS#	Result	Qual	LOQ	LOD	DL
Calcium, Total		7440-70-2	73.0		2.50	1.25	0.625
Magnesium, Total		7439-95-4	54.1		5.00	2.50	1.25
Sodium, Total		7440-23-5	254		5.00	2.50	1.25
U	Analyte was not detected. The concentra	reported LOD.					

Page 2 of 3 Generated at Oct 30, 2015 10:22

Lab Project #: 2551.096

Project Name: Longhorn Army Ammunition

Lab Contact: Stephanie Mossburg

Page 3 of 3 Generated at Oct 30, 2015 10:22

2.1.1.2 QC Summary Data

Example 6010 Calculations Thermo Scientific iCAP

1.0 Initial Calibration (ICAL) Parameters

For a multi-point calibration, the system performs linear regression from data consisting of a blank and four standards.

2.0 Calculating the concentration (C) of an element in water using data from prep log, run log, and quantitation report (note:the data system performs this calculation automatically when correction factors have been entered):

$$Cx = Cs \times \frac{Vf}{Vi} \times D$$

Where:	Example:
Cs = Concentration computed by the data system in ug/mL (ppm)	0.1
Vf = Final volume (mL)	50
Vi = Initial volume (mL)	50
D = Dilution factor as a multiplier (10X = 10)	1
Con-Concentration of element in value (mall)	0.1
Cx = Concentration of element in ug/mL (mg/L)	0.1

3.0 Calculating the concentration (C) of an element in soil using data from prep log, run log, and quantitation report (note: the data system performs this calculation automatically when correction factors have been entered):

$$Cx = Cs \times \frac{Vf}{Vi} \times D$$

Where:	Example:		
Cs = Concentration computed by the data system (mg/L) (ppm)	0.1		
Vf = Final volume (mL)	50		
Vi = Initial weight (g)	1		
D = Dilution factor as a multiplier (10X = 10)	1		
Cx = Concentration of element in ug/g (mg/kg)	5		

4.0 Adjusting the concentration to dry weight:

$$Cdry = \frac{Cx \times 100}{Px}$$

Where:	Example:
Cx = Concentration calculated as received (wet basis)	5
Px = Percent solids of sample (%wt)	80
-	
Cdry = Concentration calculated as dry weight (mg/kg)	6.25

Workgroup: WG543718

Analyst:AC

Spike Analyst:AC

Run Date: 10/21/2015 09:19

Method: 3015

Balance: BAL019

Instrument: MW-1

Instrument Start: 10/21/2015 09:19

SOP: ME407 Revison 18

Spike Solution: STD72998

Spike Witness: VC

HNO3 Lot #: COA18442

HCL Lot #: COA18443

ICP Filters- fisher-Lot#RGT32945

40 & 50 ML. DIGESTION TUCOA18222

	SAMPLE #	Туре	Matrix	Initial Amount	Final Volume	Initial Vessel Wt	Final Vessel Wt	Spike Amount	Due Date
1	WG543718-02	BLANK	1	40 mL	50 mL	206.275 g	206.273 g		
2	WG543718-04	FLT_BLK	1	40 mL	50 mL	205.498 g	205.494 g		
3	WG543718-03	LCS	1	40 mL	50 mL	209.252 g	209.247 g	5 mL	
4	L15100882-03	SAMP	1	40 mL	50 mL	203.206 g	203.2 g		10/26/15
5	L15100882-04	SAMP	1	40 mL	50 mL	203.082 g	203.067 g		10/26/15
6	L15100882-05	SAMP	1	40 mL	50 mL	204.213 g	204.196 g		10/26/15
7	L15101055-01	SAMP	1	40 mL	50 mL	206.236 g	206.231 g		10/27/15
8	L15101082-01	SAMP	1	40 mL	50 mL	205.698 g	205.687 g		10/26/15
9	L15101083-01	SAMP	1	40 mL	50 mL	207.068 g	207.059 g		10/26/15
10	L15101083-02	SAMP	1	40 mL	50 mL	206.124 g	206.111 g		10/26/15
11	L15101083-03	SAMP	1	40 mL	50 mL	205.263 g	205.249 g		10/26/15
12	L15101083-04	SAMP	1	40 mL	50 mL	205.918 g	205.905 g		10/26/15
13	L15101084-01	SAMP	1	40 mL	50 mL	205.109 g	205.098 g		10/26/15
14	L15101084-02	SAMP	1	40 mL	50 mL	205.27 g	205.257 g		10/26/15
15	L15101084-03	SAMP	1	40 mL	50 mL	204.278 g	204.264 g		10/26/15
16	L15101084-04	SAMP	1	40 mL	50 mL	202.37 g	202.357 g		10/26/15
17	L15101115-01	SAMP	1	40 mL	50 mL	204.845 g	204.837 g		10/27/15
18	L15101135-01	SAMP	1	40 mL	50 mL	205.493 g	205.481 g		10/27/15
19	L15101135-02	SAMP	1	40 mL	50 mL	205.171 g	205.153 g		10/27/15
20	L15101135-03	SAMP	1	40 mL	50 mL	205.259 g	205.251 g		10/27/15
21	L15101135-04	SAMP	1	40 mL	50 mL	204.73 g	204.717 g		10/27/15
22	WG543718-01	REF	1	40 mL	50 mL	205.767 g	205.767 g		
23	L15101177-01	SAMP	1	40 mL	50 mL	205.767 g	205.767 g		10/28/15
24	WG543718-05	MS	1	40 mL	50 mL	212.648 g	212.629 g	5 mL	
25	WG543718-06	MSD	1	40 mL	50 mL	208.928 g	208.923 g	5 mL	

L15101135-03 filtered digestate

Reviewer: Vech Colle

MW_DIG - Modified 09/30/2009

PDF ID: 4453910
Report generated: 10/21/2015 10:18

Microbac

Instrument Run Log

Instrument:	ICP-THERMO3	Dataset:	102315T3.1	
Analyst1:	JYH	Analyst2:	N/A	
Method:	200.7/6010B/6010C	SOP:	ME600G	Rev: 7
Maintenance Log ID:				

 Calibration Std:
 STD73151
 ICV Std:
 STD72898
 Post Spike:
 STD72336

 ICSA:
 STD72970
 ICSAB:
 STD72936
 Int. Std:
 RGT34839

 CCV:
 STD72934
 LLCCV:
 STD72971
 Tuning Sol:

Stannous : _____ Hydroxylamine : _____

Workgroups: <u>543657,543782,544052,543824,543659,544079</u>

Comments:

Seq.	File ID	Sample	ID	Prep	Dil	Reference	Date/Time
1	T3.102315.094442	WG544081-01	Calibration Point		1		10/23/15 09:44
2	T3.102315.094848	WG544081-02	Calibration Point		1		10/23/15 09:48
3	T3.102315.095242	WG544081-03	Calibration Point		1		10/23/15 09:52
4	T3.102315.095646	WG544081-04	Calibration Point		1		10/23/15 09:56
5	T3.102315.100032	WG544081-05	Calibration Point		1		10/23/15 10:00
6	T3.102315.100416	WG544081-06	Initial Calibration Verification		1		10/23/15 10:04
7	T3.102315.100801	WG544081-07	Initial Calib Blank		1		10/23/15 10:08
8	T3.102315.101205	WG544081-08	Low Level Initial Calibration V		1		10/23/15 10:12
9	T3.102315.101609	WG544081-09	Low Level Initial Calibration V		1		10/23/15 10:16
10	T3.102315.102013	WG544081-10	Interference Check		1		10/23/15 10:20
11	T3.102315.102415	WG544081-11	Interference Check		1		10/23/15 10:24
12	T3.102315.102806	WG544081-12	CCV		1		10/23/15 10:28
13	T3.102315.103152	WG544081-13	ССВ		1		10/23/15 10:31
14	T3.102315.103605	L15101032-02	WH9002	5/50	2		10/23/15 10:36
15	T3.102315.104008	+1 PPM PB	+1 PPM PB		2		10/23/15 10:40
16	T3.102315.104411	+1.5 PPM PB	+1.5 PPM PB		2		10/23/15 10:44
17	T3.102315.104812	+2 PPM PB	+2 PPM PB		2		10/23/15 10:48
18	T3.102315.105215	WG544081-14	CCV		1		10/23/15 10:52
19	T3.102315.105600	WG544081-15	ССВ		1		10/23/15 10:56
20	T3.102315.110007	WG543718-02	Method/Prep Blank	40/50	1		10/23/15 11:00
21	T3.102315.110414	WG543718-03	Laboratory Control S	40/50	1		10/23/15 11:04
22	T3.102315.110802	WG543718-01	Reference Sample		1	L15101177-01	10/23/15 11:08
23	T3.102315.111204	WG543718-05	Matrix Spike	40/50	1	L15101177-01	10/23/15 11:12
24	T3.102315.111553	WG543718-06	Matrix Spike Duplica	40/50	1	L15101177-01	10/23/15 11:15
25	T3.102315.111942	L15101055-01	35AWW13F-101515	40/50	1		10/23/15 11:19
26	T3.102315.112333	WG543782-03	Post Digestion Spike		1	L15101055-01	10/23/15 11:23
27	T3.102315.112724	WG543782-04	Serial Dilution	40/50	5	L15101055-01	10/23/15 11:27
28	T3.102315.113126	WG543782-04	Serial Dilution		25	L15101055-01	10/23/15 11:31
29	T3.102315.113530	WG544081-30	CCV		1		10/23/15 11:35
30	T3.102315.113916	WG544081-31	ССВ		1		10/23/15 11:39
31	T3.102315.114321	WG543956-02	Method/Prep Blank	40/50	1		10/23/15 11:43
32	T3.102315.114727	WG543956-03	Laboratory Control S	40/50	1		10/23/15 11:47
33	T3.102315.115117	WG543956-01	Reference Sample		1	L15101262-10	10/23/15 11:51
34	T3.102315.115520	WG543956-04	Matrix Spike	40/50	1	L15101262-10	10/23/15 11:55
		L					

Page: 1 Approved: October 26, 2015

B 1 7

Instrument Run Log

Instrument:	ICP-THERMO3	Dataset:	102315T3.1	
Analyst1:	JYH	Analyst2:	N/A	
Method:	200.7/6010B/6010C	SOP:	ME600G	Rev: <u>7</u>
Maintenance Log ID:				

 Calibration Std:
 STD73151
 ICV Std:
 STD72898
 Post Spike:
 STD72336

 ICSA:
 STD72970
 ICSAB:
 STD72936
 Int. Std:
 RGT34839

 CCV:
 STD72934
 LLCCV:
 STD72971
 Tuning Sol:

Stannous : _____ Hydroxylamine : ____

Workgroups: <u>543657,543782,544052,543824,543659,544079</u>

Comments:

Seq.	File ID	Sample	ID	Prep	Dil	Reference	Date/Time
35	T3.102315.115910	WG543956-05	Matrix Spike Duplica	40/50	1	L15101262-10	10/23/15 11:59
36	T3.102315.120259	L15101195-01	FARQUHAR S1	40/50	1		10/23/15 12:02
37	T3.102315.120659	L15101195-02	FARQUHAR S1	40/50	1		10/23/15 12:06
38	T3.102315.121102	WG544052-01	Post Digestion Spike		1	L15101195-02	10/23/15 12:11
39	T3.102315.121439	WG544052-02	Serial Dilution		5	L15101195-02	10/23/15 12:14
40	T3.102315.121842	WG544052-02	Serial Dilution		25	L15101195-02	10/23/15 12:18
41	T3.102315.122246	WG544081-18	CCV		1		10/23/15 12:22
42	T3.102315.122633	WG544081-19	ССВ		1		10/23/15 12:26
43	T3.102315.123040	L15101215-01	35BWW07-102015	40/50	1		10/23/15 12:30
44	T3.102315.123431	L15101215-03	35BWW01F-102015		1		10/23/15 12:34
45	T3.102315.123831	L15101215-04	LHSMW58-102015	40/50	1		10/23/15 12:38
46	T3.102315.124233	L15101215-05	LHSMW58FD-102015	40/50	1		10/23/15 12:42
47	T3.102315.124636	L15101215-06	35BWW03-102015	40/50	1		10/23/15 12:46
48	T3.102315.125038	L15101215-07	35BWW08-102015	40/50	1		10/23/15 12:50
49	T3.102315.125428	L15101215-09	35BWW13F-102015	40/50	1		10/23/15 12:54
50	T3.102315.125832	L15101215-10	35BWW14-102015	40/50	1		10/23/15 12:58
51	T3.102315.130234	L15101262-01	45-11-11.01 S2	40/50	1		10/23/15 13:02
52	T3.102315.130636	L15101262-02	45-11-14.02 W1	40/50	1		10/23/15 13:06
53	T3.102315.131039	WG544081-20	CCV		1		10/23/15 13:10
54	T3.102315.131423	WG544081-21	ССВ		1		10/23/15 13:14
55	T3.102315.131830	L15101262-03	45-10-6 S4	40/50	1		10/23/15 13:18
56	T3.102315.132232	L15101262-04	45-10-6 S1	40/50	1		10/23/15 13:22
57	T3.102315.132634	L15101262-05	45-10-6 S3	40/50	1		10/23/15 13:26
58	T3.102315.133036	L15101262-06	45-10-6 S2	40/50	1		10/23/15 13:30
59	T3.102315.133438	L15101262-07	45-10-5.02 S1	40/50	1		10/23/15 13:34
60	T3.102315.133840	L15101262-08	45-10-5.02 S2	40/50	1		10/23/15 13:38
61	T3.102315.134242	L15101262-09	45-11-4.01 W1	40/50	1		10/23/15 13:42
62	T3.102315.134645	L15101215-03	35BWW01F-102015	40/50	10		10/23/15 13:46
63	T3.102315.135049	WG544081-22	CCV		1		10/23/15 13:50
64	T3.102315.135435	WG544081-23	ССВ		1		10/23/15 13:54
65	T3.102315.135841	WG544081-24	Low Level Continuing Calibra		1		10/23/15 13:58
66	T3.102315.140246	WG544081-25	Low Level Continuing Calibra		1		10/23/15 14:02
67	T3.102315.140650	WG543739-02	Method/Prep Blank	40/50	1		10/23/15 14:06
68	T3.102315.141055	WG543739-03	Laboratory Control S	40/50	1		10/23/15 14:10
			1			1	

Page: 2 Approved: October 26, 2015

B. L. Zun

Instrument Run Log

Instrument:	ICP-THERMO3	_ Dataset:	102315T3.1	
Analyst1:	JYH	_ Analyst2:	N/A	
Method:	200.7/6010B/6010C	SOP:	ME600G	Rev: <u>7</u>
Maintenance Log ID:		_		
Calibration Std: STD	73151	ICV Std: ST	D72898	Post Spike: STD72336

Stannous : ____ Hydroxylamine : ____

Workgroups: <u>543657,543782,544052,543824,543659,544079</u>

Comments:

Seq.	File ID	Sample	ID	Prep	Dil	Reference	Date/Time
69	T3.102315.141445	WG543739-01	Reference Sample		1	L15101148-05	10/23/15 14:14
70	T3.102315.141847	WG543739-04	Matrix Spike	40/50	1	L15101148-05	10/23/15 14:18
71	T3.102315.142236	WG543739-05	Matrix Spike Duplica	40/50	1	L15101148-05	10/23/15 14:22
72	T3.102315.142615	L15101148-02	35BWW05F-101915	40/50	1		10/23/15 14:26
73	T3.102315.143018	L15101148-03	35BWW06-101915	40/50	1		10/23/15 14:30
74	T3.102315.143420	WG543824-01	Post Digestion Spike		1	L15101148-03	10/23/15 14:34
75	T3.102315.143810	WG543824-02	Serial Dilution		5	L15101148-03	10/23/15 14:38
76	T3.102315.144213	WG543824-02	Serial Dilution		25	L15101148-03	10/23/15 14:42
77	T3.102315.144608	WG544081-32	CCV		1		10/23/15 14:46
78	T3.102315.144953	WG544081-33	ССВ		1		10/23/15 14:49
79	T3.102315.145359	L15101148-04	35BWW06FD-101915	40/50	1		10/23/15 14:53
80	T3.102315.145803	L15101148-09	35BWW04F-101915	40/50	1		10/23/15 14:58
81	T3.102315.150206	L15101148-11	35BWW12F-101915	40/50	1		10/23/15 15:02
82	T3.102315.150608	L15101148-12	35BWW09-101915	40/50	1		10/23/15 15:06
83	T3.102315.151010	WG544081-34	CCV		1		10/23/15 15:10
84	T3.102315.151356	WG544081-35	ССВ		1		10/23/15 15:13
85	T3.102315.151847	WG544081-36	Low Level Continuing Calibra		1		10/23/15 15:18
86	T3.102315.152252	WG544081-37	Low Level Continuing Calibra		1		10/23/15 15:22
87	T3.102315.152645	L15100749-18	01MW213S	40/50	1		10/23/15 15:26
88	T3.102315.153047	L15100749-20	01MW214D	40/50	1		10/23/15 15:30
89	T3.102315.153449	L15100749-22	01MW214S	40/50	1		10/23/15 15:34
90	T3.102315.153850	L15100749-24	01MW215D	40/50	1		10/23/15 15:38
91	T3.102315.154252	L15100812-06	42MW105	40/50	1		10/23/15 15:42
92	T3.102315.154652	L15100812-08	42MW109	40/50	1		10/23/15 15:46
93	T3.102315.155055	L15101016-01	ROXIE PL-DEWATER	40/50	1		10/23/15 15:50
94	T3.102315.155459	WG544081-38	CCV		1		10/23/15 15:54
95	T3.102315.155844	WG544081-39	CCB		1		10/23/15 15:58
96	T3.102315.160250	L15100749-28	01MW216S	40/50	1		10/23/15 16:02
97	T3.102315.160653	L15100749-29	01MW217D	40/50	1		10/23/15 16:06
98	T3.102315.161103	L15100749-30	01MW217S	40/50	1		10/23/15 16:11
99	T3.102315.161504	L15100749-31	01MW217S	40/50	1		10/23/15 16:15
100	T3.102315.161907	L15100749-32	01MW218S	40/50	1		10/23/15 16:19
101	T3.102315.162318	L15100749-33	01MW400S	40/50	1		10/23/15 16:23
102	T3.102315.162728	L15100749-36	01MW203D	40/50	1		10/23/15 16:27

Page: 3 Approved: October 26, 2015

B h. Zum

Instrument Run Log

Instrument:	ICP-THERMO3	_ Dataset:	10231513.1	
Analyst1:	JYH	_ Analyst2:	N/A	
Method:	200.7/6010B/6010C	SOP:	ME600G	Rev: 7

Maintenance Log ID: _

Stannous: _____ Hydroxylamine: ____

Workgroups: <u>543657,543782,544052,543824,543659,544079</u>

Comments:

Seq.	File ID	Sample	ID	Prep	Dil	Reference	Date/Time
103	T3.102315.163134	L15100749-37	01MW203D	40/50	1		10/23/15 16:31
104	T3.102315.163541	L15100749-41	01MW413D	40/50	1		10/23/15 16:35
105	T3.102315.163952	L15100749-42	01MW418S	40/50	1		10/23/15 16:39
106	T3.102315.164401	WG544081-40	CCV		1		10/23/15 16:44
107	T3.102315.164748	WG544081-41	ССВ		1		10/23/15 16:47
108	T3.102315.165153	WG544044-02	Method/Prep Blank	40/50	1		10/23/15 16:51
109	T3.102315.165559	WG544044-03	Laboratory Control S	40/50	1		10/23/15 16:55
110	T3.102315.165948	WG543982-01	Fluid Blank 1		1		10/23/15 16:59
111	T3.102315.170353	WG543982-02	Fluid Blank 2		1		10/23/15 17:03
112	T3.102315.170759	L15101227-01	60500-SSP0017-SSP0017		1	WG544044-01	10/23/15 17:07
113	T3.102315.171200	WG544044-04	Matrix Spike	5/50	1	L15101227-01	10/23/15 17:12
114	T3.102315.171547	WG544044-05	Matrix Spike Duplica	5/50	1	L15101227-01	10/23/15 17:15
115	T3.102315.171936	L15101102-01	FRN SALTCAKE	5/50	1		10/23/15 17:19
116	T3.102315.172346	WG544079-01	Post Digestion Spike		1	L15101102-01	10/23/15 17:23
117	T3.102315.172745	WG544079-02	Serial Dilution		5	L15101102-01	10/23/15 17:27
118	T3.102315.173151	WG544081-42	CCV		1		10/23/15 17:31
119	T3.102315.173537	WG544081-43	ССВ		1		10/23/15 17:35
120	T3.102315.173943	L15101102-02	FRN FURNACE BAGHOUSE	5/50	1		10/23/15 17:39
121	T3.102315.174346	L15101102-03	FRN MILL FINES (SCREW 1	5/50	1		10/23/15 17:43
122	T3.102315.174755	L15101102-04	FRN MILL FINES (SCREW 8	5/50	1		10/23/15 17:47
123	T3.102315.175208	L15101104-01	C-3	5/50	1		10/23/15 17:52
124	T3.102315.175610	L15101104-02	B-2	5/50	1		10/23/15 17:56
125	T3.102315.180011	L15101104-03	A-1	5/50	1		10/23/15 18:00
126	T3.102315.180413	L15101120-01	CES 15.5	5/50	1		10/23/15 18:04
127	T3.102315.180817	L15101184-01	AWV 19 BAGS 10/18/15	5/50	1		10/23/15 18:08
128	T3.102315.181220	L15101185-01	ALAN 18 BAGS	5/50	1		10/23/15 18:12
129	T3.102315.181623	L15101211-01	TANK 2513 INTERIOR	5/50	1		10/23/15 18:16
130	T3.102315.182024	WG544081-44	CCV		1		10/23/15 18:20
131	T3.102315.182409	WG544081-45	ССВ		1		10/23/15 18:24
132	T3.102315.182815	L15101211-02	TANK 2513 EXTERIOR	5/50	1		10/23/15 18:28
133	T3.102315.183215	L15101249-01	J5J0358-01	5/50	1		10/23/15 18:32
134	T3.102315.183617	L15101342-01	RIVER \#2	40/50	1		10/23/15 18:36
135	T3.102315.184019	L15101342-02	RIVER \#1	40/50	1		10/23/15 18:40
136	T3.102315.184422	L15101342-03	RIVER \#5	40/50	1		10/23/15 18:44
			1			1	<u>. </u>

Page: 4 Approved: October 26, 2015

Bruh Zum

Instrument Run Log

Instrument:	ICP-THERMO3	_ Dataset:	102315T3.1	
Analyst1:	JYH	_ Analyst2:	N/A	
Method:	200.7/6010B/6010C	SOP:	ME600G	Rev: 7
Maintenance Log ID:		_		
Calibration Std: STD	073151	ICV Std: ST	D72898	Post Spike: STD72336

ICSAB: STD72936 Int. Std: <u>RGT34839</u> ICSA: STD72970 LLCCV: STD72971 CCV: <u>STD72934</u> Tuning Sol : _____

Hydroxylamine: _ Stannous : _____

> Workgroups: 543657,543782,544052,543824,543659,544079

Comments:

Seq.	File ID	Sample	ID	Prep	Dil	Reference	Date/Time
137	T3.102315.184824	L15101342-04	RIVER \#4	40/50	1		10/23/15 18:48
138	T3.102315.185227	WG544081-46	CCV		1		10/23/15 18:52
139	T3.102315.185613	WG544081-47	CCB		1		10/23/15 18:56
140	T3.102315.190006	WG544081-48	Low Level Continuing Calibra		1		10/23/15 19:00
141	T3.102315.190410	WG544081-49	Low Level Continuing Calibra		1		10/23/15 19:04

Comments

Seq.	Rerun Dil.	Reason	Analytes					
23								
	Wrong WG number. JYH							
24								
	Wrong WG number. JYH							
74								
	Seq. 74-76: wrong WG numbers. JYH							

Approved: October 26, 2015 Page: 5

Checklist ID: 107529893909

Microbac Laboratories Inc.

Data Checklist

Date: 23-OCT-2015 Analyst: <u>JYH</u> Analyst: NA Method: 6010B/6010C/200.7 Instrument: ICP-THERMO3 Curve Workgroup: 544081 Runlog ID: 71233 Analytical Workgroups: 543657,543782,544052,543824,543659,544079

Calibration/Linearity	X
ICV/CCV	X
ICV RSD < 3% (EPA 200.7 only)	
ICB/CCB	X
ICSA/ICSAB	X
CRI	
Blank/LCS	X
MS/MSD	X
Post Spike/Serial Dilution	X
Upload Results	X
Data Qualifiers	
Generate PDF Instrument Data	X
Sign/Annotate PDF Data	X
Upload Curve Data	X
Workgroup Forms	X
Case Narrative	X
Client Forms	X
Level X	
Level 3	
Level 4	1032,1055,1215,1148,749,812,1227
Check for compliance with method and project specific requirements	X
Check the completeness of reported information	X
Check the information for the report narrative	X
Primary Reviewer	JYH
Secondary Reviewer	BKT
Comments	

Primary Reviewer:
26-OCT-2015

Secondary Reviewer:
26-OCT-2015

But To

CHECKLIST1 - Modified 03/05/2008 Generated: OCT-26-2015 15:40:35

00893910

AAB#: WG543782

HOLDING TIMES EQUIVALENT TO AFCEE FORM 9

Analytical Method: 6010C

Login Number: L15101055

Date

TCLP

Max	Q	Run	Time	Max	Q
Hold		Date	Held	Hold	
		Max Q Hold	~	~	~ ■

	Client ID	12	Collected	Date	Held	Hold	~	Date	Held	Hold	~	Date	Held	Hold	×
	35AWW13F-101515	01	10/15/15					10/21/2015	5.8	180		10/23/15	7.9	180	
	35AWW13F-101515	01	10/15/15					10/21/2015	5.8	180		10/23/15	7.9	180	
_				-											

Extract

Time Max

* = SEE PROJECT QAPP REQUIREMENTS

HOLD_TIMES - Modified 03/06/2008 PDF File ID: 4459468
Report generated 10/23/2015 15:35

Page 48

METHOD BLANK SUMMARY

Login Number: L15101055

Blank File ID: T3.102315.110007

Prep Date: 10/21/15 09:19

Analyzed Date: 10/23/15 11:00

Work Group: WG543782

Blank Sample ID: WG543718-02

Instrument ID: ICP-THERMO3

Method: 6010C

Analyst:JYH

This Method Blank Applies To The Following Samples:

Client ID	Lab Sample ID	Lab File ID	Time Analyzed	TAG
LCS	WG543718-03	T3.102115.141554	10/21/15 14:15	01
FLT_BLK	WG543718-04	T3.102115.141933	10/21/15 14:19	01
LCS	WG543718-03	T3.102315.110414	10/23/15 11:04	02
35AWW13F-101515	L15101055-01	T3.102315.111942	10/23/15 11:19	01
35AWW13F-101515	L15101055-01	T3.102315.112724	10/23/15 11:27	DL01

Report Name: BLANK_SUMMARY
PDF File ID: 4459469
Report generated 10/23/2015 15:35

Microbac Laboratories Inc. METHOD BLANK REPORT

Login Number: L15101055	Prep Date: 10/21/15 09:19	Sample ID: WG543718-02
Instrument ID: ICP-THERMO3	Run Date: 10/23/15 11:00	Prep Method: 3015
File ID:T3.102315.110007	Analyst:JYH	Method: 6010C
Workgroup (AAB#):WG543782	Matrix:Water	Units:mg/L
Contract #:	Cal ID:ICP-T	H-23-OCT-15

Analytes	DL	LOQ	Concentration	Dilution	Qualifier
Aluminum, Total	0.0500	0.200	0.0500	1	υ
Beryllium, Total	0.00500	0.0200	0.00500	1	υ
Calcium, Total	0.125	0.500	0.125	1	υ
Iron, Total	0.0500	0.200	0.0500	1	υ
Magnesium, Total	0.250	1.00	0.250	1	υ
Potassium, Total	0.500	2.00	0.500	1	υ
Selenium, Total	0.00500	0.0200	0.00500	1	υ
Sodium, Total	0.250	1.00	0.250	1	υ

DL Method Detection Limit

LOQ Reporting/Practical Quantitation Limit
ND Analyte Not detected at or above reporting limit

* |Analyte concentration| > 1/2 RL

Report Name:BLANK PDF ID: 4459470 23-OCT-2015 15:36

Microbac Laboratories Inc. LABORATORY CONTROL SAMPLE (LCS)

 Login Number: L15101055
 Run Date: 10/23/2015
 Sample ID: WG543718-03

 Instrument ID: ICP-THERMO3
 Run Time: 11:04
 Prep Method: 3015

 File ID: T3.102315.110414
 Analyst: JYH
 Method: 6010C

 Workgroup (AAB#): WG543782
 Matrix: Water
 Units: mg/L

QC Key:DOD4 Lot#:STD72998 Cal ID:ICP-TH-23-OCT-15

Analytes	Expected	Found	% Rec	LCS	Limi	ts	Q
Aluminum, Total	6.25	6.82	109	80	-	120	
Beryllium, Total	0.0313	0.0334	107	80	-	120	
Calcium, Total	6.25	7.00	112	80	-	120	
Iron, Total	2.50	2.77	111	80	-	120	
Magnesium, Total	6.25	6.88	110	80	-	120	
Potassium, Total	31.3	35.0	112	80	-	120	
Selenium, Total	0.250	0.271	109	80	-	120	
Sodium, Total	31.3	35.4	113	80	-	120	

LCS - Modified 03/06/2008 PDF File ID: 4459471 Report generated: 10/23/2015 15:36

Microbac Laboratories Inc. MATRIX SPIKE AND MATRIX SPIKE DUP (MS/MSD)

0.0643		I	%Rec	Spiked	Found	%Rec	%RPD	Limits	Limit	Q
0.0642	6.25	6.78	107	6.25	6.78	107	0.0719	80 - 120	20	
ND	0.0313	0.0336	108	0.0313	0.0338	108	0.371	80 - 120	20	
59.4	6.25	68.6	147	6.25	68.0	138	0.873	80 - 120	20	*
0.150	2.50	2.89	109	2.50	2.89	110	0.208	80 - 120	20	
11.6	6.25	18.9	117	6.25	18.7	115	0.631	80 - 120	20	
1.63	31.3	36.4	111	31.3	36.4	111	0.130	80 - 120	20	
ND	0.250	0.273	109	0.250	0.263	105	3.84	80 - 120	20	
59.8	31.3	96.7	118	31.3	96.1	116	0.606	80 - 120	20	
	59.4 0.150 11.6 1.63 ND	ND 0.0313 59.4 6.25 0.150 2.50 11.6 6.25 1.63 31.3 ND 0.250	ND 0.0313 0.0336 59.4 6.25 68.6 0.150 2.50 2.89 11.6 6.25 18.9 1.63 31.3 36.4 ND 0.250 0.273	ND 0.0313 0.0336 108 59.4 6.25 68.6 147 0.150 2.50 2.89 109 11.6 6.25 18.9 117 1.63 31.3 36.4 111 ND 0.250 0.273 109	ND 0.0313 0.0336 108 0.0313 59.4 6.25 68.6 147 6.25 0.150 2.50 2.89 109 2.50 11.6 6.25 18.9 117 6.25 1.63 31.3 36.4 111 31.3 ND 0.250 0.273 109 0.250	ND 0.0313 0.0336 108 0.0313 0.0338 59.4 6.25 68.6 147 6.25 68.0 0.150 2.50 2.89 109 2.50 2.89 11.6 6.25 18.9 117 6.25 18.7 1.63 31.3 36.4 111 31.3 36.4 ND 0.250 0.273 109 0.250 0.263	ND 0.0313 0.0336 108 0.0313 0.0338 108 59.4 6.25 68.6 147 6.25 68.0 138 0.150 2.50 2.89 109 2.50 2.89 110 11.6 6.25 18.9 117 6.25 18.7 115 1.63 31.3 36.4 111 31.3 36.4 111 ND 0.250 0.273 109 0.250 0.263 105	ND 0.0313 0.0336 108 0.0313 0.0338 108 0.371 59.4 6.25 68.6 147 6.25 68.0 138 0.873 0.150 2.50 2.89 109 2.50 2.89 110 0.208 11.6 6.25 18.9 117 6.25 18.7 115 0.631 1.63 31.3 36.4 111 31.3 36.4 111 0.130 ND 0.250 0.273 109 0.250 0.263 105 3.84	ND 0.0313 0.0336 108 0.0313 0.0338 108 0.371 80 - 120 59.4 6.25 68.6 147 6.25 68.0 138 0.873 80 - 120 0.150 2.50 2.89 109 2.50 2.89 110 0.208 80 - 120 11.6 6.25 18.9 117 6.25 18.7 115 0.631 80 - 120 1.63 31.3 36.4 111 31.3 36.4 111 0.130 80 - 120 ND 0.250 0.273 109 0.250 0.263 105 3.84 80 - 120	ND 0.0313 0.0336 108 0.0313 0.0338 108 0.371 80 - 120 20 59.4 6.25 68.6 147 6.25 68.0 138 0.873 80 - 120 20 0.150 2.50 2.89 109 2.50 2.89 110 0.208 80 - 120 20 11.6 6.25 18.9 117 6.25 18.7 115 0.631 80 - 120 20 1.63 31.3 36.4 111 31.3 36.4 111 0.130 80 - 120 20 ND 0.250 0.273 109 0.250 0.263 105 3.84 80 - 120 20

^{*} FAILS %REC LIMIT

NOTE: This is an internal quality control sample.

WG_MSD_DRYWT - Modified 05/26/2011 PDF File ID: 4459472 Report generated 10/23/2015 15:36

[#] FAILS RPD LIMIT

Serial Dilution Report

Login: L15101055 Worknum: WG543782

Instrument: ICP-THERMO3 Method: 6010C

Serial Dil: WG543782-04 File ID: T3.102315.112724 Dil: 5 Units: ug/L

Sample:L15101055-01 File ID: T3.102315.111942 Dil: 1

Analyte	Sample	Qual	Serial Dil	Qual	% Diff	Q
Aluminum	26.7		21.8		18.40	E
Beryllium	0.0200	X	ND	U		
Calcium	61600		58400		5.23	
Iron	125		52.0		58.50	E
Magnesium	46200		43300		6.36	
Potassium	480		1360		183.00	E
Selenium	4.12		9.10		121.00	E
Sodium	212000		203000		4.23	

- U = Result is below MDL.
- ${\tt F}$ = Result is greater than or equal to MDL and less than the RL.
- X = Result is greater than or equal to RL and less than 25 times the MDL.
- E = %D exceeds control limit of 10% and initial sample result is greater than or equal to 25 times the MDL.

SERIAL_DIL - Modified 09/22/2008

PDF File ID: 4459466 10/23/2015 15:35

Serial Dilution Report

 Login:
 L15101055
 Worknum:
 WG543782

 Instrument:
 ICP-THERMO3
 Method:
 6010C

 Serial Dil:
 WG543782-04
 File ID:
 T3.102315.113126
 Dil:
 25
 Units:
 ug/L

Sample: L15101055-01 File ID: T3.102315.112724 Dil: 5

Analyte	Sample	Qual	Serial Dil	Qual	% Diff	Q
Aluminum	21.8		106		385.00	E
Beryllium	ND	U	ND	U		
Calcium	58400		57700		1.26	
Iron	52.0		ND	U		
Magnesium	43300		42900		0.98	
Potassium	1360		3250		139.00	E
Selenium	9.10		ND	U		
Sodium	203000		202000		0.61	

- U = Result is below MDL.
- ${\tt F}$ = Result is greater than or equal to MDL and less than the RL.
- X = Result is greater than or equal to RL and less than 25 times the MDL.
- E = %D exceeds control limit of 10% and initial sample result is greater than or equal to 25 times the MDL.

SERIAL_DIL - Modified 09/22/2008

PDF File ID: 4459466 10/23/2015 15:35

Microbac Laboratories Inc. POST SPIKE REPORT

 Sample Login ID:
 L15101055

 Worknum:
 WG543782

Instrument ID: ICP-THERMO3 Method: 6010C

 Post Spike ID: WG543782-03
 File ID:T3.102315.112333
 Dil:1
 Units: ug/L

 Sample ID: L15101055-01
 File ID:T3.102315.111942
 Dil:1
 Matrix: Water

Analyte	Post Spike Result	C	Sample Result	С	Spike Added(SA)	% R	Control Limit %R	Q
ALUMINUM	5410		0	U	5000	108.2	75 - 125	
BERYLLIUM	27.5		0	U	25	109.8	75 - 125	
CALCIUM	61200		61600		5000	114.7	75 - 125	
IRON	2280		125	F	2000	108.4	75 - 125	
MAGNESIUM	47100		46200		5000	109.9	75 - 125	
POTASSIUM	28300		480	F	25000	111.6	75 - 125	
SELENIUM	220		4.12	F	200	108.1	75 - 125	
SODIUM	219000		212000		25000	110.7	75 - 125	

N = % Recovery exceeds control limits

F = Result is between MDL and RL

U = Sample result is below MDL. A value of zero is used in the calculation

Microbac Laboratories Inc. Initial Calibration Summary

Login: L15101055 Workgroup (AAB#): WG543782

Analytical Method: 6010C Instrument ID: ICP-THERMO3

ICAL Worknum: WG544081 Initial Calibration Date: 23-OCT-2015 10:00

	WG544	081-01	WG544	081-02	WG544	081-03	WG544081-04		WG544	081-05]	
	Conc	INT	Conc	INT	Conc	INT	Conc	INT	Conc	INT	R	Q
ALUMINUM	0	0.000540	.1	0.00110	.2	0.00167	10	0.0691	20	0.138	.999998	
BERYLLIUM	0	0.000260	.0005	0.000530	.001	0.000780	.05	0.0361	.1	0.0727	.99996	
CALCIUM	0	0.00106	.1	0.00520	.2	0.00791	10	0.458	20	0.922	.99996	
IRON	0	-0.0000800	.04	0.000160	.08	0.000890	4	0.0647	8	0.131	.999569	
MAGNESIUM	0	-0.000140	NA	NA	.2	0.000180	10	0.0398	20	0.0809	.999282	
POTASSIUM	0	-0.0146	.5	0.00347	1	0.0231	50	2.13	100	4.31	.999965	
SELENIUM	0	0.0000100	NA	NA	.008	0.000100	.4	0.00453	.8	0.00894	.999812	
SODIUM	0	-0.0102	.5	0.0458	1	0.0981	50	6.52	100	13.1	.99999	

INT = Instrument intensity
R = Coefficient of correlation
Q = Data Qualifier
* = Out of Compliance; R < 0.995</pre>

INT_CAL_ICP - Modified 03/06/2008 PDF File I D: 4459475

Report generated: 23-OCT-2015 15:35

Microbac Laboratories Inc. INITIAL CALIBRATION BLANK (ICB)

 Login Number:
 L15101055
 Run Date:
 10/23/2015
 Sample ID:
 WG544081-07

 Instrument ID:
 ICP-THERMO3
 Run Time:
 10:08
 Method:
 6010C

 File ID:
 T3.102315.100801
 Analyst:
 JYH
 Units:
 mg/L

Workgroup (AAB#):WG543782 Cal ID:ICP-THERI - 23-OCT-15

Matrix:WATER

Analytes	MDL	RDL	Concentration	Qualifier
ALUMINUM	.04	.16	.04	υ
BERYLLIUM	.004	.016	.004	υ
CALCIUM	.1	.4	.1	υ
IRON	.04	.16	.04	υ
MAGNESIUM	.2	.8	.2	υ
POTASSIUM	. 4	1.6	.4	υ
SELENIUM	.004	.016	.004	υ
SODIUM	.2	.8	.2	υ

U = Result is less than 2 x MDL

F = Result is between MDL and 2 x MDL

* = Result is above 2 x MDL

ICB - Modified 07/14/2009 PDF File ID: 4459477 Report generated 10/23/2015 15:35

Microbac Laboratories Inc. CONTINUING CALIBRATION BLANK (CCB)

Login Number: L15101055 Run Date: 10/23/2015 Sample ID: WG544081-13

Instrument ID: ICP-THERMO3 Run Time: 10:31 Method: 6010C

File ID: T3.102315.103152 Analyst: JYH Units: mg/L

Workgroup (AAB#):WG543782 Cal ID:ICP-TH - 23-OCT-15

Matrix:WATER QAPP:DOD4

Analytes	MDL	RDL	Concentration	Qualifier
Aluminum	0.0400	0.160	0.0400	υ
Beryllium	0.00400	0.0160	0.00400	υ
Calcium	0.100	0.400	0.100	υ
Iron	0.0400	0.160	0.0400	υ
Magnesium	0.200	0.800	0.200	υ
Potassium	0.400	1.60	0.400	υ
Selenium	0.00400	0.0160	0.00400	υ
Sodium	0.200	0.800	0.200	υ

U = Result is less than MDL.

CCB - Modified 03/05/2008 PDF File ID: 4459480 Report generated 10/23/2015 15:35

F = Result is between MDL and RL.

^{* =} Result is above RL.

Microbac Laboratories Inc. CONTINUING CALIBRATION BLANK (CCB)

Login Number: L15101055 Run Date: 10/23/2015 Sample ID: WG544081-15

Instrument ID: ICP-THERMO3 Run Time: 10:56 Method: 6010C

File ID: T3.102315.105600 Analyst: JYH Units: mg/L

Workgroup (AAB#):WG543782 Cal ID:ICP-TH - 23-OCT-15

Matrix:WATER QAPP:DOD4

Analytes	MDL	RDL	Concentration	Qualifier
Aluminum	0.0400	0.160	0.0400	U
Beryllium	0.00400	0.0160	0.00400	U
Calcium	0.100	0.400	0.100	υ
Iron	0.0400	0.160	0.0400	U
Magnesium	0.200	0.800	0.200	U
Potassium	0.400	1.60	0.400	U
Selenium	0.00400	0.0160	0.00400	U
Sodium	0.200	0.800	0.200	U

U = Result is less than MDL.

CCB - Modified 03/05/2008 PDF File ID: 4459480 Report generated 10/23/2015 15:35

F = Result is between MDL and RL.

^{* =} Result is above RL.

Microbac Laboratories Inc. CONTINUING CALIBRATION BLANK (CCB)

 Login Number:
 L15101055
 Run Date:
 10/23/2015
 Sample ID:
 WG544081-31

 Instrument ID:
 ID:
 ID:
 Time:
 11:39
 Method:
 6010C

 File ID:
 T3.102315.113916
 Analyst:
 JYH
 Units:
 Units:
 mg/L

Workgroup (AAB#):WG543782 Cal ID:ICP-TH - 23-OCT-15

Matrix:WATER QAPP:DOD4

Analytes	MDL	RDL	Concentration	Qualifier
Aluminum	0.0400	0.160	0.0400	υ
Beryllium	0.00400	0.0160	0.00400	υ
Calcium	0.100	0.400	0.100	υ
Iron	0.0400	0.160	0.0400	υ
Magnesium	0.200	0.800	0.200	υ
Potassium	0.400	1.60	0.400	υ
Selenium	0.00400	0.0160	0.00400	υ
Sodium	0.200	0.800	0.200	υ

U = Result is less than MDL.

CCB - Modified 03/05/2008 PDF File ID: 4459480 Report generated 10/23/2015 15:35

F = Result is between MDL and RL.

^{* =} Result is above RL.

Microbac Laboratories Inc. INITIAL CALIBRATION VERIFICATION (ICV) (Alternate Source)

Login Number:L15101055 Run Date:10/23/2015 Sample ID:WG544081-06

Instrument ID:ICP-THERMO3 Run Time:10:04 Method:6010C

File ID:T3.102315.100416 Analyst:JYH Units:mg/L

Workgroup (AAB#):WG543782 Cal ID:ICP-TH - 23-OCT-15

QC Key: DOD4

Analyte	Expected	Found	%REC	LIMITS	Q
Aluminum	10	10.3	103	90 - 110	
Beryllium	.05	0.0511	102	90 - 110	
Calcium	10	10.2	102	90 - 110	
Iron	4	4.05	101	90 - 110	
Magnesium	10	10.3	103	90 - 110	
Potassium	50	50.8	102	90 - 110	
Selenium	.4	0.402	100	90 - 110	
Sodium	50	51.0	102	90 - 110	

^{*} Exceeds LIMITS Limit

ICV - Modified 03/06/2008 PDF File ID: 4459476 Report generated 10/23/2015 15:35

Microbac Laboratories Inc. CONTINUING CALIBRATION VERIFICATION (CCV)

Login Number: L15101055 Run Date: 10/23/2015 Sample ID: WG544081-12

Instrument ID: ICP-THERMO3 Run Time: 10:28 Method: 6010C

File ID: T3.102315.102806 Analyst: JYH QC Key: DOD4

Workgroup (AAB#):WG543782 Cal ID:ICP-TH - 23-OCT-15

Matrix:WATER

Analyte	Expected	Found	UNITS	%REC	LIMITS	Q
Aluminum	10.0	10.1	mg/L	101	90 - 110	
Beryllium	0.0500	0.0504	mg/L	101	90 - 110	
Calcium	10.0	10.1	mg/L	101	90 - 110	
Iron	4.00	4.05	mg/L	101	90 - 110	
Magnesium	10.0	9.97	mg/L	99.7	90 - 110	
Potassium	50.0	50.9	mg/L	102	90 - 110	
Selenium	0.400	0.408	mg/L	102	90 - 110	
Sodium	50.0	50.9	mg/L	102	90 - 110	

^{*} Exceeds LIMITS Criteria

CCV - Modified 03/05/2008 PDF File ID: 4459479 Report generated 10/23/2015 15:35

Microbac Laboratories Inc. CONTINUING CALIBRATION VERIFICATION (CCV)

Login Number: L15101055 Run Date: 10/23/2015 Sample ID: WG544081-14

Instrument ID: ICP-THERMO3 Run Time: 10:52 Method: 6010C

File ID: T3.102315.105215 Analyst: JYH QC Key: DOD4

Workgroup (AAB#): WG543782 Cal ID: ICP-TH - 23-OCT-15

Expected UNITS %REC LIMITS Analyte Found Q Aluminum 10.0 10.4 mg/L 104 90 - 110 Beryllium 0.0500 0.0518 mg/L 104 90 - 110 Calcium 90 - 110 10.0 10.4 mg/L 104 Iron 4.00 4.12 mg/L 103 90 - 110 Magnesium 10.0 10.2 mg/L 102 90 - 110 Potassium 50.0 52.1 mg/L 90 - 110 104 Selenium 0.400 0.419 mg/L 105 90 - 110

50.0

52.3

mg/L

105

90 - 110

Sodium

Matrix:WATER

CCV - Modified 03/05/2008 PDF File ID: 4459479 Report generated 10/23/2015 15:35

^{*} Exceeds LIMITS Criteria

Microbac Laboratories Inc. CONTINUING CALIBRATION VERIFICATION (CCV)

Workgroup (AAB#):WG543782 Cal ID:ICP-TH - 23-OCT-15

Matrix:WATER

Analyte	Expected	Found	UNITS	%REC	LIMITS	Q
Aluminum	10.0	10.3	mg/L	103	90 - 110	
Beryllium	0.0500	0.0519	mg/L	104	90 - 110	
Calcium	10.0	10.4	mg/L	104	90 - 110	
Iron	4.00	4.15	mg/L	104	90 - 110	
Magnesium	10.0	10.2	mg/L	102	90 - 110	
Potassium	50.0	52.4	mg/L	105	90 - 110	
Selenium	0.400	0.423	mg/L	106	90 - 110	
Sodium	50.0	53.2	mg/L	106	90 - 110	

^{*} Exceeds LIMITS Criteria

CCV - Modified 03/05/2008 PDF File ID: 4459479 Report generated 10/23/2015 15:35

Microbac Laboratories Inc. LOW LEVEL CALIBRATION VERIFICATION

Login Number: L15101055 Run Date: 10/23/2015 Sample ID: WG544081-08

Instrument ID: ICP-THERMO3 Run Time: 10:12 Method: 6010C

File ID: T3.102315.101205 Analyst: JYH QC Key: DOD4

Workgroup (AAB#): WG543782 Cal ID: ICP-TH - 23-OCT-15

Workgroup (AAB#):WG543782 Cal ID:ICP-TH - 2
Matrix:WATER

Analyte	Expected	Found	UNITS	%REC	LIMITS	Q
Aluminum	0.160	0.170	mg/L	106	70 - 130	
Beryllium	0.00160	0.00156	mg/L	97.5	70 - 130	
Calcium	0.400	0.412	mg/L	103	70 - 130	
Iron	0.0800	0.0735	mg/L	91.9	70 - 130	
Magnesium	0.400	0.335	mg/L	83.7	70 - 130	
Potassium	0.800	0.948	mg/L	118	70 - 130	
Selenium	0.0160	0.0167	mg/L	104	70 - 130	
Sodium	0.400	0.433	mg/L	108	70 - 130	

^{*} Exceeds LIMITS Criteria

LLCCV - Modified 1/7/2010 PDF File ID: 4459745 Report generated 10/23/2015 15:35

Microbac Laboratories Inc. LOW LEVEL CALIBRATION VERIFICATION

Login Number:L15101055 Run Date:10/23/2015 Sample ID:WG544081-24

Instrument ID:ICP-THERMO3 Run Time:13:58 Method:6010C

File ID:T3.102315.135841 Analyst:JYH QC Key:DOD4

Workgroup (AAB#):WG543782 Cal ID:ICP-TH - 23-OCT-15

Expected UNITS %REC LIMITS Analyte Found Q Aluminum 0.160 0.173 mg/L 108 70 - 130 Beryllium 0.00160 0.00163 mg/L 102 70 - 130 Calcium 70 - 130 0.400 0.408 mg/L 102 70 - 130 Iron 0.0800 0.0846 mg/L 106 Magnesium 0.400 0.389 mg/L 97.3 70 - 130 Potassium 0.800 0.937 mg/L 117 70 - 130 Selenium 0.0160 0.0175 mg/L 109 70 - 130

0.400

0.469

mg/L

117

70 - 130

Sodium

Matrix: WATER

LLCCV - Modified 1/7/2010 PDF File ID: 4459745 Report generated 10/23/2015 15:35

^{*} Exceeds LIMITS Criteria

Login number: L15101055 Workgroup (AAB#): WG543782

Instrument ID: ICP-THERMO3

Method: 6010C File ID: T3.102315.102013 Sol. A:WG544081-10 Units:mg/L File ID: T3.102315.102415 Sol. AB: WG544081-11_ Matrix: Water

		Sol. A			Sol. AB			
ANALYTE	True	Found	%Recovery	True	Found	%Recovery	Q	
Aluminum	250	269	108	250	268	107		
Beryllium	NS	-0.0000100	NS	0.250	0.259	104		
Calcium	250	222	88.8	250	223	89.2		
Iron	100	98.0	98.0	100	97.5	97.5		
Magnesium	250	251	100	250	250	100		
Potassium	NS	0.210	NS	5.00	5.54	111		
Selenium	NS	0.00334	NS	0.250	0.265	106		
Sodium	NS	0.0258	NS	5.00	5.42	108		

- * = Recovery of spiked element is outside acceptance limit of 80% 120% of true value.
- # = Result for unspiked element is outside the acceptance limits of (+/-) the project reporting limit (RL).
- + = Result for unspiked element is outside the acceptance limits of (+/-) 2 times the project method detection limit (MDL). This criteria is only applicable to specific QAPPs.

ICS - Modified 03/06/2008 PDF File ID: 4459478 Report generated 10/23/2015 15:35

 Login Number: L15101055
 Date: 01/02/2015

 Insturment ID: ICP-THERMO3
 Method: 6010C

Analyte	Wave Length	AG	AL	AS	В	ВА
ALUMINUM	308.20	0	0	0	0	0
ANTIMONY	206.80	0	0.0000190	0	0	0
ARSENIC	189.00	0	0	0	0	0
BARIUM	455.40	0	0	0	0	0
BERYLLIUM	313.10	0	0	0	0	0
BORON	249.60	0	0	0	0	0
CADMIUM	228.80	0	0	0.00200	0	-0.0000800
CALCIUM	422.60	0	0	0	0	0
CHROMIUM	267.70	0	0	0	0	0
COBALT	228.60	0	0	0	0	0
COPPER	224.70	0	0	0	0	0
IRON	261.10	0	0	0	0	0
LEAD	220.30	0	0.000290	0	0	0
LITHIUM	670.70	0	0	0	0	0
MAGNESIUM	279.00	0	0	0	0	0
MANGANESE	257.60	0	0	0	0	0
MOLYBDENUM	202.00	0	0	0	0	0
NICKEL	231.60	0	0	0	0	0
PHOSPHORUS	214.90	0	-0.000289	0	0	0
POTASSIUM	766.40	0	0	0	0	0
SELENIUM	196.00	0	-0.0000460	0	0	0
SILICON	212.40	0	0	0	0	0
SILVER	328.00	0	0	0	0	0
SODIUM	589.50	0	0	0	0	0
STRONTIUM	407.70	0	0	0	0	0
THALLIUM	190.80	0	-0.0000120	0	0	0
TIN	189.90	0	0	0	0	0
TITANIUM	337.20	0	0	0	0	0
VANADIUM	292.40	0	0.00300	0	0	0
ZINC	206.20	0	0.00000200	0	0	0
ZIRCONIUM	339.10	0	0	0	0	0

CORR_FACTORS - Modified 03/05/2008 PDF File ID: 4459474 Report generated: 10/23/2015 15:35

 Login Number: L15101055
 Date: 01/02/2015

 Insturment ID: ICP-THERMO3
 Method: 6010C

Analyte	Wave Length	BE	CA	CD	CO	CR
ALUMINUM	308.20	0	0	0	-0.000820	0
ANTIMONY	206.80	0	0	0	0	0.00650
ARSENIC	189.00	0	0	0	0	0.000490
BARIUM	455.40	0	0	0	0	0
BERYLLIUM	313.10	0	0	0	0	0
BORON	249.60	0	0	0	0.00343	0
CADMIUM	228.80	0	0	0	-0.00210	0
CALCIUM	422.60	0	0	0	0	0
CHROMIUM	267.70	0	0	0	0	0
COBALT	228.60	0	0	0	0	-0.000200
COPPER	224.70	0	0	0	0.0000770	0
IRON	261.10	0	0	0	0	-0.00100
LEAD	220.30	0	0	0	-0.0000130	-0.000132
LITHIUM	670.70	0	0	0	0	0
MAGNESIUM	279.00	0	0	0	0	0
MANGANESE	257.60	0	0	0	0	-0.0000920
MOLYBDENUM	202.00	0	0	0	0	0
NICKEL	231.60	0	0	0	-0.000500	0
PHOSPHORUS	214.90	0	0	0	0	0
POTASSIUM	766.40	0	0	0	0	0
SELENIUM	196.00	0	0	0	0	0
SILICON	212.40	0	0	0	0	0
SILVER	328.00	0	0	0	0	0
SODIUM	589.50	0	0	0	0	0
STRONTIUM	407.70	0	0.00000500	0	0	0
THALLIUM	190.80	0	0	0	0.00297	0.000276
TIN	189.90	0	0	0	0	0
TITANIUM	337.20	0	0	0	0	0
VANADIUM	292.40	0	0	0	0	-0.00138
ZINC	206.20	0	0	0	0	-0.000800
ZIRCONIUM	339.10	0	0	0	0	0

CORR_FACTORS - Modified 03/05/2008 PDF File ID: 4459474 Report generated: 10/23/2015 15:35

 Login Number: L15101055
 Date: 01/02/2015

 Insturment ID: ICP-THERMO3
 Method: 6010C

Analyte	Wave Length	CU	FE	ĸ	LI	MG
ALUMINUM	308.20	0	0	0	0	0
ANTIMONY	206.80	0	0.0000560	0	0	0
ARSENIC	189.00	0	-0.0000440	0	0	0
BARIUM	455.40	0	0	0	0	0
BERYLLIUM	313.10	0	0	0	0	0
BORON	249.60	0	-0.000619	0	0	0
CADMIUM	228.80	0	-0.0000250	0	0	0
CALCIUM	422.60	0	0	0	0	0
CHROMIUM	267.70	0	0.0000500	0	0	0
COBALT	228.60	0	0	0	0	0
COPPER	224.70	0	0.000800	0	0	0
IRON	261.10	0	0	0	0	0
LEAD	220.30	0.000609	0	0	0	0
LITHIUM	670.70	0	0	0	0	0
MAGNESIUM	279.00	0	0	0	0	0
MANGANESE	257.60	0	0	0	0	0.0000300
MOLYBDENUM	202.00	0	0	0	0	0
NICKEL	231.60	0	0.0000420	0	0	0
PHOSPHORUS	214.90	-0.323	0.00118	0	0	0
POTASSIUM	766.40	0	0	0	0	0
SELENIUM	196.00	0	0	0	0	0
SILICON	212.40	0	0	0	0	0
SILVER	328.00	0	-0.000240	0	0	0
SODIUM	589.50	0	0	0	0	0
STRONTIUM	407.70	0	0	0	0	0
THALLIUM	190.80	0	0	0	0	0
TIN	189.90	0	0	0	0	0
TITANIUM	337.20	0	0	0	0	0
VANADIUM	292.40	0	0.0000300	0	0	0
ZINC	206.20	0	0	0	0	0
ZIRCONIUM	339.10	0	-0.0000300	0	0	0

CORR_FACTORS - Modified 03/05/2008 PDF File ID: 4459474 Report generated: 10/23/2015 15:35

 Login Number: L15101055
 Date: 01/02/2015

 Insturment ID: ICP-THERMO3
 Method: 6010C

Analyte	Wave Length	MN	мо	NA	NI	P
ALUMINUM	308.20	0	0.0163	0	0	<u> </u>
ANTIMONY	206.80	0	0.0163	0	0	0
ARSENIC	189.00	0	0.000870	0	0	0
-		U	0.00139		0	0
BARIUM	455.40	0	0	0	0	0
BERYLLIUM	313.10	0	0	0	0	0
BORON	249.60	0	-0.00190	0	0	0
CADMIUM	228.80	0	0.0000320	0	-0.000128	0
CALCIUM	422.60	0	0	0	0	0
CHROMIUM	267.70	0.000330	0	0	0	0
COBALT	228.60	0	-0.000983	0	0.000175	0
COPPER	224.70	0	0.00200	0	-0.0120	0
IRON	261.10	0	0	0	0	0
LEAD	220.30	0	-0.00280	0	0.000110	0
LITHIUM	670.70	0	0	0	0	0
MAGNESIUM	279.00	-0.00190	-0.0130	0	0	0
MANGANESE	257.60	0	0	0	0	0
MOLYBDENUM	202.00	0	0	0	0	0
NICKEL	231.60	0	0	0	0	0
PHOSPHORUS	214.90	0	0.00710	0	0	0
POTASSIUM	766.40	0	0	0	0	0
SELENIUM	196.00	0.000800	0.000156	0	0	0
SILICON	212.40	0	0.0187	0	0	0
SILVER	328.00	0	-0.0000440	0	0	0
SODIUM	589.50	0	0	0	0	0
STRONTIUM	407.70	0	0	0	0	0
THALLIUM	190.80	0.00100	0	0	0	0
TIN	189.90	0	0	0	0	0
TITANIUM	337.20	0	-0.000153	0	0	0
VANADIUM	292.40	-0.000110	-0.00778	0	0	0
ZINC	206.20	0	0	0	0	0
ZIRCONIUM	339.10	0	0	0	0	0

CORR_FACTORS - Modified 03/05/2008 PDF File ID: 4459474 Report generated: 10/23/2015 15:35

 Login Number: L15101055
 Date: 01/02/2015

 Insturment ID: ICP-THERMO3
 Method: 6010C

Analyte	Wave Length	PB	SB	SE	SI	SN
ALUMINUM	308.20	0	0			0
ANTIMONY	206.80	0	0	0	0	-0.00840
ARSENIC	189.00	0	0	0	0	0
BARIUM	455.40	0	0	0	0	0
BERYLLIUM	313.10	0	0	0	0	0
BORON	249.60	0	0	0	0	0
CADMIUM	228.80	0	0	0	0	0
CALCIUM	422.60	0	0	0	0	0
CHROMIUM	267.70	0	0	0	0	0
COBALT	228.60	0	0	0	0	0
COPPER	224.70	0.00300	0	0	0	0
IRON	261.10	0	0	0	0	0
LEAD	220.30	0	0	0	0.000112	0
LITHIUM	670.70	0	0	0	0	0
MAGNESIUM	279.00	0	0	0	0	0
MANGANESE	257.60	0	0	0	0	0
MOLYBDENUM	202.00	0	0	0	0	0
NICKEL	231.60	0	0	0	0	0
PHOSPHORUS	214.90	0	0	0	0	0
POTASSIUM	766.40	0	0	0	0	0
SELENIUM	196.00	0	0	0	0	0
SILICON	212.40	0	0	0	0	0
SILVER	328.00	0	0	0	0	0
SODIUM	589.50	0	0	0	0	0
STRONTIUM	407.70	0	0	0	0	0
THALLIUM	190.80	0	0	0	0	0
TIN	189.90	0	0	0	0	0
TITANIUM	337.20	0	0	0	0	0
VANADIUM	292.40	0	0	0	0	0
ZINC	206.20	0	0	0	0	0
ZIRCONIUM	339.10	0	0	0	0	0

CORR_FACTORS - Modified 03/05/2008 PDF File ID: 4459474 Report generated: 10/23/2015 15:35

 Login Number: L15101055
 Date: 01/02/2015

 Insturment ID: ICP-THERMO3
 Method: 6010C

Analyte	Wave Length SR		TI	TL	v	ZN
ALUMINUM	308.20	0	0	0	0.00300	0
ANTIMONY	206.80	0	-0.00199	0	-0.00438	0
ARSENIC	189.00	0	0	0	0.000107	0
BARIUM	455.40	0	0	0	0	0
BERYLLIUM	313.10	0	-0.0000770	0	0.000220	0
BORON	249.60	0	0	0	0	0
CADMIUM	228.80	0	0	0	0.000102	0
CALCIUM	422.60	0	0	0	0	0
CHROMIUM	267.70	0	0.0000550	0	0	0
COBALT	228.60	0	0.00158	0	0.0000200	0
COPPER	224.70	0	0.000269	0	0	0
IRON	261.10	0	0	0	0	0
LEAD	220.30	0	0	0	-0.000126	0
LITHIUM	670.70	0	0	0	0	0
MAGNESIUM	279.00	0	-0.00290	0	0	0
MANGANESE	257.60	0	0	0	0	0
MOLYBDENUM	202.00	0	0	0	-0.000110	0
NICKEL	231.60	0	0	0	0	0
PHOSPHORUS	214.90	0	0	0	-0.00100	0
POTASSIUM	766.40	0	0	0	0	0
SELENIUM	196.00	0	0	0	0	0
SILICON	212.40	0	0	0	0	0
SILVER	328.00	0	-0.00620	0	-0.00617	0
SODIUM	589.50	0	0	0	0	0
STRONTIUM	407.70	0	0	0	0	0
THALLIUM	190.80	0	-0.00170	0	-0.00710	0
TIN	189.90	0	-0.00190	0	0	0
TITANIUM	337.20	0	0	0	0	0
VANADIUM	292.40	0	0.000600	0	0	0
ZINC	206.20	0	0	0	0	0
ZIRCONIUM	339.10	0	0	0	0	0

CORR_FACTORS - Modified 03/05/2008 PDF File ID: 4459474 Report generated: 10/23/2015 15:35

Login Number: L15101055
Insturment ID: ICP-THERMO3

Date: 01/02/2015
Method: 6010C

	Wave			
Analyte	Length	ZR		
ALUMINUM	308.20	0		
ANTIMONY	206.80	0		
ARSENIC	189.00	0		
BARIUM	455.40	0		
BERYLLIUM	313.10	0		
BORON	249.60	0		
CADMIUM	228.80	0		
CALCIUM	422.60	0		
CHROMIUM	267.70	0		
COBALT	228.60	0		
COPPER	224.70	0		
IRON	261.10	0		
LEAD	220.30	0		
LITHIUM	670.70	0		
MAGNESIUM	279.00	0		
MANGANESE	257.60	0		
MOLYBDENUM	202.00	0		
NICKEL	231.60	0		
PHOSPHORUS	214.90	0		
POTASSIUM	766.40	0		
SELENIUM	196.00	0		
SILICON	212.40	0		
SILVER	328.00	0		
SODIUM	589.50	0		
STRONTIUM	407.70	0		
THALLIUM	190.80	0		
TIN	189.90	0		
TITANIUM	337.20	0		
VANADIUM	292.40	0		
ZINC	206.20	0		
ZIRCONIUM	339.10	0		

CORR_FACTORS - Modified 03/05/2008 PDF File ID: 4459474 Report generated: 10/23/2015 15:35

Microbac Laboratories Inc. LINEAR RANGE (QUARTERLY)

 Login Number:
 L15101055
 Date:
 08/03/2015

 Insturment ID:
 ICP-THERMO3
 Method:
 6010C

	Integration Time	Concentration
Analyte	(Sec.)	(mg/L)
Aluminum	10.00	810.0
Antimony	20.00	90.0
Arsenic	10.00	90.0
Barium	10.00	45.0
Beryllium	10.00	9.0
Boron	20.00	90.0
Cadmium	20.00	9.0
Calcium	5.00	540.0
Chromium	20.00	45.0
Cobalt	20.00	90.0
Copper	20.00	180.0
Iron	5.00	900.0
Lead	20.00	225.0
Lithium	5.00	90.0
Magnesium	5.00	900.0
Manganese	10.00	90.0
Molybdenum	20.00	27.0
Nickel	20.00	90.0
Phosphorus	20.00	450.0
Potassium	5.00	450.0
Selenium	20.00	90.0
Silicon	20.00	45.0
Silver	10.00	9.0
Sodium	5.00	450.0
Strontium	5.00	9.0
Thallium	20.00	18.0
Tin	20.00	45.0
Titanium	5.00	45.0
Vanadium	20.00	27.0
Zinc	20.00	45.0
Zirconium	10.00	45.0

Comments:

All analytes passed acceptance criteria at the specified concentration.

LINEAR_RANGE - Modified 03/06/2008 PDF File ID: 4459473 Report generated: 10/23/2015 15:35

2.1.1.3 Raw Data

Sample Name: S0 Acquired: 10/23/2015 9:44:42 Type: Cal

Method: ICP-THERMO3_6010_200.7WATER_3YLINES(v526) Mode: IR Corr. Factor: 1.000000

User: JYH Custom ID1: Custom ID2: Custom ID3:

Comment:

Elem	Ag3280	Al3082	As1890	B_2496	Ba4554	Be3131	Ca4226
Units	Cts/S	Cts/S	Cts/S	Cts/S	Cts/S	Cts/S	Cts/S
Avg	00027	.00054	.00003	.00011	.01873	.00026	.00106
Stddev	.00002	.00000	.00003	.00002	.00072	.00001	.00110
%RSD	5.9925	.59339	117.60	15.421	3.8550	5.0384	103.60
#1	00028	.00055	.00006	.00009	.01945	.00027	.00009
#2	00026	.00054	.00002	.00012	.01874	.00025	.00084
#3	00029	.00054	00000	.00013	.01801	.00025	.00225
Elem	Cd2288	Co2286	Cr2677	Cu2247	Fe2611	K_7664	Li6707
Units	Cts/S	Cts/S	Cts/S	Cts/S	Cts/S	Cts/S	Cts/S
Avg	.00024	.00001	00006	.00023	00008	01460	01493
Stddev	.00009	.00007	.00002	.00005	.00014	.00186	.00368
%RSD	36.990	1114.2	31.128	21.824	176.30	12.763	24.650
#1	.00022	.00007	00007	.00022	00022	01434	01082
#2	.00033	.00001	00008	.00028	.00006	01289	01604
#3	.00016	00006	00004	.00018	00007	01659	01792
Elem	Mg2790	Mn2576	Mo2020	Na5895	Ni2316	P_2149	Pb2203
Units	Cts/S	Cts/S	Cts/S	Cts/S	Cts/S	Cts/S	Cts/S
Avg	00014	.00071	. 00004	01015	00035	.00003	00038
Stddev	.00058	.00026	.00003	.00209	.00009	.00002	.00010
%RSD	422.85	36.407	73.108	20.556	24.185	73.160	27.436
#1	00002	.00093	.00004	00833	00033	.00006	00031
#2	00076	.00079	.00006	01242	00029	.00002	00032
#3	.00037	.00042	.00001	00970	00045	.00002	00050
Elem	Sb2068	Se1960	Si2124	Sn1899	Sr4077	Ti3372	TI1908
Units	Cts/S	Cts/S	Cts/S	Cts/S	Cts/S	Cts/S	Cts/S
Avg	. 00003	.00001	. 00071	.00003	.00086	00124	00000
Stddev	.00005	.00009	.00005	.00003	.00044	.00028	.00003
%RSD	155.59	1069.1	6.6249	87.289	51.724	22.378	1123.8
#1	.00007	.00007	.00066	.00006	.00111	00113	00002
#2	00003	.00006	.00071	.00001	.00112	00103	.00003
#3	.00007	00010	.00076	.00002	.00035	00155	00001

Approved: October 26, 2015

J'ye 1hu

Method: ICP-THERMO3_6010_200.7WATER_3YLINES(v526) Mode: IR Corr. Factor: 1.000000

User: JYH Custom ID1: Custom ID2: Custom ID3:

Comment:

Elem	V_2924	Zn2062	Zr3391
Units	Cts/S	Cts/S	Cts/S
Avg	. 00014	.00009	00476
Stddev	.00001	.00001	.00026
%RSD	7.3253	9.7398	5.3847
#1	.00014	.00009	00474
#2	.00015	.00008	00451
#3	.00013	.00010	00502
Int. Std.	Y_2243	Y_3600	Y_3774
Units	Cts/S	Cts/S	Cts/S
Avg	11595.	99656.	4214.3
Stddev	10.	364.	31.0
%RSD	.08955	.36545	.73646
#1	11588.	99248.	4211.4
#2	11591.	99949.	4246.7
#3	11607.	99772.	4184.8

Approved: October 26, 2015

Method: ICP-THERMO3_6010_200.7WATER_3YLINES(v526) Mode: IR Corr. Factor: 1.000000

User: JYH Custom ID1: Custom ID2: Custom ID3:

Comment:

Elem	Ag3280	Al3082	Ba4554	Be3131	Ca4226	Cd2288	Co2286
Units	Cts/S	Cts/S	Cts/S	Cts/S	Cts/S	Cts/S	Cts/S
Avg	00014	.00110	.03325	.00053	. 00520	. 00036	.00062
Stddev	.00008	.00003	.00102	.00002	.00041	.00004	.00006
%RSD	58.787	3.1190	3.0735	3.7707	7.7877	10.986	9.8751
#1	00011	.00108	.03214	.00054	.00537	.00035	.00060
#2	00007	.00109	.03346	.00051	.00474	.00040	.00069
#3	00022	.00114	.03415	.00055	.00550	.00032	.00057
Elem	Cr2677	Cu2247	Fe2611	K_7664	Mn2576	Mo2020	Na5895
Units	Cts/S	Cts/S	Cts/S	Cts/S	Cts/S	Cts/S	Cts/S
Avg	.00006	.00064	.00016	. 00347	. 00151	. 00103	. 04578
Stddev	.00004	.00005	.00023	.00196	.00039	.00003	.00230
%RSD	60.923	8.2709	144.52	56.351	25.644	2.5445	5.0326
#1	.00002	.00070	.00026	.00127	.00189	.00102	.04464
#2	.00007	.00061	00010	.00413	.00150	.00106	.04426
#3	.00009	.00061	.00032	.00502	.00112	.00102	.04843
Elem	Ni2316	P_2149	Pb2203	Sb2068	Si2124	Sn1899	Sr4077
Units	Cts/S	Cts/S	Cts/S	Cts/S	Cts/S	Cts/S	Cts/S
Avg	.00013	.00067	00028	. 00024	. 00175	. 00045	. 02755
Stddev	.00012	.00002	.00008	.00001	.00003	.00003	.00034
%RSD	92.153	2.3411	27.201	6.0598	1.8524	6.5928	1.2182
#1	.00026	.00068	00037	.00022	.00172	.00048	.02780
#2	.00012	.00068	00024	.00025	.00175	.00042	.02768
#3	.00002	.00065	00024	.00025	.00179	.00044	.02717
Elem Units Avg Stddev %RSD	Ti3372 Cts/S 00118 .00022 18.983	V_2924 Cts/S . 00042 .00002 3.6788	Zn2062 Cts/S .00218 .00009 4.2810	Zr3391 Cts/S 00465 .00069 14.802			
#1 #2 #3	00104 00144 00107	.00043 .00043 .00041	.00217 .00228 .00210	00417 00433 00544			

Approved: October 26, 2015

Sample Name: S1 Acquired: 10/23/2015 9:48:48 Type: Cal

Method: ICP-THERMO3_6010_200.7WATER_3YLINES(v526) Mode: IR Corr. Factor: 1.000000

User: JYH Custom ID1: Custom ID2: Custom ID3:

Comment:

Int. Std.	Y_2243	Y_3600	Y_3774
Units	Cts/S	Cts/S	Cts/S
Avg	11626.	99727.	4177.5
Stddev	25.	256.	13.3
%RSD	.21373	.25662	.31941
#1	11600.	99466.	4181.1
#2	11629.	99739.	4188.7
#3	11649.	99977.	4162.7

Approved: October 26, 2015

J'ye lon

Method: ICP-THERMO3_6010_200.7WATER_3YLINES(v526) Mode: IR Corr. Factor: 1.000000

User: JYH Custom ID1: Custom ID2: Custom ID3:

Comment:

Elem	Ag3280	Al3082	As1890	B_2496	Ba4554	Be3131	Ca4226	
Units	Cts/S							
Avg	00000	. 00167	.00008	. 00022	. 04942	.00078	. 00791	
Stddev	.00002	.00004	.00004	.00003	.00170	.00003	.00057	
%RSD	570.67	2.1092	44.865	12.452	3.4390	3.5157	7.1477	
#1	00001	.00167	.00009	.00021	.04866	.00080	.00733	
#2	.00002	.00163	.00011	.00021	.05137	.00077	.00794	
#3	00002	.00170	.00004	.00025	.04823	.00075	.00845	
Elem	Cd2288	Co2286	Cr2677	Cu2247	Fe2611	K_7664	Li6707	
Units	Cts/S							
Avg	.00051	.00098	. 00021	.00095	.00089	.02313	.00062	
Stddev	.00006	.00006	.00002	.00012	.00020	.00143	.00365	
%RSD	10.852	6.5132	10.395	12.713	21.889	6.1648	586.36	
#1	.00058	.00105	.00019	.00090	.00085	.02167	.00354	
#2	.00048	.00096	.00021	.00086	.00073	.02320	.00180	
#3	.00048	.00092	.00023	.00109	.00111	.02452	00347	
Elem	Mg2790	Mn2576	Mo2020	Na5895	Ni2316	P_2149	Pb2203	
Units	Cts/S							
Avg	. 00018	. 00241	. 00206	.09808	.00051	. 00139	00005	
Stddev	.00019	.00026	.00005	.00196	.00004	.00002	.00017	
%RSD	107.87	10.709	2.5452	1.9974	7.3958	1.5897	346.01	
#1	.00032	.00234	.00206	.09591	.00051	.00137	.00014	
#2	00004	.00219	.00211	.09972	.00054	.00141	00012	
#3	.00026	.00269	.00201	.09862	.00047	.00138	00016	
Elem	Sb2068	Se1960	Si2124	Sn1899	Sr4077	Ti3372	TI1908	
Units	Cts/S							
Avg	. 00050	. 00010	. 00278	.00082	. 05296	. 00025	.00009	
Stddev	.00006	.00001	.00009	.00002	.00011	.00047	.00001	
%RSD	11.520	11.065	3.3098	2.7324	.21537	184.47	10.701	
#1	.00044	.00010	.00271	.00083	.05304	.00069	.00009	
#2	.00051	.00009	.00276	.00080	.05301	00024	.00010	
#3	.00056	.00011	.00289	.00084	.05283	.00032	.00008	

Approved: October 26, 2015

Sample Name: S2 Acquired: 10/23/2015 9:52:42 Type: Cal

Method: ICP-THERMO3_6010_200.7WATER_3YLINES(v526) Mode: IR Corr. Factor: 1.000000

User: JYH Custom ID1: Custom ID2: Custom ID3:

Comment:

Elem	V_2924	Zn2062	Zr3391
Units	Cts/S	Cts/S	Cts/S
Avg	. 00072	. 00426	00401
Stddev	.00000	.00001	.00124
%RSD	.11171	.34146	30.907
#1	.00072	.00424	00443
#2	.00072	.00427	00498
#3	.00071	.00427	00261
Int. Std.	Y_2243	Y_3600	Y_3774
Units	Cts/S	Cts/S	Cts/S
Avg	11624.	99654.	4162.7
Stddev	8.	196.	24.0
%RSD	.06562	.19677	.57681
#1	11616.	99487.	4135.0
#2	11623.	99607.	4177.4
#3	11631.	99870.	4175.7

Approved: October 26, 2015

Sample Name: S3 Acquired: 10/23/2015 9:56:46 Type: Cal

Method: ICP-THERMO3_6010_200.7WATER_3YLINES(v526) Mode: IR Corr. Factor: 1.000000

User: JYH Custom ID1: Custom ID2: Custom ID3:

Comment:

Elem	Ag3280	Al3082	As1890	B_2496	Ba4554	Be3131	Ca4226	Cd2288
Units	Cts/S							
Avg	.01674	. 06912	. 00638	. 00675	2.0046	. 03614	. 45792	.01770
Stddev	.00006	.00002	.00007	.00004	.0051	.00006	.00043	.00004
%RSD	.36830	.02702	1.0977	.58980	.25625	.17372	.09377	.25422
#1	.01671	.06912	.00632	.00671	2.0105	.03621	.45750	.01771
#2	.01681	.06914	.00636	.00679	2.0022	.03612	.45790	.01765
#3	.01669	.06911	.00645	.00676	2.0012	.03608	.45835	.01773
Elem	Co2286	Cr2677	Cu2247	Fe2611	K_7664	Li6707	Mg2790	Mn2576
Units	Cts/S							
Avg	. 05249	. 01766	. 04379	. 06472	2.1274	. 79703	.03978	. 10695
Stddev	.00021	.00005	.00015	.00023	.0053	.00098	.00070	.00048
%RSD	.39708	.26793	.33176	.36258	.24740	.12307	1.7476	.45326
#1	.05227	.01769	.04363	.06467	2.1313	.79670	.03898	.10687
#2	.05269	.01760	.04390	.06497	2.1214	.79814	.04018	.10747
#3	.05251	.01767	.04385	.06451	2.1294	.79626	.04018	.10651
Elem	Mo2020	Na5895	Ni2316	P_2149	Pb2203	Sb2068	Se1960	Si2124
Units	Cts/S							
Avg	. 13105	6.5176	. 04767	. 08644	. 02165	. 02482	. 00453	. 13543
Stddev	.00020	.0078	.00016	.00016	.00018	.00008	.00007	.00022
%RSD	.15411	.11937	.33212	.18801	.85355	.33583	1.6515	.16473
#1	.13124	6.5262	.04768	.08661	.02178	.02488	.00447	.13531
#2	.13108	6.5111	.04782	.08641	.02144	.02485	.00451	.13530
#3	.13084	6.5154	.04750	.08629	.02173	.02472	.00462	.13569
Elem	Sn1899	Sr4077	Ti3372	TI1908	V_2924	Zn2062	Zr3391	
Units	Cts/S							
Avg	. 04950	3.3435	.09898	. 01188	.03840	. 27253	. 00038	
Stddev	.00014	.0030	.00019	.00005	.00006	.00059	.00047	
%RSD	.29281	.09104	.19652	.40338	.15095	.21551	126.04	
#1	.04966	3.3470	.09876	.01187	.03845	.27294	.00045	
#2	.04943	3.3418	.09912	.01194	.03840	.27279	.00081	
#3	.04940	3.3416	.09906	.01185	.03834	.27185	00013	

Method: ICP-THERMO3_6010_200.7WATER_3YLINES(v526) Mode: IR Corr. Factor: 1.000000

User: JYH Custom ID1: Custom ID2: Custom ID3:

Comment:

Int. Std.	Y_2243	Y_3600	Y_3774
Units	Cts/S	Cts/S	Cts/S
Avg	11411.	96622 .	4193.4
Stddev	10.	202.	6.6
%RSD	.09093	.20947	.15641
#1	11421.	96524.	4193.3
#2	11400.	96854.	4200.0
#3	11411	96487	4186.9

Approved: October 26, 2015

Sample Name: S4 Acquired: 10/23/2015 10:00:32 Type: Cal

Method: ICP-THERMO3_6010_200.7WATER_3YLINES(v526) Mode: IR Corr. Factor: 1.000000

User: JYH Custom ID1: Custom ID2: Custom ID3:

Comment:

Elem	Ag3280	Al3082	As1890	B_2496	Ba4554	Be3131	Ca4226	Cd2288
Units	Cts/S	Cts/S	Cts/S	Cts/S	Cts/S	Cts/S	Cts/S	Cts/S
Avg Stddev	. 03406 .00011	. 13755 .00019	. 01292 .00004	. 01362 .00005	4.0269 .0008	. 07267 .00007	. 92175 .00206	. 03530 .00006
%RSD	.31125	.14028	.27392	.33734	.02086	.09648	.22390	.17740
701100	.01120	.14020	.27002	.00704	.02000	.000+0	.22000	.17740
#1	.03414	.13776	.01294	.01368	4.0260	.07274	.92028	.03523
#2	.03410	.13749	.01294	.01360	4.0272	.07268	.92086	.03535
#3	.03394	.13739	.01288	.01360	4.0276	.07260	.92411	.03533
Elem	Co2286	Cr2677	Cu2247	Fe2611	K_7664	Li6707	Mg2790	Mn2576
Units	Cts/S	Cts/S	Cts/S	Cts/S	Cts/S	Cts/S	Cts/S	Cts/S
Avg	.10438	.03567	.08692	.13123	4.3058	1.6176	.08085	.21503
Stddev	.00009	.00007	.00011	.00052	.0085	.0013	.00054	.00172
%RSD	.08337	.20722	.12549	.39397	.19791	.07961	.66936	.79917
#1	.10447	.03569	.08705	.13141	4.3127	1.6191	.08077	.21324
#2	.10438	.03559	.08689	.13064	4.2962	1.6167	.08035	.21518
#3	.10429	.03574	.08684	.13162	4.3084	1.6171	.08143	.21667
Elem	Mo2020	Na5895	Ni2316	P_2149	Pb2203	Sb2068	Se1960	Si2124
Units	Cts/S	Cts/S	Cts/S	Cts/S	Cts/S	Cts/S	Cts/S	Cts/S
Avg	.26297	13.080	.09521	.17508	.04311	.04998	.00894	.27054
Stddev	.00042	.022	.00033	.00030	.00014	.00007	.00007	.00023
%RSD	.16047	.16754	.34821	.17199	.33475	.14511	.76268	.08319
#1	.26338	13.073	.09558	.17526	.04315	.04989	.00900	.27040
#2	.26298	13.062	.09512	.17526	.04322	.05001	.00887	.27043
#3	.26254	13.104	.09493	.17473	.04295	.05003	.00896	.27080
Elem	Sn1899	Sr4077	Ti3372	TI1908	V_2924	Zn2062	Zr3391	
Units	Cts/S	Cts/S	Cts/S	Cts/S	Cts/S	Cts/S	Cts/S	
Avg	.09902	6.7596	.20379	.02323	.07754	.54303	.00809	
Stddev	.00018	.0077	.00063	.00007	.00010	.00066	.00021	
%RSD	.18103	.11422	.30987	.31715	.12926	.12166	2.6256	
#1	.09896	6.7512	.20309	.02324	.07764	.54342	.00828	
#2	.09923	6.7614	.20396	.02329	.07752	.54339	.00812	
#3	.09889	6.7663	.20431	.02315	.07745	.54226	.00786	

Approved: October 26, 2015

Sample Name: S4 Acquired: 10/23/2015 10:00:32 Type: Cal

Method: ICP-THERMO3_6010_200.7WATER_3YLINES(v526) Mode: IR Corr. Factor: 1.000000

User: JYH Custom ID1: Custom ID2: Custom ID3:

Comment:

Int. Std.	Y_2243	Y_3600	Y_3774
Units	Cts/S	Cts/S	Cts/S
Avg	11222.	94660.	4128.9
Stddev	7.	100.	16.0
%RSD	.06435	.10523	.38809
#1	11216.	94774.	4122.1
#2	11221.	94588.	4147.3
#3	11230	94620	4117.5

Approved: October 26, 2015

Sample Nam Method: ICP- User: JYH Comment:				LINES(v526)	pe: QC) Mode: tom ID3:	CONC (Corr. Factor:	1.00000(
Elem	Ag3280	Al3082	As1890	B_2496	Ba4554	Be3131	Ca4226	
Units	ppm	ppm	ppm	ppm	ppm	ppm	ppm	
Avg	. 39783	10.324	. 41308	. 50792	1.0358	. 05106	10.220	
Stddev	.00055	.003	.00261	.00136	.0056	.00003	.052	
%RSD	.13904	.02689	.63274	.26872	.54543	.06341	.50748	
#1	.39795	10.327	.41244	.50950	1.0394	.05110	10.278	
#2	.39722	10.322	.41596	.50711	1.0293	.05105	10.179	
#3	.39831	10.324	.41085	.50716	1.0387	.05104	10.202	
Check ? Value Range	Chk Pass	Chk Pass	Chk Pass					
Elem	Cd2288	Co2286	Cr2677	Cu2247	Fe2611	K_7664	Li6707	
Units	ppm	ppm	ppm	ppm	ppm	ppm	ppm	
Avg	. 05058	. 20308	. 50803	. 51004	4.0492	50.783	1.0199	
Stddev	.00026	.00064	.00087	.00165	.0138	.196	.0071	
%RSD	.50974	.31566	.17087	.32335	.34169	.38569	.69436	
#1	.05042	.20269	.50735	.50967	4.0629	50.985	1.0273	
#2	.05044	.20382	.50773	.51184	4.0353	50.594	1.0132	
#3	.05088	.20273	.50901	.50860	4.0494	50.769	1.0193	
Check ? Value Range	Chk Pass	Chk Pass	Chk Pass					
Elem	Mg2790	Mn2576	Mo2020	Na5895	Ni2316	P_2149	Pb2203	
Units	ppm	ppm	ppm	ppm	ppm	ppm	ppm	
Avg	10.338	. 51445	. 95744	51.020	. 51123	10.043	. 50966	
Stddev	.105	.00448	.00230	.246	.00121	.024	.00505	
%RSD	1.0150	.87114	.24048	.48188	.23748	.24386	.99150	
#1	10.395	.51275	.95953	51.221	.51214	10.069	.50856	
#2	10.217	.51107	.95781	50.746	.50985	10.039	.51517	
#3	10.402	.51953	.95497	51.095	.51169	10.021	.50525	
Check ? Value Range	Chk Pass	Chk Pass	Chk Pass					

Sample Name: ICV Acquired: 10/23/2015 10:04:16 Type: QC Method: ICP-THERMO3_6010_200.7WATER_3YLINES(v526) Mode: CONC Corr. Factor: 1.000000 User: JYH Custom ID1: Custom ID2: Custom ID3: Comment:								
Elem Units Avg Stddev %RSD	Sb2068 ppm 1.2129 .0086 .70787	Se1960 ppm . 40184 .00755 1.8794	Si2124 ppm F 5.3066 .0118 .22261	Sn1899 ppm 1.0337 .0015 .14487	Sr4077 ppm 1.0077 .0053 .52715	Ti3372 ppm 1.0122 .0030 .29597	TI1908 ppm . 51970 .00277 .53337	
#1 #2 #3	1.2214 1.2130 1.2042	.40939 .40184 .39429	5.2954 5.3055 5.3189	1.0353 1.0334 1.0323	1.0113 1.0016 1.0102	1.0092 1.0122 1.0152	.51862 .51764 .52285	
Check ? Value Range	Chk Pass	Chk Pass	Chk Fail 5.0000 5.0000%	Chk Pass	Chk Pass	Chk Pass	Chk Pass	
Elem Units Avg Stddev %RSD	V_2924 ppm 1.0080 .0007 .07290	Zn2062 ppm 1.0218 .0022 .21630	Zr3391 ppm F . 43722 .14691 33.601					
#1 #2 #3	1.0080 1.0073 1.0088	1.0233 1.0228 1.0192	.31847 .39169 .60151					
Check ? Value Range	Chk Pass	Chk Pass	Chk Fail 1.0000 -5.0000%					
Int. Std. Units Avg Stddev %RSD	Y_2243 Cts/S 11414. 12. .10554	Y_3600 Cts/S 96389. 278. .28826	Y_3774 Cts/S 4156.3 22.8 .54738					
#1 #2 #3	11407. 11428. 11407.	96673. 96376. 96118.	4135.1 4180.3 4153.6					

Sample Nam Method: ICP User: JYH Comment:				LINES(v526)	rpe: Blank) Mode: tom ID3:	CONC (Corr. Factor:	1.00000(
Elem	Ag3280	Al3082	As1890	B_2496	Ba4554	Be3131	Ca4226	
Units	ppm	ppm	ppm	ppm	ppm	ppm	ppm	
Avg	. 00054	00201	00316	.00382	.00057	.00002	.01606	
Stddev	.00040	.00518	.00258	.00093	.00126	.00008	.02776	
%RSD	74.335	257.30	81.568	24.350	222.50	368.74	172.83	
#1	.00099	00795	00488	.00399	.00144	00007	01364	
#2	.00038	.00032	00020	.00281	00088	.00008	.04136	
#3	.00024	.00159	00441	.00465	.00113	.00005	.02046	
Check ? High Limit Low Limit	Chk Pass	Chk Pass	Chk Pass					
Elem	Cd2288	Co2286	Cr2677	Cu2247	Fe2611	K_7664	Li6707	
Units	ppm	ppm	ppm	ppm	ppm	ppm	ppm	
Avg	. 00009	.00050	.00023	00064	00970	. 15986	. 00184	
Stddev	.00007	.00014	.00073	.00037	.02012	.01584	.00192	
%RSD	74.492	28.337	320.47	57.693	207.42	9.9082	104.23	
#1	.00004	.00034	00008	00077	03237	.15064	.00043	
#2	.00007	.00055	.00106	00022	.00607	.17815	.00402	
#3	.00017	.00062	00030	00093	00281	.15080	.00106	
Check ? High Limit Low Limit	Chk Pass	Chk Pass	Chk Pass					
Elem	Mg2790	Mn2576	Mo2020	Na5895	Ni2316	P_2149	Pb2203	
Units	ppm	ppm	ppm	ppm	ppm	ppm	ppm	
Avg	02999	. 00189	. 00146	. 01750	.00052	. 00144	00086	
Stddev	.04794	.00099	.00022	.01955	.00040	.00332	.00242	
%RSD	159.82	52.564	15.309	111.69	76.603	230.29	280.14	
#1	.02443	.00121	.00151	.03531	.00062	.00358	.00191	
#2	06596	.00142	.00165	00342	.00086	00238	00195	
#3	04845	.00302	.00122	.02062	.00008	.00313	00255	
Check ? High Limit Low Limit	Chk Pass	Chk Pass	Chk Pass					

•									
Elem Units Avg Stddev %RSD	Sb2068 ppm . 00259 .00420 161.89	Se1960 ppm .00170 .00490 288.05	Si2124 ppm 00274 .00145 53.056	Sn1899 ppm 00007 .00062 830.76	Sr4077 ppm . 00017 .00009 50.445	Ti3372 ppm 00194 .00144 73.977	TI1908 ppm 00232 .00318 137.14		
#1 #2 #3	00224 .00472 .00530	.00639 .00211 00339	00283 00124 00414	00052 00034 .00064	.00012 .00027 .00012	00197 00336 00049	00195 .00066 00567		
Check ? High Limit Low Limit	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass		
Elem Units Avg Stddev %RSD	V_2924 ppm . 00007 .00066 887.54	Zn2062 ppm 00006 .00017 302.16	Zr3391 ppm F .14522 .05506 37.913						
#1 #2 #3	.00004 .00075 00057	00022 00008 .00013	.17440 .08172 .17956						
Check ? High Limit Low Limit	Chk Pass	Chk Pass	Chk Fail .04000 04000						
Int. Std. Units Avg Stddev %RSD	Y_2243 Cts/S 11586. 18. .15642	Y_3600 Cts/S 99193. 227. .22866	Y_3774 Cts/S 4151.5 18.2 .43781						
#1 #2 #3	11576. 11607. 11576.	98943. 99386. 99249.	4131.0 4165.5 4158.0						

Sample Name: LLICV Acquired: 10/23/2015 10:12:05 Type: Unk Method: ICP-THERMO3_6010_200.7WATER_3YLINES(v526) Mode: CONC Corr. Factor: 1.0000 User: JYH Custom ID1: Custom ID2: Custom ID3: Comment:									: 1.00000(
Elem Units Avg Stddev %RSD	Ag3280 ppm . 00914 .00063 6.8771	Al3082 ppm . 17038 .00685 4.0189	ppm . 00443 .00211	ppm . 07842 .00368	Ba4554 ppm . 00835 .00091 10.891	Be3131 ppm . 00156 .00005 3.0669	. 41166 .01157	Cd2288 ppm . 00088 .00024 27.612	
#1 #2 #3	.00858 .00902 .00982	.17269 .16268 .17578	.00444	.07847	.00824 .00931 .00750	.00154 .00161 .00153	.39870 .42095 .41534	.00097 .00106 .00060	
Check ? High Limit Low Limit	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	
Elem Units Avg Stddev %RSD	Co2286 ppm . 00442 .00011 2.4633	Cr2677 ppm . 00422 .00071 16.818	ppm . 00388 .00059	ppm . 07349 .01212	K_7664 ppm . 94789 .00554 .58403	Li6707 ppm . 08902 .00274 3.0826	ppm . 33473 .05376	Mn2576 ppm . 00701 .00135 19.225	
#1 #2 #3	.00455 .00437 .00435	.00502 .00397 .00367	.00445	.07895	.95231 .94969 .94168	.09179 .08898 .08630	.36087 .37041 .27290	.00714 .00560 .00829	
Check ? High Limit Low Limit	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	
Elem Units Avg Stddev %RSD	Mo2020 ppm . 00836 .00018 2.1514	Na5895 ppm . 43263 .02623 6.0637	ppm . 01746	_ ppm	Pb2203 ppm . 01048 .00297 28.321	Sb2068 ppm . 07812 .00663 8.4923	ppm	Si2124 ppm . 78338 .00049 .06241	
#1 #2 #3	.00856 .00822 .00829	.40328 .45380 .44081		.76361 .76848 .76145	.01245 .00706 .01191	.07053 .08102 .08280	.02014 .01832 .01169	.78348 .78285 .78381	
Check ? High Limit Low Limit	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	

Sample Name: LLICV Acquired: 10/23/2015 10:12:05 Type: Unk Method: ICP-THERMO3_6010_200.7WATER_3YLINES(v526) Mode: CONC Corr. Factor: 1.000000 Custom ID1: User: JYH Custom ID2: Custom ID3: Comment: Elem Sn1899 Sr4077 Ti3372 TI1908 V_2924 Zn2062 Zr3391 Units ppm ppm ppm ppm ppm ppm ppm Avg .40352 .04011 .02098 .17069 .00728 .01696 17.459 Stddev .00305 .00027 .00222 .00097 .00020 80000. .192 %RSD .75685 .67487 10.586 .56862 2.6904 .49736 1.1020 #1 .40577 .04008 .02128 .16960 .00748 .01705 17.314 #2 .40475 .03985 .01863 .17104 .00709 .01689 17.677 .40005 .04039 .02304 #3 .17144 .00727 .01693 17.386 Check? Chk Pass Chk Pass Chk Pass Chk Pass Chk Pass Chk Pass **High Limit** Low Limit Y_3774 Int. Std. Y_2243 Y 3600 Units Cts/S Cts/S Cts/S 11639. 99820. 4180.6 Avg Stddev 178. 10.5 14. %RSD .11658 .17862 .25150 #1 11652. 99710. 4189.8 #2 11625. 99724. 4169.1 #3 11639. 100030. 4182.8

Approved: October 26, 2015

•	Sample Name: LLICV Acquired: 10/23/2015 10:16:09 Type: Unk Method: ICP-THERMO3_6010_200.7WATER_3YLINES(v526) Mode: CONC Corr. Factor: 1.000000									
User: JYH	Custom		Custom ID	•	Custom ID3		0011.11	10000000		
Comment:										
Elem	Ag3280	Al3082	As1890	B_2496	Ba4554	Be3131	Ca4226	Cd2288		
Units	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm		
Avg Stddev	. <mark>00908</mark> .00040	. 17209 .00434	. 01555 .00553	. <mark>08159</mark> .00119	. <mark>00931</mark> .00045	. <mark>00829</mark> .00002	. 39887 .00665	. 00834 .00021		
%RSD	4.4448	2.5201	35.554	1.4575	4.8237	.20655	1.6671	2.4680		
#1	.00900	.16715	.01991	.08030	.00970	.00831	.40143	.00818		
#2	.00872	.17528	.01740	.08264	.00942	.00829	.39132	.00857		
#3	.00952	.17384	.00933	.08183	.00882	.00827	.40385	.00827		
Check ? High Limit Low Limit	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass		
Elem	Co2286	Cr2677	Cu2247	Fe2611	K_7664	Li6707	Mg2790	Mn2576		
Units	ppm	ppm	ppm	ppm	_ ppm	ppm	ppm	ppm		
Avg	.00916	.01666	.01585	.07974	.88084	.08842	.37580	.00752		
Stddev	.00007	.00116	.00066	.00289	.04455	.00380	.08032	.00098		
%RSD	.77001	6.9538	4.1753	3.6278	5.0572	4.2945	21.374	13.023		
#1	.00908	.01655	.01508	.07894	.83743	.08961	.31163	.00668		
#2	.00919	.01556	.01627	.08294	.87866	.08417	.34988	.00729		
#3	.00921	.01787	.01618	.07733	.92644	.09148	.46588	.00859		
Check ? High Limit Low Limit	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass		
Elem	Mo2020	Na5895	Ni2316	P_2149	Pb2203	Sb2068	Se1960	Si2124		
Units	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm		
Avg	.04704	.41636	.03452	.00359	.01368	.01598	.01556	00291		
Stddev %RSD	.00090 1.9106	.01333 3.2004	.00078 2.2521	.00527 146.88	.00344 25.144	.00167 10.417	.00107 6.8562	.00209 71.658		
#1	.04736	.42042	.03417	.00825	.00997	.01446	.01432	00491		
#2	.04774	.40148	.03542	00214	.01431	.01574	.01614	00308		
#3	.04603	.42719	.03399	.00467	.01677	.01776	.01621	00075		
Check ? High Limit Low Limit	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass		

Sample Nar Method: ICF User: JYH Comment:		3_6010_200	: 10/23/201! :7WATER_; Custom IE	3YLINES(v	Type: U 526) Mc Custom ID3	de: CONC	Corr. Fa	ctor: 1.00000(
Elem Units Avg Stddev %RSD	Sn1899 ppm .08083 .00032 .39783	Sr4077 ppm . 00873 .00020 2.2844	Ti3372 ppm . 02094 .00188 8.9956	TI1908 ppm . 08449 .00217 2.5705	V_2924 ppm . 00851 .00066 7.7004	Zn2062 ppm . 01757 .00021 1.1682	Zr3391 ppm . 17274 .12486 72.279	
#1 #2 #3	.08054 .08118 .08076	.00874 .00893 .00853	.02049 .01932 .02300	.08205 .08619 .08524	.00920 .00790 .00842	.01778 .01754 .01737	.24052 .24906 .02866	
Check ? High Limit Low Limit	Chk Pass							
Int. Std. Units Avg Stddev %RSD	Y_2243 Cts/S 11 57 1. 18. .15962	Y_3600 Cts/S 99215. 99. .10006	Y_3774 Cts/S 4170.3 2.6 .06331					
#1 #2 #3	11554. 11567. 11591.	99104. 99295. 99247.	4168.0 4173.2 4169.7					

•										
Elem	Ag3280	Al3082	As1890	B_2496	Ba4554	Be3131	Ca4226			
Units	ppm	ppm	ppm	ppm	ppm	ppm	ppm			
Avg	00113	268.84	00402	03617	. 00043	00001	222.28			
Stddev	.00088	.11	.00467	.00166	.00014	.00004	.62			
%RSD	77.994	.03968	116.22	4.5774	32.577	349.45	.27834			
#1 #2 #3	00143 00182	268.90 268.90 268.72	00277 00010 00918	03437 03652 03763	.00054 .00048 .00027	00000 00006 .00002	221.69 222.23 222.92			
Check ? High Limit Low Limit	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass			
Elem	Cd2288	Co2286	Cr2677	Cu2247	Fe2611	K_7664	Li6707			
Units	ppm	ppm	ppm	ppm	ppm	ppm	ppm			
Avg	. 00040	00062	00202	F .00402	97.962	. 20973	. 02169			
Stddev	.00015	.00029	.00088	.00113	.308	.04680	.00447			
%RSD	36.826	46.997	43.831	28.205	.31404	22.317	20.607			
#1	.00040	00043	00107	.00456	97.638	.15697	.01763			
#2	.00026	00048	00282	.00478	97.999	.24626	.02648			
#3	.00055	00096	00216	.00272	98.250	.22596	.02097			
Check ? High Limit Low Limit	Chk Pass	Chk Pass	Chk Pass	Chk Fail .00400 00400	Chk Pass	Chk Pass	Chk Pass			
Elem	Mg2790	Mn2576	Mo2020	Na5895	Ni2316	P_2149	Pb2203			
Units	ppm	ppm	ppm	ppm	ppm	ppm	ppm			
Avg	250.61	00071	. 00015	. 02581	.00350	. 01931	00065			
Stddev	.03	.00137	.00027	.02590	.00142	.00454	.00405			
%RSD	.01304	191.86	179.67	100.35	40.485	23.506	621.54			
#1	250.59	00095	00016	.04725	.00208	.02017	00421			
#2	250.65	.00076	.00031	00297	.00491	.02336	.00375			
#3	250.59	00195	.00030	.03314	.00350	.01440	00150			
Check ? High Limit Low Limit	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass			

•									
Elem Units Avg Stddev %RSD	Sb2068 ppm . 00474 .00273 57.551	Se1960 ppm .00334 .00967 289.36	Si2124 ppm . 12923 .00199 1.5434	Sn1899 ppm 00011 .00030 272.71	Sr4077 ppm . 00039 .00029 74.432	Ti3372 ppm . 00417 .00620 148.56	TI1908 ppm . 00252 .00299 118.87		
#1 #2 #3	.00545 .00173 .00705	.00115 00505 .01393	.12895 .12738 .13134	.00003 00046 .00009	.00016 .00030 .00071	.00600 00273 .00925	.00103 .00056 .00596		
Check ? High Limit Low Limit	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass		
Elem Units Avg Stddev %RSD	V_2924 ppm 00138 .00070 50.506	Zn2062 ppm 00713 .00044 6.1266	Zr3391 ppm F -1.4027 .1968 14.031						
#1 #2 #3	00089 00108 00218	00665 00722 00751	-1.2864 -1.2917 -1.6299						
Check ? High Limit Low Limit	Chk Pass	Chk Pass	Chk Fail .02000 02000						
Int. Std. Units Avg Stddev %RSD	Y_2243 Cts/S 10785. 19.	Y_3600 Cts/S 91108. 82. .09000	Y_3774 Cts/S 4120.4 2.5 .06065						
#1 #2 #3	10782. 10805. 10767.	91106. 91026. 91190.	4123.3 4119.1 4118.9						

Elem	Ag3280	Al3082	As1890	B_2496	Ba4554	Be3131	Ca4226		
Units	ppm								
Avg	. 53469	268.49	. 25453	05063	. 25802	. 25859	223.23		
Stddev	.00244	.30	.00353	.00104	.00029	.00033	.69		
%RSD	.45723	.11256	1.3851	2.0550	.11293	.12788	.30838		
#1	.53232	268.15	.25795	05108	.25806	.25833	223.27		
#2	.53455	268.71	.25091	04944	.25771	.25896	222.52		
#3	.53721	268.62	.25473	05137	.25829	.25849	223.90		
Check ? High Limit Low Limit	Chk Pass								
Elem	Cd2288	Co2286	Cr2677	Cu2247	Fe2611	K_7664	Li6707		
Units	ppm								
Avg	. 51058	.24122	.25205	.25400	97.484	5.5368	. 02056		
Stddev	.00128	.00100	.00047	.00425	.441	.0459	.00201		
%RSD	.25057	.41285	.18506	1.6714	.45236	.82974	9.7552		
#1	.51196	.24162	.25212	.25474	97.541	5.5155	.01824		
#2	.51034	.24195	.25248	.25782	97.017	5.5053	.02160		
#3 Check ? High Limit Low Limit	.50944 Chk Pass	.24008 Chk Pass	.25155 Chk Pass	.24943 Chk Pass	97.894 Chk Pass	5.5895 Chk Pass	.02183 Chk Pass		
Elem	Mg2790	Mn2576	Mo2020	Na5895	Ni2316	P_2149	Pb2203		
Units	ppm								
Avg	249.75	. 25322	.00013	5.4235	. 48993	. 09823	. 49048		
Stddev	.33	.00319	.00035	.0448	.00188	.00895	.00300		
%RSD	.13270	1.2608	259.75	.82676	.38335	9.1073	.61107		
#1	249.91	.25366	00027	5.4352	.49202	.09924	.49362		
#2	249.37	.25617	.00037	5.3740	.48938	.08882	.48765		
#3	249.98	.24983	.00030	5.4614	.48839	.10663	.49018		
Check ? High Limit Low Limit	Chk Pass								

•								
Elem Units Avg Stddev %RSD	Sb2068 ppm . 51769 .00887 1.7128	Se1960 ppm .26484 .00471 1.7788	Si2124 ppm .00605 .00416 68.802	Sn1899 ppm . 00126 .00068 54.185	Sr4077 ppm . 00036 .00018 49.568	Ti3372 ppm . 00740 .00168 22.683	TI1908 ppm . 49624 .00444 .89406	
#1 #2 #3	.52411 .52138 .50757	.26516 .25998 .26939	.00281 .00459 .01074	.00078 .00204 .00096	.00054 .00018 .00036	.00790 .00553 .00878	.50129 .49295 .49448	
Check ? High Limit Low Limit	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	
Elem Units Avg Stddev %RSD	V_2924 ppm . 25613 .00168 .65719	Zn2062 ppm . 48083 .00150 .31225	Zr3391 ppm F -1.5581 .0464 2.9781					
#1 #2 #3	.25629 .25773 .25437	.48184 .48154 .47910	-1.6022 -1.5623 -1.5097					
Check ? High Limit Low Limit	Chk Pass	Chk Pass	Chk Fail .02500 02500					
Int. Std. Units Avg Stddev %RSD	Y_2243 Cts/S 10725. 14. .13354	Y_3600 Cts/S 9 0465 . 124. .13704	Y_3774 Cts/S 4101.5 3.2 .07825					
#1 #2 #3	10713. 10721. 10741.	90608. 90383. 90404.	4104.8 4101.3 4098.4					

Sample Name: CCV Acquired: 10/23/2015 10:28:06 Type: QC Method: ICP-THERMO3_6010_200.7WATER_3YLINES(v526) Mode: CONC Corr. Factor: 1.0000 User: JYH Custom ID1: Custom ID2: Custom ID3: Comment:									1.00000(
Elem Units Avg Stddev %RSD	Ag3280 ppm . 40128 .00101 .25259	ppm 10.101 .012	ppm . 40694 .00278	ppm . 50096 .00274	Ba4554 ppm 1.0134 .0043 .42891	Be3131 ppm . 05044 .00008 .15535	10.138 .043	Cd2288 ppm . 05007 .00014 .28133	
#1 #2 #3	.40245 .40068 .40070	10.091	.40589		1.0158 1.0084 1.0161	.05053 .05039 .05040	10.174 10.091 10.149	.05023 .04999 .04998	
Check ? Value Range	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	
Elem Units Avg Stddev %RSD	Co2286 ppm . 20165 .00040 .19920	ppm . 50125 .00321 .64118	ppm . 50571 .00093 .18450	ppm 4.0534 .0391 .96543	.048 .09522	ppm 1.0093 .0018 .17294	9. 9705 .0393 .39410	. 50429 .00238 .47168	
#1 #2 #3	.20182 .20194 .20119	.50311 .50310 .49754			50.860 50.886 50.954	1.0079 1.0088 1.0113	9.9293	.50663 .50435 .50188	
Check ? Value Range	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	
Elem Units Avg Stddev %RSD	Mo2020 ppm 1.0074 .0031 .31051	ppm	ppm . 50723 .00265	ppm 10.015	ppm		ppm . 40834 .00264	Si2124 ppm 5.0502 .0081 .16053	
#1 #2 #3	1.0082 1.0101 1.0040	50.821	.51028	10.020 10.033 9.9904	.50569 .50314 .49409	1.2055 1.2104 1.2081		5.0506 5.0581 5.0419	
Check ? Value Range	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	

Sample Na	ame: CCV	Acquire	d: 10/23/20	15 10:28:0	6 Туре	e: QC		
Method: IC	P-THERMO	03_6010_2	200.7WATE	R_3YLINE	S(v526)	Mode: C	ONC	Corr. Factor: 1.000000
User: JYH	Custo	m ID1:	Custor	n ID2:	Custon	n ID3:		
Comment:								
Elem	Sn1899	Sr4077	Ti3372	TI1908	V_2924	Zn2062	Zr339	1
Units	ppm 1.0092	ppm 1.0128	ppm 1.0155	ppm . 50972	ppm 1.0073	ppm 1.0091	ppr . 9466 .	
Avg Stddev	.0037	.0031	.0114	.00161				
%RSD	.36388	.30088	1.1210	.31553	.09625		9.711	
#1	1.0114	1.0144	1.0141	.51153	1.0071	1.0092	.9462	4
#2	1.0113	1.0093	1.0050	.50919	1.0065	1.0114	.8548	
#3	1.0050	1.0148	1.0276	.50845	1.0084	1.0068	1.038	7
Check ? Value Range	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pas	S
Int. Std.	Y_2243	Y_3600	Y_3774					
Units	Cts/S	Cts/S	Cts/S					
Avg Stddev	11 353 . 9.	96206 . 176.	41 73 .5 12.4					
%RSD	.08006	.18327						
#1	11364.	96204.	4167.1					
#2	11347.	96031.	4165.6					
#3	11349.	96383.	4187.8					

•									
Elem	Ag3280	Al3082	As1890	B_2496	Ba4554	Be3131	Ca4226		
Units	ppm	ppm	ppm	ppm	ppm	ppm	ppm		
Avg	. 00045	.00615	00068	.00095	.00023	.00001	00359		
Stddev	.00155	.00282	.00187	.00072	.00017	.00004	.01137		
%RSD	348.70	45.882	275.03	75.634	74.187	323.61	317.16		
#1	.00136	.00810	00280	.00128	.00004	.00000	00175		
#2	00135	.00743	.00007	.00013	.00035	00002	01576		
#3	.00133	.00291	.00070	.00145	.00029	.00006	.00676		
Check ? High Limit Low Limit	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass		
Elem	Cd2288	Co2286	Cr2677	Cu2247	Fe2611	K_7664	Li6707		
Units	ppm	ppm	ppm	ppm	ppm	ppm	ppm		
Avg	00005	00004	.00052	00121	00170	. 17504	. 00406		
Stddev	.00011	.00017	.00089	.00118	.00958	.04025	.00252		
%RSD	228.07	388.95	169.59	97.669	564.39	22.997	62.086		
#1	.00007	.00012	.00003	00107	.00780	.20354	.00137		
#2	00006	00023	.00155	00246	00152	.19258	.00444		
#3	00015	00002	00000	00011	01137	.12899	.00636		
Check ? High Limit Low Limit	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass		
Elem	Mg2790	Mn2576	Mo2020	Na5895	Ni2316	P_2149	Pb2203		
Units	ppm	ppm	ppm	ppm	ppm	ppm	ppm		
Avg	03698	00069	. 00103	. 03352	.00081	00673	00075		
Stddev	.03942	.00114	.00027	.00746	.00148	.00314	.00121		
%RSD	106.59	163.70	26.485	22.260	183.03	46.637	161.57		
#1	06593	00201	.00072	.02844	.00033	00814	00029		
#2	05293	00007	.00115	.04209	.00247	00313	.00016		
#3	.00791	00001	.00123	.03003	00037	00892	00213		
Check ? High Limit Low Limit	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass		

Sample Nam Method: ICP User: JYH Comment:	ne: CCB / -THERMO3_ Custom I	6010_200.7	/23/2015 10: WATER_3YI Custom ID2:	LINES(v526)	ype: Blank) Mode: tom ID3:	CONC (Corr. Factor:	1.00000(
Elem Units Avg Stddev %RSD	Sb2068 ppm . 00186 .00090 48.705	Se1960 ppm 00209 .00537 257.47	Si2124 ppm .00050 .00098 194.86	Sn1899 ppm . 00043 .00117 271.95	Sr4077 ppm . 00019 .00041 215.25	Ti3372 ppm 00005 .00085 1783.4	TI1908 ppm 00217 .00274 126.35	
#1 #2 #3	.00134 .00133 .00290	00332 00673 .00380	00050 .00056 .00146	.00135 .00083 00089	.00039 .00046 00028	00024 .00088 00078	00101 00529 00019	
Check ? High Limit Low Limit	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	
Elem Units Avg Stddev %RSD	V_2924 ppm . 00004 .00040 1055.7	Zn2062 ppm .00002 .00043 1909.4	Zr3391 ppm F .18959 .11486 60.585					
#1 #2 #3	.00027 00042 .00026	.00024 00048 .00030	.32078 .14087 .10711					
Check ? High Limit Low Limit	Chk Pass	Chk Pass	Chk Fail .04000 04000					
Int. Std. Units Avg Stddev %RSD	Y_2243 Cts/S 11499. 19. .16527	Y_3600 Cts/S 9 90 19. 457. .46159	Y_3774 Cts/S 4186.6 14.3 .34212					
#1 #2 #3	11477. 11507. 11513.	99011. 99481. 98567.	4185.9 4201.2 4172.6					

		_6010_200	.7WATER_	3YLINES(v	526) Mo	de: CONC	Corr. Fa	actor: 1.000000		
	0	Method: ICP-THERMO3_6010_200.7WATER_3YLINES(v526) Mode: CONC Corr. Factor: 1.000000								
User: JYH	Custom	ID1: 2	Custom II	D2:	Custom ID3	3 :				
Comment:										
Elem	Ag3280	Al3082	As1890	B 2496	Ba4554	Be3131	Ca4226	Cd2288		
Units	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm		
Avg	.00026	.01715	00046	.01450	.02679	00002	25.403	.00115		
Stddev	.00151	.00451	.00191	.00251	.00028	.00006	.063	.00022		
%RSD	572.94	26.311	412.95	17.303	1.0552	272.31	.24614	19.296		
#1	00023	.02209	00129	.01283	.02652	.00003	25.400	.00124		
#2	.00195	.01613	00123	.01329	.02708	00001	25.342	.00124		
#3	00093	.01324	.00172	.01739	.02677	00008	25.467	.00089		
Check?	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass		
High Limit										
Low Limit										
Elem	Co2286	Cr2677	Cu2247	Fe2611	K_7664	Li6707	Mg2790	Mn2576		
Units	ppm	ppm	ppm	ppm	_ ppm	ppm	ppm	ppm		
Avg	.00136	.01943	.00225	.00681	.31201	.00822	1.5062	.04477		
Stddev	.00011	.00016	.00096	.02275	.02190	.00576	.0614	.00091		
%RSD	8.2753	.84463	42.867	334.13	7.0197	70.060	4.0762	2.0345		
#1	.00146	.01951	.00333	.03176	.33149	.00454	1.4722	.04582		
#2	.00139	.01954	.00191	.00144	.28830	.00527	1.5771	.04428		
#3	.00124	.01924	.00149	01277	.31625	.01486	1.4693	.04421		
Check?	Chk Pass	Chk Pass	Chk Pass	Chk Docc	Chk Pass	Chk Docc	Chk Pass	Chk Pass		
High Limit	Clik Fass	CIR F ass	CIIK F d55	Clik F d55	CIR F ass	CIIK F d55	Clik F d55	Clik F d55		
Low Limit										
Elem	Mo2020	Na5895	Ni2316	P_2149	Pb2203	Sb2068	Se1960	Si2124		
Units	ppm	ppm 133.32	ppm	ppm . 07651	ppm	ppm	ppm	ppm		
Avg Stddev	. 00057 .00034	.33	. 00176 .00090	.00147	. 21115 .00126	. <mark>00221</mark> .00199	. 01018 .00582	. 18879 .00186		
%RSD	60.063	.25073	51.087	1.9165	.59788	89.989	57.171	.98490		
701100	00.000	.20070	01.007	1.0100	.00700	00.000	07.171	.00+00		
#1	.00061	133.46	.00264	.07597	.21226	.00423	.00646	.18703		
#2	.00021	132.94	.00177	.07817	.21142	.00027	.01688	.18861		
#3	.00090	133.57	.00085	.07540	.20977	.00212	.00719	.19074		
Check ? High Limit Low Limit	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass		

Sample Nar	ne: L151010)3202 A	cquired: 10/	/23/2015 10	:36:05	Type: Unk		
Method: ICF	P-THERMO3	3_6010_200	.7WATER_	3YLINES(v	526) Mo	de: CONC	Corr. Fa	ctor: 1.000000
User: JYH	Custom	ID1: 2	Custom II	D2:	Custom ID3	3:		
Comment:								
Elem	Sn1899	Sr4077	Ti3372	TI1908	V 2924	Zn2062	Zr3391	
Units	ppm	ppm	ppm	ppm	ppm	ppm	ppm	
Avg	00033	.02270	.00261	00295	00012	1.5345	.16153	
Stddev	.00022	.00045	.00737	.00316	.00076	.0070	.09748	
%RSD	68.008	1.9999	282.53	107.16	608.38	.45832	60.349	
#1	00010	.02219	00284	00660	00002	1.5394	.05021	
#1 #2	00010	.02219	00284	00102	.00058	1.5394	.20278	
#3	00054	.02306	.01099	00102	00093	1.5265	.23162	
Check?	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	
High Limit								
Low Limit								
Int. Std.	Y 2243	Y 3600	Y_3774					
Units	Cts/S	Cts/S	Cts/S					
Avg	11298.	96088.	4214.5					
Stďdev	9.	59.	20.3					
%RSD	.08043	.06151	.48124					
ш.	11000	00040	4104.0					
#1 #2	11296. 11308.	96046. 96062.	4194.0 4215.0					
#2 #3	11291.	96062. 96156.	4215.0					
110	11201.	55156.	7207.0					

Sample Name: +1 PPM PB Acquired: 10/23/2015 10:40:08 Type: Unk								
Method: ICF	P-THERMO3	3_6010_200	.7WATER_	3YLINES(v	526) Mo	de: CONC	actor: 1.00000(
User: JYH	Custom	ID1: 2	Custom I	D2:	Custom ID3	3:		
Comment:								
Elem	Ag3280	Al3082	As1890	B_2496	Ba4554	Be3131	Ca4226	Cd2288
Units	ppm . 00064	ppm . 01471	ppm . 00071	ppm . 01228	ppm . 02679	ppm 00007	ppm 25.409	ppm . 00105
Avg Stddev	.00004	.00221	.00283	.00233	.00036	.00007	.068	.00103
%RSD	153.53	15.053	401.56	18.945	1.3474	45.864	.26619	1.6343
#1	00039	.01440	.00050	.01359	.02717	00010	25.340	.00103
#2 #3	.00074	.01707 .01267	.00363	.00960 .01367	.02676 .02645	00004	25.412 25.475	.00106
#3	.00156	.01207	00202	.01307	.02045	00008	25.475	.00106
Check?	Chk Pass Chk Pass	Chk Pass						
High Limit								
Low Limit								
Elem	Co2286	Cr2677	Cu2247	Fe2611	K_7664	Li6707	Mg2790	Mn2576
Units	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm
Avg	.00092	.01915	.00732	01064	.30565	.00346	1.5680	.04386
Stddev	.00017	.00063	.00058	.01115	.09211	.00329	.0644	.00227
%RSD	18.468	3.2850	7.9784	104.77	30.137	95.158	4.1049	5.1773
#1	.00073	.01904	.00665	.00125	.29113	.00702	1.5059	.04610
#2	.00102	.01983	.00760	01233	.40416	.00752	1.6344	.04156
#3	.00103	.01859	.00771	02086	.22165	.00286	1.5637	.04393
Check?	Chk Pass Chk Pass	Chk Pass						
High Limit Low Limit								
LOW LITTIE								
Elem	Mo2020	Na5895	Ni2316	P_2149	Pb2203	Sb2068	Se1960	Si2124
Units	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm
Avg	.00058	133.05	.00201	.08300	1.2949	.00123	.00498	.18871
Stddev	.00049	.31	.00113	.00647	.0036	.00270	.00598	.00246
%RSD	84.291	.23573	56.384	7.8002	.27524	220.13	120.03	1.3055
#1	.00046	133.00	.00332	.08121	1.2966	00084	.00297	.19057
#2	.00016	132.76	.00129	.09018	1.2908	.00024	.01171	.18965
#3	.00111	133.38	.00142	.07761	1.2973	.00429	.00027	.18592
Check ? High Limit Low Limit	Chk Pass Chk Pass	Chk Pass						

Sample Name: +1 PPM PB Acquired: 10/23/2015 10:40:08 Type: Unk								
Method: ICP	-THERMO3	3_6010_200	.7WATER_	3YLINES(v	526) Mc	de: CONC	Corr. Fa	ctor: 1.00000(
User: JYH	Custom	ID1: 2	Custom II	D2:	Custom ID3	3:		
Comment:								
Elem	Sn1899	Sr4077	Ti3372	TI1908	V_2924	Zn2062	Zr3391	
Units	ppm	ppm	ppm	ppm	ppm	ppm	ppm	
Avg	.00008	.02246	00148	00576	.00011	1.5387	.15069	
Stddev	.00098	.00010	.00344	.00107	.00039	.0055	.09416	
%RSD	1307.1	.44009	231.75	18.528	358.97	.35942	62.485	
#1	.00107	.02248	00496	00487	00017	1.5432	.05084	
#2	.00006	.02235	.00192	00547	.00056	1.5405	.16337	
#3	00090	.02255	00141	00695	00006	1.5326	.23787	
Check ? High Limit Low Limit	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	
Int. Std.	Y 2243	Y_3600	Y_3774					
Units	Cts/S	Cts/S	Cts/S					
Avg	1123 <u>1</u> .	95269.	4222.7					
Stddev	5.	276.	10.0					
%RSD	.04561	.28948	.23586					
#1	11235.	94971.	4232.9					
#2	11225.	95515.	4222.2					
#3	11233.	95322.	4213.0					

Sample Name: +1.5 PPM PB Acquired: 10/23/2015 10:44:11 Type: Unk Method: ICP-THERMO3_6010_200.7WATER_3YLINES(v526) Mode: CONC Corr. Factor: 1.000000								
			_	•	,	de: CONC	Corr. Fa	actor: 1.00000(
User: JYH	Custom	ID1: 2	Custom II	D2:	Custom ID3	3:		
Comment:								
Elem	Ag3280	Al3082	As1890	B 2496	Ba4554	Be3131	Ca4226	Cd2288
Units	ppm	ppm	ppm	ррm	ppm	ppm	ppm	ppm
Avg	00163	.01369	.00206	.01474	.02661	.00002	25.568	.00114
Stddev	.00093	.00365	.00149	.00116	.00004	.00002	.042	.00021
%RSD	57.346	26.646	72.142	7.8999	.16671	155.97	.16290	18.818
#1	00252	.01660	.00050	.01606	.02663	.00004	25.579	.00133
#2	00066	.01486	.00347	.01429	.02656	.00001	25.522	.00116
#3	00170	.00960	.00222	.01387	.02665	00001	25.603	.00091
Check ? High Limit	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass
Low Limit								
Elem	Co2286	Cr2677	Cu2247	Fe2611	K_7664	Li6707	Mg2790	Mn2576
Units	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm
Avg Stddev	. 00123 .00053	. 01965 .00015	. <mark>00831</mark> .00076	. <mark>00241</mark> .01002	. 38423 .09846	. <mark>00528</mark> .00170	1.6183 .0623	. 04480 .00096
%RSD	42.759	.77862	9.2075	415.61	25.625	32.137	3.8467	2.1398
701102	12.700	.,,,,,,	0.2070	110.01	20.020	02.107	0.0107	2.1000
#1	.00064	.01978	.00877	.01384	.47364	.00489	1.6896	.04379
#2	.00139	.01948	.00742	00488	.40033	.00714	1.5910	.04490
#3	.00166	.01968	.00872	00173	.27871	.00382	1.5744	.04570
Check?	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass
High Limit								
Low Limit								
Elem	Mo2020	Na5895	Ni2316	P_2149	Pb2203	Sb2068	Se1960	Si2124
Units	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm
Avg Stddev	. 00043 .00004	133.96 .02	. <mark>00172</mark> .00071	. 07605 .00296	1.8555 .0075	00370 .00271	. <mark>00621</mark> .00565	. 19276 .00329
%RSD	10.337	.01810	41.191	3.8890	.40500	73.319	90.890	1.7067
701.102	10.007			0.0000			00.000	
#1	.00048	133.98	.00112	.07835	1.8592	00664	.00286	.18918
#2	.00041	133.93	.00154	.07271	1.8604	00130	.00305	.19566
#3	.00040	133.96	.00250	.07708	1.8468	00316	.01273	.19343
Check ? High Limit Low Limit	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass

Sa	ample Nar	ne: +1.5 PP	MPB A	cquired: 10/	23/2015 10	:44:11	Гуре: Unk		
M	ethod: ICF	-THERMO3	3_6010_200	.7WATER_	3YLINES(v	526) Mc	de: CONC	Corr. Fa	ctor: 1.00000(
U:	ser: JYH	Custom	ID1: 2	Custom II	D2:	Custom ID3	3:		
C	omment:								
FI	lem	Sn1899	Sr4077	Ti3372	TI1908	V 2924	Zn2062	Zr3391	
	nits	ppm	ppm	ppm	ppm	ppm	ppm	ppm	
A۱	vg	- 00051	.02315	00419	00185	- 00077	1.5539	.06758	
St	tddev	.00065	.00033	.00231	.00171	.00034	.0053	.17070	
%	RSD	127.25	1.4281	55.154	92.161	44.370	.33949	252.59	
		00000	00007	00055	00070	00001	4 5554	05004	
#1	=	.00020	.02297	00355	00073	00061	1.5554	.05664	
#2 #3		00108 00066	.02295 .02353	00675 00227	00381 00101	00053 00115	1.5584 1.5481	.24349 09739	
# <	,	00000	.02333	00227	00101	00113	1.5461	09739	
С	heck?	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	
Hi	igh Limit								
Lo	ow Limit								
	t. Std.	Y_2243	Y_3600	Y_3774					
	nits	Cts/S	Cts/S	Cts/S					
	vg tddev	1111 7 . 17.	94218 . 359.	4180.6 11.7					
	RSD	.15174	.38123	.27987					
70	TOD	.10174	.00120	.27007					
#1	1	11135.	94307.	4167.1					
#2	2	11102.	93823.	4187.1					
#3	3	11113.	94525.	4187.6					

Sample Name: +2 PPM PB Acquired: 10/23/2015 10:48:12 Type: Unk Method: ICP-THERMO3_6010_200.7WATER_3YLINES(v526) Mode: CONC Corr. Factor: 1.000000								
User: JYH	Custom		./WATER Custom	,	Custom ID3		Corr. Fa	actor: 1.00000(
Comment:								
Elem	Ag3280	Al3082	As1890	B_2496	Ba4554	Be3131	Ca4226	Cd2288
Units Avg	ppm . 00017	ppm . 01665	ppm 00294	ppm .01412	ppm . 02660	ppm 00002	ppm 25.677	ppm . 00124
Stddev	.00168	.00428	.00495	.00237	.00069	.00002	.153	.00013
%RSD	980.46	25.733	168.53	16.751	2.5790	209.10	.59710	10.090
#1	.00144	.02088	.00040	.01537	.02701	00001	25.656	.00130
#2 #3	00173 .00080	.01231 .01676	00863 00058	.01560 .01139	.02699 .02581	00006 .00002	25.536 25.840	.00110 .00133
Check ? High Limit Low Limit	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass
Elem	Co2286	Cr2677	Cu2247	Fe2611	K_7664	Li6707	Mg2790	Mn2576
Units	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm
Avg Stddev	. <mark>00091</mark> .00029	. <mark>02003</mark> .00137	. 01196 .00036	00368 .00474	. 40920 .06068	. <mark>00474</mark> .00291	1. 5434 .0334	. 04517 .00095
%RSD	32.259	6.8389	3.0064	128.75	14.830	61.433	2.1641	2.0929
#1	.00058	.01994	.01205	.00025	.47037	.00739	1.5714	.04508
#2	.00101	.02145	.01226	00234	.34901	.00162	1.5064	.04427
#3	.00113	.01871	.01156	00895	.40821	.00522	1.5524	.04616
Check ? High Limit Low Limit	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass
Elem	Mo2020	Na5895	Ni2316	P_2149	Pb2203	Sb2068	Se1960	Si2124
Units	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm
Avg Stddev	. 00039 .00015	134.90 .69	. 00164 .00053	. 07875 .00290	2.4457 .0106	00078 .00173	. 00364 .00309	. 19236 .00127
%RSD	37.802	.51353	32.538	3.6862	.43392	221.30	84.984	.66238
#1	.00055	135.11	.00216	.07825	2.4462	.00097	.00693	.19366
#2 #3	.00026	134.13	.00109	.08187	2.4561	00082	.00321 .00079	.19231
#3	.00036	135.47	.00166	.07613	2.4349	00250	.00079	.19111
Check ? High Limit Low Limit	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass

Sample Name: +2 PPM PB Acquired: 10/23/2015 10:48:12 Type: Unk								
Method: ICF	P-THERMO3	3_6010_200	.7WATER_	3YLINES(v	526) Mc	de: CONC	Corr. Fa	ctor: 1.000000
User: JYH	Custom	ID1: 2	Custom II	D2:	Custom ID3	3:		
Comment:								
Elem	Sn1899	Sr4077	Ti3372	TI1908	V_2924	Zn2062	Zr3391	
Units	ppm	ppm	ppm	ppm	ppm	ppm	ppm	
Avg	.00015	.02294	00303	.00002	00098	1.5510	.02909	
Stddev	.00077	.00029	.00353	.00079	.00133	.0083	.03755	
%RSD	519.98	1.2565	116.77	3167.9	135.99	.53448	129.07	
#1	.00096	.02277	.00094	00049	00099	1.5550	.03766	
#2	00057	.02277	00417	.00093	.00036	1.5564	.06162	
#3	.00006	.02327	00584	00036	00231	1.5414	01200	
Check ? High Limit Low Limit	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	
Int. Std.	Y 2243	Y_3600	Y_3774					
Units	Cts/S	Cts/S	Cts/S					
Avg	11097.	94227.	4156.2					
Stddev	24.	282.	17.9					
%RSD	.21664	.29905	.42975					
#1	11122.	93908.	4140.8					
#2	11074.	94442.	4175.8					
#3	11097.	94331.	4152.0					

Sample Nam Method: ICP User: JYH Comment:				LINES(v526)	ype: QC) Mode: tom ID3:	CONC (Corr. Factor:	1.00000(
Elem	Ag3280	Al3082	As1890	B_2496	Ba4554	Be3131	Ca4226	
Units	ppm	ppm	ppm	ppm	ppm	ppm	ppm	
Avg	. 41217	10.353	. 41654	. 51392	1.0434	. 05180	10.352	
Stddev	.00155	.050	.00062	.00269	.0078	.00017	.059	
%RSD	.37604	.47869	.14833	.52440	.74499	.32938	.56628	
#1	.41367	10.407	.41617	.51702	1.0383	.05198	10.314	
#2	.41057	10.310	.41619	.51211	1.0397	.05164	10.323	
#3	.41227	10.341	.41725	.51263	1.0524	.05177	10.420	
Check ? Value Range	Chk Pass	Chk Pass	Chk Pass					
Elem	Cd2288	Co2286	Cr2677	Cu2247	Fe2611	K_7664	Li6707	
Units	ppm	ppm	ppm	ppm	ppm	ppm	ppm	
Avg	. 05167	. 20616	. 51970	. 51992	4.1155	52.112	1.0380	
Stddev	.00034	.00049	.00207	.00151	.0211	.423	.0033	
%RSD	.66614	.23683	.39771	.28971	.51207	.81233	.31526	
#1	.05135	.20560	.52207	.52060	4.0930	51.817	1.0374	
#2	.05162	.20645	.51830	.52097	4.1349	51.921	1.0351	
#3	.05203	.20644	.51873	.51819	4.1185	52.597	1.0416	
Check ? Value Range	Chk Pass	Chk Pass	Chk Pass					
Elem	Mg2790	Mn2576	Mo2020	Na5895	Ni2316	P_2149	Pb2203	
Units	ppm	ppm	ppm	ppm	ppm	ppm	ppm	
Avg	10.196	. 51675	1.0336	52.349	. 52198	10.266	. 51761	
Stddev	.100	.00490	.0008	.385	.00133	.026	.00778	
%RSD	.97927	.94784	.08192	.73512	.25536	.24888	1.5030	
#1	10.160	.51254	1.0329	52.077	.52091	10.241	.51652	
#2	10.119	.51558	1.0334	52.180	.52155	10.266	.51044	
#3	10.309	.52213	1.0345	52.789	.52347	10.292	.52588	
Check ? Value Range	Chk Pass	Chk Pass	Chk Pass					

Sample Nam Method: ICP User: JYH Comment:				LINES(v526)	ype: QC) Mode: tom ID3:	CONC (Corr. Factor:	1.00000(
Elem Units Avg Stddev %RSD	Sb2068 ppm 1.2428 .0060 .48345	Se1960 ppm . 41949 .00185 .44083	Si2124 ppm 5.1954 .0158 .30313	Sn1899 ppm 1.0327 .0022 .21145	Sr4077 ppm 1.0402 .0071 .67885	Ti3372 ppm 1.0414 .0107 1.0282	TI1908 ppm . 52683 .00265 .50320	
#1 #2 #3	1.2404 1.2497 1.2384	.41855 .42163 .41831	5.1799 5.1949 5.2114	1.0309 1.0322 1.0351	1.0340 1.0386 1.0479	1.0290 1.0480 1.0471	.52521 .52538 .52989	
Check ? Value Range	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	
Elem Units Avg Stddev %RSD	V_2924 ppm 1.0384 .0035 .33808	Zn2062 ppm 1.0301 .0013 .12324	Zr3391 ppm F .52127 .06643 12.744					
#1 #2 #3	1.0424 1.0357 1.0372	1.0295 1.0293 1.0316	.55641 .56277 .44465					
Check ? Value Range	Chk Pass	Chk Pass	Chk Fail 1.0000 -10.000%					
Int. Std. Units Avg Stddev %RSD	Y_2243 Cts/S 11073. 4. .03521	Y_3600 Cts/S 93964. 209. .22216	Y_3774 Cts/S 4098.2 33.0 .80537					
#1 #2 #3	11069. 11076. 11073.	93723. 94076. 94093.	4109.6 4124.0 4061.0					

Sample Nam Method: ICP- User: JYH Comment:				LINES(v526)	ype: Blank) Mode: tom ID3:	CONC (Corr. Factor:	1.00000(
Elem	Ag3280	Al3082	As1890	B_2496	Ba4554	Be3131	Ca4226	
Units	ppm	ppm	ppm	ppm	ppm	ppm	ppm	
Avg	. 00037	. 00087	00162	. 00278	00033	.00001	. 01159	
Stddev	.00045	.00133	.00102	.00158	.00040	.00001	.00482	
%RSD	121.48	152.53	62.838	56.960	119.46	132.67	41.581	
#1	.00084	.00146	00259	.00159	00041	.00002	.01121	
#2	00004	.00180	00170	.00216	00069	.00002	.01658	
#3	.00030	00065	00056	.00457	.00010	00000	.00697	
Check ? High Limit Low Limit	Chk Pass	Chk Pass	Chk Pass					
Elem	Cd2288	Co2286	Cr2677	Cu2247	Fe2611	K_7664	Li6707	
Units	ppm	ppm	ppm	ppm	ppm	ppm	ppm	
Avg	. 00015	.00037	00029	00028	00476	. 12490	. 00404	
Stddev	.00013	.00019	.00046	.00082	.01872	.06460	.00343	
%RSD	91.367	51.770	159.51	296.70	393.42	51.721	84.923	
#1	.00018	.00058	00083	.00033	02145	.06804	.00061	
#2	.00026	.00031	00001	00121	.01548	.11152	.00405	
#3	00000	.00022	00004	.00005	00831	.19515	.00747	
Check ? High Limit Low Limit	Chk Pass	Chk Pass	Chk Pass					
Elem	Mg2790	Mn2576	Mo2020	Na5895	Ni2316	P_2149	Pb2203	
Units	ppm	ppm	ppm	ppm	ppm	ppm	ppm	
Avg	. 04049	. 00061	. 00120	. 05992	. 00047	00081	00061	
Stddev	.03653	.00033	.00036	.00548	.00073	.00507	.00410	
%RSD	90.219	54.211	30.220	9.1443	154.66	623.24	673.04	
#1	.01125	.00043	.00162	.06621	00033	.00130	00025	
#2	.08143	.00041	.00095	.05728	.00110	.00286	.00330	
#3	.02878	.00100	.00104	.05625	.00064	00660	00487	
Check ? High Limit Low Limit	Chk Pass	Chk Pass	Chk Pass					

Sample Nam Method: ICP User: JYH Comment:	ne: CCB / -THERMO3_ Custom I			LINES(v526)	ype: Blank) Mode: tom ID3:	CONC (Corr. Factor:	1.00000(
Elem Units Avg Stddev %RSD	Sb2068 ppm . 00209 .00039 18.467	Se1960 ppm .00264 .00861 326.63	Si2124 ppm .00086 .00179 208.48	Sn1899 ppm 00034 .00125 363.37	Sr4077 ppm . 00035 .00023 64.587	Ti3372 ppm . 00173 .00415 239.58	TI1908 ppm 00046 .00289 632.60	
#1 #2 #3	.00164 .00228 .00233	.01051 00655 .00395	00062 .00034 .00284	.00103 00141 00066	.00042 .00010 .00053	.00524 .00282 00285	.00269 00106 00300	
Check ? High Limit Low Limit	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	
Elem Units Avg Stddev %RSD	V_2924 ppm .00005 .00048 999.12	Zn2062 ppm .00004 .00016 379.99	Zr3391 ppm F .09105 .03829 42.051					
#1 #2 #3	00050 .00029 .00036	.00007 .00019 00013	.08211 .05803 .13302					
Check ? High Limit Low Limit	Chk Pass	Chk Pass	Chk Fail .04000 04000					
Int. Std. Units Avg Stddev %RSD	Y_2243 Cts/S 11230. 19. .17298	Y_3600 Cts/S 96718 . 258. .26694	Y_3774 Cts/S 4082.5 41.8 1.0241					
#1 #2 #3	11245. 11238. 11208.	96510. 97007. 96636.	4094.5 4117.0 4036.0					

Sample Name: PBW X5 Acquired: 10/23/2015 11:00:07 Type: Unk Method: ICP-THERMO3 6010 200.7WATER 3YLINES(v526) Mode: CONC Corr. Factor: 1.000000 Custom ID1: Custom ID2: Custom ID3: Comment: WG543718-02 Elem Ag3280 AI3082 As1890 B 2496 Ba4554 Be3131 Ca4226 Cd2288 Units ppm ppm ppm ppm ppm ppm ppm ppm Avg -.00058 .01177 .00101 .00126 .00029 .00004 .02378 -.00001 Stddev .00019 .00840 .00218 .00121 .00045 .00004 .01235 .00036 %RSD 32.749 71.379 215.63 95.994 154.90 109.82 51.911 3331.6 #1 -.00039 .01112 -.00040 .00205 -.00020 .00003 .03794 .00038 #2 -.00058 .02048 -.00009 .00186 .00040 .00009 .01524 -.00033 #3 -.00077 .00371 .00351 -.00013 .00069 -.00000 .01817 -.00008 Check? Chk Pass Chk Pass Chk Pass Chk Pass Chk Pass Chk Pass Chk Pass **Chk Pass** High Limit Low Limit Elem Co2286 Cr2677 Cu2247 Fe2611 K 7664 Li6707 Mg2790 Mn2576 Units ppm ppm ppm ppm ppm ppm ppm ppm .00044 .00112 .00015 -.01299 .11814 .00022 -.09728 -.00061 Avg Stddev .00026 .00056 .08944 .00092 .00139 .01071 .03148 .00175 %RSD 59.405 49.973 946.70 82.441 75.707 420.63 32.359 286.81 #1 .00055 .00118 .00017 -.02405 .01582 -.00084 -.08690 .00053 #2 .00062 .00164 .00152 -.00267 .15716 .00067 -.07230 .00026 #3 .00014 .00053 -.00125 -.01226 .18145 .00083 -.13264 -.00262 Check? Chk Pass Chk Pass Chk Pass Chk Pass Chk Pass Chk Pass Chk Pass High Limit Low Limit Se1960 Mo2020 Na5895 Ni2316 P_2149 Pb2203 Sb2068 Si2124 Elem Units ppm ppm ppm ppm ppm ppm ppm ppm Avg .00057 .02089 .00010 -.00625 -.00254 .00153 .00165 .00738 Stddev .00027 .00574 .00052 .00402 .00070 .00330 .00650 .00456 %RSD 27.494 527.18 64.362 215.75 393.51 47.073 27.397 61.748 #1 -.00256 .00038 .02736 -.00015 -.00653 .00011 -.00415 .00387

-.00025

.00069

.01892

.01639

Approved: October 26, 2015

.00042

.00868

.00573

.01253

J'ye 1hu

-.00209

-.01011

Chk Pass Chk Pass Chk Pass Chk Pass Chk Pass Chk Pass Chk Pass Chk Pass

-.00184

-.00323

-.00083

.00530

#2

#3

Check? High Limit Low Limit .00088

.00045

Sample Name: PBW X5 Acquired: 10/23/2015 11:00:07 Type: Unk Method: ICP-THERMO3_6010_200.7WATER_3YLINES(v526) Mode: CONC Corr. Factor: 1.000000 Custom ID2: Custom ID1: Custom ID3: Comment: WG543718-02 Elem Sn1899 Sr4077 Ti3372 TI1908 V_2924 Zn2062 Zr3391 Units ppm ppm ppm ppm ppm ppm ppm Avg .00006 .00002 .00132 -.00209 -.00013 .00090 -.00610 Stddev .00096 .00014 .00331 .00351 .00039 .00002 .08719 299.11 %RSD 1509.3 851.02 250.31 168.32 2.4742 1430.1 #1 .00117 .00017 -.00246 -.00087 -.00049 .00092 .09128 #2 -.00053 -.00009 .00278 -.00604 .00029 .00091 -.07693 -.00045 -.00003 -.03264 #3 .00365 .00066 -.00019 .00088 Check? Chk Pass Chk Pass Chk Pass Chk Pass Chk Pass Chk Pass **High Limit** Low Limit Int. Std. Y 2243 Y 3600 Y 3774 Units Cts/S Cts/S Cts/S Avg 10856. 93721. 3963.4 Stddev 148. 14.1 19.

Approved: October 26, 2015

J'ye 1hu

%RSD

#1

#2

#3

.17049

10836.

10861.

10872.

.15764

93606.

93670.

93888.

.35498

3952.4

3958.5

3979.2

Method: ICP-THERMO3_6010_200.7WATER_3YLINES(v526) Mode: CONC Corr. Factor: 1.000000

Jser: JYH Custom ID1: Custom ID2: Custom ID3:

Comment: WG543718-03

Ag3280	Al3082	As1890	B_2496	Ba4554	Be3131	Ca4226	Cd2288
ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm
.21646	5.4546	.21352	1.0570	.56371	.02673	5.6000	.02726
.00073	.0121	.00308	.0010	.00290	.00005	.0136	.00010
.33729	.22177	1.4416	.09810	.51455	.19243	.24305	.37930
.21730	5.4620	.21433	1.0575	.56652	.02670	5.6000	.02717
.21595	5.4407	.21611	1.0577	.56073	.02670	5.5864	.02737
.21614	5.4612	.21012	1.0558	.56388	.02679	5.6136	.02724
	ppm .21646 .00073 .33729 .21730 .21595	ppm ppm .21646 5.4546 .00073 .0121 .33729 .22177 .21730 5.4620 .21595 5.4407	ppm ppm ppm .21646 5.4546 .21352 .00073 .0121 .00308 .33729 .22177 1.4416 .21730 5.4620 .21433 .21595 5.4407 .21611	ppm ppm ppm ppm .21646 5.4546 .21352 1.0570 .00073 .0121 .00308 .0010 .33729 .22177 1.4416 .09810 .21730 5.4620 .21433 1.0575 .21595 5.4407 .21611 1.0577	ppm ppm ppm ppm ppm .21646 5.4546 .21352 1.0570 .56371 .00073 .0121 .00308 .0010 .00290 .33729 .22177 1.4416 .09810 .51455 .21730 5.4620 .21433 1.0575 .56652 .21595 5.4407 .21611 1.0577 .56073	ppm ppm <td>ppm ppm ppm</td>	ppm ppm

Check? Chk Pass Chk P

Elem	Co2286	Cr2677	Cu2247	Fe2611	K_7664	Li6707	Mg2790	Mn2576
Units	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm
Avg	. 11059	. 27644	. 27773	2.2179	27.961	. 56194	5.5055	. 28034
Stddev	.00032	.00023	.00162	.0179	.120	.00386	.1190	.00116
%RSD	.29190	.08182	.58327	.80843	.43076	.68682	2.1605	.41501
#1	.11096	.27667	.27783	2.2371	28.078	.56186	5.4277	.28043
#2	.11045	.27644	.27929	2.2151	27.837	.55813	5.6424	.27914
#3	.11036	.27622	.27606	2.2016	27.967	.56584	5.4463	.28146

Check? Chk Pass Chk P

Elem	Mo2020	Na5895	Ni2316	P_2149	Pb2203	Sb2068	Se1960	Si2124
Units	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm
Avg	. 55593	28.302	.28010	5.3223	. 27634	. 65509	. 21705	2.7846
Stddev	.00137	.082	.00083	.0270	.00120	.00405	.00327	.0040
%RSD	.24560	.28908	.29691	.50711	.43316	.61751	1.5077	.14524
#1	.55698	28.394	.27914	5.3395	.27559	.65093	.21625	2.7813
#2	.55643	28.235	.28051	5.3361	.27571	.65900	.22065	2.7891
#3	.55439	28.278	.28065	5.2912	.27772	.65534	.21426	2.7833

Check? Chk Pass Chk P

Approved: October 26, 2015

J'ye lon

Sample Name: LCSW X5 Acquired: 10/23/2015 11:04:14 Type: Unk

Method: ICP-THERMO3_6010_200.7WATER_3YLINES(v526) Mode: CONC Corr. Factor: 1.000000

Jser: JYH Custom ID1: Custom ID2: Custom ID3:

Comment: WG543718-03

Elem	Sn1899	Sr4077	Ti3372	TI1908	V_2924	Zn2062	Zr3391
Units	ppm						
Avg	. 55049	. 55884	. 55527	. 28009	. 55291	. 54359	. 43771
Stddev	.00253	.00119	.00782	.00182	.00078	.00100	.11818
%RSD	.46004	.21263	1.4091	.64860	.14036	.18421	26.999
#1	.55016	.55999	.56068	.27957	.55356	.54429	.46043
#2	.55317	.55892	.55885	.28211	.55313	.54405	.30983
#3	.54814	.55762	.54630	.27859	.55205	.54245	.54289

Check? Chk Pass Chk P

Low Limit

Int. Std.	Y_2243	Y_3600	Y_3774
Units	Cts/S	Cts/S	Cts/S
Avg	10701.	91754 .	3935.6
Stddev	25.	328.	4.2
%RSD	.23004	.35792	.10670
#1	10675.	91542.	3930.9
#2	10724.	92133.	3937.1
#3	10705.	91588.	3938.9

Approved: October 26, 2015

J'ye lon

Sample Name: L1510117701 Acquired: 10/23/2015 11:08:02 Type: Unk Method: ICP-THERMO3 6010 200.7WATER 3YLINES(v526) Mode: CONC Corr. Factor: 1.000000 Custom ID1: Custom ID2: Custom ID3: User: JYH Comment: WG543718-01 Elem Ag3280 AI3082 As1890 B 2496 Ba4554 Be3131 Ca4226 Cd2288 Units ppm ppm ppm ppm ppm ppm ppm ppm Avg -.00056 .05133 .00137 .08962 .17136 -.00001 47.519 -.00002 Stddev .00071 .00619 .00272 .00042 .00101 .00001 .160 .00013 %RSD 126.62 12.061 198.37 .46779 .59026 111.71 .33760 765.30 #1 .00003 .05785 .00425 .08914 .17027 -.00001 47.344 .00014 #2 -.00036 .04553 .00103 .08992 .17226 -.00002 47.555 -.00011 #3 -.00135 .05060 -.00116 .08980 .17156 -.00000 47.659 -.00008 Check? Chk Pass Chk Pass Chk Pass Chk Pass Chk Pass Chk Pass Chk Pass **Chk Pass** High Limit Low Limit Elem Co2286 Cr2677 Cu2247 Fe2611 K 7664 Li6707 Mg2790 Mn2576 Units ppm ppm ppm ppm ppm ppm ppm ppm .00099 .00107 .00768 .11981 1.3073 .00893 9.2450 .02088 Avg .00249 Stddev .00015 .00036 .00151 .00503 .0333 .0468 .00124 %RSD 14.727 33.358 19.666 4.2004 2.5434 27.854 .50616 5.9594 #1 .00088 .00074 .00925 .11638 1.3415 .01054 9.2284 .02048 #2 .00116 .00101 .00623 .11746 1.3053 .00606 9.2979 .01989 #3 .00094 .00145 .00757 .12558 1.2751 .01018 9.2089 .02228 Check? Chk Pass Chk Pass Chk Pass Chk Pass Chk Pass Chk Pass Chk Pass High Limit Low Limit Mo2020 Na5895 Ni2316 P_2149 Pb2203 Sb2068 Se1960 Si2124 Elem Units ppm ppm ppm ppm ppm ppm ppm ppm .00034 Avg .00136 47.855 .00133 .01944 .00253 -.00353 5.5144 Stddev .00042 .240 .00086 .00219 .00328 .00124 .00780 .0131 957.92 %RSD 30.641 .50086 64.528 11.269 49.029 220.58 .23814 #1 .00088 47.578 .00150 .02085 .00240 .00223 -.00170 5.5248 #2 48.003 .00040 .02054 .00207 .00147 5.5187 .00156 -.01208 #3 .00165 47.983 .00210 .01691 -.00344 .00389 .00318 5.4997 Chk Pass Chk Pass Chk Pass Chk Pass Chk Pass Chk Pass Chk Pass Chk Pass Check? **High Limit**

Approved: October 26, 2015

Low Limit

Sample Name: L1510117701 Acquired: 10/23/2015 11:08:02 Type: Unk Method: ICP-THERMO3_6010_200.7WATER_3YLINES(v526) Mode: CONC Corr. Factor: 1.000000 Custom ID2: User: JYH Custom ID1: Custom ID3: Comment: WG543718-01 Elem Sn1899 Sr4077 Ti3372 TI1908 V_2924 Zn2062 Zr3391 Units ppm ppm ppm ppm ppm ppm ppm Avg -.00002 .51548 -.00940 -.00368 -.00006 .00804 .02591 Stddev .00094 .00232 .00463 .00233 .00055 .00010 .14506 %RSD 4625.2 .45061 49.223 63.160 934.70 1.2740 559.80 #1 -.00000 .51282 -.00879 -.00167 -.00029 .00814 -.10447 #2 .00091 .51650 -.01430 -.00315 -.00045 .00805 .00003 .18218 #3 -.00097 .51711 -.00511 -.00623 .00057 .00793 Check? Chk Pass Chk Pass Chk Pass Chk Pass Chk Pass Chk Pass **High Limit** Low Limit Int. Std. Y 2243 Y 3600 Y 3774 Units Cts/S Cts/S Cts/S 10659. 91600. 3935.9 Avg Stddev 166. 14.8 16. %RSD .14998 .18116 .37508 #1 10649. 91529. 3934.1 #2 10651. 91482. 3922.2

Approved: October 26, 2015

#3

10678.

91790.

3951.5

Method: IC User: JYH	ame: L1510 P-THERMO Custo WG543718	D3_6010_2 m ID1:	•			Mode: C	e: Unk ONC C	Corr. Factor	: 1.00000(
Elem Units Avg Stddev %RSD	Ag3280 ppm . 21531 .00034 .15866	Al3082 ppm 5.4220 .0104 .19212	As1890 ppm . 21639 .00368 1.6998	B_2496 ppm 1.1502 .0051 .44197	Ba4554 ppm . 73401 .00077 .10513	Be3131 ppm . 02691 .00009 .35088	54.886 .165	Cd2288 ppm . 02677 .00050 1.8673	
#1 #2 #3	.21534 .21563 .21495	5.4198 5.4334 5.4129	.21249 .21980 .21686	1.1471 1.1560 1.1473	.73382 .73486 .73336	.02702 .02684 .02688	54.900	.02707 .02704 .02619	
Check ? High Limit Low Limit	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	
Elem Units Avg Stddev %RSD	Co2286 ppm . 10778 .00035 .32125	Cr2677 ppm . 27758 .00088 .31596	Cu2247 ppm . 27727 .00138 .49815	ppm	K_7664 ppm 29.112 .072 .24832	Li6707 ppm . 55940 .00351 .62761	ppm	.29317	
#1 #2 #3	.10810 .10741 .10783	.27657 .27803 .27815	.27756 .27577 .27849	2.3071 2.3077 2.3098	29.194 29.057 29.084	.56033 .56235 .55551		.29346 .29079 .29525	
Check ? High Limit Low Limit	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	
Elem Units Avg Stddev %RSD	Mo2020 ppm . 55359 .00162 .29349	Na5895 ppm 77.321 .134 .17273	Ni2316 ppm . 27331 .00051 .18829	P_2149 ppm 5.3951 .0055 .10252	Pb2203 ppm . 26651 .00425 1.5944	Sb2068 ppm . 65612 .00322 .49086	ppm . 21866	Si2124 ppm 8.5724 .0021 .02431	
#1 #2 #3	.55519 .55365 .55194	77.429 77.364 77.172	.27276 .27379 .27337	5.3971 5.3994 5.3889	.26179 .26769 .27004	.65809 .65788 .65241		8.5743 8.5702 8.5726	
Check ? High Limit Low Limit	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	

Sample Name: L1510117701S Acquired: 10/23/2015 11:12:04 Type: Unk Method: ICP-THERMO3_6010_200.7WATER_3YLINES(v526) Mode: CONC User: JYH Custom ID1: Custom ID2: Custom ID3:

Mode: CONC Corr. Factor: 1.000000

Comment: WG543718-04 WG543718-05

Elem	Sn1899	Sr4077	Ti3372	TI1908	V_2924	Zn2062	Zr3391
Units	ppm	ppm	ppm	ppm	ppm	ppm	ppm
Avg	. 54572	1.0885	. 54519	. 27163	. 55408	. 53976	. 45287
Stddev	.00055	.0027	.00756	.00238	.00042	.00119	.11751
%RSD	.10148	.25161	1.3870	.87566	.07524	.22049	25.948
#1	.54635	1.0916	.55008	.26994	.55380	.54103	.46953
#2	.54550	1.0877	.53648	.27435	.55456	.53958	.32792
#3	.54531	1.0863	.54901	.27059	.55388	.53867	.56117

Check? Chk Pass Chk P

Low Limit

Int. Std.	Y_2243	Y_3600	Y_3774
Units	Cts/S	Cts/S	Cts/S
Avg	10497.	89535 .	3914.1
Stddev	14.	155.	13.9
%RSD	.13399	.17261	.35612
#1	10485.	89446.	3915.7
#2	10512.	89445.	3899.4
#3	10493.	89713.	3927.2

Approved: October 26, 2015

Method: IC User: JYH	ame: L1510 P-THERMO Custo WG54371 8	D3_6010_2 om ID1:	200.7WATE Custoi			Mode: C	oe: Unk ONC C	Corr. Factor	: 1.00000(
Elem Units Avg Stddev %RSD	Ag3280 ppm . 21438 .00052 .24212	ppm 5.4259 .0115	ppm . 21783 .00296	ppm 1.1583 .0044	Ba4554 ppm . 73358 .00486 .66262	Be3131 ppm . 02701 .00005 .17207	54.409 .294	Cd2288 ppm . 02719 .00019 .69531	
#1 #2 #3	.21390 .21493 .21432	5.4371	.21721 .22106 .21523	1.1533 1.1609 1.1608	.73869 .73302 .72902	.02706 .02702 .02697	54.438	.02740 .02703 .02714	
Check ? High Limit Low Limit	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	
Elem Units Avg Stddev %RSD #1 #2	Co2286 ppm .10844 .00034 .31186 .10831 .10818 .10882	ppm . 27789 .00169 .60682 .27616	ppm . 27772 .00027 .09630 .27777 .27796	ppm 2.3130 .0174 .74997	K_7664 ppm 29.150 .115 .39540 29.165 29.258 29.029	Li6707 ppm . 55950 .00267 .47756 .55704 .56234 .55912	ppm 14.998 .103 .68953	.29792	
Check ? High Limit Low Limit	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	
Elem Units Avg Stddev %RSD	Mo2020 ppm . 55589 .00128 .22992	ppm 76.854 .311	ppm . 27420 .00138	ppm 5.4029	Pb2203 ppm . 26944 .00127 .47048	Sb2068 ppm . 65946 .00379 .57547	ppm . 21043 .00220	Si2124 ppm 8.5394 .0128 .14937	
#1 #2 #3	.55724 .55571 .55471	77.205 76.742 76.614	.27519	5.3979 5.4156 5.3951	.27045 .26802 .26984	.65528 .66042 .66269	.20986 .20856 .21286	8.5460 8.5475 8.5247	
Check ? High Limit Low Limit	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	

Sample Name: L1510117701SD Acquired: 10/23/2015 11:15:53 Type: Unk

Method: ICP-THERMO3_6010_200.7WATER_3YLINES(v526) Mode: CONC Corr. Factor: 1.000000

User: JYH Custom ID1: Custom ID2: Custom ID3:

Comment: WG543718-05 WG543718-06

Elem	Sn1899	Sr4077	Ti3372	TI1908	V_2924	Zn2062	Zr3391
Units	ppm	ppm	ppm	ppm	ppm	ppm	ppm
Avg	. 54955	1.0854	. 55044	. 27210	. 55605	. 54186	. 48096
Stddev	.00060	.0062	.01072	.00059	.00122	.00136	.15257
%RSD	.10953	.56750	1.9483	.21543	.21935	.25162	31.721
#1	.55021	1.0917	.54963	.27277	.55564	.54080	.42588
#2	.54942	1.0851	.54014	.27187	.55742	.54340	.36359
#3	.54902	1.0794	.56154	.27167	.55509	.54138	.65343

Check? Chk Pass Chk P

Low Limit

Int. Std.	Y_2243	Y_3600	Y_3774
Units	Cts/S	Cts/S	Cts/S
Avg	10471.	89466 .	3909.2
Stddev	10.	166.	22.6
%RSD	.10007	.18592	.57685
#1	10459.	89400.	3883.9
#2	10475.	89342.	3916.6
#3	10478.	89655.	3927.1

Approved: October 26, 2015

Sample Name: L1510105501								
Method: ICF	-THERMO3	_6010_200	.7WATER_	3YLINES(v	526) Mo	de: CONC	Corr. Fa	actor: 1.00000(
User: JYH	Custom	ID1:	Custom ID)2: (Custom ID3	i i		
Comment:								
Elem	Ag3280	Al3082	As1890	B_2496	Ba4554	Be3131	Ca4226	Cd2288
Units Avg	ppm . 00039	ppm . 02673	ppm 00305	ppm . 03068	ppm . 02725	ppm . 00002	ppm 61.646	ppm . 00044
Stddev	.00055	.00166	.00123	.00174	.00080	.00002	.210	.00031
%RSD	141.16	6.2188	40.135	5.6665	2.9184	529.02	.34052	70.961
#1	.00028	.02794	00168	.02970	.02817	.00000	61.797	.00076
#2	00009	.02483	00404	.03269	.02688	.00012	61.736	.00013
#3	.00100	.02741	00345	.02965	.02671	00007	61.407	.00043
Check ? High Limit Low Limit	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass
LOW LITTIC								
Elem	Co2286	Cr2677	Cu2247	Fe2611	K_7664	Li6707	Mg2790	Mn2576
Units	ppm	ppm	ppm	ppm	ppm	ppm	ppm 46.247	ppm . 24960
Avg Stddev	. 00230 .00009	. 00165 .00053	. 00138 .00039	. 12519 .00803	. 48046 .05158	. 10878 .00308	.105	.00193
%RSD	3.9245	32.306	28.507	6.4150	10.735	2.8313	.22645	.77377
#1	.00228	.00105	.00094	.11810	.50402	.10884	46.367	.25180
#2	.00223	.00207	.00151	.12355	.42131	.10568	46.178	.24822
#3	.00240	.00183	.00169	.13391	.51605	.11184	46.196	.24877
Check ? High Limit Low Limit	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass
Elem	Mo2020	Na5895	Ni2316	P_2149	Pb2203	Sb2068	Se1960	Si2124
Units	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm
Avg	.00059	212.07	.00573	.11512	00063	.00407	.00412	24.133
Stddev %RSD	.00009 15.419	.96 .45148	.00016 2.7198	.00686 5.9587	.00226 362.07	.00322 79.210	.00939 227.99	.058 .24086
701 (OD	10.413	.43140	2.7130	5.5567	302.07	73.210	227.33	.24000
#1	.00049	212.96	.00589	.11681	00059	.00575	00362	24.180
#2	.00067	212.18	.00573	.10758	00291	.00611	.00141	24.151
#3	.00059	211.06	.00558	.12098	.00162	.00035	.01456	24.068
Check ? High Limit Low Limit	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass

Sample Nan			cquired: 10/			Type: Unk		
Method: ICF			_	•	,	de: CONC	Corr. Fa	ctor: 1.00000(
User: JYH	Custom	ID1:	Custom ID)2: (Custom ID3	:		
Comment:								
Elem	Sn1899	Sr4077	Ti3372	TI1908	V_2924	Zn2062	Zr3391	
Units	ppm	ppm	ppm	ppm	ppm	ppm	ppm	
Avg	.00009	1.4918	01110	00397	00045	.00460	.19889	
Stddev	.00036	.0042	.00310	.00316	.00108	.00016	.09817	
%RSD	375.87	.28179	27.950	79.628	238.08	3.4794	49.356	
#1	00023	1.4937	01467	00041	00041	.00443	.26255	
#2	.00005	1.4947	00915	00506	00155	.00475	.24829	
#3	.00047	1.4870	00947	00645	.00061	.00460	.08584	
Check?	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	
High Limit								
Low Limit								
Int. Std.	Y 2243	Y_3600	Y_3774					
Units	_ Cts/S	_ Cts/S	_ Cts/S					
Avg	10378.	88090.	3911.6					
Stddev	16.	189.	20.5					
%RSD	.15893	.21456	.52372					
#1	10360.	87955.	3891.3					
#2	10379.	88306.	3911.3					
#3	10393.	88008.	3932.3					

Sample Name: L1510105501PS Acquired: 10/23/2015 11:23:33 Type: Unk Method: ICP-THERMO3_6010_200.7WATER_3YLINES(v526) Mode: CONC Corr. Factor: 1.000000 User: JYH Custom ID1: Custom ID2: Custom ID3: Comment: WG543782-03 Elem Ag3280 Al3082 As1890 B 2496 Ba4554 Be3131 Ca4226 Cd2288 Units ppm ppm ppm ppm ppm ppm ppm ppm Avg .21618 5.4096 .22463 1.1016 .58109 .02746 61.218 .02735 Stddev .00023 .0190 .00286 .0020 .00262 .00003 .232 .00030 .37938 %RSD .10742 .35099 1.2731 .18274 .45167 .12005 1.1064 #1 .21607 5.4126 .22277 1.1015 .58377 .02749 61.391 .02739 #2 .21645 5.3893 .22792 1.0996 .57852 .02742 60.954 .02702 #3 .21603 5.4270 .22319 1.1036 .58099 .02747 61.308 .02762 Check? Chk Pass Chk Pass Chk Pass Chk Pass Chk Pass Chk Pass Chk Pass **High Limit** Low Limit 6 n

Elem	Co2286	Cr2677	cu2247	Fe2611	K_7664	Li6707	Mg2790	Mn2576
Units	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm
Avg	.10888	. 27826	. 26948	2.2803	28.335	. 64894	47.118	. 49931
Stddev	.00033	.00072	.00110	.0265	.022	.00175	.359	.00323
%RSD	.30522	.25751	.40649	1.1635	.07715	.26907	.76121	.64696
#1	.10854	.27853	.27060	2.3107	28.351	.65054	47.370	.50159
#2	.10892	.27745	.26943	2.2619	28.310	.64707	46.707	.49561
#3	.10920	.27880	.26841	2.2683	28.343	.64921	47.277	.50073

Check? Chk Pass Chk P

Elem	Mo2020	Na5895	Ni2316	P_2149	Pb2203	Sb2068	Se1960	Si2124
Units	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm
Avg	. 55194	218.53	. 27541	5.5822	. 26655	. 66151	. 21989	24.676
Stddev	.00193	.88	.00010	.0150	.00293	.00260	.00322	.059
%RSD	.35044	.40077	.03698	.26844	1.1006	.39322	1.4630	.23994
#1	.55363	219.23	.27543	5.5898	.26975	.66427	.22352	24.733
#2	.55235	217.54	.27530	5.5920	.26399	.65910	.21880	24.680
#3	.54983	218.81	.27550	5.5650	.26591	.66116	.21737	24.614

Check? Chk Pass Chk P

Method: ICP-THERMO3_6010_200.7WATER_3YLINES(v526) Mode: CONC Corr. Factor: 1.000000

User: JYH Custom ID1: Custom ID2: Custom ID3:

Comment: WG543782-03

Elem	Sn1899	Sr4077	Ti3372	TI1908	V_2924	Zn2062	Zr3391
Units	ppm						
Avg	.54584	1.9034	.54780	.26445	.55893	.54150	.19399
Stddev	.00017	.0073	.00881	.00115	.00028	.00189	.09535
%RSD	.03136	.38350	1.6084	.43526	.05099	.34978	49.152
#1	.54572	1.9095	.55525	.26359	.55920	.54236	.09069
					.000_0		
#2	.54603	1.8953	.53807	.26400	.55863	.54281	.27864
#3	.54576	1.9055	.55006	.26576	.55898	.53933	.21265

Check? Chk Pass Chk P

Low Limit

Int. Std.	Y_2243	Y_3600	Y_3774
Units	Cts/S	Cts/S	Cts/S
Avg	10328.	87298 .	3889.9
Stddev	18.	196.	12.4
%RSD	.17639	.22421	.31917
#1	10306.	87072.	3876.0
#2	10337.	87408.	3899.9
#3	10339.	87414.	3893.7

Approved: October 26, 2015

Sample Name: L1510105501SDL Acquired: 10/23/2015 11:27:24 Type: Unk

Method: ICP-THERMO3_6010_200.7WATER_3YLINES(v526) Mode: CONC Corr. Factor: 1.000000

User: JYH Custom ID1: 5 Custom ID2: Custom ID3:

Comment: WG543782-04

Elem	Ag3280	Al3082	As1890	B_2496	Ba4554	Be3131	Ca4226	Cd2288
Units	ppm							
Avg	. 00112	. 00436	00172	. 01128	. 00472	00001	11.684	00004
Stddev	.00029	.00022	.00462	.00271	.00027	.00004	.043	.00007
%RSD	26.224	5.0948	268.23	24.047	5.7141	440.74	.37100	202.31
#1	.00127	.00433	00537	.01319	.00465	00000	11.693	.00003
#2	.00078	.00416	.00348	.01248	.00449	00005	11.637	00011
#3	.00131	.00460	00328	.00818	.00502	.00003	11.723	00003
Check? High Limit Low Limit	Chk Pass							
Elem	Co2286	Cr2677	Cu2247	Fe2611	K_7664	Li6707	Mg2790	Mn2576
Units	ppm							
Avg	.00086	. 00050	. 00024	. 01040	. 27181	. 02244	8.6616	. 04619
Stddev	.00033	.00088	.00058	.01204	.05541	.00362	.1013	.00064
%RSD	38.819	175.64	246.40	115.79	20.385	16.125	1.1696	1.3935
#1	.00124	.00130	00043	.00375	.30390	.02609	8.5925	.04570
#2	.00072	00044	.00064	.00315	.20783	.01885	8.6144	.04692
#3	.00062	.00064	.00050	.02430	.30369	.02239	8.7779	.04596
Check? High Limit Low Limit	Chk Pass							
Elem	Mo2020	Na5895	Ni2316	P_2149	Pb2203	Sb2068	Se1960	Si2124
Units	ppm							
Avg	. 00028	40.621	.00169	. 01920	00045	. 00262	. 00182	4.4777
Stddev	.00031	.091	.00033	.00201	.00538	.00127	.00329	.0108
%RSD	111.29	.22395	19.719	10.443	1187.0	48.508	181.07	.24119
#1	.00007	40.592	.00180	.01689	00656	.00267	.00006	4.4742
#2	.00063	40.549	.00196	.02039	.00359	.00387	00022	4.4899
#3	.00013	40.723	.00132	.02033	.00161	.00133	.00561	4.4691
Check ? High Limit Low Limit	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass

Approved: October 26, 2015

Sample Name: L1510105501SDL Acquired: 10/23/2015 11:27:24 Type: Unk Method: ICP-THERMO3_6010_200.7WATER_3YLINES(v526) Mode: CONC Corr. Factor: 1.000000 Custom ID2: User: JYH Custom ID1: 5 Custom ID3: Comment: WG543782-04 Elem Sn1899 Sr4077 Ti3372 TI1908 V_2924 Zn2062 Zr3391 Units ppm ppm ppm ppm ppm ppm ppm Avg -.00082 .27676 -.00134 .00060 -.00044 .00130 .16588 Stddev .00056 .00078 .00208 .00124 .00040 .00018 .05620 %RSD 68.394 .28281 155.46 207.90 90.855 13.577 33.881 #1 -.00056 .27590 .00010 .00006 .00002 .00124 .16858 #2 -.00044 .27696 -.00039 .00201 -.00063 .00151 .10838 #3 -.00147 .27742 -.00373 -.00029 -.00072 .00117 .22068 Check? Chk Pass Chk Pass Chk Pass Chk Pass Chk Pass Chk Pass **High Limit** Low Limit Int. Std. Y 2243 Y 3600 Y 3774 Units Cts/S Cts/S Cts/S 11592. 99038. 4237.5 Avg Stddev 19.9 5. 111. %RSD .04169 .11217 .47010

Approved: October 26, 2015

J. Je Ih

#1

#2

#3

11592.

11588.

11597.

99164.

98957.

98991.

4255.0

4241.7

4215.8

Sample Name: L1510105501SDL Acquired: 10/23/2015 11:31:26 Type: Unk

Method: ICP-THERMO3_6010_200.7WATER_3YLINES(v526) Mode: CONC Corr. Factor: 1.000000

User: JYH Custom ID1: 25 Custom ID2: Custom ID3:

Comment: WG543782-04

Elem	Ag3280	Al3082	As1890	B_2496	Ba4554	Be3131	Ca4226
Units	ppm	ppm	ppm	ppm	ppm	ppm	ppm
Avg	. 00115	.00423	00303	.00385	. 00085	00002	2.3073
Stddev	.00161	.00183	.00093	.00160	.00077	.00006	.0266
%RSD	140.30	43.181	30.605	41.545	90.358	238.82	1.1508
#1	00042	.00387	00334	.00331	.00045	.00001	2.2772
#2	.00107	.00621	00199	.00259	.00174	00009	2.3173
#3	.00279	.00261	00377	.00565	.00037	.00000	2.3273
Check ? High Limit Low Limit	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass
Elem	Cd2288	Co2286	Cr2677	Cu2247	Fe2611	K_7664	Li6707
Units	ppm	ppm	ppm	ppm	ppm	ppm	ppm
Avg	. 00002	.00019	00015	.00006	F02167	. 12989	. 00589
Stddev	.00004	.00004	.00096	.00121	.00986	.06572	.00139
%RSD	207.68	21.594	650.49	2055.5	45.480	50.596	23.652
#1	00000	.00020	00046	.00116	03304	.08805	.00525
#2	.00006	.00015	00091	.00024	01551	.09598	.00749
#3	00000	.00023	.00093	00123	01647	.20564	.00493
Check ? High Limit Low Limit	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Fail 720.00 02000	Chk Pass	Chk Pass
Elem	Mg2790	Mn2576	Mo2020	Na5895	Ni2316	P_2149	Pb2203
Units	ppm	ppm	ppm	ppm	ppm	ppm	ppm
Avg	1. 7153	. 00759	. 00033	8.0745	.00039	. 00230	00301
Stddev	.0485	.00156	.00029	.0270	.00011	.00128	.00291
%RSD	2.8272	20.499	87.008	.33477	28.909	55.739	96.809
#1	1.7392	.00871	.00049	8.0620	.00029	.00124	00608
#2	1.6595	.00581	.00050	8.0559	.00051	.00193	00266
#3	1.7472	.00825	00000	8.1055	.00038	.00372	00029
Check ? High Limit Low Limit	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass

Approved: October 26, 2015

Sample Name: L1510105501SDL Acquired: 10/23/2015 11:31:26 Type: Unk

Method: ICP-THERMO3_6010_200.7WATER_3YLINES(v526) Mode: CONC Corr. Factor: 1.000000

User: JYH Custom ID1: 25 Custom ID2: Custom ID3:

Comment: WG543782-04

Elem Units Avg Stddev %RSD	Sb2068 ppm 00059 .00274 468.60	Se1960 ppm 00263 .00770 293.16	Si2124 ppm . 91272 .01705 1.8683	Sn1899 ppm 00025 .00059 236.24	Sr4077 ppm . 05392 .00035 .65353	Ti3372 ppm . 00066 .00120 183.56	TI1908 ppm 00258 .00400 155.23
#1 #2 #3	00373 .00129 .00069	00445 00926 .00582	.89631 .91150 .93035	00093 00000 .00018	.05383 .05362 .05431	.00054 .00191 00048	00700 .00078 00151
Check ? High Limit Low Limit	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass
Elem Units Avg Stddev %RSD	V_2924 ppm 00024 .00004 18.085	Zn2062 ppm .00066 .00021 32.555	Zr3391 ppm . 09897 .09258 93.540				
#1 #2 #3	00029 00021 00023	.00074 .00041 .00082	.08277 .01556 .19857				
Check ? High Limit Low Limit	Chk Pass	Chk Pass	Chk Pass				
Int. Std. Units Avg Stddev %RSD	Y_2243 Cts/S 11830. 17. .14492	Y_3600 Cts/S 101240. 66. .06565	Y_3774 Cts/S 4267. 2 7.5 .17595				
#1 #2 #3	11845. 11832. 11811.	101210. 101320. 101190.	4268.8 4273.9 4259.1				

Approved: October 26, 2015

Sample Nam Method: ICP User: JYH Comment:				LINES(v526)	ype: QC) Mode: tom ID3:	CONC (Corr. Factor:	1.00000(
Elem	Ag3280	Al3082	As1890	B_2496	Ba4554	Be3131	Ca4226	
Units	ppm	ppm	ppm	ppm	ppm	ppm	ppm	
Avg	. 40816	10.316	. 42490	. 51532	1.0509	. 05187	10.431	
Stddev	.00141	.024	.00447	.00120	.0044	.00004	.079	
%RSD	.34572	.23330	1.0509	.23209	.42279	.07769	.75813	
#1	.40899	10.344	.42969	.51448	1.0518	.05190	10.393	
#2	.40895	10.301	.42416	.51478	1.0461	.05182	10.379	
#3	.40653	10.303	.42085	.51669	1.0548	.05189	10.522	
Check ? Value Range	Chk Pass	Chk Pass	Chk Pass					
Elem	Cd2288	Co2286	Cr2677	Cu2247	Fe2611	K_7664	Li6707	
Units	ppm	ppm	ppm	ppm	ppm	ppm	ppm	
Avg	. 05176	. 20622	. 52532	. 52044	4.1542	52.407	1.0401	
Stddev	.00028	.00044	.00118	.00260	.0294	.169	.0084	
%RSD	.54246	.21267	.22416	.49952	.70845	.32269	.80927	
#1	.05159	.20673	.52434	.52294	4.1668	52.469	1.0382	
#2	.05160	.20596	.52500	.51775	4.1206	52.216	1.0329	
#3	.05208	.20598	.52663	.52064	4.1753	52.537	1.0494	
Check ? Value Range	Chk Pass	Chk Pass	Chk Pass					
Elem	Mg2790	Mn2576	Mo2020	Na5895	Ni2316	P_2149	Pb2203	
Units	ppm	ppm	ppm	ppm	ppm	ppm	ppm	
Avg	10.228	. 51837	1.0367	53.152	. 52683	10.356	. 52180	
Stddev	.250	.00417	.0024	.214	.00149	.030	.00142	
%RSD	2.4421	.80485	.22814	.40309	.28280	.29437	.27293	
#1	10.316	.51390	1.0394	53.178	.52665	10.391	.52328	
#2	9.9461	.51903	1.0352	52.926	.52840	10.339	.52044	
#3	10.422	.52216	1.0354	53.352	.52543	10.337	.52167	
Check ? Value Range	Chk Pass	Chk Pass	Chk Pass					

Sample Nam	-THERMO3_	6010_200.7		LINES(v526)		CONC (Corr. Factor:	1.00000(
User: JYH Comment:	Custom I	DI: (Custom ID2:	Cus	tom ID3:			
Elem Units Avg Stddev %RSD	Sb2068 ppm 1.2634 .0026 .20404	Se1960 ppm . 42258 .00329 .77875	Si2124 ppm 5.2645 .0072 .13757	Sn1899 ppm 1.0337 .0022 .21698	Sr4077 ppm 1.0515 .0038 .36147	Ti3372 ppm 1.0514 .0043 .41365	TI1908 ppm . 53230 .00403 .75696	
#1 #2 #3	1.2625 1.2663 1.2614	.42103 .42035 .42636	5.2612 5.2594 5.2728	1.0355 1.0343 1.0312	1.0536 1.0471 1.0537	1.0479 1.0502 1.0563	.53454 .53472 .52765	
Check ? Value Range	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	
Elem Units Avg Stddev %RSD	V_2924 ppm 1.0408 .0028 .26747	Zn2062 ppm 1.0364 .0010 .09176	Zr3391 ppm F .38247 .11050 28.891					
#1 #2 #3	1.0426 1.0376 1.0422	1.0371 1.0353 1.0367	.47945 .26218 .40578					
Check ? Value Range	Chk Pass	Chk Pass	Chk Fail 1.0000 -10.000%					
Int. Std. Units Avg Stddev %RSD	Y_2243 Cts/S 11011. 19. .17327	Y_3600 Cts/S 93455 . 197. .21028	Y_3774 Cts/S 4071.0 21.4 .52649					
#1 #2 #3	10990. 11019. 11025.	93279. 93667. 93419.	4077.5 4088.5 4047.1					

Sample Nam Method: ICP User: JYH Comment:				LINES(v526)	ype: Blank) Mode: tom ID3:	CONC (Corr. Factor:	1.00000(
Elem	Ag3280	Al3082	As1890	B_2496	Ba4554	Be3131	Ca4226	
Units	ppm	ppm	ppm	ppm	ppm	ppm	ppm	
Avg	. 00001	. 00472	00436	.00300	00025	00001	. 01532	
Stddev	.00040	.00207	.00134	.00312	.00023	.00003	.01351	
%RSD	3019.9	43.837	30.840	103.94	92.050	517.04	88.191	
#1	00042	.00526	00591	.00556	00049	00001	.02945	
#2	.00036	.00646	00357	.00392	00002	.00002	.00252	
#3	.00009	.00243	00359	00047	00026	00003	.01400	
Check ? High Limit Low Limit	Chk Pass	Chk Pass	Chk Pass					
Elem	Cd2288	Co2286	Cr2677	Cu2247	Fe2611	K_7664	Li6707	
Units	ppm	ppm	ppm	ppm	ppm	ppm	ppm	
Avg	. 00002	.00077	00039	00054	.00693	. 15303	. 00461	
Stddev	.00006	.00015	.00044	.00038	.00579	.05863	.00589	
%RSD	366.48	19.741	112.41	70.733	83.607	38.312	127.84	
#1	00005	.00094	.00011	00053	.00108	.19777	00158	
#2	.00006	.00065	00060	00093	.01266	.08666	.01015	
#3	.00004	.00072	00069	00016	.00704	.17467	.00526	
Check ? High Limit Low Limit	Chk Pass	Chk Pass	Chk Pass					
Elem	Mg2790	Mn2576	Mo2020	Na5895	Ni2316	P_2149	Pb2203	
Units	ppm	ppm	ppm	ppm	ppm	ppm	ppm	
Avg	06845	. 00072	. 00137	. 04439	.00007	00098	00388	
Stddev	.07314	.00167	.00036	.00726	.00101	.00215	.00148	
%RSD	106.85	232.45	26.480	16.362	1485.9	219.28	38.161	
#1	06454	.00165	.00117	.05138	.00106	00341	00478	
#2	.00265	00121	.00115	.04490	.00010	.00066	00217	
#3	14347	.00172	.00179	.03688	00096	00019	00470	
Check ? High Limit Low Limit	Chk Pass	Chk Pass	Chk Pass					

Sample Nam Method: ICP User: JYH Comment:	ne: CCB / -THERMO3_ Custom I	6010_200.7	/23/2015 11: WATER_3YI Custom ID2:	LINES(v526)	ype: Blank) Mode: tom ID3:	CONC (Corr. Factor:	1.00000(
Elem Units Avg Stddev %RSD	Sb2068 ppm .00006 .00192 3173.5	Se1960 ppm .00157 .00256 162.81	Si2124 ppm .00511 .00260 50.826	Sn1899 ppm . 00037 .00017 45.412	Sr4077 ppm .00013 .00028 220.37	Ti3372 ppm . 00243 .00165 67.728	TI1908 ppm . 00007 .00283 4295.4	
#1 #2 #3	00075 .00226 00132	.00436 .00104 00068	.00730 .00224 .00580	.00018 .00048 .00045	00019 .00023 .00034	.00167 .00130 .00432	00306 .00245 .00081	
Check ? High Limit Low Limit	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	
Elem Units Avg Stddev %RSD	V_2924 ppm . 00018 .00035 197.76	Zn2062 ppm .00005 .00006 108.76	Zr3391 ppm F .04464 .16687 373.86					
#1 #2 #3	.00053 00018 .00019	.00007 .00010 00001	14804 .14285 .13909					
Check ? High Limit Low Limit	Chk Pass	Chk Pass	Chk Fail .04000 04000					
Int. Std. Units Avg Stddev %RSD	Y_2243 Cts/S 11203. 13. .11227	Y_3600 Cts/S 9 6226 . 252. .26214	Y_3774 Cts/S 4070.0 5.7 .14097					
#1 #2 #3	11213. 11189. 11206.	96204. 95986. 96489.	4065.3 4076.4 4068.3					

Sample Name: PBW 46 Acquired: 10/23/2015 11:43:21 Type: Unk Method: ICP-THERMO3_6010_200.7WATER_3YLINES(v526) Mode: CONC Corr. Factor: 1.000000 Custom ID1: Custom ID2: Custom ID3: Comment: WG543956-02 Elem Ag3280 AI3082 As1890 B 2496 Ba4554 Be3131 Ca4226 Cd2288 Units ppm ppm ppm ppm ppm ppm ppm ppm Avg .00116 .01234 -.00357 .00357 .00033 .00000 .00999 .00012 Stddev .00044 .00249 .00245 .00227 .00068 .00003 .01630 .00008 %RSD 37.816 20.182 68.663 63.599 206.55 561.82 163.25 69.650 #1 .00077 .01232 -.00074 .00535 .00049 -.00002 .02618 .00004 #2 .00107 .01484 -.00488 .00101 .00092 .00003 .01020 .00011 #3 .00164 .00986 -.00509 .00435 -.00042 .00000 -.00642 .00020 Check? Chk Pass Chk Pass Chk Pass Chk Pass Chk Pass Chk Pass High Limit Low Limit Elem Co2286 Cr2677 Cu2247 Fe2611 K 7664 Li6707 Mg2790 Mn2576 Units ppm ppm ppm ppm ppm ppm ppm ppm .00047 .00040 -.00035 -.01426 .12917 .00058 -.01388 -.00097 Avg Stddev 80000. .00090 .00445 .00031 .00584 .02151 .06884 .00155 %RSD 17.650 228.18 87.774 40.913 16.652 772.82 495.90 160.62 #1 .00038 .00143 -.00040 -.01324 .14969 .00140 .03714 .00051 #2 .00048 -.00002 -.00002 -.02054.10679 -.00423 .01339 -.00259 #3 .00054 -.00022 -.00063 -.00901 .13101 .00456 -.09218 -.00082 Chk Pass Chk Pass Chk Pass Check? Chk Pass Chk Pass Chk Pass Chk Pass High Limit Low Limit Na5895 Se1960 Mo2020 Ni2316 P_2149 Pb2203 Sb2068 Si2124 Elem Units ppm ppm ppm ppm ppm ppm ppm ppm Avg -.00003 .01576 .00226 .00517 -.00064 -.00273 .00555 .01752

.00196

35.386

.00631

.00702

.00332

.00129

7.3833

.01653

.01704

.01898

Approved: October 26, 2015

Stddev

%RSD

Check? High Limit Low Limit

#1

#2

#3

.00004

162.39

-.00007

.00002

-.00004

.01344

85.257

.01032

.00590

.03107

.00024

10.598

.00239

.00199

.00241

.00410

79.289

.00102

.00527

.00922

Chk Pass Chk Pass Chk Pass Chk Pass Chk Pass Chk Pass Chk Pass Chk Pass

.00248

387.73

-.00258

-.00149

.00216

.00190

69.564

-.00271

-.00084

-.00464

Sample Name: PBW 46 Acquired: 10/23/2015 11:43:21 Type: Unk Method: ICP-THERMO3_6010_200.7WATER_3YLINES(v526) Mode: CONC Corr. Factor: 1.000000 Custom ID2: Custom ID1: Custom ID3: Comment: WG543956-02 Elem Sn1899 Sr4077 Ti3372 TI1908 V_2924 Zn2062 Zr3391 Units ppm ppm ppm ppm ppm ppm ppm Avg .00037 .00012 -.00310 -.00441 -.00039 .00104 .01807 Stddev .00031 .00019 .00480 .00086 .00062 .00011 .10861 %RSD 84.238 150.97 154.92 19.520 157.34 11.035 601.12 #1 .00028 .00014 .00174 -.00344 -.00087 .00117 -.08622 #2 .00011 .00030 -.00785 -.00507 -.00060 .00099 .13054 -.00007 .00988 #3 .00071 -.00318 -.00471 .00030 .00096 Check? Chk Pass Chk Pass Chk Pass Chk Pass Chk Pass Chk Pass **High Limit** Low Limit Int. Std. Y 2243 Y 3600 Y 3774 Units Cts/S Cts/S Cts/S Avg 10832. 93967. 3947.4 Stddev 12. 248. 5.2 %RSD .11403 .26387 .13252 #1 3944.2 10830. 93723.

Approved: October 26, 2015

J'ye lon

#2

#3

10821.

10846.

94219.

93960.

3944.6

3953.5

Sample Name: LCSW 46 Acquired: 10/23/2015 11:47:27 Type: Unk

Method: ICP-THERMO3_6010_200.7WATER_3YLINES(v526) Mode: CONC Corr. Factor: 1.000000

Jser: JYH Custom ID1: Custom ID2: Custom ID3:

Comment: WG543956-03

#1

#2

#3

Low Limit

.10835

.10853

.10862

.27407

.27468

.27488

.27260

.27464

.27255

Elem	Ag3280	Al3082	As1890	B_2496	Ba4554	Be3131	Ca4226	Cd2288
Units	ppm							
Avg	. 21259	5.3739	. 21225	1.0442	. 55532	. 02648	5.4761	. 02680
Stddev	.00076	.0116	.00246	.0039	.00228	.00007	.0162	.00013
%RSD	.35671	.21539	1.1570	.37742	.41122	.28316	.29495	.48031
#1 #2 #3 Check? High Limit	.21177 .21326 .21274 Chk Pass	5.3833 5.3610 5.3773 Chk Pass	.21496 .21162 .21017 Chk Pass	1.0486 1.0430 1.0411 Chk Pass	.55718 .55601 .55277 Chk Pass	.02653 .02653 .02640 Chk Pass	5.4916 5.4775 5.4594 Chk Pass	.02667 .02681 .02693 Chk Pass
Low Limit	0-2220	0.2077	02247	F-0011	V 7004	1:0707	M 2700	M 0570
Elem	Co2286	Cr2677	Cu2247	Fe2611	K_7664	Li6707	Mg2790	Mn2576
Units	ppm							
Avg	. 10850	. 27454	. 27327	2.1971	27.535	. 55161	5.2846	. 27346
Stddev	.00014	.00042	.00119	.0034	.154	.00313	.0858	.00135
%RSD	.12505	.15382	.43699	.15679	.55996	.56786	1.6232	.49485

Check? Chk Pass Chk P

2.1962

2.2009

2.1942

27.571

27.669

27.366

.54833

.55193

.55458

5.3740

5.2770

5.2029

.27216

.27486

.27337

Elem	Mo2020	Na5895	Ni2316	P_2149	Pb2203	Sb2068	Se1960	Si2124
Units	ppm							
Avg	.54564	28.023	.27643	5.2463	.27180	64659	.21210	2.7976
Stddev	.00139	.147	.00257	.0123	.00382	.00581	.00276	.0102
%RSD	.25401	.52537	.93046	.23378	1.4038	.89844	1.3023	.36414
#1	.54677	28.005	.27500	5.2486	.27599	.64335	.21255	2.7916
#2	.54604	28.179	.27940	5.2572	.27086	.65329	.21462	2.8093
#3	.54409	27.886	.27489	5.2330	.26854	.64311	.20915	2.7918

Check? Chk Pass Chk P

Sample Name: LCSW 46 Acquired: 10/23/2015 11:47:27 Type: Unk

Method: ICP-THERMO3_6010_200.7WATER_3YLINES(v526) Mode: CONC Corr. Factor: 1.000000

Jser: JYH Custom ID1: Custom ID2: Custom ID3:

Comment: WG543956-03

Elem	Sn1899	Sr4077	Ti3372	TI1908	V_2924	Zn2062	Zr3391
Units	ppm						
Avg	. 54090	. 54970	. 54767	. 27883	. 54650	. 53515	. 38459
Stddev	.00065	.00308	.00777	.00464	.00084	.00129	.11157
%RSD	.11993	.55995	1.4186	1.6657	.15392	.24096	29.010
#1	.54114	.55034	.54065	.27347	.54676	.53486	.51305
#2	.54140	.55241	.55602	.28142	.54718	.53656	.31188
#3	.54016	.54635	.54634	.28160	.54556	.53403	.32885

Check? Chk Pass Chk P

Low Limit

Int. Std.	Y_2243	Y_3600	Y_3774
Units	Cts/S	Cts/S	Cts/S
Avg	10643.	91083 .	3920.5
Stddev	21.	427.	18.4
%RSD	.19285	.46844	.46929
#1	10629.	90765.	3924.0
#2	10634.	90916.	3900.7
#3	10666.	91568.	3937.0

Approved: October 26, 2015

Sample Name: L1510126210 Acquired: 10/23/2015 11:51:17 Type: Unk Method: ICP-THERMO3 6010 200.7WATER 3YLINES(v526) Mode: CONC Corr. Factor: 1.000000 Custom ID1: Custom ID2: Custom ID3: User: JYH Comment: WG543956-01 Elem Ag3280 AI3082 As1890 B 2496 Ba4554 Be3131 Ca4226 Cd2288 Units ppm ppm ppm ppm ppm ppm ppm ppm Avg .00029 .01606 -.00024 .01711 .03499 -.00001 73.201 .00027 .00057 Stddev .00039 .00411 .00091 .00077 .00004 .142 .00015 %RSD 133.24 25.604 233.35 5.2950 2.2080 540.16 .19335 54.230 #1 .00013 .01397 -.00068 .01777 .03498 -.00005 73.364 .00031 #2 .00073 .02080 .00040 .01608 .03422 .00000 73.112 .00011 #3 .00001 .01342 -.00045 .01748 .03576 .00002 73.126 .00039 Check? Chk Pass Chk Pass Chk Pass Chk Pass Chk Pass Chk Pass Chk Pass High Limit Low Limit Elem Co2286 Cr2677 Cu2247 Fe2611 K 7664 Li6707 Mg2790 Mn2576 Units ppm ppm ppm ppm ppm ppm ppm ppm .00027 .00109 .00456 -.00873 .98289 .00698 7.3037 .00021 Avg .03698 .00264 Stddev .00035 .00023 .00101 .01663 .1249 .00093 %RSD 132.63 20.781 22.153 190.40 3.7620 37.763 1.7106 453.48 #1 .00067 .00085 .00520 -.01940 .94937 .00394 7.1758 -.00044 #2 .00009 .00113 .00509 -.01722 .97673 .00842 7.4254 .00127 #3 .00004 .00129 .00340 .01042 1.0226 .00859 7.3100 -.00022 Check? Chk Pass Chk Pass Chk Pass Chk Pass Chk Pass Chk Pass Chk Pass High Limit Low Limit Se1960 Mo2020 Ni2316 P_2149 Sb2068 Si2124 Elem Na5895 Pb2203 Units ppm ppm ppm ppm ppm ppm ppm ppm 4.1259 Avg .00128 5.5667 .00086 .00114 -.00257 .00109 .00191 Stddev .00040 .0089 .00135 .00334 .00175 .00301 .00492 .0087 276.58 257.17 %RSD 30.937 .16024 156.53 292.81 68.056 .21109 #1 -.00160 -.00105 .00091 5.5690 -.00056 -.00212 -.00051 4.1354 #2 5.5569 .00103 .00098 -.00022 -.00132 .00170 -.00153 4.1242 #3 .00124 5.5743 .00211 .00456 -.00459 .00454 .00757 4.1183 Chk Pass Chk Pass Chk Pass Check? Chk Pass Chk Pass Chk Pass **High Limit**

Approved: October 26, 2015

Low Limit

Sample Name: L1510126210 Acquired: 10/23/2015 11:51:17 Type: Unk Method: ICP-THERMO3_6010_200.7WATER_3YLINES(v526) Mode: CONC Corr. Factor: 1.000000 User: JYH Custom ID1: Custom ID2: Custom ID3: Comment: WG543956-01 Elem Sn1899 Sr4077 Ti3372 TI1908 V_2924 Zn2062 Zr3391 Units ppm ppm ppm ppm ppm ppm ppm Avg -.00065 .18925 -.01238 -.00393 -.00085 .01034 .10831 Stddev .00047 .00019 .00313 .00215 .00132 .00014 .20776 %RSD 72.766 .09903 25.287 54.649 156.01 1.3547 191.83 #1 -.00074 .18944 -.01283 -.00641 -.00100 .01034 .25491 #2 -.00014 .18925 -.01525 -.00282 -.00208 .01048 -.12945 #3 -.00108 .18907 -.00904 -.00257 .00054 .01020 .19945 Check? Chk Pass Chk Pass Chk Pass Chk Pass Chk Pass Chk Pass **High Limit** Low Limit Int. Std. Y 2243 Y 3600 Y 3774 Units Cts/S Cts/S Cts/S 10672. 91697. 3949.2 Avg Stddev 14. 122. 11.8 %RSD .13195 .13256 .29896 #1 10680. 91585. 3940.2 #2 10681. 91827. 3944.8 #3 10656. 91680. 3962.5

Sample Name: L1510126210S Acquired: 10/23/2015 11:55:20 Type: Unk Method: ICP-THERMO3_6010_200.7WATER_3YLINES(v526) Mode: CONC Corr. Factor: 1.000000 Custom ID1: Custom ID2: Custom ID3: User: JYH Comment: WG543956-04 Elem Ag3280 Al3082 As1890 B 2496 Ba4554 Be3131 Ca4226 Cd2288 Units ppm ppm ppm ppm ppm ppm ppm ppm Avg .21410 5.3981 .21864 1.0741 .59140 .02684 78.929 .02684 Stddev .00142 .0066 .00267 .0028 .00240 .00009 .237 .00015 %RSD .66505 .12286 1.2218 .25768 .40592 .33263 .29968 .57199 #1 .21564 5.4004 .22170 1.0765 .59413 .02691 79.131 .02680 #2 .21382 5.4032 .21676 1.0746 .59046 .02687 78.987 .02701 .21284 #3 5.3906 .21747 1.0711 .58962 .02674 78.668 .02671 Check? Chk Pass Chk Pass Chk Pass Chk Pass Chk Pass Chk Pass Chk Pass High Limit Low Limit K_7664 Elem Co2286 Cr2677 Cu2247 Fe2611 Li6707 Mg2790 Mn2576 Units ppm ppm ppm ppm ppm ppm ppm ppm .10634 .27820 .27270 2.1964 28.882 .55618 12.650 .27469 Avg .00230 Stddev .00068 .00176 .0167 .049 .00337 .056 .00105 %RSD .63702 .82817 .64681 .76116 .17016 .60654 .44258 .38220 .27341 .27582 #1 .10575 .27564 2.2147 28.918 .55515 12.714 #2 .10708 .28010 .27399 2.1818 28.903 .55994 12.630 .27448

Check? Chk Pass Chk P

2.1928

28.826

.55343

12.608

.27375

.27069

Elem	Mo2020	Na5895	Ni2316	P_2149	Pb2203	Sb2068	Se1960	Si2124
Units	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm
Avg	. 55190	33.768	. 27358	5.4102	. 27168	. 65791	. 21789	7.0065
Stddev	.00183	.061	.00090	.0165	.00357	.00225	.00737	.0137
%RSD	.33086	.18054	.32988	.30500	1.3142	.34220	3.3809	.19586
#1	.55134	33.825	.27400	5.4292	.26771	.66030	.22599	7.0221
#2	.55394	33.775	.27420	5.4016	.27462	.65760	.21158	7.0005
#3	.55042	33.704	.27255	5.3998	.27271	.65583	.21611	6.9967

Check? Chk Pass Chk P

Approved: October 26, 2015

#3

.10620

.27886

Sample Name: L1510126210S Acquired: 10/23/2015 11:55:20 Type: Unk

Method: ICP-THERMO3_6010_200.7WATER_3YLINES(v526) Mode: CONC Corr. Factor: 1.000000

User: JYH Custom ID1: Custom ID2: Custom ID3:

Comment: WG543956-04

Elem	Sn1899	Sr4077	Ti3372	TI1908	V_2924	Zn2062	Zr3391
Units	ppm						
Avg	.54360	.74114	.54643	.27758	.55297	.54049	.42667
Stddev	.00097	.00145	.00384	.00063	.00006	.00087	.11017
%RSD	.17851	.19561	.70298	.22595	.01125	.16021	25.819
#1	.54386	.74233	.54920	.27697	.55290	.54126	.54064
#2	.54442	.74157	.54804	.27754	.55299	.54066	.32075
#3	.54253	.73953	.54204	.27823	.55302	.53955	.41864

Check? Chk Pass Chk P

Low Limit

Int. Std.	Y_2243	Y_3600	Y_3774
Units	Cts/S	Cts/S	Cts/S
Avg	10497.	89748 .	3922.5
Stddev	16.	178.	25.7
%RSD	.15155	.19782	.65534
#1	10479.	89600.	3893.5
#2	10507.	89944.	3931.6
#3	10506.	89699.	3942.4

Approved: October 26, 2015

Sample Name: L1510126210SD Acquired: 10/23/2015 11:59:10 Type: Unk

Method: ICP-THERMO3_6010_200.7WATER_3YLINES(v526) Mode: CONC Corr. Factor: 1.000000

User: JYH Custom ID1: Custom ID2: Custom ID3:

Comment: WG543956-05

Elem	Ag3280	Al3082	As1890	B_2496	Ba4554	Be3131	Ca4226	Cd2288
Units	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm
Avg	. 21127	5.3386	. 21437	1.0611	. 58455	. 02639	77.571	. 02668
Stddev	.00143	.0130	.00265	.0016	.00138	.00003	.098	.00016
%RSD	.67459	.24357	1.2353	.15330	.23600	.13137	.12677	.59832
#1	.21010	5.3472	.21221	1.0593	.58579	.02637	77.679	.02686
#2	.21286	5.3449	.21359	1.0623	.58306	.02637	77.486	.02656
#3	.21086	5.3236	.21733	1.0617	.58479	.02643	77.548	.02661
Check ? High Limit Low Limit	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass
Elem	Co2286	Cr2677	Cu2247	Fe2611	K_7664	Li6707	Mg2790	Mn2576
Units	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm
Avg	. 10542	. 27289	. 26998	2.1546	28.294	. 55002	12.456	. 27046
Stddev	.00022	.00092	.00113	.0097	.224	.00112	.100	.00099
%RSD	.20700	.33613	.41792	.44929	.79223	.20275	.80622	.36715
#1	.10517	.27263	.27031	2.1657	28.282	.54882	12.563	.27044
#2	.10557	.27391	.27090	2.1495	28.076	.55103	12.439	.26948
#3	.10553	.27214	.26872	2.1485	28.524	.55022	12.364	.27147
Check ? High Limit Low Limit	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass
Elem	Mo2020	Na5895	Ni2316	P_2149	Pb2203	Sb2068	Se1960	Si2124
Units	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm
Avg	. 54589	33.312	. 27037	5.3519	. 27157	. 65526	. 22148	6.9204
Stddev	.00099	.044	.00267	.0252	.00145	.00253	.00439	.0071
%RSD	.18189	.13348	.98862	.47020	.53252	.38654	1.9815	.10195
#1	.54682	33.363	.27345	5.3692	.26990	.65462	.21671	6.9227
#2	.54602	33.291	.26875	5.3635	.27241	.65805	.22534	6.9259
#3	.54485	33.283	.26891	5.3230	.27239	.65311	.22241	6.9124
Check? High Limit	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	

Approved: October 26, 2015

J'ye 1h

Low Limit

Sample Name: L1510126210SD Acquired: 10/23/2015 11:59:10 Type: Unk

Method: ICP-THERMO3_6010_200.7WATER_3YLINES(v526) Mode: CONC Corr. Factor: 1.000000

User: JYH Custom ID1: Custom ID2: Custom ID3:

Comment: WG543956-05

Elem	Sn1899	Sr4077	Ti3372	TI1908	V_2924	Zn2062	Zr3391
Units	ppm						
Avg	.53603	.72956	.53637	.27214	.54509	.53546	.42488
Stddev	.00253	.00120	.00505	.00176	.00029	.00083	.11428
%RSD	.47192	.16382	.94182	.64509	.05257	.15440	26.897
#1	.53853	.73053	.54037	.27351	.54519	.53632	.54950
#2	.53610	.72823	.53069	.27016	.54530	.53539	.32499
#3	.53347	.72994	.53804	.27275	.54476	.53467	.40014

Check? Chk Pass Chk P

Low Limit

Int. Std.	Y_2243	Y_3600	Y_3774
Units	Cts/S	Cts/S	Cts/S
Avg	10470.	89850 .	3922.3
Stddev	6.	150.	2.2
%RSD	.05467	.16691	.05669
#1	10466.	89677.	3919.8
#2	10477.	89936.	3923.3
#3	10467.	89937.	3923.9

Approved: October 26, 2015

Sample Name: L1510119501 Acquired: 10/23/2015 Method: ICP-THERMO3_6010_200.7WATER_3YLINES User: JYH Custom ID1: Custom ID2: Comment:								actor: 1.00000(
Elem Units Avg Stddev %RSD	Ag3280 ppm 00089 .00097 108.88	Al3082 ppm . 33781 .00174 .51614	As1890 ppm .00119 .00042 35.060	B_2496 ppm .03877 .00236 6.0926	Ba4554 ppm .13709 .00048 .35368	Be3131 ppm .00000 .00002 485.45	Ca4226 ppm 81.022 .176 .21768	Cd2288 ppm . 00022 .00040 183.67
#1 #2 #3	00085 .00006 00189	.33594 .33811 .33939	.00107 .00084 .00165	.04077 .03936 .03616	.13677 .13685 .13764	.00003 00000 00001	81.101 80.820 81.144	.00042 .00048 00024
Check ? High Limit Low Limit	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass
Elem Units Avg Stddev %RSD #1	Co2286 ppm .00112 .00007 6.0055 .00104 .00116	Cr2677 ppm .00045 .00031 69.053 .00072 .00053	Cu2247 ppm .00330 .00067 20.199 .00390 .00340	Fe2611 ppm 1.9186 .0060 .30987 1.9219 1.9221	K_7664 ppm 2.1565 .0601 2.7851 2.2247 2.1118	Li6707 ppm .00757 .00344 45.455 .00885 .00367	Mg2790 ppm 22.480 .084 .37355 22.427 22.435	Mn2576 ppm 1.0856 .0020 .18390 1.0879 1.0842
#3 Check ? High Limit Low Limit	.00116 Chk Pass	.00011 Chk Pass	.00259 Chk Pass	1.9117 Chk Pass	2.1329 Chk Pass	.01018 Chk Pass	22.576 Chk Pass	1.0846 Chk Pass
Elem Units Avg Stddev %RSD	Mo2020 ppm . 00267 .00045 16.932	Na5895 ppm 26.030 .022 .08614	Ni2316 ppm .00383 .00099 25.956	P_2149 ppm .03733 .00378 10.122	Pb2203 ppm 00097 .00555 573.23	Sb2068 ppm . 00225 .00196 86.872	Se1960 ppm .00185 .00245 132.65	Si2124 ppm 5.2619 .0224 .42534
#1 #2 #3	.00231 .00252 .00318	26.056 26.018 26.017	.00497 .00336 .00316	.04126 .03701 .03372	00520 .00531 00301	.00039 .00430 .00207	.00025 .00467 .00062	5.2814 5.2669 5.2375
Check ? High Limit Low Limit	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass

Sample Name: L1510119501								
User: JYH			Custom ID2:		Custom ID3:		0011.10	1.00000
Comment:								
Elem	Sn1899	Sr4077	Ti3372	TI1908	V_2924	Zn2062	Zr3391	
Units	ppm 00074	ppm . 57410	ppm 00506	ppm 00402	ppm . 00005	ppm . 00802	ppm . 18223	
Avg Stddev	.00106	.00051	.00478	.00295	.00037	.00019	.07874	
%RSD	142.51	.08922	94.362	73.434	679.78	2.3687	43.210	
#1	00115	.57352	00201	00116	00027	.00815	.27010	
#2	.00046	.57429	01057	00705	.00045	.00810	.11805	
#3	00154	.57449	00262	00385	00002	.00780	.15855	
Check ? High Limit Low Limit	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	
Int. Std.	Y_2243	Y_3600	Y_3774					
Units	Cts/S	Cts/S	Cts/S					
Avg Stddev	10556. 13.	90627. 184.	3940.0 10.8					
%RSD	.11885	.20347	.27437					
#1	10551.	90414.	3927.8					
#2	10547.	90730.	3943.8					
#3	10571.	90737.	3948.4					

Sample Nan Method: ICF User: JYH Comment:		3_6010_200	Acquired: 10/23/2015 12:06:59 Type: Unk 0.7WATER_3YLINES(v526) Mode: CONC Custom ID2: Custom ID3:			de: CONC	Corr. Factor: 1.000000	
Elem	Ag3280	Al3082	As1890	B_2496	Ba4554	Be3131	Ca4226	Cd2288
Units	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm
Avg	00015	. 04681	00340	. 03825	.12821	00001	81.727	. 00011
Stddev	.00113	.00284	.00201	.00282	.00084	.00005	.175	.00023
%RSD	737.32	6.0605	59.073	7.3676	.65649	554.06	.21370	207.42
#1	00125	.04537	00173	.04012	.12774	00006	81.918	.00032
#2	.00102	.04498	00563	.03501	.12771	.00004	81.686	00014
#3	00023	.05008	00285	.03961	.12918	00001	81.576	.00016
Check ? High Limit Low Limit	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass
Elem	Co2286	Cr2677	Cu2247	Fe2611	K_7664	Li6707	Mg2790	Mn2576
Units	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm
Avg	.00095	.00119	.00216	.30755	2.0646	.01143	22.635	. 92952
Stddev	.00057	.00080	.00187	.02812	.0284	.00859	.100	.00154
%RSD	59.752	66.962	86.573	9.1425	1.3736	75.116	.44294	.16593
#1	.00051	.00077	.00304	.33432	2.0494	.02082	22.728	.92973
#2	.00074	.00070	.00001	.31007	2.0973	.00399	22.529	.93094
#3 Check ? High Limit Low Limit	.00159	.00211	.00343	.27825	2.0471	.00947	22.649	.92788
	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass
Elem	Mo2020	Na5895	Ni2316	P_2149	Pb2203	Sb2068	Se1960	Si2124
Units	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm
Avg	. 00246	26.317	. 00137	00027	00208	. 00199	00089	4.7893
Stddev	.00010	.050	.00097	.00487	.00307	.00174	.00795	.0131
%RSD	4.1136	.18858	70.741	1771.7	147.42	87.092	892.09	.27286
#1	.00257	26.337	.00159	.00535	00470	.00052	.00702	4.7937
#2	.00237	26.353	.00222	00305	.00130	.00391	00887	4.7997
#3	.00245	26.260	.00031	00312	00285	.00155	00082	4.7746
Check ? High Limit Low Limit	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass

Sample Nar	ne: L151011	19502 A	.cquired: 10/	/23/2015 12	:06:59	Type: Unk		
Method: ICF	P-THERMO3	3_6010_200	.7WATER_	3YLINES(v	526) Mc	de: CONC	Corr. Fa	ctor: 1.000000
User: JYH	Custom	ID1:	Custom ID)2: (Custom ID3	:		
Comment:								
Elem	Sn1899	Sr4077	Ti3372	TI1908	V_2924	Zn2062	Zr3391	
Units	ppm	ppm	ppm	ppm	ppm	ppm	ppm	
Avg Stddev	00031 .00052	. 57888 .00088	01578 .00507	00241 .00160	00019 .00073	. 00584 .00027	. 03834 .13006	
%RSD	168.72	.15218	32.155	66.365	381.33	4.5714	339.21	
701.102	100.72	110210	02.100	00.000	001.00		000.21	
#1	.00016	.57987	01272	00130	.00022	.00584	.08429	
#2	00087	.57854	02163	00169	.00024	.00610	10846	
#3	00021	.57821	01297	00424	00104	.00557	.13920	
Check ? High Limit Low Limit	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	
Int. Std.	Y_2243	Y_3600	Y_3774					
Units	Cts/S	Cts/S	Cts/S					
Avg	10550. 34.	90619. 152.	3930.2 7.1					
Stddev %RSD	.31849	.16798	.18037					
701 (OD	.01040	.10700	.10007					
#1	10524.	90459.	3927.6					
#2	10538.	90762.	3938.2					
#3	10588.	90636.	3924.8					

Sample Name: L1510119502PS Acquired: 10/23/2015 12:11:02 Type: Unk Method: ICP-THERMO3_6010_200.7WATER_3YLINES(v526) Mode: CONC Corr. Factor: 1.000000 Custom ID2: Custom ID3: User: JYH Custom ID1: Comment: WG544052-01 Elem Ag3280 Al3082 As1890 B 2496 Ba4554 Be3131 Ca4226 Cd2288 Units ppm ppm ppm ppm ppm ppm ppm ppm Avg .21707 5.4658 .21759 1.1094 .67423 .02715 78.995 .02770 Stddev .00054 .0097 .00268 8000. .00292 .00016 .269 .00023 %RSD .24671 .17823 1.2324 .07497 .43340 .60020 .34003 .83916 #1 .21741 5.4641 .22054 1.1097 .67736 .02707 79.304 .02795 .02748 #2 .21645 5.4570 .21530 1.1085 .67157 .02734 78.814 #3 .21735 5.4762 .21694 1.1101 .67375 .02704 78.868 .02767 Check? Chk Pass Chk Pass Chk Pass Chk Pass Chk Pass Chk Pass Chk Pass High Limit Low Limit Elem Co2286 Cr2677 Cu2247 Fe2611 K 7664 Li6707 Mg2790 Mn2576 Units ppm ppm ppm ppm ppm ppm ppm ppm .10769 .27773 .27096 2.4699 30.080 .56543 25.712 1.1158 Avg .00230 .00444 Stddev .00013 .00135 .0114 .070 .075 .0027 %RSD .11795 .82810 .49959 .45980 .23128 .78560 .29055 .24345 #1 .10755 .27671 .26941 2.4830 30.069 .56950 25.703 1.1189 #2 .10780 .28037 .27150 2.4639 30.016 .56610 25.791 1.1136 #3 .10772 .27613 .27195 2.4627 30.154 .56069 25.642 1.1150 Check? Chk Pass Chk Pass Chk Pass Chk Pass Chk Pass Chk Pass Chk Pass High Limit Low Limit Si2124 Mo2020 P_2149 Elem Na5895 Ni2316 Pb2203 Sb2068 Se1960 Units ppm ppm ppm ppm ppm ppm ppm ppm .55765 Avg 51.892 .27391 5.4852 .27225 .66969 .22215 7.1906 Stddev .00138 .133 .00120 .0132 .00033 .00486 .00258 .0068 %RSD .24688 .25654 .43822 .24128 .11962 .72580 1.1616 .09456

Check? Chk Pass Chk P

5.4949

5.4701

5.4905

.27261

.27198

.27218

.67517

.66590

.66800

.27510

.27395

.27270

Approved: October 26, 2015

.22411

.22310

.21922

7.1953

7.1828

7.1938

#1

#2

#3

.55922

.55667

.55705

52.026

51.759

51.891

Method: ICP-THERMO3_6010_200.7WATER_3YLINES(v526) Mode: CONC Corr. Factor: 1.000000

User: JYH Custom ID1: Custom ID2: Custom ID3:

Comment: WG544052-01

Elem	Sn1899	Sr4077	Ti3372	TI1908	V_2924	Zn2062	Zr3391
Units	ppm						
Avg	.54715	1.0760	.54483	.27668	.55786	.54251	.27946
Stddev	.00061	.0045	.00865	.00306	.00188	.00050	.10753
%RSD	.11136	.41719	1.5881	1.1072	.33736	.09169	38.479
#1	.54760	1.0805	.55409	.27680	.55951	.54297	.30840
#2	.54646	1.0715	.53695	.27968	.55827	.54198	.36956
#3	.54740	1.0759	.54346	.27356	.55581	.54258	.16042

Check? Chk Pass Chk P

Low Limit

Int. Std.	Y_2243	Y_3600	Y_3774
Units	Cts/S	Cts/S	Cts/S
Avg	10435.	89167 .	3913.7
Stddev	11.	157.	16.4
%RSD	.10076	.17581	.42003
#1	10439.	89312.	3906.6
#2	10423.	89001.	3902.0
#3	10443.	89189.	3932.5

Approved: October 26, 2015

J'ye 1hu

Type: Unk Sample Name: L1510119502SDL Acquired: 10/23/2015 12:14:39 Method: ICP-THERMO3_6010_200.7WATER_3YLINES(v526) Mode: CONC Corr. Factor: 1.000000 Custom ID2: User: JYH Custom ID1: 5 Custom ID3:

Comment: WG544052-02

Elem	Ag3280	Al3082	As1890	B_2496	Ba4554	Be3131	Ca4226	Cd2288
Units	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm
Avg	00003	. 00888	00199	. 01174	. 02264	00004	15.455	00013
Stddev	.00052	.00311	.00174	.00118	.00075	.00001	.066	.00010
%RSD	1506.5	35.081	87.781	10.060	3.3309	21.758	.42944	74.480
#1	00035	.00634	00057	.01286	.02301	00003	15.462	00007
#2	00032	.00794	00394	.01050	.02177	00005	15.386	00024
#3	.00057	.01235	00146	.01186	.02314	00004	15.518	00008
Check ? High Limit Low Limit	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass
Elem	Co2286	Cr2677	Cu2247	Fe2611	K_7664	Li6707	Mg2790	Mn2576
Units	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm
Avg	. 00035	.00066	.00001	.06360	. 53454	. 00530	4.1985	.1 7250
Stddev	.00035	.00049	.00203	.02541	.03009	.00361	.0882	.00418
%RSD	99.814	75.122	18329.	39.952	5.6295	68.190	2.1011	2.4227
#1	.00072	.00022	.00095	.07877	.55353	.00717	4.1910	.16792
#2	.00004	.00056	.00140	.03426	.49985	.00113	4.2902	.17611
#3	.00028	.00119	00232	.07775	.55025	.00759	4.1142	.17346
Check ? High Limit Low Limit	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass
Elem	Mo2020	Na5895	Ni2316	P_2149	Pb2203	Sb2068	Se1960	Si2124
Units	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm
Avg	. 00093	4.8906	.00157	. 00529	00118	. 00171	. 00486	. 88349
Stddev	.00040	.0372	.00066	.00595	.00257	.00344	.00205	.00442
%RSD	42.506	.76055	42.218	112.58	216.97	201.18	42.141	.50035
#1	.00128	4.8783	.00225	.00014	00379	.00074	.00717	.88782
#2	.00050	4.8611	.00093	.00392	00109	00114	.00416	.88365
#3	.00102	4.9324	.00152	.01180	.00134	.00552	.00325	.87898
Check ? High Limit Low Limit	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass

Sample Name: L1510119502SDL Acquired: 10/23/2015 12:14:39 Type: Unk

Method: ICP-THERMO3_6010_200.7WATER_3YLINES(v526) Mode: CONC Corr. Factor: 1.000000

User: JYH Custom ID1: 5 Custom ID2: Custom ID3:

Comment: WG544052-02

Elem Units Avg Stddev %RSD	Sn1899 ppm 00051 .00061 118.76	Sr4077 ppm . 10651 .00034 .31659	Ti3372 ppm 00310 .00104 33.573	TI1908 ppm 00169 .00146 86.395	V_2924 ppm 00109 .00041 37.672	Zn2062 ppm .00174 .00016 8.9260	Zr3391 ppm .11292 .06419 56.842
#1 #2 #3	00023 00009 00121	.10628 .10637 .10690	00373 00190 00367	00153 00322 00031	00066 00113 00148	.00187 .00177 .00157	.10746 .05164 .17966
Check ? High Limit Low Limit	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass
Int. Std. Units Avg Stddev %RSD	Y_2243 Cts/S 11692. 15. .13236	Y_3600 Cts/S 100040. 59.	Y_3774 Cts/S 4251 .4 5.8 .13588				
#1 #2 #3	11710. 11680. 11688.	100010. 100000. 100110.	4256.9 4251.9 4245.4				

Approved: October 26, 2015

J'ye 1hu

Sample Name: L1510119502SDL Acquired: 10/23/2015 12:18:42 Type: Unk

Method: ICP-THERMO3_6010_200.7WATER_3YLINES(v526) Mode: CONC Corr. Factor: 1.000000

User: JYH Custom ID1: 25 Custom ID2: Custom ID3:

Comment: WG544052-02

Elem	Ag3280	Al3082	As1890	B_2496	Ba4554	Be3131	Ca4226
Units	ppm						
Avg	00002	. 00175	00280	. 00434	. 00434	00004	3.0904
Stddev	.00173	.00464	.00212	.00124	.00054	.00002	.0384
%RSD	7371.0	265.36	75.499	28.524	12.381	44.528	1.2435
#1	.00110	.00023	00042	.00574	.00452	00004	3.0811
#2	00202	.00695	00445	.00338	.00475	00002	3.0576
#3	.00085	00194	00355	.00391	.00373	00005	3.1327
Check ? High Limit Low Limit	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass
Elem	Cd2288	Co2286	Cr2677	Cu2247	Fe2611	K_7664	Li6707
Units	ppm						
Avg	00023	.00028	00012	00038	.01053	. 21820	. 00145
Stddev	.00006	.00029	.00038	.00063	.00631	.02773	.00086
%RSD	25.203	104.67	307.90	166.62	59.885	12.708	59.311
#1	00022	.00060	00051	.00022	.01781	.23698	.00047
#2	00017	.00006	00011	00032	.00664	.23128	.00205
#3	00029	.00016	.00025	00103	.00715	.18635	.00184
Check ? High Limit Low Limit	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass
Elem	Mg2790	Mn2576	Mo2020	Na5895	Ni2316	P_2149	Pb2203
Units	ppm						
Avg	. 78826	.03350	. 00050	. 99383	00034	. 00298	00183
Stddev	.01841	.00211	.00019	.03380	.00039	.00719	.00182
%RSD	2.3353	6.3034	37.056	3.4007	115.70	241.50	99.336
#1	.80776	.03388	.00055	1.0320	00022	.01103	00083
#2	.78585	.03123	.00029	.96764	00002	00283	00073
#3	.77118	.03540	.00065	.98188	00078	.00074	00393
Check ? High Limit Low Limit	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass

Approved: October 26, 2015

J'ye 1hi

Sample Name: L1510119502SDL Acquired: 10/23/2015 12:18:42 Type: Unk Method: ICP-THERMO3_6010_200.7WATER_3YLINES(v526) Mode: CONC Corr. Factor: 1.000000 Custom ID2: User: JYH Custom ID1: 25 Custom ID3: Comment: WG544052-02 Elem Sb2068 Se1960 Si2124 Sn1899 Sr4077 Ti3372 TI1908 Units ppm ppm ppm ppm ppm ppm ppm Avg .00284 .00510 .17119 -.00045 .02161 -.00418 .00026 Stddev .00369 .00218 .00072 .00081 .00022 .00230 .00238 %RSD 129.84 42.696 .42042 180.56 1.0310 55.131 907.39 #1 .00454 .00302 .17050 -.00004 .02151 -.00197 .00192 #2 .00539 .00736 .17112 .00007 .02146 -.00657 -.00246 #3 -.00139 .00491 .17194 -.00138 .02187 -.00400 .00133 Check? **Chk Pass Chk Pass Chk Pass Chk Pass Chk Pass Chk Pass Chk Pass High Limit** Low Limit Elem V 2924 Zn2062 Zr3391 Units ppm ppm ppm -.00089 .00068 F-.04243 Avg Stddev .00065 .00013 .08059 %RSD 73.790 18.672 189.93 #1 -.00164 .00061 -.13024 #2 -.00050 .00060 -.02519 #3 -.00052 .00082 .02814 Check? **Chk Pass Chk Pass** Chk Fail **High Limit** 45.000 Low Limit -.04000 Int. Std. Y 2243 Y_3600 Y_3774 Units Cts/S Cts/S Cts/S Avg 11802. 100930. 4263.4 Stddev 12. 107. 13.3 %RSD .10272 .31104 .10649

Approved: October 26, 2015

#1

#2

#3

11795.

11795.

11816.

100880.

100850.

101050.

4266.2

4275.1

4249.0

Elem	Ag3280	Al3082	As1890	B_2496	Ba4554	Be3131	Ca4226	
Units	ppm							
Avg	. 40202	10.131	. 41588	. 50682	1.0342	. 05098	10.282	
Stddev	.00158	.012	.00397	.00107	.0009	.00009	.009	
%RSD	.39265	.11679	.95364	.21044	.08464	.17900	.08452	
#1	.40259	10.142	.41297	.50788	1.0346	.05091	10.279	
#2	.40323	10.133	.41427	.50574	1.0332	.05095	10.275	
#3	.40023	10.118	.42039	.50685	1.0348	.05109	10.291	
Check ? Value Range	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	
Elem	Cd2288	Co2286	Cr2677	Cu2247	Fe2611	K_7664	Li6707	
Units	ppm							
Avg	. 05091	. 20234	. 51694	. 51243	4.0798	51.601	1.0251	
Stddev	.00029	.00011	.00082	.00180	.0186	.163	.0043	
%RSD	.56007	.05208	.15894	.35051	.45548	.31518	.42367	
#1	.05058	.20222	.51632	.51388	4.1013	51.511	1.0212	
#2	.05112	.20242	.51663	.51299	4.0692	51.502	1.0243	
#3	.05101	.20239	.51787	.51042	4.0690	51.788	1.0298	
Check ? Value Range	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	
Elem	Mg2790	Mn2576	Mo2020	Na5895	Ni2316	P_2149	Pb2203	
Units	ppm							
Avg	9.9024	. 50732	1.0194	52.224	. 51859	10.144	. 51209	
Stddev	.1531	.00406	.0017	.068	.00148	.013	.00170	
%RSD	1.5457	.80068	.16206	.13065	.28470	.12445	.33212	
#1	9.9653	.50360	1.0197	52.214	.51769	10.148	.51404	
#2	9.7280	.51165	1.0208	52.162	.52029	10.155	.51133	
#3	10.014	.50671	1.0176	52.297	.51779	10.130	.51090	
Check ? Value Range	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	

Sample Nam		-	/23/2015 12:		ype: QC) Mode:	CONC (Corr. Factor:	1 000000
User: JYH Comment:	Custom I		Custom ID2:	` '	tom ID3:	00110	John Factor.	1.000000
Elem Units Avg Stddev %RSD	Sb2068 ppm 1.2417 .0055 .44377	Se1960 ppm . 41760 .00684 1.6390	Si2124 ppm 5.1900 .0126 .24260	Sn1899 ppm 1.0148 .0012 .12037	Sr4077 ppm 1.0323 .0007 .07023	Ti3372 ppm 1.0383 .0059 .57183	TI1908 ppm . 52619 .00246 .46720	
#1 #2 #3	1.2355 1.2462 1.2432	.41362 .42550 .41368	5.1770 5.1908 5.2022	1.0138 1.0144 1.0161	1.0326 1.0328 1.0315	1.0418 1.0315 1.0417	.52751 .52335 .52770	
Check ? Value Range	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	
Elem Units Avg Stddev %RSD	V_2924 ppm 1.0271 .0024 .23673	Zn2062 ppm 1.0158 .0013 .12737	Zr3391 ppm F . 72736 .16513 22.702					
#1 #2 #3	1.0293 1.0277 1.0245	1.0158 1.0171 1.0145	.64604 .91738 .61867					
Check ? Value Range	Chk Pass	Chk Pass	Chk Fail 1.0000 -10.000%					
Int. Std. Units Avg Stddev %RSD	Y_2243 Cts/S 10967. 7. .06662	Y_3600 Cts/S 93311. 232. .24902	Y_3774 Cts/S 4075.5 14.6 .35762					
#1 #2 #3	10963. 10975. 10962.	93328. 93070. 93534.	4080.8 4086.7 4059.0					

Sample Nam Method: ICP User: JYH Comment:	ne: CCB / -THERMO3_ Custom I	_		LINES(v526)	ype: Blank) Mode: tom ID3:	CONC (Corr. Factor:	1.00000(
Elem	Ag3280	Al3082	As1890	B_2496	Ba4554	Be3131	Ca4226	
Units	ppm	ppm	ppm	ppm	ppm	ppm	ppm	
Avg	00088	. 00540	00318	. 00236	00005	00000	00173	
Stddev	.00112	.00491	.00045	.00201	.00039	.00005	.03077	
%RSD	127.24	90.964	14.259	85.375	765.30	1921.5	1783.4	
#1	00181	.00507	00286	.00468	.00034	00006	.00622	
#2	00118	.00066	00297	.00130	00045	.00001	.02429	
#3	.00036	.01047	00369	.00109	00004	.00004	03569	
Check ? High Limit Low Limit	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	
Elem	Cd2288	Co2286	Cr2677	Cu2247	Fe2611	K_7664	Li6707	
Units	ppm	ppm	ppm	ppm	ppm	ppm	ppm	
Avg	00012	.00007	00010	. 00037	00138	. 13718	. 00271	
Stddev	.00004	.00014	.00093	.00108	.01147	.02678	.00053	
%RSD	33.035	180.41	946.68	287.99	832.24	19.521	19.661	
#1	00016	.00018	.00077	00074	01384	.10626	.00212	
#2	00013	.00012	00109	.00044	.00874	.15241	.00314	
#3	00008	00008	.00002	.00142	.00097	.15288	.00288	
Check ? High Limit Low Limit	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	
Elem	Mg2790	Mn2576	Mo2020	Na5895	Ni2316	P_2149	Pb2203	
Units	ppm	ppm	ppm	ppm	ppm	ppm	ppm	
Avg	08866	00146	. 00138	. 03444	.00053	00034	00124	
Stddev	.01964	.00114	.00031	.01894	.00014	.00313	.00234	
%RSD	22.156	78.032	22.701	55.002	25.570	920.00	189.31	
#1	11065	00158	.00102	.02627	.00053	00343	.00038	
#2	08248	00254	.00162	.02095	.00039	00042	00392	
#3	07285	00027	.00148	.05609	.00067	.00283	00017	
Check ? High Limit Low Limit	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	

Sample Nam Method: ICP User: JYH Comment:	ne: CCB / -THERMO3_ Custom I	6010_200.7	/23/2015 12: WATER_3YI Custom ID2:	LINES(v526)	ype: Blank) Mode: tom ID3:	CONC (Corr. Factor:	1.000000
Elem	Sb2068	Se1960	Si2124	Sn1899	Sr4077	Ti3372	TI1908	
Units Avg Stddev %RSD	ppm . 00200 .00222 111.40	ppm . 00479 .00470 98.015	ppm . 00627 .00107 17.106	ppm 00003 .00055 1931.3	ppm .00031 .00018 58.991	ppm 00155 .00820 529.46	ppm . 00101 .00312 309.75	
#1 #2 #3	.00018 .00133 .00448	.00925 00011 .00524	.00660 .00507 .00714	.00059 00022 00045	.00050 .00028 .00014	01101 .00276 .00360	00254 .00224 .00332	
Check ? High Limit Low Limit	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	
Elem Units Avg Stddev %RSD	V_2924 ppm 00074 .00024 31.854	Zn2062 ppm 00009 .00016 188.90	Zr3391 ppm F .10063 .14465 143.75					
#1 #2 #3	00049 00096 00079	00011 00024 .00009	.16168 .20475 06454					
Check ? High Limit Low Limit	Chk Pass	Chk Pass	Chk Fail .04000 04000					
Int. Std. Units Avg Stddev %RSD	Y_2243 Cts/S 11157. 16. .14480	Y_3600 Cts/S 95920 . 189. .19714	Y_3774 Cts/S 4048.4 3.8 .09432					
#1 #2 #3	11142. 11174. 11156.	95942. 96098. 95722.	4050.8 4044.0 4050.5					

Page 160

Sample Name: L1510121501 Acquired: 10/23/2015 12:30:40 Type: Unk								
Method: ICP-THERMO3_6010_200.7WATER_3YLINES(v526) Mode: CONC Co								actor: 1.000000
User: JYH	Custom ID	Custom ID3	:					
Comment:								
Elem	Ag3280	Al3082	As1890	B 2496	Ba4554	Be3131	Ca4226	Cd2288
Units	ppm	ppm	ppm	_ ppm	ppm	ppm	ppm	ppm
Avg	00144	1.3026	00036	.03357	.08794	.00008	45.454	.00014
Stddev	.00068	.0046	.00190	.00168	.00061	.00004	.266	.00020
%RSD	47.205	.35203	520.98	5.0194	.69565	47.989	.58527	141.34
#1	00069	1.2991	.00155	.03185	.08861	.00010	45.711	.00009
#2	00201	1.3078	00225	.03363	.08741	.00009	45.471	00003
#3	00163	1.3010	00040	.03522	.08780	.00003	45.180	.00036
Oh a alc O	Ohli Daga	Chl. Doos	Ohly Doos	Chl. Daga	Chl. Daga	Ohly Dage	Chl. Daga	Chir Daga
Check ? High Limit	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass
Low Limit								
Elem	Co2286	Cr2677	Cu2247	Fe2611	K_7664	Li6707	Mg2790	Mn2576
Units	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm
Avg	.00143	.00354	.00120	1.7225	1.9257	.08204	25.559	.05829
Stddev %RSD	.00041 28.727	.00067 19.062	.00035 29.473	.0056 .32351	.0276 1.4318	.00385 4.6965	.068 .26659	.00131 2.2462
70113D	20.727	13.002	23.473	.32331	1.4310	4.0303	.20039	2.2402
#1	.00149	.00279	.00080	1.7288	1.9381	.07887	25.630	.05872
#2	.00100	.00373	.00148	1.7183	1.9449	.08633	25.494	.05682
#3	.00181	.00410	.00132	1.7203	1.8941	.08092	25.552	.05933
Check?	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass
High Limit	Clik i ass	Olik i dos	Clik i dos	Clik i doo	Clik i doo	Clik i doo	Clik i doo	Clik i dos
Low Limit								
Elem	Mo2020	Na5895	Ni2316	P_2149	Pb2203	Sb2068	Se1960	Si2124
Units Avg	ppm . 00134	ppm 123.40	ppm . 00337	ppm . 07999	ppm 00332	ppm . 00173	ppm 00008	ppm 14.921
Stddev	.00134	.61	.00009	.00320	.00230	.00173	.00648	.022
%RSD	36.112	.49273	2.7243	3.9949	69.275	156.67	7870.7	.14768
#1	.00156	124.09	.00345	.07696	00553	00117	.00018	14.936
#2	.00079	123.15	.00339	.08333	00094	.00216	.00626	14.931
#3	.00168	122.96	.00327	.07968	00349	.00419	00669	14.895
Check?	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass
High Limit	21111 400	211111 400	211111 400	211111 400	211111 400	211111 400	211111 400	2
Low Limit								

Sample Nan			•	/23/2015 12		Type: Unk	0 5	
Method: ICP			_	•	,	de: CONC	Corr. Fa	ctor: 1.00000(
User: JYH	Custom	וטו:	Custom ID)2: (Custom ID3			
Comment:								
Elem Units Avg Stddev %RSD	Sn1899 ppm . 00069 .00028 40.621	Sr4077 ppm 1.0890 .0054 .49713	Ti3372 ppm . 02155 .00387 17.965	TI1908 ppm 00143 .00160 112.04	V_2924 ppm . 00331 .00072 21.858	Zn2062 ppm .03109 .00019 .62698	Zr3391 ppm . 52490 .06644 12.657	
#1 #2 #3	.00083 .00036 .00086	1.0943 1.0892 1.0835	.02346 .02410 .01710	00124 00312 .00007	.00279 .00413 .00300	.03087 .03124 .03115	.45407 .58583 .53481	
Check ? High Limit Low Limit	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	
Int. Std. Units Avg Stddev %RSD	Y_2243 Cts/S 10411. 23. .21729	Y_3600 Cts/S 88720 . 141. .15850	Y_3774 Cts/S 3919.5 7.3 .18745					
#1 #2 #3	10385. 10424. 10425.	88623. 88656. 88881.	3912.2 3919.3 3926.9					

Sample Nan	Sample Name: L1510121503 Acquired: 10/23/2015 12:34:31 Type: Unk							
Method: ICF	P-THERMO3	_6010_200	.7WATER_	3YLINES(v	526) Mo	de: CONC	Corr. Fa	actor: 1.00000(
User: JYH	Custom	ID1:	Custom ID)2: (Custom ID3	• •		
Comment:								
	A =:2000	A12002	A - 1000	D 0400	D-4554	D-0404	0-4000	04000
Elem Units	Ag3280 ppm	Al3082 ppm	As1890 ppm	B_2496 ppm	Ba4554 ppm	Be3131 ppm	Ca4226 ppm	Cd2288 ppm
Avg	00105	14.091	.00654	.01221	.34006	.00163	3.2459	.00061
Stddev	.00162	.009	.00122	.00210	.00062	.00003	.0186	.00013
%RSD	153.98	.06096	18.721	17.185	.18278	2.0808	.57251	20.993
#1	00155	14.093	.00752	.01173	.34075	.00160	3.2574	.00071
#2	.00076	14.098	.00693	.01451	.33954	.00167	3.2557	.00067
#3	00236	14.081	.00517	.01039	.33989	.00162	3.2244	.00047
Check?	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass
High Limit								
Low Limit								
Elem	Co2286	Cr2677	Cu2247	Fe2611	K_7664	Li6707	Mg2790	Mn2576
Units	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm
Avg Stddev	. 01082 .00026	. <mark>02011</mark> .00128	. 01652 .00155	14.234 .084	1.2496 .0658	. 01517 .00513	2.4406 .1117	. 12001 .00304
%RSD	2.4398	6.3793	9.3812	.58685	5.2618	33.799	4.5781	2.5297
	0.4050	2222	0.1750	44.040	4 0000	0.1000	0.5005	10005
#1 #2	.01058 .01078	.02027 .02131	.01752 .01731	14.312 14.243	1.2098 1.3255	.01803 .00925	2.5637 2.3456	.12285 .11681
#2 #3	.01078	.02131	.01731	14.243	1.2135	.00923	2.3430	.12038
Check?	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass
High Limit Low Limit								
Elem	Mo2020	Na5895	Ni2316	P_2149	Pb2203	Sb2068	Se1960	Si2124
Units Avg	ppm . 00043	ppm 20.589	ppm . 02285	ppm . 13858	ppm . 01200	ppm . 00273	ppm 00325	ppm 29.208
Stddev	.00043	.080	.00082	.00224	.00014	.00273	.00969	.113
%RSD	16.278	.38959	3.5690	1.6163	1.1387	123.15	298.24	.38779
#1	.00037	20.682	.02196	.13902	.01216	00115	01362	29.278
#2	.00051	20.537	.02357	.14056	.01193	.00476	00169	29.268
#3	.00042	20.549	.02302	.13615	.01192	.00457	.00556	29.077
Check ? High Limit Low Limit	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass

Sample Nan			cquired: 10/			Гуре: Unk		
Method: ICP	-THERMO3	_6010_200	_	•	526) Mo	de: CONC	Corr. Fa	ctor: 1.000000
User: JYH	Custom	ID1:	Custom ID)2: (Custom ID3	•		
Comment:								
Elem	Sn1899	Sr4077	Ti3372	TI1908	V_2924	Zn2062	Zr3391	
Units	ppm	ppm	ppm	ppm	ppm	ppm	ppm	
Avg	.00196	.08916	.05417	00278	.03360	.94389	.89210	
Stddev	.00076	.00063	.00443	.00250	.00037	.00499	.05566	
%RSD	38.584	.70393	8.1859	89.847	1.1047	.52906	6.2387	
#1	.00113	.08952	.05653	00388	.03353	.94703	.92028	
#2	.00261	.08952	.04906	00454	.03400	.94651	.82799	
#3	.00214	.08844	.05693	.00008	.03326	.93813	.92804	
Check ? High Limit	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	
Low Limit								
Int. Std. Units Avg Stddev %RSD	Y_2243 Cts/S 10918. 12. .10666	Y_3600 Cts/S 93614 . 144. .15343	Y_3774 Cts/S 4007.5 21.3 .53221					
#1 #2	10907. 10916.	93727. 93452.	3983.3 4023.6					
#3	10931.	93663.	4015.7					

Sample Name: L1510121504								
User: JYH	Custom	ID1:	Custom IE)2:	Custom ID3	• •		
Comment:								
Elem	Ag3280	Al3082	As1890	B 2496	Ba4554	Be3131	Ca4226	Cd2288
Units	ppm	ppm	ppm	_ ppm	ppm	ppm	ppm	ppm
Avg	00182	.40636	00143	.03753	.07578	.00000	5.1813	.00027
Stddev	.00060	.00151	.00372	.00228	.00081	.00003	.0240	.00013
%RSD	33.094	.37260	259.66	6.0878	1.0710	744.94	.46273	47.016
#1	00217	.40606	00568	.03858	.07630	00000	5.1727	.00037
#2	00216	.40801	.00121	.03490	.07484	.00004	5.1628	.00031
#3	00112	.40502	.00018	.03909	.07619	00003	5.2084	.00013
Check ? High Limit Low Limit	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass
Elem	Co2286	Cr2677	Cu2247	Fe2611	K_7664	Li6707	Mg2790	Mn2576
Units	ppm	ppm	ppm	ppm	_ ppm	ppm	ppm	ppm
Avg	.00071	.00320	.00137	.40858	1.0678	.01919	1.6760	.00554
Stddev	.00025	.00033	.00084	.01530	.0716	.00239	.0245	.00096
%RSD	35.558	10.331	61.046	3.7456	6.7081	12.457	1.4630	17.333
#1	.00084	.00330	.00206	.41590	1.0441	.01975	1.6702	.00665
#2	.00087	.00347	.00044	.41886	1.0110	.01657	1.6550	.00490
#3	.00042	.00283	.00162	.39100	1.1482	.02125	1.7030	.00507
Check ? High Limit Low Limit	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass
Elem	Mo2020	Na5895	Ni2316	P_2149	Pb2203	Sb2068	Se1960	Si2124
Units	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm
Avg	.00075	46.169	.00213	.04994	00196	.00318	.01721	23.074
Stddev	.00036	.181	.00059	.00340	.00129	.00787	.00688	.074
%RSD	48.248	.39209	27.692	6.8094	65.895	247.19	39.979	.32117
#1	.00068	46.373	.00176	.05386	00339	00444	.02307	23.126
#2	.00114	46.027	.00281	.04812	00156	.01127	.01894	23.106
#3	.00043	46.107	.00182	.04783	00091	.00272	.00963	22.989
Check ? High Limit Low Limit	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass

Sample Name: L1510121504								
Method: ICF	P-THERMO3	3_6010_200	.7WATER_	3YLINES(v	526) Mc	de: CONC	Corr. Fa	ctor: 1.000000
User: JYH	Custom	ID1:	Custom ID)2: (Custom ID3	:		
Comment:								
Elem	Sn1899	Sr4077	Ti3372	TI1908	V_2924	Zn2062	Zr3391	
Units	ppm	ppm	ppm	ppm	ppm	ppm	ppm	
Avg Stddev	00010 .00019	. 10947 .00010	. <mark>00764</mark> .00267	00333 .00063	. 00204 .00057	. 00269 .00022	. 40032 .07023	
%RSD	186.37	.09396	34.909	18.865	28.042	8.3597	17.542	
701.102	100.07	.00000	01.000	10.000	20.0.2	0.0007	17.012	
#1	.00004	.10954	.00458	00298	.00269	.00256	.43969	
#2	00031	.10953	.00946	00295	.00180	.00295	.31924	
#3	00003	.10935	.00888	00405	.00162	.00256	.44203	
Check ? High Limit Low Limit	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	
Int. Std.	Y_2243	Y_3600	Y_3774					
Units	Cts/S	Cts/S	Cts/S					
Avg	10704.	91710.	3948.1					
Stddev %RSD	10. .09703	158. .17249	25.6 .64929					
701 (OD	.03703	.17243	.04323					
#1	10693.	91557.	3918.6					
#2	10710.	91873.	3964.9					
#3	10711.	91699.	3960.8					

Sample Name: L1510121505 Acquired: 10/23/2015 12:42:33 Type: Unk								
Method: ICF	-THERMO3	_6010_200	.7WATER_	3YLINES(v	526) Mc	de: CONC	Corr. Fa	actor: 1.00000(
User: JYH	Custom	ID1:	Custom ID)2: (Custom ID3	• •		
Comment:								
Elem	Ag3280	Al3082	As1890	B 2496	Ba4554	Be3131	Ca4226	Cd2288
Units	ppm							
Avg	00020	.45853	00165	.03637	.07499	.00003	5.2401	.00021
Stddev	.00063	.00967	.00425	.00138	.00056	.00005	.0064	.00023
%RSD	317.54	2.1089	256.95	3.8021	.74909	193.82	.12230	111.47
#1	00067	.44870	.00323	.03477	.07547	00002	5.2378	.00001
#2	00045	.46803	00368	.03727	.07513	.00007	5.2352	.00015
#3	.00052	.45886	00452	.03705	.07437	.00002	5.2474	.00047
Check ? High Limit Low Limit	Chk Pass							
		0 0077	0 0047	5 0044	14 7004			
Elem	Co2286	Cr2677	Cu2247	Fe2611	K_7664	Li6707	Mg2790	Mn2576
Units Avg	ppm . 00065	ppm . 00303	ppm . 00106	ppm . 43008	ppm . 97435	ppm . 01393	ppm 1. 7133	ppm . 00565
Stddev	.00018	.00078	.00036	.02408	.08395	.00321	.0120	.00159
%RSD	27.279	25.681	33.950	5.5998	8.6162	23.040	.70272	28.195
#1	.00063	.00348	.00094	.41990	1.0713	.01099	1.6994	.00416
#2	.00084	.00213	.00078	.45759	.92428	.01735	1.7208	.00733
#3	.00049	.00349	.00147	.41277	.92750	.01345	1.7197	.00547
Check? High Limit Low Limit	Chk Pass							
Elem	Mo2020	Na5895	Ni2316	P_2149	Pb2203	Sb2068	Se1960	Si2124
Units	ppm							
Avg	.00043	46.601	.00176	.04508	00033	.00050	.02011	23.339
Stddev	.00010	.049	.00073	.00513	.00162	.00370	.00280	.060
%RSD	23.357	.10616	41.548	11.374	486.63	744.79	13.923	.25913
#1	.00048	46.629	.00260	.03966	00133	.00453	.01772	23.381
#2	.00031	46.544	.00128	.04985	00121	00030	.01941	23.365
#3	.00048	46.630	.00140	.04572	.00154	00274	.02319	23.270
Check ? High Limit Low Limit	Chk Pass							

Sample Name: L1510121505 Acquired: 10/23/2015 12:42:33 Type: Unk									
P-THERMO3	3_6010_200	.7WATER_	3YLINES(v	526) Mo	de: CONC	Corr. Fa	ctor: 1.000000		
Custom	ID1:	Custom ID)2: (Custom ID3	:				
Sn1899	Sr4077	Ti3372	TI1908	V 2924	Zn2062	Zr3391			
ppm	ppm	ppm	ppm	ppm	ppm	ppm			
.00010	.11031	.00834	00081	.00171	.00284	.28406			
.00074	.00055	.00454	.00137	.00021	.00010	.05861			
758.85	.49732	54.425	169.43	12.501	3.3725	20.633			
00000	11050	00000	00000	00104	00004	04050			
.00076	.11000	.01231	.00004	.00100	.00234	.23033			
Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass			
14 00 40		\							
_		_							
10679.	91602.	3942.1							
10677.	91914.	3940.5							
10688.	91680.	3952.6							
	Sn1899 ppm .00010 .00074 758.85 .00020 00068 .00078 Chk Pass Y_2243 Cts/S 10681. 6. .05305	P-THERMO3_6010_200 Custom ID1: Sn1899	P-THERMO3_6010_200.7WATER_Custom ID1: Custom IE Sn1899 Sr4077 Ti3372 ppm ppm ppm ppm .00010 .11031 .00834 .00074 .00055 .00454 758.85 .49732 54.425 .00020 .11056 .0038300068 .10968 .00828 .00078 .11068 .01291 Chk Pass Chk Pass Chk Pass Y_2243 Y_3600 Y_3774 Cts/S Cts/S Cts/S 10681. 91732. 3945.1 6. 162. 6.6 .05305 .17712 .16703 10679. 91602. 3942.1 10677. 91914. 3940.5	P-THERMO3_6010_200.7WATER_3YLINES(vstorm ID1: Custom ID2: Custom I	P-THERMO3_6010_200.7WATER_3YLINES(v526) Mc Custom ID1: Custom ID2: Custom ID3 Sn1899 Sr4077 Ti3372 TI1908 V_2924 ppm ppm ppm ppm ppm ppm ppm .00010 .11031 .0083400081 .00171 .00074 .00055 .00454 .00137 .00021 758.85 .49732 54.425 169.43 12.501 .00020 .11056 .0038300239 .0019400068 .10968 .0082800008 .00151 .00078 .11068 .01291 .00004 .00168 Chk Pass Chk Pass Chk Pass Chk Pass Chk Pass Y_2243 Y_3600 Y_3774 Cts/S Cts/S Cts/S 10681. 91732. 3945.1 6. 162. 6.6 .05305 .17712 .16703 10679. 91602. 3942.1 10677. 91914. 3940.5	P-THERMO3_6010_200.7WATER_3YLINES(v526) Mode: CONC Custom ID1: Custom ID2: Custom ID3: Sn1899 Sr4077 Ti3372 TI1908 V_2924 Zn2062 ppm ppm ppm ppm ppm ppm ppm ppm ppm pp	P-THERMO3_6010_200.7WATER_3YLINES(v526) Mode: CONC Corr. Fa Custom ID1: Custom ID2: Custom ID3: Sn1899 Sr4077 Ti3372 TI1908 V_2924 Zn2062 Zr3391 ppm ppm ppm ppm ppm ppm ppm ppm ppm pp		

Sample Nar	Sample Name: L1510121506 Acquired: 10/23/2015 12:46:36 Type: Unk								
Method: ICF	P-THERMO3	3_6010_200	.7WATER_	3YLINES(v	526) Mc	de: CONC	Corr. Fa	actor: 1.00000(
User: JYH	Custom	ID1:	Custom ID)2:	Custom ID3	:			
Comment:									
Goriii.									
Elem	Ag3280	Al3082	As1890	B 2496	Ba4554	Be3131	Ca4226	Cd2288	
Units	ppm	ppm	ppm	D_2490 ppm	ppm	ppm	ppm	ppm	
Avg	.00029	.05646	.00003	.31644	.10966	.00000	13.993	00001	
Stddev	.00049	.00722	.00277	.00218	.00079	.00003	.035	.00023	
%RSD	166.33	12.792	10954.	.68860	.71748	1780.2	.25074	2364.9	
#1	.00038	.05471	.00322	.31403	.10881	.00002	13.964	00027	
#2	.00073	.05028	00167	.31701	.11036	.00002	14.032	.00010	
#3	00023	.06440	00148	.31828	.10982	00004	13.983	.00015	
Check?	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	
High Limit	Office ass	Onk i doo	Onk i ass	Onk i ass	Olik i dos	Onk i ass	Onk i doo	Office ass	
Low Limit									
Elem	Co2286	Cr2677	Cu2247	Fe2611	K_7664	Li6707	Mg2790	Mn2576	
Units	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	
Avg	.00083	.00144	.00050	.06330	6.2043	.03202	3.6103	.01510	
Stddev	.00010	.00122	.00117	.01590	.0479	.00176	.1029	.00262	
%RSD	12.267	84.760	233.72	25.119	.77231	5.4955	2.8500	17.326	
#1	.00076	.00040	00052	.08091	6.1786	.03054	3.4928	.01733	
#2	.00095	.00114	.00024	.05000	6.1746	.03397	3.6541	.01574	
#3	.00078	.00278	.00178	.05898	6.2595	.03156	3.6841	.01222	
Check?	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	
High Limit									
Low Limit									
Elem	Mo2020	Na5895	Ni2316	P 2149	Pb2203	Sb2068	Se1960	Si2124	
Units	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	
Avg	.00315	146.55	.00112	.04787	00074	.00431	.00361	5.2801	
Stddev	.00018	.24	.00125	.00614	.00338	.00339	.00625	.0108	
%RSD	5.8105	.16238	111.36	12.823	457.93	78.508	172.95	.20464	
#1	00015	146.00	00004	04600	00007	00055	00140	E 2012	
#1 #2	.00315	146.33 146.80	00024	.04603	00087	.00655	00146	5.2913 5.2702	
#2 #3	.00334 .00297	146.80	.00221 .00138	.04286 .05472	00406 .00271	.00042 .00597	.00171 .01059	5.2793 5.2697	
#3	.00297	140.33	.00136	.03472	.00271	.00387	.01039	3.2037	
Check?	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	
High Limit									
Low Limit									

Sample Name: L1510121506								
Method: ICF	P-THERMO3	3_6010_200	.7WATER_	3YLINES(v	526) Mc	de: CONC	Corr. Fa	ctor: 1.00000(
User: JYH	Custom	ID1:	Custom ID)2: (Custom ID3	•		
Comment:								
Elem	Sn1899	Sr4077	Ti3372	TI1908	V_2924	Zn2062	Zr3391	
Units	ppm							
Avg	.00001	.78727	00063	00321	00017	.00237	.12135	
Stddev %RSD	.00115 8289.9	.00266 .33836	.00054 84.897	.00127 39.572	.00043 244.11	.00022 9.1758	.09669 79.673	
/0N3D	6269.9	.55650	04.037	39.372	244.11	9.1750	79.073	
#1	00103	.78828	00004	00278	.00008	.00252	.02127	
#2	.00124	.78929	00077	00464	00067	.00247	.21424	
#3	00017	.78425	00109	00222	.00006	.00212	.12856	
Check ? High Limit Low Limit	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	
Int. Std.	Y 2243	Y_3600	Y_3774					
Units	Cts/S	Cts/S	Cts/S					
Avg	10500.	89272.	3916.6					
Stddev %RSD	5. .04792	48. .05374	9.0 .22955					
70113D	.04732	.05574	.22333					
#1	10503.	89289.	3927.0					
#2	10502.	89309.	3911.2					
#3	10494.	89218.	3911.7					

Sample Name: L1510121507 Acquired: 10/23/2015 12:50:38 Type: Unk								
Method: ICF	P-THERMO3	3_6010_200	.7WATER_	3YLINES(v	526) Mo	de: CONC	Corr. Fa	actor: 1.00000(
User: JYH	Custom	ID1:	Custom ID)2: (Custom ID3			
Comment:								
Elem	Ag3280	Al3082	As1890	B 2496	Ba4554	Be3131	Ca4226	Cd2288
Units	ppm	ppm	ppm	ppm	ррт	ppm	ppm	ppm
Avg	- 00098	.52948	00163	.03005	.05609	.00001	30.711	.00030
Stddev	.00094	.00218	.00231	.00215	.00029	.00004	.132	.00025
%RSD	95.650	.41143	142.11	7.1436	.51293	337.08	.43135	82.954
#1	.00001	.53133	.00043	.03060	.05636	00000	30.845	.00010
#2	00186	.52708	00413	.03187	.05579	00002	30.708	.00022
#3	00109	.53003	00118	.02769	.05613	.00005	30.580	.00059
Check?	Chk Pass Chk Pass	Chk Pass	Chk Pass					
High Limit								
Low Limit								
Elem	Co2286	Cr2677	Cu2247	Fe2611	K_7664	Li6707	Mg2790	Mn2576
Units	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm
Avg	.00028	.00259	00017	.17887	1.6215	.03724	8.1559	.00410
Stddev %RSD	.00020 72.312	.00100 38.626	.00223 1321.3	.01913 10.696	.0416 2.5660	.00298 8.0051	.0771 .94575	.00063 15.443
/0N3D	72.312	36.020	1321.3	10.090	2.3000	0.0031	.94373	13.443
#1	.00009	.00330	.00156	.16930	1.6363	.04067	8.2239	.00426
#2	.00025	.00304	00268	.20090	1.6537	.03532	8.1717	.00463
#3	.00049	.00145	.00061	.16641	1.5745	.03572	8.0721	.00340
Check?	Chk Pass Chk Pass	Chk Pass	Chk Pass					
High Limit								
Low Limit								
Elem	Mo2020	Na5895	Ni2316	P_2149	Pb2203	Sb2068	Se1960	Si2124
Units	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm
Avg	.00090	98.603	.00196	.10274	00114	.00273	.08145	16.751
Stddev	.00051	.443 .44912	.00117	.00315 3.0693	.00289	.00191 70.026	.00274 3.3700	.037 .22231
%RSD	56.841	.44912	59.564	3.0093	254.25	70.026	3.3700	.22231
#1	.00148	98.943	.00328	.09988	00430	.00490	.08456	16.791
#2	.00074	98.765	.00106	.10612	00051	.00198	.08042	16.746
#3	.00049	98.102	.00154	.10223	.00139	.00131	.07937	16.717
Check ? High Limit Low Limit	Chk Pass Chk Pass	Chk Pass	Chk Pass					

Sample Name: L1510121507 Acquired: 10/23/2015 12:50:38 Type: Unk									
Method: ICF	P-THERMO3	3_6010_200	.7WATER_	3YLINES(v	526) Mo	de: CONC	Corr. Fa	ctor: 1.000000	
User: JYH	Custom	ID1:	Custom ID)2: (Custom ID3	:			
Comment:									
Elem	Sn1899	Sr4077	Ti3372	TI1908	V 2924	Zn2062	Zr3391		
Units	ppm	ppm	ppm	ppm	ppm	ppm	ppm		
Avg	00020	.54708	00311	00274	.00246	.00308	.31355		
Stddev	.00026	.00280	.00635	.00366	.00027	.00019	.16443		
%RSD	125.43	.51270	204.11	133.73	11.094	6.1679	52.443		
#1	00043	.54990	00994	00478	.00265	.00316	.45326		
#1 #2	.000043	.54705	.00261	00478	.00205	.00286	.35504		
#3	00026	.54429	00201	.00149	.00259	.00321	.13234		
•	.000_0		.00_00		.00200				
Check?	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass		
High Limit									
Low Limit									
Int. Std.	Y 2243	Y 3600	Y_3774						
Units	Cts/S	Cts/S	1_3774 Cts/S						
Avg	10523.	89954.	3926.4						
Stddev	7.	205.	25.2						
%RSD	.06521	.22734	.64080						
114	40500	00704	0011.0						
#1 #2	10522.	89724.	3911.8						
#2 #3	10517. 10530.	90116. 90022.	3912.0 3955.5						
11 0	10000.	JUUZZ.	0000.0						

Sample Name: L1510121509 Acquired: 10/23/2015 12:54:28 Type: Unk Method: ICP-THERMO3_6010_200.7WATER_3YLINES(v526) Mode: CONC User: JYH Custom ID1: Custom ID2: Custom ID3: Comment:						Corr. Fa	actor: 1.00000(
Elem	Ag3280	Al3082	As1890	B_2496	Ba4554	Be3131	Ca4226	Cd2288
Units	ppm	ppm						
Avg	. 00004	. 34161	00034	. 02294	. 06264	.00031	1.2974	. 00014
Stddev	.00134	.00591	.00072	.00258	.00027	.00002	.0024	.00020
%RSD	3461.8	1.7299	214.55	11.255	.42916	6.1928	.18862	143.72
#1	00032	.33625	00115	.02141	.06294	.00032	1.3002	00007
#2	.00153	.34062	00010	.02149	.06243	.00028	1.2961	.00016
#3	00109	.34794	.00024	.02592	.06254	.00031	1.2959	.00032
Check ? High Limit Low Limit	Chk Pass	Chk Pass						
Elem	Co2286	Cr2677	Cu2247	Fe2611	K_7664	Li6707	Mg2790	Mn2576
Units	ppm	ppm						
Avg	. 00326	. 00260	. 00145	.36598	. 52178	. 02423	. 57846	. 03315
Stddev	.00030	.00054	.00153	.01493	.08042	.00393	.05897	.00119
%RSD	9.1475	20.944	105.80	4.0792	15.413	16.230	10.194	3.5850
#1	.00320	.00269	.00215	.35214	.47498	.01984	.63804	.03269
#2	.00300	.00309	00031	.38180	.47572	.02544	.57720	.03450
#3	.00359	.00201	.00250	.36402	.61464	.02742	.52013	.03226
Check ? High Limit Low Limit	Chk Pass	Chk Pass						
Elem	Mo2020	Na5895	Ni2316	P_2149	Pb2203	Sb2068	Se1960	Si2124
Units	ppm	ppm						
Avg	. 00072	24.442	. 00414	. 06782	00165	. 00488	. 00068	25.257
Stddev	.00026	.055	.00031	.00295	.00298	.00257	.00652	.056
%RSD	36.654	.22607	7.4087	4.3501	180.30	52.643	965.86	.21989
#1	.00070	24.418	.00388	.06601	00449	.00784	00335	25.271
#2	.00046	24.403	.00407	.07122	.00145	.00365	.00820	25.303
#3	.00098	24.505	.00448	.06622	00191	.00316	00283	25.195
Check ? High Limit Low Limit	Chk Pass	Chk Pass						

Sample Name: L1510121509 Acquired: 10/23/2015 12:54:28 Type: Unk								
Method: ICF	P-THERMO3	3_6010_200	.7WATER_	3YLINES(v	526) Mo	de: CONC	Corr. Fa	ctor: 1.00000(
User: JYH	Custom	ID1:	Custom ID)2: (Custom ID3	•		
Comment:								
Elem	Sn1899	Sr4077	Ti3372	TI1908	V_2924	Zn2062	Zr3391	
Units	ppm	ppm	ppm	ppm	ppm	ppm	ppm	
Avg	00070 .00117	. <mark>02808</mark> .00037	. <mark>00386</mark> .00417	00078 .00075	. 00034 .00069	. 00544 .00015	. 19407 .19617	
Stddev %RSD	166.99	1.3093	108.22	95.588	203.29	2.7474	101.08	
701 (OD	100.00	1.0000	100.22	00.000	200.20	2.777	101.00	
#1	00118	.02775	.00797	00131	.00076	.00556	.10119	
#2	00155	.02848	.00397	00110	.00072	.00527	.06159	
#3	.00063	.02801	00037	.00007	00046	.00550	.41943	
Check ? High Limit Low Limit	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	
Int. Std.	Y 2243	Y_3600	Y_3774					
Units	Cts/S	Cts/S	Cts/S					
Avg	10782.	92987.	3927.0					
Stddev %RSD	3. .02508	107. .11521	12.9 .32798					
70113D	.02300	.11321	.52790					
#1	10786.	92915.	3912.5					
#2	10781.	93110.	3937.2					
#3	10781.	92937.	3931.3					

Sample Name: L1510121510 Acquired: 10/23/2015 12:58:32 Type: Unk Method: ICP-THERMO3_6010_200.7WATER_3YLINES(v526) Mode: CONC Co User: JYH Custom ID1: Custom ID2: Custom ID3: Comment:							Corr. Fa	actor: 1.00000(
Elem	Ag3280	Al3082	As1890	B_2496	Ba4554	Be3131	Ca4226	Cd2288
Units	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm
Avg	00082	. 01848	.00011	.02399	. 04689	00000	13.209	. 00028
Stddev	.00040	.00225	.00167	.00081	.00019	.00003	.063	.00011
%RSD	49.040	12.169	1524.1	3.3616	.41341	2757.2	.47541	37.882
#1	00120	.01699	00105	.02465	.04709	00002	13.218	.00018
#2	00040	.02106	.00202	.02422	.04689	00002	13.267	.00028
#3	00087	.01738	00064	.02309	.04670	.00003	13.142	.00039
Check ? High Limit Low Limit	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass
Elem	Co2286	Cr2677	Cu2247	Fe2611	K_7664	Li6707	Mg2790	Mn2576
Units	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm
Avg	. 00026	. 00022	.00069	. 00938	. 87106	. 04479	6.5704	. 02090
Stddev	.00018	.00048	.00125	.01396	.05451	.00202	.0399	.00140
%RSD	71.223	224.30	180.99	148.86	6.2579	4.5060	.60774	6.7195
#1	.00031	.00013	.00210	.01306	.87469	.04657	6.6150	.01984
#2	.00041	00022	00030	.02113	.92367	.04521	6.5579	.02250
#3	.00005	.00073	.00028	00605	.81483	.04260	6.5381	.02038
Check ? High Limit Low Limit	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass
Elem	Mo2020	Na5895	Ni2316	P_2149	Pb2203	Sb2068	Se1960	Si2124
Units	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm
Avg	. 00051	79.775	.00106	. 04612	00104	. 00688	. 00359	14.905
Stddev	.00021	.398	.00156	.00793	.00400	.00437	.00341	.032
%RSD	41.787	.49932	146.49	17.196	385.43	63.514	95.007	.21676
#1	.00074	79.932	00072	.05489	.00339	.01175	.00604	14.932
#2	.00047	80.071	.00174	.04399	00440	.00331	.00505	14.913
#3	.00032	79.322	.00216	.03947	00210	.00558	00031	14.869
Check ? High Limit Low Limit	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass

Sample Nan			cquired: 10/			Type: Unk		
Method: ICP	P-THERMO3	_6010_200	_	•	,	de: CONC	Corr. Fa	ctor: 1.00000(
User: JYH	Custom	ID1:	Custom ID)2: (Custom ID3	•		
Comment:								
Elem	Sn1899	Sr4077	Ti3372	TI1908	V_2924	Zn2062	Zr3391	
Units	ppm	ppm	ppm	ppm	ppm	ppm	ppm	
Avg	.00017	.43317	00196	00282	00032	.00172	.11218	
Stddev	.00050	.00309	.00690	.00125	.00077	.00007	.07770	
%RSD	296.29	.71420	351.88	44.306	241.44	3.8629	69.263	
#1	.00052	.43604	00345	00336	00108	.00176	.02540	
#2	.00039	.43359	00799	00372	.00045	.00164	.13584	
#3	00041	.42989	.00556	00139	00031	.00176	.17531	
Check ? High Limit	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	
Low Limit								
Int. Std. Units Avg Stddev %RSD	Y_2243 Cts/S 10608. 7. .06253	Y_3600 Cts/S 90614 . 184. .20323	Y_3774 Cts/S 3941 .1 31.1 .78788					
#1 #2	10612. 10601.	90411. 90771.	3929.7 3917.3					
#3	10612.	90659.	3976.2					

Sample Name: L1510126201 Acquired: 10/23/2015 13:02:34 Type: Unk Method: ICP-THERMO3_6010_200.7WATER_3YLINES(v526) Mode: CONC User: JYH Custom ID1: Custom ID2: Custom ID3:						Corr. Factor: 1.00000(
Comment:								
Elem	Ag3280	Al3082	As1890	B_2496	Ba4554	Be3131	Ca4226	Cd2288
Units	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm
Avg	. 00001	. 01199	.00037	. 02271	.03749	00001	62.120	00016
Stddev	.00126	.00401	.00315	.00116	.00050	.00008	.020	.00026
%RSD	9287.9	33.453	843.76	5.1253	1.3426	896.81	.03293	161.59
#1	00008	.01625	00268	.02363	.03761	.00006	62.102	00029
#2	00119	.01145	.00362	.02310	.03693	00010	62.142	00033
#3	.00132	.00829	.00018	.02140	.03792	.00002	62.117	.00014
Check ? High Limit Low Limit	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass
Elem	Co2286	Cr2677	Cu2247	Fe2611	K_7664	Li6707	Mg2790	Mn2576
Units	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm
Avg	.00056	. 00064	00036	.09152	3.1293	.01142	8.5141	. 03087
Stddev	.00050	.00059	.00094	.00732	.0146	.00200	.1830	.00073
%RSD	89.523	92.165	261.11	7.9938	.46670	17.507	2.1499	2.3524
#1	.00105	.00055	00145	.09126	3.1125	.00937	8.7245	.03169
#2	.00005	.00128	.00028	.08435	3.1363	.01336	8.3915	.03033
#3	.00058	.00010	.00008	.09897	3.1391	.01153	8.4263	.03059
Check ? High Limit Low Limit	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass
Elem	Mo2020	Na5895	Ni2316	P_2149	Pb2203	Sb2068	Se1960	Si2124
Units	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm
Avg	. 00073	3.4726	.00100	. 22464	00260	. 00099	.00225	6.7000
Stddev	.00014	.0189	.00058	.00550	.00036	.00356	.00176	.0254
%RSD	18.759	.54477	57.275	2.4487	13.689	359.37	78.387	.37916
#1	.00057	3.4927	.00040	.22384	00287	00309	.00108	6.7191
#2	.00081	3.4701	.00107	.23050	00220	.00257	.00139	6.7098
#3	.00082	3.4551	.00154	.21959	00275	.00348	.00427	6.6712
Check ? High Limit Low Limit	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass

Sample Nan	ne: L151012	:6201 A	cquired: 10/	/23/2015 13	:02:34	Type: Unk		
Method: ICP	-THERMO3	_6010_200	.7WATER_	3YLINES(v	526) Mo	de: CONC	Corr. Fa	ctor: 1.00000(
User: JYH	Custom	ID1:	Custom ID)2: (Custom ID3	:		
Comment:								
Elem	Sn1899	Sr4077	Ti3372	TI1908	V_2924	Zn2062	Zr3391	
Units	ppm	ppm	ppm	ppm	ppm	ppm	ppm	
Avg	00081 .00100	.16089	01040	00416	00064	.00178	.12588	
Stddev %RSD	123.60	.00022 .13716	.00260 25.017	.00103 24.684	.00086 135.40	.00006 3.5126	.06302 50.060	
701 (OD	123.00	.13710	25.017	24.004	155.40	5.5120	30.000	
#1	.00020	.16113	00750	00298	.00033	.00172	.19861	
#2	00082	.16084	01114	00468	00092	.00178	.08740	
#3	00180	.16070	01254	00482	00132	.00185	.09165	
Check ? High Limit Low Limit	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	
	V 0040	V 0000	\					
Int. Std. Units	Y_2243 Cts/S	Y_3600 Cts/S	Y_3774 Cts/S					
Avg	10655.	91504.	3919.2					
Stddev	6.	292.	3.7					
%RSD	.05190	.31881	.09343					
#1	10649.	91169.	3920.2					
#2	10656.	91643.	3915.2					
#3	10660.	91701.	3922.3					

Sample Name: L1510126202 Acquired: 10/23/2015 13:06:36 Type: Unk Method: ICP-THERMO3_6010_200.7WATER_3YLINES(v526) Mode: CONC User: JYH Custom ID1: Custom ID2: Custom ID3: Comment:					de: CONC	Corr. Factor: 1.000000		
Elem Units Avg Stddev %RSD	Ag3280 ppm . 00047 .00050 105.91	Al3082 ppm . 01418 .00277 19.568	As1890 ppm 00159 .00372 233.81	B_2496 ppm . 02418 .00215 8.8766	Ba4554 ppm . 07660 .00025 .32920	Be3131 ppm .00001 .00003 301.63	Ca4226 ppm 63.719 .216 .33954	Cd2288 ppm . 00001 .00014 1145.8
#1 #2 #3	.00099 .00044 00001	.01461 .01122 .01672	00106 .00183 00555	.02179 .02481 .02594	.07646 .07689 .07644	00003 .00003 .00003	63.772 63.904 63.481	00008 .00017 00005
Check ? High Limit Low Limit	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass
Elem Units Avg Stddev %RSD	Co2286 ppm .00009 .00023 241.97	Cr2677 ppm .00055 .00062 112.94	Cu2247 ppm .01117 .00091 8.1725	Fe2611 ppm 00004 .00576 14399.	K_7664 ppm 1.0843 .0326 3.0022	Li6707 ppm .01238 .00279 22.554	Mg2790 ppm 13.835 .067 .48384 13.869	Mn2576 ppm .00018 .00058 322.77
#2 #3	00032 00013 .00010	.00067	.01119	00541 00076	1.1212 1.0595	.01001 .01546	13.878 13.758	0003 00035 .00080
Check ? High Limit Low Limit	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass
Elem Units Avg Stddev %RSD	Mo2020 ppm . 00079 .00020 24.789	Na5895 ppm 8.3854 .0265 .31639	Ni2316 ppm .00117 .00132 113.08	P_2149 ppm . 00791 .00410 51.815	Pb2203 ppm . 00267 .00480 179.62	Sb2068 ppm . 00362 .00036 9.8601	Se1960 ppm . 00719 .00318 44.269	Si2124 ppm 4.3853 .0150 .34212
#1 #2 #3	.00057 .00093 .00088	8.3952 8.4056 8.3553	00035 .00186 .00199	.00428 .01235 .00710	.00255 00207 .00754	.00367 .00394 .00324	.01077 .00465 .00616	4.3861 4.3999 4.3700
Check ? High Limit Low Limit	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass

Sample Nar	ne: L151012	26202 A	.cquired: 10/	/23/2015 13	:06:36	Type: Unk		
Method: ICF	P-THERMO3	3_6010_200	.7WATER_	3YLINES(v	526) Mc	de: CONC	Corr. Fac	ctor: 1.000000
User: JYH	Custom	ID1:	Custom ID)2: (Custom ID3	•		
Comment:								
Elem	Sn1899	Sr4077	Ti3372	TI1908	V_2924	Zn2062	Zr3391	
Units	ppm	ppm	ppm	ppm	ppm	ppm	ppm	
Avg	.00024	.29413	01310	00213	.00021	.02568	03215	
Stddev %RSD	.00121	.00106	.00159	.00246	.00073	.00009	.07237	
%K3D	514.08	.36196	12.168	115.51	341.62	.36804	225.07	
#1	00096	.29521	01318	.00066	.00081	.02571	.01099	
#2	.00146	.29409	01466	00400	.00043	.02576	11571	
#3	.00021	.29309	01147	00305	00060	.02557	.00826	
Check ? High Limit Low Limit	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	
Int. Std.	Y_2243	Y_3600	Y_3774					
Units	Cts/S	Cts/S	Cts/S					
Avg	10633.	91459.	3931.3					
Stddev %RSD	19. .17419	182. .19854	11.7 .29661					
70113D	.17413	.13034	.23001					
#1	10651.	91280.	3919.2					
#2	10614.	91643.	3932.2					
#3	10633.	91456.	3942.5					

Sample Nam Method: ICP- User: JYH Comment:				LINES(v526)	ype: QC) Mode: tom ID3:	CONC (Corr. Factor:	1.000000
Elem	Ag3280	Al3082	As1890	B_2496	Ba4554	Be3131	Ca4226	
Units	ppm	ppm	ppm	ppm	ppm	ppm	ppm	
Avg	. 39896	10.084	.41004	. 49902	1.0318	.05081	10.199	
Stddev	.00049	.010	.00211	.00249	.0068	.00002	.059	
%RSD	.12187	.10198	.51396	.49885	.66123	.04034	.57761	
#1	.39946	10.091	.41207	.49910	1.0383	.05083	10.263	
#2	.39849	10.088	.40786	.50146	1.0247	.05079	10.147	
#3	.39894	10.072	.41019	.49649	1.0324	.05082	10.187	
Check ? Value Range	Chk Pass	Chk Pass	Chk Pass					
Elem	Cd2288	Co2286	Cr2677	Cu2247	Fe2611	K_7664	Li6707	
Units	ppm	ppm	ppm	ppm	ppm	ppm	ppm	
Avg	. 05090	. 20160	. 51292	. 50671	4.0546	51.793	1.0179	
Stddev	.00021	.00017	.00150	.00096	.0342	.396	.0075	
%RSD	.40489	.08307	.29151	.18941	.84329	.76413	.74124	
#1	.05104	.20176	.51196	.50739	4.0624	52.201	1.0264	
#2	.05066	.20143	.51464	.50714	4.0172	51.410	1.0120	
#3	.05099	.20162	.51216	.50561	4.0843	51.769	1.0153	
Check ? Value Range	Chk Pass	Chk Pass	Chk Pass					
Elem	Mg2790	Mn2576	Mo2020	Na5895	Ni2316	P_2149	Pb2203	
Units	ppm	ppm	ppm	ppm	ppm	ppm	ppm	
Avg	9.8518	. 50713	1.0107	52.048	. 51144	10.007	. 50592	
Stddev	.0444	.00485	.0013	.315	.00083	.010	.00405	
%RSD	.45080	.95623	.12951	.60532	.16257	.09983	.79989	
#1	9.8898	.51228	1.0117	52.350	.51240	10.008	.50822	
#2	9.8030	.50265	1.0112	51.721	.51090	9.9962	.50124	
#3	9.8626	.50646	1.0092	52.073	.51103	10.016	.50828	
Check ? Value Range	Chk Pass	Chk Pass	Chk Pass					

Sample Nam Method: ICP User: JYH Comment:		6010_200.7	/23/2015 13: WATER_3YI Custom ID2:	LINES(v526)	ype: QC) Mode: tom ID3:	CONC (Corr. Factor: ⁻	1.00000(
Elem Units Avg Stddev %RSD	Sb2068 ppm 1.2223 .0022 .18131	Se1960 ppm . 40716 .00327 .80418	Si2124 ppm 5.1161 .0095 .18598	Sn1899 ppm 1.0090 .0024 .24253	Sr4077 ppm 1.0295 .0060 .58803	Ti3372 ppm 1.0270 .0109 1.0572	TI1908 ppm . 51749 .00203 .39308	
#1 #2 #3	1.2222 1.2201 1.2246	.41040 .40724 .40385	5.1060 5.1175 5.1249	1.0077 1.0076 1.0119	1.0333 1.0225 1.0327	1.0356 1.0148 1.0306	.51751 .51951 .51545	
Check ? Value Range	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	
Elem Units Avg Stddev %RSD	V_2924 ppm 1.0242 .0029 .27878	Zn2062 ppm 1.0032 .0006 .05544	Zr3391 ppm F .80453 .04389 5.4551					
#1 #2 #3	1.0243 1.0270 1.0213	1.0037 1.0026 1.0034	.78502 .85479 .77378					
Check ? Value Range	Chk Pass	Chk Pass	Chk Fail 1.0000 -10.000%					
Int. Std. Units Avg Stddev %RSD	Y_2243 Cts/S 11033. 17. .15525	Y_3600 Cts/S 9 3685 . 179. .19105	Y_3774 Cts/S 4079.5 28.6 .70039					
#1 #2 #3	11052. 11030. 11018.	93479. 93779. 93799.	4047.0 4090.8 4100.8					

Sample Nam Method: ICP User: JYH Comment:				LINES(v526	ype: Blank) Mode: tom ID3:	CONC (Corr. Factor:	1.00000(
Elem	Ag3280	Al3082	As1890	B_2496	Ba4554	Be3131	Ca4226	
Units	ppm	ppm	ppm	ppm	ppm	ppm	ppm	
Avg	. 00083	. 00433	00023	. 00184	00045	.00002	. 01157	
Stddev	.00075	.00375	.00587	.00091	.00067	.00007	.00673	
%RSD	90.397	86.639	2589.7	49.257	148.79	370.14	58.194	
#1	.00050	.00038	.00641	.00278	00122	.00010	.00480	
#2	.00030	.00476	00234	.00097	.00002	00000	.01164	
#3	.00169	.00785	00475	.00177	00015	00004	.01827	
Check ? High Limit Low Limit	Chk Pass	Chk Pass	Chk Pass					
Elem	Cd2288	Co2286	Cr2677	Cu2247	Fe2611	K_7664	Li6707	
Units	ppm	ppm	ppm	ppm	ppm	ppm	ppm	
Avg	00006	. 00070	00021	00068	.00198	. 13693	. 00408	
Stddev	.00005	.00034	.00103	.00126	.01683	.08274	.00123	
%RSD	79.508	48.880	487.72	184.48	851.30	60.422	30.259	
#1	00010	.00107	00137	00201	.01293	.11737	.00372	
#2	00001	.00041	.00013	00054	01740	.22770	.00545	
#3	00007	.00060	.00060	.00050	.01040	.06573	.00306	
Check ? High Limit Low Limit	Chk Pass	Chk Pass	Chk Pass					
Elem	Mg2790	Mn2576	Mo2020	Na5895	Ni2316	P_2149	Pb2203	
Units	ppm	ppm	ppm	ppm	ppm	ppm	ppm	
Avg	. 00429	. 00004	. 00110	. 02798	.00092	. 00312	. 00157	
Stddev	.05652	.00051	.00011	.01717	.00022	.00897	.00508	
%RSD	1317.7	1362.8	9.6594	61.368	24.052	287.94	324.32	
#1	02671	00052	.00119	.02458	.00107	.01335	.00739	
#2	02995	.00017	.00098	.04659	.00103	00338	00189	
#3	.06953	.00047	.00112	.01276	.00067	00062	00081	
Check ? High Limit Low Limit	Chk Pass	Chk Pass	Chk Pass					

Sample Nam Method: ICP User: JYH	ne: CCB / -THERMO3_ Custom I			LINES(v526)	ype: Blank) Mode: tom ID3:	CONC	Corr. Factor:	1.00000(
Comment:	Customi	D1. (Sustoili ib2.	Cus	tom ibs.			
Elem Units Avg Stddev %RSD	Sb2068 ppm . 00317 .00311 98.229	Se1960 ppm .00479 .00618 128.81	Si2124 ppm . 00620 .00140 22.499	Sn1899 ppm 00022 .00049 221.61	Sr4077 ppm . 00043 .00014 32.057	Ti3372 ppm 00339 .00184 54.243	TI1908 ppm 00294 .00205 69.810	
#1 #2 #3	.00168 .00108 .00674	.01185 .00036 .00218	.00535 .00781 .00544	00024 00071 .00028	.00057 .00044 .00030	00499 00380 00138	00107 00261 00514	
Check ? High Limit Low Limit	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	
Elem Units Avg Stddev %RSD	V_2924 ppm 00050 .00051 101.60	Zn2062 ppm 00001 .00028 2218.4	Zr3391 ppm F .21162 .17783 84.032					
#1 #2 #3	00040 00106 00005	00027 00005 .00028	.01942 .24512 .37031					
Check ? High Limit Low Limit	Chk Pass	Chk Pass	Chk Fail .04000 04000					
Int. Std. Units Avg Stddev %RSD	Y_2243 Cts/S 11200. 14. .12147	Y_3600 Cts/S 96410 . 134. .13848	Y_3774 Cts/S 4057.8 10.8 .26502					
#1 #2 #3	11200. 11186. 11213.	96257. 96504. 96469.	4045.8 4066.6 4061.0					

Sample Name: L1510126203 Acquired: 10/23/2015 13:18:30 Type: Unk Method: ICP-THERMO3_6010_200.7WATER_3YLINES(v526) Mode: CONC User: JYH Custom ID1: Custom ID2: Custom ID3: Comment:						Corr. Fa	actor: 1.00000(
Elem	Ag3280	Al3082	As1890	B_2496	Ba4554	Be3131	Ca4226	Cd2288
Units	ppm	ppm						
Avg	00042	. 08442	00058	. 01391	. 09021	00003	46.800	. 00011
Stddev	.00058	.00637	.00087	.00118	.00099	.00004	.056	.00009
%RSD	136.06	7.5507	149.77	8.4653	1.0973	124.77	.11983	78.798
#1	.00019	.08928	00099	.01404	.08955	00002	46.743	.00020
#2	00050	.07720	00117	.01502	.08972	00000	46.855	.00011
#3	00096	.08678	.00042	.01267	.09134	00008	46.802	.00003
Check? High Limit Low Limit	Chk Pass	Chk Pass						
Elem	Co2286	Cr2677	Cu2247	Fe2611	K_7664	Li6707	Mg2790	Mn2576
Units	ppm	ppm						
Avg	.00001	. 00096	00081	.08669	1.3200	. 00215	6.5236	. 01137
Stddev	.00031	.00064	.00065	.01984	.0321	.00276	.1040	.00222
%RSD	2323.4	66.509	80.001	22.882	2.4292	128.33	1.5943	19.475
#1	00006	.00054	00120	.10597	1.2951	00062	6.4199	.01212
#2	.00035	.00170	00006	.06634	1.3562	.00217	6.6279	.00888
#3	00025	.00065	00117	.08775	1.3086	.00491	6.5230	.01312
Check? High Limit Low Limit	Chk Pass	Chk Pass						
Elem	Mo2020	Na5895	Ni2316	P_2149	Pb2203	Sb2068	Se1960	Si2124
Units	ppm	ppm						
Avg	. 00097	4.5034	. 00113	. 02246	00373	. 00340	. 00145	4.5546
Stddev	.00030	.0523	.00006	.00620	.00592	.00125	.00236	.0124
%RSD	31.468	1.1608	5.1504	27.590	158.99	36.816	163.30	.27146
#1	.00132	4.4673	.00119	.02309	00185	.00199	00099	4.5596
#2	.00082	4.5633	.00112	.01597	.00104	.00438	.00374	4.5637
#3	.00077	4.4795	.00107	.02832	01036	.00381	.00159	4.5405
Check ? High Limit Low Limit	Chk Pass	Chk Pass						

Sample Nan			cquired: 10/			Type: Unk		
Method: ICP	P-THERMO3	_6010_200	_	•	,	de: CONC	Corr. Fa	ctor: 1.00000(
User: JYH	Custom	ID1:	Custom ID)2: (Custom ID3	•		
Comment:								
Elem	Sn1899	Sr4077	Ti3372	TI1908	V_2924	Zn2062	Zr3391	
Units	ppm							
Avg	.00023	.16394	00570	00070	00034	.00206	.12650	
Stddev %RSD	.00091 400.69	.00046 .28286	.00198 34.634	.00332 472.52	.00034 100.06	.00015 7.5004	.12849 101.57	
701 (OD	400.03	.20200	34.034	472.52	100.00	7.5004	101.57	
#1	.00085	.16412	00792	.00266	.00003	.00191	00066	
#2	.00064	.16428	00413	00398	00065	.00222	.12389	
#3	00081	.16341	00507	00079	00041	.00207	.25627	
Check ? High Limit Low Limit	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	
Int. Std.	Y 2243	Y_3600	Y_3774					
Units	Cts/S	Cts/S	Cts/S					
Avg	10629.	91412.	3913.3					
Stddev	4.	189.	3.1					
%RSD	.03810	.20700	.08000					
#1	10633.	91608.	3916.9					
#2	10629.	91231.	3911.1					
#3	10625.	91398.	3911.9					

Sample Name: L1510126204								
Method: ICF	P-THERMO3	3_6010_200	.7WATER_	3YLINES(v	526) Mo	de: CONC	Corr. Fa	actor: 1.000000
User: JYH	Custom	ID1:	Custom ID)2: (Custom ID3	•		
Comment:								
Elem	Ag3280	Al3082	As1890	B_2496	Ba4554	Be3131	Ca4226	Cd2288
Units	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm
Avg	.00006	.08016	00184	.01523	.10887	00002	69.451	.00010
Stddev	.00040	.00824	.00207	.00108	.00057	.00003	.308	.00013
%RSD	663.59	10.281	112.26	7.0915	.52326	135.42	.44334	131.46
#1	.00044	.07106	.00053	.01624	.10854	00006	69.457	00005
#2	00035	.08229	00283	.01537	.10953	00001	69.755	.00014
#3	.00009	.08713	00322	.01409	.10855	00000	69.140	.00021
Chook 2	Chl. Doos	Chl. Doos	Chl. Doos	Chl. Doos	Chk Doos	Chl. Doos	Chl. Doos	Chle Doon
Check ? High Limit	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass
Low Limit								
Elem	Co2286	Cr2677	Cu2247	Fe2611	K_7664	Li6707	Mg2790	Mn2576
Units	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm
Avg Stddev	. 00014 .00035	. <mark>00141</mark> .00031	. 00025 .00045	. 14211 .01876	1. 0832 .0401	. 01436 .00498	9.0803 .1101	. 02618 .00088
%RSD	250.68	22.207	177.86	13.203	3.7015	34.651	1.2129	3.3639
701 (OD	250.00	22.207	177.00	10.200	3.7013	04.001	1.2125	0.0000
#1	00014	.00107	.00033	.15623	1.1146	.01145	9.0345	.02568
#2	.00003	.00148	00023	.12082	1.0381	.01152	9.0004	.02720
#3	.00053	.00169	.00066	.14927	1.0970	.02010	9.2059	.02567
Check?	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass
High Limit	Onici doo	OTIL T GOO	OTILCT GOO	OTHER GOO	OTHER GOO	OTILCT GOO	OTHER GOO	OTIKT GOO
Low Limit								
- 1	M . 0000	N. FOOF	NIGOTO	D 0440	DI 0000	01.0000	0.4000	0:0404
Elem Units	Mo2020 ppm	Na5895 ppm	Ni2316 ppm	P_2149 ppm	Pb2203 ppm	Sb2068 ppm	Se1960 ppm	Si2124 ppm
Avg	. 00055	4. 7547	.00084	.011 79	00418	.00620	.00489	4.1 24 1
Stddev	.00017	.0161	.00062	.00806	.00182	.00135	.00522	.0187
%RSD	31.032	.33879	74.203	68.407	43.520	21.786	106.72	.45211
#1	00020	4 7400	00010	00704	00000	00760	00110	4 1202
#1 #2	.00036	4.7498 4.7726	.00016	.00794 .02105	00330 00296	.00763 .00494	00112 .00750	4.1362 4.1334
#2 #3	.00068	4.7720	.00139	.00637	00290	.00494	.00730	4.1026
•			.50.00		.50020	.50002		323
Check?	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass
High Limit								
Low Limit								

Sample Name: L1510126204								
Method: ICF	P-THERMO3	3_6010_200	.7WATER_	3YLINES(v	526) Mc	de: CONC	Corr. Fa	ctor: 1.00000(
User: JYH	Custom	ID1:	Custom ID)2: (Custom ID3	:		
Comment:								
Elem	Sn1899	Sr4077	Ti3372	TI1908	V_2924	Zn2062	Zr3391	
Units	ppm	ppm	ppm	ppm	ppm	ppm	ppm	
Avg Stddev	00082 .00054	. 31635 .00147	01197 .00228	00134 .00362	00049 .00067	. 00227 .00035	. 01052 .10407	
%RSD	65.841	.46615	19.044	269.87	135.57	15.388	989.28	
701.102	00.011	110010	10.011	200.07	100.07	10.000	000.20	
#1	00068	.31644	01069	00141	.00027	.00252	08792	
#2	00036	.31779	01460	00492	00078	.00243	.11943	
#3	00142	.31484	01061	.00231	00096	.00187	.00005	
Check ? High Limit Low Limit	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	
Int. Std.	Y_2243	Y_3600	Y_3774					
Units	Cts/S	Cts/S	Cts/S					
Avg	10614.	91163.	3892.5					
Stddev %RSD	13. .11800	118. .12917	31.3 .80392					
701 (OD	.11000	.12317	.00332					
#1	10602.	91278.	3877.8					
#2	10612.	91043.	3871.3					
#3	10627.	91169.	3928.5					

Sample Name: L1510126205							actor: 1.00000(
User: JYH	Custom	ID1:	Custom IE)2:	Custom ID3	• •		
Comment:								
Elem	Ag3280	Al3082	As1890	B_2496	Ba4554	Be3131	Ca4226	Cd2288
Units	ppm	ppm . 24831	ppm 00092	ppm . 01644	ppm . 07599	ppm	ppm 61.903	ppm
Avg Stddev	00009 .00166	.00513	.00393	.00180	.00093	00001 .00002	.066	. 00002 .00004
%RSD	1896.5	2.0664	427.44	10.959	1.2249	201.18	.10655	224.10
#1	.00006	.24411	00545	.01506	.07561	.00001	61.890	.00002
#2	00182	.25403	.00159	.01848	.07532	00002	61.845	00002
#3	.00149	.24680	.00110	.01577	.07706	00002	61.975	.00006
Check ? High Limit Low Limit	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass
Elem	Co2286	Cr2677	Cu2247	Fe2611	K_7664	Li6707	Mg2790	Mn2576
Units	ppm	ppm	ppm	ppm	_ ppm	ppm	ppm	ppm
Avg	.00063	.00080	.00003	.23985	1.2025	.01090	9.0766	.04050
Stddev	.00048	.00015	.00117	.01009	.0719	.00319	.1974	.00166
%RSD	76.206	18.337	4190.9	4.2074	5.9766	29.277	2.1746	4.0964
#1	.00012	.00064	.00073	.22822	1.2104	.01111	8.8698	.03884
#2	.00107	.00092	00132	.24637	1.1270	.01398	9.2629	.04049
#3	.00068	.00085	.00068	.24495	1.2700	.00761	9.0973	.04216
Check ? High Limit Low Limit	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass
Elem	Mo2020	Na5895	Ni2316	P_2149	Pb2203	Sb2068	Se1960	Si2124
Units	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm
Avg	.00060	4.5060	.00065	.02249	00442	.00486	.00464	4.2853
Stddev	.00029	.0182	.00102	.00563	.00029	.00322	.00369	.0080
%RSD	48.764	.40367	157.52	25.011	6.6167	66.135	79.491	.18713
#1	.00040	4.5269	.00146	.02812	00409	.00275	.00482	4.2945
#2	.00093	4.4971	.00098	.01687	00464	.00327	.00087	4.2818
#3	.00046	4.4939	00050	.02249	00454	.00857	.00824	4.2796
Check ? High Limit Low Limit	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass

Sample Nan			•	/23/2015 13		Type: Unk		
Method: ICF	P-THERMO3	_6010_200	.7WATER_	3YLINES(v	526) Mc	de: CONC	Corr. Fa	ctor: 1.00000(
User: JYH	Custom	ID1:	Custom ID)2: (Custom ID3	•		
Comment:								
Elem	Sn1899	Sr4077	Ti3372	TI1908	V_2924	Zn2062	Zr3391	
Units	ppm	ppm	ppm	ppm	ppm	ppm	ppm	
Avg Stddev	00043 .00015	. 25605 .00068	00427 .00590	00372 .00061	00025 .00043	. 00165 .00021	. 00968 .10527	
%RSD	35,568	.26602	138.20	16.518	169.83	12.689	1088.0	
701 (OD	33.300	.20002	150.20	10.510	100.00	12.000	1000.0	
#1	00026	.25562	.00213	00334	00004	.00158	.11010	
#2	00050	.25570	00545	00340	.00003	.00188	09986	
#3	00055	.25684	00948	00443	00074	.00147	.01879	
Check ? High Limit Low Limit	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	
Int. Std.	Y 2243	Y_3600	Y_3774					
Units	_Cts/S	Cts/S	Cts/S					
Avg	10628.	91514.	3934.8					
Stddev	21.	308.	10.4					
%RSD	.19819	.33617	.26505					
#1	10622.	91298.	3944.4					
#2	10611.	91866.	3936.3					
#3	10652.	91379.	3923.7					

Sample Name: L1510126206 Acquired: 10/23/2015 13:30:36 Type: Unk								
Method: ICF	-THERMO3	_6010_200	.7WATER_	3YLINES(v	526) Mo	de: CONC	Corr. Fa	actor: 1.00000(
User: JYH	Custom	ID1:	Custom ID)2: (Custom ID3			
Comment:								
Elem	Ag3280	Al3082	As1890	B 2496	Ba4554	Be3131	Ca4226	Cd2288
Units	ppm	ppm	ppm	ppm	ррт	ppm	ppm	ppm
Avg	00020	2.7764	00262	.01705	.10767	.00010	61.711	.00026
Stddev	.00209	.0042	.00157	.00063	.00010	.00005	.100	.00027
%RSD	1021.1	.15229	59.992	3.7142	.09335	47.818	.16133	104.64
#1	.00153	2.7808	00096	.01632	.10758	.00015	61.597	.00030
#2	.00037	2.7762	00408	.01742	.10766	.00009	61.779	00003
#3	00252	2.7723	00281	.01741	.10778	.00006	61.757	.00051
Check?	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass
High Limit	Onic r doo	Omer add	Onk i doo	OTIKT GOO	OTIK I GOO	OTIK I GOO	OTIK I GOO	Onk i doo
Low Limit								
Elem	Co2286	Cr2677	Cu2247	Fe2611	K_7664	Li6707	Mg2790	Mn2576
Units	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm
Avg	.00166	.00413	.00261	2.7377	2.6594	.01595	9.1356	.09433
Stddev	.00017	.00043	.00082	.0102	.0293	.00357	.0526	.00087
%RSD	10.173	10.376	31.551	.37335	1.1019	22.364	.57571	.92471
#1	.00159	.00380	.00188	2.7377	2.6384	.01310	9.1622	.09350
#2	.00153	.00461	.00246	2.7480	2.6469	.01481	9.0750	.09425
#3	.00185	.00396	.00350	2.7275	2.6929	.01995	9.1696	.09524
Check?	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass
High Limit								
Low Limit								
Elem	Mo2020	Na5895	Ni2316	P_2149	Pb2203	Sb2068	Se1960	Si2124
Units	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm
Avg	.00112	4.4599	.00381	.11261	00196	.00518	.00336	7.9804
Stddev	.00015	.0141	.00081	.00520	.00047	.00514	.00361	.0158
%RSD	13.101	.31712	21.177	4.6136	23.894	99.186	107.23	.19804
#1	.00126	4.4609	.00363	.11221	00235	.00334	.00448	7.9903
#2	.00097	4.4736	.00469	.10763	00144	.00121	.00628	7.9887
#3	.00112	4.4453	.00311	.11800	00209	.01098	00067	7.9622
Check?	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass
High Limit	JIIK I das	OHN I dos	OHN I dos	OHN I dos	OHKT 033	OHN I dos	OTIN I dos	OTIK I doo
Low Limit								

Sample Nar	Sample Name: L1510126206 Acquired: 10/23/2015 13:30:36 Type: Unk									
Method: ICF	P-THERMO3	3_6010_200	.7WATER_	3YLINES(v	526) Mo	de: CONC	Corr. Fa	ctor: 1.00000(
User: JYH	Custom	ID1:	Custom ID)2: (Custom ID3	:				
Comment:										
Elem	Sn1899	Sr4077	Ti3372	TI1908	V 2924	Zn2062	Zr3391			
Units	ppm	ppm	ppm	ppm	ppm	ppm	ppm			
Avg	.00027	.25150	.01975	00304	.00383	.03366	.30063			
Stddev	.00051	.00059	.00284	.00181	.00035	.00010	.32831			
%RSD	189.72	.23585	14.392	59.619	9.1136	.28912	109.21			
#1	.00081	25144	.02185	00000	00410	02277	EE206			
#1 #2	00021	.25144 .25212	.02183	00208 00191	.00418	.03377	.55396 .41822			
#2 #3	.00021	.25094	.01651	00514	.00340	.03359	07028			
0	.00020	.2000 !	.0.001	.00011	.00001	.00000	.07020			
Check?	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass			
High Limit										
Low Limit										
Int. Std.	Y 2243	Y 3600	Y 3774							
Units	1_2243 Cts/S	1_3000 Cts/S	1_3774 Cts/S							
Avg	10650.	91583.	3932.0							
Stddev	14.	98.	7.9							
%RSD	.12883	.10701	.20182							
#1	10645.	91473.	3932.0							
#2 #2	10640.	91618.	3939.9							
#3	10666.	91659.	3924.0							

Sample Name: L1510126207 Acquired: 10/23/2015 13:34:38 Type: Unk Method: ICP-THERMO3_6010_200.7WATER_3YLINES(v526) Mode: CONC Corr. Factor: 1.0 User: JYH Custom ID1: Custom ID2: Custom ID3: Comment:							actor: 1.00000(
Elem	Ag3280	Al3082	As1890	B_2496	Ba4554	Be3131	Ca4226	Cd2288
Units	ppm	ppm						
Avg	00013	. 07553	00145	. 02737	. 08647	00002	59.132	. 00013
Stddev	.00112	.00640	.00348	.00122	.00102	.00000	.103	.00037
%RSD	874.14	8.4721	240.31	4.4465	1.1828	17.828	.17403	285.83
#1	00140	.07924	00161	.02657	.08762	00002	59.157	00018
#2	.00029	.07920	.00211	.02676	.08610	00002	59.221	.00002
#3	.00072	.06814	00485	.02877	.08568	00002	59.019	.00055
Check ? High Limit Low Limit	Chk Pass	Chk Pass						
Elem	Co2286	Cr2677	Cu2247	Fe2611	K_7664	Li6707	Mg2790	Mn2576
Units	ppm	ppm						
Avg	. 00030	. 00232	. 00344	. 03471	1.2244	. 01056	7.5203	00062
Stddev	.00029	.00062	.00037	.01244	.0196	.00318	.0904	.00100
%RSD	96.167	26.897	10.851	35.858	1.5979	30.126	1.2014	159.45
#1	00003	.00164	.00301	.04692	1.2247	.01382	7.4372	00082
#2	.00046	.00246	.00370	.02204	1.2438	.00746	7.5071	.00046
#3	.00046	.00286	.00361	.03516	1.2047	.01040	7.6165	00151
Check ? High Limit Low Limit	Chk Pass	Chk Pass						
Elem	Mo2020	Na5895	Ni2316	P_2149	Pb2203	Sb2068	Se1960	Si2124
Units	ppm	ppm						
Avg	. 00116	16.178	.00083	. 01890	. 00176	. 00537	. 00121	3.6568
Stddev	.00013	.035	.00286	.00590	.00111	.00556	.00381	.0077
%RSD	10.800	.21647	343.61	31.210	63.185	103.53	314.59	.21094
#1	.00108	16.216	00035	.01787	.00085	.01136	00319	3.6643
#2	.00109	16.146	.00410	.01358	.00144	.00037	.00348	3.6571
#3	.00130	16.173	00125	.02524	.00300	.00439	.00335	3.6489
Check ? High Limit Low Limit	Chk Pass	Chk Pass						

Sample Nam			•	/23/2015 13		Гуре: Unk		
Method: ICP			_	•	,	de: CONC	Corr. Fa	ctor: 1.00000(
User: JYH	Custom	ID1:	Custom ID)2: (Custom ID3	•		
Comment:								
Elem	Sn1899	Sr4077	Ti3372	TI1908	V_2924	Zn2062	Zr3391	
Units	ppm	ppm	ppm	ppm	ppm	ppm	ppm	
Avg	00027	.22027	01265	00392	00052	.00228	.11338	
Stddev %RSD	.00123 449.72	.00042 .19038	.00197 15.591	.00171 43.710	.00092 177.75	.00031 13.475	.07549 66.583	
701 (SD	443.72	.13030	10.001	43.710	177.73	13.473	00.505	
#1	00147	.22009	01241	00326	00157	.00261	.13066	
#2	.00098	.22075	01080	00264	.00004	.00222	.17873	
#3	00033	.21996	01472	00587	00002	.00200	.03075	
Check ? High Limit Low Limit	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	
Int. Std. Units Avg Stddev %RSD	Y_2243 Cts/S 10594. 17. .15772	Y_3600 Cts/S 91102 . 182. .19988	Y_3774 Cts/S 3898.0 19.1 .49109					
#1 #2	10591. 10579.	90941. 91300.	3876.2 3906.0					
#2 #3	10579.	91064.	3911.9					

Sample Name: L1510126208								
Method: ICF	P-THERMO3	3_6010_200	.7WATER_	3YLINES(v	526) Mc	de: CONC	Corr. Fa	actor: 1.00000(
User: JYH	Custom	ID1:	Custom ID)2: (Custom ID3	:		
Comment:								
Elem	Ag3280	Al3082	As1890	B 2496	Ba4554	Be3131	Ca4226	Cd2288
Units	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm
Avg	.00020	.03587	00554	.01329	.05516	.00001	54.781	.00014
Stddev	.00118	.00831	.00482	.00068	.00124	.00002	.091	.00021
%RSD	604.05	23.161	86.972	5.0978	2.2434	127.36	.16637	149.38
#1	00010	.03222	00641	.01395	.05654	.00002	54.791	00006
#1 #2	00010	.03222	00041	.01333	.05479	00002	54.867	.00036
#2 #3	.00150	.03002	00337	.01260	.05415	.00003	54.685	.00012
,,,	.00100	.00002	.00000	.01200	.00110	.00000	01.000	.00012
Check?	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass
High Limit								
Low Limit								
Elem	Co2286	Cr2677	Cu2247	Fe2611	K_7664	Li6707	Mg2790	Mn2576
Units	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm
Avg	.00015	.00133	.00066	00356	.66384	.00382	3.3978	00143
Stddev	.00035	.00088	.00095	.01852	.04359	.00382	.0288	.00083
%RSD	225.14	66.184	143.75	520.68	6.5664	99.824	.84688	58.152
#1	.00013	.00060	00026	.01503	.61457	.00281	3.3697	00239
#1 #2	00013	.00108	.00165	02201	.69740	.00281	3.3963	00239
#2 #3	.00010	.00231	.00060	00370	.67954	.00061	3.4272	00094
,, 0	.00001	.00201	.00000	.00070	.07001	.00001	0.1272	.00001
Check?	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass
High Limit								
Low Limit								
Elem	Mo2020	Na5895	Ni2316	P_2149	Pb2203	Sb2068	Se1960	Si2124
Units	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm
Avg	.00120	4.6918	.00137	.02435	00182	.00122	.00555	3.7186
Stddev	.00035	.0145	.00053	.00573	.00282	.00538	.00549	.0121
%RSD	29.216	.30935	38.471	23.541	155.50	440.74	98.866	.32451
#1	.00108	4.7080	.00160	.02861	.00143	.00288	.00592	3.7318
#2	.00108	4.7080	.00100	.02801	00321	.00288	.00392	3.7157
#3	.00159	4.6799	.00076	.02661	00367	00479	00011	3.7082
	130.00							
Check ? High Limit	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass
Low Limit								

Sample Name: L1510126208								
Method: ICF	P-THERMO3	3_6010_200	.7WATER_	3YLINES(v	526) Mo	de: CONC	Corr. Fa	ctor: 1.000000
User: JYH	Custom	ID1:	Custom ID)2: (Custom ID3	:		
Comment:								
Elem	Sn1899	Sr4077	Ti3372	TI1908	V_2924	Zn2062	Zr3391	
Units	ppm	ppm	ppm	ppm	ppm	ppm	ppm	
Avg Stddev	00016 .00117	. 14905 .00097	00287 .00281	00262 .00151	00049 .00061	. <mark>00126</mark> .00011	. 09029 .02364	
%RSD	737.77	.65129	98.001	57.593	124.64	9.0957	26.178	
70.102				07.1000		0.0007	_00	
#1	00134	.14909	00052	00197	00087	.00135	.10262	
#2	.00100	.15000	00210	00435	.00021	.00113	.06304	
#3	00014	.14806	00598	00155	00082	.00129	.10522	
Check ? High Limit Low Limit	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	
Int. Std.	Y 2243	Y_3600	Y_3774					
Units	Cts/S	Cts/S	Cts/S					
Avg	10673.	91955.	3914.7					
Stddev %RSD	15. .14067	122. .13234	10.2 .26090					
701 (OD	.14007	.10204	.20030					
#1	10664.	91846.	3917.7					
#2	10664.	91932.	3903.3					
#3	10690.	92086.	3923.1					

Sample Name: L1510126209							Corr. Fa	actor: 1.00000(
User: JYH	Custom	ID1:	Custom II)2: (Custom ID3	:		
Comment:								
Elem	Ag3280	Al3082	As1890	B_2496	Ba4554	Be3131	Ca4226	Cd2288
Units	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm
Avg	.00010	.09824	00127	.04671	.11351	.00003	56.422	.00001
Stddev	.00087	.00577	.00137	.00109	.00139	.00004	.356	.00003
%RSD	889.98	5.8752	108.42	2.3388	1.2233	157.37	.63009	481.43
#1	.00068	.10407	00080	.04770	.11510	.00007	56.794	.00004
#2	00090	.09253	00281	.04554	.11285	.00000	56.085	00001
#3	.00051	.09813	00019	.04689	.11256	.00000	56.388	00002
Check?	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass
High Limit Low Limit								
LOW LITTIE								
Elem	Co2286	Cr2677	Cu2247	Fe2611	K_7664	Li6707	Mg2790	Mn2576
Units	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm
Avg	.00031	.00213	.00523	.89100	2.1433	.00711	8.1689	.22323
Stddev	.00046	.00017	.00048	.01866	.0210	.00161	.1613	.00306
%RSD	145.11	8.1771	9.2633	2.0941	.98111	22.670	1.9748	1.3729
#1	.00031	.00196	.00467	.87625	2.1636	.00551	8.3108	.22592
#2	.00077	.00231	.00557	.88477	2.1217	.00873	8.2024	.21989
#3	00014	.00212	.00544	.91197	2.1447	.00708	7.9934	.22388
Check?	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass
High Limit								
Low Limit								
Elem	Mo2020	Na5895	Ni2316	P_2149	Pb2203	Sb2068	Se1960	Si2124
Units	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm
Avg	.00186	53.413	.00121	.05690	00141	00116	.00565	3.8504
Stddev	.00017	.299	.00135	.00372	.00333	.00265	.00313	.0044
%RSD	8.9498	.55968	111.33	6.5367	236.45	227.84	55.320	.11378
#1	.00168	53.695	00021	.05396	.00224	00420	.00323	3.8547
#2	.00201	53.100	.00136	.06108	00218	.00014	.00455	3.8506
#3	.00188	53.444	.00247	.05565	00429	.00059	.00919	3.8459
Check ? High Limit Low Limit	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass

Sample Name: L1510126209 Acquired: 10/23/2015 13:42:42 Type: Unk									
Method: ICF	P-THERMO3	3_6010_200	.7WATER_	3YLINES(v	526) Mc	de: CONC	Corr. Fa	ctor: 1.000000	
User: JYH	Custom	ID1:	Custom ID)2: (Custom ID3	:			
Comment:									
Elem	Sn1899	Sr4077	Ti3372	TI1908	V_2924	Zn2062	Zr3391		
Units	ppm	ppm	ppm	ppm	ppm	ppm	ppm		
Avg Stddev	. 00092 .00015	. 33587 .00235	00873 .00466	00324 .00105	00066 .00113	. 01928 .00001	. 07731 .16172		
%RSD	15.732	.69824	53.329	32.293	169.54	.03776	209.18		
701.102	10.702	.00021	00.020	02.200	100.01	.00770	200.10		
#1	.00076	.33810	01311	00214	00195	.01927	06206		
#2	.00103	.33343	00923	00335	00017	.01928	.25464		
#3	.00099	.33610	00384	00422	.00013	.01928	.03936		
Check ? High Limit Low Limit	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass		
Int. Std.	Y_2243	Y_3600	Y_3774						
Units	Cts/S	Cts/S	Cts/S						
Avg	10555.	90663.	3933.2						
Stddev %RSD	6. .05785	131. .14417	21.4 .54485						
701 (OD	.00700	.17717	.54465						
#1	10562.	90635.	3908.5						
#2	10552.	90547.	3944.3						
#3	10552.	90805.	3946.7						

Sample Name: L1510121503									
Method: ICF	P-THERMO3	3_6010_200	.7WATER_	3YLINES(v	526) Mo	de: CONC	Corr. Fa	actor: 1.000000	
User: JYH	Custom	ID1: 10	Custom	ID2:	Custom ID	3:			
Comment:									
Elem	Ag3280	Al3082	As1890	B_2496	Ba4554	Be3131	Ca4226	Cd2288	
Units	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	
Avg	.00134	1.3576	00268	.00178	.03110	.00016	.29914	00014	
Stddev	.00115	.0060	.00140	.00259	.00043	.00003	.01278	.00019	
%RSD	85.679	.44587	52.168	145.74	1.3791	16.665	4.2732	137.04	
#1	.00031	1.3510	00113	.00057	.03157	.00015	.30074	00023	
#2	.00257	1.3629	00305	.00002	.03099	.00019	.28563	.00008	
#3	.00113	1.3588	00385	.00475	.03073	.00014	.31104	00026	
Oh a alc O	Ohli Daga	Chk Pass	Ohly Doos	Chl. Daga	Ohli Daga	Chk Pass	Ohli Daga	Chir Daga	
Check ? High Limit	Chk Pass	Clik Pass	Chk Pass	Chk Pass	Chk Pass	Clik Pass	Chk Pass	Chk Pass	
Low Limit									
Elem	Co2286	Cr2677	Cu2247	Fe2611	K_7664	Li6707	Mg2790	Mn2576	
Units	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	
Avg	.00143	.00066	.00068	1.2938	.19570	.00812	.21001	.01067	
Stddev %RSD	.00022 15.702	.00054 81.741	.00051 75.418	.0114 .88214	.06582 33.635	.00062 7.6528	.09826 46.789	.00076 7.1201	
/0N3D	13.702	01.741	73.410	.00214	33.033	7.0320	40.769	7.1201	
#1	.00134	.00105	.00109	1.2818	.12870	.00863	.32054	.01017	
#2	.00125	.00089	.00010	1.2951	.19812	.00831	.13256	.01029	
#3	.00168	.00004	.00085	1.3045	.26028	.00743	.17693	.01154	
Check?	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	
High Limit	Clik F ass	Clik F ass	Clik F ass	Clik Fass	CHK F ass	Clik Fass	Clik F ass	Clik F d55	
Low Limit									
Elem	Mo2020	Na5895	Ni2316	P_2149	Pb2203	Sb2068	Se1960	Si2124	
Units	ppm	ppm	ppm	ppm	ppm	ppm	ppm 000F1	ppm	
Avg Stddev	. 00032 .00037	1.8787 .0043	. 00244 .00062	. 01609 .00698	00101 .00043	. <mark>00106</mark> .00181	. 00051 .00368	2.7075 .0104	
%RSD	113.42	.22622	25.497	43.373	42.335	171.00	723.76	.38458	
70.102			20.107	10.070	12.000	171.00	, 20., 0	.00100	
#1	.00052	1.8783	.00298	.02410	00052	.00194	00052	2.6956	
#2	.00056	1.8747	.00257	.01292	00120	.00227	.00459	2.7117	
#3	00010	1.8832	.00176	.01127	00131	00103	00255	2.7151	
Check?	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	
High Limit	OTIN I GOS	Onk i doo	Jim i uss	JIIK I UJJ	JIIK I UJJ	JIIK I UJJ	JIIK I UJJ	Olik i doo	
Low Limit									

Sample Name: L1510121503 Acquired: 10/23/2015 13:46:45 Type: Unk Method: ICP-THERMO3_6010_200.7WATER_3YLINES(v526) Mode: CONC Corr. Factor: 1.000000 User: JYH Custom ID1: 10 Custom ID2: Custom ID3:									
Comment:	Custom	101.10	Custom	IDZ.	Custom iD	J.			
Elem Units Avg Stddev %RSD	Sn1899 ppm . 00027 .00068 248.46	Sr4077 ppm . 00821 .00004 .54126	Ti3372 ppm 00029 .00372 1263.6	TI1908 ppm 00111 .00117 105.09	V_2924 ppm .00218 .00063 28.948	Zn2062 ppm .09066 .00023 .25686	Zr3391 ppm .12704 .17492 137.69		
#1 #2 #3	00000 00023 .00105	.00822 .00825 .00816	.00399 00274 00214	00181 00177 .00024	.00286 .00208 .00161	.09051 .09092 .09053	.26693 06908 .18326		
Check ? High Limit Low Limit	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass		
Int. Std. Units Avg Stddev %RSD	Y_2243 Cts/S 11926. 18. .15038	Y_3600 Cts/S 102050. 58. .05693	Y_3774 Cts/S 4276.5 6.5 .15156						
#1 #2 #3	11914. 11946. 11917.	101990. 102110. 102060.	4279.5 4280.9 4269.1						

Page 200

•										
Elem	Ag3280	Al3082	As1890	B_2496	Ba4554	Be3131	Ca4226			
Units	ppm									
Avg	. 39811	10.061	. 40441	. 49591	1.0337	. 05082	10.245			
Stddev	.00095	.018	.00130	.00063	.0052	.00006	.061			
%RSD	.23882	.17559	.32109	.12743	.50008	.12651	.59404			
#1	.39886	10.054	.40416	.49561	1.0391	.05083	10.304			
#2	.39704	10.081	.40325	.49549	1.0289	.05088	10.182			
#3	.39841	10.048	.40581	.49664	1.0330	.05075	10.250			
Check ? Value Range	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass			
Elem	Cd2288	Co2286	Cr2677	Cu2247	Fe2611	K_7664	Li6707			
Units	ppm									
Avg	. 05068	.20205	. 51013	. 50517	4.0513	51.951	1.0270			
Stddev	.00025	.00049	.00207	.00080	.0215	.160	.0060			
%RSD	.50041	.24033	.40518	.15766	.53152	.30731	.58182			
#1	.05048	.20236	.50775	.50567	4.0702	52.135	1.0339			
#2	.05097	.20230	.51144	.50425	4.0278	51.860	1.0232			
#3	.05061	.20149	.51121	.50558	4.0559	51.857	1.0239			
Check ? Value Range	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass			
Elem	Mg2790	Mn2576	Mo2020	Na5895	Ni2316	P_2149	Pb2203			
Units	ppm									
Avg	10.017	. 50929	1.0108	51.940	. 50970	9.9977	. 50787			
Stddev	.061	.00398	.0023	.256	.00074	.0490	.00420			
%RSD	.60872	.78195	.22375	.49344	.14596	.49051	.82687			
#1	10.059	.51386	1.0123	52.231	.50948	10.029	.50581			
#2	10.045	.50740	1.0118	51.748	.51053	10.023	.51270			
#3	9.9474	.50660	1.0082	51.840	.50909	9.9412	.50509			
Check ? Value Range	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass			

Sample Name: CCV Acquired: 10/23/2015 13:50:49 Type: QC Method: ICP-THERMO3_6010_200.7WATER_3YLINES(v526) Mode: CONC Corr. Factor: 1.000000 User: JYH Custom ID1: Custom ID2: Custom ID3: Comment:									
Elem Units Avg Stddev %RSD	Sb2068 ppm 1.2175 .0056 .45761	Se1960 ppm . 40777 .00217 .53160	Si2124 ppm 5.0884 .0067 .13102	Sn1899 ppm 1.0145 .0031 .30212	Sr4077 ppm 1.0324 .0045 .43845	Ti3372 ppm 1.0379 .0036 .35086	TI1908 ppm . 51248 .00281 .54880		
#1 #2 #3	1.2167 1.2124 1.2234	.40754 .40572 .41004	5.0910 5.0933 5.0808	1.0163 1.0163 1.0110	1.0376 1.0304 1.0292	1.0412 1.0384 1.0340	.51449 .51369 .50927		
Check ? Value Range	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass		
Elem Units Avg Stddev %RSD	V_2924 ppm 1.0224 .0012 .11621	Zn2062 ppm 1.0003 .0014 .14170	Zr3391 ppm F .59524 .06784 11.398						
#1 #2 #3	1.0227 1.0211 1.0234	1.0018 1.0002 .99901	.52380 .60312 .65881						
Check ? Value Range	Chk Pass	Chk Pass	Chk Fail 1.0000 -10.000%						
Int. Std. Units Avg Stddev %RSD	Y_2243 Cts/S 11036. 15. .13200	Y_3600 Cts/S 9 3928 . 251. .26671	Y_3774 Cts/S 4065.1 8.3 .20363						
#1 #2 #3	11029. 11027. 11053.	93674. 93935. 94174.	4056.6 4073.2 4065.6						

•										
Elem	Ag3280	Al3082	As1890	B_2496	Ba4554	Be3131	Ca4226			
Units	ppm									
Avg	. 00034	. 00494	00094	.00393	. 00046	.00005	.00520			
Stddev	.00079	.00559	.00229	.00099	.00052	.00005	.01882			
%RSD	230.42	113.19	244.89	25.245	111.72	103.48	362.06			
#1	.00002	.01021	00245	.00300	.00102	.00001	.00867			
#2	.00124	00092	.00170	.00498	.00037	.00003	.02204			
#3	00024	.00553	00206	.00381	00000	.00010	01511			
Check ? High Limit Low Limit	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass			
Elem	Cd2288	Co2286	Cr2677	Cu2247	Fe2611	K_7664	Li6707			
Units	ppm									
Avg	. 00009	.00050	.00056	. 00067	.00130	. 21957	. 00439			
Stddev	.00014	.00043	.00076	.00060	.01958	.10779	.00247			
%RSD	161.26	85.605	135.33	88.683	1507.2	49.091	56.202			
#1	.00016	.00026	.00092	.00042	.02088	.10523	.00708			
#2	00008	.00099	00031	.00025	01828	.23416	.00387			
#3	.00019	.00024	.00108	.00136	.00130	.31933	.00223			
Check ? High Limit Low Limit	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass			
Elem	Mg2790	Mn2576	Mo2020	Na5895	Ni2316	P_2149	Pb2203			
Units	ppm									
Avg	03271	. 00087	. 00140	.03818	.00071	00163	00271			
Stddev	.02373	.00267	.00010	.02091	.00093	.00285	.00179			
%RSD	72.543	307.74	6.8760	54.772	130.81	174.30	66.043			
#1	01259	.00038	.00151	.02111	.00116	00428	00317			
#2	02666	00152	.00132	.03192	00036	.00138	00422			
#3	05888	.00374	.00139	.06151	.00134	00201	00073			
Check ? High Limit Low Limit	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass			

•										
Elem Units Avg Stddev %RSD	Sb2068 ppm . 00029 .00141 488.47	Se1960 ppm .00301 .00342 113.47	Si2124 ppm .00564 .00148 26.296	Sn1899 ppm 00038 .00022 58.189	Sr4077 ppm .00036 .00008 22.814	Ti3372 ppm 00037 .00698 1911.2	TI1908 ppm 00249 .00252 101.31			
#1 #2 #3	.00191 00061 00043	.00595 .00382 00074	.00704 .00579 .00408	00030 00064 00021	.00027 .00038 .00044	.00713 00156 00667	00327 00453 .00033			
Check ? High Limit Low Limit	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass			
Elem Units Avg Stddev %RSD	V_2924 ppm 00058 .00040 69.333	Zn2062 ppm 00001 .00016 1281.8	Zr3391 ppm F .19952 .11246 56.364							
#1 #2 #3	00046 00102 00025	.00010 00020 .00006	.07119 .28085 .24653							
Check ? High Limit Low Limit	Chk Pass	Chk Pass	Chk Fail .04000 04000							
Int. Std. Units Avg Stddev %RSD	Y_2243 Cts/S 11246. 17. .15324	Y_3600 Cts/S 96817 . 223. .23017	Y_3774 Cts/S 4071.5 10.4 .25567							
#1 #2 #3	11265. 11233. 11239.	96560. 96945. 96947.	4081.9 4061.1 4071.6							

Elem Units Avg Stddev %RSD	Ag3280 ppm . 00937 .00091 9.7366	Al3082 ppm . 17300 .00230 1.3307	As1890 ppm . 00609 .00210 34.554	ppm . 07955 .00127	Ba4554 ppm . 00846 .00033 3.9089	Be3131 ppm . 00163 .00005 3.1153	. 40806 .01417	Cd2288 ppm . 00061 .00034 55.059				
#1 #2 #3	.00844 .00941 .01026	.17566 .17166 .17168	.00404 .00598 .00824		.00871 .00808 .00858	.00168 .00158 .00163	.39253 .41137 .42028	.00090 .00070 .00024				
Check ? High Limit Low Limit	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass				
Elem Units Avg Stddev %RSD	Co2286 ppm . 00450 .00008 1.7782	Cr2677 ppm . 00414 .00026 6.3281	Cu2247 ppm . 00334 .00056 16.809	ppm . 08460	K_7664 ppm . 93676 .07206 7.6921	Li6707 ppm . 08757 .00419 4.7886	ppm . 38902 .02354	Mn2576 ppm . 00691 .00024 3.4704				
#1 #2 #3	.00441 .00452 .00457	.00444 .00397 .00400	.00280 .00392 .00331		.93575 .86521 1.0093	.08554 .08479 .09240	.40574	.00698 .00710 .00664				
Check ? High Limit Low Limit	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass				
Elem Units Avg Stddev %RSD	Mo2020 ppm . 00794 .00004 .45962	Na5895 ppm . 46855 .02688 5.7374	Ni2316 ppm . 01700 .00042 2.4515	_ ppm	Pb2203 ppm . 00747 .00258 34.569	Sb2068 ppm . 07608 .00402 5.2846	ppm . 01748	Si2124 ppm . 80142 .00160 .19917				
#1 #2 #3	.00795 .00790 .00797	.44246 .49616 .46702	.01719 .01653 .01730	.77843 .78284 .76158	.01002 .00754 .00486	.08046 .07256 .07521	.01895 .01380 .01969	.80102 .80006 .80318				
Check ? High Limit Low Limit	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass				

Sample Name: LLCCV Acquired: 10/23/2015 13:58:41 Type: Unk Method: ICP-THERMO3_6010_200.7WATER_3YLINES(v526) Mode: CONC Corr. Factor: 1.000000 Custom ID1: User: JYH Custom ID2: Custom ID3: Comment: Elem Sn1899 Sr4077 Ti3372 TI1908 V_2924 Zn2062 Zr3391 Units ppm ppm ppm ppm ppm ppm ppm Avg .41136 .04161 .02439 .17093 .00771 .01714 17.529 Stddev .00153 .00064 .00127 .00299 .00039 .00021 .327 %RSD .37235 1.5354 5.2146 1.7506 5.0819 1.2509 1.8648 #1 .41178 .04180 .02353 .16751 .00784 .01722 17.906 #2 .41263 .04090 .02379 .17219 .00803 .01730 17.357 .02585 .17308 #3 .40966 .04214 .00728 .01689 17.324 Check? Chk Pass Chk Pass Chk Pass Chk Pass Chk Pass Chk Pass **High Limit** Low Limit Int. Std. Y 2243 Y 3600 Y_3774 Cts/S Units Cts/S Cts/S 11335. 97183. 4095.3 Avg Stddev 148. 26.8 10. %RSD .09234 .15261 .65561 #1 11327. 97045. 4064.4 #2 11347. 97340. 4109.0 #3 11331. 97166. 4112.7

Approved: October 26, 2015

J'ye 1hu

Elem Units Avg Stddev %RSD	Ag3280 ppm . 00871 .00103 11.871	Al3082 ppm . 17896 .00257 1.4380		ppm . 08035 .00069	Ba4554 ppm . 00916 .00025 2.6809	Be3131 ppm . 00859 .00006 .75155	. 40600 .01209	Cd2288 ppm . 00862 .00003 .31189				
#1 #2 #3	.00921 .00941 .00752	.17704 .17796 .18189	.01558 .01937 .01266		.00944 .00899 .00905	.00861 .00852 .00864	.40924 .39262 .41613	.00864 .00862 .00859				
Check ? High Limit Low Limit	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass				
Elem Units Avg Stddev %RSD	Co2286 ppm . 00890 .00032 3.5440	Cr2677 ppm . 01667 .00077 4.6453	Cu2247 ppm . 01756 .00082 4.6933	ppm . 08005 .01842	K_7664 ppm . 99088 .10409 10.505	Li6707 ppm . 08754 .00455 5.2005	ppm . 31085 .02886	Mn2576 ppm . 00826 .00221 26.754				
#1 #2 #3	.00879 .00925 .00865	.01740 .01586 .01674	.01851 .01718 .01700	.06109 .09788 .08119	1.0310 .87269 1.0689	.09266 .08601 .08395	.31540	.01044 .00602 .00833				
Check ? High Limit Low Limit	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass				
Elem Units Avg Stddev %RSD	Mo2020 ppm . 04769 .00021 .43707	Na5895 ppm . 44898 .01496 3.3330	Ni2316 ppm . 03456 .00114 3.2984	ppm . 00489	Pb2203 ppm . 01555 .00234 15.055	Sb2068 ppm . 01449 .00437 30.137	ppm . 01801	Si2124 ppm . 00015 .00198 1274.5				
#1 #2 #3	.04789 .04747 .04770	.44897 .46394 .43401	.03324 .03525 .03518	00462 .00248 .01681	.01364 .01816 .01484	.01161 .01951 .01234	.02042 .01700 .01661	00175 .00219 .00003				
Check ? High Limit Low Limit	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass				

Page 207

Sample Name: LLCCV Acquired: 10/23/2015 14:02:46 Type: Unk Method: ICP-THERMO3_6010_200.7WATER_3YLINES(v526) Mode: CONC Corr. Factor: 1.000000 Custom ID1: User: JYH Custom ID2: Custom ID3: Comment: Elem Sn1899 Sr4077 Ti3372 TI1908 V_2924 Zn2062 Zr3391 Units ppm ppm ppm ppm ppm ppm ppm Avg .08246 .00917 .02248 .08696 .00797 .01765 .26696 Stddev .00025 .00010 .00177 .00040 .00048 .00006 .07911 %RSD .30477 1.0424 7.8825 .45630 6.0570 .36336 29.632 #1 .08273 .00922 .02076 .08663 .00849 .01772 .17569 #2 .08241 .00906 .02238 .08683 .00753 .01760 .31565 .08224 .02430 #3 .00922 .08740 .00789 .01762 .30955 Check? Chk Pass Chk Pass Chk Pass Chk Pass Chk Pass Chk Pass **High Limit** Low Limit Int. Std. Y_2243 Y 3600 Y_3774 Cts/S Units Cts/S Cts/S 11285. 96800. 4071.7 Avg Stddev 5. 176. 14.2 %RSD .04184 .18219 .34797 #1 11287. 96596. 4056.4 #2 11280. 96898. 4074.1 #3 11289. 96905. 4084.5

Approved: October 26, 2015

J'ye 1hu

Sample Name: PBW 94 Acquired: 10/23/2015 14:06:50 Type: Unk Method: ICP-THERMO3_6010_200.7WATER_3YLINES(v526) Mode: CONC Corr. Factor: 1.000000 Custom ID1: Custom ID2: Custom ID3: Comment: WG543739-02 Elem Ag3280 AI3082 As1890 B 2496 Ba4554 Be3131 Ca4226 Cd2288 Units ppm ppm ppm ppm ppm ppm ppm ppm Avg -.00081 .01532 -.00004 .00225 -.00061 .00007 .02725 -.00022 Stddev .00029 .00492 .00154 .00160 .00023 .00003 .01925 .00024 %RSD 35.648 32.135 3638.4 71.144 38.281 48.840 70.638 107.86 #1 -.00096 .02087 -.00016 .00071 -.00035 .00004 .04799 -.00011 #2 -.00048 .01361 -.00152 .00390 -.00069 .00006 .00995 -.00006 #3 -.00099 .01148 .00156 .00213 -.00080 .00011 .02382 -.00050 Check? Chk Pass Chk Pass Chk Pass Chk Pass Chk Pass Chk Pass Chk Pass **Chk Pass** High Limit Low Limit Elem Co2286 Cr2677 Cu2247 Fe2611 K 7664 Li6707 Mg2790 Mn2576 Units ppm ppm ppm ppm ppm ppm ppm ppm .00025 -.00044 -.00011 -.00828 .13621 .00345 -.02424 -.00127 Avg .09908 .00320 .07005 Stddev .00033 .00154 .00101 .00924 .00129 %RSD 131.37 346.53 943.78 111.65 72.743 92.677 289.00 101.09 #1 .00050 -.00074 .00104 -.01889 .24556 .00142 -.01253 -.00124 #2 .00037 -.00181 -.00049 -.00202 .05241 .00180 -.09940 -.00258 #3 -.00012 .00122 -.00087 -.00392 .11064 .00715 .03922 -.00000 Check? Chk Pass Chk Pass Chk Pass Chk Pass Chk Pass Chk Pass Chk Pass High Limit Low Limit Na5895 Se1960 Mo2020 Ni2316 P_2149 Pb2203 Sb2068 Si2124 Elem Units ppm ppm ppm ppm ppm ppm ppm ppm Avg .00047 .02485 .00086 .00746 -.00132 .00405 .00629 .01510 Stddev .00010 .01740 .00142 .00042 .00314 .00157 .00459 .00243 70.025 165.60 238.54 38.813 73.003 %RSD 21.123 5.6556 16.111

.00245

.00504

.01137

.01535

.01740

.01255

.00498

.00223

.00493

Approved: October 26, 2015

#1

#2

#3

Check?

High Limit Low Limit .00053

.00036

.00054

.03343

.00483

.03629

.00131

-.00073

.00199

.00768

.00698

.00773

Chk Pass Chk Pass Chk Pass Chk Pass Chk Pass Chk Pass Chk Pass Chk Pass

-.00316

-.00310

.00231

Sample Name: PBW 94 Acquired: 10/23/2015 14:06:50 Type: Unk Method: ICP-THERMO3_6010_200.7WATER_3YLINES(v526) Mode: CONC Corr. Factor: 1.000000 Custom ID2: Custom ID1: Custom ID3: Comment: WG543739-02 Elem Sn1899 Sr4077 Ti3372 TI1908 V_2924 Zn2062 Zr3391 Units ppm ppm ppm ppm ppm ppm ppm Avg -.00045 .00052 .00049 -.00350 -.00091 .00104 -.03378 Stddev .00068 .00008 .00622 .00239 .00052 .00023 .12223 %RSD 150.04 15.848 1262.6 68.303 57.141 21.825 361.86 #1 .00021 .00043 .00686 -.00592 -.00138 .00098 -.01416 #2 -.00115 .00058 -.00556 -.00345 -.00035 .00085 .07745 -.00041 .00055 #3 .00018 -.00114 -.00099 .00129 -.16463 Check? Chk Pass Chk Pass Chk Pass Chk Pass Chk Pass Chk Pass **High Limit** Low Limit Int. Std. Y 2243 Y 3600 Y 3774 Units Cts/S Cts/S Cts/S Avg 10597. 93317. 3902.6 Stddev 83. 21.8 14. %RSD .12786 .08906 .55862

Approved: October 26, 2015

J'ye 1hu

#1

#2

#3

10588.

10591.

10613.

93400.

93234.

93317.

3884.8

3896.0

3926.9

Sample Name: LCSW 94 Acquired: 10/23/2015 14:10:55 Type: Unk

Method: ICP-THERMO3_6010_200.7WATER_3YLINES(v526) Mode: CONC Corr. Factor: 1.000000

Jser: JYH Custom ID1: Custom ID2: Custom ID3:

Comment: WG543739-03

Elem	Ag3280	Al3082	As1890	B_2496	Ba4554	Be3131	Ca4226	Cd2288
Units	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm
Avg	. 21942	5.5851	. 21809	1.0762	. 58022	. 02760	5.7544	. 02779
Stddev	.00038	.0072	.00176	.0057	.00374	.00001	.0378	.00025
%RSD	.17261	.12919	.80614	.52873	.64496	.02530	.65694	.90192
#1	.21937	5.5934	.21900	1.0697	.58409	.02760	5.7688	.02807
#2	.21983	5.5815	.21921	1.0801	.57662	.02759	5.7115	.02773
#3	.21908	5.5804	.21607	1.0788	.57996	.02760	5.7828	.02757

Check? Chk Pass Chk P

Elem	Co2286	Cr2677	Cu2247	Fe2611	K_7664	Li6707	Mg2790	Mn2576
Units	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm
Avg	.11381	. 28677	. 28410	2.2590	28.969	. 57401	5.5405	. 28710
Stddev	.00055	.00038	.00148	.0319	.107	.00519	.0453	.00373
%RSD	.48008	.13186	.52270	1.4106	.36790	.90443	.81758	1.2985
#1	.11443	.28711	.28521	2.2940	29.092	.57968	5.5876	.29018
#2	.11338	.28636	.28241	2.2318	28.911	.56949	5.4973	.28296
#3	.11362	.28683	.28467	2.2511	28.903	.57285	5.5365	.28817

Check? Chk Pass Chk P

Elem	Mo2020	Na5895	Ni2316	P_2149	Pb2203	Sb2068	Se1960	Si2124
Units	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm
Avg	. 56732	29.021	. 28411	5.4116	. 28156	. 66926	. 22254	2.8445
Stddev	.00089	.168	.00217	.0170	.00113	.00360	.00621	.0069
%RSD	.15623	.57945	.76545	.31453	.40051	.53835	2.7918	.24372
#1	.56808	29.188	.28660	5.4311	.28059	.66932	.21569	2.8500
#2	.56752	28.852	.28317	5.4000	.28280	.67283	.22413	2.8367
#3	.56635	29.023	.28257	5.4037	.28128	.66563	.22781	2.8469

Check? Chk Pass Chk P

Sample Name: LCSW 94 Acquired: 10/23/2015 14:10:55 Type: Unk

Method: ICP-THERMO3_6010_200.7WATER_3YLINES(v526) Mode: CONC Corr. Factor: 1.000000

Jser: JYH Custom ID1: Custom ID2: Custom ID3:

Comment: WG543739-03

Elem	Sn1899	Sr4077	Ti3372	TI1908	V_2924	Zn2062	Zr3391
Units	ppm						
Avg	.56560	.57495	.57485	.28432	.56999	.55188	1.1596
Stddev	.00029	.00489	.00840	.00195	.00041	.00061	.1431
%RSD	.05129	.85073	1.4616	.68633	.07200	.11103	12.343
#1	.56527	.57934	.58417	.28300	.57018	.55233	1.0515
#2	.56578	.56968	.56787	.28339	.57027	.55118	1.1053
#3	.56575	.57584	.57251	.28656	.56952	.55212	1.3219

Check? Chk Pass Chk P

Low Limit

Int. Std.	Y_2243	Y_3600	Y_3774
Units	Cts/S	Cts/S	Cts/S
Avg	10477.	89773 .	3867.8
Stddev	11.	268.	25.7
%RSD	.10664	.29813	.66557
#1	10465.	89477.	3840.9
#2	10479.	89843.	3892.2
#3	10488.	89999.	3870.3

Approved: October 26, 2015

J'ye lhu

Sample Name: L1510114805 Acquired: 10/23/2015 14:14:45 Type: Unk Method: ICP-THERMO3 6010 200.7WATER 3YLINES(v526) Mode: CONC Corr. Factor: 1.000000 Custom ID1: Custom ID2: Custom ID3: User: JYH Comment: WG543739-01 Elem Ag3280 AI3082 As1890 B 2496 Ba4554 Be3131 Ca4226 Cd2288 Units ppm ppm ppm ppm ppm ppm ppm ppm Avg -.00136 .10340 -.00114 .04929 .07537 .00003 20.770 .00027 Stddev .00101 .00079 .00265 .00111 .00063 .00004 .165 .00011 %RSD 74.125 .76185 231.71 2.2553 .82974 150.03 .79240 41.659 #1 -.00039 .10405 .00056 .05038 .07601 .00007 20.928 .00039 #2 -.00240 .10253 .00021 .04931 .07535 .00000 20.783 .00017 20.599 #3 -.00129 .10364 -.00420 .04816 .07476 .00001 .00024 Check? Chk Pass Chk Pass Chk Pass Chk Pass Chk Pass Chk Pass Chk Pass Chk Pass High Limit Low Limit Elem Co2286 Cr2677 Cu2247 Fe2611 K 7664 Li6707 Mg2790 Mn2576 Units ppm ppm ppm ppm ppm ppm ppm ppm .00810 .00049 .00097 .40966 1.4075 .07056 12.253 .21009 Avg .00445 Stddev .00042 .00040 .00124 .00603 .0615 .148 .00331 %RSD 5.1525 82.111 128.79 1.4710 4.3692 6.3010 1.2090 1.5763 .21391 #1 .00828 .00083 .00050 .41573 1.4633 .06669 12.147 #2 .00762 .00005 .00002 .40956 1.3416 .07541 12.423 .20831 #3 .00840 .00060 .00238 .40368 1.4176 .06957 12.190 .20805 Check? Chk Pass Chk Pass Chk Pass Chk Pass Chk Pass Chk Pass Chk Pass High Limit Low Limit Se1960 Mo2020 Na5895 Ni2316 P_2149 Sb2068 Si2124 Elem Pb2203 Units ppm ppm ppm ppm ppm ppm ppm ppm Avg .00120 66.524 .00292 .13912 -.00218 -.00021 .00021 20.339 Stddev .00025 .445 .00017 .00965 .00137 .00443 .00390 .041 1856.3 %RSD 21.170 .66864 5.7894 6.9334 62.803 2113.1 .20196 #1 -.00177 -.00302 .00091 66.957 .00297 .13048 .00445 20.380 #2 66.548 .00274 .13736 -.00106 -.00252 -.00060 .00131 20.339 #3 .00138 66.068 .00307 .14953 -.00370 .00490 -.00322 20.298 Chk Pass Chk Pass Chk Pass Check? Chk Pass Chk Pass Chk Pass **High Limit**

Approved: October 26, 2015

Low Limit

Sample Name: L1510114805 Acquired: 10/23/2015 14:14:45 Type: Unk Method: ICP-THERMO3_6010_200.7WATER_3YLINES(v526) Mode: CONC Corr. Factor: 1.000000 User: JYH Custom ID1: Custom ID2: Custom ID3: Comment: WG543739-01 Elem Sn1899 Sr4077 Ti3372 TI1908 V_2924 Zn2062 Zr3391 Units ppm ppm ppm ppm ppm ppm ppm Avg -.00011 .56949 .00397 -.00146 .00036 .00341 .17018 Stddev .00062 .00383 .00347 .00106 .00106 .00013 .14601 %RSD 571.24 .67322 87.450 72.157 295.91 3.6658 85.794 #1 .00044 .57337 .00380 -.00185 .00129 .00339 .06644 #2 .00001 .56937 .00751 -.00228 -.00080 .00355 .10696 #3 -.00077 .56571 .00058 -.00027 .00059 .00331 .33714 Check? Chk Pass Chk Pass Chk Pass Chk Pass Chk Pass Chk Pass **High Limit** Low Limit Int. Std. Y 2243 Y 3600 Y 3774 Units Cts/S Cts/S Cts/S 10447. 89281. 3866.4 Avg Stddev 113. 28.6 6. %RSD .05324 .12638 .73945 #1 10444. 89306. 3838.9 #2 10442. 89158. 3864.2 #3 10453. 89380. 3896.0

Sample Name: L1510114806S Acquired: 10/23/2015 14:18:47 Type: Unk Method: ICP-THERMO3_6010_200.7WATER_3YLINES(v526) Mode: CONC Corr. Factor: 1.000000 User: JYH Custom ID1: Custom ID2: Custom ID3: Comment: WG543739-04 Elem Ag3280 Al3082 As1890 B 2496 Ba4554 Be3131 Ca4226 Cd2288 Units ppm ppm ppm ppm ppm ppm ppm ppm Avg .22105 5.6589 .22354 1.1419 .65383 .02822 25.983 .02811 Stddev .00140 .0047 .00049 .0051 .00295 .00012 .039 .00007 .15012 %RSD .63261 .08372 .22117 .44305 .45131 .42331 .25470 #1 .22126 5.6587 .22300 1.1473 .65719 .02832 26.027 .02819 #2 .21956 5.6638 .22366 1.1372 .65263 .02809 25.952 .02810 .22233 #3 5.6543 .22397 1.1413 .65166 .02825 25.969 .02804 Check? Chk Pass Chk Pass Chk Pass Chk Pass Chk Pass Chk Pass Chk Pass **High Limit** Low Limit

Elem	Co2286	Cr2677	Cu2247	Fe2611	K_7664	Li6707	Mg2790	Mn2576
Units	ppm							
Avg	.12077	.28572	.28424	2.6286	30.446	.64118	17.391	.48593
Stddev	.00029	.00032	.00024	.0223	.185	.00479	.052	.00144
%RSD	.23714	.11281	.08491	.85022	.60692	.74781	.29761	.29690
#1	.12110	.28606	.28450	2.6202	30.657	.64524	17.446	.48683
#2	.12058	.28569	.28419	2.6540	30.312	.63589	17.385	.48426
#3	.12064	.28542	.28402	2.6117	30.370	.64243	17.343	.48668

Check? Chk Pass Chk P

Elem	Mo2020	Na5895	Ni2316	P_2149	Pb2203	Sb2068	Se1960	Si2124
Units	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm
Avg	. 57018	93.213	.28509	5.6576	. 27801	. 68024	. 22101	22.866
Stddev	.00155	.373	.00086	.0137	.00316	.00672	.00105	.073
%RSD	.27218	.40008	.30245	.24173	1.1365	.98809	.47380	.31882
#1	.57142	93.636	.28417	5.6661	.28086	.68730	.21989	22.939
#2	.57069	92.931	.28587	5.6650	.27856	.67951	.22196	22.865
#3	.56844	93.073	.28523	5.6419	.27462	.67392	.22119	22.793

Check? Chk Pass Chk P

Sample Name: L1510114806S Acquired: 10/23/2015 14:18:47 Type: Unk

Method: ICP-THERMO3_6010_200.7WATER_3YLINES(v526) Mode: CONC Corr. Factor: 1.000000

User: JYH Custom ID1: Custom ID2: Custom ID3:

Comment: WG543739-04

Elem	Sn1899	Sr4077	Ti3372	TI1908	V_2924	Zn2062	Zr3391
Units	ppm						
Avg	.57042	1.1296	.58438	.27983	.57914	.55809	.64021
Stddev	.00115	.0029	.00474	.00184	.00160	.00155	.21725
%RSD	.20081	.25272	.81196	.65887	.27679	.27826	33.935
#1	.57157	1.1329	.58775	.27788	.58096	.55977	.57406
#2	.56928	1.1280	.58644	.28154	.57794	.55777	.46372
#3	.57042	1.1279	.57896	.28007	.57852	.55672	.88285

Check? Chk Pass Chk P

Low Limit

Int. Std.	Y_2243	Y_3600	Y_3774
Units	Cts/S	Cts/S	Cts/S
Avg	10315.	87924 .	3857.5
Stddev	20.	205.	25.2
%RSD	.19357	.23320	.65239
#1	10295.	87708.	3832.7
#2	10335.	87947.	3856.9
#3	10315.	88116.	3883.0

Approved: October 26, 2015

J'ye 1hu

Sample Name: L1510114807SD Acquired: 10/23/2015 14:22:36 Type: Unk Method: ICP-THERMO3_6010_200.7WATER_3YLINES(v526) Mode: CONC Corr. Factor: 1.000000 Custom ID2: Custom ID3: User: JYH Custom ID1: Comment: WG543739-05 Elem Ag3280 Al3082 As1890 B 2496 Ba4554 Be3131 Ca4226 Cd2288 Units ppm ppm ppm ppm ppm ppm ppm ppm Avg .22069 5.6353 .22293 1.1379 .65429 .02818 25.917 .02790 Stddev .00100 .0192 .00244 .0016 .00296 .00002 .061 .00022 %RSD .45423 .34133 1.0928 .13986 .45248 .07480 .23546 .80470 #1 .22018 5.6466 .22511 1.1373 .65766 .02820 25.968 .02787 #2 .22004 5.6462 .22030 1.1397 .65212 .02816 25.849 .02814 #3 .22184 5.6131 .22337 1.1367 .65309 .02817 25.933 .02769 Check? Chk Pass Chk Pass Chk Pass Chk Pass Chk Pass Chk Pass Chk Pass High Limit Low Limit Elem Co2286 Cr2677 Cu2247 Fe2611 K 7664 Li6707 Mg2790 Mn2576 Units ppm ppm ppm ppm ppm ppm ppm ppm .11989 .28522 .28191 2.6180 30.331 .63239 17.563 .48580 Avg .00137 Stddev .00049 .00132 .0237 .100 .00322 .135 .00074 %RSD .40468 .48050 .46798 .90351 .33106 .50920 .76620 .15251

Check? Chk Pass Chk P

2.6428

2.6154

2.5957

30.444

30.301

30.250

.62877

.63347

.63494

17.628

17.653

17.408

.48522

.48556

.48664

Elem	Mo2020	Na5895	Ni2316	P_2149	Pb2203	Sb2068	Se1960	Si2124
Units	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm
Avg	. 56761	93.439	.28258	5.6237	. 27360	. 67328	. 21805	22.842
Stddev	.00130	.299	.00153	.0215	.00229	.00542	.00194	.045
%RSD	.22954	.32024	.54258	.38264	.83648	.80445	.88929	.19667
#1	.56908	93.640	.28287	5.6407	.27465	.67801	.21584	22.867
#2	.56711	93.095	.28394	5.6310	.27097	.66737	.21947	22.869
#3	.56663	93.582	.28092	5.5995	.27517	.67445	.21884	22.790

Check? Chk Pass Chk P

Approved: October 26, 2015

#1

#2

#3

.12043

.11951

.11972

.28671

.28493

.28402

.28043

.28297

.28232

Sample Name: L1510114807SD Acquired: 10/23/2015 14:22:36 Type: Unk

Method: ICP-THERMO3_6010_200.7WATER_3YLINES(v526) Mode: CONC Corr. Factor: 1.000000

User: JYH Custom ID1: Custom ID2: Custom ID3:

Comment: WG543739-05

Elem	Sn1899	Sr4077	Ti3372	TI1908	V_2924	Zn2062	Zr3391
Units	ppm						
Avg	.56612	1.1297	.58171	.27532	.57654	.55373	.39935
Stddev	.00258	.0027	.00842	.00103	.00021	.00195	.07390
%RSD	.45486	.23830	1.4469	.37236	.03642	.35172	18.506
#1	.56730	1.1326	.58572	.27417	.57678	.55570	.36967
#2	.56790	1.1273	.57204	.27566	.57647	.55368	.34491
#3	.56317	1.1292	.58737	.27613	.57638	.55180	.48349

Check? Chk Pass Chk P

Low Limit

Int. Std.	Y_2243	Y_3600	Y_3774
Units	Cts/S	Cts/S	Cts/S
Avg	10311.	87758 .	3839.3
Stddev	4.	104.	9.4
%RSD	.03851	.11864	.24608
#1	10307.	87638.	3829.2
#2	10315.	87815.	3848.0
#3	10311.	87821.	3840.6

Approved: October 26, 2015

J'ye lon

Sample Name: L1510114802									
Method: ICF	P-THERMO3	3_6010_200	.7WATER_	3YLINES(v	526) Mo	de: CONC	Corr. Fa	Corr. Factor: 1.00000(
User: JYH	Custom	ID1:	Custom IE)2:	Custom ID3	•			
Comment:									
Elem	Ag3280	Al3082	As1890	B 2496	Ba4554	Be3131	Ca4226	Cd2288	
Units	ppm	ppm	ppm	_ ppm	ppm	ppm	ppm	ppm	
Avg	.00064	.02516	00276	.04384	.05529	.00004	11.473	.00043	
Stddev	.00144	.00516	.00234	.00214	.00029	.00004	.035	.00006	
%RSD	224.10	20.514	84.915	4.8756	.51642	107.22	.30392	14.771	
#1	.00230	.02978	00047	.04137	.05556	.00003	11.445	.00036	
#2	00007	.02611	00515	.04518	.05532	.00008	11.462	.00045	
#3	00030	.01959	00265	.04496	.05499	.00000	11.512	.00049	
Check?	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	
High Limit Low Limit									
LOW LITTIL									
Elem	Co2286	Cr2677	Cu2247	Fe2611	K_7664	Li6707	Mg2790	Mn2576	
Units	ppm	ppm	ppm	ppm	_ ppm	ppm	ppm	ppm	
Avg	.00087	.00044	.00288	.44165	1.3483	.03365	6.1751	.04727	
Stddev	.00031	.00045	.00120	.00867	.0503	.00333	.0224	.00073	
%RSD	35.133	102.14	41.842	1.9621	3.7320	9.8904	.36325	1.5517	
#1	.00115	.00008	.00149	.43310	1.3998	.03370	6.1574	.04802	
#2	.00091	.00030	.00356	.45043	1.3460	.03029	6.1677	.04656	
#3	.00054	.00094	.00358	.44143	1.2992	.03695	6.2003	.04724	
Check?	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	
High Limit Low Limit									
LOW LITTIL									
Elem	Mo2020	Na5895	Ni2316	P 2149	Pb2203	Sb2068	Se1960	Si2124	
Units	ppm	ppm	ppm	_ ppm	ppm	ppm	ppm	ppm	
Avg	.00053	47.698	.00138	.06896	00399	00046	.00234	19.573	
Stddev	.00032	.139	.00024	.01143	.00127	.00246	.00201	.019	
%RSD	60.326	.29038	17.196	16.577	31.778	538.49	85.814	.09753	
#1	.00018	47.770	.00112	.05834	00545	.00027	.00012	19.594	
#2	.00018	47.538	.00112	.06749	00344	00320	.00403	19.556	
#3	.00080	47.785	.00158	.08106	00309	.00156	.00288	19.570	
Check?	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	
High Limit									
Low Limit									

Sample Name: L1510114802								
User: JYH	Custom		Custom IE	,	Custom ID3			
Comment:								
Elem	Sn1899	Sr4077	Ti3372	TI1908	V_2924	Zn2062	Zr3391	
Units	ppm							
Avg	.00084	.41736	00116	00005	00019	.01006	.13712	
Stddev %RSD	.00039 46.014	.00166 .39742	.00411 353.09	.00245 4880.7	.00113 593.11	.00033 3.2963	.12658 92.310	
/01\GD	40.014	.53742	333.09	4000.7	393.11	3.2903	92.510	
#1	.00063	.41783	00548	.00240	00147	.01045	.12870	
#2	.00129	.41552	.00270	00250	.00021	.00985	.01497	
#3	.00061	.41873	00070	00005	.00069	.00989	.26770	
Check ? High Limit Low Limit	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	
Int. Std.	Y 2243	Y_3600	Y_3774					
Units	Cts/S	Cts/S	Cts/S					
Avg	10532.	90222.	3883.8					
Stddev %RSD	10. .09571	32. .03597	13.7 .35206					
/0N3D	.09571	.03397	.55200					
#1	10531.	90248.	3868.6					
#2	10542.	90186.	3888.0					
#3	10522.	90233.	3894.9					

Sample Name: L1510114803									
Method: ICF			_	,	,	de: CONC	Corr. Fa	actor: 1.00000(
User: JYH	Custom	ID1:	Custom ID)2: (Custom ID3				
Comment:									
Elem Units	Ag3280	Al3082	As1890	B_2496	Ba4554	Be3131	Ca4226	Cd2288	
Avg	ppm . 00056	ppm . 03016	ppm 00027	ppm . 07235	ppm . 05274	ppm . 00003	ppm 53.282	ppm . 00031	
Stddev	.00072	.00995	.00152	.00099	.00016	.00007	.141	.00023	
%RSD	128.89	32.999	568.26	1.3690	.30453	226.27	.26492	76.022	
#1	.00070	.03225	.00120	.07121	.05256	.00010	53.439	.00023	
#2	.00120	.03890	00016	.07293	.05278	00003	53.243	.00057	
#3	00022	.01933	00184	.07292	.05287	.00002	53.165	.00012	
Check ? High Limit Low Limit	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	
LOW LITTIC									
Elem	Co2286	Cr2677	Cu2247	Fe2611	K_7664	Li6707	Mg2790	Mn2576	
Units	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	
Avg Stddev	. 00169 .00025	. <mark>00105</mark> .00038	. 00025 .00254	2.0557 .0235	2.2645 .0990	. 06580 .00362	16.569 .054	. 13418 .00313	
%RSD	14.814	36.499	1011.4	1.1447	4.3739	5.4955	.32886	2.3307	
701102	1	00.100			1.0700	0000	.02000	2.0007	
#1	.00157	.00111	.00215	2.0469	2.3597	.06465	16.590	.13255	
#2	.00197	.00140	.00123	2.0379	2.2719	.06985	16.507	.13778	
#3	.00151	.00064	00263	2.0824	2.1620	.06289	16.609	.13220	
Check ? High Limit Low Limit	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	
Elem	Mo2020	Na5895	Ni2316	P_2149	Pb2203	Sb2068	Se1960	Si2124	
Units	ppm	ppm	ppm	_ ppm	ppm	ppm	ppm	ppm	
Avg	.00061	143.01	.00097	.01971	00105	00285	.00316	9.3975	
Stddev %RSD	.00009 14.740	.47 .33112	.00021 21.692	.00686 34.790	.00331 315.58	.00167 58.548	.00376 118.80	.0227 .24203	
70 N ろD	14.740	.33112	21.092	34.790	313.36	30.340	110.00	.24203	
#1	.00061	143.55	.00105	.02012	.00243	00442	.00247	9.4122	
#2	.00070	142.66	.00113	.02634	00142	00305	00020	9.4090	
#3	.00052	142.82	.00073	.01265	00416	00109	.00721	9.3713	
Check ? High Limit Low Limit	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	

Sample Nan	ne: L151011	4803 A	.cquired: 10	/23/2015 14	:30:18	Type: Unk		
Method: ICP	-THERMO3	_6010_200	.7WATER_	3YLINES(v	526) Mc	de: CONC	Corr. Fac	ctor: 1.000000
User: JYH	Custom	ID1:	Custom ID)2: (Custom ID3	:		
Comment:								
Elem Units Avg Stddev %RSD	Sn1899 ppm . 00035 .00125 352.21	Sr4077 ppm 1.7139 .0052 .30552	Ti3372 ppm 00670 .00590 88.146	TI1908 ppm 00142 .00114 80.480	V_2924 ppm 00091 .00053 58.304	Zn2062 ppm .00459 .00011 2.4507	Zr3391 ppm . 11448 .14451 126.23	
#1 #2 #3	.00174 .00001 00068	1.7181 1.7080 1.7155	01238 00059 00712	00203 00010 00212	00114 00030 00128	.00471 .00449 .00456	.06024 .00494 .27827	
Check ? High Limit Low Limit	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	
Int. Std. Units Avg Stddev %RSD	Y_2243 Cts/S 10277 . 9. .08434	Y_3600 Cts/S 87304 . 31. .03575	Y_3774 Cts/S 380 9.5 9.3 .24300					
#1 #2 #3	10268. 10279. 10285.	87273. 87336. 87304.	3802.8 3820.0 3805.6					

Method: IC User: JYH	Sample Name: L1510114803PS										
Elem Units Avg Stddev %RSD	Ag3280 ppm . 21852 .00008 .03434	Al3082 ppm 5.5217 .0123 .22290	As1890 ppm . 22516 .00561 2.4930	1.1548 .0034	Ba4554 ppm . 61391 .00357 .58213	Be3131 ppm . 02789 .00008 .29144	53.186 .409	ppm . 02750 .00009			
#1 #2 #3	.21860 .21849 .21846	5.5312 5.5078 5.5262	.22424 .23117 .22006	1.1574 1.1561 1.1510	.61429 .61728 .61016	.02797 .02781 .02791	53.396 53.448 52.715	.02740			
Check ? High Limit Low Limit	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass			
Elem Units Avg Stddev %RSD	Co2286 ppm . 11132 .00006 .04974	Cr2677 ppm . 27947 .00043 .15208	Cu2247 ppm . 27618 .00065 .23557	ppm 4.0581 .0060	K_7664 ppm 30.456 .178 .58609	Li6707 ppm . 61372 .00400 .65171	ppm 20.337	ppm . 39845 .00140			
#1 #2 #3	.11137 .11126 .11133	.27990 .27905 .27946	.27619 .27682 .27552	4.0519	30.437 30.643 30.287	.61157 .61834 .61126					
Check ? High Limit Low Limit	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass			
Elem Units Avg Stddev %RSD	Mo2020 ppm . 56210 .00246 .43826	Na5895 ppm 154.74 1.10 .70995	Ni2316 ppm . 27632 .00047 .17069	ppm 5.5245	Pb2203 ppm . 26670 .00490 1.8365	Sb2068 ppm . 67097 .00444 .66218	ppm	ppm 11.351			
#1 #2 #3	.56442 .56235 .55952	155.21 155.53 153.49	.27632 .27584 .27679	5.5489 5.5399 5.4846	.26499 .27222 .26288	.67482 .66611 .67197	.23053 .20756 .22347				
Check ? High Limit Low Limit	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass			

Sample Name: L1510114803PS Acquired: 10/23/2015 14:34:20 Type: Unk

Method: ICP-THERMO3_6010_200.7WATER_3YLINES(v526) Mode: CONC Corr. Factor: 1.000000

User: JYH Custom ID1: Custom ID2: Custom ID3:

Comment: WG543739-01 WG543824-01

Elem	Sn1899	Sr4077	Ti3372	TI1908	V_2924	Zn2062	Zr3391
Units	ppm	ppm	ppm	ppm	ppm	ppm	ppm
Avg	. 55961	2.0941	. 56939	. 26986	. 57004	. 54696	. 47099
Stddev	.00099	.0124	.00949	.00179	.00149	.00207	.07137
%RSD	.17768	.59182	1.6660	.66208	.26158	.37909	15.153
#1	.56047	2.0995	.57063	.27147	.57157	.54780	.40286
#2	.55985	2.1030	.57820	.26794	.56859	.54849	.54520
#3	.55852	2.0800	.55935	.27017	.56995	.54460	.46491

Check? Chk Pass Chk P

Low Limit

Int. Std.	Y_2243	Y_3600	Y_3774
Units	Cts/S	Cts/S	Cts/S
Avg	10198.	86733 .	3855.4
Stddev	9.	225.	37.7
%RSD	.08646	.25946	.97744
#1	10194.	86508.	3840.6
#2	10208.	86958.	3827.4
#3	10192.	86732.	3898.3

Approved: October 26, 2015

J'ye 1hu

Sample Name: L1510114803SDL Acquired: 10/23/2015 14:38:10 Type: Unk Method: ICP-THERMO3_6010_200.7WATER_3YLINES(v526) Mode: CONC Corr. Factor: 1.000000 Custom ID2: Custom ID3: User: JYH Custom ID1: 5 Comment: WG543739-02 WG543824-02 Elem Ag3280 AI3082 As1890 B 2496 Ba4554 Be3131 Ca4226 Cd2288 Units ppm ppm ppm ppm ppm ppm ppm ppm Avg .00128 .00882 -.00287 .01775 .00966 -.00000 10.097 .00002 Stddev .00100 .00362 .00444 .00192 .00039 .00007 .064 .00010 %RSD 78.305 40.997 154.57 10.817 4.0492 10115. .63338 427.47 #1 .00106 .00530 -.00261 .01553 .00969 .00003 10.120 .00013 #2 .00040 .00864 .00143 .01878 .01004 .00004 10.025 .00002 #3 .00236 .01253 -.00743 .01893 .00926 -.00008 10.147 -.00008 Check? Chk Pass Chk Pass Chk Pass Chk Pass Chk Pass Chk Pass Chk Pass **Chk Pass** High Limit Low Limit Elem Co2286 Cr2677 Cu2247 Fe2611 K 7664 Li6707 Mg2790 Mn2576 Units ppm ppm ppm ppm ppm ppm ppm ppm .00100 .00016 -.00019 .37726 .55903 .01698 3.1511 .02465 Avg Stddev .00019 .00141 .00083 .01167 .04133 .00316 .0646 .00196 %RSD 18.895 855.82 433.09 3.0927 7.3929 18.608 2.0496 7.9485 #1 .00092 .00083 -.00109 .38438 .60597 .01374 3.2181 .02239 #2 .00088 -.00145 -.00002 .36380 .54303 .01713 3.0892 .02578 #3 .00122 .00112 .00054 .38361 .52810 .02006 3.1461 .02579 Check? Chk Pass Chk Pass Chk Pass Chk Pass Chk Pass Chk Pass Chk Pass High Limit Low Limit Mo2020 Na5895 Ni2316 P_2149 Sb2068 Se1960 Si2124 Elem Pb2203 Units ppm ppm ppm ppm ppm ppm ppm ppm 1.7408 Avg .00057 27.204 -.00058 .00275 -.00105 .00088 .00058 Stddev .00034 .092 .00071 .00319 .00258 .00403 .00596 .0032 121.97 1035.6 %RSD 59.994 .33894 115.94 246.41 460.19 .18161 #1 .00083 27.282 .00022 -.00090 .00051 -.00284 .00741 1.7373 #2 27.103 -.00085 .00416 .00515 -.00357 .00069 -.00403 1.7420 .00037 #3 .00018 27.228 -.00111 .00501 .00031 -.00211 1.7432 Check? Chk Pass Chk Pass Chk Pass Chk Pass Chk Pass Chk Pass Chk Pass Chk Pass **High Limit** Low Limit

Sample Name: L1510114803SDL Acquired: 10/23/2015 14:38:10 Type: Unk Method: ICP-THERMO3_6010_200.7WATER_3YLINES(v526) Mode: CONC Corr. Factor: 1.000000 User: JYH Custom ID1: 5 Custom ID2: Custom ID3: WG543824-02 Comment: WG543739-02 Elem Sn1899 Sr4077 Ti3372 TI1908 V_2924 Zn2062 Zr3391 Units ppm ppm ppm ppm ppm ppm ppm Avg -.00051 .32012 -.00234 -.00171 -.00052 .00130 .06513 Stddev .00049 .00180 .00554 .00186 .00009 .00011 .12270 %RSD 96.830 .56345 237.37 108.97 17.716 8.1307 188.40 #1 -.00070 .32119 .00066 -.00062 -.00048 .00129 .18618 #2 -.00087 .31804 -.00873 -.00065 -.00045 .00141 -.05917 #3 .00005 .32114 .00107 -.00385 -.00062 .00120 .06838 Check? Chk Pass Chk Pass Chk Pass Chk Pass Chk Pass Chk Pass **High Limit** Low Limit Int. Std. Y 2243 Y 3600 Y 3774 Units Cts/S Cts/S Cts/S 11390. 97184. 4135.4 Avg Stddev 21. 108. 12.6 %RSD .18629 .11140 .30356 #1 11414. 97288. 4137.2 #2 11374. 97192. 4147.0 #3 11382. 97072. 4122.0

Method: ICF User: JYH	Sample Name: L1510114803SDL								
Elem	Ag3280	Al3082	As1890	B_2496	Ba4554	Be3131	Ca4226	Cd2288	
Units	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	
Avg	. 00035	. 00235	00144	. 00442	. 00176	.00003	1.9550	00001	
Stddev	.00064	.00538	.00107	.00097	.00036	.00002	.0194	.00005	
%RSD	184.68	228.53	74.583	21.920	20.480	52.406	.99093	517.40	
#1	.00095	.00855	00021	.00357	.00215	.00004	1.9328	00002	
#2	00033	00041	00193	.00548	.00145	.00001	1.9636	00006	
#3	.00042	00108	00217	.00421	.00166	.00005	1.9685	.00005	
Check? High Limit Low Limit	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	
Elem	Co2286	Cr2677	Cu2247	Fe2611	K_7664	Li6707	Mg2790	Mn2576	
Units	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	
Avg	. 00046	00056	.00043	.06558	.16836	. 00718	. 58507	. 00442	
Stddev	.00026	.00045	.00103	.01047	.08114	.00227	.08047	.00091	
%RSD	55.562	80.590	242.10	15.958	48.194	31.641	13.754	20.557	
#1	.00017	00052	.00161	.06628	.19298	.00847	.59213	.00522	
#2	.00062	00103	00006	.05478	.23433	.00456	.66178	.00343	
#3	.00060	00013	00027	.07568	.07776	.00852	.50131	.00461	
Check ? High Limit Low Limit	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	
Elem	Mo2020	Na5895	Ni2316	P_2149	Pb2203	Sb2068	Se1960	Si2124	
Units	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	
Avg	. 00047	5.3430	.00060	00059	00193	. 00062	. 00247	. 33910	
Stddev	.00032	.0028	.00102	.00334	.00095	.00267	.00137	.00305	
%RSD	67.663	.05264	169.44	567.15	48.918	429.97	55.261	.90012	
#1	.00011	5.3444	.00053	.00046	00162	.00342	.00252	.33576	
#2	.00058	5.3398	00038	00433	00299	.00033	.00381	.33982	
#3	.00073	5.3449	.00166	.00210	00118	00189	.00108	.34174	
Check ? High Limit Low Limit	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	

Sample Name: L1510114803SDL								
User: JYH		ID1: 25	Custom	•	Custom ID			
Elem Units Avg Stddev %RSD	Sn1899 ppm 00042 .00048 116.45	Sr4077 ppm . 06191 .00025 .40635	Ti3372 ppm . 00137 .00250 182.74	TI1908 ppm 00043 .00131 303.42	V_2924 ppm 00091 .00030 33.353	Zn2062 ppm . 00065 .00006 9.2948	Zr3391 ppm . 16153 .02344 14.513	
#1 #2 #3	00010 00017 00097	.06162 .06201 .06210	00107 .00125 .00392	.00054 00192 .00008	00077 00071 00126	.00058 .00065 .00070	.18781 .15402 .14276	
Check ? High Limit Low Limit	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	
Int. Std. Units Avg Stddev %RSD	Y_2243 Cts/S 11 755 . 6. .05354	Y_3600 Cts/S 100780. 136. .13456	Y_3774 Cts/S 4217.5 4.4 .10467					
#1 #2 #3	11755. 11749. 11762.	100690. 100930. 100710.	4222.6 4215.4 4214.6					

•								
Elem	Ag3280	Al3082	As1890	B_2496	Ba4554	Be3131	Ca4226	
Units	ppm							
Avg	. 42304	10.675	. 42901	. 52804	1.0991	. 05377	10.848	
Stddev	.00108	.020	.00219	.00449	.0039	.00006	.058	
%RSD	.25451	.18976	.51115	.84948	.35732	.10730	.53352	
#1	.42381	10.685	.42782	.52890	1.1035	.05383	10.888	
#2	.42181	10.688	.43154	.53203	1.0960	.05377	10.781	
#3	.42350	10.652	.42767	.52319	1.0978	.05372	10.874	
Check ? Value Range	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	
Elem	Cd2288	Co2286	Cr2677	Cu2247	Fe2611	K_7664	Li6707	
Units	ppm							
Avg	. 05325	. 21526	. 53537	. 53596	4.2898	54.966	1.0918	
Stddev	.00030	.00049	.00048	.00068	.0302	.130	.0081	
%RSD	.56137	.22569	.08916	.12741	.70409	.23716	.73927	
#1	.05359	.21565	.53591	.53673	4.3184	55.100	1.0998	
#2	.05315	.21540	.53501	.53571	4.2582	54.840	1.0836	
#3	.05302	.21471	.53520	.53544	4.2929	54.959	1.0920	
Check ? Value Range	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	
Elem	Mg2790	Mn2576	Mo2020	Na5895	Ni2316	P_2149	Pb2203	
Units	ppm							
Avg	10.735	. 54382	1.0690	54.841	. 53582	10.529	. 53025	
Stddev	.098	.00108	.0024	.197	.00264	.017	.00416	
%RSD	.91414	.19816	.22665	.35839	.49278	.15752	.78475	
#1	10.848	.54404	1.0708	55.058	.53846	10.548	.52588	
#2	10.673	.54265	1.0700	54.675	.53318	10.517	.53073	
#3	10.684	.54477	1.0662	54.790	.53583	10.524	.53416	
Check ? Value Range	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	

Sample Nam		-	/23/2015 14:		ype: QC	2010	o	1 000001
Method: ICP User: JYH Comment:	-THERMO3_ Custom I		WATER_3YI Custom ID2:) Mode: tom ID3:	CONC (Corr. Factor:	1.000000
Elem Units Avg Stddev %RSD	Sb2068 ppm 1.2815 .0037 .28668	Se1960 ppm . 42580 .00526 1.2348	Si2124 ppm 5.3464 .0083 .15529	Sn1899 ppm 1.0761 .0021 .19900	Sr4077 ppm 1.0974 .0043 .38745	Ti3372 ppm 1.0984 .0155 1.4071	TI1908 ppm . 53646 .00352 .65636	
#1 #2 #3	1.2844 1.2826 1.2774	.42478 .42113 .43149	5.3478 5.3375 5.3540	1.0777 1.0770 1.0737	1.1023 1.0945 1.0954	1.1154 1.0947 1.0851	.54047 .53385 .53507	
Check ? Value Range	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	
Elem Units Avg Stddev %RSD	V_2924 ppm 1.0785 .0018 .16225	Zn2062 ppm 1.0557 .0017 .15862	Zr3391 ppm F .51871 .14872 28.672					
#1 #2 #3	1.0801 1.0766 1.0788	1.0576 1.0545 1.0550	.35286 .56304 .64022					
Check ? Value Range	Chk Pass	Chk Pass	Chk Fail 1.0000 -10.000%					
Int. Std. Units Avg Stddev %RSD	Y_2243 Cts/S 10608. 12. .11753	Y_3600 Cts/S 90217 . 79. .08719	Y_3774 Cts/S 3898.3 16.9 .43395					
#1 #2 #3	10599. 10604. 10623.	90126. 90257. 90267.	3884.4 3917.2 3893.3					

•									
Elem	Ag3280	Al3082	As1890	B_2496	Ba4554	Be3131	Ca4226		
Units	ppm	ppm	ppm	ppm	ppm	ppm	ppm		
Avg	. 00021	. 00634	00174	.00361	.00065	.00005	00052		
Stddev	.00119	.00412	.00140	.00065	.00020	.00004	.00587		
%RSD	568.06	64.997	80.222	18.055	30.623	80.348	1126.5		
#1	.00148	.00194	00266	.00367	.00083	.00010	.00419		
#2	00086	.00697	00013	.00423	.00070	.00004	.00135		
#3	.00000	.01011	00243	.00293	.00044	.00002	00710		
Check ? High Limit Low Limit	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass		
Elem	Cd2288	Co2286	Cr2677	Cu2247	Fe2611	K_7664	Li6707		
Units	ppm	ppm	ppm	ppm	ppm	ppm	ppm		
Avg	. 00002	. 00024	. 00015	. 00030	.00389	. 21045	. 00648		
Stddev	.00005	.00012	.00044	.00020	.01876	.08015	.00198		
%RSD	288.36	49.576	287.18	64.934	482.39	38.087	30.542		
#1	.00002	.00013	.00014	.00035	.02369	.21017	.00431		
#2	00003	.00023	.00060	.00047	.00159	.29074	.00695		
#3	.00007	.00037	00028	.00009	01362	.13044	.00819		
Check ? High Limit Low Limit	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass		
Elem	Mg2790	Mn2576	Mo2020	Na5895	Ni2316	P_2149	Pb2203		
Units	ppm	ppm	ppm	ppm	ppm	ppm	ppm		
Avg	01197	. 00075	. 00141	. 05223	.00039	00163	00140		
Stddev	.02176	.00139	.00047	.02208	.00029	.00500	.00072		
%RSD	181.78	184.85	33.057	42.266	75.143	306.80	51.778		
#1	.01015	.00035	.00186	.06738	.00005	00736	00064		
#2	01272	00039	.00093	.06241	.00053	.00062	00208		
#3	03335	.00230	.00144	.02690	.00058	.00186	00148		
Check ? High Limit Low Limit	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass		

•	Sample Name: CCB Acquired: 10/23/2015 14:49:53 Type: Blank Method: ICP-THERMO3_6010_200.7WATER_3YLINES(v526) Mode: CONC Corr. Factor: 1.000000									
User: JYH Comment:	Custom I	D1: (Custom ID2:	Cus	tom ID3:					
Elem Units Avg Stddev %RSD	Sb2068 ppm 00174 .00230 132.16	Se1960 ppm . 00273 .00273 99.975	Si2124 ppm .00717 .00057 7.9148	Sn1899 ppm 00006 .00065 1013.7	Sr4077 ppm . 00020 .00039 196.88	Ti3372 ppm 00280 .00499 178.32	TI1908 ppm 00252 .00059 23.546			
#1 #2 #3	00121 .00025 00426	00034 .00490 .00364	.00684 .00684 .00783	00079 .00047 .00012	.00047 .00037 00025	.00286 00467 00659	00192 00254 00310			
Check ? High Limit Low Limit	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass			
Elem Units Avg Stddev %RSD	V_2924 ppm 00062 .00033 52.248	Zn2062 ppm .00005 .00018 344.66	Zr3391 ppm F .12898 .08146 63.154							
#1 #2 #3	00093 00028 00065	.00015 .00016 00016	.13949 .04277 .20466							
Check ? High Limit Low Limit	Chk Pass	Chk Pass	Chk Fail .04000 04000							
Int. Std. Units Avg Stddev %RSD	Y_2243 Cts/S 10840. 31. .28586	Y_3600 Cts/S 93063 . 302. .32429	Y_3774 Cts/S 3901.4 15.2 .38864							
#1 #2 #3	10811. 10836. 10873.	92729. 93315. 93146.	3903.1 3915.6 3885.4							

Sample Name: L1510114804									
Method: ICF	Corr. Fa	actor: 1.00000(
User: JYH	Custom	ID1:	Custom ID)2: (Custom ID3				
Comment:									
Elem	Ag3280	Al3082	As1890	B 2496	Ba4554	Be3131	Ca4226	Cd2288	
Units	ppm	ppm	ppm	ppm	ррт	ppm	ppm	ppm	
Avg	00083	.02925	00064	.07015	.05318	.00002	53.026	.00018	
Stddev	.00088	.00265	.00195	.00168	.00069	.00009	.090	.00015	
%RSD	106.16	9.0570	306.54	2.3937	1.2944	562.82	.16921	82.729	
#1	00151	.02707	00244	.07199	.05322	.00012	52.922	.00034	
#2	.00017	.03220	.00144	.06870	.05248	00004	53.072	.00005	
#3	00115	.02849	00091	.06976	.05385	00004	53.083	.00015	
Check?	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	
High Limit	Clik i dasa	CIRT d33	CIIK I d33	CIIK I dos	Clik i ass	CIIK I dasa	Clik i ass	Clik i dasa	
Low Limit									
Elem	Co2286	Cr2677	Cu2247	Fe2611	K_7664	Li6707	Mg2790	Mn2576	
Units	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	
Avg	.00173	.00061	.00119	2.0523	2.1723	.06065	16.250	.13885	
Stddev	.00031	.00107	.00100	.0073	.0734	.00231	.103	.00433	
%RSD	17.936	174.53	83.734	.35588	3.3772	3.8106	.63477	3.1167	
#1	.00187	.00137	.00085	2.0531	2.0886	.06077	16.146	.14125	
#2	.00137	.00137	.00232	2.0593	2.2257	.06290	16.253	.13386	
#3	.00194	00061	.00232	2.0447	2.2025	.05829	16.352	.14145	
	.00.01	.00001	.00011	2.0117	2.2020	.00020	10.002		
Check?	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	
High Limit									
Low Limit									
		N. 5005	NUODAO	D 0440	DI 0000	01.0000	0 4000	0:0404	
Elem	Mo2020	Na5895	Ni2316	P_2149	Pb2203	Sb2068	Se1960	Si2124	
Units	ppm . 00072	ppm 139.56	ppm . 00086	ppm . 01394	ppm 00216	ppm . 00409	ppm . 00472	ppm 9.1185	
Avg Stddev	.00072	.28	.00086	.00639	.00218	.00409	.00472	.0379	
%RSD	65.680	.20173	133.88	45.842	124.36	69.909	110.21	.41581	
701 (OD	00.000	.20173	100.00	40.04Z	124.00	03.303	110.21	.41001	
#1	.00125	139.26	.00024	.01616	00495	.00580	.00978	9.1525	
#2	.00060	139.63	.00218	.01892	.00040	.00079	.00501	9.1254	
#3	.00032	139.81	.00015	.00673	00193	.00569	00062	9.0776	
Check?	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	
High Limit									
Low Limit									

Sample Nan			cquired: 10/			Type: Unk		
Method: ICF			_	•	,	de: CONC	Corr. Fa	ctor: 1.00000(
User: JYH	Custom	ID1:	Custom ID)2: (Custom ID3	•		
Comment:								
Elem	Sn1899	Sr4077	Ti3372	TI1908	V_2924	Zn2062	Zr3391	
Units	ppm	ppm	ppm	ppm	ppm	ppm	ppm	
Avg Stddev	. 00007 .00100	1.6685 .0034	00625 .00288	. <mark>00129</mark> .00314	00065 .00116	. 00404 .00016	. 03907 .05220	
%RSD	1399.5	.20704	46.033	244.06	179.11	4.0575	133.60	
701102	1000.0	.20701	10.000	211.00	.,	1.0070	100.00	
#1	00108	1.6646	00778	.00076	00036	.00416	.02281	
#2	.00075	1.6710	00804	.00465	.00034	.00410	.09746	
#3	.00054	1.6700	00293	00156	00192	.00385	00307	
Check? High Limit Low Limit	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	
Int. Std.	Y 2243	Y_3600	Y_3774					
Units	_Cts/S	Cts/S	Cts/S					
Avg	10267.	87400.	3840.7					
Stddev %RSD	12. .12146	126. .14383	8.1 .20999					
/0K3D	.12140	. 14363	.20999					
#1	10256.	87255.	3848.9					
#2	10263.	87457.	3840.4					
#3	10281.	87486.	3832.8					

Sample Name: L1510114809									
Method: ICF	P-THERMO3	3_6010_200	.7WATER_	3YLINES(v	526) Mo	de: CONC	Corr. Factor: 1.000000		
User: JYH	Custom	ID1:	Custom ID)2: (Custom ID3	• •			
Comment:									
Elem	Ag3280	Al3082	As1890	B_2496	Ba4554	Be3131	Ca4226	Cd2288	
Units	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	
Avg	00065	.03141	00025 .00373	.02261	.04161	80000.	4.4130	.00025	
Stddev %RSD	.00029 44.024	.00680 21.650	1515.0	.00133 5.8928	.00022 .53542	.00003 29.799	.0335 .75996	.00021 83.798	
701 (OD	77.027	21.000	1010.0	0.0020	.000+2	20.700	.70000	00.700	
#1	00034	.03422	.00404	.02135	.04176	.00011	4.4439	.00041	
#2	00072	.03636	00202	.02248	.04135	.00006	4.4178	.00001	
#3	00090	.02366	00276	.02401	.04172	.00009	4.3773	.00032	
Check?	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	
High Limit	J					J		J	
Low Limit									
Clam	Co2286	Cr2677	Cu2247	Fe2611	V 7664	1:6707	Ma2700	Mn2576	
Elem Units	D02280	ppm	ppm	ppm	K_7664 ppm	Li6707 ppm	Mg2790 ppm	Mn2576 ppm	
Avg	.00014	. 00147	. 00216	.01 545	. 77881	.03163	2.3341	00088	
Stddev	.00025	.00090	.00072	.00377	.03811	.00157	.1600	.00184	
%RSD	177.66	60.839	33.457	24.403	4.8934	4.9742	6.8552	207.95	
#1	.00028	00063	.00295	01716	01220	.03342	2 2025	.00085	
#1 #2	.00028	.00062	.00295	.01716 .01113	.81329 .78524	.03098	2.2035 2.5126	00069	
#3	00015	.00133	.00203	.01806	.73789	.03049	2.2863	00281	
Check?	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	
High Limit									
Low Limit									
Elem	Mo2020	Na5895	Ni2316	P 2149	Pb2203	Sb2068	Se1960	Si2124	
Units	ppm	ppm	ppm	_ ppm	ppm	ppm	ppm	ppm	
Avg	.00069	50.371	.00021	.06336	00143	.00247	00046	22.742	
Stddev	.00004	.203	.00038	.00741	.00345	.00159	.00747	.061	
%RSD	6.5390	.40210	178.47	11.695	241.30	64.401	1621.4	.27025	
#1	.00069	50.599	.00011	.06890	00399	.00115	.00074	22.784	
#2	.00064	50.302	00011	.05495	00280	.00424	00846	22.771	
#3	.00073	50.212	.00063	.06624	.00250	.00203	.00634	22.672	
Check ? High Limit Low Limit	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	

Sample Name: L1510114809 Acquired: 10/23/2015 14:58:03 Type: Unk									
Method: ICF	P-THERMO3	3_6010_200	.7WATER_	3YLINES(v	526) Mo	de: CONC	Corr. Fa	ctor: 1.000000	
User: JYH	Custom	ID1:	Custom ID)2: (Custom ID3	:			
Comment:									
Elem	Sn1899	Sr4077	Ti3372	TI1908	V 2924	Zn2062	Zr3391		
Units	ppm	ppm	ppm	ppm	ppm	ppm	ppm		
Avg	00001	.13912	00264	00233	.00031	.00688	.16399		
Stddev	.00118	.00082	.00256	.00275	.00052	.00020	.22531		
%RSD	8919.6	.58593	96.891	118.03	167.22	2.9778	137.39		
#1	00117	14005	00402	00000	00016	00672	09720		
#1 #2	.00117	.14005 .13878	00403 .00031	.00002	00016 .00022	.00672 .00711	08739 .23164		
#2 #3	000120	.13853	00420	00535	.00022	.00680	.34773		
0	.00001		.00.120	.00000	.00007	.00000	.01770		
Check?	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass		
High Limit									
Low Limit									
Int. Std.	Y 2243	Y 3600	V 2774						
Units	1_2243 Cts/S	1_3000 Cts/S	Y_3774 Cts/S						
Avg	10557.	90363.	3851.6						
Stddev	14.	152.	12.9						
%RSD	.12800	.16817	.33427						
#1	10571.	90188.	3837.0						
#2 #2	10544.	90465.	3861.3						
#3	10556.	90435.	3856.5						

Sample Name: L1510114811 Acquired: 10/23/2015 15:02:06 Type: Unk Method: ICP-THERMO3_6010_200.7WATER_3YLINES(v526) Mode: CONC Corr. Factor: 1.000000 User: JYH Custom ID1: Custom ID2: Custom ID3: Comment:									
Elem	Ag3280	Al3082	As1890	B_2496	Ba4554	Be3131	Ca4226	Cd2288	
Units	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	
Avg	. 00009	. 02989	00355	. 01748	. 07522	.00006	13.588	00003	
Stddev	.00082	.00674	.00223	.00274	.00037	.00002	.039	.00014	
%RSD	920.16	22.560	62.926	15.693	.49417	35.320	.28459	481.75	
#1	00084	.03708	00559	.01762	.07542	.00008	13.553	00003	
#2	.00070	.02891	00390	.01468	.07480	.00006	13.580	00016	
#3	.00041	.02370	00116	.02016	.07546	.00004	13.629	.00011	
Check ? High Limit Low Limit	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	
Elem	Co2286	Cr2677	Cu2247	Fe2611	K_7664	Li6707	Mg2790	Mn2576	
Units	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	
Avg	.00056	. 00076	.00110	. 01372	. 68921	. 04212	7.0694	. 00523	
Stddev	.00030	.00087	.00099	.00697	.06888	.00269	.0580	.00273	
%RSD	52.790	114.19	90.220	50.794	9.9941	6.3976	.81967	52.125	
#1	.00075	.00034	.00016	.02097	.73240	.04273	7.1356	.00227	
#2	.00022	.00019	.00100	.01310	.60977	.03917	7.0278	.00578	
#3	.00072	.00176	.00214	.00708	.72545	.04446	7.0447	.00764	
Check ? High Limit Low Limit	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	
Elem	Mo2020	Na5895	Ni2316	P_2149	Pb2203	Sb2068	Se1960	Si2124	
Units	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	
Avg	. 00064	60.243	.00095	. 04975	00174	. 00213	00189	18.726	
Stddev	.00024	.245	.00091	.00301	.00149	.00069	.00690	.031	
%RSD	37.084	.40624	95.422	6.0463	85.582	32.638	365.98	.16528	
#1	.00081	60.388	.00074	.04723	00333	.00238	.00065	18.743	
#2	.00037	59.961	.00195	.05308	00037	.00134	.00339	18.744	
#3	.00074	60.381	.00017	.04894	00152	.00266	00969	18.690	
Check ? High Limit Low Limit	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	

Sample Nan			cquired: 10/			Type: Unk	0 5	
Method: ICP			_	•	,	de: CONC	Corr. Fa	ctor: 1.00000(
User: JYH	Custom	ID1:	Custom ID)2: (Custom ID3	:		
Comment:								
Elem	Sn1899	Sr4077	Ti3372	TI1908	V_2924	Zn2062	Zr3391	
Units	ppm	ppm	ppm	ppm	ppm	ppm	ppm	
Avg	00080	.40275	00298	00334	.00026	.00223	.18317	
Stddev	.00105	.00154	.00180	.00139	.00079	.00005	.15033	
%RSD	131.57	.38189	60.410	41.723	306.24	2.4235	82.071	
#1	00189	.40387	00456	00484	.00089	.00228	.27693	
#2	.00020	.40099	00102	00210	00063	.00224	.00978	
#3	00071	.40338	00334	00307	.00051	.00217	.26280	
Check?	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	
High Limit								
Low Limit								
Int. Std.	Y 2243	Y_3600	Y_3774					
Units	_ Cts/S	_ Cts/S	_ Cts/S					
Avg	10511.	89903.	3834.4					
Stddev	23.	96.	20.4					
%RSD	.21768	.10689	.53245					
#1	10505.	89956.	3821.5					
#2	10492.	89792.	3858.0					
#3	10537.	89961.	3823.9					

Sample Name: L1510114812										
Method: ICF	P-THERMO3	3_6010_200	.7WATER_	3YLINES(v	526) Mc	de: CONC	Corr. Fa	actor: 1.00000(
User: JYH	Custom	ID1:	Custom ID)2: (Custom ID3	:				
Comment:										
Elem	Ag3280	Al3082	As1890	B 2496	Ba4554	Be3131	Ca4226	Cd2288		
Units	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm		
Avg	.00009	.06813	00382	.04003	03925	.00004	32.193	.00039		
Stddev	.00077	.00604	.00461	.00145	.00043	.00002	.046	.00003		
%RSD	829.25	8.8712	120.81	3.6129	1.0937	60.996	.14336	8.8072		
#1	.00025	.07494	00716	02057	.03906	.00006	32.184	.00043		
#1 #2	.00025	.06604	.00716	.03957 .04166	.03895	.00003	32.164	.00043		
#2 #3	00077	.06340	00573	.03888	.03974	.00003	32.242	.00037		
#0	00073	.00040	00070	.00000	.00074	.00002	JZ.Z4Z	.00000		
Check?	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass		
High Limit										
Low Limit										
Elem	Co2286	Cr2677	Cu2247	Fe2611	K 7664	Li6707	Mg2790	Mn2576		
Units	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm		
Avg	.00093	.00048	.00011	.14738	1.4855	.05772	17.528	.12685		
Stddev	.00052	.00138	.00102	.01250	.1033	.00271	.112	.00361		
%RSD	55.996	284.31	962.86	8.4803	6.9534	4.6984	.63971	2.8481		
#1	.00143	.00153	00024	.13320	1.5938	.05817	17.502	.13077		
#2	.00039	00107	00070	.15214	1.3881	.05482	17.431	.12366		
#3	.00097	.00099	.00126	.15681	1.4745	.06019	17.651	.12612		
Check?	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass		
High Limit										
Low Limit										
Elem	Mo2020	Na5895	Ni2316	P_2149	Pb2203	Sb2068	Se1960	Si2124		
Units	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm		
Avg	.00063	124.53	.00096	.08210	00437	.00460	.00252	13.776		
Stddev	.00024	.25	.00075	.00528	.00358	.00384	.00805	.040		
%RSD	37.756	.20105	77.690	6.4267	81.938	83.448	319.31	.29125		
								40 -00		
#1 #2	.00052	124.49	.00015	.07923	00078	.00022	.00296	13.798		
#2 #2	.00046	124.30	.00112	.08819	00439	.00738	.01034	13.800		
#3	.00090	124.80	.00161	.07888	00794	.00620	00574	13.729		
Check ? High Limit Low Limit	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass		
LOW LITTIL										

Sample Name: L1510114812									
Method: ICF	P-THERMO3	3_6010_200	.7WATER_	3YLINES(v	526) Mc	de: CONC	Corr. Fa	ctor: 1.000000	
User: JYH	Custom	ID1:	Custom ID)2: (Custom ID3	·			
Comment:									
Elem	Sn1899	Sr4077	Ti3372	TI1908	V 2924	Zn2062	Zr3391		
Units	ppm	ppm	ppm	ppm	ppm	ppm	ppm		
Avg	00024	1.0280	00359	00290	00047	.00193	.17967		
Stddev	.00105	.0036	.00298	.00322	.00037	.00019	.09412		
%RSD	432.37	.34535	83.090	110.94	79.230	9.8604	52.384		
#1	.00069	1.0273	00120	.00056	00000	00214	20025		
#1 #2	00138	1.0273	00138 00698	00579	00089 00030	.00214	.28835 .12504		
#2 #3	00004	1.0243	00240	00373	00030	.00107	.12562		
0	.0000.		.002.10	100017	.0002.	100177	2002		
Check?	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass		
High Limit									
Low Limit									
Int. Std.	Y 2243	Y 3600	Y 3774						
Units	1_2243 Cts/S	1_3000 Cts/S	1_3774 Cts/S						
Avg	10359.	88010.	3848.4						
Stddev	17.	103.	19.9						
%RSD	.16303	.11731	.51604						
#1	10339.	88130.	3865.9						
#2 #2	10368.	87951.	3852.4						
#3	10369.	87950.	3826.8						

•									
Elem	Ag3280	Al3082	As1890	B_2496	Ba4554	Be3131	Ca4226		
Units	ppm								
Avg	. 41932	10.614	. 42121	. 52124	1.0915	. 05360	10.794		
Stddev	.00185	.032	.00269	.00144	.0055	.00008	.042		
%RSD	.44136	.30276	.63876	.27716	.50783	.14393	.39327		
#1	.41967	10.647	.42134	.52074	1.0978	.05352	10.841		
#2	.41732	10.583	.42384	.52011	1.0876	.05368	10.759		
#3	.42097	10.612	.41846	.52287	1.0890	.05361	10.782		
Check ? Value Range	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass		
Elem	Cd2288	Co2286	Cr2677	Cu2247	Fe2611	K_7664	Li6707		
Units	ppm								
Avg	. 05327	. 21334	. 53394	. 53224	4.3073	54.745	1.0816		
Stddev	.00011	.00055	.00101	.00171	.0455	.454	.0089		
%RSD	.19772	.25644	.18926	.32163	1.0559	.82893	.81787		
#1	.05325	.21349	.53284	.53258	4.3594	55.256	1.0905		
#2	.05317	.21380	.53413	.53376	4.2760	54.389	1.0813		
#3	.05338	.21274	.53483	.53038	4.2864	54.590	1.0728		
Check ? Value Range	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass		
Elem	Mg2790	Mn2576	Mo2020	Na5895	Ni2316	P_2149	Pb2203		
Units	ppm								
Avg	10.520	. 53979	1.0603	54.202	. 53143	10.402	. 52514		
Stddev	.027	.00170	.0024	.409	.00159	.031	.00878		
%RSD	.25874	.31419	.22145	.75482	.29966	.29784	1.6711		
#1	10.536	.54147	1.0613	54.673	.53318	10.431	.52518		
#2	10.535	.53981	1.0621	53.942	.53006	10.405	.53390		
#3	10.488	.53808	1.0577	53.990	.53106	10.369	.51635		
Check ? Value Range	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass		

•									
Elem Units Avg Stddev %RSD	Sb2068 ppm 1.2685 .0097 .76630	Se1960 ppm . 42534 .00390 .91763	Si2124 ppm 5.2897 .0087 .16390	Sn1899 ppm 1.0683 .0011 .10318	Sr4077 ppm 1.0887 .0068 .62627	Ti3372 ppm 1.0971 .0002 .01916	TI1908 ppm . 52822 .00161 .30531		
#1 #2 #3	1.2789 1.2672 1.2596	.42514 .42154 .42934	5.2800 5.2967 5.2924	1.0690 1.0670 1.0689	1.0965 1.0848 1.0846	1.0972 1.0971 1.0968	.52770 .52694 .53003		
Check ? Value Range	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass		
Elem Units Avg Stddev %RSD	V_2924 ppm 1.0774 .0010 .09591	Zn2062 ppm 1.0472 .0011 .10278	Zr3391 ppm F .71149 .14664 20.610						
#1 #2 #3	1.0786 1.0767 1.0768	1.0484 1.0463 1.0468	.54217 .79536 .79695						
Check ? Value Range	Chk Pass	Chk Pass	Chk Fail 1.0000 -10.000%						
Int. Std. Units Avg Stddev %RSD	Y_2243 Cts/S 10743. 9. .08150	Y_3600 Cts/S 91202. 50. .05464	Y_3774 Cts/S 3924.7 30.4 .77542						
#1 #2 #3	10754. 10737. 10739.	91145. 91240. 91219.	3889.6 3941.1 3943.6						

•									
Elem	Ag3280	Al3082	As1890	B_2496	Ba4554	Be3131	Ca4226		
Units	ppm	ppm	ppm	ppm	ppm	ppm	ppm		
Avg	. 00109	.00864	00057	.00338	. 00037	.00002	00029		
Stddev	.00096	.00313	.00414	.00048	.00077	.00004	.00858		
%RSD	88.141	36.280	732.14	14.235	205.42	239.18	2946.6		
#1	.00190	.01223	.00199	.00335	.00124	00003	00894		
#2	.00134	.00725	00534	.00291	00021	.00006	00014		
#3	.00003	.00644	.00165	.00387	.00009	.00003	.00821		
Check ? High Limit Low Limit	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass		
Elem	Cd2288	Co2286	Cr2677	Cu2247	Fe2611	K_7664	Li6707		
Units	ppm	ppm	ppm	ppm	ppm	ppm	ppm		
Avg	. 00004	.00031	. 00011	. 00049	. 00569	. 17331	. 00855		
Stddev	.00012	.00009	.00091	.00083	.00971	.07792	.00114		
%RSD	329.63	29.798	836.71	170.58	170.74	44.960	13.339		
#1	.00003	.00040	.00098	00047	00546	.25277	.00775		
#2	.00016	.00032	.00019	.00090	.01228	.17014	.00805		
#3	00008	.00021	00084	.00104	.01024	.09703	.00986		
Check ? High Limit Low Limit	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass		
Elem	Mg2790	Mn2576	Mo2020	Na5895	Ni2316	P_2149	Pb2203		
Units	ppm	ppm	ppm	ppm	ppm	ppm	ppm		
Avg	05296	00179	.00138	. 02600	.00095	00010	00302		
Stddev	.08611	.00220	.00024	.02553	.00074	.00645	.00231		
%RSD	162.58	122.36	17.249	98.190	77.041	6548.7	76.655		
#1	11039	00251	.00116	.02502	.00180	.00688	00057		
#2	09454	.00067	.00164	.05200	.00063	00583	00517		
#3	.04604	00354	.00134	.00097	.00044	00135	00332		
Check ? High Limit Low Limit	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass		

•									
Elem Units Avg Stddev %RSD	Sb2068 ppm . 00051 .00375 736.69	Se1960 ppm .00425 .01060 249.35	Si2124 ppm .00772 .00206 26.737	Sn1899 ppm 00016 .00038 247.44	Sr4077 ppm . 00020 .00010 49.852	Ti3372 ppm 00217 .00281 129.19	TI1908 ppm 00406 .00309 76.175		
#1 #2 #3	.00408 .00085 00340	.01646 00107 00264	.00533 .00892 .00889	00059 .00013 .00000	.00030 .00018 .00011	00196 00508 .00052	00516 00057 00646		
Check ? High Limit Low Limit	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass		
Elem Units Avg Stddev %RSD	V_2924 ppm 00072 .00080 111.21	Zn2062 ppm .00003 .00015 469.96	Zr3391 ppm F .12012 .09708 80.824						
#1 #2 #3	.00011 00149 00079	.00012 .00011 00014	.18367 .00837 .16832						
Check ? High Limit Low Limit	Chk Pass	Chk Pass	Chk Fail .04000 04000						
Int. Std. Units Avg Stddev %RSD	Y_2243 Cts/S 10916. 18. .16425	Y_3600 Cts/S 93601. 137. .14606	Y_3774 Cts/S 3934.2 13.6 .34481						
#1 #2 #3	10908. 10937. 10904.	93665. 93694. 93444.	3918.8 3944.5 3939.3						

Sample Name: LLCCV Acquired: 10/23/2015 15:18:47 Type: Unk Method: ICP-THERMO3_6010_200.7WATER_3YLINES(v526) Mode: CONC Corr. Factor: 1.000000 User: JYH Custom ID1: Custom ID2: Custom ID3: Comment:									
Elem Units Avg Stddev %RSD	Ag3280 ppm . 00917 .00051 5.5970	Al3082 ppm . 17858 .00684 3.8323	ppm . <mark>00690</mark> .00179	ppm . 08357 .00053	Ba4554 ppm . 00962 .00067 6.9774	Be3131 ppm . 00171 .00003 1.7034	. 44835 .02189	Cd2288 ppm . 00081 .00006 7.1841	
#1 #2 #3	.00929 .00861 .00962	.17839 .18551 .17182	.00896	.08416	.01017 .00887 .00981	.00173 .00173 .00168	.47352 .43784 .43370	.00077 .00087 .00078	
Check? High Limit Low Limit	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	
Elem Units Avg Stddev %RSD	Co2286 ppm . 00448 .00017 3.8564	Cr2677 ppm . 00431 .00066 15.194	ppm . 00462 .00075	ppm . 07781 .02393	K_7664 ppm 1.1066 .0301 2.7164	Li6707 ppm . 09293 .00148 1.5928	ppm . 43197 .01878	Mn2576 ppm . 00896 .00127 14.165	
#1 #2 #3	.00462 .00452 .00428	.00490 .00361 .00444	.00505 .00376 .00505	.05109	1.0912 1.0875 1.1413	.09170 .09458 .09252	.42699 .45273 .41618	.00826 .01042 .00819	
Check ? High Limit Low Limit	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	
Elem Units Avg Stddev %RSD	Mo2020 ppm . 00861 .00053 6.1098	Na5895 ppm . 45563 .02028 4.4500	ppm . 01710	— ppm . 79892	Pb2203 ppm . 00560 .00367 65.522	Sb2068 ppm . 08010 .00184 2.2956	ppm . 01940	Si2124 ppm . 82216 .00107 .12974	
#1 #2 #3	.00824 .00921 .00838	.45475 .47634 .43581	.01680 .01687 .01764	.80089 .79837 .79750	.00257 .00968 .00456	.08186 .07820 .08025	.01632 .02114 .02073	.82339 .82160 .82148	
Check ? High Limit Low Limit	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	

Sample Name: LLCCV Acquired: 10/23/2015 15:18:47 Type: Unk Method: ICP-THERMO3_6010_200.7WATER_3YLINES(v526) Mode: CONC Corr. Factor: 1.000000 Custom ID1: User: JYH Custom ID2: Custom ID3: Comment: Elem Sn1899 Sr4077 Ti3372 TI1908 V_2924 Zn2062 Zr3391 Units ppm ppm ppm ppm ppm ppm ppm Avg .42962 .04368 .02479 .17558 .00780 .01786 18.293 Stddev .00186 .00011 .00295 .00242 .00109 .00013 .050 %RSD .43183 .25779 11.892 1.3769 13.914 .74653 .27482 #1 .43053 .04373 .02576 .17612 .00662 .01774 18.289 #2 .43084 .04376 .02148 .17768 .00876 .01800 18.245 .42748 .17293 .00802 #3 .04355 .02714 .01782 18.345 Check? Chk Pass Chk Pass Chk Pass Chk Pass Chk Pass Chk Pass **High Limit** Low Limit Int. Std. Y_2243 Y 3600 Y_3774 Cts/S Units Cts/S Cts/S 11030. 94539. 3966.0 Avg Stddev 129. 37.4 8. %RSD .07438 .13629 .94194 #1 11024. 94392. 3922.9 #2 11040. 94632. 3985.9 #3 11027. 94593. 3989.3

Approved: October 26, 2015

J'ye 1hu

Elem Units Avg Stddev %RSD	Ag3280 ppm . 00967 .00153 15.822	Al3082 ppm . 18741 .00498 2.6546	ppm . 01667 .00134	ppm . 08440 .00071	Ba4554 ppm . 01003 .00072 7.1715	Be3131 ppm . 00897 .00002 .17492	. 42920 .00841	Cd2288 ppm . 00907 .00036 4.0018			
#1 #2 #3	.01055 .00791 .01056	.19043 .18167 .19013	.01760 .01514 .01729		.01082 .00941 .00986	.00898 .00898 .00895	.42467 .42403 .43890	.00868 .00912 .00940			
Check ? High Limit Low Limit	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass			
Elem Units Avg Stddev %RSD	Co2286 ppm . 00970 .00052 5.3116	Cr2677 ppm . 01700 .00041 2.4124	Cu2247 ppm . 01847 .00012 .64961	ppm . 07368	K_7664 ppm 1.0420 .0295 2.8282	Li6707 ppm . 09519 .00263 2.7610	ppm . 41059 .09464	Mn2576 ppm . 01036 .00166 16.036			
#1 #2 #3	.01025 .00965 .00922	.01674 .01679 .01748	.01851 .01856 .01833	.06241 .06150 .09712	1.0429 1.0711 1.0121	.09605 .09223 .09727	.38653	.01189 .01060 .00860			
Check ? High Limit Low Limit	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass			
Elem Units Avg Stddev %RSD	Mo2020 ppm . 04986 .00036 .71327	Na5895 ppm . 45950 .04211 9.1640	ppm		Pb2203 ppm . 01674 .00515 30.764	Sb2068 ppm . 01755 .00349 19.875		Si2124 ppm . 00175 .00319 182.34			
#1 #2 #3	.05018 .04947 .04991	.41962 .50353 .45534	.03564 .03549 .03673	00019 .01289 .00710	.02223 .01201 .01599	.01382 .02073 .01809	.02223 .01314 .01509	00006 00013 .00544			
Check ? High Limit Low Limit	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass			

Sample Name: LLCCV Acquired: 10/23/2015 15:22:52 Type: Unk Method: ICP-THERMO3_6010_200.7WATER_3YLINES(v526) Mode: CONC Corr. Factor: 1.000000 Custom ID1: User: JYH Custom ID2: Custom ID3: Comment: Elem Sn1899 Sr4077 Ti3372 TI1908 V_2924 Zn2062 Zr3391 Units ppm ppm ppm ppm ppm ppm ppm Avg .08641 .00959 .02934 .08720 .00846 .01832 .26831 Stddev .00054 .00010 .00387 .00402 .00015 .00017 .09570 %RSD .62314 1.0558 13.187 4.6048 1.7452 .93462 35.666 #1 .08695 .00957 .02663 .08371 .00830 .01812 .24220 #2 .08587 .00970 .02761 .08631 .00858 .01844 .18838 .08642 .00950 #3 .03377 .09159 .00851 .01839 .37435 Check? Chk Pass Chk Pass Chk Pass Chk Pass Chk Pass Chk Pass **High Limit** Low Limit Int. Std. Y 2243 Y 3600 Y_3774 Units Cts/S Cts/S Cts/S 10979. 94190. 3964.4 Avg Stddev 22. 182. 22.2 %RSD .20215 .19341 .56014 #1 94044. 10954. 3947.8 #2 10987. 94394. 3989.6 #3 10996. 94132. 3955.7

Approved: October 26, 2015

J'ye 1hu

Sample Name Method: ICP-T User: JYH Comment:)10_200.7W <i>A</i>	ed: 10/23/20 ATER_3YLIN stom ID2:		Type: Unk Mode: CONC ID3:	C Corr. F	Factor: 1.00000(
Elem	Ag3280	Al3082	As1890	B_2496	Ba4554	Be3131	Ca4226
Units	ppm	ppm	ppm	ppm	ppm	ppm	ppm
Avg	00124	. 03057	.00387	. 07362	. 02705	.00002	256.52
Stddev	.00142	.00413	.00028	.00124	.00040	.00004	.75
%RSD	114.18	13.505	7.2509	1.6794	1.4774	258.58	.29211
#1	00158	.03089	.00366	.07492	.02696	00003	255.68
#2	.00031	.02628	.00419	.07246	.02749	.00005	256.75
#3	00247	.03452	.00377	.07346	.02671	.00002	257.12
Check ? High Limit Low Limit	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass
Elem	Cd2288	Co2286	Cr2677	Cu2247	Fe2611	K_7664	Li6707
Units	ppm	ppm	ppm	ppm	ppm	ppm	ppm
Avg	. 00059	.00956	. 00213	. 00262	. 10417	3.0793	. 03287
Stddev	.00032	.00004	.00045	.00125	.00899	.0266	.00545
%RSD	55.087	.45956	21.041	47.600	8.6327	.86442	16.591
#1	.00057	.00958	.00261	.00144	.11305	3.0486	.03886
#2	.00093	.00958	.00173	.00249	.09507	3.0938	.03154
#3	.00028	.00951	.00205	.00392	.10441	3.0955	.02820
Check ? High Limit Low Limit	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass
Elem	Mg2790	Mn2576	Mo2020	Na5895	Ni2316	P_2149	Pb2203
Units	ppm	ppm	ppm	ppm	ppm	ppm	ppm
Avg	54.813	1.2987	. 03838	F 292.31	. 01798	. 00373	00233
Stddev	.226	.0050	.00033	.05	.00109	.00183	.00196
%RSD	.41238	.38491	.87015	.01686	6.0565	49.033	84.389
#1	54.555	1.2929	.03799	292.26	.01675	.00523	00095
#2	54.912	1.3023	.03860	292.30	.01836	.00428	00458
#3	54.973	1.3008	.03853	292.36	.01882	.00169	00145
Check ? High Limit Low Limit	Chk Pass	Chk Pass	Chk Pass	Chk Fail 270.00 50000	Chk Pass	Chk Pass	Chk Pass

Sample Name: L1510074918 Acquired: 10/23/2015 15:: Method: ICP-THERMO3_6010_200.7WATER_3YLINES(v52) User: JYH Custom ID1: Custom ID2: C Comment:					Type: Unk Mode: CON ID3:		Factor: 1.00000(
Elem Units Avg Stddev %RSD	Sb2068 ppm . 00755 .00088 11.662	Se1960 ppm 00190 .00898 472.98	Si2124 ppm 35.543 .118 .33132	Sn1899 ppm 00076 .00077 101.92	Sr4077 ppm . 29201 .00097 .33102	Ti3372 ppm F04341 .00222 5.1252	TI1908 ppm 00063 .00189 299.51
#1 #2 #3	.00809 .00802 .00653	.00240 01222 .00413	35.626 35.594 35.408	.00010 00097 00140	.29128 .29311 .29164	04353 04113 04557	00144 .00153 00199
Check ? High Limit Low Limit	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Fail 36.000 03000	Chk Pass
Elem Units Avg Stddev %RSD	V_2924 ppm 00035 .00062 178.89	Zn2062 ppm . 01474 .00045 3.0450	Zr3391 ppm .3 7570 .13105 34.882				
#1 #2 #3	00102 .00021 00024	.01449 .01526 .01446	.41023 .48603 .23084				
Check ? High Limit Low Limit	Chk Pass	Chk Pass	Chk Pass				
Int. Std. Units Avg Stddev %RSD	Y_2243 Cts/S 9849.9 13.5 .13683	Y_3600 Cts/S 83715 . 105. .12539	Y_3774 Cts/S 3 796 .6 11.0 .28975				
#1 #2 #3	9839.8 9844.7 9865.2	83670. 83640. 83835.	3789.2 3791.4 3809.3				

Sample Name Method: ICP-T User: JYH Comment:		010_200.7WA	red: 10/23/20 ATER_3YLIN stom ID2:		Type: Unk Mode: CONO ID3:		Factor: 1.00000(
Elem	Ag3280	Al3082	As1890	B_2496	Ba4554	Be3131	Ca4226
Units	ppm	ppm	ppm	ppm	ppm	ppm	ppm
Avg	00055	. 02728	. 00560	. 04466	. 06062	.00002	228.65
Stddev	.00181	.00279	.00166	.00141	.00107	.00003	.50
%RSD	326.70	10.232	29.664	3.1475	1.7570	127.02	.22081
#1	.00061	.03023	.00751	.04312	.06184	.00001	229.07
#2	00263	.02468	.00453	.04587	.06015	.00006	228.09
#3	.00037	.02693	.00474	.04498	.05987	.00001	228.81
Check ? High Limit Low Limit	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass
Elem	Cd2288	Co2286	Cr2677	Cu2247	Fe2611	K_7664	Li6707
Units	ppm	ppm	ppm	ppm	ppm	ppm	ppm
Avg	. 00051	. 00105	. 00169	. 00102	. 06689	3.0362	. 04450
Stddev	.00008	.00039	.00047	.00116	.01375	.0670	.00273
%RSD	16.578	36.915	28.000	114.25	20.559	2.2054	6.1273
#1	.00050	.00140	.00210	00015	.07441	3.0705	.04765
#2	.00060	.00063	.00117	.00103	.05101	2.9590	.04290
#3	.00043	.00113	.00178	.00218	.07523	3.0790	.04295
Check ? High Limit Low Limit	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass
Elem	Mg2790	Mn2576	Mo2020	Na5895	Ni2316	P_2149	Pb2203
Units	ppm	ppm	ppm	ppm	ppm	ppm	ppm
Avg	95.398	. 12706	. 02683	133.93	. 05583	. 00310	00129
Stddev	.211	.00031	.00046	.36	.00110	.00641	.00337
%RSD	.22103	.24531	1.7036	.26807	1.9756	206.69	260.06
#1	95.583	.12711	.02701	134.19	.05709	00398	.00001
#2	95.168	.12735	.02717	133.52	.05507	.00851	00512
#3	95.443	.12673	.02631	134.07	.05531	.00476	.00123
Check ? High Limit Low Limit	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass

Sample Name: L1510074920 Acquired: 10/23/2015 19 Method: ICP-THERMO3_6010_200.7WATER_3YLINES(v User: JYH Custom ID1: Custom ID2: Comment:					Type: Unl Mode: CON ID3:		Factor: 1.00000(
Elem Units Avg Stddev %RSD	Sb2068 ppm . 00058 .00624 1068.2	Se1960 ppm 00292 .00678 232.20	Si2124 ppm 9. 5189 .0176 .18458	Sn1899 ppm . 00096 .00056 58.291	Sr4077 ppm . 58482 .00117 .19970	Ti3372 ppm F03618 .00589 16.274	TI1908 ppm 00121 .00252 207.86
#1 #2 #3	.00777 00256 00345	00019 01063 .00207	9.5267 9.5313 9.4988	.00054 .00159 .00075	.58585 .58355 .58505	03304 03253 04297	00407 .00064 00019
Check ? High Limit Low Limit	Chk Pass	Chk Fail 36.000 03000	Chk Pass				
Elem Units Avg Stddev %RSD	V_2924 ppm 00017 .00038 218.73	Zn2062 ppm . 00268 .00020 7.4374	Zr3391 ppm . 42255 .10403 24.620				
#1 #2 #3	00002 00061 .00011	.00282 .00276 .00245	.31774 .42412 .52578				
Check ? High Limit Low Limit	Chk Pass	Chk Pass	Chk Pass				
Int. Std. Units Avg Stddev %RSD	Y_2243 Cts/S 9979.0 22.7 .22699	Y_3600 Cts/S 85146 . 186. .21868	Y_3774 Cts/S 3816 .1 23.5 .61542				
#1 #2 #3	9994.1 9989.9 9953.0	85002. 85081. 85356.	3802.2 3843.2 3802.9				

Sample Name: L1510074922 Acquired: 10/23/2015 15:34:49 Type: Unk								
Method: ICP-THERMO3_6010_200.7WATER_3YLINES(v526) Mode: CONC							Corr. Fa	actor: 1.00000(
User: JYH	Custom	ID1:	Custom ID)2: (Custom ID3	:		
Comment:								
Elem	Ag3280	Al3082	As1890	B 2496	Ba4554	Be3131	Ca4226	Cd2288
Units	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm
Avg	00089	.02101	.00143	.03330	.02631	.00001	114.12	.00009
Stddev	.00028	.00081	.00341	.00099	.00053	.00009	.36	.00009
%RSD	31.506	3.8442	237.66	2.9880	1.9980	1295.6	.31822	106.20
#1	00121	.02037	00118	.03443	.02572	00009	114.53	00000
#2	00072	.02192	.00529	.03288	.02648	.00005	113.85	.00018
#3	00073	.02074	.00020	.03258	.02673	.00007	113.97	.00008
Check?	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass
High Limit								
Low Limit								
Elem	Co2286	Cr2677	Cu2247	Fe2611	K_7664	Li6707	Mg2790	Mn2576
Units	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm
Avg	.00052	.00182	.00180	.00859	2.3817	.02907	52.801	.04941
Stddev	.00016	.00086	.00091	.01729	.1193	.00113	.337	.00236
%RSD	31.096	47.114	50.894	201.24	5.0083	3.8950	.63858	4.7832
#1	.00070	.00187	.00268	00239	2.5117	.02778	53.168	.05192
#2	.00039	.00094	.00085	00035	2.2774	.02956	52.729	.04723
#3	.00046	.00266	.00186	.02852	2.3558	.02989	52.506	.04908
Check?	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass
High Limit	Clik F ass	CIIK F ass	CIIK F ass	Clik Fass	Clik F d55	Clik Fass	Clik Fass	Clik F d55
Low Limit								
Elem	Mo2020	Na5895	Ni2316	P_2149	Pb2203	Sb2068	Se1960	Si2124
Units	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm
Avg Stddev	. 04974 .00042	19.470 .071	. 00480 .00090	. <mark>00394</mark> .00516	00440 .00186	00061 .00489	. 00539 .00571	7.5507 .0068
%RSD	.84886	.36552	18.667	131.05	42.278	802.60	106.04	.09017
701 (SD	.04000	.50552	10.007	101.00	42.270	002.00	100.04	.03017
#1	.04927	19.552	.00377	.00262	00477	.00488	.00377	7.5433
#2	.05009	19.426	.00521	.00962	00238	00449	.00066	7.5522
#3	.04986	19.432	.00541	00044	00604	00222	.01174	7.5567
Check ? High Limit Low Limit	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass

Sample Name: L1510074922								
User: JYH	Custom		Custom IE	,	Custom ID3			
Comment:								
Elem	Sn1899	Sr4077	Ti3372	TI1908	V_2924	Zn2062	Zr3391	
Units	ppm	ppm	ppm	ppm	ppm	ppm	ppm	
Avg Stddev	00025 .00044	. 23501 .00028	02209 .00803	00210 .00401	00153 .00041	. 00419 .00013	. 49019 .11660	
%RSD	176.54	.12069	36.348	190.98	26.844	3.1761	23.788	
#1	00074	.23533	03135	00050	00192	.00424	.53351	
#2	00011	.23494	01702	00667	00158	.00429	.57893	
#3	.00010	.23477	01790	.00087	00110	.00404	.35812	
Check ? High Limit Low Limit	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	
Int. Std.	Y 2243	Y_3600	Y_3774					
Units	Cts/S	Cts/S	Cts/S					
Avg	10282.	88111.	3826.2					
Stddev	4.	77.	12.5					
%RSD	.03787	.08722	.32685					
#1	10280.	88029.	3812.5					
#2	10286.	88121.	3837.1					
#3	10279.	88182.	3828.9					

Sample Name: L1510074924 Acquired: 10/23/2015 15:38:50 Type: Unk								
Method: ICP-THERMO3_6010_200.7WATER_3YLINES(v526)								actor: 1.00000(
User: JYH	Custom	ID1:	Custom ID)2: (Custom ID3	•		
Comment:								
Elem	Ag3280	Al3082	As1890	B_2496	Ba4554	Be3131	Ca4226	Cd2288
Units	ppm 00082	ppm . 02048	ppm . 00078	ppm . 10455	ppm . 09057	ppm . 00004	ppm 86.393	ppm . 00015
Avg Stddev	.00082	.02048	.00526	.00099	.00044	.00004	.150	.00015
%RSD	99.525	16.105	674.20	.94490	.48458	162.49	.17314	75.525
#1	00128	.02415	00016	.10548	.09098	.00008	86.563	.00011
#2 #3	.00012	.01776 .01954	00394 .00644	.10352 .10466	.09011 .09062	.00007	86.283 86.333	.00027 .00006
#3	00130	.01934	.00044	.10400	.09002	00003	00.333	.00000
Check?	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass
High Limit								
Low Limit								
Elem	Co2286	Cr2677	Cu2247	Fe2611	K_7664	Li6707	Mg2790	Mn2576
Units	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm
Avg	.00040	.00073	.00000	.01243	1.2821	.01799	29.265	.10388
Stddev	.00019	.00049	.00035	.00540	.0470	.00293	.131	.00046
%RSD	47.578	67.143	294350.	43.428	3.6684	16.277	.44908	.44727
#1	.00055	.00129	.00009	.01124	1.3160	.02090	29.130	.10369
#2	.00019	.00041	00038	.00773	1.3018	.01504	29.393	.10354
#3	.00046	.00049	.00030	.01832	1.2284	.01802	29.272	.10441
Observation O	Ohli Dasa	Ohli Dasa	Ohli Dasa	Ohli Daaa	Ohli Daaa	Ohli Dasa	Ohli Daaa	Ohla Dana
Check ? High Limit	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass
Low Limit								
Elem	Mo2020	Na5895	Ni2316	P_2149	Pb2203	Sb2068	Se1960	Si2124
Units	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm
Avg Stddev	. 01250 .00016	6.9093 .0139	. 00133 .00038	. 00366 .00460	00358 .00587	. <mark>00417</mark> .00284	. 00035 .00717	6.6678 .0228
%RSD	1.2995	.20063	28.991	125.90	163.72	68.165	2066.1	.34246
#1	.01233	6.9248	.00146	.00040	.00319	.00286	00229	6.6889
#2	.01266	6.9049	.00089	.00892	00681	.00222	00513	6.6709
#3	.01251	6.8982	.00162	.00164	00713	.00743	.00846	6.6435
Check? High Limit Low Limit	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass

Sample Nar	ne: L151007	'4924 A	cquired: 10/	23/2015 15	:38:50	Type: Unk		
Method: ICF	P-THERMO3	3_6010_200	.7WATER_	3YLINES(v	526) Mc	de: CONC	Corr. Fa	ctor: 1.00000(
User: JYH	Custom	ID1:	Custom ID)2: (Custom ID3	:		
Comment:								
Elem	Sn1899	Sr4077	Ti3372	TI1908	V_2924	Zn2062	Zr3391	
Units	ppm	ppm	ppm	ppm	ppm	ppm	ppm	
Avg Stddev	00009 .00043	. 10935 .00026	01359 .00140	00107 .00033	00139 .00087	. <mark>00163</mark> .00014	. 19623 .08809	
%RSD	476.71	.23740	10.320	30.790	62.393	8.8288	44.890	
#1	00026	.10960	01388	00132	00122	.00149	.15681	
#2	00042	.10908	01483	00119	00062	.00164	.13473	
#3	.00040	.10937	01207	00070	00234	.00178	.29714	
Check ? High Limit Low Limit	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	
Int. Std.	Y_2243	Y_3600	Y_3774					
Units	Cts/S	Cts/S	Cts/S					
Avg	10368. 23.	89130 . 167.	3848.1 9.5					
Stddev %RSD	.22156	.18681	9.5 .24787					
701 (OD	.22100	.10001	.24707					
#1	10389.	89012.	3858.7					
#2	10372.	89320.	3840.2					
#3	10343.	89057.	3845.3					

Sample Name Method: ICP-T User: JYH Comment:)10_200.7W <i>A</i>	ed: 10/23/20 ATER_3YLIN stom ID2:		Type: Unk Mode: CONC ID3:	C Corr. F	factor: 1.00000(
Elem	Ag3280	Al3082	As1890	B_2496	Ba4554	Be3131	Ca4226
Units	ppm	ppm	ppm	ppm	ppm	ppm	ppm
Avg	. 00035	. 02657	00110	. 06099	. 01755	00001	F 342.70
Stddev	.00034	.00506	.00140	.00276	.00132	.00002	1.28
%RSD	96.087	19.036	127.35	4.5269	7.5311	408.55	.37474
#1	.00060	.03233	00271	.06147	.01816	.00001	342.38
#2	00003	.02450	00035	.05803	.01603	00003	341.60
#3	.00048	.02287	00024	.06349	.01846	.00001	344.11
Check ? High Limit Low Limit	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Fail 270.00 10000
Elem	Cd2288	Co2286	Cr2677	Cu2247	Fe2611	K_7664	Li6707
Units	ppm	ppm	ppm	ppm	ppm	ppm	ppm
Avg	. 00044	.01155	.00132	.00094	1.5219	5.0046	. 03805
Stddev	.00034	.00025	.00029	.00189	.0146	.0455	.00132
%RSD	76.511	2.1900	21.940	200.24	.95721	.90970	3.4646
#1	.00006	.01180	.00141	.00030	1.5171	4.9831	.03956
#2	.00070	.01156	.00100	00054	1.5103	5.0569	.03709
#3	.00057	.01130	.00155	.00307	1.5383	4.9737	.03751
Check ? High Limit Low Limit	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass
Elem	Mg2790	Mn2576	Mo2020	Na5895	Ni2316	P_2149	Pb2203
Units	ppm	ppm	ppm	ppm	ppm	ppm	ppm
Avg	61.226	2.2888	. 00689	105.76	. 02744	. 00445	00143
Stddev	.281	.0089	.00084	.35	.00115	.00190	.00334
%RSD	.45866	.39091	12.228	.32704	4.1748	42.585	234.60
#1	60.971	2.2832	.00722	105.36	.02818	.00647	00500
#2	61.527	2.2991	.00594	105.95	.02802	.00418	.00162
#3	61.180	2.2840	.00752	105.96	.02612	.00271	00089
Check ? High Limit Low Limit	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass

Sample Name: Method: ICP-T User: JYH Comment:)10_200.7W <i>A</i>	red: 10/23/20 ⁻ ATER_3YLINI stom ID2:		Type: Unk Mode: CON ID3:		Factor: 1.00000(
Elem Units Avg Stddev %RSD	Sb2068 ppm . 00643 .00604 93.953	Se1960 ppm 00071 .00189 267.26	Si2124 ppm 13.194 .031 .23348	Sn1899 ppm 00034 .00100 293.52	Sr4077 ppm . 65201 .00302 .46277	Ti3372 ppm F05013 .00582 11.613	TI1908 ppm 00206 .00295 142.85
#1 #2 #3	.01037 00053 .00945	.00132 00241 00104	13.222 13.198 13.161	00013 .00053 00142	.64853 .65399 .65350	04642 04713 05684	00258 .00111 00472
Check ? High Limit Low Limit	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Fail 36.000 03000	Chk Pass
Elem Units Avg Stddev %RSD	V_2924 ppm 00155 .00024 15.415	Zn2062 ppm .02332 .00010 .44528	Zr3391 ppm . 10960 .18379 167.69				
#1 #2 #3	00158 00177 00130	.02321 .02335 .02341	.01006 .32168 00295				
Check ? High Limit Low Limit	Chk Pass	Chk Pass	Chk Pass				
Int. Std. Units Avg Stddev %RSD	Y_2243 Cts/S 9924.3 10.2 .10237	Y_3600 Cts/S 84417 . 44. .05261	Y_3774 Cts/S 3800.2 13.0 .34154				
#1 #2 #3	9925.4 9933.8 9913.6	84422. 84371. 84459.	3813.4 3787.5 3799.6				

Sample Nar	Sample Name: L1510081208								
Method: ICF	P-THERMO3	3_6010_200	.7WATER_	3YLINES(v	526) Mc	de: CONC	Corr. Fa	actor: 1.00000(
User: JYH	Custom	ID1:	Custom IE)2: (Custom ID3	:			
Comment:									
Elem	Ag3280	Al3082	As1890	B 2496	Ba4554	Be3131	Ca4226	Cd2288	
Units	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	
Avg	00003	.02321	00280	.04291	.07568	00000	108.63	.00017	
Stddev	.00050	.00907	.00190	.00054	.00025	.00004	.18	.00026	
%RSD	1751.5	39.084	67.733	1.2621	.32827	1073.3	.16138	159.17	
#1	00034	.01629	00490	.04232	.07552	.00004	108.71	.00046	
#1 #2	.00055	.01029	00489 00120	.04232	.07556	00005	108.71	00046	
#2 #3	00029	.03347	00120	.04303	.07597	00003	108.73	.00004	
#0	00023	.00047	00250	.04000	.07007	00001	100.40	.00007	
Check?	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	
High Limit									
Low Limit									
Elem	Co2286	Cr2677	Cu2247	Fe2611	K 7664	Li6707	Mg2790	Mn2576	
Units	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	
Avg	.00049	.00280	.00551	01354	2.5939	.01536	19.598	.03063	
Stddev	.00044	.00072	.00054	.01135	.0707	.00274	.090	.00076	
%RSD	90.551	25.622	9.7427	83.885	2.7276	17.854	.45677	2.4788	
#1	.00075	.00359	.00601	00055	2.5622	.01686	19.501	.03134	
#2	00002	.00219	.00494	01844	2.5445	.01702	19.676	.02983	
#3	.00073	.00262	.00559	02161	2.6749	.01219	19.618	.03070	
Check?	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	
High Limit									
Low Limit									
Поло	M-2020	N-E00E	NI:001C	D 0140	Pb2203	Sb2068	0-1000	0:0104	
Elem Units	Mo2020	Na5895	Ni2316	P_2149			Se1960	Si2124	
Avg	ppm . 01525	ppm 69.874	ppm . 00349	ppm . 01159	ppm 00228	ppm . 00370	ppm 00041	ppm 18.173	
Stddev	.00050	.134	.00135	.00362	.00147	.00133	.00803	.022	
%RSD	3.2693	.19118	38.538	31.239	64.332	35.875	1979.0	.11972	
#1	.01582	69.817	.00216	.01126	00254	.00224	00940	18.197	
#2	.01491	70.026	.00485	.00815	00360	.00404	.00605	18.165	
#3	.01502	69.778	.00347	.01537	00070	.00483	.00213	18.156	
Check ? High Limit Low Limit	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	

•	Sample Name: L1510081208								
			_	•	,	de: CONC	Corr. Fa	ctor: 1.00000(
User: JYH	Custom	ID1:	Custom ID)2: (Custom ID3	•			
Comment:									
Elem	Sn1899	Sr4077	Ti3372	TI1908	V_2924	Zn2062	Zr3391		
Units	ppm	ppm	ppm	ppm	ppm	ppm	ppm		
Avg Stddev	00053 .00038	. 28128 .00032	01479 .00344	00100 .00356	00070 .00112	. 00329 .00011	. 13168 .09768		
%RSD	71.316	.11466	23.282	356.63	160.64	3.3946	74.175		
#1	00087	.28158	01783	00424	.00003	.00325	.06599		
#2	00013	.28131	01105	00156	00199	.00321	.08513		
#3	00057	.28094	01550	.00281	00013	.00342	.24393		
Check ? High Limit Low Limit	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass		
Int. Std.	Y 2243	Y_3600	Y_3774						
Units	_Cts/S	Cts/S	Cts/S						
Avg	10287.	88035.	3869.3						
Stddev %RSD	10. .10014	10. .01191	15.3 .39483						
/0N3D	. 100 14	.01191	.59465						
#1	10275.	88027.	3855.4						
#2	10289.	88030.	3866.7						
#3	10295.	88047.	3885.7						

•	Sample Name: L1510101601							
				•	526) Mc Custom ID3	de: CONC	Corr. Fa	actor: 1.00000(
User: JYH Comment:	Custom	וטו.	Custom II	J2.	Custom iD3			
Comment.								
Elem	Ag3280	Al3082	As1890	B_2496	Ba4554	Be3131	Ca4226	Cd2288
Units	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm
Avg	.00084	.05624	.00044	.01982	.20312	.00006	25.234	00005
Stddev	.00056	.00808	.00120	.00135	.00102	.00006	.056	.00017
%RSD	66.854	14.363	274.20	6.7938	.50082	99.102	.22317	348.11
#1	.00055	.05972	.00114	.01942	.20425	.00006	25.298	00002
#2	.00149	.06199	.00112	.01872	.20284	.00012	25.191	00023
#3	.00048	.04700	00095	.02132	.20228	.00000	25.214	.00011
Check?	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass
High Limit								
Low Limit								
Elem	Co2286	Cr2677	Cu2247	Fe2611	K_7664	Li6707	Mg2790	Mn2576
Units	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm
Avg	.00053	.00077	.00054	1.8096	1.7348	.00647	6.7792	.16756
Stddev	.00022	.00011	.00089	.0321	.0519	.00272	.0633	.00133
%RSD	40.751	14.739	164.06	1.7761	2.9906	41.991	.93429	.79502
#1	.00060	.00066	00040	1.8261	1.7876	.00368	6.7554	.16776
#2	.00071	.00076	.00066	1.7725	1.7328	.00664	6.7312	.16614
#3	.00029	.00089	.00137	1.8300	1.6839	.00911	6.8510	.16879
Check?	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass
High Limit								
Low Limit								
Elem	Mo2020	Na5895	Ni2316	P_2149	Pb2203	Sb2068	Se1960	Si2124
Units	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm
Avg	.00169	17.026	.00407	.00751	00017	00254	.00385	.56524
Stddev	.00033	.057	.00089	.00663	.00559	.00398	.00108	.00189
%RSD	19.829	.33189	21.958	88.300	3283.4	156.82	28.089	.33433
#1	.00191	17.075	.00505	.00130	00378	00518	.00267	.56331
#2	.00185	17.039	.00387	.00673	.00627	00447	.00410	.56533
#3	.00130	16.964	.00330	.01449	00300	.00204	.00478	.56709
Check? High Limit Low Limit	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass

Sample Na	Sample Name: L1510101601 Acquired: 10/23/2015 15:50:55 Type: Unk								
Method: IC	P-THERMO3	3_6010_200	.7WATER_	3YLINES(v	526) Mc	de: CONC	Corr. Fa	ctor: 1.000000	
User: JYH	Custom	ID1:	Custom ID)2: (Custom ID3	:			
Comment:									
Elem	Sn1899	Sr4077	Ti3372	TI1908	V 2924	Zn2062	Zr3391		
Units	ppm	ppm	ppm	ppm	ppm	ppm	ppm		
Avg	00015	.25685	00541	00199	00090	.00211	.07300		
Stddev	.00053	.00100	.00441	.00349	.00029	.00027	.09166		
%RSD	349.54	.38923	81.513	175.48	32.405	12.727	125.57		
114	00050	05000	00000	00050	00444	00000	00000		
#1 #2	00052	.25800	00993	00056	00111	.00209	02996		
#2 #3	.00046	.25627 .25627	00518 00112	00597 .00056	00057 00103	.00239	.10321 .14574		
#5	00040	.23027	00112	.00030	00103	.00103	.14374		
Check?	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass		
High Limit									
Low Limit									
Int. Std.	Y_2243	Y_3600	Y_3774						
Units	Cts/S 10576 .	Cts/S 91089.	Cts/S 3859 .9						
Avg Stddev	7.	334.	19.7						
%RSD	.06275	.36716	.50997						
701 102	.00270	.007.10	.00007						
#1	10570.	91156.	3839.2						
#2	10576.	90727.	3861.9						
#3	10583.	91385.	3878.5						

Sample Nam Method: ICP User: JYH Comment:				LINES(v526)	ype: QC) Mode: tom ID3:	CONC (Corr. Factor:	1.00000(
Elem	Ag3280	Al3082	As1890	B_2496	Ba4554	Be3131	Ca4226	
Units	ppm	ppm	ppm	ppm	ppm	ppm	ppm	
Avg	. 41476	10.470	. 42171	. 51236	1.0720	. 05275	10.616	
Stddev	.00104	.010	.00198	.00199	.0036	.00012	.094	
%RSD	.25113	.09998	.46996	.38775	.33485	.22211	.88838	
#1	.41575	10.473	.42375	.51412	1.0760	.05282	10.722	
#2	.41486	10.459	.41980	.51020	1.0690	.05262	10.585	
#3	.41367	10.480	.42159	.51276	1.0709	.05282	10.541	
Check ? Value Range	Chk Pass	Chk Pass	Chk Pass					
Elem	Cd2288	Co2286	Cr2677	Cu2247	Fe2611	K_7664	Li6707	
Units	ppm	ppm	ppm	ppm	ppm	ppm	ppm	
Avg	. 05245	. 21121	. 52602	. 52558	4.2239	53.863	1.0597	
Stddev	.00016	.00026	.00032	.00062	.0262	.210	.0074	
%RSD	.31324	.12100	.06128	.11840	.61987	.38983	.70215	
#1	.05239	.21139	.52572	.52628	4.2537	53.978	1.0672	
#2	.05264	.21133	.52636	.52509	4.2044	53.620	1.0594	
#3	.05233	.21092	.52599	.52537	4.2136	53.990	1.0524	
Check ? Value Range	Chk Pass	Chk Pass	Chk Pass					
Elem	Mg2790	Mn2576	Mo2020	Na5895	Ni2316	P_2149	Pb2203	
Units	ppm	ppm	ppm	ppm	ppm	ppm	ppm	
Avg	10.482	. 53090	1.0478	53.386	. 52302	10.297	. 51838	
Stddev	.051	.00435	.0007	.213	.00157	.013	.00196	
%RSD	.48729	.82009	.06821	.39813	.29990	.13094	.37789	
#1	10.439	.53180	1.0483	53.608	.52274	10.281	.51986	
#2	10.539	.52616	1.0481	53.185	.52472	10.307	.51616	
#3	10.470	.53473	1.0470	53.366	.52162	10.302	.51911	
Check ? Value Range	Chk Pass	Chk Pass	Chk Pass					

Method: ICP	Sample Name: CCV Acquired: 10/23/2015 15:54:59 Type: QC Method: ICP-THERMO3_6010_200.7WATER_3YLINES(v526) Mode: CONC Corr. Factor: 1.000000 User: JYH Custom ID1: Custom ID2: Custom ID3:							
Comment:			0 4010111 10 21	Out				
Elem Units Avg Stddev %RSD	Sb2068 ppm 1.2548 .0049 .39179	Se1960 ppm . 42364 .00470 1.1090	Si2124 ppm 5.2213 .0037 .07173	Sn1899 ppm 1.0578 .0016 .14769	Sr4077 ppm 1.0712 .0030 .28051	Ti3372 ppm 1.0777 .0014 .13285	TI1908 ppm . 52321 .00323 .61643	
#1 #2 #3	1.2498 1.2596 1.2549	.42700 .42566 .41827	5.2254 5.2180 5.2206	1.0587 1.0560 1.0588	1.0744 1.0684 1.0709	1.0791 1.0775 1.0763	.52273 .52026 .52665	
Check ? Value Range	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	
Elem Units Avg Stddev %RSD	V_2924 ppm 1.0571 .0006 .05372	Zn2062 ppm 1.0357 .0023 .22068	Zr3391 ppm F . 70168 .07543 10.749					
#1 #2 #3	1.0570 1.0566 1.0577	1.0380 1.0356 1.0334	.76342 .61761 .72402					
Check ? Value Range	Chk Pass	Chk Pass	Chk Fail 1.0000 -10.000%					
Int. Std. Units Avg Stddev %RSD	Y_2243 Cts/S 10783. 13. .12140	Y_3600 Cts/S 91676. 259. .28285	Y_3774 Cts/S 3963.7 27.3 .68862					
#1 #2 #3	10768. 10793. 10787.	91494. 91973. 91561.	3932.6 3984.0 3974.4					

Sample Nam Method: ICP User: JYH Comment:		_		LINES(v526)	ype: Blank) Mode: tom ID3:	CONC (Corr. Factor:	1.00000(
Elem	Ag3280	Al3082	As1890	B_2496	Ba4554	Be3131	Ca4226	
Units	ppm	ppm	ppm	ppm	ppm	ppm	ppm	
Avg	. 00045	.00800	00170	. 00355	. 00127	.00006	00453	
Stddev	.00079	.00272	.00093	.00213	.00051	.00005	.00724	
%RSD	174.97	33.971	54.511	59.950	40.208	84.424	160.02	
#1	.00006	.00744	00269	.00278	.00178	.00005	00973	
#2	.00137	.00560	00085	.00192	.00076	.00011	00759	
#3	00007	.01094	00157	.00596	.00126	.00001	.00375	
Check ? High Limit Low Limit	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	
Elem	Cd2288	Co2286	Cr2677	Cu2247	Fe2611	K_7664	Li6707	
Units	ppm	ppm	ppm	ppm	ppm	ppm	ppm	
Avg	. 00024	.00016	. 00046	. 00024	00675	. 14620	. 00333	
Stddev	.00010	.00027	.00095	.00048	.01471	.10887	.00289	
%RSD	41.047	170.66	208.89	198.18	217.88	74.463	86.783	
#1	.00030	.00048	.00116	00031	02210	.02109	00001	
#2	.00013	00001	00063	.00058	00537	.19814	.00491	
#3	.00030	.00001	.00084	.00045	.00722	.21938	.00508	
Check ? High Limit Low Limit	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	
Elem	Mg2790	Mn2576	Mo2020	Na5895	Ni2316	P_2149	Pb2203	
Units	ppm	ppm	ppm	ppm	ppm	ppm	ppm	
Avg	04660	00064	. 00140	. 03898	.00062	. 00293	00448	
Stddev	.09268	.00139	.00050	.01800	.00023	.00768	.00180	
%RSD	198.89	217.86	35.519	46.191	38.041	262.02	40.085	
#1	08859	.00054	.00125	.04388	.00082	00578	00561	
#2	11084	00217	.00195	.05402	.00068	.00586	00241	
#3	.05965	00029	.00099	.01903	.00036	.00871	00543	
Check ? High Limit Low Limit	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	

Sample Nam Method: ICP User: JYH Comment:	ne: CCB / -THERMO3_ Custom I	6010_200.7	/23/2015 15: WATER_3YI Custom ID2:	LINES(v526)	ype: Blank) Mode: tom ID3:	CONC (Corr. Factor:	1.00000(
Elem Units Avg Stddev %RSD	Sb2068 ppm . 00155 .00217 139.84	Se1960 ppm .00264 .00485 183.77	Si2124 ppm .00525 .00140 26.595	Sn1899 ppm . 00003 .00099 3086.1	Sr4077 ppm . 00047 .00015 31.678	Ti3372 ppm 00353 .00240 67.958	TI1908 ppm 00236 .00107 45.488	
#1 #2 #3	.00009 .00053 .00405	.00529 .00559 00296	.00503 .00674 .00397	00101 .00095 .00016	.00045 .00033 .00063	00582 00104 00372	00124 00337 00246	
Check ? High Limit Low Limit	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	
Elem Units Avg Stddev %RSD	V_2924 ppm 00067 .00130 193.63	Zn2062 ppm .00018 .00013 73.260	Zr3391 ppm F .07873 .22210 282.10					
#1 #2 #3	00155 00128 .00082	.00024 .00003 .00026	.00007 .32946 09333					
Check ? High Limit Low Limit	Chk Pass	Chk Pass	Chk Fail .04000 04000					
Int. Std. Units Avg Stddev %RSD	Y_2243 Cts/S 10963. 10. .09349	Y_3600 Cts/S 94374. 26. .02743	Y_3774 Cts/S 3962.7 26.2 .66190					
#1 #2 #3	10951. 10968. 10970.	94399. 94374. 94347.	3947.6 3993.0 3947.4					

Sample Nar	Sample Name: L1510074928 Acquired: 10/23/2015 16:02:50 Type: Unk								
Method: ICF	P-THERMO3	3_6010_200	.7WATER_	3YLINES(v	526) Mo	de: CONC	Corr. Fa	Corr. Factor: 1.00000(
User: JYH	Custom	ID1:	Custom IE)2: (Custom ID3	•			
Comment:									
Elem	Ag3280	Al3082	As1890	B 2496	Ba4554	Be3131	Ca4226	Cd2288	
Units	ppm	ppm	ppm	_ ppm	ppm	ppm	ppm	ppm	
Avg	00167	.02183	.00050	.03022	.07711	.00004	94.279	.00017	
Stddev	.00042	.00120	.00403	.00452	.00102	.00005	.344	.00016	
%RSD	25.167	5.4938	813.74	14.960	1.3205	113.92	.36440	94.937	
#1	00149	.02049	.00368	.03362	.07827	.00001	93.891	00001	
#2	00137	.02282	00404	.02509	.07640	.00010	94.401	.00029	
#3	00215	.02217	.00184	.03195	.07665	.00001	94.544	.00022	
Check?	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	
High Limit	Clik i doo	Olik i dos	Clik i dos	Clik i dos	Clik i doo	Clik i doo	Clik i dos	Clik i dos	
Low Limit									
Elem	Co2286	Cr2677	Cu2247	Fe2611	K_7664	Li6707	Mg2790	Mn2576	
Units	ppm . 00058	ppm . 00199	ppm . 00164	ppm . 01670	ppm 2.0631	ppm . 01303	ppm 26.755	ppm . 00916	
Avg Stddev	.00038	.00133	.00104	.01851	.0197	.00116	.094	.00910	
%RSD	63.037	16.015	58.655	110.85	.95438	8.8684	.35211	23.400	
#1	.00062	.00228	.00253	00418	2.0690	.01177	26.835	.01017	
#2	.00019	.00165	.00176	.02319	2.0792	.01404	26.651	.00670	
#3	.00092	.00204	.00062	.03108	2.0412	.01327	26.778	.01062	
Check?	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	
High Limit									
Low Limit									
Elem	Mo2020	Na5895	Ni2316	P_2149	Pb2203	Sb2068	Se1960	Si2124	
Units	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	
Avg	.02627	15.717	.00398	.01461	- 00337	.00306	.00434	6.8368	
Stddev	.00057	.056	.00101	.00697	.00239	.00151	.00379	.0215	
%RSD	2.1851	.35558	25.477	47.730	70.829	49.332	87.293	.31495	
#1	.02576	15.683	.00372	.00872	00105	.00327	.00620	6.8611	
#2	.02689	15.686	.00512	.01280	00325	.00327	00020	6.8294	
#3	.02616	15.781	.00312	.02231	00582	.00146	.00684	6.8200	
	01.1.=	01.1.=	01.1.=	01.1.=	01.1.5	01.1.=	01.1.=	01.1.5	
Check? High Limit	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	
Low Limit									

Sample Nan			•	/23/2015 16		Type: Unk		
Method: ICF			_	•	,	de: CONC	Corr. Fa	ctor: 1.00000(
User: JYH	Custom	ID1:	Custom ID)2: (Custom ID3	•		
Comment:								
Elem	Sn1899	Sr4077	Ti3372	TI1908	V_2924	Zn2062	Zr3391	
Units	ppm							
Avg	.00001	.15132	01675	00426	00045	.00413	.15460	
Stddev %RSD	.00030 3124.9	.00038 .25442	.00095 5.6464	.00171 40.228	.00024 53.683	.00016 3.8008	.08815 57.017	
/0N3D	3124.9	.23442	3.0404	40.226	33.063	3.8008	37.017	
#1	00010	.15140	01721	00283	00041	.00427	.16894	
#2	.00035	.15090	01738	00616	00024	.00417	.06016	
#3	00022	.15166	01566	00379	00072	.00396	.23471	
Check ? High Limit Low Limit	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	
Int. Std.	Y 2243	Y_3600	Y_3774					
Units	_Cts/S	_Cts/S	Cts/S					
Avg	10387.	88976.	3848.2					
Stddev	28.	186.	4.3					
%RSD	.27111	.20889	.11107					
#1	10354.	88824.	3850.2					
#2	10406.	88922.	3843.2					
#3	10400.	89183.	3851.0					

Sample Name: Method: ICP-T User: JYH Comment:		10_200.7W <i>A</i>	Acquired: 10/23/2015 16:06:53 0_200.7WATER_3YLINES(v526) Custom ID2: Custon			C Corr. F	Factor: 1.00000(
Elem	Ag3280	Al3082	As1890	B_2496	Ba4554	Be3131	Ca4226
Units	ppm	ppm	ppm	ppm	ppm	ppm	ppm
Avg	00244	. 05611	.00062	.06818	. 01658	00000	F 392.82
Stddev	.00093	.00993	.00197	.00143	.00113	.00004	1.94
%RSD	38.146	17.703	321.04	2.0917	6.8062	816.43	.49436
#1	00324	.06622	.00122	.06963	.01655	.00003	391.57
#2	00142	.04636	00159	.06678	.01546	00004	391.83
#3	00265	.05577	.00222	.06812	.01772	00001	395.05
Check ? High Limit Low Limit	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Fail 270.00 10000
Elem	Cd2288	Co2286	Cr2677	Cu2247	Fe2611	K_7664	Li6707
Units	ppm	ppm	ppm	ppm	ppm	ppm	ppm
Avg	. 00076	.00322	. 00224	. 00440	11.661	10.665	. 10112
Stddev	.00037	.00028	.00103	.00039	.150	.216	.00192
%RSD	48.511	8.6846	45.826	8.8923	1.2845	2.0268	1.8942
#1	.00090	.00348	.00120	.00437	11.597	10.485	.09928
#2	.00034	.00292	.00227	.00403	11.554	10.605	.10098
#3	.00104	.00327	.00326	.00481	11.832	10.905	.10311
Check ? High Limit Low Limit	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass
Elem	Mg2790	Mn2576	Mo2020	Na5895	Ni2316	P_2149	Pb2203
Units	ppm	ppm	ppm	ppm	ppm	ppm	ppm
Avg	271.88	. 31492	. 01535	F 1468.7	. 60537	. 03487	F00737
Stddev	2.95	.00442	.00047	14.4	.00488	.00494	.00056
%RSD	1.0837	1.4037	3.0616	.97772	.80661	14.167	7.6309
#1	269.43	.31436	.01567	1479.9	.60778	.03510	00750
#2	271.07	.31081	.01481	1452.5	.60858	.03969	00676
#3	275.15	.31960	.01556	1473.8	.59975	.02982	00786
Check ? High Limit Low Limit	Chk Pass	Chk Pass	Chk Pass	Chk Fail 270.00 50000	Chk Pass	Chk Pass	Chk Fail 225.00 00500

Sample Name Method: ICP-T User: JYH Comment:)10_200.7W <i>A</i>	ed: 10/23/20 ATER_3YLIN stom ID2:		Type: Unl Mode: CON ID3:		Factor: 1.00000(
Elem Units Avg Stddev %RSD	Sb2068 ppm . 00631 .00106 16.800	Se1960 ppm .00082 .00134 164.37	Si2124 ppm 10.396 .038 .36232	Sn1899 ppm 00063 .00031 50.305	Sr4077 ppm . 80805 .00600 .74288	Ti3372 ppm F06277 .00166 2.6452	TI1908 ppm 00276 .00233 84.431
#1 #2 #3	.00713 .00511 .00670	.00150 .00168 00073	10.417 10.418 10.352	00098 00039 00050	.80354 .80575 .81487	06369 06377 06085	00008 00389 00430
Check ? High Limit Low Limit	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Fail 36.000 03000	Chk Pass
Elem Units Avg Stddev %RSD	V_2924 ppm . 01999 .00056 2.8069	Zn2062 ppm .00371 .00008 2.0319	Zr3391 ppm 17.378 .080 .46085				
#1 #2 #3	.02060 .01949 .01988	.00366 .00367 .00380	17.294 17.388 17.453				
Check ? High Limit Low Limit	Chk Pass	Chk Pass	Chk Pass				
Int. Std. Units Avg Stddev %RSD	Y_2243 Cts/S 8786.7 47.0 .53462	Y_3600 Cts/S 73332. 144. .19583	Y_3774 Cts/S 3679.5 27.4 .74506				
#1 #2 #3	8746.0 8776.0 8838.1	73192. 73324. 73479.	3701.9 3687.6 3648.9				

Sample Name: L1510074930 Acquired: 10/23/2015 16:11:03 Type: Unk									
Method: ICP-THERMO3_6010_200.7WATER_3YLINES(v526) Mode: CONC Corr. Factor: 1.000000									
User: JYH	Custom	ID1:	Custom ID)2: (Custom ID3	•			
Comment:									
Elem	Ag3280	Al3082	As1890	B_2496	Ba4554	Be3131	Ca4226	Cd2288	
Units	ppm 00141	ppm . 30644	ppm 00163	ppm . 06923	ppm . 18023	ppm . 00001	ppm 127.75	ppm . 00028	
Avg Stddev	.00141	.00597	.00409	.00309	.00089	.00001	.27	.00028	
%RSD	71.138	1.9467	251.36	4.4698	.49171	760.22	.20960	56.199	
#1	00255	.30599	.00295	.07183	.18043	00004	127.99	.00023	
#2 #3	00069 00098	.31262 .30071	00494 00289	.07005 .06580	.17926 .18099	.00007 00001	127.80 127.46	.00045 .00015	
#3	00096	.30071	00209	.00560	.10099	00001	127.40	.00015	
Check?	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	
High Limit									
Low Limit									
Elem	Co2286	Cr2677	Cu2247	Fe2611	K_7664	Li6707	Mg2790	Mn2576	
Units	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	
Avg	.00102	.00444	.00364	.80622	4.6145	.02084	31.488	.06005	
Stddev	.00017	.00082	.00117	.02534	.0826	.00296	.070	.00010	
%RSD	16.640	18.550	32.095	3.1426	1.7907	14.227	.22142	.16363	
#1	.00084	.00354	.00481	.80662	4.5548	.02382	31.535	.05995	
#2	.00104	.00514	.00365	.78069	4.5799	.01789	31.521	.06014	
#3	.00117	.00465	.00247	.83135	4.7088	.02080	31.408	.06005	
Observation O	Ohli Dasa	Ohli Dasa	Ohli Dasa	Ohli Daaa	Ohli Daaa	Ohli Dasa	Ohli Daaa	Ohla Dana	
Check ? High Limit	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	
Low Limit									
Elem	Mo2020	Na5895	Ni2316	P_2149	Pb2203	Sb2068	Se1960	Si2124	
Units	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	
Avg Stddev	. 01705 .00027	20.122 .082	. 00782 .00086	. 01803 .00475	00031 .00419	. <mark>00025</mark> .00707	. 00250 .01096	9.0340 .0235	
%RSD	1.5850	.40647	10.955	26.344	1336.5	2809.1	438.74	.26015	
#1	.01731	20.200	.00802	.01656	00224	.00051	.01049	9.0376	
#2	.01706	20.130	.00688	.02335	00319	00694	01000	9.0555	
#3	.01677	20.037	.00856	.01419	.00450	.00719	.00701	9.0089	
Check? High Limit Low Limit	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	

Sample Nan			•	/23/2015 16		Type: Unk	0	-t 1 00000(
Method: ICP User: JYH	Custom		./vvATER Custom ID	•	Custom ID3	de: CONC	Corr. Fa	ctor: 1.00000(
Comment:								
Elem Units Avg Stddev %RSD	Sn1899 ppm 00001 .00056 5667.4	Sr4077 ppm . 20930 .00029 .13853	Ti3372 ppm 01667 .00151 9.0869	TI1908 ppm 00203 .00123 60.567	V_2924 ppm .00176 .00053 30.279	Zn2062 ppm .00791 .00016 2.0163	Zr3391 ppm . 31234 .03045 9.7479	
#1 #2 #3	.00037 .00026 00066	.20897 .20943 .20951	01508 01682 01810	00215 00319 00074	.00165 .00129 .00234	.00775 .00791 .00807	.34714 .29929 .29059	
Check ? High Limit Low Limit	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	
Int. Std. Units Avg Stddev %RSD	Y_2243 Cts/S 10405 . 8. .07573	Y_3600 Cts/S 89137 . 424. .47531	Y_3774 Cts/S 3862.3 5.5 .14334					
#1 #2 #3	10410. 10409. 10396.	88656. 89298. 89456.	3856.7 3867.8 3862.5					

Sample Name: L1510074931 Acquired: 10/23/2015 16:15:04 Type: Unk Method: ICP-THERMO3_6010_200.7WATER_3YLINES(v526) Mode: CONC Corr. Factor: 1.000000								
User: JYH Comment:	Custom	וטו:	Custom IE	J2: (Custom ID3	:		
Elem	Ag3280	Al3082	As1890	B_2496	Ba4554	Be3131	Ca4226	Cd2288
Units	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm
Avg	.00088	.02269	00159	.06784	.16469	.00003	126.27	.00038
Stddev	.00137	.00858	.00200	.00414	.00074	.00005	.26	.00012
%RSD	156.19	37.832	126.00	6.1007	.45082	177.30	.20516	32.059
#1	.00148	.02699	00008	.06366	.16390	.00008	126.45	.00030
#2	.00184	.02827	00386	.07194	.16537	00000	126.39	.00053
#3	00069	.01281	00083	.06791	.16480	.00000	125.98	.00033
Check ? High Limit Low Limit	Chk Pass Chk Pass	Chk Pass	Chk Pass					
	0.0000	0.0077	0.0047	E : 0044	I/ 7004	1:0707	M. 0700	M 0570
Elem	Co2286	Cr2677	Cu2247	Fe2611	K_7664	Li6707	Mg2790	Mn2576
Units Avg	ppm . 00061	ppm . 00173	ppm . 00204	ppm . 00161	ppm 4.3728	ppm . 01677	ppm 30.394	ppm . 01495
Stddev	.00022	.00173	.00204	.03472	.0424	.00149	.220	.00098
%RSD	36.973	14.197	98.527	2162.7	.96988	8.8868	.72533	6.5576
#1	.00077	.00201	.00302	02856	4.3238	.01631	30.562	.01487
#1 #2	.00077	.00201	00027	.03956	4.3236	.01844	30.475	.01487
#2 #3	.00033	.00154	.00338	00618	4.3984	.01557	30.144	.01402
Check ? High Limit Low Limit	Chk Pass Chk Pass	Chk Pass	Chk Pass					
Elem	Mo2020	Na5895	Ni2316	P_2149	Pb2203	Sb2068	Se1960	Si2124
Units	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm
Avg	.01830	20.206	.00588	.01154	00110	00009	.00206	8.6453
Stddev	.00013	.041	.00059	.00522	.00111	.00149	.00696	.0217
%RSD	.72111	.20410	10.062	45.284	100.64	1676.2	337.87	.25139
#1	.01836	20.253	.00655	.01733	00168	00163	.00142	8.6672
#2	.01838	20.188	.00566	.01010	.00018	.00002	.00932	8.6448
#3	.01814	20.176	.00542	.00718	00181	.00134	00456	8.6237
Check ? High Limit Low Limit	Chk Pass Chk Pass	Chk Pass	Chk Pass					

Sample Nar	ne: L151007	'4931 A	cquired: 10/	23/2015 16	:15:04	Type: Unk		
Method: ICF	P-THERMO3	3_6010_200	.7WATER_	3YLINES(v	526) Mc	de: CONC	Corr. Fa	ctor: 1.00000(
User: JYH	Custom	ID1:	Custom ID)2: (Custom ID3	:		
Comment:								
Elem	Sn1899	Sr4077	Ti3372	TI1908	V_2924	Zn2062	Zr3391	
Units	ppm 00034	ppm . 20982	ppm 02245	ppm 00140	ppm 00051	ppm . 00365	ppm . 09441	
Avg Stddev	.00005	.00146	.00556	.00140	.00051	.00303	.06060	
%RSD	15.457	.69492	24.774	132.77	110.12	6.3197	64.184	
	2222	04440	20070	00040		00044	45000	
#1 #2	00036 00028	.21113 .21009	02873 01812	.00043	00093 00071	.00341	.15020 .10310	
#2 #3	00028	.20825	02051	00329	.00071	.00368	.02994	
•			.0200.				.0200	
Check ? High Limit Low Limit	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	
Int. Std.	Y_2243	Y_3600	Y_3774					
Units	Cts/S	Cts/S	Cts/S					
Avg	10376.	89038.	3891.4					
Stddev %RSD	24. .23298	241. .27024	7.0 .18116					
701102	.20200	.27021	.10110					
#1	10359.	88760.	3883.4					
#2 #3	10365. 10403.	89179. 89175.	3893.9 3896.8					
#3	10403.	03173.	5090.0					

Sample Name Method: ICP-T User: JYH Comment:)10_200.7W <i>A</i>	ed: 10/23/20 ATER_3YLIN stom ID2:		Type: Unk Mode: CONC ID3:		Corr. Factor: 1.00000(
Elem	Ag3280	Al3082	As1890	B_2496	Ba4554	Be3131	Ca4226	
Units	ppm	ppm	ppm	ppm	ppm	ppm	ppm	
Avg	00062	. 04402	00511	. 07227	. 01819	.00002	257.31	
Stddev	.00145	.00269	.00314	.00305	.00058	.00004	.22	
%RSD	233.65	6.1134	61.352	4.2179	3.1756	170.83	.08539	
#1	.00021	.04150	00149	.07554	.01762	.00001	257.12	
#2	.00022	.04370	00692	.07174	.01816	00001	257.27	
#3	00230	.04685	00693	.06952	.01878	.00007	257.55	
Check ? High Limit Low Limit	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	
Elem	Cd2288	Co2286	Cr2677	Cu2247	Fe2611	K_7664	Li6707	
Units	ppm	ppm	ppm	ppm	ppm	ppm	ppm	
Avg	.00047	.00536	.00215	.00294	2.9432	5.0335	.04371	
Stddev	.00031	.00031	.00052	.00078	.0279	.0283	.00087	
%RSD	66.662	5.7669	24.183	26.414	.94644	.56192	1.9900	
#1	.00039	.00572	.00234	.00283	2.9221	5.0308	.04276	
#2	.00020	.00519	.00254	.00222	2.9748	5.0631	.04447	
#3 Check ? High Limit Low Limit	.00081	.00518	.00156	.00376	2.9328	5.0067	.04391	
	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	
Elem	Mg2790	Mn2576	Mo2020	Na5895	Ni2316	P_2149	Pb2203	
Units	ppm	ppm	ppm	ppm	ppm	ppm	ppm	
Avg	78.407	1.0639	. 00573	F 549.52	.01086	. 02185	00385	
Stddev	.214	.0061	.00019	4.41	.00036	.01125	.00213	
%RSD	.27331	.57087	3.3676	.80234	3.2858	51.471	55.409	
#1	78.481	1.0572	.00567	549.14	.01124	.02482	00615	
#2	78.166	1.0689	.00558	554.11	.01053	.03132	00345	
#3	78.575	1.0657	.00595	545.32	.01080	.00942	00194	
Check ? High Limit Low Limit	Chk Pass	Chk Pass	Chk Pass	Chk Fail 270.00 50000	Chk Pass	Chk Pass	Chk Pass	

Sample Name Method: ICP-1 User: JYH Comment:)10_200.7W <i>A</i>	red: 10/23/20 ATER_3YLIN stom ID2:		Type: Unl Mode: CON ID3:		Factor: 1.00000(
Elem Units Avg Stddev %RSD	Sb2068 ppm . 00148 .00264 178.16	Se1960 ppm . 00682 .00993 145.62	Si2124 ppm 15.494 .047 .30568	Sn1899 ppm 00095 .00108 114.04	Sr4077 ppm . 29998 .00061 .20464	Ti3372 ppm F03845 .00222 5.7795	TI1908 ppm 00051 .00100 194.57
#1 #2 #3	.00417 .00139 00111	00458 .01145 .01358	15.531 15.509 15.441	00219 00019 00047	.29956 .30068 .29969	03679 03758 04097	00167 .00006 .00006
Check ? High Limit Low Limit	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Fail 36.000 03000	Chk Pass
Elem Units Avg Stddev %RSD	V_2924 ppm 00063 .00046 73.172	Zn2062 ppm . 00544 .00019 3.5439	Zr3391 ppm . 27550 .09316 33.816				
#1 #2 #3	00010 00089 00091	.00561 .00548 .00523	.26429 .37377 .18845				
Check ? High Limit Low Limit	Chk Pass	Chk Pass	Chk Pass				
Int. Std. Units Avg Stddev %RSD	Y_2243 Cts/S 9 725.7 19.4 .19902	Y_3600 Cts/S 81967 . 190. .23127	Y_3774 Cts/S 3808.4 4.7 .12347				
#1 #2 #3	9746.9 9709.1 9721.0	81783. 81955. 82162.	3804.5 3807.1 3813.6				

Sample Name: L1510074933 Acquired: 10/23/2015 16:23:18 Type: Unk Method: ICP-THERMO3_6010_200.7WATER_3YLINES(v526) Mode: CONC Corr. Factor: 1.00 User: JYH Custom ID1: Custom ID2: Custom ID3: Comment:							actor: 1.000000
Elem	Ag3280	Al3082	As1890	B_2496	Ba4554	Be3131	Ca4226
Units	ppm	ppm	ppm	ppm	ppm	ppm	ppm
Avg	00119	. 15117	00439	. 19982	. 04354	.00000	F 361.85
Stddev	.00036	.00398	.00323	.00116	.00089	.00002	1.56
%RSD	30.371	2.6296	73.411	.58145	2.0381	719.38	.43063
#1	00150	.14801	00770	.19885	.04251	00002	360.52
#2	00079	.14986	00422	.19951	.04402	.00003	363.56
#3	00127	.15563	00126	.20111	.04407	00000	361.46
Check ? High Limit Low Limit	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Fail 270.00 10000
Elem	Cd2288	Co2286	Cr2677	Cu2247	Fe2611	K_7664	Li6707
Units	ppm	ppm	ppm	ppm	ppm	ppm	ppm
Avg	. 00184	.01201	. 00238	. 00642	.21398	5.1921	. 07389
Stddev	.00029	.00057	.00118	.00224	.02575	.0234	.00362
%RSD	15.596	4.7653	49.624	34.948	12.035	.44997	4.8956
#1	.00161	.01168	.00128	.00385	.18432	5.1737	.07705
#2	.00216	.01267	.00224	.00798	.22702	5.1842	.07468
#3	.00174	.01167	.00363	.00743	.23060	5.2184	.06995
Check ? High Limit Low Limit	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass
Elem	Mg2790	Mn2576	Mo2020	Na5895	Ni2316	P_2149	Pb2203
Units	ppm	ppm	ppm	ppm	ppm	ppm	ppm
Avg	100.98	1.6194	. 01804	F 483.47	. 03113	. 03640	00055
Stddev	.50	.0082	.00061	5.71	.00169	.00562	.00247
%RSD	.49562	.50732	3.4015	1.1803	5.4379	15.428	452.73
#1	100.51	1.6099	.01828	477.84	.03279	.04150	00329
#2	101.50	1.6242	.01850	489.25	.02941	.03733	.00151
#3	100.92	1.6240	.01734	483.31	.03120	.03038	.00014
Check ? High Limit Low Limit	Chk Pass	Chk Pass	Chk Pass	Chk Fail 270.00 50000	Chk Pass	Chk Pass	Chk Pass

Sample Name: L1510074933 Acquired: 10/23/2015 1 Method: ICP-THERMO3_6010_200.7WATER_3YLINES(v User: JYH Custom ID1: Custom ID2: Comment:					Type: Unk Mode: CON ID3:		Factor: 1.00000(
Elem Units Avg Stddev %RSD	Sb2068 ppm . 00684 .00378 55.197	Se1960 ppm 00179 .00434 242.34	Si2124 ppm 29.573 .101 .34124	Sn1899 ppm 00056 .00052 92.219	Sr4077 ppm . 34008 .00103 .30432	Ti3372 ppm F05314 .00208 3.9086	TI1908 ppm . 00132 .00179 136.14
#1 #2 #3	.00468 .01120 .00464	00667 00033 .00163	29.623 29.640 29.457	00112 00009 00049	.33907 .34114 .34003	05554 05186 05202	00006 .00067 .00335
Check ? High Limit Low Limit	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Fail 36.000 03000	Chk Pass
Elem Units Avg Stddev %RSD	V_2924 ppm 00130 .00152 116.76	Zn2062 ppm .01392 .00025 1.7687	Zr3391 ppm . 32688 .10014 30.635				
#1 #2 #3	00243 .00043 00191	.01404 .01409 .01364	.43297 .23400 .31367				
Check ? High Limit Low Limit	Chk Pass	Chk Pass	Chk Pass				
Int. Std. Units Avg Stddev %RSD	Y_2243 Cts/S 9614.6 18.6 .19372	Y_3600 Cts/S 81495. 310. .38075	Y_3774 Cts/S 3780.1 17.4 .45909				
#1 #2 #3	9624.4 9626.2 9593.1	81736. 81603. 81145.	3800.1 3770.2 3770.0				

Sample Name Method: ICP-T User: JYH Comment:)10_200.7W <i>A</i>	ed: 10/23/20 ATER_3YLIN stom ID2:		Mode: CONC	Type: Unk Mode: CONC Corr. F D3:	
Elem	Ag3280	Al3082	As1890	B_2496	Ba4554	Be3131	Ca4226
Units	ppm	ppm	ppm	ppm	ppm	ppm	ppm
Avg	00176	. 0754 1	.00169	.10498	.01813	.00001	F 322.94
Stddev	.00078	.00294	.00413	.00170	.00036	.00002	1.71
%RSD	44.349	3.9036	245.34	1.6212	1.9847	217.12	.52989
#1	00136	.07446	.00185	.10679	.01775	00001	321.95
#2	00126	.07871	00253	.10341	.01847	.00004	324.91
#3	00265	.07306	.00574	.10475	.01817	.00001	321.95
Check ? High Limit Low Limit	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Fail 270.00 10000
Elem	Cd2288	Co2286	Cr2677	Cu2247	Fe2611	K_7664	Li6707
Units	ppm	ppm	ppm	ppm	ppm	ppm	ppm
Avg	. 00126	. 05730	. 00203	.00880	24.937	14.289	. 07931
Stddev	.00022	.00015	.00100	.00128	.057	.094	.00241
%RSD	17.365	.25992	49.237	14.498	.22950	.65752	3.0418
#1	.00111	.05713	.00303	.01026	24.904	14.199	.08046
#2	.00151	.05741	.00104	.00825	25.003	14.280	.07654
#3	.00116	.05735	.00201	.00789	24.903	14.387	.08093
Check ? High Limit Low Limit	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass
Elem	Mg2790	Mn2576	Mo2020	Na5895	Ni2316	P_2149	Pb2203
Units	ppm	ppm	ppm	ppm	ppm	ppm	ppm
Avg	102.97	1.2573	. 00756	F 1455.1	. 90984	. 01759	. 05989
Stddev	.58	.0058	.00016	24.2	.00305	.00591	.00172
%RSD	.56721	.46426	2.1037	1.6607	.33474	33.634	2.8676
#1	102.55	1.2534	.00739	1481.3	.91283	.02191	.05791
#2	103.64	1.2640	.00759	1450.2	.90996	.01084	.06093
#3	102.72	1.2545	.00771	1433.8	.90674	.02001	.06082
Check ? High Limit Low Limit	Chk Pass	Chk Pass	Chk Pass	Chk Fail 270.00 50000	Chk Pass	Chk Pass	Chk Pass

Sample Name Method: ICP-1 User: JYH Comment:)10_200.7W <i>A</i>	ed: 10/23/20 ATER_3YLIN stom ID2:		Type: Unk Mode: CON ID3:		Factor: 1.00000(
Elem Units Avg Stddev %RSD	Sb2068 ppm . 00417 .00345 82.705	Se1960 ppm .00377 .00821 217.61	Si2124 ppm 14.451 .026 .17993	Sn1899 ppm 00046 .00053 115.92	Sr4077 ppm . 88233 .00452 .51219	Ti3372 ppm F03952 .00076 1.9182	TI1908 ppm 00124 .00161 129.35
#1 #2 #3	.00046 .00727 .00478	.00913 00568 .00787	14.467 14.465 14.421	00088 .00014 00063	.87944 .88754 .88001	04036 03929 03889	.00002 00070 00306
Check ? High Limit Low Limit	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Fail 36.000 03000	Chk Pass
Elem Units Avg Stddev %RSD	V_2924 ppm . 02533 .00030 1.1760	Zn2062 ppm . 12693 .00010 .07559	Zr3391 ppm 6.6679 .0328 .49134				
#1 #2 #3	.02500 .02543 .02557	.12702 .12683 .12696	6.6301 6.6872 6.6865				
Check ? High Limit Low Limit	Chk Pass	Chk Pass	Chk Pass				
Int. Std. Units Avg Stddev %RSD	Y_2243 Cts/S 8959.3 14.9 .16600	Y_3600 Cts/S 74314 . 79. .10667	Y_3774 Cts/S 3683.9 14.4 .39022				
#1 #2 #3	8966.9 8968.9 8942.2	74263. 74405. 74273.	3697.8 3669.1 3684.7				

Sample Name: Method: ICP-T User: JYH Comment:)10_200.7W <i>A</i>	ed: 10/23/20 ⁻ ATER_3YLINI stom ID2:		Type: Unk Mode: CONC ID3:	C Corr. F	factor: 1.00000(
Elem	Ag3280	Al3082	As1890	B_2496	Ba4554	Be3131	Ca4226
Units	ppm	ppm	ppm	ppm	ppm	ppm	ppm
Avg	00153	.03357	. 00521	. 11646	. 01264	00004	F 318.93
Stddev	.00143	.01121	.00383	.00101	.00050	.00005	.96
%RSD	93.570	33.401	73.460	.86811	3.9184	119.09	.30248
#1	00138	.02684	.00090	.11674	.01233	.00002	319.33
#2	00303	.02735	.00822	.11730	.01321	00007	319.63
#3	00018	.04651	.00650	.11534	.01237	00008	317.83
Check ? High Limit Low Limit	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Fail 270.00 10000
Elem	Cd2288	Co2286	Cr2677	Cu2247	Fe2611	K_7664	Li6707
Units	ppm	ppm	ppm	ppm	ppm	ppm	ppm
Avg	. 00118	. 05714	. 00286	. 00539	5.1930	14.626	. 08509
Stddev	.00006	.00094	.00046	.00173	.0312	.019	.00301
%RSD	4.9927	1.6431	16.105	32.066	.60066	.12808	3.5316
#1	.00116	.05611	.00316	.00620	5.1570	14.609	.08212
#2	.00113	.05736	.00233	.00656	5.2120	14.646	.08813
#3	.00124	.05795	.00308	.00340	5.2100	14.621	.08502
Check ? High Limit Low Limit	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass
Elem	Mg2790	Mn2576	Mo2020	Na5895	Ni2316	P_2149	Pb2203
Units	ppm	ppm	ppm	ppm	ppm	ppm	ppm
Avg	104.35	1.2257	. 00752	F 1459.3	. 91507	. 00677	00124
Stddev	.38	.0032	.00041	6.7	.00299	.00255	.00269
%RSD	.36373	.26204	5.4665	.45679	.32685	37.719	216.88
#1	104.55	1.2288	.00738	1464.8	.91435	.00932	.00178
#2	104.58	1.2258	.00799	1461.2	.91835	.00678	00338
#3	103.91	1.2224	.00720	1451.9	.91250	.00421	00211
Check ? High Limit Low Limit	Chk Pass	Chk Pass	Chk Pass	Chk Fail 270.00 50000	Chk Pass	Chk Pass	Chk Pass

Sample Name Method: ICP-T User: JYH Comment:)10_200.7W <i>A</i>	ed: 10/23/20 ATER_3YLIN stom ID2:		Type: Unk Mode: CONC Corr. Factor: 1.0000 i ID3:			
Elem Units Avg Stddev %RSD	Sb2068 ppm . 00613 .00395 64.381	Se1960 ppm 00094 .00464 492.80	Si2124 ppm 13.869 .037 .26515	Sn1899 ppm 00177 .00114 64.578	Sr4077 ppm . 87890 .00148 .16876	Ti3372 ppm F05165 .00261 5.0606	TI1908 ppm 00178 .00261 146.26	
#1 #2 #3	.00529 .01042 .00267	00120 .00382 00545	13.890 13.891 13.827	00117 00105 00309	.88053 .87856 .87762	05444 04926 05124	.00112 00394 00253	
Check ? High Limit Low Limit	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Fail 36.000 03000	Chk Pass	
Elem Units Avg Stddev %RSD	V_2924 ppm . 01197 .00056 4.7142	Zn2062 ppm .12307 .00046 .37442	Zr3391 ppm 6.5512 .2179 3.3262					
#1 #2 #3	.01132 .01233 .01225	.12338 .12328 .12254	6.7639 6.5614 6.3285					
Check ? High Limit Low Limit	Chk Pass	Chk Pass	Chk Pass					
Int. Std. Units Avg Stddev %RSD	Y_2243 Cts/S 8876.3 15.9 .17953	Y_3600 Cts/S 73818 . 197. .26682	Y_3774 Cts/S 3673.5 18.0 .48874					
#1 #2 #3	8887.4 8883.5 8858.0	73866. 73601. 73986.	3683.7 3652.8 3684.1					

•									
Elem	Ag3280	Al3082	As1890	B_2496	Ba4554	Be3131	Ca4226		
Units	ppm	ppm	ppm	ppm	ppm	ppm	ppm		
Avg	00156	. 04029	.02180	. 06085	.06898	.00003	184.34		
Stddev	.00095	.00530	.00244	.00108	.00056	.00005	1.00		
%RSD	60.671	13.167	11.205	1.7807	.80578	185.35	.54263		
#1	00238	.04600	.02224	.06080	.06841	00003	183.55		
#2	00052	.03551	.02399	.06196	.06902	.00006	185.46		
#3	00178	.03935	.01917	.05980	.06952	.00005	184.00		
Check ? High Limit Low Limit	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass		
Elem	Cd2288	Co2286	Cr2677	Cu2247	Fe2611	K_7664	Li6707		
Units	ppm	ppm	ppm	ppm	ppm	ppm	ppm		
Avg	. 00018	.00350	. 00148	. 00215	8.4419	7.1466	. 05673		
Stddev	.00011	.00013	.00125	.00041	.0505	.0183	.00398		
%RSD	60.833	3.6362	84.627	19.153	.59789	.25611	7.0185		
#1	.00026	.00364	.00143	.00178	8.3870	7.1617	.05407		
#2	.00022	.00345	.00025	.00259	8.4862	7.1262	.06131		
#3	.00006	.00340	.00276	.00206	8.4525	7.1519	.05481		
Check ? High Limit Low Limit	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass		
Elem	Mg2790	Mn2576	Mo2020	Na5895	Ni2316	P_2149	Pb2203		
Units	ppm	ppm	ppm	ppm	ppm	ppm	ppm		
Avg	93.849	. 51229	. 04023	F 1106.4	.14179	. 02944	00322		
Stddev	.888	.00258	.00057	18.1	.00085	.00884	.00640		
%RSD	.94573	.50323	1.4106	1.6336	.60129	30.035	198.84		
#1	93.041	.50937	.04054	1093.0	.14188	.03725	00506		
#2	94.799	.51329	.04058	1127.0	.14259	.03122	.00390		
#3	93.708	.51422	.03958	1099.3	.14089	.01984	00850		
Check ? High Limit Low Limit	Chk Pass	Chk Pass	Chk Pass	Chk Fail 270.00 50000	Chk Pass	Chk Pass	Chk Pass		

•									
Elem Units Avg Stddev %RSD	Sb2068 ppm . 00421 .00154 36.501	Se1960 ppm . 00250 .00394 157.87	Si2124 ppm 12.165 .046 .37656	Sn1899 ppm 00094 .00119 126.73	Sr4077 ppm . 73871 .00350 .47411	Ti3372 ppm 02666 .00330 12.364	TI1908 ppm 00134 .00177 132.92		
#1 #2 #3	.00595 .00362 .00305	00205 .00496 .00459	12.190 12.192 12.112	00147 .00042 00177	.73534 .74233 .73846	02818 02287 02892	00111 .00032 00321		
Check ? High Limit Low Limit	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass		
Elem Units Avg Stddev %RSD	V_2924 ppm . 00062 .00060 96.019	Zn2062 ppm .00348 .00012 3.3163	Zr3391 ppm 13.634 .011 .08221						
#1 #2 #3	.00065 .00120 .00001	.00354 .00335 .00356	13.645 13.633 13.623						
Check ? High Limit Low Limit	Chk Pass	Chk Pass	Chk Pass						
Int. Std. Units Avg Stddev %RSD	Y_2243 Cts/S 9239.3 11.2 .12140	Y_3600 Cts/S 77298 . 159. .20567	Y_3774 Cts/S 3712.5 18.6 .50074						
#1 #2 #3	9233.7 9232.0 9252.3	77115. 77375. 77403.	3726.2 3691.4 3720.0						

Sample Name Method: ICP-T User: JYH Comment:		10_200.7WA	10_200.7WATER_3YLINES(v526)			C Corr. F	Factor: 1.00000(
Elem	Ag3280	Al3082	As1890	B_2496	Ba4554	Be3131	Ca4226
Units	ppm	ppm	ppm	ppm	ppm	ppm	ppm
Avg	00010	. 06486	. 00298	. 07352	. 01859	00003	261.09
Stddev	.00086	.00635	.00443	.00252	.00003	.00011	.72
%RSD	863.06	9.7867	148.61	3.4223	.16494	355.21	.27762
#1	.00062	.07034	00213	.07081	.01856	.00004	260.64
#2	.00013	.06635	.00569	.07398	.01860	.00002	261.93
#3	00105	.05790	.00538	.07578	.01861	00015	260.71
Check ? High Limit Low Limit	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass
Elem	Cd2288	Co2286	Cr2677	Cu2247	Fe2611	K_7664	Li6707
Units	ppm	ppm	ppm	ppm	ppm	ppm	ppm
Avg	. 00052	.00540	. 00199	. 00332	3.0696	5.3033	. 04227
Stddev	.00016	.00040	.00116	.00173	.0589	.0690	.00190
%RSD	30.808	7.3123	58.081	51.915	1.9174	1.3007	4.4870
#1	.00033	.00531	.00067	.00515	3.0078	5.2915	.04270
#2	.00060	.00583	.00248	.00172	3.1250	5.3773	.04391
#3	.00062	.00506	.00282	.00310	3.0760	5.2409	.04019
Check ? High Limit Low Limit	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass
Elem	Mg2790	Mn2576	Mo2020	Na5895	Ni2316	P_2149	Pb2203
Units	ppm	ppm	ppm	ppm	ppm	ppm	ppm
Avg	80.275	1.0812	. 00571	F 555.69	. 01282	. 03281	F00620
Stddev	.336	.0051	.00028	6.69	.00020	.00827	.00213
%RSD	.41910	.46927	4.9623	1.2036	1.5857	25.189	34.343
#1	80.397	1.0819	.00604	559.35	.01264	.03529	00493
#2	80.534	1.0859	.00557	559.75	.01280	.03956	00501
#3	79.895	1.0758	.00552	547.97	.01304	.02359	00866
Check ? High Limit Low Limit	Chk Pass	Chk Pass	Chk Pass	Chk Fail 270.00 50000	Chk Pass	Chk Pass	Chk Fail 225.00 00500

Sample Name Method: ICP-1 User: JYH Comment:)10_200.7W	Acquired: 10/23/2015 16:39:52 0_200.7WATER_3YLINES(v526) Custom ID2: Custom I			Type: Unk Mode: CONC Corr. Factor: 1.000000 ID3:			
Elem Units Avg Stddev %RSD	Sb2068 ppm . 00249 .00585 234.39	Se1960 ppm . 00144 .01098 761.81	Si2124 ppm 15.872 .045 .28660	Sn1899 ppm . 00009 .00079 836.80	Sr4077 ppm . 30521 .00060 .19789	Ti3372 ppm F03865 .00622 16.083	TI1908 ppm 00320 .00035 10.795		
#1 #2 #3	.00170 .00869 00292	.01279 00913 .00067	15.896 15.901 15.820	00051 .00099 00020	.30456 .30533 .30575	03889 03232 04475	00294 00359 00306		
Check ? High Limit Low Limit	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Fail 36.000 03000	Chk Pass		
Elem Units Avg Stddev %RSD	V_2924 ppm 00097 .00035 35.868	Zn2062 ppm . 00597 .00014 2.2948	Zr3391 ppm . 40582 .14805 36.480						
#1 #2 #3	00088 00135 00067	.00587 .00613 .00593	.25031 .54505 .42211						
Check ? High Limit Low Limit	Chk Pass	Chk Pass	Chk Pass						
Int. Std. Units Avg Stddev %RSD	Y_2243 Cts/S 9551.1 14.0 .14653	Y_3600 Cts/S 8065 9. 226. .27981	Y_3774 Cts/S 3 739 .7 23.3 .62420						
#1 #2 #3	9557.7 9535.0 9560.6	80769. 80400. 80809.	3735.4 3718.7 3764.8						

•								
Elem	Ag3280	Al3082	As1890	B_2496	Ba4554	Be3131	Ca4226	
Units	ppm							
Avg	. 41501	10.505	. 42330	. 51791	1.0735	. 05284	10.636	
Stddev	.00253	.017	.00040	.00119	.0038	.00011	.040	
%RSD	.61044	.16303	.09558	.22966	.35275	.20456	.37669	
#1	.41373	10.524	.42375	.51785	1.0774	.05295	10.666	
#2	.41793	10.491	.42297	.51912	1.0699	.05285	10.591	
#3	.41337	10.499	.42319	.51675	1.0731	.05273	10.651	
Check ? Value Range	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	
Elem	Cd2288	Co2286	Cr2677	Cu2247	Fe2611	K_7664	Li6707	
Units	ppm							
Avg	. 05241	. 21162	. 52358	. 52794	4.2010	53.903	1.0616	
Stddev	.00037	.00055	.00133	.00086	.0239	.076	.0011	
%RSD	.70551	.26093	.25432	.16311	.56808	.14185	.09968	
#1	.05284	.21225	.52512	.52893	4.2284	53.983	1.0628	
#2	.05221	.21131	.52275	.52739	4.1903	53.894	1.0608	
#3	.05218	.21129	.52288	.52750	4.1844	53.831	1.0612	
Check ? Value Range	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	
Elem	Mg2790	Mn2576	Mo2020	Na5895	Ni2316	P_2149	Pb2203	
Units	ppm							
Avg	10.470	. 53319	1.0491	52.611	. 52415	10.303	. 51861	
Stddev	.071	.00168	.0035	.223	.00116	.004	.00599	
%RSD	.68185	.31466	.33274	.42299	.22077	.03994	1.1546	
#1	10.553	.53349	1.0523	52.865	.52477	10.307	.52467	
#2	10.430	.53470	1.0495	52.450	.52282	10.299	.51270	
#3	10.428	.53139	1.0454	52.519	.52487	10.304	.51847	
Check ? Value Range	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	

Sample Name: CCV Acquired: 10/23/2015 16:44:01 Type: QC Method: ICP-THERMO3_6010_200.7WATER_3YLINES(v526) Mode: CONC Corr. Factor: 1.000000 User: JYH Custom ID1: Custom ID2: Custom ID3: Comment:								
Elem Units Avg Stddev %RSD	Sb2068 ppm 1.2477 .0030 .24164	Se1960 ppm . 42345 .00404 .95410	Si2124 ppm 5.2114 .0042 .07957	Sn1899 ppm 1.0589 .0030 .28117	Sr4077 ppm 1.0720 .0016 .15289	Ti3372 ppm 1.0727 .0044 .40667	TI1908 ppm . 52009 .00342 .65770	
#1 #2 #3	1.2498 1.2442 1.2491	.42468 .42673 .41893	5.2093 5.2162 5.2087	1.0583 1.0622 1.0563	1.0738 1.0707 1.0715	1.0705 1.0778 1.0699	.52355 .51999 .51672	
Check ? Value Range	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	
Elem Units Avg Stddev %RSD	V_2924 ppm 1.0621 .0055 .51518	Zn2062 ppm 1.0344 .0008 .07762	Zr3391 ppm F .81662 .17518 21.452					
#1 #2 #3	1.0683 1.0596 1.0582	1.0351 1.0347 1.0335	.91149 .92390 .61446					
Check ? Value Range	Chk Pass	Chk Pass	Chk Fail 1.0000 -10.000%					
Int. Std. Units Avg Stddev %RSD	Y_2243 Cts/S 10701. 18. .17226	Y_3600 Cts/S 91236. 284. .31181	Y_3774 Cts/S 3933.5 12.2 .31007					
#1 #2 #3	10701. 10683. 10720.	90909. 91418. 91383.	3923.4 3947.1 3930.0					

•									
Elem	Ag3280	Al3082	As1890	B_2496	Ba4554	Be3131	Ca4226		
Units	ppm	ppm	ppm	ppm	ppm	ppm	ppm		
Avg	. 00052	. 00698	00008	. 00145	. 00104	.00004	00349		
Stddev	.00094	.00293	.00060	.00132	.00024	.00007	.00524		
%RSD	180.66	41.982	789.44	90.943	22.782	175.08	150.01		
#1	00040	.00469	00012	.00197	.00077	.00001	00052		
#2	.00148	.00597	.00054	00005	.00118	00001	00041		
#3	.00049	.01028	00065	.00242	.00118	.00013	00954		
Check ? High Limit Low Limit	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass		
Elem	Cd2288	Co2286	Cr2677	Cu2247	Fe2611	K_7664	Li6707		
Units	ppm	ppm	ppm	ppm	ppm	ppm	ppm		
Avg	00038	.00062	00011	.00024	.00521	. 28431	. 00674		
Stddev	.00020	.00024	.00072	.00048	.01071	.06509	.00295		
%RSD	51.983	37.860	630.26	201.71	205.82	22.894	43.783		
#1	00059	.00048	00057	.00067	00704	.31998	.00700		
#2	00020	.00089	00050	.00033	.01287	.20919	.00367		
#3	00036	.00049	.00072	00028	.00978	.32378	.00955		
Check ? High Limit Low Limit	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass		
Elem	Mg2790	Mn2576	Mo2020	Na5895	Ni2316	P_2149	Pb2203		
Units	ppm	ppm	ppm	ppm	ppm	ppm	ppm		
Avg	. 10058	00084	.00117	. 21276	.00062	00097	00197		
Stddev	.01955	.00156	.00038	.00924	.00041	.00362	.00170		
%RSD	19.441	185.18	32.201	4.3429	65.827	372.59	86.170		
#1	.08791	00070	.00143	.20642	.00075	00480	00061		
#2	.09074	.00064	.00074	.22336	.00016	.00240	00388		
#3	.12310	00246	.00134	.20851	.00095	00052	00143		
Check ? High Limit Low Limit	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass		

Sample Nam Method: ICP User: JYH Comment:	ne: CCB / -THERMO3_ Custom I	6010_200.7	/23/2015 16: WATER_3YI Custom ID2:	LINES(v526)	ype: Blank) Mode: tom ID3:	CONC (Corr. Factor:	1.00000(
Elem Units Avg Stddev %RSD	Sb2068 ppm . 00386 .00391 101.31	Se1960 ppm .00134 .00451 336.16	Si2124 ppm .00363 .00114 31.440	Sn1899 ppm . 00020 .00046 232.37	Sr4077 ppm . 00014 .00027 192.16	Ti3372 ppm 00207 .00228 109.84	TI1908 ppm 00134 .00229 171.30	
#1 #2 #3	.00541 00059 .00676	.00495 .00279 00371	.00422 .00231 .00435	.00022 .00064 00027	00002 00001 .00046	.00004 00178 00449	.00048 00058 00391	
Check ? High Limit Low Limit	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	
Elem Units Avg Stddev %RSD	V_2924 ppm 00012 .00066 528.83	Zn2062 ppm .00004 .00013 301.91	Zr3391 ppm F .14290 .18773 131.37					
#1 #2 #3	.00060 00030 00067	.00017 00009 .00005	.33767 03689 .12793					
Check ? High Limit Low Limit	Chk Pass	Chk Pass	Chk Fail .04000 04000					
Int. Std. Units Avg Stddev %RSD	Y_2243 Cts/S 10967. 5. .04789	Y_3600 Cts/S 94371. 283. .30021	Y_3774 Cts/S 3956.0 21.4 .54209					
#1 #2 #3	10974. 10965. 10964.	94526. 94544. 94044.	3931.3 3968.0 3968.8					

Sample Name: PBW 99 Acquired: 10/23/2015 16:51:53 Type: Unk Method: ICP-THERMO3_6010_200.7WATER_3YLINES(v526) Mode: CONC Corr. Factor: 1.000000 Custom ID1: Custom ID2: Custom ID3: Comment: WG544044-02 Elem Ag3280 AI3082 As1890 B 2496 Ba4554 Be3131 Ca4226 Cd2288 Units ppm ppm ppm ppm ppm ppm ppm ppm Avg .00026 .01078 -.00346 .00182 .00200 .00006 .01583 -.00001 Stddev .00018 .00429 .00469 .00190 .00053 .00006 .02454 .00020 %RSD 70.224 39.823 135.26 104.39 26.395 99.702 155.07 1338.0 #1 .00008 .00931 -.00162 .00051 .00204 .00013 -.00509 -.00000 #2 .00024 .00741 .00002 .00095 .00250 -.00000 .00973 -.00022 #3 .00045 .01561 -.00879 .00399 .00145 .00007 .04285 .00018 Check? Chk Pass Chk Pass Chk Pass Chk Pass Chk Pass Chk Pass Chk Pass **Chk Pass** High Limit Low Limit Elem Co2286 Cr2677 Cu2247 Fe2611 K 7664 Li6707 Mg2790 Mn2576 Units ppm ppm ppm ppm ppm ppm ppm ppm .23117 .00055 .00064 .00022 .00126 .00406 .05764 -.00015 Avg .07962 .00385 .06884 Stddev .00026 .00043 .00105 .02530 .00248 %RSD 48.110 67.354 482.76 2003.7 34.441 94.812 119.43 1700.3 #1 .00025 .00035 -.00069 -.02055 .31668 .00794 .04268 .00191 #2 .00076 .00114 .00136 .02900 .21766 .00399 -.00250 -.00290 #3 .00063 .00044 -.00002 -.00467 .15917 .00024 .13272 .00055 Check? Chk Pass Chk Pass Chk Pass Chk Pass Chk Pass Chk Pass Chk Pass High Limit Low Limit Se1960 Mo2020 Na5895 Ni2316 P_2149 Pb2203 Sb2068 Si2124 Elem Units ppm ppm ppm ppm ppm ppm ppm ppm Avg .00040 .10219 .00057 .00186 -.00374 .00208 .00018 .00806 Stddev .00014 .00922 .00169 .00848 .00357 .00233 .00209 .00402 %RSD 35.716 9.0189 293.73 455.21 95.552 111.71 1169.6 49.841

.00259

-.00107

-.00098

.01251

.00469

.00699

Approved: October 26, 2015

-.00557

-.00601

.00038

.00410

.00260

-.00046

.00388

-.00744

.00914

Chk Pass Chk Pass Chk Pass Chk Pass Chk Pass Chk Pass Chk Pass Chk Pass

#1

#2

#3

Check? High Limit Low Limit .00053

.00024

.00044

.09791

.11276

.09588

.00136

-.00136

.00172

Sample Name: PBW 99 Acquired: 10/23/2015 16:51:53 Type: Unk Method: ICP-THERMO3_6010_200.7WATER_3YLINES(v526) Mode: CONC Corr. Factor: 1.000000 Custom ID2: Custom ID1: Custom ID3: Comment: WG544044-02 Elem Sn1899 Sr4077 Ti3372 TI1908 V_2924 Zn2062 Zr3391 Units ppm ppm ppm ppm ppm ppm ppm Avg .00046 .00033 .00066 -.00172 .00006 .00116 -.03866 Stddev .00084 .00012 .00398 .00246 .00054 .00013 .10102 %RSD 183.18 37.515 603.29 143.25 901.44 10.999 261.29 #1 .00092 .00044 .00327 -.00456 .00043 .00131 -.12942 #2 -.00051 .00033 -.00392 -.00012 -.00056 .00107 .07018 .00096 .00020 #3 .00263 -.00049 .00031 .00110 -.05676 Check? Chk Pass Chk Pass Chk Pass Chk Pass Chk Pass Chk Pass **High Limit** Low Limit Int. Std. Y 2243 Y 3600 Y 3774 Units Cts/S Cts/S Cts/S Avg 10563. 91154. 3802.4 Stddev 28. 79. 15.2 %RSD .26087 .08677 .40013

Approved: October 26, 2015

J'ye 1hu

#1

#2

#3

10534.

10566.

10589.

91077.

91235.

91152.

3787.8

3818.2

3801.3

Sample Name: LCSW 99 Acquired: 10/23/2015 16:55:59 Type: Unk

Method: ICP-THERMO3_6010_200.7WATER_3YLINES(v526) Mode: CONC Corr. Factor: 1.000000

User: JYH Custom ID1: Custom ID2: Custom ID3:

Comment: WG544044-03

Elem	Ag3280	Al3082	As1890	B_2496	Ba4554	Be3131	Ca4226	Cd2288
Units	ppm							
Avg	.22009	5.5862	.21776	1.0783	.58052	.02766	5.7216	.02767
Stddev	.00120	.0065	.00310	.0037	.00276	.00002	.0431	.00014
%RSD	.54626	.11631	1.4234	.34498	.47530	.07583	.75302	.51965
#1	.21999	5.5861	.21427	1.0826	.58302	.02764	5.7524	.02750
#2	.22133	5.5928	.21883	1.0760	.57756	.02767	5.7399	.02777
#3	.21894	5.5798	.22018	1.0763	.58100	.02768	5.6723	.02773

Check? Chk Pass Chk P

Elem	Co2286	Cr2677	Cu2247	Fe2611	K_7664	Li6707	Mg2790	Mn2576
Units	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm
Avg	. 11323	. 28106	. 28340	2.2855	29.109	. 57487	5.5879	. 28819
Stddev	.00034	.00094	.00156	.0296	.197	.00150	.1161	.00318
%RSD	.30216	.33290	.55109	1.2938	.67780	.26060	2.0779	1.1045
#1	.11357	.28123	.28466	2.2901	29.335	.57656	5.6888	.29032
#2	.11325	.28189	.28389	2.3126	28.971	.57372	5.6139	.28453
#3	.11288	.28004	.28165	2.2540	29.021	.57432	5.4610	.28973

Check? Chk Pass Chk P

Elem	Mo2020	Na5895	Ni2316	P_2149	Pb2203	Sb2068	Se1960	Si2124
Units	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm
Avg	. 56435	28.759	.28305	5.4104	. 28373	. 66534	.21878	2.7957
Stddev	.00150	.137	.00093	.0108	.00127	.00416	.00224	.0062
%RSD	.26638	.47805	.32873	.19922	.44813	.62580	1.0223	.22317
#1	.56429	28.918	.28406	5.4199	.28489	.66053	.22081	2.7941
#2	.56589	28.685	.28287	5.4127	.28237	.66768	.21914	2.8026
#3	.56288	28.674	.28222	5.3987	.28393	.66780	.21638	2.7904

Check? Chk Pass Chk P

Approved: October 26, 2015

J'ye 1hi

Sample Name: LCSW 99 Acquired: 10/23/2015 16:55:59 Type: Unk

Method: ICP-THERMO3_6010_200.7WATER_3YLINES(v526) Mode: CONC Corr. Factor: 1.000000

Jser: JYH Custom ID1: Custom ID2: Custom ID3:

Comment: WG544044-03

Elem	Sn1899	Sr4077	Ti3372	TI1908	V_2924	Zn2062	Zr3391
Units	ppm						
Avg	. 56644	. 57407	. 58091	. 28295	. 56956	. 56539	. 55631
Stddev	.00104	.00358	.00494	.00216	.00265	.00137	.15632
%RSD	.18289	.62442	.85093	.76364	.46463	.24256	28.099
#1	.56554	.57817	.58656	.28046	.56670	.56578	.46698
#2	.56757	.57253	.57881	.28435	.57006	.56653	.46515
#3	.56621	.57152	.57737	.28403	.57192	.56387	.73682

Check? Chk Pass Chk P

Low Limit

Int. Std.	Y_2243	Y_3600	Y_3774
Units	Cts/S	Cts/S	Cts/S
Avg	10429.	89528 .	3848.8
Stddev	26.	181.	24.6
%RSD	.24674	.20240	.63791
#1	10403.	89575.	3821.0
#2	10431.	89328.	3867.6
#3	10454.	89681.	3857.8

Approved: October 26, 2015

J'ye lh

Sample Name: F BLANK Acquired: 10/23/2015 16:59:48 Type: Unk Method: ICP-THERMO3_6010_200.7WATER_3YLINES(v526) Mode: CONC Corr. Factor: 1.000000 Custom ID1: Custom ID2: Custom ID3: Comment: WG543982-01 Elem Ag3280 AI3082 As1890 B 2496 Ba4554 Be3131 Ca4226 Cd2288 Units ppm ppm ppm ppm ppm ppm ppm ppm Avg -.00181 .02178 -.00083 .00347 .00067 .00009 .01319 .00029 Stddev .00052 .00740 .00216 .00043 .00014 .00002 .02388 .00012 %RSD 28.608 33.965 258.92 12.308 21.486 17.800 181.01 42.283 #1 -.00170 .02159 -.00163 .00394 .00052 80000. .01543 .00042 #2 -.00237 .01448 .00161 .00335 .00069 .00009 .03588 .00017 #3 -.00136 .02927 -.00249 .00312 .00081 .00011 -.01173 .00029 Check? Chk Pass Chk Pass Chk Pass Chk Pass Chk Pass Chk Pass Chk Pass High Limit Low Limit Elem Co2286 Cr2677 Cu2247 Fe2611 K 7664 Li6707 Mg2790 Mn2576 Units ppm ppm ppm ppm ppm ppm ppm ppm .00126 -.00034 .00129 .00071 .22874 .00245 -.02180 -.00044 Avg .09610 .00113 Stddev .00040 .00087 .00112 .00511 .08132 .00143 %RSD 31.821 257.36 87.068 717.61 42.014 46.142 373.13 326.35 #1 .00147 -.00019 .00002 -.00209 .29676 .00154 -.11414 .00070 #2 .00152 -.00127 .00169 .00662 .27066 .00371 .00961 .00003 #3 .00080 .00045 .00215 -.00238 .11880 .00209 .03915 -.00204 Chk Pass Chk Pass Chk Pass Check? Chk Pass Chk Pass Chk Pass Chk Pass High Limit Low Limit Na5895 Mo2020 Ni2316 P_2149 Sb2068 Se1960 Si2124 Elem Pb2203 Units ppm ppm ppm ppm ppm ppm ppm ppm Avg .00087 175.86 .00084 .00228 -.00305 .00007 -.00372 .01157 Stddev .00042 .50 .00038 .00599 .00203 .00365 .00920 .00180 5127.9 247.66 15.542 %RSD 48.038 .28458 45.375 262.19 66.326 #1 -.00091 .00041 176.14 .00053 .00376 -.00392 -.00955 .01354 #2 .00097 176.15 .00073 -.00430 -.00494 .00091 -.00849 .01116 #3 .00123 175.28 .00739 -.00331 .00322 .00689 .01002 .00127 Chk Pass Chk Pass Chk Pass Check? Chk Pass Chk Pass Chk Pass **High Limit**

Approved: October 26, 2015

Low Limit

Sample Name: F BLANK Acquired: 10/23/2015 16:59:48 Type: Unk Method: ICP-THERMO3_6010_200.7WATER_3YLINES(v526) Mode: CONC Corr. Factor: 1.000000 Custom ID2: Custom ID1: Custom ID3: Comment: WG543982-01 Elem Sn1899 Sr4077 Ti3372 TI1908 V_2924 Zn2062 Zr3391 Units ppm ppm ppm ppm ppm ppm ppm Avg -.00043 .00054 -.00523 -.00216 -.00012 .00327 .05632 Stddev .00088 .00027 .00575 .00225 .00084 .00031 .21261 377.51 %RSD 202.78 51.098 109.95 104.10 719.24 9.5382 #1 -.00037 .00038 -.00616 -.00455 -.00017 .00352 -.16550 #2 -.00134 .00085 -.01047 -.00183 .00074 .00292 .25834 .00038 #3 .00041 .00093 -.00010 -.00093 .00336 .07612 Check? Chk Pass Chk Pass Chk Pass Chk Pass Chk Pass Chk Pass **High Limit** Low Limit Int. Std. Y 2243 Y 3600 Y 3774 Units Cts/S Cts/S Cts/S Avg 10366. 87900. 3859.9 Stddev 30. 221. 16.6 %RSD .29183 .25168 .42993 #1 10332. 87757. 3858.0 #2 10377. 87788. 3844.3 #3 10390. 88155. 3877.4

Sample Name: F BLAN Acquired: 10/23/2015 17:03:53 Type: Unk Method: ICP-THERMO3_6010_200.7WATER_3YLINES(v526) Mode: CONC Corr. Factor: 1.000000 Custom ID1: Custom ID2: Custom ID3: Comment: WG543982-02 Elem Ag3280 AI3082 As1890 B 2496 Ba4554 Be3131 Ca4226 Cd2288 Units ppm ppm ppm ppm ppm ppm ppm ppm Avg .00055 .01262 .00035 .00326 .00026 .00007 .01024 .00007 Stddev .00154 .00581 .00117 .00010 .00013 .00006 .00713 .00012 %RSD 279.33 46.072 336.02 3.1576 50.887 80.686 69.601 173.85 #1 -.00103 .01782 -.00087 .00337 .00039 .00006 .01801 .00021 #2 .00064 .01371 .00047 .00316 .00013 .00002 .00871 .00004 #3 .00204 .00634 .00145 .00326 .00024 .00013 .00401 -.00003 Check? Chk Pass Chk Pass Chk Pass Chk Pass Chk Pass Chk Pass **Chk Pass** High Limit Low Limit Elem Co2286 Cr2677 Cu2247 Fe2611 K 7664 Li6707 Mg2790 Mn2576 Units ppm ppm ppm ppm ppm ppm ppm ppm .00031 .00089 .00065 .00362 .14716 .00205 -.00059 -.00054 Avg .00619 Stddev .00020 .00039 .00202 .03373 .09580 .00766 .00147 %RSD 64.195 43.950 308.13 930.99 65.097 301.35 1299.7 270.72 #1 .00029 .00049 -.00024 .03877 .25778 .00911 .00691 -.00180 #2 .00051 .00090 -.00076 -.02848 .09276 -.00248 -.00841 .00107 #3 .00011 .00128 .00297 .00058 .09095 -.00046 -.00027 -.00090 Check? Chk Pass Chk Pass Chk Pass Chk Pass Chk Pass Chk Pass Chk Pass High Limit Low Limit Na5895 Se1960 Mo2020 Ni2316 P_2149 Pb2203 Sb2068 Si2124 Elem Units ppm ppm ppm ppm ppm ppm ppm ppm Avg .00039 .09454 -.00003 .01022 -.00083 .00168 .00445 .01616 Stddev .00043 .01723 .00100 .00170 .00398 .00384 .00148 .00393 %RSD 18.224 228.43 33.348 111.06 2969.3 16.593 482.72 24.342 #1 .10218 .01228 .00072 .00020 .01157 .00195 -.00269 .00377 #2 -.00010 .07481 .00083 .01078 -.00539 .00451 .00615 .01606 #3 .00055 .10663 -.00112 .00832 .00096 .00321 .00342 .02015 Chk Pass Chk Pass Chk Pass Chk Pass Chk Pass Chk Pass Chk Pass Chk Pass Check?

Approved: October 26, 2015

High Limit Low Limit Sample Name: F BLAN Acquired: 10/23/2015 17:03:53 Type: Unk Method: ICP-THERMO3_6010_200.7WATER_3YLINES(v526) Mode: CONC Corr. Factor: 1.000000 Custom ID2: Custom ID1: Custom ID3: Comment: WG543982-02 Elem Sn1899 Sr4077 Ti3372 TI1908 V_2924 Zn2062 Zr3391 Units ppm ppm ppm ppm ppm ppm ppm Avg .00035 .00014 -.00452 -.00327 -.00041 .00332 .03129 Stddev .00057 .00027 .00237 .00163 .00043 .00005 .15651 %RSD 165.30 185.59 52.450 49.807 103.60 1.4095 500.23 #1 .00067 .00030 -.00221 -.00485 -.00083 .00329 -.07524 #2 -.00031 .00029 -.00439 -.00160 .00003 .00330 .21097 -.00016 -.00694 -.04187 #3 .00068 -.00337 -.00044 .00338 Check? Chk Pass Chk Pass Chk Pass Chk Pass Chk Pass Chk Pass **High Limit** Low Limit Int. Std. Y 2243 Y 3600 Y 3774 Units Cts/S Cts/S Cts/S 10652. 92443. 3867.6 Avg Stddev 7. 149. 20.8 %RSD .06610 .16101 .53879 #1 10645. 92272. 3877.5 #2 10659. 92543. 3843.7 #3 10651. 92515. 3881.7

Sample Name: L1510122701 Acquired: 10/23/2015 17:07:59 Type: Unk

Method: ICP-THERMO3_6010_200.7WATER_3YLINES(v526) Mode: CONC Corr. Factor: 1.000000

User: JYH Custom ID1: Custom ID2: Custom ID3:

Comment: WG544044-01

Elem	Ag3280	Al3082	As1890	B_2496	Ba4554	Be3131	Ca4226
Units	ppm						
Avg	00057	. 04088	. 00640	. 02781	. 10957	.00003	182.30
Stddev	.00069	.00339	.00285	.00055	.00100	.00005	.23
%RSD	119.88	8.2926	44.538	1.9628	.91066	136.16	.12613
#1	00038	.03729	.00342	.02738	.10855	.00008	182.12
#2	00134	.04133	.00666	.02762	.10961	00002	182.22
#3	00000	.04402	.00910	.02842	.11054	.00004	182.56
Check ? High Limit Low Limit	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass
Elem	Cd2288	Co2286	Cr2677	Cu2247	Fe2611	K_7664	Li6707
Units	ppm						
Avg	. 01040	. 00067	. 00107	. 66401	. 00427	4.9096	. 01979
Stddev	.00004	.00024	.00053	.00202	.00178	.0831	.00214
%RSD	.41232	35.917	49.675	.30423	41.691	1.6921	10.814
#1	.01041	.00061	.00074	.66558	.00627	4.8200	.01738
#2	.01044	.00094	.00078	.66473	.00365	4.9841	.02148
#3	.01036	.00046	.00168	.66173	.00288	4.9246	.02049
Check ? High Limit Low Limit	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass
Elem	Mg2790	Mn2576	Mo2020	Na5895	Ni2316	P_2149	Pb2203
Units	ppm						
Avg	3.9410	. 14180	. 00099	2.1761	.00282	. 56217	. 00392
Stddev	.0969	.00085	.00062	.0325	.00118	.00776	.00135
%RSD	2.4581	.60086	62.544	1.4947	41.731	1.3800	34.516
#1	3.8423	.14172	.00069	2.1433	.00160	.56024	.00260
#2	3.9449	.14100	.00057	2.1766	.00396	.57070	.00530
#3	4.0359	.14269	.00170	2.2083	.00291	.55555	.00386
Check ? High Limit Low Limit	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass

Approved: October 26, 2015

J'ye 1hu

Sample Name: L1510122701 Acquired: 10/23/2015 17:07:59 Type: Unk Method: ICP-THERMO3_6010_200.7WATER_3YLINES(v526) Mode: CONC Corr. Factor: 1.000000 User: JYH Custom ID1: Custom ID2: Custom ID3: Comment: WG544044-01 Elem Sb2068 Se1960 Si2124 Sn1899 Sr4077 Ti3372 TI1908 Units ppm ppm ppm ppm ppm ppm ppm Avg .00119 .00705 .87242 -.00029 .65515 F-.03069 -.00228 Stddev .00756 .00339 .00447 .00040 .00119 .00149 .00369 %RSD 637.40 48.095 .51280 136.81 .18216 4.8471 161.66 #1 .00105 .00948 .87625 .00014 .65512 -.02912 -.00599 #2 .00881 .00849 .87351 -.00065 .65635 -.03207 -.00224 #3 -.00630 .00318 .86750 -.00037 .65397 -.03088 .00139 Check? **Chk Pass Chk Pass Chk Pass Chk Pass Chk Pass** Chk Fail **Chk Pass High Limit** 36.000 Low Limit -.03000 Elem V 2924 Zn2062 Zr3391 Units ppm ppm ppm .00070 .11976 .10420 Avg Stddev .00100 .11358 .00059 %RSD 143.50 .49611 109.01 #1 -.00039 .12044 .14298 #2 .11938 .00091 .19331 #3 .00157 .11945 -.02370 Check? **Chk Pass Chk Pass Chk Pass High Limit** Low Limit Int. Std. Y 2243 Y_3600 Y_3774 Units Cts/S Cts/S Cts/S Avg 10333. 88922. 3882.1 Stddev 7. 170. 4.2 %RSD .10899 .06867 .19071 #1 10327. 88842. 3878.0 #2 10331. 88888. 3881.9

Approved: October 26, 2015

#3

10341.

89117.

3886.4

Sample Name: L1510122701S Acquired: 10/23/2015 17:12:00 Type: Unk Method: ICP-THERMO3_6010_200.7WATER_3YLINES(v526) Mode: CONC Corr. Factor: 1.000000 Custom ID2: Custom ID3: User: JYH Custom ID1: Comment: WG544044-04 Elem Ag3280 Al3082 As1890 B 2496 Ba4554 Be3131 Ca4226 Cd2288 Units ppm ppm ppm ppm ppm ppm ppm ppm Avg .21908 5.5156 .22402 1.0888 .67218 .02729 186.01 .03802 Stddev .00080 .0357 .00331 .0026 .00114 .00013 .50 .00012 %RSD .36338 .64733 1.4778 .24041 .16925 .47198 .27146 .31914 #1 .21934 5.5568 .22386 1.0904 .67287 .02739 186.40 .03805 #2 .21972 5.4930 .22740 1.0902 .67279 .02715 186.19 .03812 #3 .21819 5.4971 .22079 1.0857 .67086 .02735 185.44 .03788 Check? Chk Pass Chk Pass Chk Pass Chk Pass Chk Pass Chk Pass Chk Pass High Limit Low Limit Elem Co2286 Cr2677 Cu2247 Fe2611 K 7664 Li6707 Mg2790 Mn2576 Units ppm ppm ppm ppm ppm ppm ppm ppm .10884 .27731 .93044 2.1955 33.291 .57919 9.3737 .41509 Avg .00225 Stddev .00063 .00158 .00167 .0263 .029 .00102 .0816 %RSD .58104 .56857 .17924 1.2001 .08742 .17610 .87097 .54212 #1 .10813 .27827 .93225 2.2024 33.324 .57935 9.2893 .41392 #2 .10936 .27549 .92897 2.1664 33.269 .58011 9.4523 .41366 #3 .10902 .27816 .93009 2.2177 33.281 .57810 9.3793 .41768 Check? Chk Pass Chk Pass Chk Pass Chk Pass Chk Pass Chk Pass Chk Pass High Limit Low Limit Si2124 Mo2020 P 2149 Elem Na5895 Ni2316 Pb2203 Sb2068 Se1960 Units ppm ppm ppm ppm ppm ppm ppm ppm Avg .55756 30.468 .27221 6.0492 .27787 .65709 .22271 3.6925

Chk Pass Chk Pass Chk Pass Chk Pass Chk Pass Chk Pass Chk Pass Chk Pass

.0021

.03440

6.0472

6.0514

6.0489

.00243

.87327

.28067

.27655

.27639

.00877

1.3340

.65551

.66654

.64922

.00574

2.5762

.21885

.21997

.22930

.0035

.09463

3.6904

3.6966

3.6907

Approved: October 26, 2015

ye lon

Stddev

%RSD

Check? High Limit Low Limit

#1

#2

#3

.00180

.32355

.55888

.55829

.55550

.074

.24283

30.553

30.434

30.418

.00150

.55185

.27386

.27185

.27092

Sample Name: L1510122701S Acquired: 10/23/2015 17:12:00 Type: Unk

Method: ICP-THERMO3_6010_200.7WATER_3YLINES(v526) Mode: CONC Corr. Factor: 1.000000

User: JYH Custom ID1: Custom ID2: Custom ID3:

Comment: WG544044-04

Elem	Sn1899	Sr4077	Ti3372	TI1908	V_2924	Zn2062	Zr3391
Units	ppm						
Avg	.55200	1.2111	.53520	.26762	.56328	.64911	.48504
Stddev	.00145	.0034	.01152	.00326	.00099	.00093	.10737
%RSD	.26331	.27868	2.1527	1.2175	.17544	.14277	22.135
#1	.55169	1.2146	.54018	.27106	.56395	.64990	.36243
#2	.55358	1.2108	.54340	.26458	.56214	.64934	.56224
#3	.55072	1.2079	.52203	.26720	.56374	.64809	.53046

Check? Chk Pass Chk P

Low Limit

Int. Std.	Y_2243	Y_3600	Y_3774
Units	Cts/S	Cts/S	Cts/S
Avg	10191.	87294 .	3843.0
Stddev	20.	214.	5.6
%RSD	.19523	.24555	.14659
#1	10170.	87048.	3836.9
#2	10194.	87438.	3848.0
#3	10210.	87397.	3844.1

Approved: October 26, 2015

J'ye lhu

Sample Name: L1510122701SD Acquired: 10/23/2015 17:15:47 Type: Unk Method: ICP-THERMO3_6010_200.7WATER_3YLINES(v526) Mode: CONC Corr. Factor: 1.000000 User: JYH Custom ID1: Custom ID2: Custom ID3: Comment: WG544044-05 Elem Ag3280 Al3082 As1890 B 2496 Ba4554 Be3131 Ca4226 Cd2288 Units ppm ppm ppm ppm ppm ppm ppm ppm Avg .21730 5.4404 .22307 1.0775 .66499 .02678 185.41 .03750 Stddev .00085 .0111 .00392 .0034 .00249 .00007 .30 .00055 %RSD .39289 .20472 1.7561 .31528 .37383 .27475 .16011 1.4690 #1 .21713 5.4410 .22635 1.0804 .66657 .02683 185.58 .03691 #2 .21654 5.4290 .21873 1.0738 .66628 .02669 185.59 .03801 #3 .21823 5.4512 .22413 1.0783 .66212 .02681 185.07 .03757 Check? Chk Pass Chk Pass Chk Pass Chk Pass Chk Pass Chk Pass Chk Pass **High Limit** Low Limit

Elem	Co2286	Cr2677	Cu2247	Fe2611	K_7664	Li6707	Mg2790	Mn2576
Units	ppm							
Avg	.10741	.27117	.93052	2.1597	32.899	.56952	9.0917	.40836
Stddev	.00047	.00011	.00255	.0292	.072	.00137	.1047	.00212
%RSD	.43625	.04058	.27429	1.3517	.21820	.23988	1.1517	.52000
#1	.10707	.27110	.93252	2.1774	32.895	.57106	9.0171	.40790
#2	.10723	.27113	.93139	2.1758	32.973	.56847	9.0466	.41068
#3	.10795	.27130	.92764	2.1260	32.830	.56901	9.2114	.40650

Check? Chk Pass Chk Pass Chk Pass Chk Pass Chk Pass Chk Pass Chk Pass **High Limit** Low Limit

Elem	Mo2020	Na5895	Ni2316	P_2149	Pb2203	Sb2068	Se1960	Si2124
Units	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm
Avg	. 55081	29.985	. 26895	5.9942	. 27542	. 65312	. 21847	3.6682
Stddev	.00086	.088	.00133	.0059	.00282	.00530	.01230	.0066
%RSD	.15645	.29415	.49548	.09759	1.0226	.81177	5.6283	.17985
#1	.55178	30.069	.26749	5.9992	.27317	.65761	.22027	3.6611
#2	.55051	29.993	.26929	5.9878	.27451	.64727	.20537	3.6741
#3	.55014	29.893	.27009	5.9956	.27858	.65449	.22977	3.6696

Check? Chk Pass Chk Pass Chk Pass Chk Pass Chk Pass Chk Pass Chk Pass Chk Pass **High Limit** Low Limit

Sample Name: L1510122701SD Acquired: 10/23/2015 17:15:47 Type: Unk

Method: ICP-THERMO3_6010_200.7WATER_3YLINES(v526) Mode: CONC Corr. Factor: 1.000000

User: JYH Custom ID1: Custom ID2: Custom ID3:

Comment: WG544044-05

Elem	Sn1899	Sr4077	Ti3372	TI1908	V_2924	Zn2062	Zr3391
Units	ppm						
Avg	.54169	1.2016	.53116	.26432	.55304	.64144	.55796
Stddev	.00084	.0016	.01215	.00431	.00073	.00017	.08275
%RSD	.15506	.13094	2.2876	1.6303	.13150	.02624	14.831
#1	.54107	1.2028	.54342	.26848	.55268	.64127	.51073
#2	.54135	1.2023	.51912	.26460	.55387	.64160	.65351
#3	.54265	1.1999	.53094	.25988	.55256	.64147	.50964

Check? Chk Pass Chk P

Low Limit

Int. Std.	Y_2243	Y_3600	Y_3774
Units	Cts/S	Cts/S	Cts/S
Avg	10232.	8798 1.	3873.6
Stddev	19.	173.	13.6
%RSD	.18518	.19700	.35059
#1	10254.	87877.	3867.8
#2	10227.	88181.	3863.8
#3	10217.	87885.	3889.1

Approved: October 26, 2015

J'ye lon

•									
Elem Units Avg Stddev %RSD	Ag3280 ppm 00088 .00072 82.638	Al3082 ppm . 54737 .00717 1.3108	As1890 ppm 00200 .00379 189.43	B_2496 ppm .13450 .00316 2.3483	Ba4554 ppm . 04368 .00050 1.1392	Be3131 ppm .00006 .00006 88.003	Ca4226 ppm 6.1596 .0317 .51511		
#1 #2 #3	00004 00134 00124	.55435 .54001 .54777	.00167 00178 00589	.13138 .13443 .13770	.04376 .04413 .04315	.00001 .00007 .00012	6.1910 6.1275 6.1605		
Check ? High Limit Low Limit	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass		
Elem Units Avg Stddev %RSD	Cd2288 ppm . 00014 .00029 211.23	Co2286 ppm .00186 .00009 4.5815	Cr2677 ppm 00001 .00130 16727. 00079	Cu2247 ppm .00168 .00035 21.151	Fe2611 ppm 00779 .01638 210.34 01163	K_7664 ppm 308.71 .58 .18755	Li6707 ppm . 01290 .00098 7.6308		
#2 #3 Check ? High Limit	00011 .00046 Chk Pass	.00178 .00185 Chk Pass	.00150 00073 Chk Pass	.00164 .00205 Chk Pass	02191 .01018 Chk Pass	308.54 308.23 Chk Pass	.01290 .01192 Chk Pass		
Elem Units Avg Stddev %RSD	Mg2790 ppm 19.518 .042 .21280	Mn2576 ppm . 01754 .00098 5.6130	Mo2020 ppm .00152 .00042 27.810	Na5895 ppm F 561.05 1.11 .19866	Ni2316 ppm 00038 .00078 203.72	P_2149 ppm . 61507 .00227 .36843	Pb2203 ppm 00303 .00285 93.991		
#1 #2 #3	19.486 19.504 19.565	.01660 .01746 .01857	.00116 .00198 .00141	559.77 561.65 561.74	00086 00080 .00052	.61346 .61408 .61766	00571 00333 00004		
Check ? High Limit Low Limit	Chk Pass	Chk Pass	Chk Pass	Chk Fail 270.00 50000	Chk Pass	Chk Pass	Chk Pass		

Sample Name: L1510110201 Acquired: 10/23/2015 17:19:36 Type: Unk Method: ICP-THERMO3_6010_200.7WATER_3YLINES(v526) Mode: CONC Corr. Factor: 1.000000 User: JYH Custom ID1: Custom ID2: Custom ID3: Comment:								
Elem Units Avg Stddev %RSD	Sb2068 ppm . 00299 .00155 51.960	Se1960 ppm .00742 .00837 112.83	Si2124 ppm 1.3136 .0072 .54919	Sn1899 ppm .00010 .00014 147.00	Sr4077 ppm . 11081 .00032 .28920	Ti3372 ppm 00260 .00485 186.26	TI1908 ppm 00337 .00162 47.947	
#1 #2 #3	.00135 .00319 .00444	.01412 .01010 00196	1.3218 1.3111 1.3080	.00001 .00026 .00002	.11109 .11046 .11087	.00299 00525 00555	00267 00522 00222	
Check ? High Limit Low Limit	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	
Elem Units Avg Stddev %RSD	V_2924 ppm . 00024 .00104 427.24	Zn2062 ppm .00341 .00015 4.3738	Zr3391 ppm .22899 .11153 48.704					
#1 #2 #3	00078 .00130 .00021	.00324 .00346 .00352	.22865 .34068 .11763					
Check ? High Limit Low Limit	Chk Pass	Chk Pass	Chk Pass					
Int. Std. Units Avg Stddev %RSD	Y_2243 Cts/S 9874.2 4.0 .04049	Y_3600 Cts/S 82562 . 197. .23860	Y_3774 Cts/S 3823.2 12.0 .31262					
#1 #2 #3	9872.0 9878.8 9871.8	82718. 82341. 82628.	3809.4 3829.8 3830.4					

Method: ICP-THERMO3_6010_200.7WATER_3YLINES(v526) Mode: CONC Corr. Factor: 1.000000

User: JYH Custom ID1: Custom ID2: Custom ID3:

Comment: WG544079-01

Elem	Ag3280	Al3082	As1890	B_2496	Ba4554	Be3131	Ca4226	
Units	ppm	ppm	ppm	ppm	ppm	ppm	ppm	
Avg	. 22378	5.9715	.22326	1.2200	. 60533	.02828	11.174	
Stddev	.00146	.0124	.00249	.0045	.00505	.00008	.033	
%RSD	.65282	.20781	1.1136	.37039	.83344	.28234	.29284	
#1	.22546	5.9808	.22561	1.2252	.60386	.02837	11.201	
#2	.22279	5.9763	.22066	1.2176	.61095	.02822	11.138	
#3	.22309	5.9574	.22350	1.2171	.60119	.02825	11.184	
Check ? High Limit Low Limit	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	
Elem	Cd2288	Co2286	Cr2677	Cu2247	Fe2611	K_7664	Li6707	
Units	ppm	ppm	ppm	ppm	ppm	ppm	ppm	
Avg	. 02766	.10984	. 27836	. 27161	2.2100	303.44	. 56883	
Stddev	.00003	.00059	.00139	.00272	.0237	1.19	.00240	
%RSD	.12427	.54007	.49831	1.0023	1.0732	.39157	.42141	
#1	.02764	.10999	.27683	.27302	2.2142	304.57	.56686	
#2	.02770	.11034	.27954	.27334	2.1845	303.54	.57150	
#3	.02764	.10918	.27870	.26847	2.2313	302.20	.56814	
Check ? High Limit Low Limit	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	
Elem	Mg2790	Mn2576	Mo2020	Na5895	Ni2316	P_2149	Pb2203	
Units	ppm	ppm	ppm	ppm	ppm	ppm	ppm	
Avg	23.020	. 29273	. 55815	F 532.82	. 26963	6.1545	. 26534	
Stddev	.104	.00356	.00159	5.05	.00163	.0256	.00301	
%RSD	.45170	1.2177	.28525	.94720	.60624	.41584	1.1327	
#1	22.999	.29579	.55931	529.86	.27146	6.1764	.26641	
#2	23.133	.29358	.55881	538.65	.26913	6.1607	.26767	
#3	22.929	.28881	.55634	529.95	.26831	6.1263	.26195	
Check ? High Limit Low Limit	Chk Pass	Chk Pass	Chk Pass	Chk Fail 270.00 50000	Chk Pass	Chk Pass	Chk Pass	

Approved: October 26, 2015

J'ye 1hu

Sample Name: L1510110201PS Acquired: 10/23/2015 17:23:46 Type: Unk Method: ICP-THERMO3_6010_200.7WATER_3YLINES(v526) Mode: CONC Corr. Factor: 1.000000 Custom ID1: User: JYH Custom ID2: Custom ID3: Comment: WG544079-01 Elem Sb2068 Se1960 Si2124 Sn1899 Sr4077 Ti3372 TI1908 Units ppm ppm ppm ppm ppm ppm ppm Avg .66684 .23412 4.2051 .54980 .65694 .56647 .25536 Stddev .00176 .00191 .0192 .00240 .00200 .00438 .00407 %RSD .26418 .81686 .45613 .43673 .30421 .77323 1.5929 #1 .66874 .23568 4.2093 .55162 .65798 .56457 .25106 #2 .66650 .23198 4.2219 .55071 .65820 .57148 .25914 #3 .66527 .23469 4.1842 .54708 .65463 .56337 .25588 Check? **Chk Pass** Chk Pass Chk Pass Chk Pass Chk Pass Chk Pass **Chk Pass High Limit** Low Limit Elem V 2924 Zn2062 Zr3391 Units ppm ppm ppm .57387 .54850 .42856 Avg Stddev .00218 .00126 .08392 %RSD .21952 .39750 19.582 #1 .57245 .55059 .51326 #2 .57486 .54867 .42699 #3 .57429 .54624 .34544 Check? Chk Pass **Chk Pass Chk Pass** High Limit Low Limit Int. Std. Y_2243 Y_3600 Y_3774 Units Cts/S Cts/S Cts/S Avg 9844.1 82413. 3822.1 Stddev 19.6 102. 6.7 %RSD .19883 .12347 .17631 #1 9821.6 82351. 3816.5 #2 9853.7 3820.3 82531. #3 9857.1 82358. 3829.6

Sample Name: L1510110201SDL Acquired: 10/23/2015 17:27:45 Type: Unk

Method: ICP-THERMO3_6010_200.7WATER_3YLINES(v526) Mode: CONC Corr. Factor: 1.000000

User: JYH Custom ID1: 5 Custom ID2: Custom ID3:

Comment: WG544079-02

Elem	Ag3280	Al3082	As1890	B_2496	Ba4554	Be3131	Ca4226	Cd2288
Units	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm
Avg	. 00104	.10389	00238	. 02844	.00774	.00005	1.0526	00006
Stddev	.00041	.00116	.00374	.00075	.00038	.00009	.0054	.00027
%RSD	39.315	1.1122	156.73	2.6478	4.9002	164.12	.50984	422.11
#1	.00151	.10377	00670	.02863	.00794	00005	1.0507	00014
#2	.00078	.10510	00030	.02908	.00799	.00009	1.0485	00028
#3	.00082	.10280	00015	.02761	.00731	.00012	1.0587	.00024
Check ? High Limit Low Limit	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass
Elem	Co2286	Cr2677	Cu2247	Fe2611	K_7664	Li6707	Mg2790	Mn2576
Units	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm
Avg	.00081	.00032	00048	.00279	57.883	. 00167	3.3673	. 00211
Stddev	.00031	.00094	.00084	.00754	.870	.00055	.1066	.00180
%RSD	38.509	292.86	174.58	270.38	1.5025	32.854	3.1670	85.144
#1	.00069	.00112	00085	00389	57.237	.00142	3.2593	.00419
#2	.00058	.00055	00107	.00129	57.541	.00130	3.3700	.00102
#3	.00116	00071	.00048	.01096	58.872	.00231	3.4726	.00113
Check ? High Limit Low Limit	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass
Elem	Mo2020	Na5895	Ni2316	P_2149	Pb2203	Sb2068	Se1960	Si2124
Units	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm
Avg	. 00041	110.56	.00028	. 11590	00343	. 00284	. 00230	. 31032
Stddev	.00036	1.54	.00074	.00600	.00209	.00158	.00899	.00644
%RSD	89.160	1.3965	267.45	5.1745	61.053	55.483	391.03	2.0753
#1	00001	109.34	00024	.11838	00247	.00410	.00637	.30350
#2	.00062	110.05	.00113	.10906	00198	.00334	.00853	.31117
#3	.00062	112.30	00005	.12025	00583	.00107	00800	.31629
Check ? High Limit Low Limit	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass

Sample Name: L1510110201SDL Acquired: 10/23/2015 17:27:45 Type: Unk Method: ICP-THERMO3_6010_200.7WATER_3YLINES(v526) Mode: CONC Corr. Factor: 1.000000 Custom ID2: User: JYH Custom ID1: 5 Custom ID3: Comment: WG544079-02 Elem Sn1899 Sr4077 Ti3372 TI1908 V_2924 Zn2062 Zr3391 Units ppm ppm ppm ppm ppm ppm ppm Avg .00025 .01908 .00069 -.00036 -.00056 .00136 .11572 Stddev .00034 .00038 .00198 .00041 .00046 .00014 .18854 %RSD 136.19 1.9739 285.21 116.58 81.706 10.489 162.93 #1 .00061 .01865 .00274 -.00047 -.00021 .00135 .13414 #2 .00017 .01926 -.00122 .00010 -.00108 .00151 .29438 #3 -.00005 .01934 .00056 -.00070 -.00040 .00123 -.08135 Check? Chk Pass Chk Pass Chk Pass Chk Pass Chk Pass Chk Pass **High Limit** Low Limit Y_3774 Int. Std. Y 2243 Y 3600 Units Cts/S Cts/S Cts/S 11365. 96369. 4179.2 Avg Stddev 22. 288. 6.7 %RSD .19513 .29919 .15992

Approved: October 26, 2015

J'ye 1hu

#1

#2

#3

11390.

11358.

11347.

96702.

96191.

96214.

4182.3

4183.7

4171.5

•								
Elem	Ag3280	Al3082	As1890	B_2496	Ba4554	Be3131	Ca4226	
Units	ppm							
Avg	. 40412	10.255	. 41101	. 50664	1.0476	. 05168	10.339	
Stddev	.00068	.012	.00296	.00227	.0048	.00005	.028	
%RSD	.16800	.11852	.71950	.44823	.45747	.09405	.27152	
#1	.40482	10.251	.41334	.50699	1.0423	.05163	10.313	
#2	.40409	10.246	.40768	.50421	1.0492	.05168	10.369	
#3	.40346	10.269	.41200	.50871	1.0515	.05172	10.336	
Check ? Value Range	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	
Elem	Cd2288	Co2286	Cr2677	Cu2247	Fe2611	K_7664	Li6707	
Units	ppm							
Avg	. 05152	. 20604	. 51301	. 51469	4.1320	52.528	1.0387	
Stddev	.00015	.00021	.00114	.00229	.0149	.118	.0053	
%RSD	.29492	.10241	.22190	.44531	.35997	.22526	.50522	
#1	.05167	.20628	.51238	.51733	4.1202	52.393	1.0331	
#2	.05151	.20590	.51233	.51356	4.1487	52.577	1.0394	
#3	.05137	.20594	.51433	.51318	4.1270	52.614	1.0436	
Check ? Value Range	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	
Elem	Mg2790	Mn2576	Mo2020	Na5895	Ni2316	P_2149	Pb2203	
Units	ppm							
Avg	10.205	. 52061	1.0256	51.931	. 51554	10.125	. 51125	
Stddev	.016	.00567	.0012	.247	.00209	.022	.00417	
%RSD	.15378	1.0882	.11615	.47534	.40635	.22015	.81620	
#1	10.190	.51407	1.0270	51.652	.51775	10.145	.50780	
#2	10.221	.52366	1.0250	52.121	.51358	10.131	.51589	
#3	10.202	.52409	1.0249	52.021	.51529	10.101	.51006	
Check ? Value Range	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	

Sample Name: CCV Acquired: 10/23/2015 17:31:51 Type: QC Method: ICP-THERMO3_6010_200.7WATER_3YLINES(v526) Mode: CONC Corr. Factor: 1.000000								
User: JYH Comment:	Custom I	D1: (Custom ID2:	Cus	tom ID3:			
Elem Units Avg Stddev %RSD	Sb2068 ppm 1.2280 .0053 .43597	Se1960 ppm . 40881 .00346 .84553	Si2124 ppm 5.1312 .0020 .03865	Sn1899 ppm 1.0325 .0014 .14051	Sr4077 ppm 1.0457 .0030 .28494	Ti3372 ppm 1.0528 .0065 .61779	TI1908 ppm . 51307 .00429 .83609	
#1 #2 #3	1.2296 1.2324 1.2221	.41137 .41019 .40488	5.1291 5.1331 5.1312	1.0322 1.0312 1.0341	1.0422 1.0472 1.0476	1.0467 1.0520 1.0596	.51687 .51393 .50842	
Check ? Value Range	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	
Elem Units Avg Stddev %RSD	V_2924 ppm 1.0395 .0026 .25061	Zn2062 ppm 1.0144 .0015 .14352	Zr3391 ppm F .44434 .10488 23.603					
#1 #2 #3	1.0411 1.0365 1.0410	1.0158 1.0147 1.0129	.42130 .55882 .35289					
Check ? Value Range	Chk Pass	Chk Pass	Chk Fail 1.0000 -10.000%					
Int. Std. Units Avg Stddev %RSD	Y_2243 Cts/S 10791. 17. .15604	Y_3600 Cts/S 9 1587 . 170. .18543	Y_3774 Cts/S 3993.2 16.4 .40963					
#1 #2 #3	10784. 10810. 10779.	91547. 91773. 91440.	4002.5 3974.3 4002.8					

Elem	Ag3280	Al3082	As1890	B_2496	Ba4554	Be3131	Ca4226		
Units	ppm								
Avg	00055	. 01202	00175	.00529	. 00049	.00005	00054		
Stddev	.00048	.00781	.00136	.00166	.00034	.00003	.00691		
%RSD	88.027	64.935	77.449	31.427	68.260	56.731	1273.9		
#1	00021	.00849	00289	.00659	.00081	.00008	00309		
#2	00034	.02097	00212	.00342	.00054	.00002	00582		
#3	00111	.00661	00025	.00588	.00014	.00006	.00728		
Check ? High Limit Low Limit	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass		
Elem	Cd2288	Co2286	Cr2677	Cu2247	Fe2611	K_7664	Li6707		
Units	ppm								
Avg	. 00008	.00037	.00016	. 00056	00353	. 24455	. 00285		
Stddev	.00024	.00016	.00114	.00059	.00512	.09890	.00209		
%RSD	293.36	42.894	734.21	105.01	145.20	40.441	73.313		
#1	.00008	.00022	.00041	.00036	.00238	.21084	.00360		
#2	00016	.00035	00110	.00122	00618	.16692	.00448		
#3	.00032	.00053	.00115	.00009	00678	.35590	.00049		
Check ? High Limit Low Limit	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass		
Elem	Mg2790	Mn2576	Mo2020	Na5895	Ni2316	P_2149	Pb2203		
Units	ppm								
Avg	. 00855	. 00096	. 00139	. 09697	.00122	00560	00458		
Stddev	.04959	.00063	.00019	.02965	.00114	.00057	.00353		
%RSD	579.90	66.069	13.796	30.582	93.971	10.115	77.089		
#1	.05244	.00161	.00121	.07950	.00141	00603	00376		
#2	.01846	.00035	.00138	.13121	.00225	00496	00153		
#3	04525	.00090	.00159	.08020	00001	00580	00845		
Check ? High Limit Low Limit	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass		

•									
Elem Units Avg Stddev %RSD	Sb2068 ppm . 00264 .00478 180.95	Se1960 ppm .00272 .00595 218.28	Si2124 ppm .00638 .00234 36.732	Sn1899 ppm 00011 .00064 586.85	Sr4077 ppm . 00052 .00007 13.461	Ti3372 ppm 00095 .00554 582.05	TI1908 ppm 00034 .00182 532.19		
#1 #2 #3	.00814 .00028 00050	.00413 .00784 00380	.00802 .00742 .00370	.00049 00077 00004	.00050 .00059 .00045	00006 .00409 00688	.00167 00081 00189		
Check ? High Limit Low Limit	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass		
Elem Units Avg Stddev %RSD	V_2924 ppm 00046 .00063 138.49	Zn2062 ppm .00012 .00035 289.64	Zr3391 ppm F .05603 .11849 211.49						
#1 #2 #3	00076 00088 .00027	.00051 .00002 00016	.19055 03285 .01038						
Check ? High Limit Low Limit	Chk Pass	Chk Pass	Chk Fail .04000 04000						
Int. Std. Units Avg Stddev %RSD	Y_2243 Cts/S 11001. 9. .08254	Y_3600 Cts/S 94181. 129. .13737	Y_3774 Cts/S 3955.4 15.8 .40015						
#1 #2 #3	11001. 11011. 10993.	94274. 94235. 94033.	3949.7 3973.3 3943.3						

Sample Name Method: ICP-T User: JYH Comment:)10_200.7W <i>A</i>	Acquired: 10/23/2015 17:39:43 Type: Unk D.7WATER_3YLINES(v526) Mode: CONC Custom ID2: Custom ID3:				Corr. Factor: 1.000000		
Elem	Ag3280	Al3082	As1890	B_2496	Ba4554	Be3131	Ca4226		
Units	ppm	ppm	ppm	ppm	ppm	ppm	ppm		
Avg	00033	11.200	00043	.01592	. 35114	00005	F 338.63		
Stddev	.00083	.011	.00242	.00203	.00091	.00002	.01		
%RSD	255.38	.10049	556.38	12.718	.26051	34.361	.00411		
#1	00115	11.210	00173	.01366	.35171	00005	338.61		
#2	00034	11.203	00193	.01756	.35162	00003	338.62		
#3	.00052	11.188	.00235	.01656	.35008	00007	338.64		
Check ? High Limit Low Limit	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Fail 270.00 10000		
Elem	Cd2288	Co2286	Cr2677	Cu2247	Fe2611	K_7664	Li6707		
Units	ppm	ppm	ppm	ppm	ppm	ppm	ppm		
Avg	.00028	.00094	. 00219	.01558	00493	248.67	. 03748		
Stddev	.00012	.00040	.00074	.00209	.00999	.42	.00159		
%RSD	40.557	43.018	33.950	13.403	202.66	.16910	4.2305		
#1	.00040	.00078	.00189	.01358	.00037	249.15	.03920		
#2	.00017	.00063	.00165	.01774	.00129	248.35	.03718		
#3	.00028	.00140	.00304	.01542	01645	248.52	.03607		
Check ? High Limit Low Limit	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass		
Elem	Mg2790	Mn2576	Mo2020	Na5895	Ni2316	P_2149	Pb2203		
Units	ppm	ppm	ppm	ppm	ppm	ppm	ppm		
Avg	08159	00032	. 00914	F 328.01	. 00063	. 03429	00381		
Stddev	.03346	.00266	.00068	.56	.00140	.00491	.00319		
%RSD	41.014	843.17	7.4942	.17039	221.99	14.325	83.778		
#1	06430	00321	.00843	328.65	.00222	.02901	00501		
#2	12017	.00203	.00980	327.61	00043	.03513	00019		
#3	06031	.00023	.00918	327.78	.00010	.03872	00622		
Check ? High Limit Low Limit	Chk Pass	Chk Pass	Chk Pass	Chk Fail 270.00 50000	Chk Pass	Chk Pass	Chk Pass		

Sample Name Method: ICP-1 User: JYH Comment:)10_200.7W <i>A</i>	ed: 10/23/20 ATER_3YLIN stom ID2:		Type: Unl Mode: CON ID3:		Corr. Factor: 1.000000		
Elem Units Avg Stddev %RSD	Sb2068 ppm . 00527 .00625 118.62	Se1960 ppm . 00594 .00381 64.208	Si2124 ppm . 67964 .00277 .40750	Sn1899 ppm . 00044 .00105 238.17	Sr4077 ppm 1.0187 .0004 .03845	Ti3372 ppm F05563 .00651 11.706	TI1908 ppm 00037 .00031 82.720		
#1 #2 #3	.00328 .00026 .01227	.00154 .00794 .00833	.67714 .67917 .68262	.00051 00064 .00146	1.0183 1.0189 1.0190	05972 04812 05904	00002 00049 00060		
Check ? High Limit Low Limit	Chk Pass Chk Fail 36.000 03000	Chk Pass							
Elem Units Avg Stddev %RSD	V_2924 ppm 00034 .00077 229.27	Zn2062 ppm . 00379 .00026 6.8291	Zr3391 ppm . 26819 .22146 82.577						
#1 #2 #3	00089 .00054 00066	.00357 .00407 .00372	.01304 .38091 .41061						
Check ? High Limit Low Limit	Chk Pass	Chk Pass	Chk Pass						
Int. Std. Units Avg Stddev %RSD	Y_2243 Cts/S 9 750.6 10.6 .10883	Y_3600 Cts/S 8243 0. 192. .23330	Y_3774 Cts/S 3813.0 11.2 .29393						
#1 #2 #3	9742.1 9747.3 9762.5	82371. 82274. 82645.	3802.8 3825.0 3811.3						

Elem	Ag3280	Al3082	As1890	B_2496	Ba4554	Be3131	Ca4226		
Units	ppm	ppm	ppm	ppm	ppm	ppm	ppm		
Avg	. 00026	38.025	00251	. 34259	1.4118	.00170	30.696		
Stddev	.00080	.059	.00336	.00217	.0049	.00005	.074		
%RSD	305.91	.15480	133.81	.63352	.34478	3.1377	.24017		
#1	.00043	38.071	.00133	.34361	1.4079	.00168	30.663		
#2	00061	38.045	00393	.34405	1.4172	.00166	30.780		
#3	.00096	37.959	00492	.34009	1.4102	.00176	30.644		
Check ? High Limit Low Limit	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass		
Elem	Cd2288	Co2286	Cr2677	Cu2247	Fe2611	K_7664	Li6707		
Units	ppm	ppm	ppm	ppm	ppm	ppm	ppm		
Avg	. 00287	. 02042	. 03017	.11532	.28400	426.43	3.7996		
Stddev	.00027	.00023	.00151	.00130	.01737	1.46	.0120		
%RSD	9.3051	1.1119	5.0202	1.1283	6.1172	.34245	.31517		
#1	.00299	.02064	.03185	.11383	.29404	425.60	3.7877		
#2	.00257	.02044	.02891	.11620	.26394	428.11	3.8116		
#3	.00307	.02018	.02974	.11594	.29403	425.57	3.7995		
Check ? High Limit Low Limit	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass		
Elem	Mg2790	Mn2576	Mo2020	Na5895	Ni2316	P_2149	Pb2203		
Units	ppm	ppm	ppm	ppm	ppm	ppm	ppm		
Avg	23.971	1.8029	. 00087	F 489.65	.13487	. 07203	. 04152		
Stddev	.113	.0014	.00011	5.06	.00168	.00569	.00425		
%RSD	.47181	.07713	12.389	1.0337	1.2426	7.9022	10.226		
#1	23.849	1.8028	.00078	485.44	.13365	.06677	.03807		
#2	24.073	1.8016	.00085	495.27	.13678	.07807	.04024		
#3	23.990	1.8044	.00099	488.25	.13419	.07125	.04626		
Check ? High Limit Low Limit	Chk Pass	Chk Pass	Chk Pass	Chk Fail 270.00 50000	Chk Pass	Chk Pass	Chk Pass		

•								
Elem Units Avg Stddev %RSD	Sb2068 ppm . 01107 .00454 40.993	Se1960 ppm .00819 .00695 84.842	Si2124 ppm 3.0516 .0255 .83676	Sn1899 ppm . 00237 .00052 22.054	Sr4077 ppm . 70254 .00190 .27107	Ti3372 ppm . 01062 .00306 28.836	TI1908 ppm 00294 .00349 118.56	
#1 #2 #3	.00882 .01629 .00809	.01523 .00798 .00135	3.0415 3.0806 3.0327	.00295 .00222 .00194	.70040 .70406 .70315	.01260 .01217 .00709	00349 .00079 00613	
Check ? High Limit Low Limit	Chk Pass	Chk Pass						
Elem Units Avg Stddev %RSD	V_2924 ppm . 00004 .00047 1073.8	Zn2062 ppm 17.265 .070 .40820	Zr3391 ppm . 21683 .10318 47.584					
#1 #2 #3	.00047 .00013 00047	17.314 17.297 17.184	.22236 .31713 .11100					
Check ? High Limit Low Limit	Chk Pass	Chk Pass	Chk Pass					
Int. Std. Units Avg Stddev %RSD	Y_2243 Cts/S 9924.0 13.9 .14031	Y_3600 Cts/S 82995 . 202. .24398	Y_3774 Cts/S 3851.6 10.8 .27997					
#1 #2 #3	9916.2 9915.7 9940.1	82765. 83074. 83146.	3860.3 3839.5 3855.0					

•									
Elem	Ag3280	Al3082	As1890	B_2496	Ba4554	Be3131	Ca4226		
Units	ppm	ppm	ppm	ppm	ppm	ppm	ppm		
Avg	00092	. 12880	00144	. 21254	. 52072	.00009	11.694		
Stddev	.00093	.00294	.00113	.00177	.00163	.00004	.037		
%RSD	100.22	2.2821	78.182	.83164	.31314	44.797	.31600		
#1	.00014	.12645	00029	.21451	.52240	.00005	11.736		
#2	00155	.13209	00254	.21202	.52062	.00013	11.683		
#3	00136	.12785	00149	.21109	.51914	.00009	11.665		
Check ? High Limit Low Limit	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass		
Elem	Cd2288	Co2286	Cr2677	Cu2247	Fe2611	K_7664	Li6707		
Units	ppm	ppm	ppm	ppm	ppm	ppm	ppm		
Avg	. 00096	. 00273	. 00037	.00211	00230	F 468.22	1.8340		
Stddev	.00030	.00002	.00055	.00035	.02102	2.72	.0094		
%RSD	31.114	.62822	149.74	16.646	915.49	.58106	.51036		
#1	.00107	.00273	00017	.00172	01613	471.19	1.8448		
#2	.00117	.00275	.00093	.00239	.02189	467.64	1.8293		
#3	.00062	.00272	.00034	.00224	01265	465.84	1.8279		
Check ? High Limit Low Limit	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Fail 450.00 50000	Chk Pass		
Elem	Mg2790	Mn2576	Mo2020	Na5895	Ni2316	P_2149	Pb2203		
Units	ppm	ppm	ppm	ppm	ppm	ppm	ppm		
Avg	12.088	. 06904	. 00665	F 631.72	.00109	. 09019	00198		
Stddev	.120	.00117	.00036	7.27	.00161	.00665	.00239		
%RSD	.99531	1.6882	5.4498	1.1513	146.94	7.3691	120.47		
#1	12.142	.06861	.00705	640.11	.00087	.09344	00271		
#2	12.172	.06815	.00634	627.23	00039	.08254	.00068		
#3	11.950	.07036	.00656	627.81	.00280	.09459	00392		
Check ? High Limit Low Limit	Chk Pass	Chk Pass	Chk Pass	Chk Fail 270.00 50000	Chk Pass	Chk Pass	Chk Pass		

•									
Elem Units Avg Stddev %RSD	Sb2068 ppm . 01466 .00299 20.373	Se1960 ppm . 00607 .00593 97.626	Si2124 ppm . 89963 .00462 .51311	Sn1899 ppm 00031 .00084 269.53	Sr4077 ppm . 58544 .00096 .16420	Ti3372 ppm 00254 .00133 52.328	TI1908 ppm 00479 .00302 62.991		
#1 #2 #3	.01773 .01176 .01450	.01186 .00635 .00001	.90088 .89451 .90349	.00052 00116 00030	.58655 .58487 .58491	00184 00407 00170	00154 00751 00532		
Check ? High Limit Low Limit	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass		
Elem Units Avg Stddev %RSD	V_2924 ppm 00023 .00062 269.55	Zn2062 ppm .00308 .00002 .71481	Zr3391 ppm .10803 .10486 97.060						
#1 #2 #3	00090 .00032 00011	.00307 .00310 .00306	.17146 .16564 01300						
Check ? High Limit Low Limit	Chk Pass	Chk Pass	Chk Pass						
Int. Std. Units Avg Stddev %RSD	Y_2243 Cts/S 9730.3 8.9 .09177	Y_3600 Cts/S 81137. 145. .17850	Y_3774 Cts/S 3808.3 14.4 .37702						
#1 #2 #3	9724.0 9740.5 9726.4	81252. 80974. 81184.	3791.8 3818.2 3814.8						

•									
Elem	Ag3280	Al3082	As1890	B_2496	Ba4554	Be3131	Ca4226		
Units	ppm								
Avg	00098	. 06727	.00353	.16349	2.9786	.00002	56.046		
Stddev	.00053	.00341	.00086	.00097	.0055	.00003	.143		
%RSD	54.323	5.0687	24.359	.59218	.18431	167.51	.25534		
#1	00148	.06982	.00411	.16397	2.9760	00000	55.905		
#2	00105	.06860	.00254	.16238	2.9849	.00000	56.191		
#3	00042	.06340	.00394	.16413	2.9749	.00005	56.043		
Check ? High Limit Low Limit	Chk Pass								
Elem	Cd2288	Co2286	Cr2677	Cu2247	Fe2611	K_7664	Li6707		
Units	ppm								
Avg	.00035	.00155	.00158	.00144	. 67184	3.3962	. 20285		
Stddev	.00022	.00052	.00035	.00123	.02604	.1145	.00194		
%RSD	63.271	33.791	22.086	85.229	3.8759	3.3700	.95610		
#2 #3 Check ? High Limit Low Limit	.00031 .00015 Chk Pass	.00095 .00190 Chk Pass	.00120 .00167 Chk Pass	.00023 .00268 Chk Pass	.65396 .70171 Chk Pass	3.4576 3.2642 Chk Pass	.20438 .20067 Chk Pass		
Elem	Mg2790	Mn2576	Mo2020	Na5895	Ni2316	P_2149	Pb2203		
Units	ppm								
Avg	5.8367	.08380	. 00070	F 273.36	.00507	. 05353	00226		
Stddev	.0536	.00008	.00040	.70	.00073	.00395	.00371		
%RSD	.91851	.09122	57.950	.25743	14.401	7.3730	164.65		
#1	5.7872	.08384	.00042	273.42	.00470	.05671	00630		
#2	5.8291	.08371	.00116	274.03	.00591	.04911	.00100		
#3	5.8937	.08384	.00051	272.63	.00459	.05478	00147		
Check ? High Limit Low Limit	Chk Pass	Chk Pass	Chk Pass	Chk Fail 270.00 50000	Chk Pass	Chk Pass	Chk Pass		

•	ne: L1510110 -THERMO3_ Custom I	6010_200.7	juired: 10/23 WATER_3YI Custom ID2:	LINES(v526)		e: Unk CONC	Corr. Factor:	1.00000(
Elem Units Avg Stddev %RSD	Sb2068 ppm . 00088 .00251 284.58	Se1960 ppm . 00394 .00370 94.026	Si2124 ppm .28895 .00128 .44243	Sn1899 ppm 00046 .00086 184.97	Sr4077 ppm 8.3674 .0193 .23131	Ti3372 ppm 00609 .00200 32.905	TI1908 ppm 00036 .00272 750.10	
#1 #2 #3	.00105 .00331 00171	.00803 .00084 .00294	.28764 .28901 .29019	00133 .00038 00044	8.3587 8.3895 8.3538	00786 00391 00650	.00219 00004 00323	
Check ? High Limit Low Limit	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	
Elem Units Avg Stddev %RSD	V_2924 ppm .00000 .00093 34098.	Zn2062 ppm .32349 .00115 .35449	Zr3391 ppm 01620 .03506 216.38					
#1 #2 #3	00104 .00031 .00074	.32450 .32372 .32224	.02387 03126 04122					
Check ? High Limit Low Limit	Chk Pass	Chk Pass	Chk Pass					
Int. Std. Units Avg Stddev %RSD	Y_2243 Cts/S 10210. 21. .20177	Y_3600 Cts/S 86417 . 211. .24467	Y_3774 Cts/S 3855.0 9.9 .25616					
#1 #2 #3	10187. 10227. 10216.	86202. 86423. 86625.	3843.6 3860.1 3861.2					

Sample Name: L1510110402 Acquired: 10/23/2015 17:56:10 Type: Unk Method: ICP-THERMO3_6010_200.7WATER_3YLINES(v526) Mode: CONC Corr. Factor: 1.000000 User: JYH Custom ID1: Custom ID2: Custom ID3: Comment:									
Elem	Ag3280	Al3082	As1890	B_2496	Ba4554	Be3131	Ca4226		
Units	ppm	ppm	ppm	ppm	ppm	ppm	ppm		
Avg	00101	. 08524	.03812	. 31797	5.3032	.00008	71.562		
Stddev	.00099	.00531	.00212	.00138	.0335	.00001	.474		
%RSD	97.703	6.2297	5.5696	.43335	.63210	17.603	.66257		
#1	00006	.08564	.03573	.31924	5.2830	.00008	71.260		
#2	00203	.07975	.03980	.31651	5.3419	.00010	72.109		
#3	00095	.09035	.03882	.31817	5.2847	.00007	71.318		
Check ? High Limit Low Limit	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass		
Elem	Cd2288	Co2286	Cr2677	Cu2247	Fe2611	K_7664	Li6707		
Units	ppm	ppm	ppm	ppm	ppm	ppm	ppm		
Avg	.00009	.00325	.00255	.00141	2.0644	3.5922	. 20963		
Stddev	.00006	.00020	.00028	.00034	.0043	.0733	.00577		
%RSD	72.278	6.0354	10.893	24.262	.20857	2.0395	2.7511		
#2 #3	.00012	.00324	.00247	.00179	2.0595 2.0666	3.5844 3.6691	.20343		
Check ? High Limit Low Limit	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass		
Elem	Mg2790	Mn2576	Mo2020	Na5895	Ni2316	P_2149	Pb2203		
Units	ppm	ppm	ppm	ppm	ppm	ppm	ppm		
Avg	9.1181	. 21643	. 00048	F 308.65	.01537	. 02002	. 00048		
Stddev	.1612	.00202	.00026	1.99	.00130	.00173	.00097		
%RSD	1.7681	.93351	53.197	.64445	8.4231	8.6198	201.04		
#1	8.9479	.21779	.00069	307.31	.01682	.01868	00061		
#2	9.2685	.21740	.00057	310.94	.01497	.02197	.00083		
#3	9.1378	.21411	.00019	307.71	.01433	.01941	.00123		
Check ? High Limit Low Limit	Chk Pass	Chk Pass	Chk Pass	Chk Fail 270.00 50000	Chk Pass	Chk Pass	Chk Pass		

Sample Name: L1510110402 Acquired: 10/23/2015 17:56:10 Type: Unk Method: ICP-THERMO3_6010_200.7WATER_3YLINES(v526) Mode: CONC Corr. Factor: 1.000000 User: JYH Custom ID1: Custom ID2: Custom ID3: Comment:									
Elem Units Avg Stddev %RSD	Sb2068 ppm 00049 .00282 577.78	Se1960 ppm . 00451 .00779 172.70	Si2124 ppm . 91592 .00020 .02145	Sn1899 ppm . 00029 .00132 455.99	Sr4077 ppm F 9.3065 .0583 .62666	Ti3372 ppm 01070 .00585 54.616	TI1908 ppm 00170 .00049 28.590		
#1 #2 #3	.00270 00264 00153	00424 .01069 .00708	.91610 .91571 .91596	00068 .00179 00024	9.2645 9.3731 9.2819	01736 00641 00834	00126 00162 00222		
Check ? High Limit Low Limit	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Fail 9.0000 01000	Chk Pass	Chk Pass		
Elem Units Avg Stddev %RSD	V_2924 ppm 00003 .00081 2763.5	Zn2062 ppm .23859 .00078 .32625	Zr3391 ppm . 02341 .10573 451.64						
#1 #2 #3	.00071 .00010 00090	.23911 .23897 .23770	05565 .14351 01763						
Check ? High Limit Low Limit	Chk Pass	Chk Pass	Chk Pass						
Int. Std. Units Avg Stddev %RSD	Y_2243 Cts/S 10176. 20. .19464	Y_3600 Cts/S 86201 . 104. .12083	Y_3774 Cts/S 3854.2 20.1 .52070						
#1 #2 #3	10157. 10173. 10197.	86237. 86282. 86084.	3870.8 3831.9 3860.0						

Sample Name: L1510110403 Acquired: 10/23/2015 18:00:11 Type: Unk Method: ICP-THERMO3_6010_200.7WATER_3YLINES(v526) Mode: CONC Corr. Factor: 1.000000 User: JYH Custom ID1: Custom ID2: Custom ID3: Comment:										
Elem	Ag3280	Al3082	As1890	B_2496	Ba4554	Be3131	Ca4226			
Units	ppm	ppm	ppm	ppm	ppm	ppm	ppm			
Avg	. 00052	. 05167	. 00465	. 42287	10.122	.00003	92.586			
Stddev	.00089	.00406	.00275	.00104	.035	.00008	.391			
%RSD	172.35	7.8646	59.242	.24605	.34911	249.83	.42240			
#1	.00012	.05057	.00709	.42259	10.150	.00012	92.983			
#2	00011	.05617	.00166	.42199	10.135	00001	92.572			
#3	.00153	.04827	.00520	.42402	10.082	00002	92.202			
Check ? High Limit Low Limit	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass			
Elem	Cd2288	Co2286	Cr2677	Cu2247	Fe2611	K_7664	Li6707			
Units	ppm	ppm	ppm	ppm	ppm	ppm	ppm			
Avg	. 00062	. 00243	.00341	.00082	1.5818	3.5737	. 29988			
Stddev	.00025	.00021	.00083	.00062	.0199	.0826	.00352			
%RSD	40.198	8.6012	24.289	75.241	1.2609	2.3114	1.1739			
#1	.00041	.00222	.00269	.00115	1.5893	3.5080	.30130			
#2	.00055	.00263	.00431	.00011	1.5970	3.6665	.30248			
#3	.00090	.00245	.00322	.00121	1.5592	3.5467	.29587			
Check ? High Limit Low Limit	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass			
Elem	Mg2790	Mn2576	Mo2020	Na5895	Ni2316	P_2149	Pb2203			
Units	ppm	ppm	ppm	ppm	ppm	ppm	ppm			
Avg	8.4313	. 22628	. 00023	F 333.78	.01058	. 08626	00182			
Stddev	.0862	.00256	.00037	1.42	.00036	.00778	.00343			
%RSD	1.0226	1.1305	160.84	.42557	3.4154	9.0195	188.40			
#1	8.5130	.22776	.00009	335.18	.01099	.09479	.00196			
#2	8.4397	.22775	.00065	333.83	.01042	.08442	00268			
#3	8.3412	.22332	00005	332.34	.01033	.07956	00474			
Check ? High Limit Low Limit	Chk Pass	Chk Pass	Chk Pass	Chk Fail 270.00 50000	Chk Pass	Chk Pass	Chk Pass			

Sample Name: L1510110403 Acquired: 10/23/2015 18:00:11 Type: Unk Method: ICP-THERMO3_6010_200.7WATER_3YLINES(v526) Mode: CONC Corr. Factor: 1.000000 User: JYH Custom ID1: Custom ID2: Custom ID3: Comment:									
Elem Units Avg Stddev %RSD	Sb2068 ppm . 00319 .00179 56.267	Se1960 ppm . 00613 .00414 67.579	Si2124 ppm 1.2246 .0043 .35070	Sn1899 ppm 00016 .00077 473.67	Sr4077 ppm F 13.299 .045 .33546	Ti3372 ppm 01544 .00785 50.809	TI1908 ppm . 00067 .00151 224.49		
#1 #2 #3	.00526 .00210 .00220	.00535 .01061 .00243	1.2251 1.2286 1.2201	00028 00087 .00066	13.336 13.311 13.249	01781 02183 00668	00030 .00241 00010		
Check ? High Limit Low Limit	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Fail 9.0000 01000	Chk Pass	Chk Pass		
Elem Units Avg Stddev %RSD	V_2924 ppm 00004 .00058 1409.0	Zn2062 ppm .13637 .00009 .06823	Zr3391 ppm 01921 .08344 434.41						
#1 #2 #3	.00043 00068 .00013	.13647 .13635 .13629	.05842 00860 10745						
Check ? High Limit Low Limit	Chk Pass	Chk Pass	Chk Pass						
Int. Std. Units Avg Stddev %RSD	Y_2243 Cts/S 10134 . 8. .07717	Y_3600 Cts/S 85734 . 149. .17389	Y_3774 Cts/S 3839.3 7.3 .19132						
#1 #2 #3	10142. 10135. 10126.	85637. 85660. 85906.	3841.4 3831.1 3845.3						

Sample Name: L1510112001 Acquired: 10/23/2015 18:04:13 Type: Unk									
Method: ICP-THERMO3_6010_200.7WATER_3YLINES(v526) Mode: CONC							Corr. Factor: 1.000000		
User: JYH	Custom	ID1:	Custom ID)2: (Custom ID3				
Comment:									
Elem	Ag3280	Al3082	As1890	B_2496	Ba4554	Be3131	Ca4226	Cd2288	
Units	ppm	ppm							
Avg	00145	.03488	00125	.03505	.01989	.00004	23.486	00001	
Stddev %RSD	.00088 60.485	.00433 12.416	.00102 81.307	.00313 8.9197	.00054 2.7287	.00004 102.32	.018 .07464	.00009 672.51	
70113D	00.403	12.410	01.507	0.3137	2.7207	102.32	.07404	072.31	
#1	00084	.03002	00241	.03521	.02006	.00001	23.506	.00005	
#2	00105	.03629	00055	.03185	.02033	.00008	23.481	.00002	
#3	00245	.03833	00078	.03810	.01928	.00002	23.472	00011	
Check?	Chk Pass	Chk Pass							
High Limit									
Low Limit									
Elem	Co2286	Cr2677	Cu2247	Fe2611	K_7664	Li6707	Mg2790	Mn2576	
Units	ppm	ppm							
Avg	.00181	.00053	.00128	.01942	.43030	.00115	5.5792	.16267	
Stddev	.00003	.00076	.00054	.01911	.05803	.00422	.0991	.00247	
%RSD	1.9063	144.22	42.012	98.393	13.485	368.07	1.7767	1.5191	
#1	.00177	00034	.00094	00264	.37173	00198	5.4668	.16120	
#2	.00184	.00083	.00100	.03040	.48777	00052	5.6541	.16129	
#3	.00182	.00110	.00190	.03050	.43140	.00595	5.6166	.16553	
Check?	Chk Pass	Chk Pass							
High Limit									
Low Limit									
Elem	Mo2020	Na5895	Ni2316	P_2149	Pb2203	Sb2068	Se1960	Si2124	
Units	ppm	ppm							
Avg	.00006	173.81	.00062	.00248	00269	00189	.00619	.63912	
Stddev	.00014	.03	.00030	.00643	.00421	.00379	.00655	.00287	
%RSD	238.65	.01547	47.615	258.96	156.73	201.08	105.81	.44973	
#1	.00009	173.83	.00046	.00951	.00108	.00187	00057	.63858	
#2	.00018	173.83	.00044	.00105	00190	00571	.01251	.64222	
#3	00010	173.78	.00096	00311	00724	00182	.00664	.63655	
Check ? High Limit Low Limit	Chk Pass	Chk Pass							

Sample Name: L1510112001									
Method: ICF	P-THERMO3	3_6010_200	.7WATER_	3YLINES(v	526) Mc	de: CONC	Corr. Fa	ctor: 1.000000	
User: JYH	Custom	ID1:	Custom ID)2: (Custom ID3	•			
Comment:									
Elem	Sn1899	Sr4077	Ti3372	TI1908	V_2924	Zn2062	Zr3391		
Units	ppm								
Avg	00040	.14268	00582	00088	00016	.01318	.01272		
Stddev %RSD	.00115 289.02	.00079 .55548	.00414 71.126	.00123 140.66	.00069 416.30	.00009 .71979	.11660 916.54		
70113D	209.02	.55546	71.120	140.00	410.50	.71373	310.54		
#1	00147	.14350	00391	00033	00021	.01320	.14395		
#2	00053	.14263	01058	00229	00083	.01325	02679		
#3	.00081	.14191	00299	00001	.00054	.01307	07899		
Check ? High Limit Low Limit	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass		
Int. Std.	Y 2243	Y_3600	Y_3774						
Units	Cts/S	Cts/S	Cts/S						
Avg	10362.	88434.	3853.6						
Stddev %RSD	14. .13204	181. .20521	21.8 .56699						
%K3D	.13204	.20521	.50099						
#1	10370.	88382.	3860.1						
#2	10371.	88636.	3871.5						
#3	10346.	88284.	3829.2						

Sample Name: L1510118401 Acquired: 10/23/2015 18:08:17 Type: Unk Method: ICP-THERMO3_6010_200.7WATER_3YLINES(v526) Mode: CONC User: JYH Custom ID1: Custom ID2: Custom ID3: Comment:							Corr. Factor: 1.00000(
Elem	Ag3280	Al3082	As1890	B_2496	Ba4554	Be3131	Ca4226	
Units	ppm	ppm	ppm	ppm	ppm	ppm	ppm	
Avg	00157	5.3364	00292	. 02316	. 67716	.00000	F 281.18	
Stddev	.00140	.0159	.00220	.00238	.00429	.00007	1.12	
%RSD	89.162	.29828	75.379	10.259	.63422	2191.3	.39946	
#1	00258	5.3313	00176	.02365	.67690	.00008	281.56	
#2	.00003	5.3543	00545	.02057	.67300	00006	279.91	
#3	00215	5.3237	00154	.02525	.68158	00001	282.06	
Check ? High Limit Low Limit	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Fail 270.00 10000	
Elem	Cd2288	Co2286	Cr2677	Cu2247	Fe2611	K_7664	Li6707	
Units	ppm	ppm	ppm	ppm	ppm	ppm	ppm	
Avg	. 00028	.00138	. 00227	.01836	00262	329.26	. 05819	
Stddev	.00023	.00002	.00091	.00066	.01308	.94	.00407	
%RSD	83.976	1.7587	40.179	3.6142	499.02	.28694	6.9907	
#1	.00036	.00140	.00183	.01765	01535	329.62	.06181	
#2	.00001	.00139	.00332	.01897	00330	328.19	.05897	
#3	.00045	.00135	.00166	.01846	.01079	329.98	.05379	
Check ? High Limit Low Limit	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	
Elem	Mg2790	Mn2576	Mo2020	Na5895	Ni2316	P_2149	Pb2203	
Units	ppm	ppm	ppm	ppm	ppm	ppm	ppm	
Avg	00715	.00091	. 01518	F 402.67	. 00150	. 03988	00083	
Stddev	.05618	.00130	.00028	1.05	.00095	.00862	.00220	
%RSD	785.70	143.12	1.8700	.26123	62.942	21.624	265.94	
#1	.05771	00046	.01546	403.36	.00181	.04966	00187	
#2	04065	.00211	.01489	401.46	.00044	.03662	.00170	
#3	03851	.00107	.01520	403.19	.00226	.03337	00232	
Check ? High Limit Low Limit	Chk Pass	Chk Pass	Chk Pass	Chk Fail 270.00 50000	Chk Pass	Chk Pass	Chk Pass	

Sample Name Method: ICP-1 User: JYH Comment:)10_200.7W <i>A</i>	ed: 10/23/20 ATER_3YLINI stom ID2:		Type: Unl Mode: CON ID3:		Corr. Factor: 1.00000(
Elem Units Avg Stddev %RSD	Sb2068 ppm . 00756 .00223 29.450	Se1960 ppm .01162 .01036 89.167	Si2124 ppm . 43285 .00516 1.1921	Sn1899 ppm 00070 .00050 70.773	Sr4077 ppm 1.0637 .0042 .39461	Ti3372 ppm F04592 .00489 10.640	TI1908 ppm 00228 .00238 104.52		
#1 #2 #3	.01012 .00640 .00615	.00802 .02331 .00354	.42700 .43482 .43674	00063 00025 00123	1.0635 1.0596 1.0680	04872 04028 04875	00502 00090 00090		
Check ? High Limit Low Limit	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Fail 36.000 03000	Chk Pass		
Elem Units Avg Stddev %RSD	V_2924 ppm . 00014 .00053 388.65	Zn2062 ppm . 00694 .00021 3.0373	Zr3391 ppm . 13159 .08222 62.483						
#1 #2 #3	00016 00018 .00075	.00709 .00704 .00670	.19683 .15871 .03924						
Check ? High Limit Low Limit	Chk Pass	Chk Pass	Chk Pass						
Int. Std. Units Avg Stddev %RSD	Y_2243 Cts/S 9 757. 5 14.5 .14826	Y_3600 Cts/S 82099 . 18. .02213	Y_3774 Cts/S 3800.8 7.4 .19428						
#1 #2 #3	9771.2 9742.4 9759.0	82117. 82081. 82098.	3793.0 3807.7 3801.8						

Sample Name: L1510118501 Acquired: 10/23/2015 18:12:20 Type: Unk Method: ICP-THERMO3_6010_200.7WATER_3YLINES(v526) Mode: CONC Corr. Factor: User: JYH Custom ID1: Custom ID2: Custom ID3: Comment:							
Elem	Ag3280	Al3082	As1890	B_2496	Ba4554	Be3131	Ca4226
Units	ppm	ppm	ppm	ppm	ppm	ppm	ppm
Avg	00043	.03655	.00029	. 01275	. 37491	.00003	F 309.19
Stddev	.00083	.01149	.00185	.00215	.00083	.00003	.44
%RSD	190.36	31.432	629.78	16.865	.22244	114.73	.14335
#1	00117	.04877	.00136	.01036	.37431	.00004	308.74
#2	.00046	.02596	00185	.01452	.37586	.00005	309.22
#3	00059	.03492	.00137	.01338	.37455	00001	309.62
Check ? High Limit Low Limit	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Fail 270.00 10000
Elem	Cd2288	Co2286	Cr2677	Cu2247	Fe2611	K_7664	Li6707
Units	ppm	ppm	ppm	ppm	ppm	ppm	ppm
Avg	. 00011	. 00157	. 00203	. 01769	01459	326.26	. 06979
Stddev	.00014	.00027	.00091	.00104	.00612	.59	.00293
%RSD	129.86	16.980	44.765	5.8785	41.935	.17986	4.1932
#1	.00015	.00139	.00291	.01837	00885	325.86	.07022
#2	00005	.00187	.00207	.01649	01388	326.94	.07247
#3	.00022	.00143	.00110	.01820	02102	325.99	.06667
Check ? High Limit Low Limit	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass
Elem	Mg2790	Mn2576	Mo2020	Na5895	Ni2316	P_2149	Pb2203
Units	ppm	ppm	ppm	ppm	ppm	ppm	ppm
Avg	05903	00207	. 00869	F 430.11	. 00157	. 03508	. 14874
Stddev	.01340	.00305	.00063	.68	.00064	.01340	.00199
%RSD	22.697	147.45	7.2104	.15804	40.991	38.204	1.3398
#1	06311	00197	.00800	429.92	.00198	.03092	.14996
#2	04407	.00093	.00921	430.86	.00083	.02426	.14981
#3	06993	00516	.00887	429.54	.00191	.05008	.14644
Check ? High Limit Low Limit	Chk Pass	Chk Pass	Chk Pass	Chk Fail 270.00 50000	Chk Pass	Chk Pass	Chk Pass

Sample Name Method: ICP-T User: JYH Comment:)10_200.7W <i>A</i>	ed: 10/23/20 ATER_3YLIN stom ID2:		Type: Unk Mode: CONC Corr. Factor: 1.00000 ID3:			
Elem Units Avg Stddev %RSD	Sb2068 ppm . 00673 .00172 25.608	Se1960 ppm .01431 .00618 43.186	Si2124 ppm .17588 .00371 2.1111	Sn1899 ppm . 00029 .00076 256.69	Sr4077 ppm . 49068 .00093 .18905	Ti3372 ppm F04896 .00206 4.1994	TI1908 ppm 00023 .00401 1740.0	
#1 #2 #3	.00863 .00527 .00629	.00761 .01979 .01552	.17977 .17549 .17237	.00114 00031 .00005	.49009 .49175 .49020	05003 04659 05026	00198 00306 .00436	
Check ? High Limit Low Limit	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Fail 36.000 03000	Chk Pass	
Elem Units Avg Stddev %RSD	V_2924 ppm 00001 .00026 4698.0	Zn2062 ppm .13741 .00036 .25974	Zr3391 ppm . 13273 .14347 108.09					
#1 #2 #3	.00022 .00005 00029	.13779 .13734 .13708	.29741 .03474 .06605					
Check ? High Limit Low Limit	Chk Pass	Chk Pass	Chk Pass					
Int. Std. Units Avg Stddev %RSD	Y_2243 Cts/S 9723.0 19.1 .19592	Y_3600 Cts/S 82049 . 36. .04404	Y_3774 Cts/S 3 784 .3 16.8 .44277					
#1 #2 #3	9739.6 9702.2 9727.2	82065. 82008. 82075.	3785.1 3767.1 3800.6					

Sample Name: L1510121101 Acquired: 10/23/2015 18:16:23 Type: Unk Method: ICP-THERMO3_6010_200.7WATER_3YLINES(v526) Mode: CONC Corr User: JYH Custom ID1: Custom ID2: Custom ID3: Comment:							factor: 1.00000(
Elem	Ag3280	Al3082	As1890	B_2496	Ba4554	Be3131	Ca4226
Units	ppm	ppm	ppm	ppm	ppm	ppm	ppm
Avg	00086	.14066	.00181	. 00458	. 04889	. 00007	33.004
Stddev	.00108	.00315	.00311	.00350	.00036	.00003	.125
%RSD	125.96	2.2374	171.84	76.487	.73483	43.477	.37904
#1	.00039	.14074	00068	.00078	.04848	.00007	32.861
#2	00157	.14376	.00082	.00527	.04914	.00009	33.060
#3	00140	.13747	.00530	.00768	.04905	.00004	33.091
Check ? High Limit Low Limit	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass
Elem	Cd2288	Co2286	Cr2677	Cu2247	Fe2611	K_7664	Li6707
Units	ppm	ppm	ppm	ppm	ppm	ppm	ppm
Avg	00007	.00312	. 15952	. 00437	11.138	1.3136	. 00678
Stddev	.00013	.00041	.00147	.00129	.053	.1039	.00439
%RSD	189.31	13.095	.92382	29.507	.47538	7.9055	64.824
#1	00021	.00268	.16011	.00547	11.082	1.3768	.00178
#2	.00003	.00320	.15785	.00469	11.145	1.3702	.01005
#3	00002	.00349	.16061	.00295	11.187	1.1937	.00851
Check ? High Limit Low Limit	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass
Elem	Mg2790	Mn2576	Mo2020	Na5895	Ni2316	P_2149	Pb2203
Units	ppm	ppm	ppm	ppm	ppm	ppm	ppm
Avg	1.2028	. 11175	. 00042	173.26	. 01475	. 00535	00149
Stddev	.1000	.00309	.00008	.56	.00119	.00470	.00159
%RSD	8.3137	2.7680	19.911	.32064	8.0792	87.769	106.07
#1	1.0918	.11532	.00037	172.64	.01397	.00632	00053
#2	1.2309	.11013	.00038	173.42	.01612	.00949	00332
#3	1.2857	.10980	.00052	173.71	.01415	.00025	00063
Check ? High Limit Low Limit	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass

Sample Name Method: ICP-T User: JYH Comment:)10_200.7W <i>A</i>	15 18:16:23 ES(v526) Custom	Type: Unk Mode: CONC ID3:		Factor: 1.00000(
Elem Units Avg Stddev %RSD	Sb2068 ppm . 00236 .00512 217.06	Se1960 ppm .00784 .01014 129.36	Si2124 ppm 1.9700 .0058 .29655	Sn1899 ppm 00007 .00060 840.51	Sr4077 ppm . 05088 .00015 .28673	Ti3372 ppm . 00361 .00356 98.536	TI1908 ppm 00301 .00281 93.327
#1 #2 #3	.00576 00353 .00484	.01093 .01608 00349	1.9718 1.9748 1.9635	.00051 00002 00070	.05075 .05084 .05104	00023 .00425 .00680	00460 00465 .00023
Check ? High Limit Low Limit	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass
Elem Units Avg Stddev %RSD	V_2924 ppm . 00097 .00065 66.872	Zn2062 ppm . 92156 .00257 .27838	Zr3391 ppm F07397 .02792 37.739				
#1 #2 #3	.00027 .00154 .00109	.92305 .92304 .91860	05122 10512 06557				
Check ? High Limit Low Limit	Chk Pass	Chk Pass	Chk Fail 45.000 04000				
Int. Std. Units Avg Stddev %RSD	Y_2243 Cts/S 10399. 28. .26841	Y_3600 Cts/S 88203 . 147. .16690	Y_3774 Cts/S 3866.5 17.6 .45632				
#1 #2 #3	10367. 10412. 10418.	88077. 88365. 88167.	3877.1 3876.3 3846.1				

Sample Nam Method: ICP User: JYH Comment:				LINES(v526)	ype: QC) Mode: tom ID3:	CONC (Corr. Factor:	1.00000(
Elem	Ag3280	Al3082	As1890	B_2496	Ba4554	Be3131	Ca4226	
Units	ppm	ppm	ppm	ppm	ppm	ppm	ppm	
Avg	. 39902	10.074	. 40192	. 49470	1.0324	. 05097	10.225	
Stddev	.00097	.004	.00254	.00335	.0037	.00003	.028	
%RSD	.24384	.04377	.63253	.67769	.35366	.06318	.26908	
#1	.40004	10.071	.40359	.49830	1.0365	.05099	10.239	
#2	.39811	10.073	.40317	.49411	1.0294	.05093	10.244	
#3	.39890	10.080	.39899	.49168	1.0314	.05098	10.194	
Check ? Value Range	Chk Pass	Chk Pass	Chk Pass					
Elem	Cd2288	Co2286	Cr2677	Cu2247	Fe2611	K_7664	Li6707	
Units	ppm	ppm	ppm	ppm	ppm	ppm	ppm	
Avg	. 05053	. 20346	. 50655	. 50780	4.0930	52.049	1.0285	
Stddev	.00041	.00075	.00258	.00061	.0296	.262	.0010	
%RSD	.80296	.36852	.50871	.12079	.72293	.50339	.09385	
#1	.05098	.20407	.50709	.50730	4.0907	52.296	1.0287	
#2	.05019	.20369	.50374	.50849	4.1236	51.774	1.0293	
#3	.05043	.20262	.50881	.50762	4.0646	52.077	1.0274	
Check ? Value Range	Chk Pass	Chk Pass	Chk Pass					
Elem	Mg2790	Mn2576	Mo2020	Na5895	Ni2316	P_2149	Pb2203	
Units	ppm	ppm	ppm	ppm	ppm	ppm	ppm	
Avg	10.157	. 51448	1.0114	51.330	. 50755	9.9193	. 50345	
Stddev	.128	.00097	.0014	.182	.00148	.0273	.00127	
%RSD	1.2607	.18831	.14217	.35446	.29171	.27545	.25308	
#1	10.264	.51382	1.0126	51.511	.50772	9.9168	.50295	
#2	10.015	.51403	1.0118	51.147	.50893	9.9478	.50249	
#3	10.191	.51559	1.0099	51.331	.50599	9.8933	.50489	
Check ? Value Range	Chk Pass	Chk Pass	Chk Pass					

•	Sample Name: CCV Acquired: 10/23/2015 18:20:24 Type: QC Method: ICP-THERMO3_6010_200.7WATER_3YLINES(v526) Mode: CONC Corr. Factor: 1.000000									
User: JYH Comment:	Custom I	D1: (Custom ID2:	Cus	tom ID3:					
Elem Units Avg Stddev %RSD	Sb2068 ppm 1.2029 .0052 .43516	Se1960 ppm . 40218 .00662 1.6454	Si2124 ppm 5.0123 .0060 .11963	Sn1899 ppm 1.0236 .0020 .19289	Sr4077 ppm 1.0344 .0041 .39707	Ti3372 ppm 1.0363 .0073 .70928	TI1908 ppm . 50609 .00213 .42020			
#1 #2 #3	1.2088 1.2012 1.1987	.40917 .39601 .40137	5.0169 5.0144 5.0055	1.0255 1.0237 1.0216	1.0392 1.0320 1.0322	1.0396 1.0278 1.0414	.50520 .50852 .50455			
Check ? Value Range	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass			
Elem Units Avg Stddev %RSD	V_2924 ppm 1.0230 .0010 .09921	Zn2062 ppm . 99864 .00159 .15909	Zr3391 ppm F .55365 .06745 12.183							
#1 #2 #3	1.0239 1.0233 1.0219	.99905 .99999 .99689	.57888 .60486 .47722							
Check ? Value Range	Chk Pass	Chk Pass	Chk Fail 1.0000 -10.000%							
Int. Std. Units Avg Stddev %RSD	Y_2243 Cts/S 10967. 5. .04326	Y_3600 Cts/S 93138. 184. .19778	Y_3774 Cts/S 3995.8 18.7 .46872							
#1 #2 #3	10962. 10967. 10971.	92985. 93342. 93086.	3978.5 4015.7 3993.1							

•									
Elem	Ag3280	Al3082	As1890	B_2496	Ba4554	Be3131	Ca4226		
Units	ppm	ppm	ppm	ppm	ppm	ppm	ppm		
Avg	.00001	00105	00227	.00418	.00084	.00008	00596		
Stddev	.00006	.00529	.00172	.00211	.00022	.00008	.00868		
%RSD	430.32	506.66	75.801	50.598	26.173	104.70	145.58		
#1	00005	.00287	00028	.00295	.00061	.00002	01218		
#2	.00003	00707	00328	.00662	.00105	.00017	00965		
#3	.00006	.00106	00324	.00297	.00086	.00005	.00395		
Check ? High Limit Low Limit	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass		
Elem	Cd2288	Co2286	Cr2677	Cu2247	Fe2611	K_7664	Li6707		
Units	ppm	ppm	ppm	ppm	ppm	ppm	ppm		
Avg	.00000	.00023	. 00069	.00018	01204	. 32507	. 00290		
Stddev	.00023	.00038	.00077	.00076	.00769	.02953	.00559		
%RSD	26327.	165.37	110.25	413.13	63.849	9.0834	192.45		
#1	.00026	.00051	.00098	.00040	01269	.29422	00297		
#2	00010	.00037	00017	00066	00405	.35307	.00816		
#3	00016	00020	.00128	.00081	01938	.32791	.00352		
Check ? High Limit Low Limit	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass		
Elem	Mg2790	Mn2576	Mo2020	Na5895	Ni2316	P_2149	Pb2203		
Units	ppm	ppm	ppm	ppm	ppm	ppm	ppm		
Avg	08865	00056	. 00132	. 14275	. 00048	. 00603	00129		
Stddev	.06363	.00176	.00027	.02233	.00089	.00514	.00604		
%RSD	71.774	314.81	20.172	15.644	184.64	85.273	468.70		
#1	08501	.00039	.00110	.12432	.00150	.01040	.00011		
#2	15403	00259	.00125	.16759	00016	.00036	.00393		
#3	02692	.00052	.00162	.13634	.00011	.00733	00791		
Check ? High Limit Low Limit	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass		

Sample Nam Method: ICP User: JYH Comment:	ne: CCB -THERMO3_ Custom I	6010_200.7	/23/2015 18: WATER_3YI Custom ID2:	LINES(v526)	ype: Blank) Mode: tom ID3:	CONC (Corr. Factor:	1.000000
Elem Units Avg Stddev %RSD	Sb2068 ppm . 00482 .00479 99.209	Se1960 ppm .00075 .00472 630.99	Si2124 ppm . 00464 .00148 31.906	Sn1899 ppm . 00079 .00049 61.637	Sr4077 ppm . 00032 .00018 58.162	Ti3372 ppm 00111 .00324 292.88	TI1908 ppm 00283 .00095 33.743	
#1 #2 #3	.01032 .00258 .00157	.00258 00462 .00429	.00567 .00294 .00530	.00134 .00044 .00058	.00028 .00052 .00015	00474 00005 .00147	00352 00322 00174	
Check ? High Limit Low Limit	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	
Elem Units Avg Stddev %RSD	V_2924 ppm . 00027 .00039 144.87	Zn2062 ppm .00002 .00013 603.41	Zr3391 ppm F .16576 .14628 88.248					
#1 #2 #3	00009 .00068 .00021	00012 .00012 .00007	.31299 .02044 .16385					
Check ? High Limit Low Limit	Chk Pass	Chk Pass	Chk Fail .04000 04000					
Int. Std. Units Avg Stddev %RSD	Y_2243 Cts/S 11160. 20. .18208	Y_3600 Cts/S 9 5931 . 208. .21726	Y_3774 Cts/S 3979.6 17.9 .45031					
#1 #2 #3	11159. 11140. 11180.	95691. 96069. 96034.	4000.3 3969.9 3968.6					

Sample Name: L1510121102								
Method: ICF	P-THERMO3	3_6010_200	.7WATER_	3YLINES(v	526) Mc	de: CONC	Corr. Fa	actor: 1.00000(
User: JYH	Custom	ID1:	Custom ID)2: (Custom ID3	:		
Comment:								
Elem	Ag3280	Al3082	As1890	B_2496	Ba4554	Be3131	Ca4226	Cd2288
Units	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm
Avg Stddev	00015 .00137	. 63159 .00193	00321 .00086	. <mark>02057</mark> .00128	. 06829 .00164	. <mark>00012</mark> .00001	162.03 .01	. 00033 .00038
%RSD	911.30	.30498	26.876	6.2404	2.3944	10.852	.00577	115.23
70.102	011.00	100 100	20.070	0.2.0.	2.0011	10.002	100077	1.0.20
#1	.00096	.63287	00404	.01911	.06734	.00014	162.04	00007
#2	00168	.62938	00232	.02106	.07017	.00012	162.03	.00036
#3	.00027	.63253	00328	.02154	.06734	.00011	162.02	.00069
Check?	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass
High Limit	· · · · · · · · · · · · · · · · · · ·							J
Low Limit								
-	0-0000	0::0077	00047	E-0011	IZ 7004	1:0707	M0700	M0570
Elem Units	Co2286	Cr2677	Cu2247	Fe2611	K_7664	Li6707	Mg2790	Mn2576
Avg	ppm . 00318	ppm . 01015	ppm . 01576	ppm 5.8164	ppm 3.8911	ppm . 02147	ppm 5.6721	ppm . 28146
Stddev	.00031	.00106	.00046	.0157	.0411	.00431	.1010	.00212
%RSD	9.7131	10.433	2.9471	.26996	1.0558	20.055	1.7800	.75356
#1	.00284	.00999	.01586	5.8159	3.9136	.02178	5.7134	.27992
#2	.00328	.00918	.01617	5.8009	3.8437	.01701	5.7458	.28388
#3	.00343	.01128	.01526	5.8323	3.9160	.02561	5.5570	.28058
Check?	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass
High Limit								
Low Limit								
Elom	Mo2020	Na5895	Ni2316	P 2149	Pb2203	Sb2068	Se1960	Si2124
Elem Units	ppm	ppm	ppm	P_2149	ppm	ppm	ppm	ppm
Avg	.00167	3.5783	. 02771	.02330	.00847	.00842	.00628	7.2016
Stddev	.00016	.0075	.00190	.00941	.00170	.00350	.00193	.0063
%RSD	9.4432	.21049	6.8613	40.388	20.030	41.543	30.718	.08695
#1	00155	2 5000	02002	01215	00720	00606	00546	7 2062
#1 #2	.00155 .00162	3.5800 3.5849	.02982 .02718	.01315 .03174	.00728 .00771	.00626 .00655	.00546 .00849	7.2063 7.2039
#2 #3	.00102	3.5701	.02718	.02501	.01041	.01246	.00490	7.1945
•	.50.00	2.0701	.525.6	.52001	.5.10.11	.5.2.0	.50.00	
Check?	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass
High Limit								
Low Limit								

Sample Nan			•	/23/2015 18		Type: Unk		
Method: ICP			_	•	,	de: CONC	Corr. Fa	ctor: 1.00000(
User: JYH	Custom	ID1:	Custom ID)2: (Custom ID3	•		
Comment:								
Elem	Sn1899	Sr4077	Ti3372	TI1908	V_2924	Zn2062	Zr3391	
Units	ppm	ppm	ppm	ppm	ppm	ppm	ppm	
Avg	.00070	.25291	00994	00534	.00610	11.964	.25758	
Stddev %RSD	.00090 128.88	.00160 .63085	.00533 53.660	.00251 46.936	.00045 7.4285	.024 .20172	.12528 48.637	
/01\GD	120.00	.03063	33.000	40.330	7.4203	.20172	40.037	
#1	.00072	.25173	01218	00273	.00655	11.987	.21167	
#2	.00160	.25473	01378	00773	.00612	11.966	.16173	
#3	00021	.25228	00385	00556	.00564	11.939	.39934	
Check ? High Limit Low Limit	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	
Int. Std.	Y 2243	Y_3600	Y_3774					
Units	Cts/S	Cts/S	Cts/S					
Avg	10431.	89487.	3840.7					
Stddev	26.	106.	11.4					
%RSD	.24828	.11838	.29603					
#1	10405.	89471.	3827.6					
#2	10456.	89599.	3846.9					
#3	10433.	89389.	3847.6					

Sample Name: L1510124901 Acquired: 10/23/2015 18:32:15 Type: Unk Method: ICP-THERMO3_6010_200.7WATER_3YLINES(v526) Mode: CONC Corr. Factor: 1.000000 User: JYH Custom ID1: Custom ID2: Custom ID3: Comment:								
Elem	Ag3280	Al3082	As1890	B_2496	Ba4554	Be3131	Ca4226	Cd2288
Units	ppm							
Avg	00063	. 08249	.00171	. 00683	. 06243	.00006	173.88	. 00042
Stddev	.00103	.00484	.00246	.00007	.00075	.00001	.20	.00005
%RSD	161.85	5.8671	143.72	1.0695	1.2092	22.739	.11553	12.839
#1	00021	.08805	00010	.00691	.06313	.00004	174.04	.00045
#2	00180	.08022	.00451	.00681	.06253	.00006	173.65	.00046
#3	.00011	.07920	.00073	.00677	.06163	.00007	173.94	.00036
Check ? High Limit Low Limit	Chk Pass							
Elem	Co2286	Cr2677	Cu2247	Fe2611	K_7664	Li6707	Mg2790	Mn2576
Units	ppm							
Avg	.01159	. 00270	. 00024	7.2931	. 27189	. 02288	4.8743	. 73273
Stddev	.00024	.00018	.00118	.0393	.14555	.00236	.1498	.00330
%RSD	2.0831	6.6697	496.37	.53850	53.533	10.312	3.0737	.45023
#1	.01185	.00291	.00160	7.3075	.11011	.02080	5.0431	.73413
#2	.01156	.00260	00036	7.2487	.31332	.02241	4.7570	.73511
#3	.01137	.00260	00053	7.3232	.39222	.02544	4.8229	.72897
Check ? High Limit Low Limit	Chk Pass							
Elem	Mo2020	Na5895	Ni2316	P_2149	Pb2203	Sb2068	Se1960	Si2124
Units	ppm							
Avg	. 00060	2.5414	. 01460	. 00748	. 00075	. 00358	. 00765	. 38532
Stddev	.00025	.0126	.00057	.00512	.00386	.00241	.00738	.00252
%RSD	41.435	.49515	3.9275	68.476	511.33	67.409	96.441	.65278
#1	.00037	2.5375	.01478	.01230	00367	.00081	.00119	.38335
#2	.00086	2.5312	.01506	.00210	.00250	.00524	.01569	.38816
#3	.00056	2.5555	.01396	.00805	.00343	.00469	.00606	.38447
Check ? High Limit Low Limit	Chk Pass							

Sample Name: L1510124901 Acquired: 10/23/2015 18:32:15 Type: Unk								
Method: ICF	P-THERMO3	3_6010_200	.7WATER_	3YLINES(v	526) Mc	de: CONC	Corr. Fa	ctor: 1.00000(
User: JYH	Custom	ID1:	Custom ID)2: (Custom ID3	:		
Comment:								
Elem	Sn1899	Sr4077	Ti3372	TI1908	V_2924	Zn2062	Zr3391	
Units	ppm	ppm	ppm	ppm	ppm	ppm	ppm	
Avg Stddev	00087 .00036	. 53983 .00071	02422 .00310	00185 .00268	00027 .00146	. 42078 .00066	02640 .11420	
%RSD	41.399	.13145	12.799	144.56	544.85	.15612	432.59	
701102	11.000	.10110	12.700	111.00	011.00	.10012	102.00	
#1	00087	.53944	02542	00407	00154	.42079	01821	
#2	00124	.53939	02654	.00112	00059	.42143	.08348	
#3	00051	.54065	02070	00261	.00132	.42011	14447	
Check ? High Limit Low Limit	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	
Int. Std. Units	Y_2243 Cts/S	Y_3600 Cts/S	Y_3774 Cts/S					
Avg	10474.	89709.	3864.9					
Stddev	9.	100. .11137	4.8 .12378					
%RSD	.08468	.11137	.12376					
#1	10482.	89731.	3861.6					
#2	10476.	89796.	3870.4					
#3	10464.	89600.	3862.8					

Sample Nar Method: ICF User: JYH Comment:		3_6010_200	.7WATER_	ired: 10/23/2015 18:36:17 Type: Unk /ATER_3YLINES(v526) Mode: CONC Corr. Fac ustom ID2: Custom ID3:				
Elem	Ag3280	Al3082	As1890	B_2496	Ba4554	Be3131	Ca4226	Cd2288
Units	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm
Avg	00015	. 05760	00119	. 10585	. 06090	.00005	69.864	. 00008
Stddev	.00108	.00127	.00324	.00127	.00063	.00011	.378	.00029
%RSD	742.57	2.2057	271.91	1.2044	1.0398	203.06	.54071	361.79
#1	.00104	.05728	00448	.10444	.06047	.00011	69.433	00011
#2	00105	.05900	00109	.10618	.06060	00007	70.021	.00042
#3	00043	.05652	.00199	.10692	.06162	.00012	70.138	00007
Check ? High Limit Low Limit	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass
Elem	Co2286	Cr2677	Cu2247	Fe2611	K_7664	Li6707	Mg2790	Mn2576
Units	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm
Avg	. 00036	.00158	. 00127	.08789	2.3977	. 01585	22.908	. 02731
Stddev	.00021	.00013	.00049	.01385	.0307	.00257	.135	.00244
%RSD	56.375	8.1151	38.153	15.762	1.2783	16.192	.59009	8.9440
#1	.00017	.00156	.00108	.08462	2.4331	.01292	22.819	.02486
#2	.00034	.00147	.00092	.10309	2.3810	.01693	22.842	.02974
#3	.00058	.00172	.00183	.07596	2.3791	.01769	23.064	.02732
Check ? High Limit Low Limit	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass
Elem	Mo2020	Na5895	Ni2316	P_2149	Pb2203	Sb2068	Se1960	Si2124
Units	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm
Avg	. 00469	13.415	.00161	. 01553	. 00065	. 00230	.00005	3.1487
Stddev	.00049	.088	.00020	.00398	.00061	.00308	.00513	.0152
%RSD	10.550	.65588	12.205	25.631	94.474	133.92	10100.	.48103
#1	.00449	13.316	.00183	.01589	.00059	.00109	00163	3.1615
#2	.00433	13.444	.00146	.01932	.00128	.00001	.00581	3.1525
#3	.00525	13.485	.00154	.01138	.00006	.00579	00403	3.1320
Check ? High Limit Low Limit	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass

Sample Name: L1510134201 Acquired: 10/23/2015 18:36:17 Type: Unk								
Method: ICF	P-THERMO3	3_6010_200	.7WATER_	3YLINES(v	526) Mc	de: CONC	Corr. Fa	ctor: 1.000000
User: JYH	Custom	ID1:	Custom ID)2: (Custom ID3	:		
Comment:								
Elem	Sn1899	Sr4077	Ti3372	TI1908	V_2924	Zn2062	Zr3391	
Units	ppm	ppm	ppm	ppm	ppm	ppm	ppm	
Avg Stddev	00038 .00075	. 44512 .00216	01191 .00381	00325 .00088	00006 .00040	. 00133 .00012	. 21676 .13704	
%RSD	196.55	.48614	31.967	27.024	710.64	8.8692	63.219	
701 (OD	150.55	.+1001-	31.307	27.024	710.04	0.0032	03.213	
#1	00018	.44312	01452	00231	.00028	.00146	.19052	
#2	00121	.44741	01366	00405	.00005	.00127	.36502	
#3	.00025	.44483	00754	00339	00050	.00125	.09475	
Check ? High Limit Low Limit	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	
Int. Std.	Y_2243	Y_3600	Y_3774					
Units	Cts/S	Cts/S	Cts/S					
Avg	10469.	89357.	3842.1					
Stddev %RSD	5. .04381	43. .04803	24.6 .64021					
70113D	.04361	.04003	.04021					
#1	10474.	89401.	3868.1					
#2	10467.	89355.	3839.0					
#3	10466.	89315.	3819.2					

Method: ICP-	-THERMO3	6010 200	7\A/ATED	OVE INITION	-OC) NA-	de: CONC	Corr Co			
Mictilioa. 101		_0010_200	./ WAILD_	STLINES(V	026) IVIO	de. CONC	Corr. Factor: 1.00000			
User: JYH	Custom	ID1:	Custom ID)2: (Custom ID3	• •				
Comment:										
Elem	Ag3280	Al3082	As1890	B_2496	Ba4554	Be3131	Ca4226	Cd2288		
Units	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm		
Avg	00002	.04313	00181	.20558	.05780	.00005	66.391 .204	.00003		
Stddev %RSD	.00057 3571.7	.00750 17.380	.00365 201.71	.00087 .42182	.00071 1.2210	.00004 72.199	.30794	.00008 290.68		
701 (OB	3371.7	17.500	201.71	.42 102	1.2210	72.100	.50754	250.00		
#1	00026	.04752	00560	.20614	.05744	.00002	66.162	00004		
#2	00042	.03448	.00169	.20458	.05734	.00009	66.457	.00000		
#3	.00063	.04740	00153	.20602	.05861	.00004	66.555	.00011		
Check?	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass		
High Limit	Onici doo	OTIKT GOO	OTILL T GOO	OTIKT GOO	OTIKT GOO	OTIKT GOO	OTILCT GOO	OTILL T GOO		
Low Limit										
- 1	0-0000	0-0077	00047	E-0011	I/ 7004	1:0707	M=0700	M0570		
Elem Units	Co2286	Cr2677	Cu2247	Fe2611	K_7664	Li6707	Mg2790	Mn2576		
Avg	ppm 00015	ppm . 00271	ppm . 00041	ppm . 06620	ppm 2.3425	ppm . 01007	ppm 22.140	ppm . 02103		
Stddev	.00031	.00069	.00082	.01274	.1088	.00489	.181	.00176		
%RSD	203.18	25.335	200.96	19.241	4.6432	48.527	.81960	8.3765		
114	00000	00400	00400	00050	0.0470	04.405	04.000	00004		
#1 #2	.00020	.00192	.00132	.06258 .05566	2.2170 2.4083	.01425 .01126	21.932 22.224	.02221 .02188		
#2 #3	00033	.00309	00020	.08035	2.4083	.00470	22.224	.02188		
#3	00034	.00511	00023	.00055	2.4022	.00470	22.200	.01301		
Check?	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass		
High Limit										
Low Limit										
Elem	Mo2020	Na5895	Ni2316	P_2149	Pb2203	Sb2068	Se1960	Si2124		
Units	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm		
Avg	.00491	14.258	.00111	.01322	00375	.00221	.00398	2.9754		
Stddev	.00009	.040	.00079	.00465	.00331	.00564	.00610	.0030		
%RSD	1.8194	.28288	71.115	35.210	88.350	255.47	153.24	.10216		
#1	.00501	14.238	.00152	.00815	00082	.00852	00261	2.9761		
#2	.00484	14.305	.00161	.01730	00309	.00045	.00943	2.9780		
#3	.00488	14.232	.00020	.01420	00735	00235	.00512	2.9721		
Check ? High Limit Low Limit	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass		

Sample Name: L1510134202 Acquired: 10/23/2015 18:40:19 Type: Unk								
Method: ICF	P-THERMO3	3_6010_200	.7WATER_	3YLINES(v	526) Mc	de: CONC	Corr. Fa	ctor: 1.00000(
User: JYH	Custom	ID1:	Custom ID)2: (Custom ID3	:		
Comment:								
Elem	Sn1899	Sr4077	Ti3372	TI1908	V_2924	Zn2062	Zr3391	
Units	ppm	ppm	ppm	ppm	ppm	ppm	ppm	
Avg Stddev	00021 .00060	. 42468 .00152	01493 .00481	00145 .00174	00038 .00080	. 00220 .00008	. 06430 .07771	
%RSD	290.26	.35845	32.185	119.93	209.78	3.4462	120.85	
701.102	200.20	100010	02.100	110.00	200.70	0.1.02	120.00	
#1	.00037	.42292	01848	00171	00082	.00211	.13957	
#2	00016	.42552	01685	00305	00087	.00222	01564	
#3	00083	.42559	00946	.00040	.00054	.00226	.06898	
Check ? High Limit Low Limit	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	
Int. Std.	Y_2243	Y_3600	Y_3774					
Units	Cts/S	Cts/S	Cts/S					
Avg	10474.	894 74 .	3815.6					
Stddev %RSD	11. .10216	57. .06392	2.5 .06511					
701 (OD	.10210	.00332	.00511					
#1	10462.	89411.	3817.9					
#2	10483.	89487.	3815.9					
#3	10476.	89523.	3813.0					

·						Type: Unk ode: CONC :	Corr. Fa	actor: 1.00000(
Elem	Ag3280	Al3082	As1890	B_2496	Ba4554	Be3131	Ca4226	Cd2288
Units	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm
Avg	00013	. 05840	00185	. 20794	. 05925	.00004	68.400	. 00033
Stddev	.00007	.00559	.00106	.00212	.00008	.00005	.114	.00019
%RSD	55.987	9.5801	57.075	1.0203	.12739	123.51	.16654	58.211
#1	00021	.05345	00076	.20841	.05916	.00003	68.444	.00025
#2	00014	.05728	00287	.20978	.05930	00001	68.270	.00054
#3	00006	.06447	00194	.20562	.05929	.00009	68.485	.00019
Check? High Limit Low Limit	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass
Elem	Co2286	Cr2677	Cu2247	Fe2611	K_7664	Li6707	Mg2790	Mn2576
Units	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm
Avg	.00035	.00098	.00072	. 07323	2.3229	. 01061	22.871	. 01959
Stddev	.00019	.00058	.00083	.02170	.0386	.00399	.096	.00337
%RSD	56.135	59.640	115.22	29.633	1.6596	37.616	.42132	17.179
#1	.00040	.00163	00023	.09612	2.3544	.01127	22.789	.02167
#2	.00013	.00081	.00110	.05295	2.3343	.01423	22.847	.01571
#3	.00051	.00050	.00130	.07064	2.2799	.00633	22.977	.02139
Check ? High Limit Low Limit	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass
Elem	Mo2020	Na5895	Ni2316	P_2149	Pb2203	Sb2068	Se1960	Si2124
Units	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm
Avg	. 00476	14.660	.00092	. 01598	00144	. 00167	. 00766	3.0821
Stddev	.00060	.063	.00039	.00314	.00303	.00453	.00587	.0108
%RSD	12.649	.43024	42.600	19.661	210.80	271.09	76.674	.35014
#1	.00545	14.730	.00133	.01521	00469	00150	.00898	3.0881
#2	.00437	14.609	.00087	.01329	.00130	.00685	.01276	3.0885
#3	.00446	14.640	.00055	.01944	00092	00035	.00124	3.0696
Check ? High Limit Low Limit	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass

Sample Nan			•	/23/2015 18		Type: Unk		
Method: ICP			_	•	,	de: CONC	Corr. Fa	ctor: 1.00000(
User: JYH	Custom	ID1:	Custom ID	02: (Custom ID3	•		
Comment:								
Elem	Sn1899	Sr4077	Ti3372	TI1908	V_2924	Zn2062	Zr3391	
Units	ppm	ppm	ppm	ppm	ppm	ppm	ppm	
Avg Stddev	00097 .00066	. 43601 .00155	01285 .00547	00284 .00129	<mark>00034</mark> .00108	. <mark>00189</mark> .00015	. 05583 .12863	
%RSD	67.820	.35487	42.531	45.370	315.19	7.8313	230.39	
701 (OD	07.020	.55407	72.001	40.070	010.10	7.0010	200.00	
#1	00106	.43736	01438	00205	00132	.00182	.05332	
#2	00027	.43432	00678	00214	00053	.00206	.18570	
#3	00158	.43636	01739	00432	.00082	.00180	07153	
Check?	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	
High Limit Low Limit								
Int. Std.	Y 2243	Y_3600	Y_3774					
Units	Cts/S	Cts/S	Cts/S					
Avg	10465.	89795.	3829.0					
Stddev	18.	289.	18.8					
%RSD	.17338	.32234	.48987					
#1	10466.	89594.	3809.3					
#2	10447.	89663.	3846.6					
#3	10483.	90127.	3831.2					

•						Type: Unk ode: CONC :	Corr. Fa	actor: 1.00000(
Elem	Ag3280	Al3082	As1890	B_2496	Ba4554	Be3131	Ca4226	Cd2288
Units	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm
Avg	. 00073	. 04201	00100	. 03643	. 06129	.00002	69.946	. 00009
Stddev	.00182	.00142	.00078	.00530	.00060	.00002	.205	.00008
%RSD	250.46	3.3695	78.076	14.549	.98219	82.301	.29375	93.448
#1	.00214	.04342	00184	.03088	.06072	.00002	69.742	.00013
#2	.00138	.04204	00089	.04143	.06123	.00001	69.943	00001
#3	00133	.04058	00028	.03699	.06192	.00005	70.153	.00015
Check ? High Limit Low Limit	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass
Elem	Co2286	Cr2677	Cu2247	Fe2611	K_7664	Li6707	Mg2790	Mn2576
Units	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm
Avg	. 00026	. 00121	.00119	. 11333	2.3996	. 01116	22.252	. 06576
Stddev	.00029	.00084	.00226	.01562	.0094	.00254	.159	.00161
%RSD	111.90	69.500	190.30	13.787	.39262	22.798	.71530	2.4508
#1	.00060	.00187	00085	.09618	2.4001	.00842	22.071	.06731
#2	.00014	.00026	.00080	.11703	2.3899	.01345	22.371	.06587
#3	.00005	.00149	.00361	.12677	2.4087	.01159	22.314	.06409
Check ? High Limit Low Limit	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass
Elem	Mo2020	Na5895	Ni2316	P_2149	Pb2203	Sb2068	Se1960	Si2124
Units	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm
Avg	. 00443	13.495	.00071	. 00692	00232	. 00268	.00193	3.2199
Stddev	.00049	.050	.00038	.00542	.00218	.00343	.00774	.0173
%RSD	10.975	.37204	52.738	78.350	93.799	128.14	401.12	.53852
#1	.00485	13.437	.00039	.00425	.00019	.00643	.00590	3.2260
#2	.00389	13.530	.00062	.01315	00369	.00191	00699	3.2333
#3	.00454	13.517	.00113	.00335	00347	00030	.00688	3.2003
Check ? High Limit Low Limit	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass

Sample Nan			cquired: 10/			Type: Unk		
Method: ICF			_	•	,	de: CONC	Corr. Fa	ctor: 1.00000(
User: JYH	Custom	ID1:	Custom ID)2: (Custom ID3	•		
Comment:								
Elem	Sn1899	Sr4077	Ti3372	TI1908	V_2924	Zn2062	Zr3391	
Units	ppm	ppm	ppm	ppm	ppm	ppm	ppm	
Avg	00077	.43915	00924	00155	.00025	.00165	.05733	
Stddev	.00021	.00204	.00533	.00101	.00046	.00008	.15159	
%RSD	27.621	.46543	57.709	65.241	186.81	4.9444	264.42	
#1	00099	.43828	00338	00271	.00017	.00157	.01632	
#2	00057	.44149	01380	00098	.00074	.00166	06954	
#3	00076	.43769	01054	00095	00017	.00173	.22521	
Check?	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	
High Limit Low Limit								
Int. Std.	Y 2243	Y_3600	Y_3774					
Units	Cts/S	Cts/S	Cts/S					
Avg	10447.	89693.	3820.6					
Stddev	8.	99.	7.9					
%RSD	.07649	.11078	.20564					
#1	10439.	89807.	3828.8					
#2	10455.	89637.	3819.9					
#3	10447.	89634.	3813.1					

Sample Name: CCV Acquired: 10/23/2015 18:52:27 Type: QC Method: ICP-THERMO3_6010_200.7WATER_3YLINES(v526) Mode: CONC Corr. Factor: 1.000000 User: JYH Custom ID1: Custom ID2: Custom ID3: Comment:								
Elem	Ag3280	Al3082	As1890	B_2496	Ba4554	Be3131	Ca4226	
Units	ppm							
Avg	. 40006	10.097	. 40693	. 49757	1.0326	. 05101	10.204	
Stddev	.00050	.014	.00348	.00202	.0002	.00009	.015	
%RSD	.12441	.13369	.85489	.40545	.02199	.18361	.14812	
#1	.40011	10.111	.40714	.49580	1.0324	.05091	10.194	
#2	.40053	10.084	.41030	.49977	1.0325	.05102	10.198	
#3	.39954	10.097	.40335	.49715	1.0328	.05109	10.222	
Check ? Value Range	Chk Pass							
Elem	Cd2288	Co2286	Cr2677	Cu2247	Fe2611	K_7664	Li6707	
Units	ppm							
Avg	. 05054	. 20420	. 50567	. 50990	4.0522	51.813	1.0255	
Stddev	.00023	.00027	.00087	.00210	.0116	.096	.0040	
%RSD	.44703	.13366	.17229	.41210	.28558	.18460	.39533	
#1	.05042	.20451	.50623	.50869	4.0469	51.832	1.0250	
#2	.05080	.20399	.50467	.51232	4.0442	51.709	1.0297	
#3	.05039	.20410	.50611	.50868	4.0655	51.897	1.0216	
Check ? Value Range	Chk Pass							
Elem	Mg2790	Mn2576	Mo2020	Na5895	Ni2316	P_2149	Pb2203	
Units	ppm							
Avg	10.068	. 51427	1.0115	51.140	. 50941	9.9670	. 50555	
Stddev	.145	.00129	.0022	.109	.00028	.0080	.00370	
%RSD	1.4427	.25178	.21762	.21270	.05405	.08056	.73197	
#1	9.9316	.51453	1.0132	51.118	.50957	9.9701	.50876	
#2	10.221	.51287	1.0122	51.043	.50956	9.9579	.50151	
#3	10.051	.51542	1.0090	51.258	.50909	9.9730	.50639	
Check ? Value Range	Chk Pass							

Sample Nam Method: ICP User: JYH Comment:				LINES(v526	ype: QC) Mode: tom ID3:	CONC (Corr. Factor: 1.00000(
Elem Units Avg Stddev %RSD	Sb2068 ppm 1.2088 .0039 .32580	Se1960 ppm . 40666 .00452 1.1109	Si2124 ppm 5.0359 .0013 .02495	Sn1899 ppm 1.0265 .0009 .09096	Sr4077 ppm 1.0303 .0012 .11503	Ti3372 ppm 1.0415 .0015 .14492	TI1908 ppm . 50564 .00316 .62443
#1 #2 #3	1.2126 1.2047 1.2091	.40155 .41012 .40832	5.0357 5.0373 5.0349	1.0259 1.0276 1.0261	1.0300 1.0292 1.0315	1.0398 1.0426 1.0421	.50887 .50256 .50548
Check ? Value Range	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass
Elem Units Avg Stddev %RSD	V_2924 ppm 1.0227 .0021 .20719	Zn2062 ppm 1.0028 .0012 .11486	Zr3391 ppm F .66612 .18907 28.384				
#1 #2 #3	1.0244 1.0235 1.0203	1.0041 1.0023 1.0020	.62782 .49914 .87142				
Check ? Value Range	Chk Pass	Chk Pass	Chk Fail 1.0000 -10.000%				
Int. Std. Units Avg Stddev %RSD	Y_2243 Cts/S 11036. 13. .12163	Y_3600 Cts/S 93549. 144. .15351	Y_3774 Cts/S 4008.2 19.5 .48679				
#1 #2 #3	11021. 11041. 11046.	93478. 93714. 93455.	3991.1 4029.4 4003.9				

Elem	Ag3280	Al3082	As1890	B_2496	Ba4554	Be3131	Ca4226			
Units	ppm	ppm	ppm	ppm	ppm	ppm	ppm			
Avg	. 00070	. 00591	00098	. 00457	.00056	.00004	. 02148			
Stddev	.00180	.00476	.00277	.00156	.00032	.00004	.01790			
%RSD	255.99	80.617	281.58	34.039	56.900	110.34	83.321			
#1	.00012	.01136	.00170	.00361	.00031	.00007	.00106			
#2	.00273	.00376	00384	.00374	.00092	.00005	.03444			
#3	00073	.00259	00082	.00637	.00046	00001	.02894			
Check ? High Limit Low Limit	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass			
Elem	Cd2288	Co2286	Cr2677	Cu2247	Fe2611	K_7664	Li6707			
Units	ppm	ppm	ppm	ppm	ppm	ppm	ppm			
Avg	00016	.00041	00047	.00032	00095	. 32625	. 00571			
Stddev	.00024	.00035	.00083	.00098	.01088	.06479	.00124			
%RSD	144.02	86.615	176.53	309.83	1145.6	19.860	21.755			
#1	00043	.00065	00034	.00132	01064	.27457	.00428			
#2	00006	.00056	00135	00063	00303	.39894	.00628			
#3	.00000	.00000	.00029	.00025	.01081	.30525	.00656			
Check ? High Limit Low Limit	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass			
Elem	Mg2790	Mn2576	Mo2020	Na5895	Ni2316	P_2149	Pb2203			
Units	ppm	ppm	ppm	ppm	ppm	ppm	ppm			
Avg	07753	00079	.00111	. 05514	.00033	00172	00313			
Stddev	.07062	.00102	.00028	.01165	.00091	.00345	.00120			
%RSD	91.099	129.84	24.752	21.128	275.91	200.87	38.334			
#1	08759	.00009	.00141	.06384	.00052	.00205	00304			
#2	14258	00191	.00087	.04191	.00113	00474	00198			
#3	00241	00054	.00107	.05969	00066	00247	00437			
Check ? High Limit Low Limit	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass			

Sample Nam Method: ICP User: JYH Comment:	ne: CCB -THERMO3_ Custom I	6010_200.7	/23/2015 18: WATER_3YI Custom ID2:	LINES(v526)	ype: Blank) Mode: tom ID3:	CONC (Corr. Factor:	1.00000(
Elem Units Avg Stddev %RSD	Sb2068 ppm . 00263 .00311 118.03	Se1960 ppm .00753 .00136 18.112	Si2124 ppm .00250 .00190 76.020	Sn1899 ppm 00031 .00043 138.50	Sr4077 ppm . 00017 .00004 21.649	Ti3372 ppm 00316 .00126 39.897	TI1908 ppm 00190 .00169 88.867	
#1 #2 #3	00017 .00597 .00210	.00607 .00774 .00877	.00463 .00188 .00098	00075 00030 .00011	.00021 .00014 .00014	00266 00223 00460	00086 00384 00098	
Check ? High Limit Low Limit	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	
Elem Units Avg Stddev %RSD	V_2924 ppm 00076 .00062 82.087	Zn2062 ppm 00002 .00018 776.11	Zr3391 ppm F .09956 .10223 102.68					
#1 #2 #3	00132 00086 00009	00023 .00006 .00010	.16991 01771 .14647					
Check ? High Limit Low Limit	Chk Pass	Chk Pass	Chk Fail .04000 04000					
Int. Std. Units Avg Stddev %RSD	Y_2243 Cts/S 11214. 7. .06670	Y_3600 Cts/S 95656 . 100. .10476	Y_3774 Cts/S 3997.3 5.9 .14650					
#1 #2 #3	11205. 11219. 11217.	95702. 95725. 95541.	4004.0 3993.0 3995.0					

•	nme: LLCC\ P-THERM(Custo	•			-	/pe: Unk Mode: C 1 ID3:	ONC C	Corr. Factor	: 1.00000(
Elem Units Avg Stddev %RSD	Ag3280 ppm . 00896 .00070 7.7930	Al3082 ppm . 17504 .00437 2.4961		ppm . 07761 .00170	Ba4554 ppm . 00896 .00053 5.9086	Be3131 ppm . 00168 .00001 .30523	. 41421 .04244	Cd2288 ppm .00071 .00006 8.2367	
#1 #2 #3	.00832 .00887 .00970	.17956 .17473 .17084	.00595 .00596 .00644	.07863	.00839 .00943 .00906	.00167 .00168 .00168	.37923 .40199 .46142	.00067 .00078 .00069	
Check? High Limit Low Limit	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	
Elem Units Avg Stddev %RSD	Co2286 ppm . 00478 .00028 5.7935	Cr2677 ppm . 00417 .00049 11.837	ppm . 00474 .00090	ppm . 08214 .00485	K_7664 ppm 1.0873 .1529 14.059	Li6707 ppm . 08659 .00257 2.9732	ppm . 50435 .03529	Mn2576 ppm . 00764 .00046 6.0854	
#1 #2 #3	.00493 .00494 .00446	.00381 .00396 .00473	.00554 .00492 .00376	.08680	1.2265 .92372 1.1116	.08682 .08904 .08390	.54250 .49767 .47287	.00812 .00760 .00720	
Check? High Limit Low Limit	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	
Elem Units Avg Stddev %RSD	Mo2020 ppm . 00812 .00024 2.9333	Na5895 ppm . 48791 .01608 3.2956	Ni2316 ppm . 01749 .00040 2.2677	— ppm . 77947	Pb2203 ppm . 00661 .00324 48.983	Sb2068 ppm . 07519 .00249 3.3174	ppm . 02034	Si2124 ppm . 79045 .00229 .28954	
#1 #2 #3	.00823 .00785 .00829	.48136 .47613 .50623		.78385 .78745 .76712	.01024 .00401 .00559	.07751 .07550 .07255	.02518 .01859 .01727	.79308 .78927 .78898	
Check ? High Limit Low Limit	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	

Method: IC	me: LLCC\)3_6010_2		R_3YLINE	S(v526)	/pe: Unk Mode: C	ONC C	Corr. Factor: 1.000000
User: JYH Comment:	Custo	m ID1:	Custor	n IDZ:	Custon	ו וט3:		
Elem Units Avg Stddev %RSD	Sn1899 ppm . 41641 .00161 .38709	Sr4077 ppm . 04159 .00013 .31998	Ti3372 ppm . 02145 .00395 18.394	TI1908 ppm . 16585 .00225 1.3548		Zn2062 ppm . 01797 .00024 1.3551	Zr3391 ppm 17.871 .143 .79864	
#1 #2 #3	.41801 .41645 .41478	.04149 .04174 .04153	.02320 .02421 .01693	.16600 .16354 .16802	.00762 .00610 .00760	.01796 .01822 .01773	17.911 17.713 17.990	
Check? High Limit Low Limit	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	
Int. Std. Units Avg Stddev %RSD	Y_2243 Cts/S 11293. 17. .14993	Y_3600 Cts/S 96598 . 216. .22388	Y_3774 Cts/S 4031 .1 22.9 .56837					
#1 #2 #3	11290. 11278. 11311.	96477. 96469. 96848.	4004.6 4043.6 4045.0					

Sample Name: LLCCV Acquired: 10/23/2015 19:04:10 Type: Unk									
Method: ICF	ethod: ICP-THERMO3_6010_200.7WATER_3YLINES(v526)					de: CONC	Corr. Factor: 1.000000		
User: JYH	Custom	ID1:	Custom ID)2: (Custom ID3				
Comment:									
Elem Units	Ag3280	Al3082	As1890	B_2496	Ba4554	Be3131	Ca4226	Cd2288	
Avg	ppm . 01135	ppm . 00430	ppm . 09876	ppm . 00117	ppm . 01215	ppm . 01130	ppm 00276	ppm . 01154	
Stddev	.00194	.00141	.00422	.00199	.00074	.00008	.01340	.00039	
%RSD	17.088	32.699	4.2742	169.70	6.1306	.67907	485.33	3.3410	
#1	.01322	.00375	.10336	.00313	.01136	.01139	.00718	.01118	
#2	.01149	.00589	.09507	00085	.01223	.01127	01801	.01195	
#3	.00935	.00325	.09785	.00124	.01285	.01125	.00255	.01151	
Check?	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	
High Limit Low Limit									
LOW LITTIL									
Elem	Co2286	Cr2677	Cu2247	Fe2611	K_7664	Li6707	Mg2790	Mn2576	
Units	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	
Avg Stddev	. <mark>00014</mark> .00028	. 02148 .00011	. <mark>02344</mark> .00118	00743 .02011	. 15460 .04748	. <mark>00585</mark> .00261	02029 .06217	00117 .00018	
%RSD	203.57	.53359	5.0341	270.46	30.714	44.519	306.37	15.209	
#1	00012	.02142	.02216	00287	.17349	.00531	.02430	00120	
#2 #3	.00010	.02141 .02161	.02369 .02448	02943 .01000	.18973 .10058	.00356	.00613 09131	00133 00098	
#3	.00043	.02101	.02440	.01000	.10036	.00009	09131	00096	
Check?	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	
High Limit Low Limit									
LOW LITTIL									
Elem	Mo2020	Na5895	Ni2316	P_2149	Pb2203	Sb2068	Se1960	Si2124	
Units	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	
Avg Stddev	. 00033 .00044	. 05191 .01462	. 04348 .00060	. <mark>00604</mark> .00421	. 10495 .00426	. 19321 .00352	. 08814 .00096	. 00025 .00258	
%RSD	134.81	28.165	1.3825	69.603	4.0619	1.8211	1.0843	1050.9	
#1 #2	00006	.05718	.04405	.00228	.10985	.19599	.08828	.00308	
#2 #3	.00080	.06317 .03539	.04353 .04286	.01058 .00526	.10290 .10209	.18925 .19438	.08712 .08902	00196 00038	
Ir O	.00023	.00000	.04200	.00020	.10203	.13430	.00002	00000	
Check ? High Limit Low Limit	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	

Sample Nar	ne: LLCCV	Acquire	d: 10/23/20 ⁻	15 19:04:10	Type: l	Jnk		
Method: ICF	P-THERMO3	3_6010_200	.7WATER_	3YLINES(v	526) Mc	de: CONC	Corr. Fa	ctor: 1.000000
User: JYH	Custom	ID1:	Custom ID)2: (Custom ID3	:		
Comment:								
Elem	Sn1899	Sr4077	Ti3372	TI1908	V_2924	Zn2062	Zr3391	
Units	ppm	ppm	ppm	ppm	ppm	ppm	ppm	
Avg Stddev	00006 .00104	. <mark>00019</mark> .00012	00099 .00101	. 10694 .00114	00020 .00048	. 02168 .00013	. 17220 .29480	
%RSD	1623.4	64.724	101.76	1.0633	246.60	.60572	171.20	
#1	00117	.00008	00003	.10572	00072	.02158	.29487	
#2 #2	.00090	.00016	00090	.10714	00009	.02163	.38586	
#3	.00007	.00032	00205	.10797	.00023	.02183	16413	
Check ? High Limit Low Limit	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	
Int. Std.	Y 2243	Y_3600	Y_3774					
Units	_Cts/S	Cts/S	Cts/S					
Avg	11381.	97935.	4062.8					
Stddev %RSD	32. .28506	134. .13643	1.1 .02710					
701 (OD	.20000	.10040	.02710					
#1	11385.	97865.	4063.6					
#2	11411.	97851.	4063.3					
#3	11347.	98089.	4061.5					

Page 358

2.1.2 Metals ICP-MS Data

2.1.2.1 Summary Data

Lab Project #: 2551.096

Project Name: Longhorn Army Ammunition

Lab Contact: Stephanie Mossburg

Certificate of Analysis

Sample #: L15101055-01 PrePrep Method: N/A Instrument: ICP-MS2

 Client ID:
 35AWW13F-101515
 Prep Method:
 3015
 Prep Date:
 10/19/2015 13:28

 Matrix:
 Water
 Analytical Method:
 6020A
 Cal Date:
 10/27/2015 13:15

 Workgroup #:
 WG543486
 Analyst:
 BKT
 Run Date:
 10/27/2015 13:57

Collect Date: 10/15/2015 14:00 **Dilution:** 1 **File ID:** NI.102715.135713

Sample Tag: 01 Units: mg/L

Analyte	CAS#	Result	Qual	LOQ	LOD	DL
Antimony, Total	7440-36-0	0.00607		0.00200	0.00100	0.000500
Arsenic, Total	7440-38-2	0.00170	J	0.00200	0.00100	0.000500
Barium, Total	7440-39-3	0.0317		0.00600	0.00300	0.00150
Cadmium, Total	7440-43-9	0.000585	J	0.00120	0.000600	0.000300
Chromium, Total	7440-47-3	0.00357	J	0.00400	0.00200	0.00100
Cobalt, Total	7440-48-4	0.00465		0.00200	0.00100	0.000500
Copper, Total	7440-50-8	0.0116		0.00400	0.00200	0.00100
Lead, Total	7439-92-1	0.00139	J	0.00200	0.00100	0.000500
Nickel, Total	7440-02-0	0.0849		0.00800	0.00400	0.00200
Silver, Total	7440-22-4	0.00100	U	0.00200	0.00100	0.000500
Thallium, Total	7440-28-0	0.000200	U	0.000400	0.000200	0.000100
Vanadium, Total	7440-62-2	0.00110	J	0.00200	0.00100	0.000500
Zinc, Total	7440-66-6	0.116		0.0500	0.0250	0.0125

J	Estimated value; the analyte concentration was less than the LOQ.
J	Estimated value ; the analyte concentration was greater than the highest standard
U	Analyte was not detected. The concentration is below the reported LOD.

Page 1 of 3 Generated at Oct 30, 2015 10:22

Lab Project #: 2551.096

Project Name: Longhorn Army Ammunition

Lab Contact: Stephanie Mossburg

Certificate of Analysis

Sample #: L15101055-01 PrePrep Method: N/A Instrument: ICP-MS2

 Client ID:
 35AWW13F-101515
 Prep Method:
 3015
 Prep Date:
 10/19/2015 13:28

 Matrix:
 Water
 Analytical Method:
 6020A
 Cal Date:
 10/27/2015 13:15

 Workgroup #:
 WG543486
 Analyst:
 BKT
 Run Date:
 10/27/2015 14:03

 Collect Date:
 10/15/2015 14:00
 Dilution:
 5
 File ID:
 NI.102715.140335

Sample Tag: DL01 Units: mg/L

Analyte	CAS#	Result	Qual	LOQ	LOD	DL
Manganese, Total	7439-96-5	0.708		0.0200	0.0100	0.00500

J	Estimated value ; the analyte concentration was less than the LOQ.
U	Analyte was not detected. The concentration is below the reported LOD.

Lab Project #: 2551.096

Project Name: Longhorn Army Ammunition

Lab Contact: Stephanie Mossburg

Page 3 of 3 Generated at Oct 30, 2015 10:22

2.1.2.2 QC Summary Data

Example 6020 Calculations Perkin Elmer NexION 300X

1.0 Initial Calibration (ICAL) Parameters

The system performs linear regression from data consisting of a blank and three standards.

2.0 Calculating the concentration (C) of an element in water using data from prep log, run log, and quantitation report (note:the data system performs this calculation automatically when correction factors have been entered):

$$Cx = Cs \times \frac{Vf}{Vi} \times D$$

Where:	Example:
Cs = Concentration computed by the data system (ug/L)	0.1
Vf = Final volume	100
Vi = Initial volume	40
D = Dilution factor as a multiplier (10X = 10)	1
Cx = Concentration of element in (ug/L)	0.25

3.0 Calculating the concentration (C) of an element in soil using data from prep log, run log, and quantitation report (note: the data system performs this calculation automatically when correction factors have been entered):

$$Cx = Cs \times \frac{Vf}{Vi} \times D$$

Where:	Example:
Cs = Concentration computed by the data system (ug/L)	0.1
Vf = Final volume	200
Vi = Initial volume	0.5
D = Dilution factor as a multiplier (10X = 10)	1
Cx = Concentration of element in (ug/kg)	40

4.0 Adjusting the concentration to dry weight:

$$Cdry = \frac{Cx \times 100}{Px}$$

Where:	Example:
Cx = Concentration calculated as received (wet basis)	40
Px = Percent solids of sample (%wt)	80
Cdry = Concentration calculated as dry weight (ug/kg)	50

50 ug/kg = 0.050 mg/kg

Perkin Elmer NexION ICP/MS

STANDARDS KEY

QC Std 1 - ICV

QC Std 2 - ICB

QC Std 3 - LLICV

QC Std 4 - ICSA

QC Std 5 - ICSAB

QC Std 6 - CCV

QC Std 7 - CCB

QC Std 8 - LLCCV

Calibration Solutions

Analyte	Stock Conc. (mg/L)	S1 (mg/L)	S2 (mg/L)	S3 (mg/L)	S4 (mg/L)
Al	10	0	0.00005	0.05	0.1
Sb	10	0	0.00005	0.05	0.1
As	10	0	0.00005	0.05	0.1
Ba	10	0	0.00005	0.05	0.1
Be	10	0	0.00005	0.05	0.1
Ca	1000	0	0.005	5	10
Cd	10	0	0.0005	0.05	0.1
Cr	10	0	0.0005	0.05	0.1
Со	10	0	0.0005	0.05	0.1
Cu	10	0	0.0005	0.05	0.1
Fe	1000	0	0.005	5	10
Pb	10	0	0.00005	0.05	0.1
Mg	1000	0	0.005	5	10
Mn	10	0	0.00005	0.05	0.1
Ni	10	0	0.00005	0.05	0.1
K	1000	0	0.005	5	10
Se	10	0	0.00005	0.05	0.1
Ag	10	0	0.00005	0.05	0.1
Na	1000	0	0.005	5	10
Tl	10	0	0.00005	0.05	0.1
V	10	0	0.00005	0.05	0.1
U	1000	0	0.00005	0.05	0.1
Zn	10	0	0.00005	0.05	0.1

Workgroup: WG543446

Analyst: VC

Spike Analyst: VC

Method: 3015

Balance: BAL016

Instrument: MW-3

Instrument Start: 10/19/2015 12:51

SOP: ME407 Revison 18

Spike Solution: STD71855

Spike Witness: ERP

Run Date: 10/19/2015 12:48 40 & 50 ML. DIGESTION TUCOA18222

HNO3 Lot #: COA18442

MS Filters- fisher-Lot#rRGT32947

	SAMPLE #	Туре	Matrix	Initial Amount	Final Volume	Initial Vessel Wt	Final Vessel Wt	Spike Amount	Due Date
1	WG543446-02	BLANK	1	20 mL	50 mL	182.82 g	182.817 g		
2	WG543446-04	FLT_BLK	1	20 mL	50 mL	181.992 g	181.977 g		
3	WG543446-03	LCS	1	20 mL	50 mL	184.478 g	184.481 g	.25 mL	
4	L15100882-01	SAMP	1	20 mL	50 mL	182.113 g	182.101 g		10/26/15
5	L15100882-02	SAMP	1	20 mL	50 mL	182.53 g	182.502 g		10/26/15
6	L15100882-03	SAMP	1	20 mL	50 mL	182.235 g	182.211 g		10/26/15
7	L15100882-04	SAMP	1	20 mL	50 mL	184.776 g	184.766 g		10/26/15
8	L15100882-05	SAMP	1	20 mL	50 mL	183.835 g	183.819 g		10/26/15
9	L15100942-01	SAMP	2	20 mL	50 mL	184.318 g	184.315 g		10/22/15
10	L15101031-01	SAMP	2	20 mL	50 mL	182.339 g	182.31 g		10/23/15
11	L15101055-01	SAMP	1	20 mL	50 mL	184.613 g	184.611 g		10/27/15
12	L15101056-01	SAMP	2	20 mL	50 mL	183.088 g	183.041 g		10/23/15
13	L15101086-02	SAMP	2	20 mL	50 mL	181.084 g	181.037 g		10/23/15
14	L15101089-01	SAMP	2	20 mL	50 mL	182.537 g	182.521 g		10/23/15
15	WG543446-01	REF	2	20 mL	50 mL	183.119 g	183.082 g		
16	L15101090-01	SAMP	2	20 mL	50 mL	183.119 g	183.082 g		10/23/15
17	WG543446-05	DUP	1	20 mL	50 mL	181.707 g	181.692 g		
18	WG543446-06	MS	1	20 mL	50 mL	185.048 g	185.028 g	.25 mL	
19	WG543446-07	MSD	1	20 mL	50 mL	181.622 g	181.614 g	.25 mL	

L15101056-01 FILTERED DIGESTATE

Analyst: Vul Collen

Reviewer: Eun Poten

MW_DIG - Modified 09/30/2009

PDF ID: 4449868
Report generated: 10/19/2015 13:57

Microbac

Instrument Run Log

Instrument:	ICP-MS2	_ Dataset:	102715A.REP	
Analyst1:	BKT	Analyst2:	N/A	_
Method:	6020/6020A/200.8	SOP:	ME700A	Rev: 2

Maintenance Log ID: __

 Calibration Std:
 STD72938
 ICV Std:
 STD72939
 Post Spike:
 STD69341

 ICSA:
 STD72742
 ICSAB:
 STD72743
 Int. Std:
 RGT31676

 CCV:
 STD72848
 LLCCV:
 STD73228
 Tuning Sol:
 STD72923

Stannous : _____ Hydroxylamine : ____

Workgroups: <u>543486,544124,544216,544595</u>

Comments:

Seq.	File ID	Sample	ID	Prep	Dil	Reference	Date/Time
1	NI.102715.130254	Blank	Blank		1		10/27/15 13:02
2	NI.102715.130605	WG544562-01	Calibration Point		1		10/27/15 13:06
3	NI.102715.130917	WG544562-02	Calibration Point		1		10/27/15 13:09
4	NI.102715.131228	WG544562-03	Calibration Point		1		10/27/15 13:12
5	NI.102715.131540	WG544562-04	Calibration Point		1		10/27/15 13:15
6	NI.102715.131853	WG544562-05	Initial Calibration Verification		1		10/27/15 13:18
7	NI.102715.132205	WG544562-06	Initial Calib Blank		1		10/27/15 13:22
8	NI.102715.132518	WG544562-07	Low Level Initial Calibration V		1		10/27/15 13:25
9	NI.102715.132829	WG544562-08	Interference Check		1		10/27/15 13:28
10	NI.102715.133140	WG544562-09	Interference Check		1		10/27/15 13:31
11	NI.102715.133453	WG544562-10	CCV		1		10/27/15 13:34
12	NI.102715.133804	WG544562-11	ССВ		1		10/27/15 13:38
13	NI.102715.134116	WG543446-02	Method/Prep Blank	20/50	1		10/27/15 13:41
14	NI.102715.134427	WG543446-03	Laboratory Control S	20/50	1		10/27/15 13:44
15	NI.102715.134738	WG543446-01	Reference Sample		5	L15101090-01	10/27/15 13:47
16	NI.102715.135049	WG543446-06	Matrix Spike	20/50	5	L15101090-01	10/27/15 13:50
17	NI.102715.135401	WG543446-07	Matrix Spike Duplica	20/50	5	L15101090-01	10/27/15 13:54
18	NI.102715.135713	L15101055-01	35AWW13F-101515	20/50	1		10/27/15 13:57
19	NI.102715.140024	WG543486-03	Post Digestion Spike		1	L15101055-01	10/27/15 14:00
20	NI.102715.140335	WG543486-04	Serial Dilution		5	L15101055-01	10/27/15 14:03
21	NI.102715.140647	WG543486-04	Serial Dilution		25	L15101055-01	10/27/15 14:06
22	NI.102715.140957	WG543486-04	Serial Dilution		125	L15101055-01	10/27/15 14:09
23	NI.102715.141311	WG544562-12	CCV		1		10/27/15 14:13
24	NI.102715.141623	WG544562-13	ССВ		1		10/27/15 14:16
25	NI.102715.144129	WG544562-14	Low Level Continuing Calibra		1		10/27/15 14:41
26	NI.102715.151622	L15101352-02	8912L	20/50	1		10/27/15 15:16
27	NI.102715.151934	L15101148-09	35BWW04F-101915	20/50	1		10/27/15 15:19
28	NI.102715.152245	L15101148-11	35BWW12F-101915	20/50	1		10/27/15 15:22
29	NI.102715.152556	L15101148-02	35BWW05F-101915	20/50	5		10/27/15 15:25
30	NI.102715.152908	L15101148-03	35BWW06-101915	20/50	5		10/27/15 15:29
31	NI.102715.153219	L15101148-04	35BWW06FD-101915	20/50	5		10/27/15 15:32
32	NI.102715.153531	L15101148-12	35BWW09-101915	20/50	5		10/27/15 15:35
33	NI.102715.153844	WG544562-15	CCV		1		10/27/15 15:38
34	NI.102715.154155	WG544562-16	ССВ		1		10/27/15 15:41

Page: 1 Approved: October 29, 2015

Maren Beery

Instrument Run Log

Instrument:	ICP-MS2	Dataset:	102715A.REP	
Analyst1:	BKT	Analyst2:	N/A	
Method:	6020/6020A/200.8	SOP:	ME700A	Rev: 2
Maintenance Log ID:				

 Calibration Std:
 STD72938
 ICV Std:
 STD72939
 Post Spike:
 STD69341

 ICSA:
 STD72742
 ICSAB:
 STD72743
 Int. Std:
 RGT31676

 CCV:
 STD72848
 LLCCV:
 STD73228
 Tuning Sol:
 STD72923

Stannous : _____ Hydroxylamine : ____

Workgroups: 543486,544124,544216,544595

Comments:

Seq.	File ID	Sample	ID	Prep	Dil	Reference	Date/Time
35	NI.102715.154613	WG544562-17	Low Level Continuing Calibra		1		10/27/15 15:46
36	NI.102715.161039	WG544075-03	Method/Prep Blank	20/50	1		10/27/15 16:10
37	NI.102715.161351	WG544075-04	Laboratory Control S	20/50	1		10/27/15 16:13
38	NI.102715.161702	WG544075-01	Reference Sample		5	L15101215-10	10/27/15 16:17
39	NI.102715.162014	WG544075-06	Matrix Spike	20/50	5	L15101215-10	10/27/15 16:20
40	NI.102715.162325	WG544075-07	Matrix Spike Duplica	20/50	5	L15101215-10	10/27/15 16:23
41	NI.102715.162637	L15101213-01	FLUME		1		10/27/15 16:26
42	NI.102715.163642	L15101215-01	35BWW07-102015	20/50	5		10/27/15 16:36
43	NI.102715.164341	WG544216-05	Post Digestion Spike		5	L15101215-01	10/27/15 16:43
44	NI.102715.164653	WG544216-06	Serial Dilution		25	L15101215-01	10/27/15 16:46
45	NI.102715.165006	WG544562-18	CCV		1		10/27/15 16:50
46	NI.102715.165317	WG544562-19	ССВ		1		10/27/15 16:53
47	NI.102715.170925	L15101215-03	35BWW01F-102015	20/50	5		10/27/15 17:09
48	NI.102715.171236	L15101215-04	LHSMW58-102015	20/50	5		10/27/15 17:12
49	NI.102715.171547	L15101215-05	LHSMW58FD-102015	20/50	5		10/27/15 17:15
50	NI.102715.171859	L15101215-06	35BWW03-102015	20/50	5		10/27/15 17:18
51	NI.102715.172210	L15101215-07	35BWW08-102015	20/50	5		10/27/15 17:22
52	NI.102715.172521	L15101215-09	35BWW13F-102015	20/50	5		10/27/15 17:25
53	NI.102715.173351	L15101215-04	LHSMW58-102015	20/50	1		10/27/15 17:33
54	NI.102715.173702	L15101215-05	LHSMW58FD-102015	20/50	1		10/27/15 17:37
55	NI.102715.174013	L15101215-07	35BWW08-102015	20/50	1		10/27/15 17:40
56	NI.102715.174554	WG544075-05	Filter Blank		1		10/27/15 17:45
57	NI.102715.174907	WG544562-20	CCV		1		10/27/15 17:49
58	NI.102715.175218	WG544562-21	ССВ		1		10/27/15 17:52
59	NI.102715.175624	WG544562-22	Low Level Continuing Calibra		1		10/27/15 17:56
60	NI.102715.180210	L15101213-01	FLUME	20/50	10		10/27/15 18:02
61	NI.102715.180520	L15101213-02	FLUME	20/50	10		10/27/15 18:05
62	NI.102715.180832	L15101213-03	201 EFF	20/50	10		10/27/15 18:08
63	NI.102715.181144	L15101213-04	201 EFF	20/50	10		10/27/15 18:11
64	NI.102715.181456	L15101213-05	202 EFF	20/50	10		10/27/15 18:14
65	NI.102715.181807	L15101213-06	202 EFF	20/50	10		10/27/15 18:18
66	NI.102715.182119	L15101213-07	EMERGENCY BASIN	20/50	10		10/27/15 18:21
67	NI.102715.182430	L15101213-08	EMERGENCY BASIN	20/50	10		10/27/15 18:24
68	NI.102715.182742	WG544562-23	CCV		1		10/27/15 18:27
			1				

Page: 2 Approved: October 29, 2015

Maren Beery

Microbac

Instrument Run Log

Instrument:	ICP-MS2	Dataset:	102715A.REP	
Analyst1:	BKT	Analyst2:	N/A	
Method:	6020/6020A/200.8	SOP:	ME700A	Rev: 2
Maintenance Log ID:		-		
Calibration Std: STD	172938	ICV Std: ST	D72939	Post Snike: STD69341

 ICSA:
 STD72742
 ICSAB:
 STD72743
 Int. Std:
 RGT31676

 CCV:
 STD72848
 LLCCV:
 STD73228
 Tuning Sol:
 STD72923

Stannous : ____ Hydroxylamine : ____

Workgroups: <u>543486,544124,544216,544595</u>

Comments:

Seq.	File ID	Sample	ID	Prep	Dil	Reference	Date/Time
69	NI.102715.183054	WG544562-24	ССВ		1		10/27/15 18:30
70	NI.102715.184709	WG544285-02	Method/Prep Blank	20/50	1		10/27/15 18:47
71	NI.102715.185021	WG544285-03	Laboratory Control S	20/50	1		10/27/15 18:50
72	NI.102715.185332	L15101224-10	MW 5		1	WG544285-01	10/27/15 18:53
73	NI.102715.185642	WG544285-04	Duplicate	20/50	1	L15101224-10	10/27/15 18:56
74	NI.102715.185953	WG544285-05	Matrix Spike	20/50	1	L15101224-10	10/27/15 18:59
75	NI.102715.190305	WG544285-06	Matrix Spike Duplica	20/50	1	L15101224-10	10/27/15 19:03
76	NI.102715.190616	L15101224-02	MW 1	20/50	1		10/27/15 19:06
77	NI.102715.190927	WG544595-01	Post Digestion Spike		1	L15101224-02	10/27/15 19:09
78	NI.102715.191239	WG544595-02	Serial Dilution		5	L15101224-02	10/27/15 19:12
79	NI.102715.191550	WG544595-02	Serial Dilution		25	L15101224-02	10/27/15 19:15
80	NI.102715.191903	WG544562-25	CCV		1		10/27/15 19:19
81	NI.102715.192214	WG544562-26	ССВ		1		10/27/15 19:22
82	NI.102715.192527	L15101224-04	MW 2	20/50	1		10/27/15 19:25
83	NI.102715.192838	L15101224-06	MW 3	20/50	1		10/27/15 19:28
84	NI.102715.193150	L15101224-08	MW 4	20/50	1		10/27/15 19:31
85	NI.102715.193501	L15101224-12	MW 6	20/50	1		10/27/15 19:35
86	NI.102715.193812	L15101224-14	MW 7	20/50	1		10/27/15 19:38
87	NI.102715.194123	L15101224-16	MW 8	20/50	1		10/27/15 19:41
88	NI.102715.194435	L15101224-18	DUPLICATE	20/50	1		10/27/15 19:44
89	NI.102715.194746	L15101224-20	FIELD BLANK	20/50	1		10/27/15 19:47
90	NI.102715.195100	WG544562-27	CCV		1		10/27/15 19:51
91	NI.102715.195411	WG544562-28	ССВ		1		10/27/15 19:54
92	NI.102715.195724	L15101339-01	LEACHATE	20/50	50		10/27/15 19:57
93	NI.102715.200035	L15101413-01	15J1230-01	20/50	1		10/27/15 20:00
94	NI.102715.200346	L15101423-01	J5J0452-01	20/50	1		10/27/15 20:03
95	NI.102715.200658	L15101429-01	V5J0336-02	20/50	1		10/27/15 20:06
96	NI.102715.201009	L15101430-01	V5J0337-02	20/50	1		10/27/15 20:10
97	NI.102715.201320	L15101431-01	V5J0340-02	20/50	5		10/27/15 20:13
98	NI.102715.201632	L15101432-01	V5J0357-01	20/50	5		10/27/15 20:16
99	NI.102715.201943	L15101434-01	V5J0341-02	20/50	1		10/27/15 20:19
100	NI.102715.202254	L15101441-01	V5J0338-02	20/50	1		10/27/15 20:22
101	NI.102715.202608	WG544562-29	CCV		1		10/27/15 20:26
102	NI.102715.202919	WG544562-30	ССВ		1		10/27/15 20:29
		1	1			1	

Page: 3 Approved: October 29, 2015

Maren Beery

Checklist ID: 107678894233

Microbac Laboratories Inc.

Data Checklist

Date: 27-OCT-2015

Analyst: BKT

Analyst: NA

Method: 6020/6020A/200.8

Instrument: ICP-MS2

Curve Workgroup: 544562

Runlog ID: 71315

Analytical Workgroups: 543486,544124,544216,544595

Calibration/Linearity	X
ICV/CCV	X
ICV RSD < 3% (EPA 200.7 only)	
ICB/CCB	X
ICSA/ICSAB	X
CRI	
Blank/LCS	X
MS/MSD	X
Post Spike/Serial Dilution	X
Upload Results	X
Data Qualifiers	X
Generate PDF Instrument Data	X
Sign/Annotate PDF Data	X
Upload Curve Data	X
Workgroup Forms	X
Case Narrative	X
Client Forms	X
Level X	
Level 3	
Level 4	1055,1148,1215
Check for compliance with method and project specific requirements	X
Check the completeness of reported information	X
Check the information for the report narrative	X
Primary Reviewer	BKT
Secondary Reviewer	MMB
Comments	

Primary Reviewer: 28-OCT-2015

Secondary Reviewer: 29-OCT-2015

Buch Tun Maren Beery

CHECKLIST1 - Modified 03/05/2008

Generated: OCT-29-2015 13:43:27

Microbac

HOLDING TIMES EQUIVALENT TO AFCEE FORM 9

00894234

Analytical Method: 6020A

Login Number:L15101055

AAB#:	WG543486

Client ID	ID	Date Collected	TCLP Date	Time Held	Max Hold	Q	Extract Date	Time Held	Max Hold	Q	Run Date	Time Held	Max Hold	Q
35AWW13F-101515	01	10/15/15					10/19/2015	4	180		10/27/15	12	180	
35AWW13F-101515	01	10/15/15					L0/19/2015	4	180		10/27/15	12	180	

* = SEE PROJECT QAPP REQUIREMENTS

HOLD_TIMES - Modified 03/06/2008 PDF File ID: 4464728 Report generated 10/27/2015 15:00

Page 372

METHOD BLANK SUMMARY

Login Number:L15101055

Blank File ID:NI.102715.134116

Prep Date:10/19/15 12:48

Analyzed Date:10/27/15 13:41

Work Group: WG543486

Blank Sample ID: WG543446-02

Instrument ID: ICP-MS2

Method: 6020A

Analyst:BKT

This Method Blank Applies To The Following Samples:

Client ID	Lab Sample ID	Lab File ID	Time Analyzed	TAG
LCS	WG543446-03	NI.101915.162931	10/19/15 16:29	01
DUP	WG543446-05	NI.101915.163555	10/19/15 16:35	01
FLT_BLK	WG543446-04	NI.101915.173446	10/19/15 17:34	01
LCS	WG543446-03	NI.102715.134427	10/27/15 13:44	02
35AWW13F-101515	L15101055-01	NI.102715.135713	10/27/15 13:57	01
35AWW13F-101515	L15101055-01	NI.102715.140335	10/27/15 14:03	DL01

Report Name: BLANK_SUMMARY PDF File ID: 4464729
Report generated 10/27/2015 15:00

Microbac Laboratories Inc. METHOD BLANK REPORT

Login Number: L15101055	Prep Date: 10/19/15 12:48	Sample ID: WG543446-02
Instrument ID: ICP-MS2	Run Date: 10/27/15 13:41	Prep Method: 3015
File ID:NI.102715.134116	Analyst:BKT	Method: 6020A
Workgroup (AAB#):WG543486	Matrix: Water	Units:mg/L
Contract #:	Cal ID:ICP-M	S - 27-OCT-15

Analytes	DL	LOQ	Concentration	Dilution	Qualifier
Antimony, Total	0.000500	0.00200	0.000500	1	Ū
Arsenic, Total	0.000500	0.00200	0.000500	1	Ū
Barium, Total	0.00150	0.00600	0.00150	1	Ū
Cadmium, Total	0.000300	0.00120	0.000300	1	Ū
Chromium, Total	0.00100	0.00400	0.00100	1	Ū
Cobalt, Total	0.000500	0.00200	0.000500	1	Ū
Copper, Total	0.00100	0.00400	0.00100	1	Ū
Lead, Total	0.000500	0.00200	0.000500	1	Ū
Manganese, Total	0.00100	0.00400	0.00100	1	Ū
Nickel, Total	0.00200	0.00800	0.00200	1	Ū
Silver, Total	0.000500	0.00200	0.000500	1	Ū
Thallium, Total	0.000100	0.000400	0.000100	1	Ū
Vanadium, Total	0.000500	0.00200	0.000500	1	Ū
Zinc, Total	0.0125	0.0500	0.0125	1	Ū

DL Method Detection Limit

LOQ Reporting/Practical Quantitation Limit
ND Analyte Not detected at or above reporting limit

* |Analyte concentration| > 1/2 RL

Report Name:BLANK PDF ID: 4464730 27-OCT-2015 15:00

Microbac Laboratories Inc. LABORATORY CONTROL SAMPLE (LCS)

 Login Number:
 L15101055
 Run Date:
 10/27/2015
 Sample ID:
 WG543446-03

 Instrument ID:
 ICP-MS2
 Run Time:
 13:44
 Prep Method:
 3015

 File ID:
 NI.102715.134427
 Analyst:
 BKT
 Method:
 6020A

 Workgroup (AAB#):
 WG543486
 Matrix:
 Water
 Units:
 mg/L

QC Key:DOD4 Lot#:STD71855 Cal ID:ICP-MS-27-OCT-15

Analytes	Expected	Found	% Rec	LCS	Lim	its	Q
Antimony, Total	0.125	0.121	97.1	80	-	120	
Arsenic, Total	0.125	0.127	102	80	-	120	
Barium, Total	0.125	0.122	97.5	80	-	120	
Cadmium, Total	0.125	0.124	99.3	80	-	120	
Chromium, Total	0.125	0.126	101	80	-	120	
Cobalt, Total	0.125	0.127	102	80	-	120	
Copper, Total	0.125	0.127	102	80	-	120	
Lead, Total	0.125	0.124	98.8	80	-	120	
Manganese, Total	0.125	0.128	102	80	-	120	
Nickel, Total	0.125	0.126	101	80	-	120	
Silver, Total	0.125	0.125	99.8	80	-	120	
Thallium, Total	0.125	0.124	99.0	80	-	120	
Vanadium, Total	0.125	0.126	101	80	-	120	
Zinc, Total	0.125	0.127	101	80	-	120	

LCS - Modified 03/06/2008 PDF File ID: 4464731 Report generated: 10/27/2015 15:00

Microbac

Microbac Laboratories Inc. MATRIX SPIKE AND MATRIX SPIKE DUP (MS/MSD)

 Loginnum: L15101055
 Cal ID: ICP-MS2 Worknum: WG543486

 Instrument ID: ICP-MS2
 Contract #: Method: 6020A

 Parent ID: WG543446-01
 File ID: NI.102715.134738
 Dil: 5
 Matrix: WATER

 Sample ID: WG543446-06
 MS
 File ID: NI.102715.135049
 Dil: 5
 Units: mg/L

 Sample ID: WG543446-07
 MSD
 File ID: NI.102715.135401
 Dil: 5
 Dil: 5

Analyte	Parent	MS Spiked	MS Found	MS %Rec	MSD Spiked	MSD Found	MSD %Rec	%RPD	%Rec Limits	RPD Limit	Q
Antimony	0.00206	0.125	0.115	90.0	0.125	0.118	92.6	2.77	80 - 120	20	
Arsenic	0.00295	0.125	0.128	99.7	0.125	0.129	101	0.984	80 - 120	20	
Barium	0.0789	0.125	0.196	93.7	0.125	0.191	89.6	2.67	80 - 120	20	
Cadmium	0.00170	0.125	0.120	94.5	0.125	0.123	97.3	2.92	80 - 120	20	
Chromium	0.00119	0.125	0.126	100	0.125	0.127	101	0.734	80 - 120	20	
Cobalt	0.00197	0.125	0.124	97.8	0.125	0.128	100	2.62	80 - 120	20	
Copper	0.0183	0.125	0.138	95.9	0.125	0.139	96.3	0.348	80 - 120	20	
Lead	0.00388	0.125	0.123	95.2	0.125	0.124	96.2	1.03	80 - 120	20	
Manganese	0.0103	0.125	0.133	98.3	0.125	0.137	101	2.52	80 - 120	20	
Nickel	0.00442	0.125	0.126	97.3	0.125	0.128	98.7	1.33	80 - 120	20	
Silver	0.00139	0.125	0.121	95.4	0.125	0.122	96.6	1.23	80 - 120	20	
Thallium	0.00146	0.125	0.122	96.2	0.125	0.122	96.2	0.0329	80 - 120	20	
Vanadium	0.00120	0.125	0.123	97.6	0.125	0.126	99.9	2.30	80 - 120	20	
Zinc	0.0516	0.125	0.173	97.4	0.125	0.167	92.0	3.96	80 - 120	20	
			1					1			

^{*} FAILS %REC LIMIT

NOTE: This is an internal quality control sample.

WG_MS_MSD_DRYWT - Modified 05/26/2011 PDF File ID: 4464732 Report generated 10/27/2015 15:00

[#] FAILS RPD LIMIT

Serial Dilution Report

Login: L15101055 Worknum: WG543486

Instrument: ICP-MS2 Method: 6020A

Serial Dil: WG543486-04 File ID: NI.102715.140647 Dil: 25 Units: ug/L

Sample:L15101055-01 File ID: NI.102715.140335 Dil: 5

Analyte	Sample	Qual	Serial Dil	Qual	% Diff	Q
Antimony	2.85	F	ND	Ū		
Arsenic	1.07	F	ND	U		
Barium	12.3	Х	ND	U		
Cadmium	ND	U	ND	U		
Chromium	ND	U	ND	U		
Cobalt	1.93	F	ND	U		
Copper	4.69	F	ND	U		
Lead	ND	U	ND	U		
Manganese	283		279		1.42	
Nickel	34.5	Х	33.4	F	3.15	
Silver	ND	U	ND	U		
Thallium	ND	U	ND	U		
Vanadium	ND	U	ND	U		
Zinc	51.4	F	ND	U		

- U = Result is below MDL.
- F = Result is greater than or equal to MDL and less than the RL.
- X = Result is greater than or equal to RL and less than 100 times the MDL.
- ${\tt E}$ = %D exceeds control limit of 10% and initial sample result is greater than or equal to 100 times the MDL.

SERIAL_DIL - Modified 09/22/2008

PDF File ID: 4464726 10/27/2015 15:00

Serial Dilution Report

 Login: L15101055
 Worknum: WG543486

 Instrument: ICP-MS2
 Method: 6020A

 Serial Dil: WG543486-04
 File ID: NI.102715.140335
 Dil: 5
 Units: ug/L

 Serial Dil:
 WG543486-04
 File ID:
 NI.102715.140335
 Dil:
 5

 Sample:
 L15101055-01
 File ID:
 NI.102715.135713
 Dil:
 1

Analyte	Sample	Qual	Serial Dil	Qual	% Diff	Q
Antimony	2.43	Х	2.85	F	17.30	
Arsenic	0.681	F	1.07	F	57.60	
Barium	12.7	Х	12.3	Х	2.77	
Cadmium	0.234	F	ND	U		
Chromium	1.43	F	ND	U		
Cobalt	1.86	Х	1.93	F	3.62	
Copper	4.63	Х	4.69	F	1.45	
Lead	0.557	F	ND	U		
Manganese	278		283		1.76	
Nickel	34.0	Х	34.5	Х	1.68	
Silver	ND	U	ND	Ū		
Thallium	ND	U	ND	U		
Vanadium	0.440	F	ND	Ū		
Zinc	46.5	Х	51.4	F	10.40	

- U = Result is below MDL.
- F = Result is greater than or equal to MDL and less than the RL.
- X = Result is greater than or equal to RL and less than 100 times the MDL.
- ${\tt E}$ = %D exceeds control limit of 10% and initial sample result is greater than or equal to 100 times the MDL.

SERIAL_DIL - Modified 09/22/2008

PDF File ID: 4464726 10/27/2015 15:00

Microbac Laboratories Inc. POST SPIKE REPORT

 Sample Login ID:
 L15101055
 Worknum:
 WG543486

 Instrument
 ID: ICP-MS2
 Method: 6020A

 Post Spike
 ID: WG543486-03
 File ID:NI.102715.140024
 Dil:1
 Units: ug/L

Sample ID: L15101055-01 File ID:NI.102715.135713 Dil:1 Matrix: Water

Analyte	Post Spike Result	С	Sample Result	С	Spike Added(SA)	% R	Control Limit %R	Q
ANTIMONY	56.0		2.43		50	107.1	75 - 125	
ARSENIC	57.6		0.681	F	50	113.9	75 - 125	
BARIUM	66.9		12.7		50	108.4	75 - 125	
CADMIUM	55.4		0.234	F	50	110.3	75 - 125	
CHROMIUM	54.8		1.43	F	50	106.8	75 - 125	
COBALT	58.0		1.86		50	112.2	75 - 125	
COPPER	58.1		4.63		50	106.9	75 - 125	
LEAD	55.1		0.557	F	50	109.1	75 - 125	
MANGANESE	345		278		50	133.6	75 - 125	N
NICKEL	87.7		34.0		50	107.6	75 - 125	
SILVER	50.1		0	U	50	100.2	75 - 125	
THALLIUM	54.3		0	U	50	108.5	75 - 125	
VANADIUM	54.7		0.440	F	50	108.5	75 - 125	
ZINC	103		46.5		50	112.7	75 - 125	

N = % Recovery exceeds control limits

F = Result is between MDL and RL

U = Sample result is below MDL. A value of zero is used in the calculation

Microbac

Microbac Laboratories Inc. Initial Calibration Summary

Login: L15101055 Workgroup (AAB#): WG543486

Analytical Method: 6020A Instrument ID: ICP-MS2

ICAL Worknum: WG544562 Initial Calibration Date: 27-OCT-2015 13:15

	WG544	562-01	WG544	562-02	WG544	562-03	WG544562-04]	
	Conc	INT	Conc	INT	Conc	INT	Conc	INT	R	Q
ANTIMONY	0	32.7	.4	223	50	182000	100	366000	.999851	
ARSENIC	0	-41.4	.4	-19.7	50	34500	100	70400	.999883	
BARIUM	0	12.0	.4	115	50	77400	100	155000	.999859	
CADMIUM	0	8.30	.4	77.0	50	67800	100	136000	.999865	
CHROMIUM	0	5630	.4	5720	50	216000	100	429000	.999951	
COBALT	0	131	.4	299	50	156000	100	314000	.999958	
COPPER	0	148	.4	249	50	54500	100	110000	.999935	
LEAD	0	493	.4	1460	50	683000	100	1380000	.999661	
MANGANESE	0	666	.4	1320	50	164000	100	331000	.999925	
NICKEL	0	221	.4	308	50	55900	100	112000	.999951	
SILVER	0	60.0	.4	280	50	226000	100	452000	.999876	
THALLIUM	0	17.0	.4	333	50	309000	100	620000	.999764	
VANADIUM	0	829	.4	1050	50	170000	100	345000	.999893	
ZINC	0	175	.4	436	50	32400	100	65300	.999928	
	1			<u> </u>		1		1		

INT = Instrument intensity
R = Coefficient of correlation
Q = Data Qualifier
* = Out of Compliance; R < 0.995</pre>

INT_CAL_ICP - Modified 03/06/2008 PDF File I D: 4464735

Report generated: 27-0CT-2015 15:00

Microbac

Microbac Laboratories Inc. INITIAL CALIBRATION BLANK (ICB)

 Login Number: L15101055
 Run Date: 10/27/2015
 Sample ID: WG544562-06

 Instrument ID: ICP-MS2
 Run Time: 13:22
 Method: 6020A

 File ID: NI.102715.132205 Analyst: BKT Units: ug/L

Matrix:WATER

Analytes	MDL	RDL	Concentration	Qualifier
SILVER	.2	.8	.2	Ū
ARSENIC	.2	.8	.2	υ
BARIUM	.6	2.4	.6	Ū
CADMIUM	.12	.48	.12	υ
COBALT	.2	.8	.2	Ŭ
CHROMIUM	.4	1.6	.4	Ū
COPPER	.4	1.6	.4	Ŭ
MANGANESE	.4	1.6	.4	Ŭ
NICKEL	.8	3.2	.8	υ
LEAD	.2	.8	.2	Ū
ANTIMONY	.2	.8	.201	F
THALLIUM	.04	.16	.04	Ŭ
VANADIUM	.2	.8	.2	Ū
ZINC	5	20	5	Ū

U = Result is less than 2 x MDL

F = Result is between MDL and 2 x MDL

* = Result is above 2 x MDL

ICB - Modified 07/14/2009 PDF File ID: 4464737 Report generated 10/27/2015 15:00

Microbac Laboratories Inc. CONTINUING CALIBRATION BLANK (CCB)

Login Number: L15101055 Run Date: 10/27/2015 Sample ID: WG544562-11

Instrument ID: ICP-MS2 Run Time: 13:38 Method: 6020A

File ID: NI.102715.133804 Analyst: BKT Units: ug/L

Analytes	MDL	RDL	Concentration	Qualifier
Antimony	0.200	0.800	0.200	υ
Arsenic	0.200	0.800	0.200	υ
Barium	0.600	2.40	0.600	υ
Cadmium	0.120	0.480	0.120	υ
Chromium	0.400	1.60	0.400	υ
Cobalt	0.200	0.800	0.200	υ
Copper	0.400	1.60	0.400	υ
Lead	0.200	0.800	0.200	υ
Manganese	0.400	1.60	0.400	υ
Nickel	0.800	3.20	0.800	υ
Silver	0.200	0.800	0.200	υ
Thallium	0.0400	0.160	0.0468	F
Vanadium	0.200	0.800	0.200	υ
Zinc	5.00	20.0	5.00	υ

U = Result is less than MDL.

CCB - Modified 03/05/2008 PDF File ID: 4464740 Report generated 10/27/2015 15:00

F = Result is between MDL and RL.

^{* =} Result is above RL.

Microbac Laboratories Inc. CONTINUING CALIBRATION BLANK (CCB)

 Login Number:
 L15101055
 Run Date:
 10/27/2015
 Sample ID:
 WG544562-13

 Instrument ID:
 ICP-MS2
 Run Time:
 14:16
 Method:
 6020A

 File ID:
 NII.102715.141623
 Analyst:
 BKT
 Units:
 ug/L

 Workgroup (AAB#):WG543486
 Cal ID:ICP-MS - 27-OCT-15

 Matrix:WATER
 QAPP:DOD4

MDL	RDL	Concentration	Qualifier
0.200	0.800	0.200	U
0.200	0.800	0.200	U
0.600	2.40	0.600	υ
0.120	0.480	0.120	U
0.400	1.60	0.400	υ
0.200	0.800	0.200	υ
0.400	1.60	0.400	υ
0.200	0.800	0.200	υ
0.400	1.60	0.400	υ
0.800	3.20	0.800	υ
0.200	0.800	0.200	υ
0.0400	0.160	0.0400	U
0.200	0.800	0.200	Ū
5.00	20.0	5.00	υ
	0.200 0.200 0.600 0.120 0.400 0.200 0.400 0.200 0.400 0.800 0.200 0.0400 0.200	0.200 0.800 0.200 0.800 0.600 2.40 0.120 0.480 0.400 1.60 0.200 0.800 0.400 1.60 0.200 0.800 0.400 1.60 0.200 0.800 0.400 1.60 0.800 3.20 0.200 0.800 0.0400 0.160 0.200 0.800	0.200 0.800 0.200 0.200 0.800 0.200 0.600 2.40 0.600 0.120 0.480 0.120 0.400 1.60 0.400 0.200 0.800 0.200 0.400 1.60 0.400 0.200 0.800 0.200 0.400 1.60 0.400 0.800 3.20 0.800 0.200 0.800 0.200 0.0400 0.160 0.0400 0.200 0.800 0.200

U = Result is less than MDL.

CCB - Modified 03/05/2008 PDF File ID: 4464740 Report generated 10/27/2015 15:00

F = Result is between MDL and RL.

^{* =} Result is above RL.

Microbac Laboratories Inc. INITIAL CALIBRATION VERIFICATION (ICV) (Alternate Source)

 Login Number: L15101055
 Run Date: 10/27/2015
 Sample ID: WG544562-05

 Instrument ID: ICP-MS2
 Run Time: 13:18
 Method: 6020A

 File ID: NI.102715.131853
 Analyst: BKT
 Units: ug/L

Workgroup (AAB#):WG543486 Cal ID:ICP-MS - 27-OCT-15

QC Key: DOD4

Analyte	Expected	Found	%REC	LIMITS	Q
Antimony	50	46.7	93.4	90 - 110	
Arsenic	50	50.1	100	90 - 110	
Barium	50	49.2	98.4	90 - 110	
Cadmium	50	48.9	97.9	90 - 110	
Chromium	50	49.2	98.5	90 - 110	
Cobalt	50	49.5	99.1	90 - 110	
Copper	50	49.5	99.0	90 - 110	
Lead	50	48.6	97.3	90 - 110	
Manganese	50	49.4	98.9	90 - 110	
Nickel	50	49.5	99.0	90 - 110	
Silver	50	48.8	97.5	90 - 110	
Thallium	50	48.8	97.7	90 - 110	
Vanadium	50	48.6	97.2	90 - 110	
Zinc	50	50.8	102	90 - 110	

^{*} Exceeds LIMITS Limit

ICV - Modified 03/06/2008 PDF File ID: 4464736 Report generated 10/27/2015 15:00

Microbac Laboratories Inc. CONTINUING CALIBRATION VERIFICATION (CCV)

Login Number: L15101055 Run Date: 10/27/2015 Sample ID: WG544562-10

Instrument ID: ICP-MS2 Run Time: 13:34 Method: 6020A

File ID: NI.102715.133453 Analyst: BKT QC Key: DOD4

Workgroup (AAB#):WG543486 Cal ID:ICP-MS - 27-OCT-15

Matrix:WATER

Analyte		Expected	Found	UNITS	%REC	LIMITS	Q
Antimony		0.0500	0.0477	mg/L	95.3	90 - 110	
Arsenic		0.0500	0.0501	mg/L	100	90 - 110	
Barium		0.0500	0.0474	mg/L	94.8	90 - 110	
Cadmium		0.0500	0.0485	mg/L	96.9	90 - 110	
Chromium		0.0500	0.0494	mg/L	98.8	90 - 110	
Cobalt		0.0500	0.0512	mg/L	102	90 - 110	
Copper		0.0500	0.0492	mg/L	98.3	90 - 110	
Lead		0.0500	0.0493	mg/L	98.6	90 - 110	
Manganese		0.0500	0.0507	mg/L	101	90 - 110	
Nickel		0.0500	0.0492	mg/L	98.4	90 - 110	
Silver		0.0500	0.0482	mg/L	96.3	90 - 110	
Thallium		0.0500	0.0489	mg/L	97.9	90 - 110	
Vanadium		0.0500	0.0503	mg/L	101	90 - 110	
Zinc		0.0500	0.0492	mg/L	98.4	90 - 110	

^{*} Exceeds LIMITS Criteria

CCV - Modified 03/05/2008 PDF File ID: 4464739 Report generated 10/27/2015 15:00

Microbac Laboratories Inc. CONTINUING CALIBRATION VERIFICATION (CCV)

Login Number: L15101055 Run Date: 10/27/2015 Sample ID: WG544562-12

Instrument ID: ICP-MS2 Run Time: 14:13 Method: 6020A

File ID: NI.102715.141311 Analyst: BKT QC Key: DOD4

Workgroup (AAB#): WG543486 Cal ID: ICP-MS - 27-OCT-15

Matrix:WATER

Analyte	Expected	Found	UNITS	%REC	LIMITS	Q
Antimony	0.0500	0.0489	mg/L	97.7	90 - 110	
Arsenic	0.0500	0.0507	mg/L	101	90 - 110	
Barium	0.0500	0.0491	mg/L	98.2	90 - 110	
Cadmium	0.0500	0.0499	mg/L	99.8	90 - 110	
Chromium	0.0500	0.0503	mg/L	101	90 - 110	
Cobalt	0.0500	0.0520	mg/L	104	90 - 110	
Copper	0.0500	0.0503	mg/L	101	90 - 110	
Lead	0.0500	0.0497	mg/L	99.4	90 - 110	
Manganese	0.0500	0.0512	mg/L	102	90 - 110	
Nickel	0.0500	0.0499	mg/L	99.7	90 - 110	
Silver	0.0500	0.0494	mg/L	98.8	90 - 110	
Thallium	0.0500	0.0491	mg/L	98.2	90 - 110	
Vanadium	0.0500	0.0509	mg/L	102	90 - 110	
Zinc	0.0500	0.0499	mg/L	99.9	90 - 110	

^{*} Exceeds LIMITS Criteria

CCV - Modified 03/05/2008 PDF File ID: 4464739 Report generated 10/27/2015 15:00

Microbac Laboratories Inc. LOW LEVEL CALIBRATION VERIFICATION

Login Number: <u>L15101055</u> Run Date: <u>10/27/2015</u> Sample ID: <u>WG544562-07</u>

Workgroup (AAB#): WG543486 Cal ID: ICP-MS - 27-OCT-15 Matrix:WATER

Analyte	Expected	Found	UNITS	%REC	LIMITS	Q
Antimony	0.400	0.405	ug/L	101	70 - 130	
Arsenic	0.400	0.416	ug/L	104	70 - 130	
Barium	0.750	0.701	ug/L	93.5	70 - 130	
Cadmium	0.240	0.252	ug/L	105	70 - 130	
Chromium	0.800	0.700	ug/L	87.6	70 - 130	
Cobalt	0.400	0.406	ug/L	101	70 - 130	
Copper	0.800	0.829	ug/L	104	70 - 130	
Lead	0.200	0.184	ug/L	92.1	70 - 130	
Manganese	0.500	0.359	ug/L	71.7	70 - 130	
Nickel	1.60	1.57	ug/L	97.8	70 - 130	
Silver	0.400	0.404	ug/L	101	70 - 130	
Thallium	0.0800	0.0844	ug/L	106	70 - 130	
Vanadium	0.400	0.343	ug/L	85.8	70 - 130	
Zinc	6.25	6.81	ug/L	109	70 - 130	

^{*} Exceeds LIMITS Criteria

LLCCV - Modified 1/7/2010 PDF File ID: 4464741
Report generated 10/27/2015 15:00

Microbac Laboratories Inc. LOW LEVEL CALIBRATION VERIFICATION

 Login Number:
 L15101055
 Run Date:
 10/27/2015
 Sample ID:
 WG544562-14

 Instrument ID:
 ICP-MS2
 Run Time:
 14:41
 Method:
 6020A

 File ID:
 NII.102715.144129
 Analyst:
 BKT
 QC Key:
 DOD4

Workgroup (AAB#):WG543486 Cal ID:ICP-MS - 27-OCT-15

Matrix:WATER

Analyte		Expected	Found	UNITS	%REC	LIMITS	Q
Antimony		0.400	0.382	ug/L	95.5	70 - 130	
Arsenic		0.400	0.425	ug/L	106	70 - 130	
Barium		0.750	0.674	ug/L	89.8	70 - 130	
Cadmium		0.240	0.234	ug/L	97.6	70 - 130	
Chromium		0.800	0.876	ug/L	109	70 - 130	
Cobalt		0.400	0.396	ug/L	99.1	70 - 130	
Copper		0.800	0.730	ug/L	91.2	70 - 130	
Lead		0.200	0.173	ug/L	86.5	70 - 130	
Manganese		0.500	0.366	ug/L	73.2	70 - 130	
Nickel		1.60	1.53	ug/L	95.7	70 - 130	
Silver		0.400	0.384	ug/L	96.1	70 - 130	
Thallium		0.0800	0.0734	ug/L	91.8	70 - 130	
Vanadium		0.400	0.413	ug/L	103	70 - 130	
Zinc		6.25	6.57	ug/L	105	70 - 130	

^{*} Exceeds LIMITS Criteria

LLCCV - Modified 1/7/2010 PDF File ID: 4464741 Report generated 10/27/2015 15:00

Login number: L15101055 Workgroup (AAB#): WG543486

Instrument ID: ICP-MS2

Method: 6020A File ID: NI.102715.132829 Sol. A:WG544562-08 Units:uq/L **Sol. AB:** WG544562-09 File ID: NI.102715.133140 Matrix: Water

		Sol. A			Sol. AB		
ANALYTE	True	Found	%Recovery	True	Found	%Recovery	Q
Antimony	NS	0.00800	NS	100	95.5	95.5	
Arsenic	NS	-0.0401	NS	100	104	104	
Barium	NS	0.0224	NS	100	96.6	96.6	
Cadmium	NS	-0.0636	NS	100	98.2	98.2	
Chromium	NS	-0.293	NS	100	99.0	99.0	
Cobalt	NS	0.0226	NS	100	102	102	
Copper	NS	0.175	NS	100	99.3	99.3	
Lead	NS	0.000300	NS	100	96.6	96.6	
Manganese	NS	-0.179	NS	100	103	103	
Nickel	NS	0.171	NS	100	97.9	97.9	
Silver	NS	0.00110	NS	100	87.6	87.6	
Thallium	NS	0.0148	NS	100	97.3	97.3	
Vanadium	NS	-0.0885	NS	100	98.9	98.9	
Zinc	NS	0.492	NS	100	102	102	

NS = Not spiked

- * = Recovery of spiked element is outside acceptance limit of 80% 120% of true value.
- # = Result for unspiked element is outside the acceptance limits of (+/-) the project reporting limit (RL).
- + = Result for unspiked element is outside the acceptance limits of (+/-) 2 times the project method detection limit (MDL). This criteria is only applicable to specific QAPPs.

ICS - Modified 03/06/2008 PDF File ID: 4464738 Report generated 10/27/2015 15:00

INTERNAL STANDARD REPORT

Login: L15101055 Analytical Method: 6020

 Analytical Workgroup: WG543486
 Matrix:1

 Instrument: ICP-MS2
 Analyst: BKT

ICAL Date: 27-OCT-2015 13:06

			BISMUTH	GERMANIUM	INDIUM
Sample	Туре	Run Date	% Rec	% Rec	% Rec
L15101055-01	SAMP	27-OCT-2015 13:57	100.666	104.188	103.118
L15101055-01	SAMP	27-OCT-2015 14:03	103.041	102.219	105.058
WG543446-02	BLANK	27-OCT-2015 13:41	106.092	105.931	107.603
WG543446-03	LCS	27-OCT-2015 13:44	105.226	104.363	105.545
WG543486-03	PSPK	27-OCT-2015 14:00	94.806	99.172	98.13
WG543486-04	SERIAL	27-OCT-2015 14:03	103.041	102.219	105.058
WG543486-04	SERIAL	27-OCT-2015 14:06	102.937	103.244	103.314
WG544562-05	ICV	27-OCT-2015 13:18	100.253	103.075	100.716
WG544562-06	ICB	27-OCT-2015 13:22	101.008	102.316	101.887
WG544562-07	LLICV	27-OCT-2015 13:25	97.231	97.54	97.888
WG544562-08	ICS	27-OCT-2015 13:28	91.359	89.87	88.801
WG544562-09	ICS	27-OCT-2015 13:31	104.804	102.714	104.771
WG544562-10	CCV	27-OCT-2015 13:34	101.892	101.318	103.803
WG544562-11	ССВ	27-OCT-2015 13:38	102.266	101.794	102.154
WG544562-12	CCV	27-OCT-2015 14:13	100.386	101.147	101.331
WG544562-13	ССВ	27-OCT-2015 14:16	101.922	101.062	101.327
WG544562-14	LLCCV	27-OCT-2015 14:41	101.937	101.982	102.435

Acceptance criteria: 30% - 120% Underlined recoveries are out of range Acceptance criteria for CCVs and CCBs for method SW846-6020: 80% - 120%

Microbac Laboratories Inc. LINEAR RANGE (QUARTERLY)

 Login Number:
 L15101055
 Date:
 10/12/2015

 Insturment ID:
 ICP-MS2
 Method:
 6020A

	Integration Time	Concentration
Analyte	(Sec.)	(ug/L)
Antimony	1.00	100.0
Arsenic	1.00	100.0
Barium	1.00	100.0
Cadmium	1.00	100.0
Chromium	1.00	100.0
Cobalt	1.00	100.0
Copper	1.00	100.0
Lead	1.00	100.0
Manganese	1.00	100.0
Nickel	1.00	100.0
Selenium	1.00	100.0
Silver	1.00	100.0
Thallium	1.00	100.0
Uranium	1.00	100.0
Vanadium	1.00	100.0
Zinc	1.00	100.0

Comments:

All analytes passed acceptance criteria at the specified concentration.

LINEAR_RANGE - Modified 03/06/2008 PDF File ID: 4464733 Report generated: 10/27/2015 15:00

2.1.2.3 Raw Data

MassCal File Name

Mass Calibration File Name Default.tun
MassCal File Path C:\NexIONData\MassCal\Default.tun
Peak Search Window: 1.00

Sample Information

Sample Date/Time: Tuesday, October 27, 2015 12:23:18

Mass Calibration and Resolution

Analyte	E Mass N	leas Mass	Mass C DAC Val	Res DAC Value M	eas Peak WCustom Res
Li	7.016	7.025	1349	2025	0.696
Mg	23.985	23.975	4498	2019	0.708
Co	58.933	58.925	11690	2021	0.702
In	114.904	114.925	22863	2028	0.699
U	238.050	238.025	47451	2042	0.702

Relative Std. Dev.

Mass	Meas. Intens. RSD
5.525	3.721
5.575	5.102
5.625	2.882
5.675	1.511
5.725	2.763
5.775	4.731
5.825	3.021
5.875	2.840
5.925	2.730
5.975	2.560
6.025	6.053
6.075	1.747
6.125	8.581
6.175	50.000
6.225	70.711
6.275	34.233
6.325	67.420
6.375	75.000
6.425	25.003
6.475	7.201
6.525	4.254
6.575	1.835
6.625	3.570
6.675	5.434
6.725	5.478
6.775	3.025
6.825	2.563

Report Date/Time: Tuesday, October 27, 2015 15:49:25

Page 1

6.875	2.365
6.925	2.193
6.975	2.348
7.025	0.709
7.075	1.695
7.125	3.035
7.175	3.670
7.225	15.600
7.275	0.000
7.325	50.000
7.375	100.000
7.425	
	69.722
7.475	69.722
7.525	99.381
7.575	108.653
7.625	104.583
7.675	69.722
7.725	91.287
7.775	136.931
7.825	72.436
7.875	63.191
7.925	50.000
7.975	70.711
8.025	81.441
8.075	37.268
8.125	70.711
8.175	38.030
8.225	100.000
8.275	91.287
8.325	70.711
8.375	94.786
8.425	122.475
8.475	103.652
22.525	223.607
22.575	81.312
22.625	75.691
22.675	31.419
22.725	61.443
22.775	74.244
22.825	66.295
22.875	17.275
22.925	31.672
22.975	67.219
23.025	73.023
23.075	22.612
23.125	23.452
23.175	29.315
23.173	29.313

23.225	28.022
23.275	37.268
23.325	38.401
23.375	43.853
23.425	49.215
23.475	11.050
23.525	6.006
23.575	1.112
23.625	2.066
23.675	1.333
23.725	0.621
23.775	1.061
23.825	1.167
23.875	1.019
23.925	1.592
23.975	1.975
24.025	0.832
24.075	0.592
24.125	0.941
24.175	1.151
24.225	1.158
24.275	3.171
24.325	13.671
24.375	64.358
24.425	74.154
24.475	17.705
24.525	8.355
24.575	2.173
24.625	1.308
24.675	2.168
24.725	1.983
24.775	0.938
24.825	1.520
24.875	0.753
24.925	1.322
24.975	1.485
25.025	1.053
25.075	1.405
25.125	2.954
25.175	1.810
25.225	2.371
25.275	17.796
25.325	86.402
25.375	29.881
25.425	46.481
25.475	39.381
57.525	5.139
	000

57.575	2.848
57.625	4.330
57.675	1.936
57.725	
	3.460
57.775	3.340
57.825	2.454
57.875	1.618
57.925	3.543
57.975	1.827
58.025	3.224
58.075	1.264
58.125	2.553
58.175	2.170
58.225	3.387
58.275	9.753
58.325	47.628
58.375	43.006
58.425	18.566
58.475	9.025
58.525	4.255
58.575	5.177
58.625	3.431
58.675	3.046
58.725	2.033
58.775	2.377
58.825	2.195
58.875	0.661
58.925	2.406
58.975	2.084
59.025	1.820
59.075	2.200
59.125	2.203
59.175	2.175
59.225	3.462
59.275	21.326
59.325	58.330
59.375	50.000
59.425	40.505
59.475	15.623
59.525	6.908
59.575	7.922
59.625	4.497
59.675	3.455
59.725	4.133
59.775	5.024
59.825	2.929
59.875	4.765
39.073	4.700

59.925	4.559
59.975	4.362
60.025	4.208
60.075	2.190
60.125	2.099
60.175	2.248
60.225	14.247
60.275	
	34.401
60.325	46.481
60.375	20.328
60.425	71.261
60.475	47.128
113.525	12.987
113.575	6.406
113.625	2.488
113.675	4.650
113.725	2.256
113.775	0.984
113.825	1.366
113.875	1.226
	1.756
113.925	
113.975	1.597
114.025	1.032
114.075	3.816
114.125	3.230
114.175	4.197
114.225	3.696
114.275	7.826
114.325	25.471
114.375	45.079
114.425	24.341
114.475	9.740
114.525	1.806
114.575	2.254
114.625	1.155
114.675	2.887
114.725	2.209
114.775	3.058
114.825	1.846
114.875	0.888
114.925	1.627
114.975	1.450
115.025	0.850
115.075	2.379
115.125	2.694
115.175	3.011
115.225	1.239

115.275	10.350
115.325	9.064
115.375	40.000
115.425	61.629
115.475	16.424
115.525	29.123
115.575 115.625	11.541 7.813
115.675	1.769
115.725	2.622
115.775	3.201
115.825	2.723
115.875	6.272
115.925	2.506
115.975	3.799
116.025	2.336
116.075	0.996
116.125 116.175	7.335 3.084
116.175	11.631
116.275	21.023
116.325	20.963
116.375	26.146
116.425	50.000
116.475	60.858
236.525	
236.575	23.981
236.625	32.589
236.675 236.725	43.376 61.435
236.775	19.325
236.825	27.741
236.875	32.443
236.925	38.030
236.975	25.650
237.025	41.650
237.075	36.780
237.125	27.794
237.175 237.225	31.672 31.869
237.275	37.171
237.325	25.074
237.375	28.464
237.425	17.568
237.475	19.563
237.525	14.907
237.575	17.220

237.625	4.343
237.675	3.447
237.725	2.478
237.775	2.339
237.825	1.949
237.875	1.782
237.925	1.023
237.975	0.970
238.025	0.880
238.075	1.650
238.125	1.131
238.175	1.374
238.225	0.985
238.275	2.010
238.325	3.176
238.375	3.032
238.425	3.431
238.475	5.495
238.525	8.979
238.575	28.074
238.625	38.079
238.675	21.858
238.725	29.186
238.775	35.761
238.825	43.745
238.875	26.716
238.925	42.304
238.975	38.887
239.025	36.617
239.075	23.111
239.125	50.933
239.175	33.026
239.225	37.769
239.275	35.110
239.325	30.110
239.375	22.934
239.425	38.065
239.475	36.422

Approved: October 28, 2015

Page 399

SmartTune Wizard - Summary

Optimization Summary

SmartTune file: C:\NexIONData\Wizard\SmartTune\ESI SmartTune Fullmicrobac.swz

Start Time: 10/27/2015 12:30:42 PM End Time: 10/27/2015 12:33:04 PM

Daily Performance Check - [Passed] Optimum value(s): N/A

Obtained Intensity (Be 9.0122): 2862.00 Obtained Intensity (Mg 23.985): 123277.03 Obtained Intensity (In 114.904): 50786.64 Obtained Intensity (U 238.05): 54908.45 Obtained Intensity (Bkgd 220): 2.20

Obtained Formula (Ceo 155.9 / Ce 139.905): 0.022 (=4477.59 / 203201.16) Obtained Formula (Ce++ 69.9527 / Ce 139.905): 0.003 (=620.88 / 203201.16)

Report Date/Time: Tuesday, October 27, 2015 12:33:04 Page 1

Approved: October 28, 2015

Page 400

SmartTune Wizard - Details

Optimization Details SmartTune file: C:\NexIONData\Wizard\SmartTune\ESI SmartTune Fullmicrobac.swz Optimization Status Start Time: 10/27/2015 12:30:42 PM Daily Performance Check Optimization Settings: Method: C:\NexIONData\Method\ESI Daily Performance.mth. Intensity Criterion: Be 9.0122 > 2000Intensity Criterion: Mg 23.985 > 15000 Intensity Criterion: In 114.904 > 40000Intensity Criterion: U 238.05 > 30000 Intensity Criterion: Bkgd 220 <= 5</pre> Formula Criterion: CeO 155.9 / Ce 139.905 <= 0.025 Formula Criterion: Ce++ 69.9527 / Ce 139.905 <= 0.03 Optimization Results: Initial Try Obtained Intensity (Be 9.0122): 2862.00 Obtained Intensity (Mg 23.985): 123277.03 Obtained Intensity (In 114.904): 50786.64 Obtained Intensity (U 238.05): 54908.45 Obtained Intensity (Bkgd 220): 2.20 Obtained Formula (CeO 155.9 / Ce 139.905): 0.022 (=4477.59 / 203201.16) Obtained Formula (Ce++ 69.9527 / Ce 139.905): 0.003 (=620.88 / 203201.16) [Passed] Optimum value(s): N/A End Time: 10/27/2015 12:33:04 PM

Report Date/Time: Tuesday, October 27, 2015 12:33:04 Page 2

Sample ID: Blank

Sample Date/Time: Tuesday, October 27, 2015 13:02:54

Number of Replicates: 3 Autosampler Position: 1 Sample Description:

Method File: C:\NexIONData\Method\6020a.mth

Aliquot Volume (mL): Diluted to Volume (mL):

User Name: BKT Nexion300X Cumulative Autodilution Factor: 1 Nexion-ICP 200.8\6020

Concentration Results

					Concentiati	1011 11030	iilo			
IS	Analyt	e Mass	Intensity	RSD	Conc.	SD	RSD	Units	Blank Intens.	Mode
Γ>	Li	6	26269.7	12.4				ug/L		Standard
	Be	9	1.7	173.2				ug/L		Standard
L	ΑI	27	403.3	9.0				ug/L		Standard
Γ	Sc	45	14523.7	8.5				ug/L		Standard
	Ti	47	364.7	5.9				ug/L		Standard
	V	51	804.6	8.0				ug/L		Standard
	Cr	52	5481.3	2.8				ug/L		Standard
	Cr	53	268.3	28.0				ug/L		Standard
	Mn	55	670.3	1.2				ug/L		Standard
	Co	59	145.7	12.8				ug/L		Standard
	Ni	60	220.3	5.1				ug/L		Standard
	Cu	65	146.7	7.2				ug/L		Standard
	Zn	66	211.3	12.6				ug/L		Standard
>	Ge	72	210598.8	12.8				ug/L		Standard
	As	75	-47.2	43.7				ug/L		Standard
	Se	82	14.8	18.2				ug/L		Standard
L	Se-1	77	64.7	21.0				ug/L		Standard
Γ>	Ga	71	26.7	96.2				mg/L		Standard
L	Rb	85	16.7	69.3				ug/L		Standard
Γ	Υ	89	216672.4	15.4				ug/L		Standard
L>	Rh	103	18.3	41.7				ug/L		Standard
Γ	Мо	98	11.3	36.2				ug/L		Standard
	Ag	107	54.7	25.0				ug/L		Standard
	Cd	111	6.6	22.9				mg/L		Standard
	Cd	114	4.1	321.7				ug/L		Standard
>	In	115	322524.6	13.3				ug/L		Standard
	Sn	118	345.0	10.9				ug/L		Standard
	Sb	123	87.9	38.1				ug/L		Standard
Ē	Ва	135	12.3	40.8				ug/L		Standard
ļ	Ce	140	36.7	28.4				ug/L		Standard
Ĺ>	Tb	159	631826.4	12.7				ug/L		Standard
ļ	Но	165	3.3	173.2				ug/L		Standard
ļ	TI	203	7.0	51.5				ug/L		Standard
ļ	TI	205	6.7	43.3				ug/L		Standard
ļ	Pb	206	158.7	7.3				ug/L		Standard
ļ	Pb	207	120.3	10.5				ug/L		Standard
ļ	Pb	208	503.0	10.0				ug/L		Standard
ļ	U	238	5.3	28.6				ug/L		Standard
L>	Bi	209	333509.3	13.2				ug/L		Standard

Sample ID: Blank

Report Date/Time: Tuesday, October 27, 2015 13:05:11

Page 1

Approved: October 28, 2015

_						
	Na	23	0.0		mg/L	Standard
	Mg	24	10.0		mg/L	Standard
	K	39	31.7	9.1	mg/L	Standard
	Ca	43	85.0	27.0	mg/L	Standard
	Fe	54	82.3	9.5	mg/L	Standard
	Fe	57	216.7	32.3	mg/L	Standard
L>	Sc-1	45	14523.7	8.5	mg/L	Standard
	CI	35	53192.6	2.5	ug/L	Standard
	Kr	83	3.0	57.7	ug/L	Standard
	Br	81	326.7	6.4	ug/L	Standard
	Р	31	13329.2	2.9	ug/L	Standard
	S	34	3233.7	4.6	ug/L	Standard
	Sr	88	86.7	8.8	ug/L	Standard
	С	12	103.3	49.7	mg/L	Standard
	N	14	0.0		mg/L	Standard
	Hg	202	3.3	173.2	mg/L	Standard
	Dy	164	9.7	105.8	mg/L	Standard
	Ho-1	165	3.3	173.2	mg/L	Standard
	Er	166	6.7	86.6	mg/L	Standard
	1	127	3612.1	5.6	mg/L	Standard

Analyte	Mass	QC Std % Recovery	Int Std % Recovery	Spike % Recovery
「> Li	6			
Be	9			
L AI	27			
「 Sc	45			
Ti	47			
V	51			
Cr	52			
Cr	53			
Mn	55			
Co	59			
Ni	60			
Cu	65			
Zn	66			
> Ge	72			
As	75			
Se	82			
∟ Se-1	77			
「> Ga	71			

Sample ID: Blank

Report Date/Time: Tuesday, October 27, 2015 13:05:11

Page 2

Approved: October 28, 2015

```
Rb
              85
   Υ
              89
| > Rh
             103
   Мо
              98
             107
   Ag
   Cd
             111
   Cd
             114
| > In
             115
   Sn
             118
             123
   Sb
   Ва
             135
             140
   Ce
  Tb
             159
   Но
             165
   ΤI
             203
   ΤI
             205
   Pb
             206
   Pb
             207
             208
   Pb
   U
             238
             209
L> Bi
   Na
              23
   Mg
              24
              39
   Κ
   Ca
              43
   Fe
              54
   Fe
              57
              45
|> Sc-1
   CI
              35
   \operatorname{Kr}
              83
   Br
              81
   Ρ
              31
   S
              34
   Sr
              88
   С
               12
   Ν
              14
             202
   Hg
   Dy
             164
   Ho-1
             165
             166
   Er
             127
```

QC Out of Limits

Measurement Type Analyte Mass Out of Limits Message

Sample ID: Blank

Report Date/Time: Tuesday, October 27, 2015 13:05:11

Page 3

Sample ID: Standard 1

Sample Date/Time: Tuesday, October 27, 2015 13:06:05

Number of Replicates: 3 Autosampler Position: 1 Sample Description:

Method File: C:\NexIONData\Method\6020a.mth

Aliquot Volume (mL): Diluted to Volume (mL):

User Name: BKT Nexion300X Cumulative Autodilution Factor: 1 Nexion-ICP 200.8\6020

Concentration Results

S Analyte Mass						Concentration	on Resi	uits			
Be 9	IS	Analyt	e Mass	Intensity	RSD	Conc.	SD	RSD		Blank Intens.	Mode
Be 9	Γ>	Li	6	25850.5	7.6				ug/L	26270	Standard
Sc		Be	9	6.7	114.6					2	Standard
Ti 47 351.0 6.7 ug/L 365 Standard V 51 829.4 9.5 ug/L 805 Standard Cr 52 5625.0 2.7 ug/L 268 Standard Mn 55 665.7 2.7 ug/L 670 Standard Ni 60 221.3 2.5 ug/L 146 Standard Ni 60 221.3 2.5 ug/L 220 Standard Ni 60 221.3 2.5 ug/L 146 Standard Ni 60 221.3 2.5 ug/L 147 Standard Zr 66 174.7 4.1 ug/L 211 Standard Se 72 209057.9 2.2 ug/L 47 Standard Se 82 16.0 26.7 ug/L 47 Standard Se 82 16.0 26.7 ug/L 15 Sta	L	ΑI	27	398.3	13.8				ug/L	403	Standard
V 51 829.4 9.5 ug/L 805 Standard Cr 52 5625.0 2.7 ug/L 5481 Standard Cr 53 280.0 14.6 ug/L 268 Standard Mn 55 665.7 2.7 ug/L 160 Standard Co 59 130.7 8.8 ug/L 146 Standard Ni 60 221.3 2.5 ug/L 120 Standard Cu 65 148.3 11.5 ug/L 147 Standard Zn 66 174.7 4.1 ug/L 211 Standard As 75 44.4 26.5 ug/L 47 Standard Se 82 16.0 26.7 ug/L 15 Standard Se-1 77 55.3 24.7 ug/L 65 Standard Rb 85 8.3 34.6 ug/L 15 Sta	Γ	Sc	45	13624.5	1.1				ug/L	14524	Standard
Cr 52 5625.0 2.7 ug/L 5481 Standard Cr 53 280.0 14.6 ug/L 268 Standard Mn 55 665.7 2.7 ug/L 670 Standard Co 59 130.7 8.8 ug/L 146 Standard Ni 60 221.3 2.5 ug/L 220 Standard Ni 60 221.3 2.5 ug/L 147 Standard Zn 66 174.7 4.1 ug/L 211 Standard Zn 66 174.7 4.1 ug/L 211 Standard Sa Zn 210599 Standard Zn 66 26.7 ug/L 240599 Standard Sa 25 ug/L 210599 Standard Zn 25 ug/L 27 Standard Zn 27 27	Ti	47	351.0	6.7				ug/L	365	Standard	
Cr 53 280.0 14.6 ug/L 268 Standard Mn 55 665.7 2.7 ug/L 670 Standard Ni 60 221.3 2.5 ug/L 146 Standard Ni 60 221.3 2.5 ug/L 147 Standard Cu 65 148.3 11.5 ug/L 147 Standard Zn 66 174.7 4.1 ug/L 211 Standard As 75 -41.4 26.5 ug/L -47 Standard Se 82 16.0 26.7 ug/L 15 Standard Se 82 16.0 26.7 ug/L 15 Standard L Se1 77 55.3 24.7 ug/L 15 Standard L Rb 85 8.3 34.6 ug/L 17 Standard L Rb 103 10.0 100.0		V	51	829.4	9.5				ug/L	805	Standard
Mn 55		Cr	52	5625.0	2.7				ug/L	5481	Standard
Co 59		Cr	53	280.0	14.6				ug/L	268	Standard
Ni		Mn	55	665.7					ug/L	670	Standard
Cu 65 148.3 11.5 ug/L 147 Standard Zn 66 174.7 4.1 ug/L 211 Standard Se 72 209057.9 2.2 ug/L 210599 Standard As 75 -41.4 26.5 ug/L -47 Standard Se 82 16.0 26.7 ug/L 15 Standard Se-1 77 55.3 24.7 ug/L 65 Standard Pac 71 15.0 57.7 mg/L 27 Standard Rb 85 8.3 34.6 ug/L 17 Standard N 89 218509.6 1.7 ug/L 216672 Standard N 89 218509.6 1.7 ug/L 216672 Standard N 80 98 4.9 51.1 ug/L 18 Standard Mo 98 4.9 51.1 ug/L		Co	59						ug/L	146	Standard
Zn 66 174.7 4.1 ug/L 211 Standard > Ge 72 209057.9 2.2 ug/L 210599 Standard As 75 -41.4 26.5 ug/L 47 Standard Se 82 16.0 26.7 ug/L 15 Standard Se-1 77 55.3 24.7 ug/L 65 Standard Post 85 8.3 34.6 ug/L 17 Standard Post 85 8.3 34.6 ug/L 17 Standard Post 85 8.3 34.6 ug/L 17 Standard Post 89 218509.6 1.7 ug/L 17 Standard No 98 4.9 51.1 ug/L 18 Standard Ag 107 60.0 14.2 ug/L 15 Standard Cd 111 8.3 69.5 mg/L 7		Ni							ug/L		Standard
Se		Cu									Standard
As 75		Zn									Standard
Se 82 16.0 26.7 ug/L 15 Standard L Se-1 77 55.3 24.7 ug/L 65 Standard P Ga 71 15.0 57.7 mg/L 27 Standard Rb 85 8.3 34.6 ug/L 17 Standard L Rb 85 8.3 34.6 ug/L 216672 Standard L Rh 103 10.0 100.0 ug/L 18 Standard Mo 98 4.9 51.1 ug/L 11 Standard Mo 98 4.9 51.1 ug/L 11 Standard Cd 111 8.3 69.5 mg/L 7 Standard Cd 114 6.2 221.2 ug/L 4 Standard In 115 321279.0 1.2 ug/L 325255 Standard Sh 123 32.7	>	Ge									
Se-1 77 55.3 24.7 ug/L 65 Standard S Ga 71 15.0 57.7 mg/L 27 Standard R Rb 85 8.3 34.6 ug/L 17 Standard Y 89 218509.6 1.7 ug/L 216672 Standard L> Rh 103 10.0 100.0 ug/L 18 Standard Mo 98 4.9 51.1 ug/L 11 Standard Mo 98 4.9 51.1 ug/L 11 Standard Cd 111 8.3 69.5 mg/L 7 Standard Cd 114 6.2 221.2 ug/L 4 Standard N 115 321279.0 1.2 ug/L 322525 Standard Sh 118 326.7 14.2 ug/L 345 Standard L 8h 123 32.7 43.5 ug/L		As							ug/L		
S Ga 71 15.0 57.7 mg/L 27 Standard L Rb 85 8.3 34.6 ug/L 17 Standard Y 89 218509.6 1.7 ug/L 216672 Standard No 98 4.9 51.1 ug/L 11 Standard Ag 107 60.0 14.2 ug/L 55 Standard Cd 111 8.3 69.5 mg/L 7 Standard Cd 114 6.2 221.2 ug/L 4 Standard In 115 321279.0 1.2 ug/L 32525 Standard Sn 118 326.7 14.2 ug/L 345 Standard Sb 123 32.7 43.5 ug/L 38 Standard Ba 135 12.0 38.2 ug/L 37 Standard > Tb 159 614157.2 0.9 ug/L 33		Se									
Rb 85 8.3 34.6 ug/L 17 Standard Y 89 218509.6 1.7 ug/L 216672 Standard No 98 4.9 51.1 ug/L 11 Standard Ag 107 60.0 14.2 ug/L 55 Standard Cd 111 8.3 69.5 mg/L 7 Standard Cd 114 6.2 221.2 ug/L 4 Standard In 115 321279.0 1.2 ug/L 322525 Standard Sn 118 326.7 14.2 ug/L 345 Standard Sb 123 32.7 43.5 ug/L 8 Standard Ba 135 12.0 38.2 ug/L 37 Standard ▶ Tb 159 614157.2 0.9 ug/L 37 Standard ▶ Tb 159 614157.2 0.9 ug/L 3	L	Se-1									Standard
Y 89 218509.6 1.7 ug/L 216672 Standard No 98 4.9 51.1 ug/L 11 Standard Mo 98 4.9 51.1 ug/L 11 Standard Ag 107 60.0 14.2 ug/L 55 Standard Cd 111 8.3 69.5 mg/L 7 Standard Cd 114 6.2 221.2 ug/L 4 Standard In 115 321279.0 1.2 ug/L 345 Standard Sn 118 326.7 14.2 ug/L 345 Standard Sb 123 32.7 43.5 ug/L 88 Standard Ba 135 12.0 38.2 ug/L 37 Standard L> Tb 159 614157.2 0.9 ug/L 631826 Standard L> Tb 159 614157.2 0.9 ug/L 3 </th <th>Γ></th> <th>Ga</th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th>mg/L</th> <th>27</th> <th>Standard</th>	Γ>	Ga							mg/L	27	Standard
No	L										
Mo 98 4.9 51.1 ug/L 11 Standard Ag 107 60.0 14.2 ug/L 55 Standard Cd 111 8.3 69.5 mg/L 7 Standard Cd 114 6.2 221.2 ug/L 4 Standard In 115 321279.0 1.2 ug/L 32525 Standard Sn 118 326.7 14.2 ug/L 345 Standard Sb 123 32.7 43.5 ug/L 88 Standard L Ba 135 12.0 38.2 ug/L 12 Standard L> Tb 159 614157.2 0.9 ug/L 37 Standard L> Tb 159 614157.2 0.9 ug/L 631826 Standard TI 203 17.0 112.7 ug/L 3 Standard TI 203 17.0	Γ	Υ							ug/L		
Ag 107 60.0 14.2 ug/L 55 Standard Cd 111 8.3 69.5 mg/L 7 Standard Cd 114 6.2 221.2 ug/L 4 Standard In 115 321279.0 1.2 ug/L 322525 Standard Sn 118 326.7 14.2 ug/L 345 Standard Sb 123 32.7 43.5 ug/L 88 Standard Ba 135 12.0 38.2 ug/L 12 Standard Ce 140 95.0 114.7 ug/L 37 Standard N 159 614157.2 0.9 ug/L 631826 Standard N 159 614157.2 0.9 ug/L 3 Standard N 17 203 17.0 112.7 ug/L 7 Standard N 17 203 17.0 112.7	L>										
Cd 111 8.3 69.5 mg/L 7 Standard Cd 114 6.2 221.2 ug/L 4 Standard In 115 321279.0 1.2 ug/L 322525 Standard Sn 118 326.7 14.2 ug/L 345 Standard Sb 123 32.7 43.5 ug/L 88 Standard L Ba 135 12.0 38.2 ug/L 12 Standard Ce 140 95.0 114.7 ug/L 37 Standard N 159 614157.2 0.9 ug/L 631826 Standard N 159 614157.2 0.9 ug/L 3 Standard N 159 614157.2 0.9 ug/L 3 Standard N 17 203 17.0 112.7 ug/L 7 Standard N 11 203 17.0	Γ	Мо									
Cd 114 6.2 221.2 ug/L 4 Standard > In 115 321279.0 1.2 ug/L 322525 Standard Sn 118 326.7 14.2 ug/L 345 Standard Sb 123 32.7 43.5 ug/L 88 Standard Ba 135 12.0 38.2 ug/L 12 Standard Ce 140 95.0 114.7 ug/L 37 Standard > Tb 159 614157.2 0.9 ug/L 631826 Standard Ti 203 17.0 112.7 ug/L 3 Standard Ti 203 17.0 112.7 ug/L 7 Standard Pb 206 149.0 16.6 ug/L 159 Standard Pb 207 125.3 2.4 ug/L 120 Standard Pb 208 492.7 5.4 u											
No. No.											
Sn 118 326.7 14.2 ug/L 345 Standard Sb 123 32.7 43.5 ug/L 88 Standard L Ba 135 12.0 38.2 ug/L 12 Standard Ce 140 95.0 114.7 ug/L 37 Standard L> Tb 159 614157.2 0.9 ug/L 631826 Standard Ho 165 13.3 21.7 ug/L 3 Standard TI 203 17.0 112.7 ug/L 7 Standard TI 205 5.0 100.0 ug/L 7 Standard Pb 206 149.0 16.6 ug/L 159 Standard Pb 207 125.3 2.4 ug/L 503 Standard Pb 208 492.7 5.4 ug/L 503 Standard U 238 3.3 45.8											
Sb 123 32.7 43.5 ug/L 88 Standard L Ba 135 12.0 38.2 ug/L 12 Standard Ce 140 95.0 114.7 ug/L 37 Standard L> Tb 159 614157.2 0.9 ug/L 631826 Standard F Ho 165 13.3 21.7 ug/L 3 Standard TI 203 17.0 112.7 ug/L 7 Standard TI 205 5.0 100.0 ug/L 7 Standard Pb 206 149.0 16.6 ug/L 159 Standard Pb 207 125.3 2.4 ug/L 120 Standard Pb 208 492.7 5.4 ug/L 503 Standard U 238 3.3 45.8 ug/L 5 Standard	>								-		
Ba 135 12.0 38.2 ug/L 12 Standard Ce 140 95.0 114.7 ug/L 37 Standard L> Tb 159 614157.2 0.9 ug/L 631826 Standard F Ho 165 13.3 21.7 ug/L 3 Standard I TI 203 17.0 112.7 ug/L 7 Standard I TI 205 5.0 100.0 ug/L 7 Standard I Pb 206 149.0 16.6 ug/L 159 Standard I Pb 207 125.3 2.4 ug/L 120 Standard I Pb 208 492.7 5.4 ug/L 503 Standard I U 238 3.3 45.8 ug/L 5 Standard									-		
Ce 140 95.0 114.7 ug/L 37 Standard Joseph Standard Standard Ug/L 631826 Standard Standard Ho 165 13.3 21.7 ug/L 3 Standard TI 203 17.0 112.7 ug/L 7 Standard Pb 206 149.0 16.6 ug/L 159 Standard Pb 207 125.3 2.4 ug/L 120 Standard Pb 208 492.7 5.4 ug/L 503 Standard U 238 3.3 45.8 ug/L 5 Standard	ļ								-		
Tb	Ē										
Ho 165 13.3 21.7 ug/L 3 Standard TI 203 17.0 112.7 ug/L 7 Standard TI 205 5.0 100.0 ug/L 7 Standard Pb 206 149.0 16.6 ug/L 159 Standard Pb 207 125.3 2.4 ug/L 120 Standard Pb 208 492.7 5.4 ug/L 503 Standard U 238 3.3 45.8 ug/L 5 Standard Standard Standard U 238 3.3 45.8 ug/L 5 Standard U 238 U	ļ								-		
Ti 203 17.0 112.7 ug/L 7 Standard Ti 205 5.0 100.0 ug/L 7 Standard Pb 206 149.0 16.6 ug/L 159 Standard Pb 207 125.3 2.4 ug/L 120 Standard Pb 208 492.7 5.4 ug/L 503 Standard U 238 3.3 45.8 ug/L 5 Standard	Ľ>								-		
Ti 205 5.0 100.0	ļ								-		
Pb 206 149.0 16.6 ug/L 159 Standard Pb 207 125.3 2.4 ug/L 120 Standard Pb 208 492.7 5.4 ug/L 503 Standard U 238 3.3 45.8 ug/L 5 Standard	ļ								-		
Pb 207	ļ										
Pb 208 492.7 5.4 ug/L 503 Standard U 238 3.3 45.8 ug/L 5 Standard	!										
U 238 3.3 45.8 ug/L 5 Standard	-								-		
· ·	-								-		
L> BI 209 32/810.6 0.5 ug/L 333509 Standard									-		
	L>	Ві	209	32/810.6	0.5				ug/L	333509	Standard

Sample ID: Standard 1

Report Date/Time: Tuesday, October 27, 2015 13:08:22

Page 1

Approved: October 28, 2015

Γ	Na	23	1.7	173.2	mg/L 0	Standard
	Mg	24	16.7	34.6	mg/L 10	Standard
	K	39	23.3	44.6	mg/L 32	Standard
	Ca	43	61.7	20.4	mg/L 85	Standard
ĺ	Fe	54	67.5	60.3	mg/L 82	Standard
ĺ	Fe	57	208.3	21.0	mg/L 217	Standard
Ĺ>	Sc-1	45	13624.5	1.1	mg/L 14524	Standard
	CI	35	55593.1	0.4	ug/L 53193	Standard
	Kr	83	4.3	13.3	ug/L 3	Standard
	Br	81	393.3	10.6	ug/L 327	Standard
	Р	31	14053.2	0.5	ug/L 13329	Standard
	S	34	3315.4	7.4	ug/L 3234	Standard
	Sr	88	90.0	5.6	ug/L 87	Standard
	С	12	163.3	37.4	mg/L 103	Standard
	N	14	0.0		mg/L 0	Standard
	Hg	202	6.7	173.2	mg/L 3	Standard
	Dy	164	12.9	121.3	mg/L 10	Standard
	Ho-1	165	13.3	21.7	mg/L 3	Standard
	Er	166	10.0	100.0	mg/L 7	Standard
	1	127	3795.5	3.3	mg/L 3612	Standard

	Analyte	Mass	QC Std % Recovery	Int Std % Recovery	Spike % Recovery
Γ>	Li	6			
	Ве	9			
L	Al	27			
Γ	Sc	45			
	Ti	47			
	V	51			
	Cr	52			
	Cr	53			
	Mn	55			
	Co	59			
	Ni	60			
	Cu	65			
	Zn	66			
>	Ge	72			
	As	75			
	Se	82			
L	Se-1	77			
[>	Ga	71			

Sample ID: Standard 1

Report Date/Time: Tuesday, October 27, 2015 13:08:22

Page 2

Approved: October 28, 2015

```
Rb
              85
   Υ
              89
| > Rh
              103
   Мо
              98
              107
   Ag
   Cd
              111
   Cd
              114
| > In
             115
   Sn
             118
              123
   Sb
   Ва
              135
              140
   Ce
  Tb
              159
   Но
              165
   ΤI
             203
   ΤI
             205
   Pb
             206
   Pb
             207
             208
   Pb
   U
             238
             209
L> Bi
   Na
              23
   Mg
              24
              39
   Κ
   Ca
              43
   Fe
              54
   Fe
              57
              45
|> Sc-1
   CI
              35
   \operatorname{Kr}
              83
   Br
              81
   Ρ
              31
   S
               34
   Sr
              88
   С
               12
   Ν
              14
             202
   Hg
   Dy
              164
   Ho-1
              165
              166
   Er
              127
```

QC Out of Limits

Measurement Type Analyte Mass Out of Limits Message

Sample ID: Standard 1

Report Date/Time: Tuesday, October 27, 2015 13:08:22

Page 3

Approved: October 28, 2015

Sample ID: Standard 2

Sample Date/Time: Tuesday, October 27, 2015 13:09:17

Number of Replicates: 3 Autosampler Position: 2 Sample Description:

Method File: C:\NexIONData\Method\6020a.mth

Aliquot Volume (mL): Diluted to Volume (mL):

User Name: BKT Nexion300X Cumulative Autodilution Factor: 1

Nexion-ICP 200.8\6020

Concentration Results

					Concentration	on Resi	นแร			
IS	Analyt	e Mass	Intensity	RSD	Conc.	SD	RSD	Units	Blank Intens.	Mode
Γ>	Li	6	26039.0	4.3				ug/L	26270	Standard
	Be	9	43.3	29.0				ug/L	2	Standard
L	ΑI	27	3915.5	2.9				ug/L	403	Standard
Γ	Sc	45	14011.5	1.2				ug/L	14524	Standard
	Ti	47	346.0	5.4				ug/L	365	Standard
	V	51	1054.6	0.4				ug/L	805	Standard
	Cr	52	5718.4	1.3				ug/L	5481	Standard
	Cr	53	305.0	18.3				ug/L	268	Standard
	Mn	55	1317.4	3.4				ug/L	670	Standard
	Co	59	298.7	3.2				ug/L	146	Standard
	Ni	60	307.7	3.8				ug/L	220	Standard
	Cu	65	249.0	9.8				ug/L	147	Standard
	Zn	66	436.0	4.9				ug/L	211	Standard
>	Ge	72	208942.0	1.3				ug/L	210599	Standard
	As	75	-19.7	175.3				ug/L	-47	Standard
	Se	82	13.3	30.6				ug/L	15	Standard
L	Se-1	77	49.0	8.9				ug/L	65	Standard
Γ>	Ga	71	30.0	50.0				mg/L	27	Standard
L	Rb	85	25.0	40.0				ug/L	17	Standard
Γ	Υ	89	213083.3	2.1				ug/L	216672	Standard
L>	Rh	103	10.0	50.0				ug/L	18	Standard
Γ	Mo	98	139.3	7.3				ug/L	11	Standard
	Ag	107	279.7	6.0				ug/L	55	Standard
	Cd	111	77.0	14.5				mg/L	7	Standard
	Cd	114	149.0	22.7				ug/L	4	Standard
>	In	115	314542.7	0.5				ug/L	322525	Standard
	Sn	118	783.4	9.6				ug/L	345	Standard
	Sb	123	223.4	8.0				ug/L	88	Standard
L	Ва	135	115.3	7.5				ug/L	12	Standard
Γ	Ce	140	40.0	12.5				ug/L	37	Standard
L>	Tb	159	608040.4	2.5				ug/L	631826	Standard
Γ	Но	165	11.7	24.7				ug/L	3	Standard
	TI	203	332.7	3.1				ug/L	7	Standard
	TI	205	201.7	28.9				ug/L	7	Standard
	Pb	206	424.7	5.3				ug/L	159	Standard
	Pb	207	376.0	8.0				ug/L	120	Standard
	Pb	208	1455.7	4.2				ug/L	503	Standard
	U	238	282.3	3.7				ug/L	5	Standard
L>	Bi	209	326115.6	1.8				ug/L	333509	Standard

Sample ID: Standard 2

Report Date/Time: Tuesday, October 27, 2015 13:11:34

Page 1

Approved: October 28, 2015

Γ	Na	23	0.0		mg/L 0	Standard
	Mg	24	18.3	41.7	mg/L 10	Standard
	K	39	16.7	45.8	mg/L 32	Standard
	Ca	43	86.7	16.7	mg/L 85	Standard
ĺ	Fe	54	54.4	18.0	mg/L 82	Standard
ĺ	Fe	57	191.7	30.2	mg/L 217	Standard
Ĺ>	Sc-1	45	14011.5	1.2	mg/L 14524	Standard
	CI	35	54631.0	1.8	ug/L 53193	Standard
	Kr	83	4.7	65.5	ug/L 3	Standard
	Br	81	293.3	31.7	ug/L 327	Standard
	Р	31	13597.8	4.0	ug/L 13329	Standard
	S	34	3175.3	1.1	ug/L 3234	Standard
	Sr	88	83.3	38.1	ug/L 87	Standard
	С	12	136.7	22.4	mg/L 103	Standard
	N	14	0.0		mg/L 0	Standard
	Hg	202	3.3	173.2	mg/L 3	Standard
	Dy	164	-0.5	100.0	mg/L 10	Standard
	Ho-1	165	11.7	24.7	mg/L 3	Standard
	Er	166	10.0	100.0	mg/L 7	Standard
	1	127	3777.1	5.6	mg/L 3612	Standard

Analyte	Mass	QC Std % Recovery	Int Std % Recovery	Spike % Recovery
「⊳ Li	6			
Be	9			
L AI	27			
「 Sc	45			
Ti	47			
V	51			
Cr	52			
Cr	53			
Mn	55			
Co	59			
Ni	60			
Cu	65			
Zn	66			
> Ge	72			
As	75			
Se	82			
∟ Se-1	77			
「⊳ Ga	71			

Sample ID: Standard 2

Report Date/Time: Tuesday, October 27, 2015 13:11:34

Page 2

Approved: October 28, 2015

```
Rb
              85
   Υ
              89
| > Rh
             103
   Мо
              98
             107
   Ag
   Cd
             111
   Cd
             114
| > In
             115
   Sn
             118
             123
   Sb
   Ва
             135
             140
   Ce
  Tb
             159
   Но
             165
   ΤI
             203
   ΤI
             205
   Pb
             206
   Pb
             207
             208
   Pb
   U
             238
             209
L> Bi
   Na
              23
   Mg
              24
              39
   Κ
   Ca
              43
   Fe
              54
   Fe
              57
              45
|> Sc-1
   CI
              35
   \operatorname{Kr}
              83
   Br
              81
   Ρ
              31
   S
              34
   Sr
              88
   С
               12
   Ν
              14
             202
   Hg
   Dy
             164
   Ho-1
             165
             166
   Er
             127
```

QC Out of Limits

Measurement Type Analyte Mass Out of Limits Message

Sample ID: Standard 2

Report Date/Time: Tuesday, October 27, 2015 13:11:34

Page 3

Sample ID: Standard 3

Sample Date/Time: Tuesday, October 27, 2015 13:12:28

Number of Replicates: 3 Autosampler Position: 3 Sample Description:

Method File: C:\NexIONData\Method\6020a.mth

Aliquot Volume (mL): Diluted to Volume (mL):

User Name: BKT Nexion300X Cumulative Autodilution Factor: 1

Nexion-ICP 200.8\6020

0	ncon	tration	Results	
Lα	ncen	itration	Results	

					Concentia		uito			
IS	Analyt	e Mass	Intensity	RSD	Conc.	SD	RSD	Units	Blank Intens.	Mode
Γ>	Li	6	25990.7	5.9				ug/L	26270	Standard
	Be	9	24955.5	2.0	50.0000	3.868	7.7	ug/L	2	Standard
L	Αl	27	2735287.7	5.6	50.0000	3.802	7.6	ug/L	403	Standard
Γ	Sc	45	14265.1	8.7				ug/L	14524	Standard
	Ti	47	15761.9	1.5	100.0000	9.608	9.6	ug/L	365	Standard
	٧	51	170096.7	2.1	50.0000	4.780	9.6	ug/L	805	Standard
	Cr	52	215526.7	1.8	50.0000	4.172	8.3	ug/L	5481	Standard
	Cr	53	26458.1	4.2	50.0000	5.543	11.1	ug/L	268	Standard
	Mn	55	163896.7	2.4	50.0000	5.152	10.3	ug/L	670	Standard
	Co	59	155965.9	3.3	50.0000	5.100	10.2	ug/L	146	Standard
	Ni	60	55911.3	1.5	50.0000	4.334	8.7	ug/L	220	Standard
	Cu	65	54541.3	1.6	50.0000	4.444	8.9	ug/L	147	Standard
	Zn	66	32446.7	3.2	50.0000	5.217	10.4	ug/L	211	Standard
>	Ge	72	211783.9	7.9				ug/L	210599	Standard
	As	75	34485.7	2.3	50.0000	4.598	9.2	ug/L	-47	Standard
	Se	82	2900.6	1.8	50.0000	4.336	8.7	ug/L	15	Standard
L	Se-1	77	1941.5	4.0	50.0000	5.071	10.1	ug/L	65	Standard
Γ>	Ga	71	21.7	35.3				mg/L	27	Standard
L	Rb	85	485.0	9.0				ug/L	17	Standard
Γ	Υ	89	213957.3	8.6				ug/L	216672	Standard
L>	Rh	103	26.7	39.0				ug/L	18	Standard
Γ	Мо	98	134323.3	2.4	100.0000	10.321	10.3	ug/L	11	Standard
	Ag	107	226397.1	1.4	50.0000	4.631	9.3	ug/L	55	Standard
	Cd	111	67817.3	1.3	50.0000	4.724	9.4	mg/L	7	Standard
	Cd	114	166097.6	1.4	50.0000	4.762	9.5	ug/L	4	Standard
>	In	115	319055.6	8.3				ug/L	322525	Standard
	Sn	118	192664.5	2.8	50.0000	5.476	11.0	ug/L	345	Standard
	Sb	123	182471.9	1.8	50.0000	4.959	9.9	ug/L	88	Standard
L	Ва	135	77397.9	1.9	50.0000	4.965	9.9	ug/L	12	Standard
Γ	Ce	140	170.0	23.0				ug/L	37	Standard
L>	Tb	159	617700.8	7.9				ug/L	631826	Standard
Γ	Но	165	10.0	50.0				ug/L	3	Standard
	TI	203	309416.0	1.1	50.0000	4.039	8.1	ug/L	7	Standard
	TI	205	206754.8	2.0	50.0000	4.291	8.6	ug/L	7	Standard
	Pb	206	190040.8	2.4	50.0000	4.723	9.4	ug/L	159	Standard
	Pb	207	172462.9	2.0	50.0000	4.669	9.3	ug/L	120	Standard
	Pb	208	683417.1	1.6	50.0000	4.352	8.7	ug/L	503	Standard
	U	238	251720.5	1.7	50.0000	4.329	8.7	ug/L	5	Standard
L>	Bi	209	328079.7	7.5				ug/L	333509	Standard

Sample ID: Standard 3

Report Date/Time: Tuesday, October 27, 2015 13:14:45

Page 1

Approved: October 28, 2015

Na	23	0.0					mg/L	0	Standard
Mg	24	2083.5	1.0	5.0000	0.381	7.6	mg/L	10	Standard
K	39	386.7	14.2	5.0000	0.943	18.9	mg/L	32	Standard
Ca	43	115.0	19.0	5.0000	4.789	95.8	mg/L	85	Standard
Fe	54	2070.1	2.0	5.0000	0.473	9.5	mg/L	82	Standard
Fe	57	700.0	4.5	5.0000	0.525	10.5	mg/L	217	Standard
Sc-1	45	14265.1	8.7				mg/L	14524	Standard
CI	35	55070.6	0.5				ug/L	53193	Standard
Kr	83	4.3	26.6				ug/L	3	Standard
Br	81	380.0	16.0				ug/L	327	Standard
Р	31	14768.9	3.6				ug/L	13329	Standard
S	34	3678.8	4.2				ug/L	3234	Standard
Sr	88	120.0	8.3				ug/L	87	Standard
С	12	110.0					mg/L	103	Standard
N	14	0.0					mg/L	0	Standard
Hg	202	3.3	173.2				mg/L	3	Standard
Dy	164	5.9	93.7				mg/L	10	Standard
Ho-1	165	10.0	50.0				mg/L	3	Standard
Er	166	16.7	34.6				mg/L	7	Standard
I	127	2386.9	3.3				mg/L	3612	Standard
	Mg K Ca Fe Sc-1 Cl Kr Br P S C C N Hg Dy Ho-1	Mg 24 K 39 Ca 43 Fe 54 Fe 57 Sc-1 45 Cl 35 Kr 83 Br 81 P 31 S 34 Sr 88 C 12 N 14 Hg 202 Dy 164 Ho-1 165 Er 166	Mg 24 2083.5 K 39 386.7 Ca 43 115.0 Fe 54 2070.1 Fe 57 700.0 Sc-1 45 14265.1 Cl 35 55070.6 Kr 83 4.3 Br 81 380.0 P 31 14768.9 S 34 3678.8 Sr 88 120.0 C 12 110.0 N 14 0.0 Hg 202 3.3 Dy 164 5.9 Ho-1 165 10.0 Er 166 16.7	Mg 24 2083.5 1.0 K 39 386.7 14.2 Ca 43 115.0 19.0 Fe 54 2070.1 2.0 Fe 57 700.0 4.5 Sc-1 45 14265.1 8.7 CI 35 55070.6 0.5 Kr 83 4.3 26.6 Br 81 380.0 16.0 P 31 14768.9 3.6 S 34 3678.8 4.2 Sr 88 120.0 8.3 C 12 110.0 N N 14 0.0 H Hg 202 3.3 173.2 Dy 164 5.9 93.7 Ho-1 165 10.0 50.0 Er 166 16.7 34.6	Mg 24 2083.5 1.0 5.0000 K 39 386.7 14.2 5.0000 Ca 43 115.0 19.0 5.0000 Fe 54 2070.1 2.0 5.0000 Fe 57 700.0 4.5 5.0000 Sc-1 45 14265.1 8.7 7 CI 35 55070.6 0.5 K Kr 83 4.3 26.6 B Br 81 380.0 16.0 P P 31 14768.9 3.6 S S 34 3678.8 4.2 S Sr 88 120.0 8.3 C C 12 110.0 N 14 0.0 Hg 202 3.3 173.2 173.2 173.2 Dy 164 5.9 93.7 16.0 173.2 173.2 173.2 173.2 173.2 173.2	Mg 24 2083.5 1.0 5.0000 0.381 K 39 386.7 14.2 5.0000 0.943 Ca 43 115.0 19.0 5.0000 4.789 Fe 54 2070.1 2.0 5.0000 0.473 Fe 57 700.0 4.5 5.0000 0.525 Sc-1 45 14265.1 8.7 CI 35 55070.6 0.5 Kr 83 4.3 26.6 26.6 3.6 3.6 3.6 3.6 3.6 3.6 3.3 3.6 3.3 <th>Mg 24 2083.5 1.0 5.0000 0.381 7.6 K 39 386.7 14.2 5.0000 0.943 18.9 Ca 43 115.0 19.0 5.0000 4.789 95.8 Fe 54 2070.1 2.0 5.0000 0.473 9.5 Fe 57 700.0 4.5 5.0000 0.473 9.5 Sc-1 45 14265.1 8.7 7.000 0.525 10.5 Sc-1 45 14265.1 8.7 8.7 8.3 4.3 26.6 Br 81 380.0 16.0 9 9.3 <th< th=""><th>Mg 24 2083.5 1.0 5.0000 0.381 7.6 mg/L K 39 386.7 14.2 5.0000 0.943 18.9 mg/L Ca 43 115.0 19.0 5.0000 4.789 95.8 mg/L Fe 54 2070.1 2.0 5.0000 0.473 9.5 mg/L Fe 57 700.0 4.5 5.0000 0.525 10.5 mg/L Sc-1 45 14265.1 8.7 mg/L mg/L mg/L mg/L Kr 83 4.3 26.6 ug/L ug/L ug/L ug/L Br 81 380.0 16.0 ug/L ug/L ug/L ug/L Sr 34 3678.8 4.2 ug/L ug/L mg/L C 12 110.0 mg/L mg/L mg/L N 14 0.0 mg/L mg/L mg/L Hg</th><th>Mg 24 2083.5 1.0 5.0000 0.381 7.6 mg/L 10 K 39 386.7 14.2 5.0000 0.943 18.9 mg/L 32 Ca 43 115.0 19.0 5.0000 4.789 95.8 mg/L 85 Fe 54 2070.1 2.0 5.0000 0.473 9.5 mg/L 82 Fe 57 700.0 4.5 5.0000 0.525 10.5 mg/L 217 Sc-1 45 14265.1 8.7 mg/L 14524 217 Sc-1 45 14265.1 8.7 mg/L 14524 217 217 217 217 218 217 217 218 217 217 217 217 217 217 217 217 217 217 217 217 217 217 217 217 217 218 218 218 218 218 218</th></th<></th>	Mg 24 2083.5 1.0 5.0000 0.381 7.6 K 39 386.7 14.2 5.0000 0.943 18.9 Ca 43 115.0 19.0 5.0000 4.789 95.8 Fe 54 2070.1 2.0 5.0000 0.473 9.5 Fe 57 700.0 4.5 5.0000 0.473 9.5 Sc-1 45 14265.1 8.7 7.000 0.525 10.5 Sc-1 45 14265.1 8.7 8.7 8.3 4.3 26.6 Br 81 380.0 16.0 9 9.3 <th< th=""><th>Mg 24 2083.5 1.0 5.0000 0.381 7.6 mg/L K 39 386.7 14.2 5.0000 0.943 18.9 mg/L Ca 43 115.0 19.0 5.0000 4.789 95.8 mg/L Fe 54 2070.1 2.0 5.0000 0.473 9.5 mg/L Fe 57 700.0 4.5 5.0000 0.525 10.5 mg/L Sc-1 45 14265.1 8.7 mg/L mg/L mg/L mg/L Kr 83 4.3 26.6 ug/L ug/L ug/L ug/L Br 81 380.0 16.0 ug/L ug/L ug/L ug/L Sr 34 3678.8 4.2 ug/L ug/L mg/L C 12 110.0 mg/L mg/L mg/L N 14 0.0 mg/L mg/L mg/L Hg</th><th>Mg 24 2083.5 1.0 5.0000 0.381 7.6 mg/L 10 K 39 386.7 14.2 5.0000 0.943 18.9 mg/L 32 Ca 43 115.0 19.0 5.0000 4.789 95.8 mg/L 85 Fe 54 2070.1 2.0 5.0000 0.473 9.5 mg/L 82 Fe 57 700.0 4.5 5.0000 0.525 10.5 mg/L 217 Sc-1 45 14265.1 8.7 mg/L 14524 217 Sc-1 45 14265.1 8.7 mg/L 14524 217 217 217 217 218 217 217 218 217 217 217 217 217 217 217 217 217 217 217 217 217 217 217 217 217 218 218 218 218 218 218</th></th<>	Mg 24 2083.5 1.0 5.0000 0.381 7.6 mg/L K 39 386.7 14.2 5.0000 0.943 18.9 mg/L Ca 43 115.0 19.0 5.0000 4.789 95.8 mg/L Fe 54 2070.1 2.0 5.0000 0.473 9.5 mg/L Fe 57 700.0 4.5 5.0000 0.525 10.5 mg/L Sc-1 45 14265.1 8.7 mg/L mg/L mg/L mg/L Kr 83 4.3 26.6 ug/L ug/L ug/L ug/L Br 81 380.0 16.0 ug/L ug/L ug/L ug/L Sr 34 3678.8 4.2 ug/L ug/L mg/L C 12 110.0 mg/L mg/L mg/L N 14 0.0 mg/L mg/L mg/L Hg	Mg 24 2083.5 1.0 5.0000 0.381 7.6 mg/L 10 K 39 386.7 14.2 5.0000 0.943 18.9 mg/L 32 Ca 43 115.0 19.0 5.0000 4.789 95.8 mg/L 85 Fe 54 2070.1 2.0 5.0000 0.473 9.5 mg/L 82 Fe 57 700.0 4.5 5.0000 0.525 10.5 mg/L 217 Sc-1 45 14265.1 8.7 mg/L 14524 217 Sc-1 45 14265.1 8.7 mg/L 14524 217 217 217 217 218 217 217 218 217 217 217 217 217 217 217 217 217 217 217 217 217 217 217 217 217 218 218 218 218 218 218

	Analyte	Mass	QC Std % Recovery	Int Std % Recovery	Spike % Recovery
Γ>	Li	6			
	Ве	9			
L	Al	27			
Γ	Sc	45			
	Ti	47			
	V	51			
	Cr	52			
	Cr	53			
	Mn	55			
	Co	59			
	Ni	60			
	Cu	65			
	Zn	66			
>	Ge	72			
	As	75			
	Se	82			
L	Se-1	77			
[>	Ga	71			

Sample ID: Standard 3

Report Date/Time: Tuesday, October 27, 2015 13:14:45

Page 2

Approved: October 28, 2015

```
Rb
              85
   Υ
              89
| > Rh
             103
   Мо
              98
             107
   Ag
   Cd
             111
   Cd
             114
| > In
             115
   Sn
             118
             123
   Sb
   Ва
             135
             140
   Ce
  Tb
             159
   Но
             165
   ΤI
             203
   ΤI
             205
   Pb
             206
   Pb
             207
             208
   Pb
   U
             238
             209
L> Bi
   Na
              23
   Mg
              24
              39
   Κ
   Ca
              43
   Fe
              54
   Fe
              57
              45
|> Sc-1
   CI
              35
   \operatorname{Kr}
              83
   Br
              81
   Ρ
              31
   S
              34
   Sr
              88
   С
               12
   Ν
              14
             202
   Hg
   Dy
             164
   Ho-1
             165
             166
   Er
             127
```

QC Out of Limits

Measurement Type Analyte Mass Out of Limits Message

Sample ID: Standard 3

Report Date/Time: Tuesday, October 27, 2015 13:14:45

Page 3

Sample ID: Standard 4

Sample Date/Time: Tuesday, October 27, 2015 13:15:40

Number of Replicates: 3 Autosampler Position: 4 Sample Description:

Method File: C:\NexIONData\Method\6020a.mth

Aliquot Volume (mL): Diluted to Volume (mL):

User Name: BKT Nexion300X Cumulative Autodilution Factor: 1

Nexion-ICP 200.8\6020

0	ncon	tration	Results	
Lα	ncen	itration	Results	

	Jone Intation Results									
IS	Analyt	e Mass	Intensity	RSD	Conc.	SD	RSD	Units	Blank Intens.	Mode
Γ>	Li	6	25476.4	3.2				ug/L	26270	Standard
	Ве	9	51574.3	1.2	102.5262	2.242	2.2	ug/L	2	Standard
L	ΑI	27	5503316.6	3.3	101.2095	2.077	2.1	ug/L	403	Standard
Γ	Sc	45	14380.2	2.7				ug/L	14524	Standard
	Ti	47	32069.6	8.0	203.9564	7.481	3.7	ug/L	365	Standard
	٧	51	345352.5	1.9	101.4613	4.580	4.5	ug/L	805	Standard
	Cr	52	428584.2	2.2	100.9893	4.889	4.8	ug/L	5481	Standard
	Cr	53	53576.2	0.3	101.4213	2.954	2.9	ug/L	268	Standard
	Mn	55	331025.3	1.2	101.2242	4.190	4.1	ug/L	670	Standard
	Co	59	314114.3	0.1	100.9194	3.046	3.0	ug/L	146	Standard
	Ni	60	112444.5	1.7	100.9914	4.568	4.5	ug/L	220	Standard
	Cu	65	110097.2	8.0	101.1387	3.647	3.6	ug/L	147	Standard
	Zn	66	65314.2	1.7	101.2022	4.602	4.5	ug/L	211	Standard
>	Ge	72	208497.9	2.9				ug/L	210599	Standard
	As	75	70363.4	0.5	101.5287	3.044	3.0	ug/L	-47	Standard
	Se	82	5987.0	0.9	102.2627	3.860	3.8	ug/L	15	Standard
L	Se-1	77	3900.8	1.0	101.4162	1.911	1.9	ug/L	65	Standard
Γ>	Ga	71	26.7	60.3				mg/L	27	Standard
L	Rb	85	958.4	12.2				ug/L	17	Standard
Γ	Υ	89	212963.9	3.2				ug/L	216672	Standard
L>	Rh	103	40.0	33.1				ug/L	18	Standard
Γ	Мо	98	271316.2	0.5	204.2422	3.632	1.8	ug/L	11	Standard
	Ag	107	451950.5	1.5	101.5757	3.120	3.1	ug/L	55	Standard
	Cd	111	135592.2	1.4	101.6441	2.964	2.9	mg/L	7	Standard
	Cd	114	331031.0	1.1	101.4743	2.605	2.6	ug/L	4	Standard
>	In	115	307127.6	1.6				ug/L	322525	Standard
	Sn	118	383300.3	1.7	101.4348	3.068	3.0	ug/L	345	Standard
	Sb	123	365509.0	1.5	101.7264	2.991	2.9	ug/L	88	Standard
Ĺ	Ва	135	154856.4	1.3	101.6752	2.888	2.8	ug/L	12	Standard
ļ	Ce	140	116.7	26.2				ug/L	37	Standard
_>	Tb	159	591995.7	2.3				ug/L	631826	Standard
ļ	Но	165	1.7	173.2				ug/L	3	Standard
ļ	TI	203	620136.3	1.1	102.1719	3.393	3.3	ug/L	7	Standard
ļ	TI	205	420757.5	0.9	102.9181	3.008	2.9	ug/L	7	Standard
ļ	Pb	206	378346.6	0.4	101.8290	2.549	2.5	ug/L	159	Standard
ļ	Pb	207	342805.8	0.8	101.7529	2.982	2.9	ug/L	120	Standard
ļ	Pb	208	1381344.3	0.0	102.6012	2.630	2.6	ug/L	503	Standard
ļ	U	238	512188.3	0.9	102.9137	3.307	3.2	ug/L	5	Standard
L>	Bi	209	313706.0	2.5				ug/L	333509	Standard

Sample ID: Standard 4

Report Date/Time: Tuesday, October 27, 2015 13:17:57

Page 1

Approved: October 28, 2015

_									_	
	Na	23	0.0					mg/L	0	Standard
	Mg	24	4123.9	1.8	9.9097	0.458	4.6	mg/L	10	Standard
	K	39	853.4	9.0	10.5349	0.861	8.2	mg/L	32	Standard
	Ca	43	155.0	3.2	10.8296	1.496	13.8	mg/L	85	Standard
	Fe	54	4040.4	4.9	9.8809	0.725	7.3	mg/L	82	Standard
	Fe	57	1263.4	6.9	10.2027	0.607	5.9	mg/L	217	Standard
L>	Sc-1	45	14380.2	2.7				mg/L	14524	Standard
	CI	35	54899.3	1.1				ug/L	53193	Standard
	Kr	83	6.0	28.9				ug/L	3	Standard
	Br	81	306.7	19.7				ug/L	327	Standard
	Р	31	15981.8	2.5				ug/L	13329	Standard
	S	34	3873.8	4.3				ug/L	3234	Standard
	Sr	88	101.7	2.8				ug/L	87	Standard
	С	12	126.7	18.2				mg/L	103	Standard
	N	14	0.0					mg/L	0	Standard
	Hg	202	0.0					mg/L	3	Standard
	Dy	164	2.1	297.9				mg/L	10	Standard
	Ho-1	165	1.7	173.2				mg/L	3	Standard
	Er	166	26.7	78.1				mg/L	7	Standard
	I	127	926.7	15.1				mg/L	3612	Standard

	Analyte	Mass	QC Std % Recovery	Int Std % Recovery	Spike % Recovery
Γ>	Li	6			
	Ве	9			
L	Al	27			
Γ	Sc	45			
	Ti	47			
	V	51			
	Cr	52			
	Cr	53			
	Mn	55			
	Co	59			
	Ni	60			
	Cu	65			
	Zn	66			
>	Ge	72			
	As	75			
	Se	82			
L	Se-1	77			
[>	Ga	71			

Sample ID: Standard 4

Report Date/Time: Tuesday, October 27, 2015 13:17:57

Page 2

Approved: October 28, 2015

l Di	0.5
L Rb	85
Y	89
L> Rh	103
Γ Mo	98 107
Ag	107
Cd	111
Cd	114
> In	115
Sn Sb	118 123
Ba	135
Ce	140
by Tb	159
[Ho	165
TI	203
TI	205
Pb	206
Pb	207
Pb	208
U	238
Ĺ> Bi	209
- Na	23
Mg	24
K	39
Ca	43
Fe	54
Fe	57
_> Sc-1	45
CI	35
Kr	83
Br	81
Р	31
S	34
Sr	88
С	12
N	14
Hg	202
Dy	164 165
Ho-1	165 166
Er	166
ı	127

QC Out of Limits

Measurement Type	Analyte	Mass	Out of Limits Message
Corr. Coef.	Na	23	Correlation coefficient < 0.998
Corr. Coef.	Ca	43	Correlation coefficient < 0.998

Sample ID: Standard 4

Report Date/Time: Tuesday, October 27, 2015 13:17:57

Page 3

Sample ID: QC Std 1

Sample Date/Time: Tuesday, October 27, 2015 13:18:53

Number of Replicates: 3 Autosampler Position: 201 Sample Description:

Method File: C:\NexIONData\Method\6020a.mth

Aliquot Volume (mL): Diluted to Volume (mL):

User Name: BKT Nexion300X Cumulative Autodilution Factor: 1

Nexion-ICP 200.8\6020

		Concentration Results										
IS	Analyt	e Mass	Intensity	RSD	Conc.	SD	RSD	Units	Blank Intens.	Mode		
Γ>	Li	6	26493.2	4.4				ug/L	26270	Standard		
ĺ	Be	9	25840.4	2.7	49.3849	1.107	2.2	ug/L	2	Standard		
Ĺ	ΑI	27	2852224.7	1.4	50.5063	2.809	5.6	ug/L	403	Standard		
Ī	Sc	45	14658.8	4.2				ug/L	14524	Standard		
ĺ	Ti	47	16179.3	2.1	97.7539	4.656	4.8	ug/L	365	Standard		
	V	51	172704.3	0.9	48.5877	1.665	3.4	ug/L	805	Standard		
	Cr	52	220543.5	0.5	49.2305	1.351	2.7	ug/L	5481	Standard		
	Cr	53	27132.6	2.1	49.0673	2.036	4.2	ug/L	268	Standard		
	Mn	55	168952.7	2.0	49.4370	2.057	4.2	ug/L	670	Standard		
	Co	59	160644.5	1.2	49.5360	0.898	1.8	ug/L	146	Standard		
	Ni	60	57556.8	0.9	49.5246	1.702	3.4	ug/L	220	Standard		
	Cu	65	56201.4	1.9	49.5023	2.204	4.5	ug/L	147	Standard		
	Zn	66	34376.0	1.0	50.8385	1.858	3.7	ug/L	211	Standard		
>	Ge	72	217075.4	2.7				ug/L	210599	Standard		
	As	75	36155.9	0.4	50.1452	1.438	2.9	ug/L	-47	Standard		
	Se	82	3036.4	1.5	49.7237	1.994	4.0	ug/L	15	Standard		
L	Se-1	77	2026.8	0.4	50.0013	1.540	3.1	ug/L	65	Standard		
Γ>	Ga	71	60.0	16.7				mg/L	27	Standard		
L	Rb	85	496.7	5.7				ug/L	17	Standard		
Γ	Υ	89	220337.7	4.6				ug/L	216672	Standard		
L>	Rh	103	21.7	26.6				ug/L	18	Standard		
Γ	Мо	98	138768.8	1.5	98.7915	2.761	2.8	ug/L	11	Standard		
	Ag	107	229355.0	1.2	48.7500	1.877	3.8	ug/L	55	Standard		
	Cd	111	69036.5	0.5	48.9374	1.359	2.8	mg/L	7	Standard		
	Cd	114	169480.0	0.9	49.1419	1.750	3.6	ug/L	4	Standard		
>	In	115	324833.0	2.7				ug/L	322525	Standard		
	Sn	118	200359.4	0.6	50.0691	1.612	3.2	ug/L	345	Standard		
	Sb	123	177495.0	1.1	46.7148	1.610	3.4	ug/L	88	Standard		
Ĺ	Ва	135	79218.9	0.9	49.1812	1.694	3.4	ug/L	12	Standard		
	Ce	140	145.0	9.1				ug/L	37	Standard		
Γ>	Tb	159	631642.0	4.9				ug/L	631826	Standard		
	Но	165	11.7	89.2				ug/L	3	Standard		
	TI	203	315699.2	0.9	48.8324	2.144	4.4	ug/L	7	Standard		

48.9618

48.6552

48.5756

48.6253

48.2888

Sample ID: QC Std 1

205

206

207

208

238

209

Report Date/Time: Tuesday, October 27, 2015 13:21:10

213223.2

192619.8

174369.7

697470.8

255907.6

334351.6

0.5

1.2

1.1

1.1

1.4

4.1

Page 1

ΤI

Pb

Pb

Pb

U

Bi

Approved: October 28, 2015

7

159

503

333509

5

Standard

Standard

Standard

Standard

Standard

Standard

Page 417

1.793

2.420

2.465

2.467

2.623

3.7

5.0

5.1

5.1

ug/L

ug/L

ug/L

ug/L

ug/L

ug/L

_										
	Na	23	0.0					mg/L	0	Standard
	Mg	24	2343.5	4.4	5.5074	0.315	5.7	mg/L	10	Standard
	K	39	446.7	11.8	5.3131	0.686	12.9	mg/L	32	Standard
	Ca	43	118.3	12.9	4.4728	2.680	59.9	mg/L	85	Standard
	Fe	54	1987.2	4.8	4.6937	0.180	3.8	mg/L	82	Standard
	Fe	57	736.7	4.4	5.0386	0.234	4.6	mg/L	217	Standard
L>	Sc-1	45	14658.8	4.2				mg/L	14524	Standard
	CI	35	53100.9	1.0				ug/L	53193	Standard
	Kr	83	3.7	31.5				ug/L	3	Standard
	Br	81	336.7	13.4				ug/L	327	Standard
	Р	31	14912.3	0.9				ug/L	13329	Standard
	S	34	3708.8	2.8				ug/L	3234	Standard
	Sr	88	111.7	11.3				ug/L	87	Standard
	С	12	106.7	5.4				mg/L	103	Standard
	N	14	0.0					mg/L	0	Standard
	Hg	202	0.0					mg/L	3	Standard
	Dy	164	12.5	119.0				mg/L	10	Standard
	Ho-1	165	11.7	89.2				mg/L	3	Standard
	Er	166	16.7	91.7				mg/L	7	Standard
	I	127	963.4	6.1				mg/L	3612	Standard

	Analyte	Mass	QC Std % Recovery	Int Std % Recovery	Spike % Recovery
Γ>	Li	6			
	Ве	9	98.770		
L	Al	27	101.013		
Γ	Sc	45			
	Ti	47	97.754		
	V	51	97.175		
	Cr	52	98.461		
	Cr	53			
	Mn	55	98.874		
	Co	59	99.072		
	Ni	60	99.049		
	Cu	65	99.005		
	Zn	66	101.677		
>	Ge	72		103.075	
	As	75	100.290		
	Se	82	99.447		
L	Se-1	77			
[>	Ga	71			

Sample ID: QC Std 1

Report Date/Time: Tuesday, October 27, 2015 13:21:10

Page 2

Approved: October 28, 2015

l Dh	05		
L Rb ΓΥ	85 89		
∣ ⊦ ∣> Rh	103		
Mo	98	98.792	
Ag	107	97.500	
Cd	111	97.875	
Cd	114		
 > In	115		100.716
Sn	118	100.138	
Sb	123	93.430	
∟ Ba	135	98.362	
Г Се	140		
∟> Tb	159		
Г Ho	165		
TI	203	97.665	
TI	205		
Pb	206	97.310	
Pb	207	97.151	
Pb	208	97.251	
U	238	96.578	400.050
[> Bi	209		100.253
「 Na □ Ma	23	110 117	
Mg	24	110.147	
│ K │ Ca	39 43	106.262 89.457	
Ca Fe	43 54	93.875	
Fe	5 7	100.773	
> Sc-1	45	100.773	
CI	35		
Kr	83		
Br	81		
Р	31		
S	34		
Sr	88		
С	12		
N	14		
Hg	202		
Dy	164		
Ho-1	165		
Er	166		
I	127		
QC O	ut of Limits		
	ement Type	Analyte Mass	Out of Limits Message
QC Std	1	Mg 24	-
QC Std	1	Ca 43	

Sample ID: QC Std 1

Report Date/Time: Tuesday, October 27, 2015 13:21:10

Page 3

Sample ID: QC Std 2

Sample Date/Time: Tuesday, October 27, 2015 13:22:05

Number of Replicates: 3 Autosampler Position: 102 Sample Description:

Method File: C:\NexIONData\Method\6020a.mth

Aliquot Volume (mL): Diluted to Volume (mL):

User Name: BKT Nexion300X Cumulative Autodilution Factor: 1 Nexion-ICP 200.8\6020

Concentration Results

					Conconti	utioii 1100	Juito			
IS	Analyt	e Mass	Intensity	RSD	Conc.	SD	RSD	Units	Blank Intens.	Mode
Γ>	Li	6	26264.5	7.9				ug/L	26270	Standard
	Be	9	38.3	71.8	0.0367	0.046	124.5	ug/L	2	Standard
L	ΑI	27	3859.5	139.3	0.0439	0.087	198.5	ug/L	403	Standard
Γ	Sc	45	15117.5	3.3				ug/L	14524	Standard
	Ti	47	293.7	9.7	-0.2938	0.127	43.3	ug/L	365	Standard
	٧	51	878.7	34.2	-0.0114	0.075	657.3	ug/L	805	Standard
	Cr	52	5031.5	5.4	-0.1502	0.027	18.2	ug/L	5481	Standard
	Cr	53	343.3	24.0	0.0998	0.126	126.2	ug/L	268	Standard
	Mn	55	750.0	36.8	-0.1324	0.073	54.8	ug/L	670	Standard
	Co	59	304.7	69.7	0.0475	0.061	129.3	ug/L	146	Standard
	Ni	60	255.3	39.9	-0.0058	0.079	1367.0	ug/L	220	Standard
	Cu	65	233.0	45.8	0.0265	0.086	322.7	ug/L	147	Standard
	Zn	66	229.7	33.3	-0.2843	0.100	35.3	ug/L	211	Standard
>	Ge	72	215475.4	4.2				ug/L	210599	Standard
	As	75	9.8	657.7	0.0896	0.088	98.1	ug/L	-47	Standard
	Se	82	20.2	28.9	0.1602	0.111	69.2	ug/L	15	Standard
L	Se-1	77	56.7	20.5	0.1994	0.237	118.8	ug/L	65	Standard
Γ>	Ga	71	16.7	17.3				mg/L	27	Standard
L	Rb	85	11.7	65.5				ug/L	17	Standard
Γ	Υ	89	222779.9	2.6				ug/L	216672	Standard
L>	Rh	103	20.0	50.0				ug/L	18	Standard
Γ	Мо	98	416.0	65.1	0.2857	0.176	61.6	ug/L	11	Standard
	Ag	107	193.7	113.3	0.0282	0.044	154.7	ug/L	55	Standard
	Cd	111	67.4	138.8	0.0393	0.062	158.9	mg/L	7	Standard
	Cd	114	181.5	152.6	0.0554	0.076	136.7	ug/L	4	Standard
>	In	115	328609.5	4.0				ug/L	322525	Standard
	Sn	118	753.4	37.5	0.0324	0.062	191.6	ug/L	345	Standard
ļ	Sb	123	818.3	17.6	0.2013	0.029	14.2	ug/L	88	Standard
Ē	Ва	135	82.7	146.1	0.0250	0.071	283.0	ug/L	12	Standard
ļ	Ce	140	23.3	24.7				ug/L	37	Standard
Ĺ>	Tb	159	638824.3	4.2				ug/L	631826	Standard
ļ	Но	165	11.7	89.2				ug/L	3	Standard
ļ	TI	203	203.7	150.3	0.0272	0.044	163.3	ug/L	7	Standard
ļ	TI	205	113.3	158.0	0.0271	0.039	142.6	ug/L	7	Standard
ļ	Pb	206	331.0	84.8	0.0211	0.065	308.6	ug/L	159	Standard
ļ	Pb	207	271.7	91.3	0.0158	0.064	402.9	ug/L	120	Standard
-	Pb	208	1076.4	85.6	0.0187	0.059	315.6	ug/L	503	Standard
-	U	238	256.3	142.9	0.0414	0.065	156.3	ug/L	5	Standard
L>	Bi	209	336870.7	4.5				ug/L	333509	Standard

Sample ID: QC Std 2

Report Date/Time: Tuesday, October 27, 2015 13:24:22

Page 1

Approved: October 28, 2015

_										
	Na	23	0.0					mg/L	0	Standard
	Mg	24	15.0	33.3	-0.0058	0.012	201.0	mg/L	10	Standard
	K	39	23.3	32.7	0.0698	0.095	136.2	mg/L	32	Standard
	Ca	43	85.0	21.2	-1.3369	2.520	188.5	mg/L	85	Standard
ĺ	Fe	54	71.0	42.7	0.0322	0.066	204.2	mg/L	82	Standard
	Fe	57	186.7	13.7	-0.1763	0.245	138.7	mg/L	217	Standard
L>	Sc-1	45	15117.5	3.3				mg/L	14524	Standard
	CI	35	55810.6	0.9				ug/L	53193	Standard
	Kr	83	4.3	58.1				ug/L	3	Standard
	Br	81	263.3	15.3				ug/L	327	Standard
	Р	31	15114.2	2.5				ug/L	13329	Standard
	S	34	3863.8	6.3				ug/L	3234	Standard
	Sr	88	81.7	15.4				ug/L	87	Standard
	С	12	96.7	6.0				mg/L	103	Standard
	N	14	0.0					mg/L	0	Standard
	Hg	202	0.0					mg/L	3	Standard
	Dy	164	2.9	203.0				mg/L	10	Standard
	Ho-1	165	11.7	89.2				mg/L	3	Standard
	Er	166	10.0	100.0				mg/L	7	Standard
	I	127	3520.4	1.9				mg/L	3612	Standard

	Analyte	Mass	QC Std % Recovery	Int Std % Recovery	Spike % Recovery
Γ>	Li	6			
	Ве	9			
L	Al	27			
Γ	Sc	45			
	Ti	47			
	V	51			
	Cr	52			
	Cr	53			
	Mn	55			
	Co	59			
	Ni	60			
	Cu	65			
	Zn	66			
>	Ge	72		102.316	
	As	75			
	Se	82			
L	Se-1	77			
[>	Ga	71			

Sample ID: QC Std 2

Report Date/Time: Tuesday, October 27, 2015 13:24:22

Page 2

Approved: October 28, 2015

Mo Ag Cd In Sb Ba e Tb OTT TI bb Pb U Bi A B C C Kr Br P S Sr C N H Dyo-1 Er I	85 89 103 98 107 111 114 115 118 123 135 140 159 165 203 205 206 207 208 238 209 23 24 39 43 54 57 45 35 83 81 31 34 88 12 14 202 165 165 165 17 18 18 18 18 18 18 18 18 18 18			101.887
Measureme	of Limits ent Type	Analyte	Mass	Out of Limits Message
QC Std 2 QC Std 2		Sb Ca	123 43	

Sample ID: QC Std 2

QC Std 2

Report Date/Time: Tuesday, October 27, 2015 13:24:22

Fe

57

Page 3

Sample ID: QC Std 3

Sample Date/Time: Tuesday, October 27, 2015 13:25:18

Number of Replicates: 3 Autosampler Position: 202 Sample Description:

Method File: C:\NexIONData\Method\6020a.mth

Aliquot Volume (mL): Diluted to Volume (mL):

User Name: BKT Nexion300X Cumulative Autodilution Factor: 1

Nexion-ICP 200.8\6020

	Concentration Results										
IS	Analyt	e Mass	Intensity	RSD	Conc.	SD	RSD	Units	Blank Intens.	Mode	
Γ>	Li	6	25903.8	2.6				ug/L	26270	Standard	
i	Be	9	103.3	38.8	0.1659	0.073	44.1	ug/L	2	Standard	
i	ΑI	27	868.4	72.0	-0.0049	0.011	231.6	ug/L	403	Standard	
Ī	Sc	45	14813.9	7.1				ug/L	14524	Standard	
ĺ	Ti	47	254.7	4.7	-0.4545	0.129	28.5	ug/L	365	Standard	
ĺ	V	51	2016.8	5.1	0.3432	0.039	11.4	ug/L	805	Standard	
	Cr	52	8299.6	3.0	0.7004	0.121	17.3	ug/L	5481	Standard	
	Cr	53	715.0	9.1	0.8549	0.166	19.5	ug/L	268	Standard	
	Mn	55	2284.2	2.8	0.3585	0.040	11.2	ug/L	670	Standard	
	Co	59	1382.7	5.3	0.4057	0.035	8.6	ug/L	146	Standard	
	Ni	60	1960.8	1.8	1.5654	0.081	5.2	ug/L	220	Standard	
	Cu	65	1078.0	2.1	0.8287	0.053	6.4	ug/L	147	Standard	
	Zn	66	4700.7	8.0	6.8105	0.295	4.3	ug/L	211	Standard	
>	Ge	72	205417.6	3.1				ug/L	210599	Standard	
	As	75	230.9	6.6	0.4155	0.018	4.3	ug/L	-47	Standard	
	Se	82	38.7	18.0	0.4934	0.102	20.8	ug/L	15	Standard	
L	Se-1	77	60.0	15.0	0.3613	0.199	55.0	ug/L	65	Standard	
Γ>	Ga	71	16.7	17.3				mg/L	27	Standard	
L	Rb	85	26.7	21.7				ug/L	17	Standard	
Γ	Υ	89	211259.4	4.4				ug/L	216672	Standard	
L>	Rh	103	10.0					ug/L	18	Standard	
Γ	Мо	98	130.2	30.6	0.0940	0.034	36.3	ug/L	11	Standard	
	Ag	107	1894.8	3.0	0.4037	0.031	7.7	ug/L	55	Standard	
	Cd	111	353.0	5.0	0.2517	0.023	9.0	mg/L	7	Standard	
	Cd	114	756.6	5.0	0.2316	0.021	9.3	ug/L	4	Standard	
>	In	115	315712.4	4.5				ug/L	322525	Standard	
!	Sn	118	375.0	10.1	-0.0559	0.011	20.1	ug/L	345	Standard	
!	Sb	123	1533.5	3.6	0.4048	0.019	4.6	ug/L	88	Standard	
Ļ	Ва	135	1132.4	4.9	0.7013	0.069	9.8	ug/L	12	Standard	
ļ	Ce	140	26.7	10.8				ug/L	37	Standard	
Ĺ>	Tb	159	613632.1	3.8				ug/L	631826	Standard	
	Ho	165	8.3	69.3		0.000	0.0	ug/L	3	Standard	
	TI	203	546.0	7.8	0.0844	0.008	9.9	ug/L	7	Standard	
	TI	205	340.0	15.9	0.0832	0.015	18.3	ug/L	7	Standard	
ļ	Pb	206	921.4	2.9	0.1800	0.006	3.3	ug/L	159	Standard	

0.1679

0.1841

0.3957

Sample ID: QC Std 3

207

208

238

209

Report Date/Time: Tuesday, October 27, 2015 13:27:35

784.4

3308.8

2058.1

324276.0

4.2

2.8

3.2

Page 1

Pb

Pb

U

Bi

Approved: October 28, 2015

Generated: 10/30/2015 10:11

503

333509

5

Standard

Standard

Standard

Standard

Page 423

9.6 ug/L

3.0 ug/L

ug/L

ug/L

0.005

0.018

0.021

_										
Γ	Na	23	0.0					mg/L	0	Standard
	Mg	24	13.3	94.4	-0.0099	0.028	281.4	mg/L	10	Standard
	K	39	21.7	35.3	0.0568	0.107	188.9	mg/L	32	Standard
	Ca	43	70.0	43.4	-3.3147	5.113	154.2	mg/L	85	Standard
ĺ	Fe	54	75.7	9.8	0.0496	0.027	53.7	mg/L	82	Standard
	Fe	57	210.0	6.3	0.0820	0.214	260.6	mg/L	217	Standard
L>	Sc-1	45	14813.9	7.1				mg/L	14524	Standard
	CI	35	56108.4	0.7				ug/L	53193	Standard
	Kr	83	5.0	34.6				ug/L	3	Standard
	Br	81	303.3	26.9				ug/L	327	Standard
	Р	31	15077.5	2.1				ug/L	13329	Standard
	S	34	3702.1	2.6				ug/L	3234	Standard
	Sr	88	83.3	29.6				ug/L	87	Standard
	С	12	130.0	13.3				mg/L	103	Standard
	N	14	0.0					mg/L	0	Standard
	Hg	202	0.0					mg/L	3	Standard
	Dy	164	6.2	93.3				mg/L	10	Standard
	Ho-1	165	8.3	69.3				mg/L	3	Standard
	Er	166	10.0					mg/L	7	Standard
	I	127	603.3	17.0				mg/L	3612	Standard

Analyte	Mass	QC Std % Recovery	Int Std % Recovery	Spike % Recovery
「> Li	6			
Be	9	82.953		
L AI	27	-0.486		
「 Sc	45			
Ti	47			
V	51	85.802		
Cr	52	87.545		
Cr	53			
Mn	55	71.690		
Co	59	101.421		
Ni	60	97.840		
Cu	65	103.588		
Zn	66	108.968		
> Ge	72		97.540	
As	75	103.884		
Se	82	123.338		
∟ Se-1	77			
「⊳ Ga	71			

Sample ID: QC Std 3

Report Date/Time: Tuesday, October 27, 2015 13:27:35

Page 2

Approved: October 28, 2015

∟ Rb	85			
ΓY	89			
$\lfloor_>$ Rh	103			
ГМо	98			
Ag	107	100.935		
Cd	111	104.859		
Cd	114			
> In	115		97.888	
Sn	118			
Sb	123	101.196		
∟ Ba	135	93.509		
「 Ce	140			
L> Tb	159			
Γ Ho	165			
TI	203	105.526		
TI	205			
Pb	206			
Pb	207			
Pb	208	92.070		
į U	238	98.925		
Ĺ> Bi	209		97.231	
- Na	23			
Mg	24			
ίκ	39			
Ca	43			
Fe	54			
Fe	57			
_> Sc-1	45			
CI	35			
Kr	83			
Br	81			
Р	31			
S	34			
Sr	88			
С	12			
N	14			
Hg	202			
Dy	164			
Ho-1	165			
Er	166			
1	127			
OC 0	ut of Limits			
		Analyta Mass	Out of Limits Massacra	
	ement Type	Analyte Mass	Out of Limits Message	
QC Std	3	Al 27		

Sample ID: QC Std 3

Report Date/Time: Tuesday, October 27, 2015 13:27:35

Page 3

Sample ID: QC Std 4

Sample Date/Time: Tuesday, October 27, 2015 13:28:29

Number of Replicates: 3 Autosampler Position: 203 Sample Description:

Method File: C:\NexIONData\Method\6020a.mth

Aliquot Volume (mL): Diluted to Volume (mL):

User Name: BKT Nexion300X Cumulative Autodilution Factor: 1

Nexion-ICP 200.8\6020

Con	cont	tration	Pagu	lte
Con	ceni	tration	Resu	เเร

					Concenti	alion Nes	นแจ			
IS	Analyt	e Mass	Intensity	RSD	Conc.	SD	RSD	Units	Blank Intens.	Mode
Γ>	Li	6	23464.9	6.5				ug/L	26270	Standard
	Be	9	8.3	34.6	-0.0169	0.006	36.6	ug/L	2	Standard
L	ΑI	27	2100195.4	1.1	42.0175	2.361	5.6	ug/L	403	Standard
Γ	Sc	45	12546.9	6.4				ug/L	14524	Standard
	Ti	47	12876.1	1.8	89.0846	3.480	3.9	ug/L	365	Standard
	٧	51	529.2	10.7	-0.0885	0.010	11.0	ug/L	805	Standard
	Cr	52	3866.8	2.0	-0.2933	0.057	19.4	ug/L	5481	Standard
	Cr	53	1378.4	10.9	2.3540	0.181	7.7	ug/L	268	Standard
	Mn	55	513.7	0.7	-0.1793	0.011	5.9	ug/L	670	Standard
	Co	59	193.0	6.5	0.0226	0.005	22.3	ug/L	146	Standard
	Ni	60	399.7	6.2	0.1714	0.045	26.0	ug/L	220	Standard
	Cu	65	348.3	3.5	0.1753	0.031	17.8	ug/L	147	Standard
	Zn	66	651.7	0.6	0.4923	0.055	11.2	ug/L	211	Standard
>	Ge	72	189266.2	5.2				ug/L	210599	Standard
	As	75	-74.5	52.0	-0.0401	0.059	147.0	ug/L	-47	Standard
	Se	82	12.0	37.7	0.0490	0.081	165.9	ug/L	15	Standard
L	Se-1	77	204.0	11.0	4.6722	0.520	11.1	ug/L	65	Standard
Γ>	Ga	71	73.3	34.3				mg/L	27	Standard
L	Rb	85	365.0	9.9				ug/L	17	Standard
Γ	Υ	89	192085.0	4.7				ug/L	216672	Standard
L>	Rh	103	15.0	57.7				ug/L	18	Standard
Γ	Мо	98	104656.9	0.9	84.6936	5.752	6.8	ug/L	11	Standard
	Ag	107	51.7	4.0	0.0011	0.001	84.3	ug/L	55	Standard
	Cd	111	-71.1	21.7	-0.0636	0.013	20.0	mg/L	7	Standard
	Cd	114	303.6	7.0	0.1052	0.004	3.9	ug/L	4	Standard
>	In	115	286405.1	5.9				ug/L	322525	Standard
	Sn	118	238.3	12.8	-0.0849	0.008	9.9	ug/L	345	Standard
	Sb	123	63.0	23.4	0.0080	0.004	44.5	ug/L	88	Standard
L	Ва	135	65.7	15.0	0.0224	0.007	33.3	ug/L	12	Standard
Γ	Ce	140	65.0	27.7				ug/L	37	Standard
_>	Tb	159	558943.6	3.7				ug/L	631826	Standard
Γ	Но	165	10.0	132.3				ug/L	3	Standard
	TI	203	102.3	21.2	0.0148	0.005	30.7	ug/L	7	Standard
	TI	205	50.0	52.9	0.0151	0.007	46.1	ug/L	7	Standard
ļ	Pb	206	202.0	5.5	-0.0040	0.000	6.1	ug/L	159	Standard
ļ	Pb	207	168.3	14.3	-0.0059	0.007	126.4	ug/L	120	Standard
ļ	Pb	208	710.0	3.9	0.0003	0.002	653.7	ug/L	503	Standard
ļ	U	238	7.3	28.4	-0.0030	0.000	16.5	ug/L	5	Standard
_>	Bi	209	304692.0	5.1				ug/L	333509	Standard

Sample ID: QC Std 4

Report Date/Time: Tuesday, October 27, 2015 13:30:46

Page 1

Approved: October 28, 2015

Γ	Na	23	0.0					mg/L	0	Standard
	Mg	24	4118.9	7.9	11.3344	0.309	2.7	mg/L	10	Standard
	K	39	370.0	2.3	5.1479	0.430	8.3	mg/L	32	Standard
	Ca	43	140.0	19.9	11.5935	4.068	35.1	mg/L	85	Standard
İ	Fe	54	3854.9	7.0	10.8056	0.373	3.5	mg/L	82	Standard
İ	Fe	57	1186.7	7.9	11.1506	0.966	8.7	mg/L	217	Standard
Ĺ>	Sc-1	45	12546.9	6.4				mg/L	14524	Standard
	CI	35	52754.4	2.7				ug/L	53193	Standard
	Kr	83	7.0	14.3				ug/L	3	Standard
	Br	81	273.3	4.2				ug/L	327	Standard
	Р	31	5809.4	3.4				ug/L	13329	Standard
	S	34	3188.7	5.7				ug/L	3234	Standard
	Sr	88	113.3	9.2				ug/L	87	Standard
	С	12	290.0	24.1				mg/L	103	Standard
	N	14	0.0					mg/L	0	Standard
	Hg	202	0.0					mg/L	3	Standard
	Dy	164	12.7	115.9				mg/L	10	Standard
	Ho-1	165	10.0	132.3				mg/L	3	Standard
	Er	166	13.3	114.6				mg/L	7	Standard
	I	127	1068.4	9.0				mg/L	3612	Standard

	Analyte	Mass	QC Std % Recovery	Int Std % Recovery	Spike % Recovery
Γ>	Li	6			
	Ве	9			
L	Al	27	0.840		
Γ	Sc	45			
	Ti	47	89.085		
	V	51			
	Cr	52			
	Cr	53			
	Mn	55			
	Co	59			
	Ni	60			
	Cu	65			
	Zn	66			
>	Ge	72		89.870	
	As	75			
	Se	82			
L	Se-1	77			
[>	Ga	71			

Sample ID: QC Std 4

Report Date/Time: Tuesday, October 27, 2015 13:30:46

Page 2

Sample ID: Q0				
QC S		Mg 24 Ca 43		
QC S		Al 27		
	urement Type	Analyte Mass	Out of Limits Message	
	Out of Limits			
000	127			
Er	166			
Ho-1	165			
Dy	164			
Hg	202			
N	14			
C	12			
Sr	88			
S	34			
P	31			
Br	81			
Kr	83			
L> SC-1	45 35			
Fe _{>} Sc-1	57 45	09.200		
Fe Fe	54 57	86.445 89.205		
Ca	43 54	77.290 86.445		
K	39 43	102.959		
Mg	24	226.688		
「 Na	23	000.005		
Ĺ> Bi	209		91.359	
Ü	238			
Pb	208			
Pb	207			
Pb	206			
Ti	205			
TI	203			
L> Tb Γ Ho	165			
「 Ce └> Tb	140 159			
L Ba □ Co	135			
Sb	123			
Sn	118			
> In	115		88.801	
Cd	114			
Cd	111			
Ag	107			
ГМо	98	84.694		
_> Rh	103			
Γ̈́Υ	89			
L Rb	85			

Sample ID: QC Std 4
Report Date/Time: Tuesday, October 27, 2015 13:30:46

Page 3

Sample ID: QC Std 5

Sample Date/Time: Tuesday, October 27, 2015 13:31:40

Number of Replicates: 3 Autosampler Position: 204 Sample Description:

Method File: C:\NexIONData\Method\6020a.mth

Aliquot Volume (mL): Diluted to Volume (mL):

User Name: BKT Nexion300X Cumulative Autodilution Factor: 1

Nexion-ICP 200.8\6020

					Concentrat	ion Res	ults			
IS	S Analyte Mass		Intensity	RSD	Conc.	SD	RSD	Units	Blank Intens.	Mode
Γ>	Li	6	28740.6	4.9				ug/L	26270	Standard
	Be	9	57045.5	1.4	100.6687	5.988	5.9	ug/L	2	Standard
L	Al	27	3039527.8	1.2	49.6194	2.706	5.5	ug/L	403	Standard
Γ	Sc	45	14885.7	4.2				ug/L	14524	Standard
	Ti	47	17540.1	2.1	106.6365	6.732	6.3	ug/L	365	Standard
	V	51	349134.0	1.6	98.9287	5.400	5.5	ug/L	805	Standard
	Cr	52	435450.5	1.9	98.9532	5.953	6.0	ug/L	5481	Standard
	Cr	53	54999.7	2.9	100.4775	6.684	6.7	ug/L	268	Standard
	Mn	55	348082.6	2.0	102.6981	6.318	6.2	ug/L	670	Standard
	Co	59	329037.1	2.1	102.0189	6.406	6.3	ug/L	146	Standard
	Ni	60	113081.8	1.0	97.9491	5.080	5.2	ug/L	220	Standard
	Cu	65	112032.3	0.5	99.2590	4.631	4.7	ug/L	147	Standard
	Zn	66	67991.3	2.1	101.6349	6.226	6.1	ug/L	211	Standard
>	Ge	72	216313.7	4.3				ug/L	210599	Standard
	As	75	74382.2	0.5	103.5287	4.868	4.7	ug/L	-47	Standard
	Se	82	6194.1	0.3	102.0343	4.566	4.5	ug/L	15	Standard
L	Se-1	77	4241.6	2.1	106.5032	6.699	6.3	ug/L	65	Standard
Γ>	Ga	71	83.3	17.3				mg/L	27	Standard
L	Rb	85	538.3	14.1				ug/L	17	Standard
Γ	Υ	89	227639.5	4.5				ug/L	216672	Standard
L>	Rh	103	28.3	44.4				ug/L	18	Standard
Γ	Мо	98	147955.4	1.6	101.3298	5.055	5.0	ug/L	11	Standard
	Ag	107	428496.9	2.0	87.5742	3.589	4.1	ug/L	55	Standard
	Cd	111	143958.5	1.9	98.1757	5.180	5.3	mg/L	7	Standard
	Cd	114	355464.2	2.5	99.1423	5.694	5.7	ug/L	4	Standard
>	In	115	337910.8	3.5				ug/L	322525	Standard
	Sn	118	780.0	11.9	0.0357	0.027	76.7	ug/L	345	Standard
	Sb	123	377384.0	0.6	95.5207	3.746	3.9	ug/L	88	Standard
Ĺ	Ва	135	161718.2	1.3	96.5778	4.361	4.5	ug/L	12	Standard
ļ	Се	140	66.7	11.5				ug/L	37	Standard
Ĺ>	Tb	159	650073.5	4.2				ug/L	631826	Standard
ļ	Но	165	3.3	86.6				ug/L	3	Standard
ļ	TI	203	657539.1	2.1	97.2948	5.211	5.4	ug/L	7	Standard
	TI	205	443571.4	1.1	97.4259	4.203	4.3	ug/L	7	Standard
	Pb	206	402979.0	1.4	97.4012	4.566	4.7	ug/L	159	Standard
	Pb	207	363365.6	1.6	96.8583	4.756	4.9	ug/L	120	Standard
	Pb	208	1447537.3	2.6	96.5798	5.662	5.9	ug/L	503	Standard
	U	238	536091.2	1.7	96.7228	4.518	4.7	ug/L	5	Standard

Sample ID: QC Std 5

209

Report Date/Time: Tuesday, October 27, 2015 13:33:57

349531.7

3.4

Page 1

L> Bi

Approved: October 28, 2015

Standard

Page 429

ug/L

333509

_										
Γ	Na	23	0.0					mg/L	0	Standard
	Mg	24	5374.3	2.3	12.4952	0.727	5.8	mg/L	10	Standard
	K	39	476.7	10.3	5.5971	0.668	11.9	mg/L	32	Standard
	Ca	43	158.3	15.6	10.5953	4.795	45.3	mg/L	85	Standard
ĺ	Fe	54	5168.0	2.6	12.2492	0.834	6.8	mg/L	82	Standard
	Fe	57	1578.4	2.9	12.7387	1.033	8.1	mg/L	217	Standard
L>	Sc-1	45	14885.7	4.2				mg/L	14524	Standard
	CI	35	60221.5	1.5				ug/L	53193	Standard
	Kr	83	6.0	33.3				ug/L	3	Standard
	Br	81	346.7	15.9				ug/L	327	Standard
	Р	31	13669.5	1.9				ug/L	13329	Standard
	S	34	3425.4	6.5				ug/L	3234	Standard
	Sr	88	110.0	27.3				ug/L	87	Standard
	С	12	250.0	21.2				mg/L	103	Standard
	N	14	0.0					mg/L	0	Standard
	Hg	202	3.3	173.2				mg/L	3	Standard
	Dy	164	19.5	50.0				mg/L	10	Standard
	Ho-1	165	3.3	86.6				mg/L	3	Standard
	Er	166	10.0	100.0				mg/L	7	Standard
	1	127	3388.7	6.1				mg/L	3612	Standard

	Analyte	Mass	QC Std % Recovery	Int Std % Recovery	Spike % Recovery
Γ>	Li	6			
	Ве	9	100.669		
L	Al	27	0.992		
Γ	Sc	45			
	Ti	47	106.637		
	V	51	98.929		
	Cr	52	98.953		
	Cr	53			
	Mn	55	102.698		
	Co	59	102.019		
	Ni	60	97.949		
	Cu	65	99.259		
	Zn	66	101.635		
>	Ge	72		102.714	
	As	75	103.529		
	Se	82	102.034		
L	Se-1	77			
Γ>	Ga	71			

Sample ID: QC Std 5

Report Date/Time: Tuesday, October 27, 2015 13:33:57

Page 2

Approved: October 28, 2015

Ag 107	│ Rb │ Y │> Rh │ Mo	85 89 103 98	101.330 87.574	
Sb 123 95.521 Ba 135 96.578 Ce 140 Tb 159 Ho 165 Tl 203 97.295 Tl 205 Pb 206 Pb 207 Pb 208 96.580 U 238 96.723 Si 209 104.804 K 39 111.943 Ca 43 70.636 Fe 54 97.994 Fe 57 101.909 Sc-1 45 Cl 35 Kr 83 Br 81 P 31 S 34 Sr 88 C 12 N 14 Hg 202 Dy 164 Ho-1 165 Er 166 Try 127 QC Out of Limits Measurement Type Analyte Mass Out of Limits Message	Cd Cd _{>} In	111 114 115		104.771
TI	Sb Ba Ce b	123 135 140 159		
U 238 96.723 > Bi 209 104.804 Na 23 Mg 24 249.904 K 39 111.943 Ca 43 70.636 Fe 54 97.994 Fe 57 101.909 Sc-1 45 Cl 35 Kr 83 Br 81 P 31 S 34 Sr 88 C 12 N 14 Hg 202 Dy 164 Ho-1 165 Er 166 I 127 QC Out of Limits Measurement Type Analyte Mass Out of Limits Message	TI TI Pb Pb	203 205 206 207		
K	U L> Bi Na	238 209 23	96.723	104.804
CI 35 Kr 83 Br 81 P 31 S 34 Sr 88 C 12 N 14 Hg 202 Dy 164 Ho-1 165 Er 166 I 127 QC Out of Limits Measurement Type Analyte Mass Out of Limits Message	K Ca Fe Fe	39 43 54 57	111.943 70.636 97.994	
S 34 Sr 88 C 12 N 14 Hg 202 Dy 164 Ho-1 165 Er 166 I 127 QC Out of Limits Measurement Type Analyte Mass Out of Limits Message	CI Kr Br	35 83 81		
Dy 164 Ho-1 165 Er 166 I 127 QC Out of Limits Measurement Type Analyte Mass Out of Limits Message	S Sr C N	34 88 12 14		
QC Out of Limits Measurement Type Analyte Mass Out of Limits Message	Dy Ho-1	164 165 166		
	QC O			
QC Std 5 Al 27	Measure	ement Type		Out of Limits Message
QC Std 5 Mg 24				
QC Std 5 Ca 43			•	

Sample ID: QC Std 5

Report Date/Time: Tuesday, October 27, 2015 13:33:57

Page 3

Sample ID: QC Std 6

Sample Date/Time: Tuesday, October 27, 2015 13:34:53

Number of Replicates: 3 Autosampler Position: 101 Sample Description:

Method File: C:\NexIONData\Method\6020a.mth

Aliquot Volume (mL): Diluted to Volume (mL):

User Name: BKT Nexion300X Cumulative Autodilution Factor: 1

Nexion-ICP 200.8\6020

					Concentrat	ion Res	ults			
IS	Analyt	e Mass	Intensity	RSD	Conc.	SD	RSD	Units	Blank Intens.	Mode
Γ>	Li	6	28478.5	6.3				ug/L	26270	Standard
ĺ	Be	9	27626.8	2.3	49.2501	3.936	8.0	ug/L	2	Standard
ĺ	Al	27	2876826.7	1.2	47.4399	3.070	6.5	ug/L	403	Standard
Ī	Sc	45	14393.5	1.1				ug/L	14524	Standard
ĺ	Ti	47	16067.2	2.4	98.7688	4.669	4.7	ug/L	365	Standard
	٧	51	175819.0	1.5	50.3289	1.885	3.7	ug/L	805	Standard
	Cr	52	217537.5	2.6	49.4173	2.381	4.8	ug/L	5481	Standard
	Cr	53	26908.9	3.3	49.5140	2.590	5.2	ug/L	268	Standard
	Mn	55	170413.1	1.4	50.7275	1.681	3.3	ug/L	670	Standard
	Co	59	163189.5	1.2	51.2045	1.690	3.3	ug/L	146	Standard
	Ni	60	56214.1	1.6	49.2028	1.803	3.7	ug/L	220	Standard
	Cu	65	54861.5	2.2	49.1526	2.166	4.4	ug/L	147	Standard
	Zn	66	32724.3	2.4	49.2156	2.223	4.5	ug/L	211	Standard
>	Ge	72	213374.8	2.3				ug/L	210599	Standard
	As	75	35475.2	1.9	50.0595	2.030	4.1	ug/L	-47	Standard
	Se	82	3010.1	3.5	50.1504	2.691	5.4	ug/L	15	Standard
L	Se-1	77	2047.5	2.3	51.4279	2.330	4.5	ug/L	65	Standard
/>	Ga	71	23.3	81.1				mg/L	27	Standard
Ĺ	Rb	85	488.3	8.7				ug/L	17	Standard
ļ	Υ	89	224157.1	3.3				ug/L	216672	Standard
Ĺ>	Rh	103	16.7	96.4				ug/L	18	Standard
ļ	Мо	98	148646.6	0.7	102.6729	2.711	2.6	ug/L	11	Standard
ļ	Ag	107	233533.5	2.0	48.1591	2.043	4.2	ug/L	55	Standard
ļ	Cd	111	70465.0	1.3	48.4632	1.573	3.2	mg/L	7	Standard
	Cd	114	170924.9	2.3	48.0890	2.177	4.5	ug/L	4	Standard
>	In	115	334790.7	2.3	40.000	0.404		ug/L	322525	Standard
-	Sn	118	199117.3	3.0	48.2826	2.491	5.2	ug/L	345	Standard
	Sb	123	186668.9	1.9 1.8	47.6694	1.962	4.1	ug/L	88	Standard
L	Ba Ce	135 140	78713.0 60.0	33.3	47.4129	1.913	4.0	ug/L ug/L	12 37	Standard Standard
>	Tb	159	630895.5	1.4				ug/L ug/L	631826	Standard
L>	Но	165	11.7	24.7				ug/L ug/L	3	Standard
i	TI	203	321762.5	2.0	48.9425	2.043	4.2	ug/L ug/L	7	Standard
i	TI	205	217207.6	1.0	49.0471	1.482	3.0	ug/L	7	Standard
	Pb	206	198735.8	1.9	49.3581	2.046	4.1	ug/L	159	Standard
1	Pb	207	179832.2	2.0	49.2562	2.115	4.3	ug/L	120	Standard
i	Pb	208	719155.7	1.7	49.2923	1.954	4.0	ug/L	503	Standard
i	U	238	265401.7	1.0	49.2245	1.553	3.2	ug/L	5	Standard
>	Bi	209	339819.2	2.3	70.2270	1.000	U. <u>-</u>	ug/L	333509	Standard
			0000.U.L					~g. =	555500	

Sample ID: QC Std 6

Report Date/Time: Tuesday, October 27, 2015 13:37:10

Page 1

Approved: October 28, 2015

_										
	Na	23	0.0					mg/L	0	Standard
	Mg	24	2238.5	2.0	5.3508	0.049	0.9	mg/L	10	Standard
	K	39	386.7	12.0	4.6514	0.536	11.5	mg/L	32	Standard
	Ca	43	103.3	24.4	2.3318	3.989	171.1	mg/L	85	Standard
ĺ	Fe	54	2063.7	7.9	4.9722	0.431	8.7	mg/L	82	Standard
	Fe	57	670.0	7.4	4.5250	0.426	9.4	mg/L	217	Standard
L>	Sc-1	45	14393.5	1.1				mg/L	14524	Standard
	CI	35	58042.3	1.0				ug/L	53193	Standard
	Kr	83	4.3	70.5				ug/L	3	Standard
	Br	81	283.3	29.6				ug/L	327	Standard
	Р	31	15025.8	3.3				ug/L	13329	Standard
	S	34	3530.4	7.6				ug/L	3234	Standard
	Sr	88	106.7	5.4				ug/L	87	Standard
	С	12	176.7	33.2				mg/L	103	Standard
	N	14	0.0					mg/L	0	Standard
	Hg	202	3.3	173.2				mg/L	3	Standard
	Dy	164	13.2	41.7				mg/L	10	Standard
	Ho-1	165	11.7	24.7				mg/L	3	Standard
	Er	166	3.3	173.2				mg/L	7	Standard
	1	127	3188.7	3.3				mg/L	3612	Standard

Analyte	Mass	QC Std % Recovery	Int Std % Recovery	Spike % Recovery
「> Li	6			
Be	9	98.500		
L AI	27	94.880		
「 Sc	45			
Ti	47	98.769		
V	51	100.658		
Cr	52	98.835		
Cr	53			
Mn	55	101.455		
Co	59	102.409		
Ni	60	98.406		
Cu	65	98.305		
Zn	66	98.431		
> Ge	72		101.318	
As	75	100.119		
Se	82	100.301		
∟ Se-1	77			
「> Ga	71			

Sample ID: QC Std 6

Report Date/Time: Tuesday, October 27, 2015 13:37:10

Page 2

Approved: October 28, 2015

Chine I

L Rb	85		
ΓΥ	89		
$\lfloor_>$ Rh	103		
ГМо	98	102.673	
Ag	107	96.318	
Cd	111	96.926	
Cd	114		
> In	115		103.803
Sn	118	96.565	
Sb	123	95.339	
L Ba	135	94.826	
「 Ce	140		
L> Tb	159		
ГНо	165		
TI	203	97.885	
TI	205		
Pb	206		
Pb	207		
Pb	208	98.585	
U	238	98.449	
L> Bi	209		101.892
Г Na	23		
Mg	24		
K	39		
Ca	43		
Fe	54		
Fe	57		
_> Sc-1	45		
CI	35		
Kr	83		
Br	81		
Р	31		
S	34		
Sr	88		
С	12		
N	14		
Hg	202		
Dy	164		
Ho-1	165		
Er	166		
1	127	4_	
	ut of Limi		
Measur	ement Type	Analyte Mass	Out of Limits Message

Sample ID: QC Std 6

Report Date/Time: Tuesday, October 27, 2015 13:37:10

Page 3

Sample ID: QC Std 7

Sample Date/Time: Tuesday, October 27, 2015 13:38:04

Number of Replicates: 3 Autosampler Position: 102 Sample Description:

Method File: C:\NexIONData\Method\6020a.mth

Aliquot Volume (mL): Diluted to Volume (mL):

User Name: BKT Nexion300X Cumulative Autodilution Factor: 1

Nexion-ICP 200.8\6020

					_	_				
Concentration Results										
IS	Analyt	e Mass	Intensity	RSD	Conc.	SD	RSD	Units	Blank Intens.	Mode
Γ>	Li	6	28399.9	1.7				ug/L	26270	Standard
	Be	9	55.0	45.5	0.0627	0.043	68.4	ug/L	2	Standard
L	ΑI	27	4401.0	86.5	0.0514	0.061	119.2	ug/L	403	Standard
Γ	Sc	45	15039.1	2.8				ug/L	14524	Standard
	Ti	47	238.7	11.2	-0.6271	0.155	24.8	ug/L	365	Standard
	V	51	918.6	17.2	0.0030	0.043	1440.8	ug/L	805	Standard
	Cr	52	5389.6	3.6	-0.0612	0.037	61.2	ug/L	5481	Standard
	Cr	53	440.0	29.0	0.2842	0.229	80.7	ug/L	268	Standard
	Mn	55	839.4	19.7	-0.1031	0.047	45.9	ug/L	670	Standard
	Co	59	369.7	47.5	0.0695	0.054	77.6	ug/L	146	Standard
	Ni	60	266.7	20.8	0.0070	0.047	670.2	ug/L	220	Standard
	Cu	65	227.3	34.5	0.0244	0.068	280.9	ug/L	147	Standard
	Zn	66	212.7	28.5	-0.3061	0.089	29.1	ug/L	211	Standard
>	Ge	72	214378.0	0.7				ug/L	210599	Standard
	As	75	10.0	214.7	0.0917	0.030	32.4	ug/L	-47	Standard
	Se	82	22.8	20.3	0.2033	0.080	39.1	ug/L	15	Standard
L	Se-1	77	61.0	12.8	0.3225	0.188	58.2	ug/L	65	Standard
Γ>	Ga	71	18.3	31.5				mg/L	27	Standard
L	Rb	85	21.7	66.6				ug/L	17	Standard
Γ	Υ	89	217532.4	1.7				ug/L	216672	Standard
L>	Rh	103	10.0					ug/L	18	Standard
Γ	Мо	98	505.3	34.6	0.3528	0.126	35.7	ug/L	11	Standard
	Ag	107	327.0	69.6	0.0574	0.048	84.3	ug/L	55	Standard
	Cd	111	81.6	89.1	0.0509	0.051	101.0	mg/L	7	Standard
	Cd	114	235.8	96.5	0.0730	0.066	90.0	ug/L	4	Standard
>	In	115	329473.0	8.0				ug/L	322525	Standard
	Sn	118	716.7	17.8	0.0245	0.033	134.9	ug/L	345	Standard
	Sb	123	608.3	15.4	0.1472	0.025	17.1	ug/L	88	Standard
L	Ва	135	111.3	77.8	0.0445	0.054	120.8	ug/L	12	Standard
Γ	Ce	140	25.0	91.7				ug/L	37	Standard
L>	Tb	159	624028.7	1.0				ug/L	631826	Standard
Γ	Но	165	11.7	65.5				ug/L	3	Standard
	TI	203	327.7	85.4	0.0468	0.042	90.2	ug/L	7	Standard
	TI	205	225.0	68.5	0.0530	0.034	65.1	ug/L	7	Standard
	Pb	206	390.3	51.3	0.0366	0.049	134.7	ug/L	159	Standard
	Pb	207	353.7	54.0	0.0390	0.052	132.8	ug/L	120	Standard
	Pb	208	1372.4	47.8	0.0396	0.044	112.2	ug/L	503	Standard
	U	238	319.0	82.8	0.0543	0.049	89.5	ug/L	5	Standard
L>	Bi	209	341068.1	1.2				ug/L	333509	Standard

Sample ID: QC Std 7

Report Date/Time: Tuesday, October 27, 2015 13:40:21

Page 1

Approved: October 28, 2015

Γ	Na	23	0.0					mg/L	0	Standard
	Mg	24	18.3	56.8	0.0015	0.023	1503.7	mg/L	10	Standard
	K	39	13.3	43.3	-0.0516	0.064	124.2	mg/L	32	Standard
	Ca	43	70.0	14.3	-3.5540	1.825	51.3	mg/L	85	Standard
ĺ	Fe	54	69.5	12.4	0.0310	0.019	61.3	mg/L	82	Standard
ĺ	Fe	57	183.3	15.0	-0.2036	0.203	99.4	mg/L	217	Standard
Ĺ>	Sc-1	45	15039.1	2.8				mg/L	14524	Standard
	CI	35	60158.5	0.5				ug/L	53193	Standard
	Kr	83	4.3	35.3				ug/L	3	Standard
	Br	81	270.0	9.8				ug/L	327	Standard
	Р	31	14523.6	0.8				ug/L	13329	Standard
	S	34	3603.8	2.6				ug/L	3234	Standard
	Sr	88	90.0	19.2				ug/L	87	Standard
	С	12	153.3	21.0				mg/L	103	Standard
	N	14	0.0					mg/L	0	Standard
	Hg	202	0.0					mg/L	3	Standard
	Dy	164	12.2	41.6				mg/L	10	Standard
	Ho-1	165	11.7	65.5				mg/L	3	Standard
	Er	166	23.3	65.5				mg/L	7	Standard
	1	127	3878.8	3.9				mg/L	3612	Standard

Analyte	Mass	QC Std % Recovery	Int Std % Recovery	Spike % Recovery
「> Li	6			
Be	9			
L AI	27			
「 Sc	45			
Ti	47			
V	51			
Cr	52			
Cr	53			
Mn	55			
Co	59			
Ni	60			
Cu	65			
Zn	66			
> Ge	72		101.794	
As	75			
Se	82			
∟ Se-1	77			
「⊳ Ga	71			

Sample ID: QC Std 7

Report Date/Time: Tuesday, October 27, 2015 13:40:21

Page 2

Approved: October 28, 2015

∟ Rb Γ Y	85 89			
∟ _{>} Rh	103			
Mo	98			
Ag	107			
Cd	111			
Cd	114			
	115		102.154	
> In Sn	118		102.104	
Sb	123			
L Ba	135			
∟ Da Γ Ce	140			
Ce > Tb	159			
[> Ho	165			
TI	203			
'' Ti	205			
Pb	206			
Pb	207			
Pb	208			
I	238			
∣	209		102.266	
[Na	23		102.200	
Mg	24			
K	39			
Ca	43			
Fe	54			
Fe	57			
Sc-1	45			
CI	35			
Kr	83			
Br	81			
P	31			
S	34			
Sr	88			
C	12			
N	14			
Hg	202			
Dy	164			
Ho-1	165			
Er	166			
I	127			
QC O	ut of Limits			
	ement Type	Analyte Mass	Out of Limits Message	
QC Std		Ti 47		
QC Std		Se 82		
QC Std		TI 203		
30 010	•	200		

Sample ID: QC Std 7

Report Date/Time: Tuesday, October 27, 2015 13:40:21

Page 3

Sample ID: PBW 9P WG543446-02

Sample Date/Time: Tuesday, October 27, 2015 13:41:16

Number of Replicates: 3 Autosampler Position: 301 Sample Description: 1

Method File: C:\NexIONData\Method\6020a.mth

Aliquot Volume (mL): Diluted to Volume (mL):

User Name: BKT Nexion300X Cumulative Autodilution Factor: 1

Nexion-ICP 200.8\6020

\sim	ncon	tration	Results	
υo	ncer	itration	Results	

					Ooncenti	ation ites	uits			
IS	Analyt	e Mass	Intensity	RSD	Conc.	SD	RSD	Units	Blank Intens.	Mode
Γ>	Li	6	29812.7	5.2				ug/L	26270	Standard
	Ве	9	21.7	13.3	0.0021	0.006	291.9	ug/L	2	Standard
L	ΑI	27	1253.4	19.1	-0.0010	0.003	284.8	ug/L	403	Standard
Γ	Sc	45	15492.9	7.5				ug/L	14524	Standard
	Ti	47	227.0	7.8	-0.7549	0.029	3.8	ug/L	365	Standard
	٧	51	791.1	8.7	-0.0419	0.017	41.7	ug/L	805	Standard
	Cr	52	5588.0	2.6	-0.0629	0.058	91.5	ug/L	5481	Standard
	Cr	53	386.7	9.5	0.1591	0.053	33.4	ug/L	268	Standard
	Mn	55	1075.4	1.0	-0.0440	0.022	49.6	ug/L	670	Standard
	Co	59	174.0	9.6	0.0064	0.001	22.7	ug/L	146	Standard
	Ni	60	230.0	3.4	-0.0323	0.012	37.2	ug/L	220	Standard
	Cu	65	213.3	6.6	0.0058	0.023	401.7	ug/L	147	Standard
	Zn	66	1014.4	3.7	0.8557	0.147	17.1	ug/L	211	Standard
>	Ge	72	223090.3	7.2				ug/L	210599	Standard
	As	75	-17.6	221.5	0.0566	0.049	87.0	ug/L	-47	Standard
	Se	82	18.5	35.0	0.1228	0.118	96.5	ug/L	15	Standard
L	Se-1	77	57.3	6.6	0.1752	0.107	61.1	ug/L	65	Standard
Γ>	Ga	71	30.0	33.3				mg/L	27	Standard
L	Rb	85	48.3	21.5				ug/L	17	Standard
Γ	Υ	89	234012.7	8.1				ug/L	216672	Standard
L>	Rh	103	13.3	21.7				ug/L	18	Standard
Γ	Мо	98	148.6	22.8	0.0960	0.016	16.7	ug/L	11	Standard
	Ag	107	95.0	19.0	0.0075	0.003	36.4	ug/L	55	Standard
	Cd	111	14.4	49.9	0.0030	0.004	133.1	mg/L	7	Standard
	Cd	114	24.5	7.2	0.0121	0.001	7.2	ug/L	4	Standard
>	In	115	347047.1	6.5				ug/L	322525	Standard
	Sn	118	578.3	11.4	-0.0173	0.008	44.9	ug/L	345	Standard
	Sb	123	195.3	30.0	0.0380	0.017	44.1	ug/L	88	Standard
Ĺ	Ва	135	97.0	15.3	0.0324	0.008	25.2	ug/L	12	Standard
ļ	Ce	140	140.0	25.0				ug/L	37	Standard
<u>_</u> >	Tb	159	660862.4	4.8				ug/L	631826	Standard
ļ	Но	165	15.0	0.0				ug/L	3	Standard
ļ	TI	203	39.7	75.2	0.0029	0.004	130.4	ug/L	7	Standard
ļ	TI	205	26.7	28.6	0.0082	0.001	15.3	ug/L	7	Standard
ļ	Pb	206	244.0	14.0	-0.0019	0.005	240.8	ug/L	159	Standard
ļ	Pb	207	200.0	14.4	-0.0049	0.004	81.7	ug/L	120	Standard
ļ	Pb	208	865.3	7.1	0.0030	0.000	16.3	ug/L	503	Standard
ļ	U	238	25.3	53.6	-0.0001	0.002	1428.8	ug/L	5	Standard
L>	Bi	209	353826.3	7.1				ug/L	333509	Standard

Sample ID: PBW 9P WG543446-02

Report Date/Time: Tuesday, October 27, 2015 13:43:33

Page 1

_								_	_	
	Na	23	1.7	173.2				mg/L	0	Standard
	Mg	24	23.3	32.7	0.0119	0.018	148.3	mg/L	10	Standard
	K	39	11.7	24.7	-0.0757	0.023	29.9	mg/L	32	Standard
	Ca	43	66.7	15.6	-4.3983	1.588	36.1	mg/L	85	Standard
	Fe	54	82.6	29.0	0.0545	0.040	73.6	mg/L	82	Standard
	Fe	57	233.3	3.3	0.1998	0.108	53.9	mg/L	217	Standard
L>	Sc-1	45	15492.9	7.5				mg/L	14524	Standard
	CI	35	60304.5	3.5				ug/L	53193	Standard
	Kr	83	2.7	57.3				ug/L	3	Standard
	Br	81	363.3	14.1				ug/L	327	Standard
	Р	31	15733.2	1.0				ug/L	13329	Standard
	S	34	3713.8	4.3				ug/L	3234	Standard
	Sr	88	106.7	11.8				ug/L	87	Standard
	С	12	186.7	16.4				mg/L	103	Standard
	N	14	0.0					mg/L	0	Standard
	Hg	202	0.0					mg/L	3	Standard
	Dy	164	-0.5	0.0				mg/L	10	Standard
	Ho-1	165	15.0	0.0				mg/L	3	Standard
	Er	166	10.0					mg/L	7	Standard
	I	127	665.0	22.0				mg/L	3612	Standard

Analyte	Mass	QC Std % Recovery	Int Std % Recovery	Spike % Recovery
「⊳ Li	6		113.487	
Be	9			
L AI	27			
「 Sc	45			
Ti	47			
V	51			
Cr	52			
Cr	53			
Mn	55			
Co	59			
Ni	60			
Cu	65			
Zn	66			
> Ge	72		105.931	
As	75			
Se	82			
L Se-1	77			
「⊳ Ga	71			

Sample ID: PBW 9P WG543446-02

Report Date/Time: Tuesday, October 27, 2015 13:43:33

Page 2

Approved: October 28, 2015

∟ Rb	85			
ΓΥ	89			
$\lfloor_>$ Rh	103			
Г Мо	98			
Ag	107			
Cd	111			
Cd	114			
> In	115			107.603
Sn	118			
Sb	123			
Ва	135			
¯ Ce	140			
_ _> Tb	159			
Γ Ho	165			
į TI	203			
į ΤΙ	205			
Pb	206			
Pb	207			
Pb	208			
Ü	238			
Ĺ> Bi	209			106.092
Г Na	23			
Mg	24			
K	39			
Ca	43			
Fe	54			
Fe	57			
L> Sc-1	45			
CI	35			
Kr	83			
Br	81			
Р	31			
S	34			
Sr	88			
С	12			
N	14			
Hg	202			
Dy	164			
Ho-1	165			
Er	166			
1	127			
QC Oi	ıt of Limits			
	ment Type	Analyte	Mass	Out of Limits Message
Ti 47 Lov		Ti	47	2 a. 5. 2 11000ago
0	-			

Sample ID: PBW 9P WG543446-02 Report Date/Time: Tuesday, October 27, 2015 13:43:33

Page 3

Sample ID: LCSW 9P WG543446-03

Sample Date/Time: Tuesday, October 27, 2015 13:44:27

Number of Replicates: 3 Autosampler Position: 302 Sample Description: 1

Method File: C:\NexIONData\Method\6020a.mth

Aliquot Volume (mL): Diluted to Volume (mL):

User Name: BKT Nexion300X Cumulative Autodilution Factor: 1 Nexion-ICP 200.8\6020

Concentration Results

					00110011414		u			
IS	Analyt	e Mass	Intensity	RSD	Conc.	SD	RSD	Units	Blank Intens.	Mode
Γ>	Li	6	29448.6	2.0				ug/L	26270	Standard
	Be	9	28216.3	3.0	48.5056	2.040	4.2	ug/L	2	Standard
L	ΑI	27	2288.5	14.1	0.0158	0.005	30.2	ug/L	403	Standard
Γ	Sc	45	15574.7	4.1				ug/L	14524	Standard
	Ti	47	215.3	3.8	-0.8055	0.028	3.5	ug/L	365	Standard
	٧	51	182002.3	0.9	50.5668	1.330	2.6	ug/L	805	Standard
	Cr	52	229366.6	1.5	50.5973	1.618	3.2	ug/L	5481	Standard
	Cr	53	28875.8	3.6	51.5979	2.738	5.3	ug/L	268	Standard
	Mn	55	176986.4	1.1	51.1348	0.954	1.9	ug/L	670	Standard
	Co	59	166927.9	1.3	50.8412	1.529	3.0	ug/L	146	Standard
	Ni	60	59346.0	1.1	50.4237	1.438	2.9	ug/L	220	Standard
	Cu	65	58505.8	1.5	50.8763	1.484	2.9	ug/L	147	Standard
	Zn	66	34685.3	1.3	50.6453	1.549	3.1	ug/L	211	Standard
>	Ge	72	219787.9	1.7				ug/L	210599	Standard
	As	75	37214.0	1.0	50.9628	1.306	2.6	ug/L	-47	Standard
	Se	82	3156.3	1.7	51.0367	1.700	3.3	ug/L	15	Standard
L	Se-1	77	2015.8	3.1	49.0949	2.428	4.9	ug/L	65	Standard
Γ>	Ga	71	35.0	28.6				mg/L	27	Standard
L	Rb	85	45.0	11.1				ug/L	17	Standard
Γ	Υ	89	229060.2	0.7				ug/L	216672	Standard
L>	Rh	103	25.0	20.0				ug/L	18	Standard
Γ	Mo	98	120.3	15.6	0.0794	0.013	15.9	ug/L	11	Standard
	Ag	107	246059.0	0.9	49.8864	1.233	2.5	ug/L	55	Standard
	Cd	111	73402.8	1.4	49.6446	1.537	3.1	mg/L	7	Standard
	Cd	114	180073.1	1.4	49.7974	0.736	1.5	ug/L	4	Standard
>	In	115	340409.8	1.7				ug/L	322525	Standard
	Sn	118	660.0	11.9	0.0053	0.022	406.1	ug/L	345	Standard
	Sb	123	193282.9	1.5	48.5305	1.508	3.1	ug/L	88	Standard
Ĺ	Ва	135	82288.9	1.9	48.7396	1.764	3.6	ug/L	12	Standard
ļ	Ce	140	118.3	4.9				ug/L	37	Standard
<u>_</u> >	Tb	159	643734.7	1.0				ug/L	631826	Standard
Γ	Но	165	11.7	65.5				ug/L	3	Standard
ļ	TI	203	336406.3	0.5	49.5168	0.155	0.3	ug/L	7	Standard
ļ	TI	205	222093.0	2.0	48.5389	0.936	1.9	ug/L	7	Standard
ļ	Pb	206	210257.6	1.1	50.5335	0.515	1.0	ug/L	159	Standard
ļ	Pb	207	181190.5	1.8	48.0218	0.809	1.7	ug/L	120	Standard
ļ	Pb	208	744874.8	1.1	49.4070	0.520	1.1	ug/L	503	Standard
ļ	U	238	267784.5	1.1	48.0689	0.446	0.9	ug/L	5	Standard
L>	Bi	209	350939.4	0.2				ug/L	333509	Standard

Sample ID: LCSW 9P WG543446-03

Report Date/Time: Tuesday, October 27, 2015 13:46:44

Page 1

Approved: October 28, 2015

Γ	Na	23	0.0					mg/L	0	Standard
	Mg	24	13.3	57.3	-0.0105	0.017	160.8	mg/L	10	Standard
	K	39	13.3	78.1	-0.0582	0.116	200.0	mg/L	32	Standard
	Ca	43	100.0	27.8	0.5613	4.040	719.8	mg/L	85	Standard
	Fe	54	45.8	34.6	-0.0282	0.038	134.9	mg/L	82	Standard
	Fe	57	193.3	10.8	-0.1659	0.212	127.7	mg/L	217	Standard
L>	Sc-1	45	15574.7	4.1				mg/L	14524	Standard
	CI	35	60117.7	0.7				ug/L	53193	Standard
	Kr	83	3.3	17.3				ug/L	3	Standard
	Br	81	830.0	6.0				ug/L	327	Standard
	Р	31	15793.2	3.4				ug/L	13329	Standard
	S	34	3662.1	3.1				ug/L	3234	Standard
	Sr	88	71.7	20.1				ug/L	87	Standard
	С	12	190.0	13.9				mg/L	103	Standard
	N	14	0.0					mg/L	0	Standard
	Hg	202	0.0					mg/L	3	Standard
	Dy	164	9.4	112.0				mg/L	10	Standard
	Ho-1	165	11.7	65.5				mg/L	3	Standard
	Er	166	13.3	86.6				mg/L	7	Standard
	1	127	785.0	9.0				mg/L	3612	Standard

Analyte	Mass	QC Std % Recovery	Int Std % Recovery	Spike % Recovery
「⊳ Li	6		112.101	
Be	9			
L AI	27			
「 Sc	45			
Ti	47			
V	51			
Cr	52			
Cr	53			
Mn	55			
Co	59			
Ni	60			
Cu	65			
Zn	66			
> Ge	72		104.363	
As	75			
Se	82			
∟ Se-1	77			
「̄> Ga	71			

Sample ID: LCSW 9P WG543446-03

Report Date/Time: Tuesday, October 27, 2015 13:46:44

Page 2

Approved: October 28, 2015

∟ Rb	85			
ΓΥ	89			
$\lfloor_>$ Rh	103			
Mo	98			
Ag	107			
Cd	111			
Cd	114			
 > In	115			105.545
Sn	118			
Sb	123			
Ba	135			
Ce	140			
_> Tb	159			
Ho	165			
TI	203			
TI	205			
Pb	206			
Pb	207			
Pb	208			
U	238			
∟> Bi	209			105.226
Na	23			
Mg	24			
K	39			
Ca	43			
Fe	54			
Fe	57			
> Sc-1	45			
CI	35			
Kr	83			
Br	81			
Р	31			
S	34			
Sr	88			
C	12			
N	14			
Hg	202			
Dy	164			
Ho-1	165			
Er	166			
 I	127			
OC O	ıt of Limits			
		A 14	14	Out of Limits Massacra
Measure	ment Type	Analyte	Mass	Out of Limits Message
Ti 47 Lov	wer	Ti	47	

Sample ID: LCSW 9P WG543446-03

Report Date/Time: Tuesday, October 27, 2015 13:46:44

Page 3

Sample ID: L1510109001 WG543446-01

Sample Date/Time: Tuesday, October 27, 2015 13:47:38

Number of Replicates: 3 Autosampler Position: 303 Sample Description: 5

Method File: C:\NexIONData\Method\6020a.mth

Aliquot Volume (mL): Diluted to Volume (mL):

User Name: BKT Nexion300X Cumulative Autodilution Factor: 1

Nexion-ICP 200.8\6020

\sim	ncon	tration	Results	
υu	ncen	urauon	Results	

					Concenti	Concentration Results				
IS	Analyt	e Mass	Intensity	RSD	Conc.	SD	RSD	Units	Blank Intens.	Mode
Γ>	Li	6	28445.0	4.0				ug/L	26270	Standard
	Be	9	120.0	98.2	0.1747	0.204	116.6	ug/L	2	Standard
L	Αl	27	378849.0	3.0	6.2226	0.141	2.3	ug/L	403	Standard
Γ	Sc	45	15085.8	2.5				ug/L	14524	Standard
	Ti	47	194.7	9.2	-0.9238	0.115	12.5	ug/L	365	Standard
	٧	51	1265.1	43.7	0.0958	0.157	163.5	ug/L	805	Standard
	Cr	52	6176.9	13.6	0.0950	0.195	205.4	ug/L	5481	Standard
	Cr	53	518.3	10.3	0.4124	0.101	24.4	ug/L	268	Standard
	Mn	55	4023.5	12.2	0.8243	0.147	17.9	ug/L	670	Standard
	Co	59	662.4	72.0	0.1575	0.147	93.4	ug/L	146	Standard
	Ni	60	675.0	31.2	0.3535	0.183	51.7	ug/L	220	Standard
	Cu	65	1871.8	9.6	1.4643	0.163	11.1	ug/L	147	Standard
	Zn	66	3199.3	3.0	4.1283	0.162	3.9	ug/L	211	Standard
>	Ge	72	218491.8	0.6				ug/L	210599	Standard
	As	75	114.6	101.4	0.2357	0.161	68.1	ug/L	-47	Standard
	Se	82	25.8	46.9	0.2439	0.198	81.4	ug/L	15	Standard
L	Se-1	77	63.3	8.7	0.3531	0.147	41.6	ug/L	65	Standard
Γ>	Ga	71	13.3	108.3				mg/L	27	Standard
L	Rb	85	656.7	5.8				ug/L	17	Standard
Γ	Υ	89	223587.9	1.6				ug/L	216672	Standard
L>	Rh	103	11.7	107.9				ug/L	18	Standard
Γ	Мо	98	91.9	16.5	0.0605	0.011	18.4	ug/L	11	Standard
	Ag	107	595.4	106.9	0.1115	0.133	119.3	ug/L	55	Standard
	Cd	111	206.8	100.2	0.1359	0.145	106.5	mg/L	7	Standard
	Cd	114	516.6	113.8	0.1509	0.167	111.0	ug/L	4	Standard
>	In	115	338361.1	1.7				ug/L	322525	Standard
	Sn	118	561.7	6.8	-0.0177	0.007	39.2	ug/L	345	Standard
	Sb	123	689.3	70.2	0.1647	0.126	76.6	ug/L	88	Standard
L	Ва	135	10626.1	1.7	6.3110	0.219	3.5	ug/L	12	Standard
Γ	Ce	140	95.0	22.9				ug/L	37	Standard
_>	Tb	159	633259.5	2.9				ug/L	631826	Standard
Γ	Но	165	13.3	57.3				ug/L	3	Standard
	TI	203	778.7	110.7	0.1164	0.134	115.0	ug/L	7	Standard
	TI	205	536.7	119.7	0.1245	0.148	118.9	ug/L	7	Standard
	Pb	206	1484.4	39.9	0.3080	0.155	50.3	ug/L	159	Standard
ļ	Pb	207	1266.4	37.9	0.2887	0.139	48.1	ug/L	120	Standard
ļ	Pb	208	5323.4	40.2	0.3102	0.154	49.8	ug/L	503	Standard
ļ	U	238	1001.0	77.6	0.1815	0.148	81.8	ug/L	5	Standard
_>	Bi	209	342479.3	2.2				ug/L	333509	Standard

Sample ID: L1510109001 WG543446-01

Report Date/Time: Tuesday, October 27, 2015 13:49:55

Page 1

Approved: October 28, 2015

Γ	Na	23	0.0					mg/L	0	Standard
	Mg	24	370.0	11.1	0.8108	0.102	12.6	mg/L	10	Standard
	K	39	18.3	56.8	0.0087	0.125	1428.4	mg/L	32	Standard
	Ca	43	83.3	54.4	-1.4207	7.363	518.3	mg/L	85	Standard
ĺ	Fe	54	72.5	26.3	0.0376	0.045	119.3	mg/L	82	Standard
ĺ	Fe	57	213.3	12.9	0.0658	0.209	318.2	mg/L	217	Standard
Ĺ>	Sc-1	45	15085.8	2.5				mg/L	14524	Standard
	CI	35	60088.9	1.9				ug/L	53193	Standard
	Kr	83	5.0	34.6				ug/L	3	Standard
	Br	81	493.3	6.5				ug/L	327	Standard
	Р	31	14675.4	1.9				ug/L	13329	Standard
	S	34	3532.1	4.4				ug/L	3234	Standard
	Sr	88	118.3	24.8				ug/L	87	Standard
	С	12	150.0	30.6				mg/L	103	Standard
	N	14	0.0					mg/L	0	Standard
	Hg	202	6.7	86.6				mg/L	3	Standard
	Dy	164	5.5	109.4				mg/L	10	Standard
	Ho-1	165	13.3	57.3				mg/L	3	Standard
	Er	166	23.3	49.5				mg/L	7	Standard
	I	127	3967.2	1.1				mg/L	3612	Standard

_	Analyte		QC Std % Recovery	Int Std % Recovery	Spike % Recovery
Γ>	Li	6		108.281	
	Be	9			
L	Al	27			
Γ	Sc	45			
	Ti	47			
	V	51			
	Cr	52			
	Cr	53			
	Mn	55			
	Co	59			
	Ni	60			
	Cu	65			
	Zn	66			
>	Ge	72		103.748	
	As	75			
	Se	82			
L	Se-1	77			
Γ>	Ga	71			

Sample ID: L1510109001 WG543446-01

Report Date/Time: Tuesday, October 27, 2015 13:49:55

Page 2

Approved: October 28, 2015

Generated: 10/30/2015 10:11

L Rb	85			
ΓY	89			
$\lfloor_>$ Rh	103			
Mo	98			
Ag	107			
Cd	111			
Cd	114			
> In	115			104.910
Sn	118			
Sb	123			
Ba	135			
Ce	140			
> Tb	159			
Ho	165			
TI	203			
TI	205			
Pb	206			
Pb	207			
Pb	208			
U	238			
∣	209			102.690
∫ Na	23			102.000
Mg	24			
Wg K	39			
Ca	43			
Fe	54			
Fe	57			
Sc-1	45			
Cl	35			
Kr	83			
Br	81			
P	31			
S	34			
Sr	88			
C	12			
N	14			
	202			
Hg				
Dy Ho-1	164 165			
Fr	166			
□ [127			
000				
	ut of Limits			
Measure	ment Type	Analyte	Mass	Out of Limits Message
Ti 47 Lov	wer	Ti	47	

Sample ID: L1510109001 WG543446-01 Report Date/Time: Tuesday, October 27, 2015 13:49:55

Page 3

Sample ID: L1510109001S WG543446-06

Sample Date/Time: Tuesday, October 27, 2015 13:50:49

Number of Replicates: 3 Autosampler Position: 304 Sample Description: 5

Method File: C:\NexIONData\Method\6020a.mth

Aliquot Volume (mL): Diluted to Volume (mL):

User Name: BKT Nexion300X Cumulative Autodilution Factor: 1

Nexion-ICP 200.8\6020

Concentration	Results
---------------	---------

		Concentration Results								
IS	Analyt	e Mass	Intensity	RSD	Conc.	SD	RSD	Units	Blank Intens.	Mode
Γ>	Li	6	28600.3	2.9				ug/L	26270	Standard
	Be	9	5459.3	3.3	9.6308	0.069	0.7	ug/L	2	Standard
L	Αl	27	370697.1	1.3	6.0545	0.105	1.7	ug/L	403	Standard
Γ	Sc	45	14850.6	5.8				ug/L	14524	Standard
	Ti	47	174.3	4.1	-1.0345	0.032	3.1	ug/L	365	Standard
	٧	51	35524.2	2.7	9.8543	0.376	3.8	ug/L	805	Standard
	Cr	52	49497.7	0.1	10.1068	0.142	1.4	ug/L	5481	Standard
	Cr	53	5926.2	1.1	10.3721	0.055	0.5	ug/L	268	Standard
	Mn	55	37130.8	0.9	10.6585	0.134	1.3	ug/L	670	Standard
	Co	59	32139.7	1.2	9.9412	0.199	2.0	ug/L	146	Standard
	Ni	60	11854.3	1.7	10.0873	0.274	2.7	ug/L	220	Standard
	Cu	65	12629.6	2.9	11.0575	0.435	3.9	ug/L	147	Standard
	Zn	66	9621.7	8.0	13.8702	0.272	2.0	ug/L	211	Standard
>	Ge	72	215576.6	1.1				ug/L	210599	Standard
	As	75	7265.0	0.2	10.2039	0.120	1.2	ug/L	-47	Standard
	Se	82	612.9	2.6	9.9599	0.339	3.4	ug/L	15	Standard
L	Se-1	77	465.7	4.8	10.6155	0.684	6.4	ug/L	65	Standard
Γ>	Ga	71	28.3	53.9				mg/L	27	Standard
L	Rb	85	683.3	10.7				ug/L	17	Standard
Γ	Υ	89	219030.2	1.0				ug/L	216672	Standard
L>	Rh	103	18.3	15.7				ug/L	18	Standard
Γ	Мо	98	70.0	11.0	0.0459	0.005	9.9	ug/L	11	Standard
	Ag	107	46914.5	0.5	9.6552	0.215	2.2	ug/L	55	Standard
	Cd	111	13956.6	8.0	9.5853	0.241	2.5	mg/L	7	Standard
	Cd	114	34567.6	3.1	9.7215	0.462	4.7	ug/L	4	Standard
>	In	115	335019.8	1.7				ug/L	322525	Standard
	Sn	118	626.7	5.2	-0.0005		1235.5	ug/L	345	Standard
	Sb	123	35971.4	0.6	9.1677	0.212	2.3	ug/L	88	Standard
L	Ва	135	26087.1	1.3	15.6825	0.470	3.0	ug/L	12	Standard
Γ	Ce	140	40.0	12.5				ug/L	37	Standard
_>	Tb	159	636241.9	2.4				ug/L	631826	Standard
Γ	Но	165	13.3	142.0				ug/L	3	Standard
	TI	203	64918.1	1.5	9.7407	0.354	3.6	ug/L	7	Standard
	TI	205	43577.6	3.0	9.7138	0.476	4.9	ug/L	7	Standard
	Pb	206	41158.8	1.5	10.0382	0.371	3.7	ug/L	159	Standard
	Pb	207	35551.0	1.1	9.5606	0.314	3.3	ug/L	120	Standard
ļ	Pb	208	145947.7	1.0	9.8268	0.329	3.3	ug/L	503	Standard
ļ	U	238	52323.2	2.1	9.5740	0.417	4.4	ug/L	5	Standard
_>	Bi	209	344380.8	2.3				ug/L	333509	Standard

Sample ID: L1510109001S WG543446-06

Report Date/Time: Tuesday, October 27, 2015 13:53:06

Page 1

г		00	0.0						^	01
	Na	23	0.0					mg/L	0	Standard
	Mg	24	360.0	7.2	0.8028	0.091	11.3	mg/L	10	Standard
	K	39	21.7	26.6	0.0565	0.083	147.3	mg/L	32	Standard
	Ca	43	93.3	3.1	0.2675	0.689	257.6	mg/L	85	Standard
	Fe	54	68.4	22.5	0.0300	0.033	111.7	mg/L	82	Standard
	Fe	57	210.0	8.6	0.0669	0.075	111.9	mg/L	217	Standard
L>	Sc-1	45	14850.6	5.8				mg/L	14524	Standard
	CI	35	58795.9	1.1				ug/L	53193	Standard
	Kr	83	5.3	47.2				ug/L	3	Standard
	Br	81	603.3	15.0				ug/L	327	Standard
	Р	31	14572.0	8.0				ug/L	13329	Standard
	S	34	3388.7	5.3				ug/L	3234	Standard
	Sr	88	93.3	26.4				ug/L	87	Standard
	С	12	153.3	26.4				mg/L	103	Standard
	N	14	3.3	173.2				mg/L	0	Standard
	Hg	202	0.0					mg/L	3	Standard
	Dy	164	6.3	179.8				mg/L	10	Standard
	Ho-1	165	13.3	142.0				mg/L	3	Standard
	Er	166	6.7	86.6				mg/L	7	Standard
	1	127	3920.5	3.1				mg/L	3612	Standard

_	Analyte		QC Std % Recovery	Int Std % Recovery	Spike % Recovery
Γ>	Li	6		108.872	
	Be	9			
L	Al	27			
Γ	Sc	45			
	Ti	47			
	V	51			
	Cr	52			
	Cr	53			
	Mn	55			
	Co	59			
	Ni	60			
	Cu	65			
	Zn	66			
>	Ge	72		102.364	
	As	75			
	Se	82			
L	Se-1	77			
Γ>	Ga	71			

Sample ID: L1510109001S WG543446-06 Report Date/Time: Tuesday, October 27, 2015 13:53:06

Page 2

Approved: October 28, 2015

		103.260
Apolyto	Mass	Out of Limits Message
	Analyte Ti	Analyte Mass Ti 47

Sample ID: L1510109001S WG543446-06 Report Date/Time: Tuesday, October 27, 2015 13:53:06

Page 3

Sample ID: L1510109001SD WG543446-07

Sample Date/Time: Tuesday, October 27, 2015 13:54:01

Number of Replicates: 3 Autosampler Position: 305 Sample Description: 5

Method File: C:\NexIONData\Method\6020a.mth

Aliquot Volume (mL): Diluted to Volume (mL):

User Name: BKT Nexion300X Cumulative Autodilution Factor: 1

Nexion-ICP 200.8\6020

Concentration	Results
---------------	---------

					Jonetha	ation ites	uito			
IS	Analyt	e Mass	Intensity	RSD	Conc.	SD	RSD	Units	Blank Intens.	Mode
Γ>	Li	6	28323.1	2.6				ug/L	26270	Standard
	Be	9	5270.9	2.5	9.3923	0.284	3.0	ug/L	2	Standard
L	Αl	27	364784.9	1.8	6.0153	0.082	1.4	ug/L	403	Standard
Γ	Sc	45	14890.6	1.2				ug/L	14524	Standard
	Ti	47	182.3	4.9	-0.9886	0.069	7.0	ug/L	365	Standard
	٧	51	36479.5	1.0	10.0840	0.256	2.5	ug/L	805	Standard
	Cr	52	50009.1	0.4	10.1813	0.349	3.4	ug/L	5481	Standard
	Cr	53	5912.8	2.1	10.3128	0.580	5.6	ug/L	268	Standard
	Mn	55	38200.4	1.8	10.9302	0.221	2.0	ug/L	670	Standard
	Co	59	33119.8	1.1	10.2048	0.236	2.3	ug/L	146	Standard
	Ni	60	12054.1	0.5	10.2226	0.399	3.9	ug/L	220	Standard
	Cu	65	12719.0	1.3	11.0960	0.505	4.6	ug/L	147	Standard
	Zn	66	9295.5	1.7	13.3310	0.687	5.2	ug/L	211	Standard
>	Ge	72	216518.9	3.4				ug/L	210599	Standard
	As	75	7361.6	2.0	10.3048	0.537	5.2	ug/L	-47	Standard
	Se	82	639.9	2.6	10.3731	0.629	6.1	ug/L	15	Standard
L	Se-1	77	460.3	1.1	10.4350	0.502	4.8	ug/L	65	Standard
Γ>	Ga	71	15.0	66.7				mg/L	27	Standard
L	Rb	85	593.3	3.0				ug/L	17	Standard
Γ	Υ	89	225013.6	0.6				ug/L	216672	Standard
L>	Rh	103	13.3	94.4				ug/L	18	Standard
Γ	Мо	98	64.2	16.0	0.0419	0.007	16.7	ug/L	11	Standard
	Ag	107	47539.1	0.3	9.7744	0.326	3.3	ug/L	55	Standard
	Cd	111	14386.0	1.1	9.8698	0.310	3.1	mg/L	7	Standard
	Cd	114	34903.6	1.5	9.8049	0.403	4.1	ug/L	4	Standard
>	In	115	335488.6	3.0				ug/L	322525	Standard
	Sn	118	495.0	10.3	-0.0327	0.010	30.8	ug/L	345	Standard
	Sb	123	37014.7	0.5	9.4248	0.326	3.5	ug/L	88	Standard
L	Ва	135	25425.6	0.9	15.2697	0.593	3.9	ug/L	12	Standard
Γ	Ce	140	68.3	18.4				ug/L	37	Standard
L>	Tb	159	638959.4	3.7				ug/L	631826	Standard
Γ	Но	165	3.3	173.2				ug/L	3	Standard
	TI	203	65159.5	1.0	9.7375	0.278	2.9	ug/L	7	Standard
	TI	205	43861.7	1.4	9.7385	0.375	3.9	ug/L	7	Standard
	Pb	206	41986.1	1.3	10.1995	0.297	2.9	ug/L	159	Standard
	Pb	207	35749.5	0.4	9.5762	0.276	2.9	ug/L	120	Standard
	Pb	208	148065.2	1.0	9.9290	0.214	2.2	ug/L	503	Standard
	U	238	52665.4	0.5	9.5963	0.244	2.5	ug/L	5	Standard
L>	Bi	209	345740.5	2.5				ug/L	333509	Standard

Sample ID: L1510109001SD WG543446-07

Report Date/Time: Tuesday, October 27, 2015 13:56:18

Page 1

Approved: October 28, 2015

г		00	4 -	470.0					•	01
	Na	23	1.7	173.2				mg/L	0	Standard
	Mg	24	375.0	11.6	0.8320	0.091	10.9	mg/L	10	Standard
	K	39	16.7	34.6	-0.0077	0.072	930.2	mg/L	32	Standard
	Ca	43	73.3	10.4	-2.9417	1.306	44.4	mg/L	85	Standard
	Fe	54	63.7	40.2	0.0189	0.062	327.6	mg/L	82	Standard
	Fe	57	256.7	12.7	0.4960	0.317	63.9	mg/L	217	Standard
L>	Sc-1	45	14890.6	1.2				mg/L	14524	Standard
	CI	35	60542.7	1.4				ug/L	53193	Standard
	Kr	83	5.3	21.7				ug/L	3	Standard
	Br	81	616.7	7.7				ug/L	327	Standard
	Р	31	15064.2	1.6				ug/L	13329	Standard
	S	34	3417.1	2.6				ug/L	3234	Standard
	Sr	88	101.7	10.2				ug/L	87	Standard
	С	12	136.7	25.7				mg/L	103	Standard
	N	14	0.0					mg/L	0	Standard
	Hg	202	3.3	173.2				mg/L	3	Standard
	Dy	164	9.0	5.3				mg/L	10	Standard
	Ho-1	165	3.3	173.2				mg/L	3	Standard
	Er	166	20.0	50.0				mg/L	7	Standard
	I	127	3927.2	3.4				mg/L	3612	Standard

Analyte	Mass	QC Std % Recovery	Int Std % Recovery	Spike % Recovery
「⊳ Li	6		107.817	
Be	9			
L AI	27			
「 Sc	45			
Ti	47			
V	51			
Cr	52			
Cr	53			
Mn	55			
Co	59			
Ni	60			
Cu	65			
Zn	66			
> Ge	72		102.811	
As	75			
Se	82			
L Se-1	77			
「⊳ Ga	71			

Sample ID: L1510109001SD WG543446-07 Report Date/Time: Tuesday, October 27, 2015 13:56:18

Page 2

Approved: October 28, 2015

L Rb	85			
ΓΥ	89			
$\lfloor_>$ Rh	103			
Mo	98			
Ag	107			
Cd	111			
Cd	114			
 > In	115			104.020
Sn	118			
Sb	123			
L Ba	135			
Ce	140			
_> Tb	159			
Ho	165			
TI	203			
j тı	205			
Pb	206			
Pb	207			
Pb	208			
įυ	238			
Ĺ> Bi	209			103.667
- Na	23			
i Mg	24			
K	39			
Ca	43			
Fe	54			
Fe	57			
L> Sc-1	45			
CI	35			
Kr	83			
Br	81			
Р	31			
S	34			
Sr	88			
С	12			
N	14			
Hg	202			
Dy	164			
Ho-1	165			
Er	166			
I	127			
QC Ot	ut of Limits			
	ement Type	Analyte	Mass	Out of Limits Message
Ti 47 Lo		Ti	47	

Sample ID: L1510109001SD WG543446-07 Report Date/Time: Tuesday, October 27, 2015 13:56:18

Page 3

Sample ID: L1510105501

Sample Date/Time: Tuesday, October 27, 2015 13:57:13

Number of Replicates: 3 Autosampler Position: 306 Sample Description: 1

Method File: C:\NexIONData\Method\6020a.mth

Aliquot Volume (mL): Diluted to Volume (mL):

User Name: BKT Nexion300X Cumulative Autodilution Factor: 1

Nexion-ICP 200.8\6020

O			D	.14.
Con	ceni	ration	Resu	IIIS

					Ooncentrat		uito			
IS	Analyt	e Mass	Intensity	RSD	Conc.	SD	RSD	Units	Blank Intens.	Mode
Γ>	Li	6	29942.9	3.1				ug/L	26270	Standard
	Be	9	70.0	37.1	0.0837	0.044	52.8	ug/L	2	Standard
L	Αl	27	1259829.9	2.8	19.6983	0.434	2.2	ug/L	403	Standard
Γ	Sc	45	16328.8	2.0				ug/L	14524	Standard
	Ti	47	1595.4	7.0	7.6124	0.501	6.6	ug/L	365	Standard
	٧	51	2503.1	7.4	0.4400	0.044	10.0	ug/L	805	Standard
	Cr	52	12082.5	0.2	1.4278	0.054	3.8	ug/L	5481	Standard
	Cr	53	3162.0	18.4	5.2008	1.150	22.1	ug/L	268	Standard
	Mn	55	955649.7	0.7	278.1427	4.480	1.6	ug/L	670	Standard
	Co	59	6235.6	0.2	1.8583	0.042	2.2	ug/L	146	Standard
	Ni	60	39993.1	1.3	33.9592	0.516	1.5	ug/L	220	Standard
	Cu	65	5496.3	1.6	4.6258	0.125	2.7	ug/L	147	Standard
	Zn	66	31842.1	0.2	46.5217	1.121	2.4	ug/L	211	Standard
>	Ge	72	219419.2	2.2				ug/L	210599	Standard
	As	75	441.4	16.5	0.6811	0.085	12.5	ug/L	-47	Standard
	Se	82	95.6	13.5	1.3736	0.173	12.6	ug/L	15	Standard
L	Se-1	77	265.3	7.3	5.4044	0.621	11.5	ug/L	65	Standard
Γ>	Ga	71	186.7	8.2				mg/L	27	Standard
L	Rb	85	15569.7	3.0				ug/L	17	Standard
Γ	Υ	89	227495.2	3.9				ug/L	216672	Standard
L>	Rh	103	115.0	19.0				ug/L	18	Standard
Γ	Мо	98	17618.8	1.1	12.2461	0.294	2.4	ug/L	11	Standard
	Ag	107	531.3	12.7	0.0988	0.012	12.6	ug/L	55	Standard
	Cd	111	347.4	2.5	0.2341	0.007	2.9	mg/L	7	Standard
	Cd	114	937.7	8.1	0.2707	0.022	8.0	ug/L	4	Standard
>	In	115	332582.3	1.3				ug/L	322525	Standard
	Sn	118	3443.7	0.2	0.6900	0.013	1.9	ug/L	345	Standard
	Sb	123	9496.3	0.4	2.4298	0.037	1.5	ug/L	88	Standard
L	Ва	135	20927.1	1.3	12.6668	0.325	2.6	ug/L	12	Standard
Γ	Ce	140	3743.8	6.2				ug/L	37	Standard
L>	Tb	159	646294.9	1.5				ug/L	631826	Standard
Γ	Но	165	63.3	43.5				ug/L	3	Standard
	TI	203	214.0	45.6	0.0301	0.015	48.2	ug/L	7	Standard
	TI	205	136.7	59.1	0.0335	0.018	53.5	ug/L	7	Standard
	Pb	206	2555.5	1.3	0.5829	0.014	2.4	ug/L	159	Standard
	Pb	207	2095.5	4.9	0.5237	0.024	4.5	ug/L	120	Standard
	Pb	208	8804.7	2.4	0.5571	0.012	2.1	ug/L	503	Standard
	U	238	246.7	43.7	0.0416	0.020	47.0	ug/L	5	Standard
L>	Bi	209	335730.5	1.2				ug/L	333509	Standard

Sample ID: L1510105501

Report Date/Time: Tuesday, October 27, 2015 13:59:29

Page 1

Γ	Na	23	0.0					mg/L	0	Standard
i	Mg	24	82170.6	2.6	174.5167	7.901	4.5	mg/L	10	Standard
i	ĸ	39	205.0	4.9	2.0650	0.156	7.6	mg/L	32	Standard
ĺ	Ca	43	93.3	32.3	-1.0310	4.610	447.1	mg/L	85	Standard
ĺ	Fe	54	4076.2	3.5	8.7550	0.335	3.8	mg/L	82	Standard
	Fe	57	1253.4	2.2	8.6866	0.375	4.3	mg/L	217	Standard
L>	Sc-1	45	16328.8	2.0				mg/L	14524	Standard
	CI	35	70134.0	1.0				ug/L	53193	Standard
	Kr	83	4.7	61.9				ug/L	3	Standard
	Br	81	9793.2	6.0				ug/L	327	Standard
	Р	31	19749.5	1.8				ug/L	13329	Standard
	S	34	3678.8	4.6				ug/L	3234	Standard
	Sr	88	95.0	27.9				ug/L	87	Standard
	С	12	1083.4	11.0				mg/L	103	Standard
	N	14	3.3	173.2				mg/L	0	Standard
	Hg	202	16.7	124.9				mg/L	3	Standard
	Dy	164	87.3	22.4				mg/L	10	Standard
	Ho-1	165	63.3	43.5				mg/L	3	Standard
	Er	166	56.7	27.0				mg/L	7	Standard
	I	127	31282.3	4.4				mg/L	3612	Standard

	Analyte	Mass	QC Std % Recovery	Int Std % Recovery	Spike % Recovery
Γ>	Li	6		113.983	
	Be	9			
L	Al	27			
Γ	Sc	45			
	Ti	47			
	V	51			
	Cr	52			
	Cr	53			
	Mn	55			
	Co	59			
	Ni	60			
	Cu	65			
	Zn	66			
>	Ge	72		104.188	
	As	75			
	Se	82			
L	Se-1	77			
Γ>	Ga	71			

Sample ID: L1510105501

Report Date/Time: Tuesday, October 27, 2015 13:59:29

Page 2

Approved: October 28, 2015

L Rb	85			
ΓY	89			
$\lfloor_>$ Rh	103			
- Mo	98			
Ag	107			
Cd	111			
Cd	114			
 > In	115			103.118
Sn	118			
Sb	123			
Ва	135			
Ce	140			
_> Tb	159			
Ho	165			
TI	203			
TI	205			
Pb	206			
Pb	207			
Pb	208			
Ü	238			
Ĺ _{>} Bi	209			100.666
Na	23			
Mg	24			
K	39			
Ca	43			
Fe	54			
Fe	57			
_> Sc-1	45			
CI	35			
Kr	83			
Br	81			
Р	31			
S	34			
Sr	88			
С	12			
N	14			
Hg	202			
Dy	164			
Ho-1	165			
Er	166			
I	127			
QC Ot	ut of Limits			
	Measurement Type		lass	Out of Limits Message
	pper, S, EEE	Analyte M Mn	55	
со орран, с, ===				

Sample ID: L1510105501

Report Date/Time: Tuesday, October 27, 2015 13:59:29

Page 3

Approved: October 28, 2015

Sample ID: L1510105501PS WG543486-03

Sample Date/Time: Tuesday, October 27, 2015 14:00:24

Number of Replicates: 3 Autosampler Position: 307 Sample Description: 1

Method File: C:\NexIONData\Method\6020a.mth

Aliquot Volume (mL): Diluted to Volume (mL):

User Name: BKT Nexion300X Cumulative Autodilution Factor: 1

Nexion-ICP 200.8\6020

Concentration	Results
---------------	---------

					Concentia	non ves	นแจ			
IS	Analyt	e Mass	Intensity	RSD	Conc.	SD	RSD	Units	Blank Intens.	Mode
Γ>	Li	6	28239.6	3.2				ug/L	26270	Standard
	Be	9	29298.3	1.0	52.5477	2.125	4.0	ug/L	2	Standard
L	Αl	27	1247161.8	1.1	20.6853	0.629	3.0	ug/L	403	Standard
Γ	Sc	45	14733.8	3.3				ug/L	14524	Standard
	Ti	47	1482.7	10.9	7.3875	0.985	13.3	ug/L	365	Standard
	V	51	186905.8	0.2	54.6752	1.332	2.4	ug/L	805	Standard
	Cr	52	235590.8	0.6	54.8082	1.773	3.2	ug/L	5481	Standard
	Cr	53	31442.6	2.3	59.1941	1.995	3.4	ug/L	268	Standard
	Mn	55	1127798.0	1.4	344.9445	5.995	1.7	ug/L	670	Standard
	Co	59	180826.0	0.3	57.9724	1.646	2.8	ug/L	146	Standard
	Ni	60	97925.1	0.6	87.7437	2.760	3.1	ug/L	220	Standard
	Cu	65	63394.7	1.2	58.0515	1.878	3.2	ug/L	147	Standard
	Zn	66	66530.1	0.7	102.8674	2.057	2.0	ug/L	211	Standard
>	Ge	72	208855.3	2.6				ug/L	210599	Standard
	As	75	39984.9	0.3	57.6217	1.412	2.5	ug/L	-47	Standard
	Se	82	3447.8	0.6	58.7042	1.817	3.1	ug/L	15	Standard
L	Se-1	77	2475.9	1.7	63.8302	2.778	4.4	ug/L	65	Standard
Γ>	Ga	71	193.3	18.3				mg/L	27	Standard
L	Rb	85	15351.1	2.0				ug/L	17	Standard
Γ	Υ	89	217493.5	4.3				ug/L	216672	Standard
L>	Rh	103	138.3	21.2				ug/L	18	Standard
Γ	Мо	98	17626.6	0.6	12.8834	0.518	4.0	ug/L	11	Standard
	Ag	107	229731.7	1.2	50.1088	1.212	2.4	ug/L	55	Standard
	Cd	111	76133.3	8.0	55.3974	1.536	2.8	mg/L	7	Standard
	Cd	114	182509.8	1.5	54.3320	2.448	4.5	ug/L	4	Standard
>	In	115	316494.1	3.4				ug/L	322525	Standard
	Sn	118	3447.1	1.2	0.7344	0.038	5.2	ug/L	345	Standard
	Sb	123	207247.2	1.3	55.9777	1.185	2.1	ug/L	88	Standard
L	Ва	135	104891.2	0.3	66.8532	2.238	3.3	ug/L	12	Standard
Γ	Ce	140	3640.4	2.5				ug/L	37	Standard
_>	Tb	159	610141.1	4.4				ug/L	631826	Standard
Γ	Но	165	38.3	54.3				ug/L	3	Standard
	TI	203	332026.5	0.1	54.2697	1.436	2.6	ug/L	7	Standard
	TI	205	228755.9	1.7	55.5222	2.027	3.7	ug/L	7	Standard
	Pb	206	208217.0	1.0	55.5736	1.422	2.6	ug/L	159	Standard
ļ	Pb	207	187986.3	0.5	55.3374	1.646	3.0	ug/L	120	Standard
ļ	Pb	208	747755.7	0.7	55.0819	1.505	2.7	ug/L	503	Standard
ļ	U	238	276900.9	1.9	55.1855	1.241	2.2	ug/L	5	Standard
_>	Bi	209	316188.3	2.7				ug/L	333509	Standard

Sample ID: L1510105501PS WG543486-03

Report Date/Time: Tuesday, October 27, 2015 14:02:41

Page 1

Approved: October 28, 2015

Γ	Na	23	0.0					mg/L	0	Standard
İ	Mg	24	81981.2	1.5	192.9763	6.296	3.3	mg/L	10	Standard
	K	39	158.3	11.1	1.7328	0.168	9.7	mg/L	32	Standard
	Ca	43	98.3	2.9	1.1771	0.885	75.1	mg/L	85	Standard
	Fe	54	3886.4	7.2	9.2708	0.863	9.3	mg/L	82	Standard
	Fe	57	1221.7	8.4	9.5289	0.853	8.9	mg/L	217	Standard
L>	Sc-1	45	14733.8	3.3				mg/L	14524	Standard
	CI	35	72466.3	2.6				ug/L	53193	Standard
	Kr	83	1.7	69.3				ug/L	3	Standard
	Br	81	9449.6	5.0				ug/L	327	Standard
	Р	31	19934.8	5.1				ug/L	13329	Standard
	S	34	3537.1	3.7				ug/L	3234	Standard
	Sr	88	121.7	13.2				ug/L	87	Standard
	С	12	1056.7	9.5				mg/L	103	Standard
	N	14	0.0					mg/L	0	Standard
	Hg	202	36.7	41.7				mg/L	3	Standard
	Dy	164	91.4	12.2				mg/L	10	Standard
	Ho-1	165	38.3	54.3				mg/L	3	Standard
	Er	166	40.0	25.0				mg/L	7	Standard
	I	127	31584.6	2.3				mg/L	3612	Standard

Analyte		QC Std % Recovery	Int Std % Recovery	Spike % Recovery
「> Li	6		107.499	
Be	9			
L AI	27			
「 Sc	45			
Ti	47			
V	51			
Cr	52			
Cr	53			
Mn	55			
Co	59			
Ni	60			
Cu	65			
Zn	66			
> Ge	72		99.172	
As	75			
Se	82			
L Se-1	77			
「̄> Ga	71			

Sample ID: L1510105501PS WG543486-03Report Date/Time: Tuesday, October 27, 2015 14:02:41

Page 2

Approved: October 28, 2015

L	Rb	85			
Γ	Υ	89			
_>	Rh	103			
Γ	Мо	98			
	Ag	107			
	Cd	111			
	Cd	114			
>	In	115			98.130
	Sn	118			
	Sb	123			
L	Ва	135			
Γ	Ce	140			
L>	Tb	159			
Γ	Но	165			
	TI	203			
	TI	205			
	Pb	206			
	Pb	207			
	Pb	208			
	U	238			
_>	Bi	209			94.806
Γ	Na	23			
	Mg	24			
	K	39			
ļ	Ca	43			
ļ	Fe	54			
ļ	Fe	57			
_>	Sc-1	45			
	CI	35			
	Kr	83			
	Br	81			
	P	31			
	S	34			
	Sr	88			
	C	12			
	N	14			
	Hg	202			
	Dy	164			
	Ho-1	165			
	Er	166			
	00.0-4	127			
		of Limits			
	Measurem		Analyte	Mass	Out of Limits Message
	Mn 55 Upper, S, EEE		Mn	55	
	Zn 66 Uppe	er, S, EEE	Zn	66	

Sample ID: L1510105501PS WG543486-03Report Date/Time: Tuesday, October 27, 2015 14:02:41

Page 3

Approved: October 28, 2015

Sample ID: L1510105501SDL WG543486-04

Sample Date/Time: Tuesday, October 27, 2015 14:03:35

Number of Replicates: 3 Autosampler Position: 308 Sample Description: 5

Method File: C:\NexIONData\Method\6020a.mth

Aliquot Volume (mL): Diluted to Volume (mL):

User Name: BKT Nexion300X Cumulative Autodilution Factor: 1

Nexion-ICP 200.8\6020

Concentration	Results
---------------	---------

						Concentia	non ves	นแจ			
- 1	S	Analyt	e Mass	Intensity	RSD	Conc.	SD	RSD	Units	Blank Intens.	Mode
	>	Li	6	27959.1	3.0				ug/L	26270	Standard
		Be	9	30.0	16.7	0.0194	0.008	41.7	ug/L	2	Standard
L		Al	27	248998.3	2.1	4.1533	0.064	1.5	ug/L	403	Standard
		Sc	45	15633.1	1.9				ug/L	14524	Standard
		Ti	47	452.7	6.2	0.6999	0.203	29.0	ug/L	365	Standard
		V	51	1037.1	7.2	0.0359	0.022	60.6	ug/L	805	Standard
		Cr	52	6765.8	2.6	0.2520	0.047	18.5	ug/L	5481	Standard
		Cr	53	1525.1	6.0	2.2800	0.145	6.3	ug/L	268	Standard
		Mn	55	191754.1	2.8	56.6096	2.175	3.8	ug/L	670	Standard
		Co	59	1383.4	6.8	0.3851	0.036	9.4	ug/L	146	Standard
		Ni	60	8185.2	2.3	6.9062	0.242	3.5	ug/L	220	Standard
		Cu	65	1254.1	1.7	0.9386	0.031	3.3	ug/L	147	Standard
		Zn	66	7223.4	2.7	10.2747	0.443	4.3	ug/L	211	Standard
	>	Ge	72	215271.4	1.7				ug/L	210599	Standard
		As	75	98.2	38.0	0.2147	0.051	23.8	ug/L	-47	Standard
		Se	82	37.4	22.4	0.4438	0.144	32.4	ug/L	15	Standard
L		Se-1	77	122.3	3.7	1.8789	0.065	3.4	ug/L	65	Standard
Γ	>	Ga	71	61.7	18.7				mg/L	27	Standard
L		Rb	85	3125.3	6.5				ug/L	17	Standard
Γ		Υ	89	226719.9	3.4				ug/L	216672	Standard
L	>	Rh	103	41.7	6.9				ug/L	18	Standard
		Мо	98	3498.7	3.4	2.3856	0.109	4.6	ug/L	11	Standard
		Ag	107	137.0	5.7	0.0165	0.001	6.8	ug/L	55	Standard
		Cd	111	86.6	9.2	0.0525	0.005	9.3	mg/L	7	Standard
		Cd	114	179.5	6.8	0.0553	0.004	7.8	ug/L	4	Standard
	>	In	115	338836.7	1.8				ug/L	322525	Standard
		Sn	118	1011.7	5.5	0.0903	0.015	16.1	ug/L	345	Standard
		Sb	123	2301.5	2.0	0.5699	0.016	2.8	ug/L	88	Standard
L	:	Ва	135	4178.6	2.1	2.4633	0.070	2.8	ug/L	12	Standard
ļ		Ce	140	781.7	13.9				ug/L	37	Standard
L	>	Tb	159	639370.6	1.7				ug/L	631826	Standard
ļ		Но	165	15.0	33.3				ug/L	3	Standard
ļ		TI	203	130.0	9.1	0.0168	0.002	9.0	ug/L	7	Standard
ļ		TI	205	123.3	40.0	0.0299	0.011	35.2	ug/L	7	Standard
		Pb	206	679.7	3.2	0.1071	0.008	7.1	ug/L	159	Standard
		Pb	207	573.3	3.1	0.0980	0.007	6.8	ug/L	120	Standard
ļ		Pb	208	2393.4	1.9	0.1083	0.001	0.9	ug/L	503	Standard
ļ		U	238	68.7	36.1	0.0080	0.004	54.0	ug/L	5	Standard
L	.>	Bi	209	343650.7	1.6				ug/L	333509	Standard

Sample ID: L1510105501SDL WG543486-04

Report Date/Time: Tuesday, October 27, 2015 14:05:52

Page 1

Approved: October 28, 2015

Γ	Na	23	0.0					mg/L	0	Standard
	Mg	24	16285.4	3.0	36.0955	1.776	4.9	mg/L	10	Standard
	K	39	30.0	44.1	0.1362	0.151	110.7	mg/L	32	Standard
	Ca	43	61.7	26.1	-5.2653	2.314	43.9	mg/L	85	Standard
ĺ	Fe	54	892.7	1.8	1.9000	0.059	3.1	mg/L	82	Standard
ĺ	Fe	57	383.3	15.6	1.5019	0.571	38.0	mg/L	217	Standard
L>	Sc-1	45	15633.1	1.9				mg/L	14524	Standard
	CI	35	64679.1	1.3				ug/L	53193	Standard
	Kr	83	3.0	33.3				ug/L	3	Standard
	Br	81	2323.5	11.9				ug/L	327	Standard
	Р	31	15564.7	0.8				ug/L	13329	Standard
	S	34	3522.1	1.0				ug/L	3234	Standard
	Sr	88	100.0	34.6				ug/L	87	Standard
	С	12	290.0	28.2				mg/L	103	Standard
	N	14	0.0					mg/L	0	Standard
	Hg	202	3.3	173.2				mg/L	3	Standard
	Dy	164	12.2	129.3				mg/L	10	Standard
	Ho-1	165	15.0	33.3				mg/L	3	Standard
	Er	166	23.3	49.5				mg/L	7	Standard
	I	127	9159.4	2.9				mg/L	3612	Standard

_	Analyte		QC Std % Recovery	Int Std % Recovery	Spike % Recovery
Γ>	Li	6		106.431	
	Be	9			
L	Al	27			
Γ	Sc	45			
	Ti	47			
	V	51			
	Cr	52			
	Cr	53			
	Mn	55			
	Co	59			
	Ni	60			
	Cu	65			
	Zn	66			
>	Ge	72		102.219	
	As	75			
	Se	82			
L	Se-1	77			
Γ>	Ga	71			

Sample ID: L1510105501SDL WG543486-04Report Date/Time: Tuesday, October 27, 2015 14:05:52

Page 2

Approved: October 28, 2015

_ Rb	85			
ΓΥ	89			
$\lfloor_>$ Rh	103			
ГМо	98			
Ag	107			
Cd	111			
Cd	114			
> In	115			105.058
Sn	118			
Sb	123			
∟ Ba	135			
「 Ce	140			
$\lfloor > Tb$	159			
Г Ho	165			
TI	203			
TI	205			
Pb	206			
Pb	207			
Pb	208			
U	238			
L> Bi	209			103.041
「Na	23			
Mg	24			
K	39			
Ca	43			
Fe	54			
Fe	57			
_> Sc-1				
CI	35			
Kr	83			
Br	81			
Р	31			
S	34			
Sr	88			
С	12			
N	14			
Hg	202			
Dy	164			
Ho-1				
Er	166			
I	127			
	Out of Limits			
Meas	Measurement Type		Mass	Out of Limits Message

Sample ID: L1510105501SDL WG543486-04Report Date/Time: Tuesday, October 27, 2015 14:05:52

Page 3

Approved: October 28, 2015

Sample ID: L1510105501SDL WG543486-04

Sample Date/Time: Tuesday, October 27, 2015 14:06:47

Number of Replicates: 3 Autosampler Position: 309 Sample Description: 25

Method File: C:\NexIONData\Method\6020a.mth

Aliquot Volume (mL): Diluted to Volume (mL):

User Name: BKT Nexion300X Cumulative Autodilution Factor: 1

Nexion-ICP 200.8\6020

0	ncon	tration	Results	
Lα	ncen	itration	Results	

					Ooncenti	ation ites	uito			
IS	Analyt	e Mass	Intensity	RSD	Conc.	SD	RSD	Units	Blank Intens.	Mode
Γ>	Li	6	28323.2	5.3				ug/L	26270	Standard
	Be	9	13.3	78.1	-0.0116	0.017	146.6	ug/L	2	Standard
L	Αl	27	49288.4	8.0	0.7962	0.040	5.0	ug/L	403	Standard
Γ	Sc	45	15579.7	2.6				ug/L	14524	Standard
	Ti	47	183.0	8.3	-0.9889	0.110	11.2	ug/L	365	Standard
	٧	51	873.8	6.3	-0.0132	0.013	98.4	ug/L	805	Standard
	Cr	52	5860.5	1.9	0.0291	0.008	27.7	ug/L	5481	Standard
	Cr	53	718.4	4.1	0.7816	0.053	6.7	ug/L	268	Standard
	Mn	55	39160.2	1.9	11.1610	0.159	1.4	ug/L	670	Standard
	Co	59	393.7	2.5	0.0755	0.004	5.4	ug/L	146	Standard
	Ni	60	1812.8	2.9	1.3377	0.055	4.1	ug/L	220	Standard
	Cu	65	398.7	6.7	0.1728	0.020	11.7	ug/L	147	Standard
	Zn	66	2093.5	3.8	2.5006	0.156	6.2	ug/L	211	Standard
>	Ge	72	217431.0	1.7				ug/L	210599	Standard
	As	75	19.1	104.6	0.1046	0.028	26.6	ug/L	-47	Standard
	Se	82	20.6	11.1	0.1601	0.035	21.8	ug/L	15	Standard
L	Se-1	77	72.3	5.2	0.5874	0.092	15.7	ug/L	65	Standard
Γ>	Ga	71	30.0	16.7				mg/L	27	Standard
L	Rb	85	638.3	7.7				ug/L	17	Standard
Γ	Υ	89	223009.4	4.2				ug/L	216672	Standard
L>	Rh	103	28.3	20.4				ug/L	18	Standard
Γ	Mo	98	712.2	6.9	0.4920	0.038	7.7	ug/L	11	Standard
	Ag	107	76.7	10.1	0.0045	0.002	34.8	ug/L	55	Standard
	Cd	111	15.8	23.8	0.0045	0.003	56.3	mg/L	7	Standard
	Cd	114	54.7	21.8	0.0208	0.003	15.3	ug/L	4	Standard
>	In	115	333214.5	1.2				ug/L	322525	Standard
	Sn	118	633.3	4.0	0.0019	0.005	232.5	ug/L	345	Standard
	Sb	123	474.7	10.1	0.1111	0.014	12.2	ug/L	88	Standard
Ĺ	Ва	135	880.7	2.9	0.5091	0.018	3.5	ug/L	12	Standard
ļ	Ce	140	165.0	15.7				ug/L	37	Standard
<u>_</u> >	Tb	159	637269.9	1.0				ug/L	631826	Standard
ļ	Но	165	10.0	50.0				ug/L	3	Standard
ļ	TI	203	61.7	11.4	0.0066	0.001	17.3	ug/L	7	Standard
ļ	TI	205	55.0	18.2	0.0148	0.002	15.6	ug/L	7	Standard
ļ	Pb	206	289.0	3.7	0.0111	0.002	16.6	ug/L	159	Standard
ļ	Pb	207	278.3	14.6	0.0181	0.011	60.9	ug/L	120	Standard
ļ	Pb	208	1079.3	3.4	0.0192	0.002	8.8	ug/L	503	Standard
ļ	U	238	16.0	43.8	-0.0016	0.001	75.5	ug/L	5	Standard
L>	Bi	209	343304.3	1.5				ug/L	333509	Standard

Sample ID: L1510105501SDL WG543486-04

Report Date/Time: Tuesday, October 27, 2015 14:09:04

Page 1

_								_		
	Na	23	1.7	173.2				mg/L	0	Standard
	Mg	24	3213.7	3.9	7.1110	0.222	3.1	mg/L	10	Standard
	K	39	35.0	37.8	0.1944	0.147	75.6	mg/L	32	Standard
	Ca	43	41.7	18.3	-8.2491	1.038	12.6	mg/L	85	Standard
	Fe	54	243.0	16.4	0.4219	0.091	21.5	mg/L	82	Standard
	Fe	57	275.0	15.9	0.5500	0.362	65.9	mg/L	217	Standard
L>	Sc-1	45	15579.7	2.6				mg/L	14524	Standard
	CI	35	61248.9	1.6				ug/L	53193	Standard
	Kr	83	1.3	86.6				ug/L	3	Standard
	Br	81	786.7	1.9				ug/L	327	Standard
	Р	31	14093.2	2.7				ug/L	13329	Standard
	S	34	3533.7	4.5				ug/L	3234	Standard
	Sr	88	101.7	10.2				ug/L	87	Standard
	С	12	196.7	32.3				mg/L	103	Standard
	N	14	3.3	173.2				mg/L	0	Standard
	Hg	202	0.0					mg/L	3	Standard
	Dy	164	9.5	105.0				mg/L	10	Standard
	Ho-1	165	10.0	50.0				mg/L	3	Standard
	Er	166	10.0					mg/L	7	Standard
	1	127	4247.3	6.8				mg/L	3612	Standard

Analyte	Mass	QC Std % Recovery	Int Std % Recovery	Spike % Recovery
「⊳ Li	6		107.817	
Be	9			
L AI	27			
「 Sc	45			
Ti	47			
V	51			
Cr	52			
Cr	53			
Mn	55			
Co	59			
Ni	60			
Cu	65			
Zn	66			
> Ge	72		103.244	
As	75			
Se	82			
∟ Se-1	77			
「> Ga	71			

Sample ID: L1510105501SDL WG543486-04Report Date/Time: Tuesday, October 27, 2015 14:09:04

Page 2

Approved: October 28, 2015

L Rb	85			
Γ̈́Υ	89			
Ĺ> Rh	103			
- Mo	98			
Ag	107			
Cd	111			
Cd	114			
> In	115			103.314
Sn	118			
Sb	123			
L Ba	135			
「 Ce	140			
L> Tb	159			
Г Ho	165			
TI	203			
TI	205			
Pb	206			
Pb	207			
Pb	208			
U	238			
L> Bi	209			102.937
Г Na	23			
Mg	24			
K	39			
Ca	43			
Fe	54			
Fe	57			
_> Sc-1	45			
CI	35			
Kr	83			
Br	81			
Р	31			
S	34			
Sr	88			
С	12			
N	14			
Hg	202			
Dy	164			
Ho-1	165			
Er	166			
	127			
QC Oi	ut of Limits			
	ment Type	Analyte	Mass	Out of Limits Message
Ti 47 Lov		Ti	47	

Sample ID: L1510105501SDL WG543486-04Report Date/Time: Tuesday, October 27, 2015 14:09:04

Page 3

Approved: October 28, 2015

Sample ID: L1510105501SDL WG543486-04

Sample Date/Time: Tuesday, October 27, 2015 14:09:57

Number of Replicates: 3 Autosampler Position: 310 Sample Description: 125

Method File: C:\NexIONData\Method\6020a.mth

Aliquot Volume (mL): Diluted to Volume (mL):

User Name: BKT Nexion300X Cumulative Autodilution Factor: 1

Nexion-ICP 200.8\6020

0		44:	D	14.
COH	cen	tration	Resu	ILS -

					Concenti	alion Nes	นแจ			
IS	Analyt	e Mass	Intensity	RSD	Conc.	SD	RSD	Units	Blank Intens.	Mode
Γ>	Li	6	27339.7	3.8				ug/L	26270	Standard
	Be	9	26.7	78.1	0.0153	0.040	261.4	ug/L	2	Standard
L	ΑI	27	11125.8	5.3	0.1701	0.005	2.7	ug/L	403	Standard
Γ	Sc	45	15147.6	1.8				ug/L	14524	Standard
	Ti	47	155.3	4.3	-1.1531	0.048	4.2	ug/L	365	Standard
	٧	51	877.6	9.9	-0.0104	0.022	210.6	ug/L	805	Standard
	Cr	52	5836.1	1.0	0.0335	0.001	3.7	ug/L	5481	Standard
	Cr	53	478.3	3.7	0.3501	0.024	6.9	ug/L	268	Standard
	Mn	55	8994.7	3.7	2.3106	0.069	3.0	ug/L	670	Standard
	Co	59	225.3	2.5	0.0242	0.002	6.7	ug/L	146	Standard
	Ni	60	537.0	9.6	0.2403	0.040	16.7	ug/L	220	Standard
	Cu	65	241.7	12.4	0.0359	0.024	68.1	ug/L	147	Standard
	Zn	66	1353.4	5.7	1.4083	0.099	7.0	ug/L	211	Standard
>	Ge	72	215820.7	1.1				ug/L	210599	Standard
	As	75	-20.3	199.4	0.0496	0.057	113.8	ug/L	-47	Standard
	Se	82	13.5	17.4	0.0462	0.041	88.3	ug/L	15	Standard
L	Se-1	77	58.7	21.3	0.2543	0.323	127.0	ug/L	65	Standard
Γ>	Ga	71	21.7	58.1				mg/L	27	Standard
L	Rb	85	145.0	9.1				ug/L	17	Standard
Γ	Υ	89	227011.3	0.5				ug/L	216672	Standard
L>	Rh	103	8.3	34.6				ug/L	18	Standard
Γ	Мо	98	168.7	18.3	0.1139	0.022	19.5	ug/L	11	Standard
	Ag	107	76.3	29.0	0.0043	0.004	101.7	ug/L	55	Standard
	Cd	111	12.6	52.2	0.0023	0.004	193.7	mg/L	7	Standard
	Cd	114	34.5	98.0	0.0150	0.009	61.9	ug/L	4	Standard
>	In	115	335849.0	1.4				ug/L	322525	Standard
	Sn	118	453.3	5.0	-0.0428	0.007	15.7	ug/L	345	Standard
	Sb	123	186.3	8.2	0.0367	0.004	11.7	ug/L	88	Standard
L	Ва	135	219.0	16.0	0.1074	0.019	18.1	ug/L	12	Standard
Γ	Ce	140	75.0	17.6				ug/L	37	Standard
_>	Tb	159	638153.6	2.9				ug/L	631826	Standard
Γ	Но	165	10.0	50.0				ug/L	3	Standard
	TI	203	42.3	88.8	0.0036	0.006	153.1	ug/L	7	Standard
	TI	205	25.0	87.2	0.0080	0.005	59.6	ug/L	7	Standard
	Pb	206	236.0	3.8	-0.0021	0.002	72.4	ug/L	159	Standard
ļ	Pb	207	194.3	8.8	-0.0049	0.004	84.4	ug/L	120	Standard
ļ	Pb	208	814.7	10.9	0.0011	0.005	509.7	ug/L	503	Standard
ļ	U	238	19.7	111.7	-0.0010	0.004	399.7	ug/L	5	Standard
_>	Bi	209	344450.0	1.1				ug/L	333509	Standard

Sample ID: L1510105501SDL WG543486-04

Report Date/Time: Tuesday, October 27, 2015 14:12:14

Page 1

Γ	Na	23	0.0					mg/L	0	Standard
	Mg	24	733.4	5.5	1.6386	0.103	6.3	mg/L	10	Standard
	K	39	13.3	43.3	-0.0509	0.072	141.0	mg/L	32	Standard
	Ca	43	50.0	26.5	-6.7389	2.176	32.3	mg/L	85	Standard
	Fe	54	119.4	25.1	0.1475	0.073	49.6	mg/L	82	Standard
	Fe	57	216.7	18.7	0.0955	0.398	416.5	mg/L	217	Standard
L>	Sc-1	45	15147.6	1.8				mg/L	14524	Standard
	CI	35	62839.4	1.4				ug/L	53193	Standard
	Kr	83	6.0	16.7				ug/L	3	Standard
	Br	81	466.7	10.1				ug/L	327	Standard
	Р	31	14396.8	0.6				ug/L	13329	Standard
	S	34	3578.8	7.1				ug/L	3234	Standard
	Sr	88	95.0	9.1				ug/L	87	Standard
	С	12	146.7	23.9				mg/L	103	Standard
	N	14	0.0					mg/L	0	Standard
	Hg	202	3.3	173.2				mg/L	3	Standard
	Dy	164	5.5	211.0				mg/L	10	Standard
	Ho-1	165	10.0	50.0				mg/L	3	Standard
	Er	166	23.3	65.5				mg/L	7	Standard
	I	127	3502.1	2.3				mg/L	3612	Standard

Analyte	Mass	QC Std % Recovery	Int Std % Recovery	Spike % Recovery
「⊳ Li	6		104.073	
Be	9			
L AI	27			
「 Sc	45			
Ti	47			
V	51			
Cr	52			
Cr	53			
Mn	55			
Co	59			
Ni	60			
Cu	65			
Zn	66			
> Ge	72		102.480	
As	75			
Se	82			
∟ Se-1	77			
「⊳ Ga	71			

Sample ID: L1510105501SDL WG543486-04Report Date/Time: Tuesday, October 27, 2015 14:12:14

Page 2

Approved: October 28, 2015

L Rb	85			
ĪΥ	89			
> Rh	103			
- Mo	98			
Ag	107			
Cd	111			
Cd	114			
> In	115			104.131
Sn	118			
Sb	123			
∟ Ba	135			
「 Ce	140			
L> Tb	159			
Г Ho	165			
TI	203			
TI	205			
Pb	206			
Pb	207			
Pb	208			
U	238			
L> Bi	209			103.280
Г Na	23			
Mg	24			
K	39			
Ca	43			
Fe	54			
Fe	57			
_> Sc-1	45			
CI	35			
Kr	83			
Br	81			
Р	31			
S	34			
Sr	88			
С	12			
N	14			
Hg	202			
Dy	164			
Ho-1	165			
Er	166			
ı	127			
QC O	ut of Limits			
	ement Type	Analyte	Mass	Out of Limits Message
Ti 47 Lo		Ti	47	

Sample ID: L1510105501SDL WG543486-04Report Date/Time: Tuesday, October 27, 2015 14:12:14

Page 3

Approved: October 28, 2015

Sample ID: QC Std 6

Sample Date/Time: Tuesday, October 27, 2015 14:13:11

Number of Replicates: 3 Autosampler Position: 101 Sample Description:

Method File: C:\NexIONData\Method\6020a.mth

Aliquot Volume (mL): Diluted to Volume (mL):

User Name: BKT Nexion300X Cumulative Autodilution Factor: 1

Nexion-ICP 200.8\6020

0	4.		D	.14.
COII	cenu	ration	Resu	เมเร

Concentration Results						uito				
IS	Analyt	e Mass	Intensity	RSD	Conc.	SD	RSD	Units	Blank Intens.	Mode
Γ>	Li	6	27353.0	0.4				ug/L	26270	Standard
	Be	9	27067.5	2.2	50.0791	1.300	2.6	ug/L	2	Standard
L	Αl	27	2883508.0	2.1	49.3763	1.162	2.4	ug/L	403	Standard
Γ	Sc	45	15054.2	4.8				ug/L	14524	Standard
	Ti	47	16606.4	0.1	102.2782	1.806	1.8	ug/L	365	Standard
	٧	51	177699.1	8.0	50.9414	1.244	2.4	ug/L	805	Standard
	Cr	52	221014.9	1.5	50.2964	1.559	3.1	ug/L	5481	Standard
	Cr	53	27302.9	3.2	50.2886	0.850	1.7	ug/L	268	Standard
	Mn	55	171828.9	0.5	51.2234	0.810	1.6	ug/L	670	Standard
	Co	59	165562.7	0.9	52.0248	1.203	2.3	ug/L	146	Standard
	Ni	60	56889.9	0.4	49.8661	0.984	2.0	ug/L	220	Standard
	Cu	65	56023.7	1.3	50.2658	1.473	2.9	ug/L	147	Standard
	Zn	66	33161.9	0.5	49.9461	1.036	2.1	ug/L	211	Standard
>	Ge	72	213013.5	1.6				ug/L	210599	Standard
	As	75	35909.2	1.2	50.7402	1.368	2.7	ug/L	-47	Standard
	Se	82	3067.7	2.0	51.1754	1.564	3.1	ug/L	15	Standard
L	Se-1	77	2080.8	1.9	52.3408	0.526	1.0	ug/L	65	Standard
Γ>	Ga	71	31.7	55.5				mg/L	27	Standard
L	Rb	85	431.7	8.1				ug/L	17	Standard
Γ	Υ	89	222923.2	1.5				ug/L	216672	Standard
L>	Rh	103	25.0	52.9				ug/L	18	Standard
Γ	Мо	98	148786.8	0.7	105.2394	0.859	8.0	ug/L	11	Standard
	Ag	107	233978.9	1.0	49.3980	0.532	1.1	ug/L	55	Standard
	Cd	111	70827.2	0.6	49.8800	0.548	1.1	mg/L	7	Standard
	Cd	114	172460.9	1.2	49.6763	1.027	2.1	ug/L	4	Standard
>	In	115	326817.5	8.0				ug/L	322525	Standard
	Sn	118	196847.2	1.1	48.8610	0.403	8.0	ug/L	345	Standard
	Sb	123	186890.4	1.2	48.8605	0.462	0.9	ug/L	88	Standard
L	Ва	135	79629.4	0.3	49.1089	0.559	1.1	ug/L	12	Standard
Γ	Ce	140	76.7	16.4				ug/L	37	Standard
L>	Tb	159	624874.8	1.3				ug/L	631826	Standard
Γ	Но	165	6.7	43.3				ug/L	3	Standard
	TI	203	318363.8	8.0	49.1246	0.593	1.2	ug/L	7	Standard
	TI	205	215420.6	0.6	49.3536	0.322	0.7	ug/L	7	Standard
	Pb	206	197623.2	0.5	49.7930	0.789	1.6	ug/L	159	Standard
	Pb	207	178738.1	0.6	49.6615	0.369	0.7	ug/L	120	Standard
	Pb	208	714893.9	0.9	49.7141	1.066	2.1	ug/L	503	Standard
	U	238	260594.8	1.2	49.0417	1.029	2.1	ug/L	5	Standard
L>	Bi	209	334795.5	1.2				ug/L	333509	Standard

Sample ID: QC Std 6

Report Date/Time: Tuesday, October 27, 2015 14:15:28

Page 1

_										
Γ	Na	23	0.0					mg/L	0	Standard
	Mg	24	2226.8	5.5	5.0875	0.128	2.5	mg/L	10	Standard
	K	39	398.3	6.9	4.5982	0.550	12.0	mg/L	32	Standard
	Ca	43	100.0	8.7	1.0659	0.622	58.4	mg/L	85	Standard
ĺ	Fe	54	2219.4	0.3	5.1236	0.276	5.4	mg/L	82	Standard
	Fe	57	726.7	14.8	4.7558	0.825	17.3	mg/L	217	Standard
L>	Sc-1	45	15054.2	4.8				mg/L	14524	Standard
	CI	35	59576.3	1.9				ug/L	53193	Standard
	Kr	83	4.7	44.6				ug/L	3	Standard
	Br	81	336.7	40.3				ug/L	327	Standard
	Р	31	15434.5	5.0				ug/L	13329	Standard
	S	34	3790.5	3.6				ug/L	3234	Standard
	Sr	88	116.7	4.9				ug/L	87	Standard
	С	12	130.0	7.7				mg/L	103	Standard
	N	14	0.0					mg/L	0	Standard
	Hg	202	0.0					mg/L	3	Standard
	Dy	164	6.5	86.7				mg/L	10	Standard
	Ho-1	165	6.7	43.3				mg/L	3	Standard
	Er	166	3.3	173.2				mg/L	7	Standard
	I	127	3002.0	2.3				mg/L	3612	Standard

Analyte	Mass	QC Std % Recovery	Int Std % Recovery	Spike % Recovery
「> Li	6	·		
Be	9	100.158		
L AI	27	98.753		
「 Sc	45			
Ti	47	102.278		
V	51	101.883		
Cr	52	100.593		
Cr	53			
Mn	55	102.447		
Co	59	104.050		
Ni	60	99.732		
Cu	65	100.532		
Zn	66	99.892		
> Ge	72		101.147	
As	75	101.480		
Se	82	102.351		
∟ Se-1	77			
「⊳ Ga	71			

Sample ID: QC Std 6

Report Date/Time: Tuesday, October 27, 2015 14:15:28

Page 2

Approved: October 28, 2015

ı	DI:	05			
L	Rb	85			
	Y	89 103			
L>	⊳ Rh Mo	98	105.23	20	
	Ag	107	98.79		
	Ag Cd	111	99.76		
ļ	Cd	114	99.70	00	
	. In	115			101.331
/	Sn	118	97.72	2	101.331
i	Sb	123	97.72		
i	Ba	135	98.21		
Ė	Ce	140	00.21		
>		159			
Ē	Но	165			
i	TI	203	98.24	9	
į	TI	205			
Ĺ	Pb	206			
ĺ	Pb	207			
	Pb	208	99.42	28	
	U	238	98.08	33	
L>	. Bi	209			100.386
Γ	Na	23			
ļ	Mg	24			
	K	39			
	Ca	43			
	Fe	54			
	Fe	57 45			
L>	Sc-1	45 35			
	CI Kr	35 83			
	Br	81			
	Р	31			
	S	34			
	Sr	88			
	C	12			
	N	14			
	Hg	202			
	Dy	164			
	Ho-1	165			
	Er	166			
	1	127			
	QC Out	of Limits			
	Measurem	nent Type	Analyte	Mass	Out of Limits Message

Sample ID: QC Std 6

Report Date/Time: Tuesday, October 27, 2015 14:15:28

Page 3

Sample ID: QC Std 7

Sample Date/Time: Tuesday, October 27, 2015 14:16:23

Number of Replicates: 3 Autosampler Position: 102 Sample Description:

Method File: C:\NexIONData\Method\6020a.mth

Aliquot Volume (mL): Diluted to Volume (mL):

User Name: BKT Nexion300X Cumulative Autodilution Factor: 1

Nexion-ICP 200.8\6020

					Concentra	tion Res	ults			
IS	Analyt	e Mass	Intensity	RSD	Conc.	SD	RSD	Units	Blank Intens.	Mode
Γ>	Li	6	28329.8	1.6				ug/L	26270	Standard
	Be	9	21.7	74.2	0.0036	0.028	772.5	ug/L	2	Standard
L	Al	27	1476.8	112.2	0.0036	0.027	748.8	ug/L	403	Standard
Γ	Sc	45	15214.3	4.5				ug/L	14524	Standard
	Ti	47	141.3	12.8	-1.2280	0.113	9.2	ug/L	365	Standard
	V	51	809.2	12.3	-0.0265	0.027	103.6	ug/L	805	Standard
	Cr	52	5334.6	4.4	-0.0649	0.048	74.7	ug/L	5481	Standard
	Cr	53	370.0	20.0	0.1604	0.135	84.2	ug/L	268	Standard
	Mn	55	731.7	34.7	-0.1336	0.075	56.3	ug/L	670	Standard
	Co	59	202.0	46.3	0.0177	0.029	164.2	ug/L	146	Standard
	Ni	60	184.7	29.1	-0.0635	0.047	73.4	ug/L	220	Standard
	Cu	65	153.7	30.2	-0.0403	0.041	102.1	ug/L	147	Standard
	Zn	66	187.7	18.9	-0.3417	0.053	15.5	ug/L	211	Standard
>	Ge	72	212834.8	0.5				ug/L	210599	Standard
	As	75	-0.8	2415.8	0.0769	0.027	35.3	ug/L	-47	Standard
	Se	82	18.2	17.9	0.1282	0.055	42.8	ug/L	15	Standard
Ĺ	Se-1	77	64.0	10.2	0.4118	0.166	40.2	ug/L	65	Standard
>	Ga	71	20.0	50.0				mg/L	27	Standard
Ĺ	Rb	85	25.0	52.9				ug/L	17	Standard
!	Υ	89	213453.3	1.6				ug/L	216672	Standard
[>	Rh	103	26.7	47.2				ug/L	18	Standard
ļ	Мо	98	183.7	38.9	0.1276	0.051	39.6	ug/L	11	Standard
ļ	Ag	107	124.7	85.9	0.0150	0.023	150.8	ug/L	55	Standard
	Cd	111	24.0	80.2	0.0105	0.013	128.2	mg/L	7	Standard
	Cd	114	60.0	86.7	0.0226	0.015	65.9	ug/L	4	Standard
>	In O	115	326804.3	0.4		0.047	50.0	ug/L	322525	Standard
	Sn	118	498.3	14.1	-0.0287	0.017	59.8	ug/L	345	Standard
	Sb	123	212.5	61.6	0.0448	0.034	76.1	ug/L	88	Standard
Ļ	Ba Ce	135 140	41.7 25.0	67.2 34.6	0.0018	0.017	962.3	ug/L	12 37	Standard Standard
1.	Ce Tb	159	629019.1	34.6				ug/L	631826	Standard
[>	Но	165	5.0	0.0				ug/L ug/L	3	Standard
	TI	203	98.3	113.7	0.0122	0.017	138.2	ug/L ug/L	7	Standard
	TI	205	65.0	134.1	0.0122	0.017	114.4	ug/L ug/L	7	Standard
	Pb	206	219.0	52.2	-0.0057	0.019	490.1	ug/L ug/L	, 159	Standard
	Pb	207	193.3	51.5	-0.0057	0.028	587.3	ug/L ug/L	120	Standard
1	Pb	208	745.7	53.6	-0.0046	0.027	887.8	ug/L ug/L	503	Standard
1	U	238	93.7	137.9	0.0127	0.027	187.0	ug/L ug/L	5	Standard
- !	-	200	33.1	101.0	0.0127	0.024	107.0	ug/L		Standard

Sample ID: QC Std 7

209

Report Date/Time: Tuesday, October 27, 2015 14:18:39

339917.8

0.8

Page 1

L> Bi

Approved: October 28, 2015

Standard

Page 471

ug/L

333509

Γ	Na	23	0.0					mg/L	0	Standard
	Mg	24	26.7	21.7	0.0202	0.012	58.2	mg/L	10	Standard
	K	39	11.7	65.5	-0.0704	0.094	133.4	mg/L	32	Standard
	Ca	43	65.0	40.7	-4.5902	3.562	77.6	mg/L	85	Standard
ĺ	Fe	54	65.9	15.4	0.0215	0.030	139.6	mg/L	82	Standard
ĺ	Fe	57	236.7	6.1	0.2696	0.221	81.9	mg/L	217	Standard
Ĺ>	Sc-1	45	15214.3	4.5				mg/L	14524	Standard
	CI	35	60824.5	1.7				ug/L	53193	Standard
	Kr	83	2.7	43.3				ug/L	3	Standard
	Br	81	340.0	29.9				ug/L	327	Standard
	Р	31	14828.9	1.7				ug/L	13329	Standard
	S	34	3743.8	1.2				ug/L	3234	Standard
	Sr	88	91.7	8.3				ug/L	87	Standard
	С	12	106.7	28.6				mg/L	103	Standard
	N	14	0.0					mg/L	0	Standard
	Hg	202	0.0					mg/L	3	Standard
	Dy	164	13.2	117.5				mg/L	10	Standard
	Ho-1	165	5.0	0.0				mg/L	3	Standard
	Er	166	3.3	173.2				mg/L	7	Standard
	1	127	3452.1	4.9				mg/L	3612	Standard

Analyte	Mass	QC Std % Recovery	Int Std % Recovery	Spike % Recovery
「> Li	6			
Be	9			
L AI	27			
「 Sc	45			
Ti	47			
V	51			
Cr	52			
Cr	53			
Mn	55			
Co	59			
Ni	60			
Cu	65			
Zn	66			
> Ge	72		101.062	
As	75			
Se	82			
∟ Se-1	77			
「⊳ Ga	71			

Sample ID: QC Std 7

Report Date/Time: Tuesday, October 27, 2015 14:18:39

Page 2

Approved: October 28, 2015

∟ Rb	85			
ΓΥ	89			
$\lfloor_>$ Rh	103			
Mo	98			
Ag	107			
Cd	111			
Cd	114			
 > In	115			101.327
Sn	118			
Sb	123			
L Ba	135			
Ce	140			
> Tb	159			
Ho	165			
TI TI	203			
ТI	205			
Pb	206			
Pb	207			
Pb	208			
Ü	238			
Ĺ _{>} Bi	209			101.922
Na	23			
Mg	24			
K	39			
Ca	43			
Fe	54			
Fe	57			
> Sc-1	45			
CI	35			
Kr	83			
Br	81			
Р	31			
S	34			
Sr	88			
С	12			
N	14			
Hg	202			
Dy	164			
Ho-1	165			
Er	166			
1	127			
QC Ou	ıt of Limits			
	ment Type	Analyte	Mass	Out of Limits Message
QC Std 7		Ti	47	Cat of Limito Moodago
QC Old 7		• • • • • • • • • • • • • • • • • • • •	71	

Sample ID: QC Std 7

Report Date/Time: Tuesday, October 27, 2015 14:18:39

Page 3

Sample ID: QC Std 8

Sample Date/Time: Tuesday, October 27, 2015 14:41:29

RSD

0.9

Number of Replicates: 3 Autosampler Position: 202 Sample Description:

Method File: C:\NexIONData\Method\6020a.mth

Intensity

28050.9

Aliquot Volume (mL): Diluted to Volume (mL):

User Name: BKT Nexion300X Cumulative Autodilution Factor: 1

Nexion-ICP 200.8\6020

IS Analyte Mass

	Be	9	125.0	4.0	0.1908	0.007	3.7	ug/L	2	Standard
L	Αl	27	396.7	5.7	-0.0140	0.000	2.3	ug/L	403	Standard
Γ	Sc	45	15397.8	2.5				ug/L	14524	Standard
İ	Ti	47	145.7	10.8	-1.2091	0.094	7.8	ug/L	365	Standard
İ	V	51	2355.9	1.1	0.4134	0.012	2.9	ug/L	805	Standard
İ	Cr	52	9445.9	1.3	0.8758	0.022	2.5	ug/L	5481	Standard
İ	Cr	53	768.4	9.1	0.8910	0.143	16.1	ug/L	268	Standard
İ	Mn	55	2415.2	2.4	0.3659	0.024	6.6	ug/L	670	Standard
ĺ	Co	59	1417.7	1.5	0.3964	0.003	8.0	ug/L	146	Standard
	Ni	60	2012.5	1.3	1.5313	0.039	2.5	ug/L	220	Standard
	Cu	65	1017.4	5.2	0.7299	0.054	7.4	ug/L	147	Standard
	Zn	66	4757.1	1.8	6.5662	0.135	2.1	ug/L	211	Standard
>	Ge	72	214771.9	1.0				ug/L	210599	Standard
	As	75	248.0	2.6	0.4248	0.011	2.7	ug/L	-47	Standard
	Se	82	34.5	11.0	0.3949	0.057	14.4	ug/L	15	Standard
L	Se-1	77	74.0	10.6	0.6517	0.188	28.9	ug/L	65	Standard
Γ>	Ga	71	21.7	66.6				mg/L	27	Standard
L	Rb	85	15.0	66.7				ug/L	17	Standard
Γ	Υ	89	225624.3	1.1				ug/L	216672	Standard
L>	Rh	103	23.3	32.7				ug/L	18	Standard
Γ	Mo	98	16.3	16.4	0.0090	0.002	20.0	ug/L	11	Standard
	Ag	107	1893.5	2.9	0.3843	0.015	3.9	ug/L	55	Standard
	Cd	111	345.3	2.4	0.2343	0.008	3.4	mg/L	7	Standard

0.2306

-0.0673

0.3820

0.6735

0.0734

0.0833

0.1707

0.1580

0.1729

0.3742

0.006

0.010

0.013

0.044

0.004

0.007

0.002

0.005

0.006

0.007

Concentration Results

Conc.

SD

RSD

Units

ug/L

ug/L

ug/L

ug/L

ug/L

ug/L

ug/L

ug/L

ug/L

ug/L

ug/L

ug/L

ug/L

ug/L

ug/L

ug/L

14.1

3.5

6.6

4.8

8.7

0.9

3.5

3.7

Blank Intens.

26270

Mode

Standard

Standard

Standard

Standard

Standard

Standard

Standard

Standard

Standard

Standard

Standard

Standard

Standard

Standard

Standard

Standard

322525

631826

345

88

12

37

3

7

159

120

503

333509

5

Sample ID: QC Std 8

Report Date/Time: Tuesday, October 27, 2015 14:43:45

790.7

346.7

1518.1

1142.4

628169.0

13.3

5.0

500.3

358.3

928.7

786.4

3310.8

2043.8

339969.3

330378.2

2.6

0.9

10.2

2.9

5.5

78.1

1.5

4.0

9.8

0.4

2.2

2.3

1.8

0.8

173.2

Page 1

Cd

In

Sn

Sb

Ва

Се

Th

Но

ΤI

ΤI

Ph

Pb

Pb

U

Bi

114

115

118

123

135

140

159

165

203

205

206

207

208

238

209

Approved: October 28, 2015

_									_	- · · ·
	Na	23	0.0					mg/L	0	Standard
	Mg	24	13.3	78.1	-0.0107	0.022	210.0	mg/L	10	Standard
	K	39	30.0	33.3	0.1436	0.124	86.1	mg/L	32	Standard
	Ca	43	51.7	31.1	-6.6139	2.583	39.1	mg/L	85	Standard
	Fe	54	82.6	3.4	0.0575	0.005	9.5	mg/L	82	Standard
	Fe	57	190.0	25.9	-0.1714	0.477	278.4	mg/L	217	Standard
L>	Sc-1	45	15397.8	2.5				mg/L	14524	Standard
	CI	35	64494.3	1.1				ug/L	53193	Standard
	Kr	83	4.3	74.2				ug/L	3	Standard
	Br	81	373.3	13.5				ug/L	327	Standard
	Р	31	14230.0	0.9				ug/L	13329	Standard
	S	34	3680.4	3.7				ug/L	3234	Standard
	Sr	88	91.7	26.9				ug/L	87	Standard
	С	12	170.0	30.6				mg/L	103	Standard
	N	14	0.0					mg/L	0	Standard
	Hg	202	0.0					mg/L	3	Standard
	Dy	164	6.2	186.6				mg/L	10	Standard
	Ho-1	165	5.0	173.2				mg/L	3	Standard
	Er	166	10.0					mg/L	7	Standard
	1	127	583.3	38.7				mg/L	3612	Standard

Analyte	Mass	QC Std % Recovery	Int Std % Recovery	Spike % Recovery
「> Li	6	•		
Be	9	95.390		
L AI	27			
「 Sc	45			
Ti	47			
V	51	103.350		
Cr	52	109.481		
Cr	53			
Mn	55	73.172		
Co	59	99.089		
Ni	60	95.705		
Cu	65	91.242		
Zn	66	105.060		
> Ge	72		101.982	
As	75	106.209		
Se	82	98.720		
L Se-1	77			
「⊳ Ga	71			

Sample ID: QC Std 8

Report Date/Time: Tuesday, October 27, 2015 14:43:45

Page 2

Approved: October 28, 2015

Rb	85			
Γ̈́Υ	89			
_ > Rh	103			
- Mo	98			
Ag	107	96.063		
Cd	111	97.617		
Cd	114			
> In	115		102.435	
Sn	118			
Sb	123	95.507		
_ Ba	135	89.806		
Ce	140			
> Tb	159			
Ho	165			
TI TI	203	91.691		
į TI	205			
Pb	206			
Pb	207			
Pb	208	86.473		
įυ	238	93.551		
Ĺ> Bi	209		101.937	
Ña	23			
Mg	24			
K	39			
Ca	43			
Fe	54			
Fe	57			
_> Sc-1	45			
CI	35			
Kr	83			
Br	81			
Р	31			
S	34			
Sr	88			
С	12			
N	14			
Hg	202			
Dy	164			
Ho-1	165			
Er	166			
l .	127			
QC O	ut of Limits			
Measure	ement Type	Analyte Mass	Out of Limits Message	

Sample ID: QC Std 8

Report Date/Time: Tuesday, October 27, 2015 14:43:45

Page 3

Sample ID: L1510135202

Sample Date/Time: Tuesday, October 27, 2015 15:16:22

Number of Replicates: 3 Autosampler Position: 311 Sample Description: 1

Method File: C:\NexIONData\Method\6020a.mth

Aliquot Volume (mL): Diluted to Volume (mL):

User Name: BKT Nexion300X Cumulative Autodilution Factor: 1 Nexion-ICP 200.8\6020

Concentration Results

			Concentration Results										
IS	Analy	te Mass	Intensity	RSD	Conc.	SD	RSD	Units	Blank Intens.	Mode			
Γ>	Li	6	29618.9	1.4				ug/L	26270	Standard			
	Be	9	8.3	34.6	-0.0206	0.005	23.6	ug/L	2	Standard			
L	Αl	27	6276678.0	4.6	99.3201	5.733	5.8	ug/L	403	Standard			
Γ	Sc	45	15392.8	2.2				ug/L	14524	Standard			
	Ti	47	215.7	8.4	-0.7789	0.074	9.5	ug/L	365	Standard			
	V	51	981.4	12.8	0.0194	0.033	168.4	ug/L	805	Standard			
	Cr	52	6333.7	0.8	0.1508	0.053	35.3	ug/L	5481	Standard			
	Cr	53	931.7	24.7	1.1940	0.470	39.4	ug/L	268	Standard			
	Mn	55	174978.3	0.5	51.5621	1.377	2.7	ug/L	670	Standard			
	Co	59	599.3	1.7	0.1406	0.008	6.0	ug/L	146	Standard			
	Ni	60	1134.0	3.1	0.7615	0.059	7.7	ug/L	220	Standard			
	Cu	65	421.3	12.5	0.1969	0.054	27.4	ug/L	147	Standard			
	Zn	66	1194.4	1.3	1.1725	0.053	4.5	ug/L	211	Standard			
>	Ge	72	215575.6	2.9				ug/L	210599	Standard			
	As	75	2878.1	3.5	4.0937	0.249	6.1	ug/L	-47	Standard			
	Se	82	25.3	10.6	0.2424	0.050	20.6	ug/L	15	Standard			
L	Se-1	77	100.7	8.6	1.3236	0.201	15.2	ug/L	65	Standard			
Γ>	Ga	71	30.0	50.0				mg/L	27	Standard			
L	Rb	85	1228.4	4.0				ug/L	17	Standard			
Γ	Υ	89	221613.0	4.8				ug/L	216672	Standard			
L>	Rh	103	20.0	66.1				ug/L	18	Standard			
Γ	Mo	98	3618.7	1.1	2.5594	0.092	3.6	ug/L	11	Standard			
	Ag	107	52.0	1.9	-0.0004	0.000	86.9	ug/L	55	Standard			
	Cd	111	20.2	36.9	0.0079	0.005	67.7	mg/L	7	Standard			
	Cd	114	62.5	20.3	0.0233	0.003	13.8	ug/L	4	Standard			
>	. In	115	326738.0	2.7				ug/L	322525	Standard			
	Sn	118	466.7	8.7	-0.0366	0.007	20.4	ug/L	345	Standard			
	Sb	123	205.4	14.6	0.0431	0.009	20.2	ug/L	88	Standard			
L	Ва	135	86718.0	3.4	53.5271	2.620	4.9	ug/L	12	Standard			
Γ	Ce	140	188.3	23.9				ug/L	37	Standard			
L>		159	631013.1	2.8				ug/L	631826	Standard			
Γ	Но	165	23.3	53.9				ug/L	3	Standard			
	TI	203	179.0	7.5	0.0252	0.002	8.1	ug/L	7	Standard			
	TI	205	141.7	10.8	0.0353	0.003	9.3	ug/L	7	Standard			
	Pb	206	239.0	5.9	0.0010	0.003	313.6	ug/L	159	Standard			
	Pb	207	217.0	5.6	0.0037	0.004	111.7	ug/L	120	Standard			
	Pb	208	870.0	4.7	0.0073	0.003	46.2	ug/L	503	Standard			
	U	238	1422.4	3.4	0.2663	0.012	4.6	ug/L	5	Standard			
L>	. Bi	209	330934.1	1.4				ug/L	333509	Standard			

Sample ID: L1510135202

Report Date/Time: Tuesday, October 27, 2015 15:18:39

Page 1

Approved: October 28, 2015

Page 477

L15101055 / Revision: 0 / 760 total pages

_									_	
	Na	23	1.7	173.2				mg/L	0	Standard
	Mg	24	16258.7	3.5	36.6075	2.079	5.7	mg/L	10	Standard
	K	39	128.3	2.2	1.3000	0.065	5.0	mg/L	32	Standard
	Ca	43	208.3	6.0	17.2704	1.615	9.4	mg/L	85	Standard
	Fe	54	371.0	13.8	0.7262	0.135	18.6	mg/L	82	Standard
	Fe	57	306.7	9.4	0.8614	0.205	23.8	mg/L	217	Standard
L>	Sc-1	45	15392.8	2.2				mg/L	14524	Standard
	CI	35	70561.3	1.1				ug/L	53193	Standard
	Kr	83	4.7	53.9				ug/L	3	Standard
	Br	81	1716.8	8.8				ug/L	327	Standard
	Р	31	17675.3	2.4				ug/L	13329	Standard
	S	34	3522.1	3.3				ug/L	3234	Standard
	Sr	88	150.0	29.6				ug/L	87	Standard
	С	12	196.7	12.8				mg/L	103	Standard
	N	14	0.0					mg/L	0	Standard
	Hg	202	6.7	173.2				mg/L	3	Standard
	Dy	164	8.6	217.0				mg/L	10	Standard
	Ho-1	165	23.3	53.9				mg/L	3	Standard
	Er	166	30.0	100.0				mg/L	7	Standard
	I	127	38183.2	6.8				mg/L	3612	Standard

Analyte	Mass	QC Std % Recovery	Int Std % Recovery	Spike % Recovery
「⊳ Li	6		112.750	
Be	9			
L AI	27			
「 Sc	45			
Ti	47			
V	51			
Cr	52			
Cr	53			
Mn	55			
Co	59			
Ni	60			
Cu	65			
Zn	66			
> Ge	72		102.363	
As	75			
Se	82			
L Se-1	77			
「⊳ Ga	71			

Sample ID: L1510135202

Report Date/Time: Tuesday, October 27, 2015 15:18:39

Page 2

Approved: October 28, 2015

```
Rb
             85
  Υ
             89
| > Rh
             103
             98
  Мо
             107
  Ag
  Cd
             111
  Cd
             114
                                                   101.306
| > In
             115
  Sn
             118
  Sb
             123
  Ва
             135
             140
  Ce
  Tb
             159
  Но
             165
  ΤI
            203
  ΤI
            205
  Pb
            206
  Pb
            207
            208
  Pb
  U
            238
            209
                                                    99.228
L> Bi
  Na
             23
  Mg
             24
             39
  Κ
  Ca
             43
  Fe
             54
  Fe
             57
             45
|> Sc-1
  CI
             35
             83
  Kr
  Br
             81
  Ρ
             31
  S
              34
  Sr
             88
  С
              12
  Ν
             14
            202
  Hg
  Dу
             164
  Ho-1
             165
             166
  Er
             127
  QC Out of Limits
  Measurement Type
                            Analyte Mass
                                                  Out of Limits Message
  Ti 47 Lower
                            Τi
                                       47
```

Sample ID: L1510135202

Report Date/Time: Tuesday, October 27, 2015 15:18:39

Page 3

Sample ID: L1510114809

Sample Date/Time: Tuesday, October 27, 2015 15:19:34

Number of Replicates: 3 Autosampler Position: 312 Sample Description: 1

Method File: C:\NexIONData\Method\6020a.mth

Aliquot Volume (mL): Diluted to Volume (mL):

User Name: BKT Nexion300X Cumulative Autodilution Factor: 1

Nexion-ICP 200.8\6020

Concentration	Results
---------------	---------

			Concentration Results									
IS	Analyt	e Mass	Intensity	RSD	Conc.	SD	RSD	Units	Blank Intens.	Mode		
Γ>	Li	6	32409.8	7.4				ug/L	26270	Standard		
	Ве	9	8.3	91.7	-0.0216	0.013	58.3	ug/L	2	Standard		
L	ΑI	27	736015.4	3.8	10.6777	1.171	11.0	ug/L	403	Standard		
Γ	Sc	45	16489.0	5.5				ug/L	14524	Standard		
	Ti	47	353.7	4.0	0.0715	0.152	212.4	ug/L	365	Standard		
	٧	51	2789.7	1.4	0.5313	0.041	7.8	ug/L	805	Standard		
	Cr	52	6911.2	2.3	0.2774	0.100	36.2	ug/L	5481	Standard		
	Cr	53	750.0	8.0	0.8486	0.170	20.0	ug/L	268	Standard		
	Mn	55	2679.2	20.4	0.4426	0.197	44.4	ug/L	670	Standard		
	Co	59	369.7	6.1	0.0687	0.010	14.5	ug/L	146	Standard		
	Ni	60	675.7	6.0	0.3585	0.022	6.1	ug/L	220	Standard		
	Cu	65	1456.1	3.7	1.1123	0.100	9.0	ug/L	147	Standard		
	Zn	66	2386.2	2.3	2.9545	0.224	7.6	ug/L	211	Standard		
>	Ge	72	216724.6	4.4				ug/L	210599	Standard		
	As	75	72.1	24.8	0.1772	0.020	11.6	ug/L	-47	Standard		
	Se	82	82.0	6.6	1.1723	0.056	4.8	ug/L	15	Standard		
L	Se-1	77	112.7	10.8	1.6206	0.362	22.4	ug/L	65	Standard		
Γ>	Ga	71	25.0	20.0				mg/L	27	Standard		
L	Rb	85	918.4	4.7				ug/L	17	Standard		
Γ	Υ	89	223886.7	5.3				ug/L	216672	Standard		
L>	Rh	103	21.7	66.6				ug/L	18	Standard		
Γ	Мо	98	187.3	5.0	0.1274	0.012	9.8	ug/L	11	Standard		
	Ag	107	48.0	11.0	-0.0015	0.001	55.2	ug/L	55	Standard		
	Cd	111	49.9	27.4	0.0277	0.007	26.3	mg/L	7	Standard		
	Cd	114	132.1	9.2	0.0427	0.005	11.0	ug/L	4	Standard		
>	In	115	334767.7	5.6				ug/L	322525	Standard		
	Sn	118	480.0	9.0	-0.0356	0.015	43.0	ug/L	345	Standard		
	Sb	123	137.9	5.7	0.0245	0.001	4.0	ug/L	88	Standard		
Ē	Ва	135	29618.6	2.3	17.8615	1.267	7.1	ug/L	12	Standard		
ļ	Ce	140	571.7	16.3				ug/L	37	Standard		
Ĺ>	Tb	159	634681.1	4.6				ug/L	631826	Standard		
ļ	Но	165	33.3	22.9				ug/L	3	Standard		
ļ	TI	203	59.3	4.2	0.0064	0.001	8.5	ug/L	7	Standard		
ļ	TI	205	35.0	0.0	0.0104	0.000	3.9	ug/L	7	Standard		
ļ	Pb	206	287.7	5.4	0.0118	0.006	54.0	ug/L	159	Standard		
ļ	Pb	207	248.7	9.7	0.0107	0.004	33.9	ug/L	120	Standard		
ļ	Pb	208	1018.3	8.8	0.0158	0.003	18.7	ug/L	503	Standard		
ļ	U	238	50.0	23.1	0.0048	0.003	53.8	ug/L	5	Standard		
L>	Bi	209	339408.0	5.2				ug/L	333509	Standard		

Sample ID: L1510114809

Report Date/Time: Tuesday, October 27, 2015 15:21:51

Page 1

Г	N.	23	1.7	173.2				ma/l	0	Standard
!	Na							mg/L		
	Mg	24	10135.1	0.9	21.3167	1.330	6.2	mg/L	10	Standard
	K	39	35.0	24.7	0.1738	0.096	55.4	mg/L	32	Standard
	Ca	43	65.0	40.0	-5.2258	3.797	72.7	mg/L	85	Standard
	Fe	54	79.1	38.5	0.0397	0.072	181.4	mg/L	82	Standard
	Fe	57	243.3	8.3	0.1566	0.195	124.6	mg/L	217	Standard
L>	Sc-1	45	16489.0	5.5				mg/L	14524	Standard
	CI	35	73783.2	1.5				ug/L	53193	Standard
	Kr	83	5.7	40.8				ug/L	3	Standard
	Br	81	1973.5	7.9				ug/L	327	Standard
	Р	31	24559.9	2.3				ug/L	13329	Standard
	S	34	3493.7	4.3				ug/L	3234	Standard
	Sr	88	88.3	28.5				ug/L	87	Standard
	С	12	233.3	16.2				mg/L	103	Standard
	N	14	0.0					mg/L	0	Standard
	Hg	202	16.7	34.6				mg/L	3	Standard
	Dy	164	31.7	66.4				mg/L	10	Standard
	Ho-1	165	33.3	22.9				mg/L	3	Standard
	Er	166	33.3	17.3				mg/L	7	Standard
	I	127	110053.8	4.8				mg/L	3612	Standard

_	Analyte		QC Std % Recovery	Int Std % Recovery	Spike % Recovery
Γ>	Li	6		123.373	
	Be	9			
L	Al	27			
Γ	Sc	45			
	Ti	47			
	V	51			
	Cr	52			
	Cr	53			
	Mn	55			
	Co	59			
	Ni	60			
	Cu	65			
	Zn	66			
>	Ge	72		102.909	
	As	75			
	Se	82			
L	Se-1	77			
Γ>	Ga	71			

Sample ID: L1510114809

Report Date/Time: Tuesday, October 27, 2015 15:21:51

Page 2

Approved: October 28, 2015

L Rb	85				
Γ Y	89				
Ĺ> Rh	103				
Γ Mo	98				
Ag	107				
Cd	111				
Cd	114			102 700	
> In	115			103.796	
Sn	118				
Sb	123				
L Ba □ Co	135				
「 Ce ⊤h	140				
L> Tb Γ Ho	159 165				
H0 TI	203				
'' Ti	205				
II Pb	206				
Pb	207				
Pb	208				
U	238				
∣	209			101.769	
∫ Na	23			101.700	
Mg	24				
K	39				
Ca	43				
Fe	54				
Fe	57				
 > Sc-1	45				
CI	35				
Kr	83				
Br	81				
Р	31				
S	34				
Sr	88				
С	12				
N	14				
Hg	202				
Dy	164				
Ho-1	165				
Er	166				
I	127				
QC O	ut of Limits				
	ement Type	Analyte	Mass	Out of Limits Message	
	Std for sample	Li	6	Rerun sample	
	Li o ini ota ioi sampie			•	

Sample ID: L1510114809

Report Date/Time: Tuesday, October 27, 2015 15:21:51

Page 3

Sample ID: L1510114811

Sample Date/Time: Tuesday, October 27, 2015 15:22:45

Number of Replicates: 3 Autosampler Position: 313 Sample Description: 1

Method File: C:\NexIONData\Method\6020a.mth

Aliquot Volume (mL): Diluted to Volume (mL):

User Name: BKT Nexion300X Cumulative Autodilution Factor: 1

Nexion-ICP 200.8\6020

\sim	ncon	tration	Results	
υo	ncer	itration	Results	

		Concentration results								
IS	Analyt	e Mass	Intensity	RSD	Conc.	SD	RSD	Units	Blank Intens.	Mode
Γ>	Li	6	32732.0	0.7				ug/L	26270	Standard
	Be	9	15.0	88.2	-0.0117	0.020	173.6	ug/L	2	Standard
L	Αl	27	1931718.9	2.0	27.6314	0.466	1.7	ug/L	403	Standard
Γ	Sc	45	16302.1	2.7				ug/L	14524	Standard
	Ti	47	302.0	7.8	-0.2693	0.143	53.3	ug/L	365	Standard
	٧	51	2220.2	4.2	0.3630	0.032	8.8	ug/L	805	Standard
	Cr	52	6449.7	2.8	0.1543	0.028	18.0	ug/L	5481	Standard
	Cr	53	750.0	2.3	0.8304	0.024	2.9	ug/L	268	Standard
	Mn	55	8604.1	0.9	2.1605	0.033	1.5	ug/L	670	Standard
	Co	59	409.7	2.2	0.0796	0.004	4.6	ug/L	146	Standard
	Ni	60	728.4	2.6	0.3981	0.019	4.9	ug/L	220	Standard
	Cu	65	489.3	5.4	0.2500	0.019	7.6	ug/L	147	Standard
	Zn	66	1120.4	2.5	1.0354	0.058	5.6	ug/L	211	Standard
>	Ge	72	218830.4	1.0				ug/L	210599	Standard
	As	75	94.2	33.6	0.2070	0.042	20.5	ug/L	-47	Standard
	Se	82	30.5	19.9	0.3190	0.094	29.4	ug/L	15	Standard
L	Se-1	77	75.7	7.7	0.6603	0.165	25.0	ug/L	65	Standard
Γ>	Ga	71	26.7	47.2				mg/L	27	Standard
L	Rb	85	1225.0	1.6				ug/L	17	Standard
Γ	Υ	89	230968.9	1.0				ug/L	216672	Standard
L>	Rh	103	56.7	18.4				ug/L	18	Standard
Γ	Мо	98	82.1	8.5	0.0535	0.004	8.2	ug/L	11	Standard
	Ag	107	96.0	14.5	0.0081	0.003	34.7	ug/L	55	Standard
	Cd	111	54.2	12.9	0.0303	0.004	14.3	mg/L	7	Standard
	Cd	114	111.7	27.9	0.0363	0.008	23.1	ug/L	4	Standard
>	In	115	339753.2	1.1				ug/L	322525	Standard
	Sn	118	495.0	14.7	-0.0340	0.019	55.0	ug/L	345	Standard
	Sb	123	108.8	15.1	0.0166	0.004	24.3	ug/L	88	Standard
L	Ва	135	51332.8	0.9	30.4435	0.377	1.2	ug/L	12	Standard
Γ	Ce	140	1100.0	4.8				ug/L	37	Standard
L>	Tb	159	639978.5	1.6				ug/L	631826	Standard
Γ	Но	165	28.3	56.7				ug/L	3	Standard
	TI	203	123.3	9.0	0.0161	0.002	10.4	ug/L	7	Standard
	TI	205	56.7	36.7	0.0153	0.005	31.9	ug/L	7	Standard
	Pb	206	281.3	8.0	0.0100	0.001	6.5	ug/L	159	Standard
	Pb	207	244.7	2.3	0.0097	0.001	10.3	ug/L	120	Standard
	Pb	208	1032.7	1.7	0.0168	0.001	3.3	ug/L	503	Standard
	U	238	170.7	11.9	0.0271	0.004	13.4	ug/L	5	Standard
L>	Bi	209	339744.9	1.2				ug/L	333509	Standard

Sample ID: L1510114811

Report Date/Time: Tuesday, October 27, 2015 15:25:02

Page 1

Approved: October 28, 2015

_										
	Na	23	0.0					mg/L	0	Standard
	Mg	24	11747.9	1.2	24.9590	0.945	3.8	mg/L	10	Standard
	K	39	26.7	10.8	0.0853	0.031	36.3	mg/L	32	Standard
	Ca	43	93.3	8.2	-1.0794	0.840	77.8	mg/L	85	Standard
	Fe	54	82.3	3.5	0.0465	0.009	18.6	mg/L	82	Standard
	Fe	57	223.3	28.0	0.0183	0.587	3207.9	mg/L	217	Standard
L>	Sc-1	45	16302.1	2.7				mg/L	14524	Standard
	CI	35	72127.3	1.7				ug/L	53193	Standard
	Kr	83	5.7	53.9				ug/L	3	Standard
	Br	81	1690.1	0.0				ug/L	327	Standard
	Р	31	22263.0	2.3				ug/L	13329	Standard
	S	34	3238.7	2.1				ug/L	3234	Standard
	Sr	88	161.7	7.8				ug/L	87	Standard
	С	12	200.0	10.0				mg/L	103	Standard
	N	14	0.0					mg/L	0	Standard
	Hg	202	6.7	173.2				mg/L	3	Standard
	Dy	164	22.5	53.7				mg/L	10	Standard
	Ho-1	165	28.3	56.7				mg/L	3	Standard
	Er	166	16.7	91.7				mg/L	7	Standard
	I	127	51256.6	2.5				mg/L	3612	Standard

Analyte	Mass	QC Std % Recovery	Int Std % Recovery	Spike % Recovery
「⊳ Li	6		124.600	
Be	9			
L AI	27			
「 Sc	45			
Ti	47			
V	51			
Cr	52			
Cr	53			
Mn	55			
Co	59			
Ni	60			
Cu	65			
Zn	66			
> Ge	72		103.909	
As	75			
Se	82			
L Se-1	77			
「⊳ Ga	71			

Sample ID: L1510114811

Report Date/Time: Tuesday, October 27, 2015 15:25:02

Page 2

Approved: October 28, 2015

L Rb	85			
ΓΥ	89			
$\lfloor_>$ Rh	103			
- Mo	98			
Ag	107			
Cď	111			
Cd	114			
> In	115			105.342
Sn	118			
Sb	123			
L Ba	135			
∟ Ce	140			
Tb	159			
Ho	165			
TI	203			
TI	205			
Pb	206			
Pb	207			
Pb	208			
U	238			
∟> Bi	209			101.870
∫ Na	23			
Mg	24			
K	39			
Ca	43			
Fe	54			
Fe	57			
_ > Sc-1	45			
CI	35			
Kr	83			
Br	81			
Р	31			
S	34			
Sr	88			
С	12			
Ν	14			
Hg	202			
Dy	164			
Ho-1	165			
Er	166			
I	127			
QC Ou	ıt of Limits			
	ment Type	Analyte M	lass	Out of Limits Message
		Li	6	Rerun sample
Li 6 Int Std for sample		LI	U	Norum Sample

Sample ID: L1510114811

Report Date/Time: Tuesday, October 27, 2015 15:25:02

Page 3

Sample ID: L1510114802

Sample Date/Time: Tuesday, October 27, 2015 15:25:56

Number of Replicates: 3 Autosampler Position: 314 Sample Description: 5

Method File: C:\NexIONData\Method\6020a.mth

Aliquot Volume (mL): Diluted to Volume (mL):

User Name: BKT Nexion300X Cumulative Autodilution Factor: 1

Nexion-ICP 200.8\6020

Concentration	Results
---------------	---------

		Concentration Results								
IS	Analyt	e Mass	Intensity	RSD	Conc.	SD	RSD	Units	Blank Intens.	Mode
Γ>	Li	6	31319.0	0.6				ug/L	26270	Standard
	Be	9	15.0	57.7	-0.0106	0.014	131.1	ug/L	2	Standard
L	ΑI	27	374214.0	1.7	5.5784	0.123	2.2	ug/L	403	Standard
Γ	Sc	45	15678.1	2.0				ug/L	14524	Standard
	Ti	47	176.0	8.0	-1.0428	0.084	8.1	ug/L	365	Standard
	٧	51	958.1	1.0	0.0083	0.005	63.3	ug/L	805	Standard
	Cr	52	6112.9	1.4	0.0748	0.030	40.7	ug/L	5481	Standard
	Cr	53	408.3	6.7	0.2093	0.042	20.1	ug/L	268	Standard
	Mn	55	16053.2	0.5	4.3257	0.065	1.5	ug/L	670	Standard
	Co	59	321.7	4.8	0.0525	0.005	10.1	ug/L	146	Standard
	Ni	60	342.0	2.5	0.0663	0.005	7.0	ug/L	220	Standard
	Cu	65	447.0	8.5	0.2119	0.029	13.6	ug/L	147	Standard
	Zn	66	1472.7	2.5	1.5530	0.067	4.3	ug/L	211	Standard
>	Ge	72	219359.6	1.1				ug/L	210599	Standard
	As	75	53.4	43.8	0.1512	0.033	21.6	ug/L	-47	Standard
	Se	82	24.4	22.9	0.2195	0.086	39.4	ug/L	15	Standard
L	Se-1	77	56.0	13.5	0.1625	0.182	112.1	ug/L	65	Standard
Γ>	Ga	71	21.7	13.3				mg/L	27	Standard
L	Rb	85	701.7	8.2				ug/L	17	Standard
Γ	Υ	89	232537.9	1.8				ug/L	216672	Standard
L>	Rh	103	18.3	78.7				ug/L	18	Standard
Γ	Мо	98	49.2	2.6	0.0311	0.001	4.0	ug/L	11	Standard
	Ag	107	48.0	12.5	-0.0016	0.001	80.0	ug/L	55	Standard
	Cd	111	65.6	3.9	0.0380	0.002	5.2	mg/L	7	Standard
	Cd	114	153.3	16.4	0.0477	0.007	13.7	ug/L	4	Standard
>	In	115	340290.5	1.1				ug/L	322525	Standard
	Sn	118	435.0	11.0	-0.0487	0.010	21.5	ug/L	345	Standard
	Sb	123	58.4	13.2	0.0040	0.002	53.0	ug/L	88	Standard
L	Ва	135	7619.9	0.7	4.4919	0.079	1.8	ug/L	12	Standard
Γ	Ce	140	70.0	0.0				ug/L	37	Standard
_>	Tb	159	650197.0	0.9				ug/L	631826	Standard
Γ	Но	165	6.7	114.6				ug/L	3	Standard
	TI	203	32.0	15.6	0.0020	0.001	33.5	ug/L	7	Standard
	TI	205	23.3	65.5	0.0076	0.003	44.6	ug/L	7	Standard
	Pb	206	251.0	3.1	0.0008	0.002	229.5	ug/L	159	Standard
ļ	Pb	207	207.0	10.6	-0.0021	0.006	299.3	ug/L	120	Standard
ļ	Pb	208	879.0	2.8	0.0047	0.002	40.3	ug/L	503	Standard
ļ	U	238	17.3	33.8	-0.0014	0.001	76.1	ug/L	5	Standard
_>	Bi	209	349027.0	1.3				ug/L	333509	Standard

Sample ID: L1510114802

Report Date/Time: Tuesday, October 27, 2015 15:28:13

Page 1

_									_	
	Na	23	0.0					mg/L	0	Standard
	Mg	24	1911.8	4.0	4.1858	0.085	2.0	mg/L	10	Standard
	K	39	13.3	78.1	-0.0555	0.124	224.3	mg/L	32	Standard
	Ca	43	65.0	27.7	-4.7609	2.767	58.1	mg/L	85	Standard
	Fe	54	115.8	39.3	0.1286	0.101	78.3	mg/L	82	Standard
	Fe	57	253.3	16.0	0.3462	0.351	101.3	mg/L	217	Standard
L>	Sc-1	45	15678.1	2.0				mg/L	14524	Standard
	CI	35	66343.6	1.9				ug/L	53193	Standard
	Kr	83	4.7	65.5				ug/L	3	Standard
	Br	81	650.0	11.6				ug/L	327	Standard
	Р	31	16086.9	1.7				ug/L	13329	Standard
	S	34	3263.7	2.7				ug/L	3234	Standard
	Sr	88	128.3	19.2				ug/L	87	Standard
	С	12	163.3	12.7				mg/L	103	Standard
	N	14	10.0					mg/L	0	Standard
	Hg	202	3.3	173.2				mg/L	3	Standard
	Dy	164	9.5	102.6				mg/L	10	Standard
	Ho-1	165	6.7	114.6				mg/L	3	Standard
	Er	166	10.0	100.0				mg/L	7	Standard
	I	127	23221.1	2.2				mg/L	3612	Standard

۲>	Analyte Li	Mass 6	QC Std % Recovery	Int Std % Recovery 119.221	Spike % Recovery
ĺ	Be	9			
Ĺ	Al	27			
Γ	Sc	45			
	Ti	47			
	V	51			
	Cr	52			
	Cr	53			
	Mn	55			
	Co	59			
	Ni	60			
	Cu	65			
	Zn	66			
>	Ge	72		104.160	
	As	75			
	Se	82			
L	Se-1	77			
Γ>	Ga	71			

Sample ID: L1510114802

Report Date/Time: Tuesday, October 27, 2015 15:28:13

Page 2

Approved: October 28, 2015

L Rb	85			
ΓY	89			
$\lfloor_>$ Rh	103			
Г Мо	98			
Ag	107			
Cd	111			
Cd	114			
> In	115			105.508
Sn	118			
Sb	123			
L Ba	135			
Ce	140			
> Tb	159			
Ho	165			
TI	203			
TI	205			
Pb	206			
Pb	207			
Pb	208			
U	238			
∟ _{>} Bi	209			104.653
Na	23			10 1.000
Mg	24			
K	39			
Ca	43			
Fe	54			
Fe	57			
> Sc-1	45			
CI	35			
Kr	83			
Br	81			
P	31			
S	34			
Sr	88			
C	12			
N	14			
Hg	202			
Dy	164			
Ho-1	165			
Er	166			
 I	127			
OC O	ıt of Limits			
		A 14	14	Out of Limits Massacs
Measure	ment Type	Analyte	Mass	Out of Limits Message
Ti 47 Lov	wer	Ti	47	

Sample ID: L1510114802

Report Date/Time: Tuesday, October 27, 2015 15:28:13

Page 3

Sample ID: L1510114803

Sample Date/Time: Tuesday, October 27, 2015 15:29:08

RSD

1.6

Number of Replicates: 3 Autosampler Position: 315 Sample Description: 5

Method File: C:\NexIONData\Method\6020a.mth

Intensity

30851.4

836.7

50.0

42.1

55.3

16.9

49.2

463.3

7138.7

630400.9

45.2

80.0

11.7

128.0

96.7

238.7

198.3

820.0

76.7

343715.7

337020.0

223973.5

8.7

1.5

26.5

16.5

17.4

5.9

24.3

0.4

5.1

19.9

1.4

6.3

0.8

99.0

17.7

42.1

8.4

5.8

3.1

5.4

0.8

Aliquot Volume (mL): Diluted to Volume (mL):

User Name: BKT Nexion300X Cumulative Autodilution Factor: 1

Nexion-ICP 200.8\6020

9

27

45

47 51

52

53 55

59

60 65

66

72

75 82

77 71

85

89

103

98

107

111

114

115

118

123

135

140

159

165

203

205

206

207

208

238

209

IS Analyte Mass

Be ΑI

Sc

Τi

Cr

Cr

Mn Со

Ni

Cu

Zn Ge

As

Se Se-1

Ga

Rh

Mο

Ag

Cd

Cd

In

Sn

Sb

Ва

Се

Th

Но

TI

ΤI

Ph

Pb

Pb

U

Bi

Page 1

91.7	-0.0211	0.013	59.4	ug/L	2	Standard
1.4	14.6648	0.036	0.2	ug/L	403	Standard
1.7				ug/L	14524	Standard
9.6	-1.2452	0.084	6.7	ug/L	365	Standard
10.8	-0.0135	0.028	204.4	ug/L	805	Standard
1.8	0.0652	0.022	34.0	ug/L	5481	Standard
2.2	1.7033	0.056	3.3	ug/L	268	Standard
2.6	11.7395	0.270	2.3	ug/L	670	Standard
4.4	0.0981	0.006	6.1	ug/L	146	Standard
4.5	0.0534	0.011	21.0	ug/L	220	Standard
7.2	0.0199	0.014	68.1	ug/L	147	Standard
4.3	0.9753	0.062	6.3	ug/L	211	Standard
0.6				ug/L	210599	Standard
87.9	0.1957	0.104	52.9	ug/L	-47	Standard
20.1	0.3321	0.103	31.1	ug/L	15	Standard
7.0	1.2428	0.190	15.3	ug/L	65	Standard
100.0				mg/L	27	Standard
	1.4 1.7 9.6 10.8 1.8 2.2 2.6 4.4 4.5 7.2 4.3 0.6 87.9 20.1 7.0	1.4 14.6648 1.7 9.6 -1.2452 10.8 -0.0135 1.8 0.0652 2.2 1.7033 2.6 11.7395 4.4 0.0981 4.5 0.0534 7.2 0.0199 4.3 0.9753 0.6 87.9 0.1957 20.1 0.3321 7.0 1.2428	1.4 14.6648 0.036 1.7 9.6 -1.2452 0.084 10.8 -0.0135 0.028 1.8 0.0652 0.022 2.2 1.7033 0.056 2.6 11.7395 0.270 4.4 0.0981 0.006 4.5 0.0534 0.011 7.2 0.0199 0.014 4.3 0.9753 0.062 0.6 87.9 0.1957 0.104 20.1 0.3321 0.103 7.0 1.2428 0.190	1.4 14.6648 0.036 0.2 1.7 9.6 -1.2452 0.084 6.7 10.8 -0.0135 0.028 204.4 1.8 0.0652 0.022 34.0 2.2 1.7033 0.056 3.3 2.6 11.7395 0.270 2.3 4.4 0.0981 0.006 6.1 4.5 0.0534 0.011 21.0 7.2 0.0199 0.014 68.1 4.3 0.9753 0.062 6.3 0.6 87.9 0.1957 0.104 52.9 20.1 0.3321 0.103 31.1 7.0 1.2428 0.190 15.3	1.4 14.6648 0.036 0.2 ug/L 1.7 ug/L ug/L 9.6 -1.2452 0.084 6.7 ug/L 10.8 -0.0135 0.028 204.4 ug/L 1.8 0.0652 0.022 34.0 ug/L 2.2 1.7033 0.056 3.3 ug/L 2.6 11.7395 0.270 2.3 ug/L 4.4 0.0981 0.006 6.1 ug/L 4.5 0.0534 0.011 21.0 ug/L 4.3 0.9753 0.062 6.3 ug/L 4.3 0.9753 0.062 6.3 ug/L 0.6 87.9 0.1957 0.104 52.9 ug/L 20.1 0.3321 0.103 31.1 ug/L 7.0 1.2428 0.190 15.3 ug/L	1.4 14.6648 0.036 0.2 ug/L 403 1.7 ug/L 14524 9.6 -1.2452 0.084 6.7 ug/L 365 10.8 -0.0135 0.028 204.4 ug/L 805 1.8 0.0652 0.022 34.0 ug/L 5481 2.2 1.7033 0.056 3.3 ug/L 268 2.6 11.7395 0.270 2.3 ug/L 670 4.4 0.0981 0.006 6.1 ug/L 146 4.5 0.0534 0.011 21.0 ug/L 220 7.2 0.0199 0.014 68.1 ug/L 147 4.3 0.9753 0.062 6.3 ug/L 210 0.6 ug/L 210599 87.9 0.1957 0.104 52.9 ug/L -47 20.1 0.3321 0.103 31.1 ug/L 15 7.0 1.242

0.005

0.001

0.003

0.006

0.002

0.052

0.003

0.009

0.005

0.003

0.002

0.001

0.002 11392.8

SD

RSD

Units

ug/L

ug/L

ug/L

ug/L

ug/L

ug/L

mg/L

ug/L

ug/L

ug/L

ug/L

ug/L

ug/L

ug/L

ug/L

ug/L

ug/L

ug/L

ug/L

ug/L

ug/L

ug/L

17.6

12.5

17.7

14.2

1.2

19.8

37.5

340.4

74.4

133.9

7.9

304.1

Blank Intens.

26270

17

18

11

7

216672

322525

631826

345

88

12

37

3

7

159

120

503

333509

5

Standard

Standard

Standard

Standard

Standard

Standard

Standard

Standard

Standard

Standard

Standard

Standard

Standard

Standard

Standard

Standard

Standard

Standard

Standard

Standard

Standard

Mode

Standard

Concentration Results

Conc.

0.0265

-0.0000

0.0052

0.0191

-0.0408

0.0008

4.2471

0.0165

0.0240

-0.0013

-0.0037

0.0016

0.0095

Sample ID: L1510114803 Report Date/Time: Tuesday, October 27, 2015 15:31:25

Approved: October 28, 2015

_										
	Na	23	1.7	173.2				mg/L	0	Standard
	Mg	24	5571.0	2.3	12.2438	0.465	3.8	mg/L	10	Standard
	K	39	40.0	62.5	0.2484	0.282	113.6	mg/L	32	Standard
	Ca	43	90.0	16.7	-1.0998	2.012	182.9	mg/L	85	Standard
	Fe	54	127.7	8.5	0.1556	0.026	16.5	mg/L	82	Standard
	Fe	57	235.0	36.9	0.1867	0.798	427.3	mg/L	217	Standard
L>	Sc-1	45	15728.2	1.7				mg/L	14524	Standard
	CI	35	68671.9	0.2				ug/L	53193	Standard
	Kr	83	4.7	75.3				ug/L	3	Standard
	Br	81	2270.2	0.4				ug/L	327	Standard
	Р	31	15180.9	2.2				ug/L	13329	Standard
	S	34	3190.3	4.3				ug/L	3234	Standard
	Sr	88	150.0	15.3				ug/L	87	Standard
	С	12	186.7	35.7				mg/L	103	Standard
	N	14	0.0					mg/L	0	Standard
	Hg	202	3.3	173.2				mg/L	3	Standard
	Dy	164	9.7	2.9				mg/L	10	Standard
	Ho-1	165	11.7	99.0				mg/L	3	Standard
	Er	166	6.7	86.6				mg/L	7	Standard
	I	127	50101.2	6.3				mg/L	3612	Standard

	Analyte	Mass	QC Std % Recovery	Int Std % Recovery	Spike % Recovery
Γ>	Li	6		117.441	
	Be	9			
L	Al	27			
Γ	Sc	45			
	Ti	47			
	V	51			
	Cr	52			
	Cr	53			
	Mn	55			
	Co	59			
	Ni	60			
	Cu	65			
	Zn	66			
>	Ge	72		105.745	
	As	75			
	Se	82			
L	Se-1	77			
Γ>	Ga	71			

Sample ID: L1510114803

Report Date/Time: Tuesday, October 27, 2015 15:31:25

Page 2

Approved: October 28, 2015

L Rb	85			
ΓY	89			
$\lfloor_>$ Rh	103			
Mo	98			
Ag	107			
Cd	111			
Cd	114			
_{>} In	115			104.494
Sn	118			
Sb	123			
L Ba	135			
¯ Ce	140			
_ Tb	159			
⊢ Ho	165			
į TI	203			
TI	205			
Pb	206			
Pb	207			
Pb	208			
Ü	238			
∟> Bi	209			103.060
Na	23			100,000
Mg	24			
K	39			
Ca	43			
Fe	54			
Fe	57			
Sc-1	45			
CI	35			
Kr	83			
Br	81			
P	31			
S	34			
Sr	88			
C	12			
N	14			
Hg	202			
Dy	164			
Ho-1	165			
Er	166			
ī.	127			
	ut of Limits			
	ement Type	Analyte	Mass	Out of Limits Message
Ti 47 Lower		Ti	47	

Sample ID: L1510114803

Report Date/Time: Tuesday, October 27, 2015 15:31:25

Page 3

Sample ID: L1510114804

Sample Date/Time: Tuesday, October 27, 2015 15:32:19

Number of Replicates: 3 Autosampler Position: 316 Sample Description: 5

Method File: C:\NexIONData\Method\6020a.mth

Aliquot Volume (mL): Diluted to Volume (mL):

User Name: BKT Nexion300X Cumulative Autodilution Factor: 1

Nexion-ICP 200.8\6020

Concentration Re	sults
------------------	-------

IS	Analyt	e Mass	Intensity	RSD	Conc.	SD	RSD	Units	Blank Intens.	Mode
Γ>	Li	6	30916.5	0.9				ug/L	26270	Standard
ĺ	Ве	9	3.3	173.2	-0.0294	0.009	31.8	ug/L	2	Standard
Ĺ	ΑI	27	910329.3	1.4	13.7760	0.145	1.1	ug/L	403	Standard
Ī	Sc	45	15845.0	2.3				ug/L	14524	Standard
ĺ	Ti	47	152.0	3.7	-1.1885	0.035	3.0	ug/L	365	Standard
ĺ	V	51	948.7	13.7	0.0058	0.036	624.2	ug/L	805	Standard
ĺ	Cr	52	6327.3	1.3	0.1243	0.018	14.6	ug/L	5481	Standard
ĺ	Cr	53	1375.1	8.4	1.9594	0.216	11.0	ug/L	268	Standard
ĺ	Mn	55	41904.6	2.2	11.8690	0.290	2.4	ug/L	670	Standard
ĺ	Co	59	505.7	2.0	0.1088	0.004	3.3	ug/L	146	Standard
	Ni	60	349.7	1.9	0.0731	0.007	9.1	ug/L	220	Standard
	Cu	65	233.7	6.6	0.0258	0.014	52.7	ug/L	147	Standard
	Zn	66	1099.0	1.6	1.0007	0.031	3.1	ug/L	211	Standard
>	Ge	72	219189.1	0.3				ug/L	210599	Standard
	As	75	86.3	17.6	0.1962	0.021	10.7	ug/L	-47	Standard
	Se	82	37.4	17.6	0.4321	0.108	24.9	ug/L	15	Standard
L	Se-1	77	98.7	3.8	1.2315	0.088	7.1	ug/L	65	Standard
Γ>	Ga	71	35.0	37.8				mg/L	27	Standard
L	Rb	85	778.4	11.5				ug/L	17	Standard
Γ	Υ	89	224049.6	1.6				ug/L	216672	Standard
L>	Rh	103	40.0	12.5				ug/L	18	Standard
Γ	Мо	98	35.1	10.0	0.0217	0.003	11.6	ug/L	11	Standard
	Ag	107	48.7	16.5	-0.0014	0.002	107.0	ug/L	55	Standard
	Cd	111	29.6	15.9	0.0139	0.004	25.5	mg/L	7	Standard
	Cd	114	56.7	33.2	0.0212	0.005	24.0	ug/L	4	Standard
>	In	115	337159.3	1.5				ug/L	322525	Standard
	Sn	118	433.3	11.8	-0.0482	0.011	22.5	ug/L	345	Standard
	Sb	123	54.0	13.5	0.0030	0.002	56.5	ug/L	88	Standard
L	Ва	135	7069.6	1.6	4.2050	0.111	2.6	ug/L	12	Standard
Γ	Ce	140	95.0	15.8				ug/L	37	Standard
L>	Tb	159	639545.8	8.0				ug/L	631826	Standard
Γ	Но	165	6.7	86.6				ug/L	3	Standard
	TI	203	155.3	4.8	0.0206	0.001	5.1	ug/L	7	Standard
	TI	205	93.3	8.2	0.0232	0.002	7.8	ug/L	7	Standard
	Pb	206	245.3	3.7	0.0001	0.003	1899.6	ug/L	159	Standard
	Pb	207	202.3	4.0	-0.0027	0.002	84.7	ug/L	120	Standard
	Pb	208	862.7	2.9	0.0043	0.001	31.2	ug/L	503	Standard
	U	238	79.7	12.6	0.0100	0.002	20.2	ug/L	5	Standard
L>	Bi	209	344787.3	1.4				ug/L	333509	Standard

Sample ID: L1510114804

Report Date/Time: Tuesday, October 27, 2015 15:34:36

Page 1

Approved: October 28, 2015

Γ	Na	23	1.7	173.2				mg/L	0	Standard
	Mg	24	5260.9	0.6	11.4737	0.256	2.2	mg/L	10	Standard
	K	39	30.0	44.1	0.1325	0.154	116.5	mg/L	32	Standard
	Ca	43	91.7	13.7	-0.9480	1.597	168.4	mg/L	85	Standard
	Fe	54	156.2	13.3	0.2177	0.051	23.3	mg/L	82	Standard
	Fe	57	220.0	8.2	0.0317	0.117	369.8	mg/L	217	Standard
L>	Sc-1	45	15845.0	2.3				mg/L	14524	Standard
	CI	35	71907.6	0.6				ug/L	53193	Standard
	Kr	83	3.0	33.3				ug/L	3	Standard
	Br	81	2176.8	8.5				ug/L	327	Standard
	Р	31	15638.1	1.5				ug/L	13329	Standard
	S	34	3445.4	1.8				ug/L	3234	Standard
	Sr	88	135.0	11.1				ug/L	87	Standard
	С	12	180.0	11.1				mg/L	103	Standard
	N	14	0.0					mg/L	0	Standard
	Hg	202	3.3	173.2				mg/L	3	Standard
	Dy	164	2.7	219.6				mg/L	10	Standard
	Ho-1	165	6.7	86.6				mg/L	3	Standard
	Er	166	13.3	43.3				mg/L	7	Standard
	I	127	50594.6	6.9				mg/L	3612	Standard

	Analyte	Mass	QC Std % Recovery	Int Std % Recovery	Spike % Recovery
Γ>	Li	6		117.689	
	Be	9			
L	Al	27			
Γ	Sc	45			
	Ti	47			
	V	51			
	Cr	52			
	Cr	53			
	Mn	55			
	Co	59			
	Ni	60			
	Cu	65			
	Zn	66			
>	Ge	72		104.079	
	As	75			
	Se	82			
L	Se-1	77			
Γ>	Ga	71			

Sample ID: L1510114804

Report Date/Time: Tuesday, October 27, 2015 15:34:36

Page 2

Approved: October 28, 2015

L Rb	85			
Γ̈́Υ	89			
Ĺ _{>} Rh	103			
Mo	98			
Ag	107			
Cď	111			
Cd	114			
 > In	115			104.538
Sn	118			
Sb	123			
L Ba	135			
¯ Ce	140			
_ Tb	159			
Ho	165			
j TI	203			
j TI	205			
Pb	206			
Pb	207			
Pb	208			
į U	238			
Ĺ> Bi	209			103.382
- Na	23			
Mg	24			
K	39			
Ca	43			
Fe	54			
Fe	57			
_> Sc-1	45			
CI	35			
Kr	83			
Br	81			
Р	31			
S	34			
Sr	88			
С	12			
N	14			
Hg	202			
Dy	164			
Ho-1	165			
Er	166			
I	127			
QC Ou	t of Limits			
	nent Type	Analyte	Mass	Out of Limits Message
Ti 47 Low		Ti	47	
=0				

Sample ID: L1510114804Report Date/Time: Tuesday, October 27, 2015 15:34:36

Page 3

Sample ID: L1510114812

Sample Date/Time: Tuesday, October 27, 2015 15:35:31

Number of Replicates: 3 Autosampler Position: 317 Sample Description: 5

Method File: C:\NexIONData\Method\6020a.mth

Aliquot Volume (mL): Diluted to Volume (mL):

User Name: BKT Nexion300X Cumulative Autodilution Factor: 1

Nexion-ICP 200.8\6020

0	ncon	tration	Results	
Lα	ncen	itration	Results	

					Concenti	ation Nes	ouito			
IS	Analyt	e Mass	Intensity	RSD	Conc.	SD	RSD	Units	Blank Intens.	Mode
Γ>	Li	6	30803.0	5.1				ug/L	26270	Standard
	Be	9	3.3	173.2	-0.0291	0.010	34.4	ug/L	2	Standard
L	Αl	27	1022067.3	1.2	15.5539	0.824	5.3	ug/L	403	Standard
Γ	Sc	45	15973.4	3.3				ug/L	14524	Standard
	Ti	47	183.0	16.4	-0.9855	0.143	14.5	ug/L	365	Standard
	٧	51	1024.8	13.9	0.0316	0.039	122.6	ug/L	805	Standard
	Cr	52	6552.4	1.7	0.2008	0.086	43.0	ug/L	5481	Standard
	Cr	53	718.4	4.5	0.7922	0.067	8.5	ug/L	268	Standard
	Mn	55	40622.4	0.5	11.6936	0.542	4.6	ug/L	670	Standard
	Co	59	285.7	2.7	0.0429	0.002	4.2	ug/L	146	Standard
	Ni	60	300.7	5.5	0.0357	0.023	65.6	ug/L	220	Standard
	Cu	65	248.7	3.6	0.0424	0.006	14.3	ug/L	147	Standard
	Zn	66	1211.4	6.1	1.1991	0.170	14.1	ug/L	211	Standard
>	Ge	72	215825.9	4.0				ug/L	210599	Standard
	As	75	50.0	65.7	0.1467	0.045	30.5	ug/L	-47	Standard
	Se	82	40.1	5.4	0.4851	0.020	4.2	ug/L	15	Standard
L	Se-1	77	83.7	12.6	0.8890	0.250	28.1	ug/L	65	Standard
Γ>	Ga	71	31.7	24.1				mg/L	27	Standard
L	Rb	85	448.3	9.4				ug/L	17	Standard
Γ	Υ	89	226849.6	6.0				ug/L	216672	Standard
L>	Rh	103	43.3	35.3				ug/L	18	Standard
Γ	Мо	98	66.8	2.6	0.0435	0.003	7.2	ug/L	11	Standard
	Ag	107	50.7	14.9	-0.0009	0.002	203.6	ug/L	55	Standard
	Cd	111	41.2	16.2	0.0217	0.004	19.6	mg/L	7	Standard
	Cd	114	102.9	23.5	0.0343	0.008	23.9	ug/L	4	Standard
>	In	115	337702.7	4.4				ug/L	322525	Standard
	Sn	118	515.0	3.4	-0.0283	0.010	34.6	ug/L	345	Standard
	Sb	123	54.4	21.2	0.0030	0.003	89.2	ug/L	88	Standard
L	Ва	135	5169.2	1.4	3.0657	0.108	3.5	ug/L	12	Standard
Γ	Ce	140	463.3	9.2				ug/L	37	Standard
_>	Tb	159	630292.9	5.5				ug/L	631826	Standard
Γ	Но	165	11.7	107.9				ug/L	3	Standard
	TI	203	86.0	22.4	0.0104	0.003	26.0	ug/L	7	Standard
	TI	205	55.0	50.6	0.0148	0.006	40.1	ug/L	7	Standard
	Pb	206	249.0	7.5	0.0020	0.003	143.3	ug/L	159	Standard
ļ	Pb	207	209.0	8.3	0.0002	0.007	3569.6	ug/L	120	Standard
ļ	Pb	208	846.0	4.3	0.0042	0.005	110.2	ug/L	503	Standard
ļ	U	238	244.3	3.6	0.0409	0.001	2.8	ug/L	5	Standard
_>	Bi	209	339044.3	4.0				ug/L	333509	Standard

Sample ID: L1510114812

Report Date/Time: Tuesday, October 27, 2015 15:37:48

Page 1

Approved: October 28, 2015

Page 495

L15101055 / Revision: 0 / 760 total pages

_										
	Na	23	5.0	100.0				mg/L	0	Standard
	Mg	24	4804.1	2.5	10.3983	0.570	5.5	mg/L	10	Standard
	K	39	18.3	15.7	-0.0034	0.030	864.5	mg/L	32	Standard
	Ca	43	61.7	32.8	-5.5082	2.624	47.6	mg/L	85	Standard
	Fe	54	77.7	30.3	0.0388	0.046	119.3	mg/L	82	Standard
	Fe	57	248.3	9.9	0.2621	0.208	79.2	mg/L	217	Standard
L>	Sc-1	45	15973.4	3.3				mg/L	14524	Standard
	CI	35	74998.5	1.2				ug/L	53193	Standard
	Kr	83	6.3	50.8				ug/L	3	Standard
	Br	81	1393.4	4.8				ug/L	327	Standard
	Р	31	16198.7	2.6				ug/L	13329	Standard
	S	34	3550.4	2.5				ug/L	3234	Standard
	Sr	88	123.3	20.4				ug/L	87	Standard
	С	12	176.7	18.2				mg/L	103	Standard
	N	14	0.0					mg/L	0	Standard
	Hg	202	3.3	173.2				mg/L	3	Standard
	Dy	164	23.0	26.3				mg/L	10	Standard
	Ho-1	165	11.7	107.9				mg/L	3	Standard
	Er	166	6.7	86.6				mg/L	7	Standard
	I	127	43830.0	1.2				mg/L	3612	Standard

Analyte	Mass	QC Std % Recovery	Int Std % Recovery	Spike % Recovery
「> Li	6		117.257	
Be	9			
L AI	27			
「 Sc	45			
Ti	47			
V	51			
Cr	52			
Cr	53			
Mn	55			
Co	59			
Ni	60			
Cu	65			
Zn	66			
> Ge	72		102.482	
As	75			
Se	82			
L Se-1	77			
「> Ga	71			

Sample ID: L1510114812

Report Date/Time: Tuesday, October 27, 2015 15:37:48

Page 2

Approved: October 28, 2015

∟ Rb	85			
ΓΥ	89			
$\lfloor_>$ Rh	103			
ГМо	98			
Ag	107			
Cd	111			
Cd	114			
> In	115			104.706
Sn	118			
Sb	123			
L Ba	135			
¯ Ce	140			
_ _> Tb	159			
Γ Ho	165			
j TI	203			
TI	205			
Pb	206			
Pb	207			
Pb	208			
į U	238			
Ĺ> Bi	209			101.660
Г Nа	23			
Mg	24			
K	39			
Ca	43			
Fe	54			
Fe	57			
_> Sc-1	45			
CI	35			
Kr	83			
Br	81			
Р	31			
S	34			
Sr	88			
С	12			
N	14			
Hg	202			
Dy	164			
Ho-1	165			
Er	166			
1	127			
QC Ou	ıt of Limits			
	ment Type	Analyte	Mass	Out of Limits Message
Ti 47 Lov		Ti	47	2 1. 3. 2 Moodago
II TI LOWGI				

Sample ID: L1510114812

Report Date/Time: Tuesday, October 27, 2015 15:37:48

Page 3

Sample ID: QC Std 6

Sample Date/Time: Tuesday, October 27, 2015 15:38:44

Number of Replicates: 3 Autosampler Position: 101 Sample Description:

Method File: C:\NexIONData\Method\6020a.mth

Aliquot Volume (mL): Diluted to Volume (mL):

User Name: BKT Nexion300X Cumulative Autodilution Factor: 1

Nexion-ICP 200.8\6020

	Concentration Results												
IS	Analyt	e Mass	Intensity	RSD	Conc.	SD	RSD	Units	Blank Intens.	Mode			
[>	Li	6	28062.6	0.9				ug/L	26270	Standard			
ĺ	Ве	9	28735.6	3.0	51.8148	1.259	2.4	ug/L	2	Standard			
Ĺ	Al	27	2992447.2	1.2	49.9432	0.179	0.4	ug/L	403	Standard			
Γ	Sc	45	15034.1	3.7				ug/L	14524	Standard			
	Ti	47	17332.6	0.1	105.5985	4.015	3.8	ug/L	365	Standard			
	V	51	183751.6	1.0	52.0735	1.892	3.6	ug/L	805	Standard			
	Cr	52	231105.6	1.9	52.0042	0.983	1.9	ug/L	5481	Standard			
	Cr	53	28010.9	1.4	51.0258	1.951	3.8	ug/L	268	Standard			
	Mn	55	178956.0	2.2	52.7229	0.965	1.8	ug/L	670	Standard			
	Co	59	171075.8	0.9	53.1480	2.271	4.3	ug/L	146	Standard			
	Ni	60	59533.4	1.0	51.5880	1.763	3.4	ug/L	220	Standard			
	Cu	65	58071.4	1.3	51.4960	1.652	3.2	ug/L	147	Standard			
	Zn	66	34213.9	1.8	50.9308	1.074	2.1	ug/L	211	Standard			
>	Ge	72	215634.0	3.7				ug/L	210599	Standard			
	As	75	36866.6	1.5	51.4720	1.120	2.2	ug/L	-47	Standard			
	Se	82	3138.3	0.7	51.7600	2.212	4.3	ug/L	15	Standard			
Ĺ	Se-1	77	2108.1	1.6	52.4191	1.516	2.9	ug/L	65	Standard			
>	Ga	71	16.7	34.6				mg/L	27	Standard			
Ĺ	Rb	85	550.0	9.8				ug/L	17	Standard			
!	Υ	89	220494.9	4.5				ug/L	216672	Standard			
L>	Rh	103	21.7	13.3				ug/L	18	Standard			
	Мо	98	152928.1	1.0	106.2430	2.297	2.2	ug/L	11	Standard			
	Ag	107	242476.6	0.9	50.2789	0.905	1.8	ug/L	55	Standard			
	Cd	111	74415.1	0.5	51.4708	0.864	1.7	mg/L	7 4	Standard			
-	Cd	114 115	180749.5 332805.2	1.8 1.7	51.1415	1.783	3.5	ug/L	322525	Standard Standard			
>	In Sn	118	206663.6	2.0	50.3789	0.492	1.0	ug/L ug/L	322525 345	Standard			
	Sb	123	192300.1	0.4	49.3795	0.492	1.7	ug/L ug/L	88	Standard			
	Ba	135	81495.6	0.4	49.3640	1.021	2.1	ug/L ug/L	12	Standard			
Ļ	Сe	140	45.0	19.2	49.3040	1.021	2.1	ug/L ug/L	37	Standard			
>	Tb	159	624047.6	3.3				ug/L	631826	Standard			
Ĺ	Ho	165	0.0	0.0				ug/L	3	Standard			
i	TI	203	327892.7	0.4	50,1403	0.896	1.8	ug/L	7	Standard			
i	TI	205	223325.5	0.6	50.7024	0.576	1.1	ug/L	7	Standard			
i	Pb	206	203599.2	0.7	50.8328	0.567	1.1	ug/L	159	Standard			
i	Pb	207	183685.2	1.5	50.5783	1.081	2.1	ug/L	120	Standard			
i	Pb	208	742625.0	0.9	51.1725	0.770	1.5	ug/L	503	Standard			
i	U	238	273962.1	0.8	51.0922	1.091	2.1	ug/L	5	Standard			
Ĺ>	Bi	209	337865.1	1.5	-			ug/L	333509	Standard			

Sample ID: QC Std 6

Report Date/Time: Tuesday, October 27, 2015 15:41:01

Page 1

Approved: October 28, 2015

г	N.	22	F 0	100.0				m ~ /I	0	Ctandard
	Na	23	5.0	100.0				mg/L	0	Standard
	Mg	24	2291.8	5.8	5.2426	0.163	3.1	mg/L	10	Standard
	K	39	426.7	6.0	4.9282	0.205	4.2	mg/L	32	Standard
	Ca	43	71.7	8.1	-3.3333	0.502	15.1	mg/L	85	Standard
	Fe	54	2099.3	3.0	4.8415	0.217	4.5	mg/L	82	Standard
	Fe	57	730.0	15.5	4.8054	1.010	21.0	mg/L	217	Standard
L>	Sc-1	45	15034.1	3.7				mg/L	14524	Standard
	CI	35	68084.7	2.5				ug/L	53193	Standard
	Kr	83	3.0	33.3				ug/L	3	Standard
	Br	81	300.0	17.6				ug/L	327	Standard
	Р	31	16118.6	1.6				ug/L	13329	Standard
	S	34	3933.8	6.9				ug/L	3234	Standard
	Sr	88	95.0	5.3				ug/L	87	Standard
	С	12	133.3	4.3				mg/L	103	Standard
	N	14	0.0					mg/L	0	Standard
	Hg	202	3.3	173.2				mg/L	3	Standard
	Dy	164	6.2	100.1				mg/L	10	Standard
	Ho-1	165	0.0					mg/L	3	Standard
	Er	166	10.0	100.0				mg/L	7	Standard
	1	127	4033.9	13.3				mg/L	3612	Standard

Analyte	Mass	QC Std % Recovery	Int Std % Recovery	Spike % Recovery
「> Li	6			
Be	9	103.630		
L AI	27	99.886		
「 Sc	45			
Ti	47	105.599		
V	51	104.147		
Cr	52	104.008		
Cr	53			
Mn	55	105.446		
Co	59	106.296		
Ni	60	103.176		
Cu	65	102.992		
Zn	66	101.862		
> Ge	72		102.391	
As	75	102.944		
Se	82	103.520		
∟ Se-1	77			
「⊳ Ga	71			

Sample ID: QC Std 6

Report Date/Time: Tuesday, October 27, 2015 15:41:01

Page 2

Approved: October 28, 2015

L Rb	85		
Γ Υ	89		
Ĺ> Rh	103	100.010	
「 Mo	98	106.243	
Ag	107	100.558	
Cd	111	102.942	
Cd	114		100 100
> In	115	100 750	103.188
Sn	118	100.758	
Sb	123	98.759	
L Ba	135	98.728	
Г Се	140		
[> Tb	159		
Γ Ho	165	400.004	
TI	203	100.281	
TI	205		
Pb	206		
Pb	207	102.245	
Pb	208	102.345	
U	238	102.184	101 206
L> Bi □ No	209		101.306
Γ Na ⊢ Mα	23 24		
Mg			
K Ca	39 43		
Ca Fe	43 54		
Fe	5 4 57		
⊢ Fe _> Sc-1	57 45		
CI	45 35		
Kr	83		
Br	81		
P	31		
S	34		
Sr	88		
C	12		
N	14		
Hg	202		
Dy	164		
Ho-1	165		
Er	166		
<u>-</u> ,	127		
•	ot of Limit	re	
			Out of Limita Magazaga
ivieasu	rement Type	Analyte Mass	Out of Limits Message

Sample ID: QC Std 6

Report Date/Time: Tuesday, October 27, 2015 15:41:01

Page 3

Sample ID: QC Std 7

Sample Date/Time: Tuesday, October 27, 2015 15:41:55

RSD

Number of Replicates: 3 Autosampler Position: 102 Sample Description:

Method File: C:\NexIONData\Method\6020a.mth

Intensity

Aliquot Volume (mL): Diluted to Volume (mL):

User Name: BKT Nexion300X Cumulative Autodilution Factor: 1

Nexion-ICP 200.8\6020

IS Analyte Mass

	,u.y c	•			000.			•	Diamit intono.	
Γ>	Li	6	29059.6	5.8				ug/L	26270	Standard
	Be	9	20.0	90.1	-0.0001	0.032 2	26962.3	ug/L	2	Standard
L	Αl	27	898.4	36.9	-0.0060	0.006	96.8	ug/L	403	Standard
Γ	Sc	45	16031.8	2.0				ug/L	14524	Standard
	Ti	47	132.0	6.0	-1.3037	0.038	2.9	ug/L	365	Standard
	V	51	878.9	4.2	-0.0114	0.013	114.9	ug/L	805	Standard
	Cr	52	5853.8	1.6	0.0292	0.036	123.0	ug/L	5481	Standard
	Cr	53	338.3	18.7	0.0882	0.107	121.8	ug/L	268	Standard
	Mn	55	624.3	4.0	-0.1694	0.010	5.8	ug/L	670	Standard
	Co	59	173.0	11.0	0.0076	0.007	86.9	ug/L	146	Standard
	Ni	60	184.7	4.9	-0.0666	0.009	14.2	ug/L	220	Standard
	Cu	65	128.3	9.0	-0.0653	0.011	16.1	ug/L	147	Standard
	Zn	66	137.3	4.1	-0.4226	0.006	1.3	ug/L	211	Standard
>	Ge	72	217217.5	1.4				ug/L	210599	Standard
	As	75	-31.9	136.0	0.0342	0.059	173.2	ug/L	-47	Standard
	Se	82	16.4	73.9	0.0938	0.200	213.0	ug/L	15	Standard
L	Se-1	77	55.7	17.0	0.1667	0.225	134.8	ug/L	65	Standard
Γ>	Ga	71	18.3	103.3				mg/L	27	Standard
L	Rb	85	31.7	32.9				ug/L	17	Standard
Γ	Υ	89	227224.5	0.6				ug/L	216672	Standard
L>	Rh	103	8.3	69.3				ug/L	18	Standard
Γ	Mo	98	162.0	14.6	0.1104	0.017	15.0	ug/L	11	Standard
	Ag	107	58.3	19.9	8000.0	0.002	313.6	ug/L	55	Standard
	Cd	111	13.0	45.6	0.0026	0.004	155.0	mg/L	7	Standard

0.0164

-0.0372

0.0205

-0.0114

0.0035

0.0069

-0.0149

-0.0190

-0.0148

0.0022

0.009

0.014

0.007

0.005

0.001

0.001

0.001

0.004

0.005

0.002

54.5

36.8

32.9

40.1

41.8

16.2

8.2

21.8

35.2

79.8

ug/L

ug/L

ug/L

ug/L

ug/L

ug/L

ug/L

ug/L

ug/L

ug/L

ug/L

ug/L

ug/L

ug/L

ug/L

Concentration Results

Conc.

SD

RSD

Units

Blank Intens.

Mode

Standard

Standard

Standard

Standard

Standard

Standard

Standard

Standard

Standard

Standard

Standard

Standard

Standard

Standard

Standard

322525

345

88

12

37

3

7

159

120

503

333509

5

631826

Sample ID: QC Std 7

Report Date/Time: Tuesday, October 27, 2015 15:44:12

39.0

471.7

121.3

20.7

10.0

3.3

41.0

20.0

183.0

141.3

576.7

342809.8

37.0

332166.4

638238.8

81.0

0.1

11.9

21.6

36.3

100.0

1.5

86.6

23.3

25.0

3.0

10.8

13.0

26.1

0.3

Page 1

Cd

In

Sn

Sb

Ва

Се

Tb

Но

ΤI

ΤI

Ph

Pb Pb

U

Bi

114

115

118

123

135

140

159

165

203

205

206

207

208

238

209

Approved: October 28, 2015

Γ	Na	23	0.0					mg/L	0	Standard
	Mg	24	18.3	78.7	-0.0010	0.030	2958.6	mg/L	10	Standard
	K	39	16.7	34.6	-0.0235	0.063	266.6	mg/L	32	Standard
	Ca	43	81.7	37.4	-2.5373	4.495	177.1	mg/L	85	Standard
	Fe	54	85.9	29.7	0.0574	0.057	99.3	mg/L	82	Standard
	Fe	57	218.3	23.1	0.0026	0.468	18098.7	mg/L	217	Standard
L>	Sc-1	45	16031.8	2.0				mg/L	14524	Standard
	CI	35	69263.3	1.1				ug/L	53193	Standard
	Kr	83	4.7	32.7				ug/L	3	Standard
	Br	81	393.3	26.0				ug/L	327	Standard
	Р	31	15389.5	2.6				ug/L	13329	Standard
	S	34	3812.1	3.1				ug/L	3234	Standard
	Sr	88	101.7	28.0				ug/L	87	Standard
	С	12	130.0	20.4				mg/L	103	Standard
	N	14	3.3	173.2				mg/L	0	Standard
	Hg	202	0.0					mg/L	3	Standard
	Dy	164	9.7	105.8				mg/L	10	Standard
	Ho-1	165	3.3	86.6				mg/L	3	Standard
	Er	166	6.7	86.6				mg/L	7	Standard
	I	127	3592.1	3.0				mg/L	3612	Standard

Analyte	Mass	QC Std % Recovery	Int Std % Recovery	Spike % Recovery
「> Li	6			
Be	9			
L AI	27			
「 Sc	45			
Ti	47			
V	51			
Cr	52			
Cr	53			
Mn	55			
Co	59			
Ni	60			
Cu	65			
Zn	66			
> Ge	72		103.143	
As	75			
Se	82			
∟ Se-1	77			
「⊳ Ga	71			

Sample ID: QC Std 7

Report Date/Time: Tuesday, October 27, 2015 15:44:12

Page 2

Approved: October 28, 2015

∟ Rb	85			
ΓΥ	89			
$\lfloor_>$ Rh	103			
ГМо	98			
Ag	107			
Cd	111			
Cd	114			
> In	115			102.989
Sn	118			
Sb	123			
L Ba	135			
¯ Ce	140			
> Tb	159			
Ho	165			
TI	203			
TI	205			
Pb	206			
Pb	207			
Pb	208			
U	238			
∟> Bi	209			102.789
∫ Na	23			102.100
Mg	24			
K	39			
Ca	43			
Fe	54			
Fe	57			
> Sc-1	45			
CI	35			
Kr	83			
Br	81			
P	31			
S	34			
Sr	88			
C	12			
N	14			
Hg	202			
Dy	164			
Ho-1	165			
Er	166			
_, 	127			
00.0	it of Limits			
Measure	ment Type	Analyte	Mass	Out of Limits Message
QC Std 7	′	Ti	47	

Sample ID: QC Std 7

Report Date/Time: Tuesday, October 27, 2015 15:44:12

Page 3

Sample ID: QC Std 8

Sample Date/Time: Tuesday, October 27, 2015 15:46:13

Number of Replicates: 3 Autosampler Position: 202 Sample Description:

Method File: C:\NexIONData\Method\6020a.mth

Aliquot Volume (mL): Diluted to Volume (mL):

User Name: BKT Nexion300X Cumulative Autodilution Factor: 1 Nexion-ICP 200.8\6020

Concentration Re	esults
------------------	--------

					Concentra	ilion ites	uits			
IS	Analyt	e Mass	Intensity	RSD	Conc.	SD	RSD	Units	Blank Intens.	Mode
Γ>	Li	6	29497.0	1.5				ug/L	26270	Standard
	Be	9	120.0	31.5	0.1706	0.062	36.5	ug/L	2	Standard
L	Al	27	496.7	10.1	-0.0127	0.001	6.9	ug/L	403	Standard
Γ	Sc	45	15241.0	1.9				ug/L	14524	Standard
	Ti	47	128.0	8.1	-1.3281	0.064	4.8	ug/L	365	Standard
	V	51	2359.8	4.7	0.4068	0.031	7.7	ug/L	805	Standard
	Cr	52	9520.7	0.5	0.8684	0.037	4.3	ug/L	5481	Standard
	Cr	53	785.0	9.6	0.9057	0.157	17.3	ug/L	268	Standard
	Mn	55	2429.9	2.9	0.3620	0.028	7.7	ug/L	670	Standard
	Co	59	1493.1	1.2	0.4147	0.011	2.7	ug/L	146	Standard
	Ni	60	1990.5	3.4	1.4927	0.079	5.3	ug/L	220	Standard
	Cu	65	1044.4	0.7	0.7433	0.016	2.1	ug/L	147	Standard
	Zn	66	4436.0	2.6	6.0045	0.176	2.9	ug/L	211	Standard
>	Ge	72	217244.2	1.3				ug/L	210599	Standard
	As	75	257.2	19.8	0.4332	0.066	15.3	ug/L	-47	Standard
	Se	82	37.6	23.2	0.4390	0.135	30.7	ug/L	15	Standard
L	Se-1	77	76.0	10.8	0.6828	0.224	32.8	ug/L	65	Standard
Γ>	Ga	71	15.0	57.7				mg/L	27	Standard
L	Rb	85	23.3	53.9				ug/L	17	Standard
Γ	Υ	89	220371.4	2.0				ug/L	216672	Standard
L>	Rh	103	16.7	45.8				ug/L	18	Standard
Γ	Мо	98	44.8	33.8	0.0282	0.010	36.8	ug/L	11	Standard
	Ag	107	1917.1	3.0	0.3792	0.015	4.0	ug/L	55	Standard
	Cd	111	359.9	4.6	0.2382	0.011	4.7	mg/L	7	Standard
	Cd	114	797.4	6.6	0.2269	0.014	6.0	ug/L	4	Standard
>	In	115	338808.7	1.0				ug/L	322525	Standard
ļ	Sn	118	345.0	22.8	-0.0698	0.019	27.1	ug/L	345	Standard
ļ	Sb	123	1498.1	2.5	0.3672	0.013	3.5	ug/L	88	Standard
Ē	Ва	135	1195.4	2.6	0.6876	0.021	3.0	ug/L	12	Standard
ļ	Ce	140	13.3	94.4				ug/L	37	Standard
Γ>	Tb	159	639523.9	1.2				ug/L	631826	Standard
ļ	Но	165	6.7	114.6				ug/L	3	Standard
ļ	TI	203	498.0	6.5	0.0721	0.006	7.7	ug/L	7	Standard
ļ	TI	205	326.7	6.2	0.0753	0.005	6.1	ug/L	7	Standard
	Pb	206	964.7	4.3	0.1767	0.011	6.1	ug/L	159	Standard
	Pb	207	810.7	4.7	0.1619	0.010	6.1	ug/L	120	Standard
	Pb	208	3430.5	2.5	0.1783	0.008	4.3	ug/L	503	Standard
	U	238	2144.2	3.5	0.3880	0.018	4.6	ug/L	5	Standard
L>	Bi	209	344221.1	1.1				ug/L	333509	Standard

Sample ID: QC Std 8

Report Date/Time: Tuesday, October 27, 2015 15:48:30

Page 1

Approved: October 28, 2015

Page 504

L15101055 / Revision: 0 / 760 total pages

Г	Na	23	1.7	173.2				ma/l	0	Standard
!								mg/L		
	Mg	24	11.7	89.2	-0.0136	0.024	174.3	mg/L	10	Standard
	K	39	26.7	75.8	0.1075	0.245	227.8	mg/L	32	Standard
	Ca	43	83.3	27.7	-1.7074	3.338	195.5	mg/L	85	Standard
	Fe	54	72.3	13.8	0.0358	0.026	73.6	mg/L	82	Standard
	Fe	57	213.3	17.0	0.0531	0.365	687.2	mg/L	217	Standard
L>	Sc-1	45	15241.0	1.9				mg/L	14524	Standard
	CI	35	69782.3	0.2				ug/L	53193	Standard
	Kr	83	5.3	21.7				ug/L	3	Standard
	Br	81	316.7	7.3				ug/L	327	Standard
	Р	31	15888.3	3.9				ug/L	13329	Standard
	S	34	3745.5	2.3				ug/L	3234	Standard
	Sr	88	96.7	24.4				ug/L	87	Standard
	С	12	153.3	15.1				mg/L	103	Standard
	N	14	0.0					mg/L	0	Standard
	Hg	202	0.0					mg/L	3	Standard
	Dy	164	15.7	73.5				mg/L	10	Standard
	Ho-1	165	6.7	114.6				mg/L	3	Standard
	Er	166	20.0	0.0				mg/L	7	Standard
	I	127	1021.7	9.9				mg/L	3612	Standard

Analyte	Mass	QC Std % Recovery	Int Std % Recovery	Spike % Recovery
「> Li	6			
Be	9	85.305		
L AI	27			
「 Sc	45			
Ti	47			
V	51	101.707		
Cr	52	108.545		
Cr	53			
Mn	55	72.409		
Co	59	103.665		
Ni	60	93.294		
Cu	65	92.908		
Zn	66	96.072		
> Ge	72		103.155	
As	75	108.292		
Se	82	109.740		
∟ Se-1	77			
「⊳ Ga	71			

Sample ID: QC Std 8

Report Date/Time: Tuesday, October 27, 2015 15:48:30

Page 2

Approved: October 28, 2015

L Rb	85					
ΓΥ	89					
$\lfloor_>$ Rh	103					
ГМо	98					
Ag	107	94.811				
Cd	111	99.244				
Cd	114					
> In	115		105.049			
Sn	118					
Sb	123	91.810				
L Ba	135	91.677				
「 Ce	140					
L> Tb	159					
「 Ho	165					
TI	203	90.102				
TI	205					
Pb	206					
Pb	207					
Pb	208	89.131				
U	238	97.002				
Ĺ> Bi	209		103.212			
Г Na	23					
Mg	24					
K	39					
Ca	43					
Fe	54					
Fe	57					
_> Sc-1	45					
CI	35					
Kr	83					
Br	81					
Р	31					
S	34					
Sr	88					
С	12					
N	14					
Hg	202					
Dy	164					
Ho-1	165					
Er	166					
I	127					
QC Out of Limits						
	ement Type	Analyte Mass	Out of Limits Message			
Modera	one 1 y po	, triary to ividoo	Cat of Ellittle Moodage			

Sample ID: QC Std 8

Report Date/Time: Tuesday, October 27, 2015 15:48:30

Page 3

Sample ID: PBW 76 WG544075-03

Sample Date/Time: Tuesday, October 27, 2015 16:10:39

Number of Replicates: 3 Autosampler Position: 318 Sample Description: 1

Method File: C:\NexIONData\Method\6020a.mth

Aliquot Volume (mL): Diluted to Volume (mL):

User Name: BKT Nexion300X Cumulative Autodilution Factor: 1

Nexion-ICP 200.8\6020

Concentration Results

		Concentration Results								
IS	Analyt	e Mass	Intensity	RSD	Conc.	SD	RSD	Units	Blank Intens.	Mode
Γ>	Li	6	29141.4	3.6				ug/L	0	Standard
	Be	9	5.0	173.2				ug/L	0	Standard
L	Al	27	1271.7	3.1				ug/L	0	Standard
Γ	Sc	45	15444.5	1.1				ug/L	0	Standard
	Ti	47	124.3	11.3				ug/L	0	Standard
	٧	51	1095.6	2.3				ug/L	0	Standard
	Cr	52	6853.6	2.0				ug/L	0	Standard
	Cr	53	363.3	4.2				ug/L	0	Standard
	Mn	55	751.4	2.7				ug/L	0	Standard
	Co	59	166.0	7.1				ug/L	0	Standard
	Ni	60	211.7	10.4				ug/L	0	Standard
	Cu	65	145.0	3.6				ug/L	0	Standard
	Zn	66	731.7	1.2				ug/L	0	Standard
>	Ge	72	216392.8	2.2				ug/L	0	Standard
	As	75	-57.1	64.4				ug/L	0	Standard
	Se	82	10.5	40.3				ug/L	0	Standard
L	Se-1	77	49.0	22.1				ug/L	0	Standard
Γ>	Ga	71	20.0	25.0				mg/L	0	Standard
L	Rb	85	31.7	36.5				ug/L	0	Standard
Γ	Υ	89	223991.6	3.6				ug/L	0	Standard
L>	Rh	103	10.0	86.6				ug/L	0	Standard
Γ	Мо	98	21.2	29.5				ug/L	0	Standard
	Ag	107	48.3	15.3				ug/L	0	Standard
	Cd	111	6.6	17.5				mg/L	0	Standard
	Cd	114	24.9	86.8				ug/L	0	Standard
>	In	115	330714.6	2.1				ug/L	0	Standard
ļ	Sn	118	563.3	9.8				ug/L	0	Standard
ļ	Sb	123	66.0	12.5				ug/L	0	Standard
Ĺ	Ва	135	131.3	8.0				ug/L	0	Standard
!	Се	140	90.0	28.9				ug/L	0	Standard
Ĺ>	Tb	159	632599.4	2.9				ug/L	0	Standard
!	Но	165	11.7	24.7				ug/L	0	Standard
!	TI	203	4.0	25.0				ug/L	0	Standard
	TI	205	0.0	444				ug/L	0	Standard
	Pb	206	151.7	14.1				ug/L	0	Standard
-	Pb	207	134.7	10.1				ug/L	0	Standard
-	Pb	208	569.0	3.4				ug/L	0	Standard
-	U.	238	4.0	66.1				ug/L	0	Standard
L>	Bi	209	334623.4	2.1				ug/L	0	Standard

Sample ID: PBW 76 WG544075-03

Report Date/Time: Tuesday, October 27, 2015 16:12:56

Page 1

Approved: October 28, 2015

Page 507

L15101055 / Revision: 0 / 760 total pages

Γ	Na	23	0.0		mg/L 0	Standard
	Mg	24	18.3	31.5	mg/L 0	Standard
	K	39	15.0	88.2	mg/L 0	Standard
	Ca	43	48.3	41.8	mg/L 0	Standard
	Fe	54	72.3	41.8	mg/L 0	Standard
	Fe	57	235.0	14.9	mg/L 0	Standard
L>	Sc-1	45	15444.5	1.1	mg/L 0	Standard
	CI	35	71667.1	1.3	ug/L 0	Standard
	Kr	83	3.0	57.7	ug/L 0	Standard
	Br	81	516.7	14.8	ug/L 0	Standard
	Р	31	16787.6	8.0	ug/L 0	Standard
	S	34	3798.8	7.2	ug/L 0	Standard
	Sr	88	106.7	2.7	ug/L 0	Standard
	С	12	166.7	15.1	mg/L 0	Standard
	N	14	0.0		mg/L 0	Standard
	Hg	202	0.0		mg/L 0	Standard
	Dy	164	9.2	108.8	mg/L 0	Standard
	Ho-1	165	11.7	24.7	mg/L 0	Standard
	Er	166	16.7	69.3	mg/L 0	Standard
	1	127	3408.7	5.5	mg/L 0	Standard

Analyte	Mass	QC Std % Recovery	Int Std % Recovery	Spike % Recovery
「> Li	6			
Be	9			
L AI	27			
「 Sc	45			
Ti	47			
V	51			
Cr	52			
Cr	53			
Mn	55			
Co	59			
Ni	60			
Cu	65			
Zn	66			
> Ge	72			
As	75			
Se	82			
∟ Se-1	77			
「⊳ Ga	71			

Sample ID: PBW 76 WG544075-03Report Date/Time: Tuesday, October 27, 2015 16:12:56

Page 2

Approved: October 28, 2015

```
Rb
              85
  Υ
              89
| > Rh
             103
  Мо
             98
             107
  Ag
  Cd
             111
  Cd
             114
| > In
             115
  Sn
             118
             123
  Sb
  Ва
             135
             140
  Ce
  Tb
             159
  Но
             165
  ΤI
             203
  ΤI
             205
  Pb
             206
  Pb
            207
            208
  Pb
  U
            238
            209
L> Bi
  Na
              23
  Mg
              24
              39
  Κ
  Ca
              43
  Fe
              54
  Fe
              57
              45
|> Sc-1
  CI
              35
              83
  Kr
  Br
              81
  Ρ
              31
  S
              34
  Sr
              88
  С
              12
  Ν
              14
             202
  Hg
  Dy
             164
  Ho-1
             165
             166
  Er
             127
```

QC Out of Limits

Measurement Type Analyte Mass Out of Limits Message

Sample ID: PBW 76 WG544075-03

Report Date/Time: Tuesday, October 27, 2015 16:12:56

Page 3

Approved: October 28, 2015

Sample ID: PBW 76 WG544075-03

Sample Date/Time: Tuesday, October 27, 2015 16:10:39

Number of Replicates: 3 Autosampler Position: 318 Sample Description: 1

Method File: C:\NexIONData\Method\6020a.mth

Aliquot Volume (mL): Diluted to Volume (mL):

User Name: BKT Nexion300X Cumulative Autodilution Factor: 1

Nexion-ICP 200.8\6020

Concentration	Results
---------------	---------

			Concentration Results									
IS	Analyt	e Mass	Intensity	RSD	Conc.	SD	RSD	Units	Blank Intens.	Mode		
Γ>	Li	6	29141.4	3.6				ug/L	26270	Standard		
	Be	9	5.0	173.2	-0.0265	0.015	54.8	ug/L	2	Standard		
L	Αl	27	1271.7	3.1	-0.0001	0.001	1281.9	ug/L	403	Standard		
Γ	Sc	45	15444.5	1.1				ug/L	14524	Standard		
	Ti	47	124.3	11.3	-1.3480	0.080	5.9	ug/L	365	Standard		
	V	51	1095.6	2.3	0.0510	0.008	14.8	ug/L	805	Standard		
	Cr	52	6853.6	2.0	0.2638	0.009	3.4	ug/L	5481	Standard		
	Cr	53	363.3	4.2	0.1373	0.025	18.0	ug/L	268	Standard		
	Mn	55	751.4	2.7	-0.1311	0.011	8.1	ug/L	670	Standard		
	Co	59	166.0	7.1	0.0056	0.003	50.1	ug/L	146	Standard		
	Ni	60	211.7	10.4	-0.0429	0.015	35.2	ug/L	220	Standard		
	Cu	65	145.0	3.6	-0.0502	0.003	5.1	ug/L	147	Standard		
	Zn	66	731.7	1.2	0.4706	0.022	4.8	ug/L	211	Standard		
>	Ge	72	216392.8	2.2				ug/L	210599	Standard		
	As	75	-57.1	64.4	-0.0012	0.051	4054.1	ug/L	-47	Standard		
	Se	82	10.5	40.3	-0.0023	0.074	3276.2	ug/L	15	Standard		
L	Se-1	77	49.0	22.1	0.0010	0.248	25612.8	ug/L	65	Standard		
Γ>	Ga	71	20.0	25.0				mg/L	27	Standard		
L	Rb	85	31.7	36.5				ug/L	17	Standard		
Γ	Υ	89	223991.6	3.6				ug/L	216672	Standard		
L>	Rh	103	10.0	86.6				ug/L	18	Standard		
Γ	Мо	98	21.2	29.5	0.0124	0.004	33.9	ug/L	11	Standard		
	Ag	107	48.3	15.3	-0.0012	0.002	135.3	ug/L	55	Standard		
	Cd	111	6.6	17.5	-0.0017	0.001	47.6	mg/L	7	Standard		
	Cd	114	24.9	86.8	0.0125	0.006	49.5	ug/L	4	Standard		
>	In	115	330714.6	2.1				ug/L	322525	Standard		
	Sn	118	563.3	9.8	-0.0141	0.013	90.6	ug/L	345	Standard		
	Sb	123	66.0	12.5	0.0063	0.002	35.4	ug/L	88	Standard		
Ĺ	Ва	135	131.3	8.0	0.0561	0.006	9.9	ug/L	12	Standard		
	Ce	140	90.0	28.9				ug/L	37	Standard		
<u>_</u> >	Tb	159	632599.4	2.9				ug/L	631826	Standard		
	Но	165	11.7	24.7				ug/L	3	Standard		
	TI	203	4.0	25.0	-0.0021	0.000	6.9	ug/L	7	Standard		
	TI	205	0.0		0.0025	0.000	0.0	ug/L	7	Standard		
	Pb	206	151.7	14.1	-0.0216	0.006	28.3	ug/L	159	Standard		
!	Pb	207	134.7	10.1	-0.0199	0.004	17.7	ug/L	120	Standard		
!	Pb	208	569.0	3.4	-0.0144	0.001	4.1	ug/L	503	Standard		
!	U	238	4.0	66.1	-0.0038	0.001	13.4	ug/L	5	Standard		
_>	Bi	209	334623.4	2.1				ug/L	333509	Standard		

Sample ID: PBW 76 WG544075-03

Report Date/Time: Tuesday, October 27, 2015 16:31:29

Page 1

Approved: October 28, 2015

Γ	Na	23	0.0					mg/L	0	Standard
	Mg	24	18.3	31.5	0.0008	0.013	1688.9	mg/L	10	Standard
	K	39	15.0	88.2	-0.0362	0.154	425.8	mg/L	32	Standard
	Ca	43	48.3	41.8	-7.1549	3.109	43.5	mg/L	85	Standard
ĺ	Fe	54	72.3	41.8	0.0330	0.069	208.7	mg/L	82	Standard
ĺ	Fe	57	235.0	14.9	0.2166	0.312	144.2	mg/L	217	Standard
Ĺ>	Sc-1	45	15444.5	1.1				mg/L	14524	Standard
_	CI	35	71667.1	1.3				ug/L	53193	Standard
	Kr	83	3.0	57.7				ug/L	3	Standard
	Br	81	516.7	14.8				ug/L	327	Standard
	Р	31	16787.6	0.8				ug/L	13329	Standard
	S	34	3798.8	7.2				ug/L	3234	Standard
	Sr	88	106.7	2.7				ug/L	87	Standard
	С	12	166.7	15.1				mg/L	103	Standard
	N	14	0.0					mg/L	0	Standard
	Hg	202	0.0					mg/L	3	Standard
	Dy	164	9.2	108.8				mg/L	10	Standard
	Ho-1	165	11.7	24.7				mg/L	3	Standard
	Er	166	16.7	69.3				mg/L	7	Standard
	I	127	3408.7	5.5				mg/L	3612	Standard

_	Analyte		QC Std % Recovery	Int Std % Recovery	Spike % Recovery
Γ>	Li	6		110.932	
	Be	9			
L	Al	27			
Γ	Sc	45			
	Ti	47			
	V	51			
	Cr	52			
	Cr	53			
	Mn	55			
	Co	59			
	Ni	60			
	Cu	65			
	Zn	66			
>	Ge	72		102.751	
	As	75			
	Se	82			
L	Se-1	77			
Γ>	Ga	71			

Sample ID: PBW 76 WG544075-03Report Date/Time: Tuesday, October 27, 2015 16:31:29

Page 2

Approved: October 28, 2015

L Rb 85		102.539
TI		100.334
Kr 83 Br 81 P 31 S 34 Sr 88 C 12 N 14 Hg 202 Dy 164 Ho-1 165 Er 166 I 127 QC Out of Limits Measurement Type Ti 47 Lower	Analyte Mass Ti 47	Out of Limits Message

Sample ID: PBW 76 WG544075-03Report Date/Time: Tuesday, October 27, 2015 16:31:29

Page 3

Approved: October 28, 2015

Sample ID: LCSW 76 WG544075-04

Sample Date/Time: Tuesday, October 27, 2015 16:13:51

Number of Replicates: 3 Autosampler Position: 319 Sample Description: 1

Method File: C:\NexIONData\Method\6020a.mth

Aliquot Volume (mL): Diluted to Volume (mL):

User Name: BKT Nexion300X Cumulative Autodilution Factor: 1

Nexion-ICP 200.8\6020

Concentration	Results
---------------	---------

				Concentia	alion Results					
IS	Analyt	e Mass	Intensity	RSD	Conc.	SD	RSD	Units	Blank Intens.	Mode
Γ>	Li	6	30477.4	5.9				ug/L	26270	Standard
	Be	9	27889.0	1.2	46.3901	2.235	4.8	ug/L	2	Standard
L	ΑI	27	1048.4	9.7	-0.0044	0.002	50.0	ug/L	403	Standard
Γ	Sc	45	16375.5	7.8				ug/L	14524	Standard
	Ti	47	128.7	1.8	-1.3647	0.039	2.9	ug/L	365	Standard
	٧	51	181038.6	8.0	48.2458	2.256	4.7	ug/L	805	Standard
	Cr	52	231201.5	2.2	48.9375	3.732	7.6	ug/L	5481	Standard
	Cr	53	27842.2	8.0	47.7028	2.904	6.1	ug/L	268	Standard
	Mn	55	181023.6	1.9	50.2240	3.603	7.2	ug/L	670	Standard
	Co	59	166347.3	1.6	48.6415	3.307	6.8	ug/L	146	Standard
	Ni	60	59023.1	0.9	48.1273	2.933	6.1	ug/L	220	Standard
	Cu	65	58452.6	2.0	48.7957	3.331	6.8	ug/L	147	Standard
	Zn	66	35235.9	0.9	49.3686	3.041	6.2	ug/L	211	Standard
>	Ge	72	229407.4	5.5				ug/L	210599	Standard
	As	75	35339.3	0.6	46.4585	2.690	5.8	ug/L	-47	Standard
	Se	82	3114.8	2.1	48.3564	3.580	7.4	ug/L	15	Standard
L	Se-1	77	2042.1	2.2	47.6960	3.114	6.5	ug/L	65	Standard
[>	Ga	71	23.3	12.4				mg/L	27	Standard
L	Rb	85	23.3	24.7				ug/L	17	Standard
Γ	Υ	89	237334.1	3.4				ug/L	216672	Standard
_>	Rh	103	31.7	48.2				ug/L	18	Standard
Γ	Мо	98	14.0	32.5	0.0069	0.003	48.1	ug/L	11	Standard
ļ	Ag	107	238436.0	2.6	46.6633	3.324	7.1	ug/L	55	Standard
ļ	Cd	111	72762.6	1.2	47.4820	2.718	5.7	mg/L	7	Standard
ļ	Cd	114	176385.3	0.8	47.0613	2.282	4.8	ug/L	4	Standard
>	In	115	353337.5	4.9				ug/L	322525	Standard
ļ	Sn	118	458.3	3.3	-0.0469	0.008	16.6	ug/L	345	Standard
ļ	Sb	123	185515.6	1.6	44.9536	2.885	6.4	ug/L	88	Standard
Ļ	Ва	135	79741.0	1.2	45.5633	2.544	5.6	ug/L	12	Standard
	Ce	140	78.3	35.2				ug/L	37	Standard
L>	Tb	159	675738.4	3.8				ug/L	631826	Standard
	Ho	165	13.3	78.1				ug/L	3	Standard
-	TI 	203	321069.5	1.2	45.8700	2.027	4.4	ug/L	7	Standard
	TI	205	222076.7	3.1	47.1299	2.999	6.4	ug/L	7	Standard
	Pb	206	204111.2	1.5	47.6165	2.319	4.9	ug/L	159	Standard
-	Pb	207	175683.7	1.0	45.1863	1.818	4.0	ug/L	120	Standard
-	Pb	208	733410.5	1.1	47.2143	2.063	4.4	ug/L	503	Standard
-	U.	238	262155.9	0.7	45.6733	1.889	4.1	ug/L	5	Standard
L>	Bi	209	361939.2	3.6				ug/L	333509	Standard

Sample ID: LCSW 76 WG544075-04

Report Date/Time: Tuesday, October 27, 2015 16:31:35

Page 1

Approved: October 28, 2015

Page 513

L15101055 / Revision: 0 / 760 total pages

_										
Γ	Na	23	3.3	86.6				mg/L	0	Standard
	Mg	24	21.7	13.3	0.0054	0.002	45.2	mg/L	10	Standard
	K	39	18.3	56.8	-0.0059	0.124	2100.4	mg/L	32	Standard
	Ca	43	66.7	31.2	-5.0628	2.203	43.5	mg/L	85	Standard
ĺ	Fe	54	96.3	20.7	0.0787	0.057	72.0	mg/L	82	Standard
	Fe	57	228.3	12.8	0.0609	0.380	623.4	mg/L	217	Standard
L>	Sc-1	45	16375.5	7.8				mg/L	14524	Standard
	CI	35	69814.5	2.1				ug/L	53193	Standard
	Kr	83	5.7	36.7				ug/L	3	Standard
	Br	81	346.7	6.0				ug/L	327	Standard
	Р	31	17059.7	9.7				ug/L	13329	Standard
	S	34	3572.1	1.5				ug/L	3234	Standard
	Sr	88	95.0	29.3				ug/L	87	Standard
	С	12	170.0	41.2				mg/L	103	Standard
	N	14	0.0					mg/L	0	Standard
	Hg	202	6.7	173.2				mg/L	3	Standard
	Dy	164	9.8	101.7				mg/L	10	Standard
	Ho-1	165	13.3	78.1				mg/L	3	Standard
	Er	166	3.3	173.2				mg/L	7	Standard
	I	127	3877.2	3.6				mg/L	3612	Standard

Analyte	Mass	QC Std % Recovery	Int Std % Recovery	Spike % Recovery
「> Li	6		116.017	
Be	9			
L AI	27			
「 Sc	45			
Ti	47			
V	51			
Cr	52			
Cr	53			
Mn	55			
Co	59			
Ni	60			
Cu	65			
Zn	66			
> Ge	72		108.931	
As	75			
Se	82			
L Se-1	77			
「⊳ Ga	71			

Sample ID: LCSW 76 WG544075-04

Report Date/Time: Tuesday, October 27, 2015 16:31:35

Page 2

Approved: October 28, 2015

∟ Rb	85			
ΓΥ	89			
$\lfloor_>$ Rh	103			
- Mo	98			
Ag	107			
Cq	111			
Cd	114			
> In	115			109.554
Sn	118			100.001
Sb	123			
L Ba	135			
∟ Ба Г Се	140			
	159			
Γ Ho	165			
TI	203			
TI	205			
Pb	206			
Pb	207			
Pb	208			
U	238			
Ĺ> Bi	209			108.524
Na	23			
Mg	24			
K	39			
Ca	43			
Fe	54			
Fe	57			
_> Sc-1	45			
CI	35			
Kr	83			
Br	81			
Р	31			
S	34			
Sr	88			
С	12			
N	14			
Hg	202			
Dy	164			
Ho-1	165			
Er	166			
 I	127			
00.0	ut of Limits			
	ement Type	Analyte	Mass	Out of Limits Message
Ti 47 Lo	wer	Ti	47	

Sample ID: LCSW 76 WG544075-04 Report Date/Time: Tuesday, October 27, 2015 16:31:35

Page 3

Sample ID: L1510121510 WG544075-01

Sample Date/Time: Tuesday, October 27, 2015 16:17:02

Number of Replicates: 3 Autosampler Position: 320 Sample Description: 5

Method File: C:\NexIONData\Method\6020a.mth

Aliquot Volume (mL): Diluted to Volume (mL):

User Name: BKT Nexion300X Cumulative Autodilution Factor: 1

Nexion-ICP 200.8\6020

Con	cont	tration	Pagu	lte
Con	ceni	tration	Resu	เเร

					Ochicchia	ation ites	uita			
IS	Analyt	e Mass	Intensity	RSD	Conc.	SD	RSD	Units	Blank Intens.	Mode
Γ>	Li	6	29303.3	3.1				ug/L	26270	Standard
	Ве	9	151.7	148.0	0.2354	0.403	171.0	ug/L	2	Standard
L	ΑI	27	426262.2	4.5	6.8058	0.515	7.6	ug/L	403	Standard
Γ	Sc	45	15389.5	4.1				ug/L	14524	Standard
	Ti	47	148.3	9.6	-1.2038	0.099	8.2	ug/L	365	Standard
	٧	51	1979.4	61.8	0.3035	0.362	119.3	ug/L	805	Standard
	Cr	52	7706.0	23.3	0.4557	0.455	99.8	ug/L	5481	Standard
	Cr	53	695.0	28.0	0.7430	0.387	52.1	ug/L	268	Standard
	Mn	55	8687.5	15.7	2.2047	0.463	21.0	ug/L	670	Standard
	Co	59	946.1	119.2	0.2506	0.358	142.9	ug/L	146	Standard
	Ni	60	596.0	76.6	0.2934	0.410	139.8	ug/L	220	Standard
	Cu	65	426.3	96.6	0.2025	0.376	185.7	ug/L	147	Standard
	Zn	66	1129.7	23.1	1.0639	0.432	40.6	ug/L	211	Standard
>	Ge	72	217714.2	2.2				ug/L	210599	Standard
	As	75	193.0	143.4	0.3500	0.393	112.2	ug/L	-47	Standard
	Se	82	32.6	87.5	0.3638	0.485	133.2	ug/L	15	Standard
L	Se-1	77	73.0	26.4	0.6097	0.533	87.5	ug/L	65	Standard
Γ>	Ga	71	13.3	57.3				mg/L	27	Standard
L	Rb	85	253.3	16.6				ug/L	17	Standard
Γ	Υ	89	229212.6	4.1				ug/L	216672	Standard
L>	Rh	103	26.7	47.2				ug/L	18	Standard
Γ	Мо	98	25.3	23.1	0.0150	0.003	23.3	ug/L	11	Standard
	Ag	107	827.7	153.6	0.1664	0.275	165.4	ug/L	55	Standard
	Cd	111	335.6	152.0	0.2339	0.368	157.5	mg/L	7	Standard
	Cd	114	773.6	143.6	0.2313	0.328	142.0	ug/L	4	Standard
>	In	115	335275.0	4.1				ug/L	322525	Standard
	Sn	118	426.7	13.3	-0.0491	0.013	27.3	ug/L	345	Standard
	Sb	123	1447.6	71.3	0.3659	0.285	77.9	ug/L	88	Standard
Ĺ	Ва	135	7350.5	7.3	4.4105	0.513	11.6	ug/L	12	Standard
ļ	Ce	140	118.3	30.0				ug/L	37	Standard
<u>_</u> >	Tb	159	639395.0	4.5				ug/L	631826	Standard
ļ	Но	165	6.7	86.6				ug/L	3	Standard
ļ	TI	203	1087.1	159.1	0.1703	0.277	162.5	ug/L	7	Standard
ļ	TI	205	731.7	163.7	0.1755	0.285	162.1	ug/L	7	Standard
ļ	Pb	206	1062.4	128.0	0.2140	0.358	167.4	ug/L	159	Standard
ļ	Pb	207	894.4	134.6	0.1975	0.349	176.7	ug/L	120	Standard
ļ	Pb	208	3664.7	133.1	0.2072	0.354	170.9	ug/L	503	Standard
ļ	U	238	1289.8	146.3	0.2449	0.369	150.7	ug/L	5	Standard
L>	Bi	209	340932.1	4.8				ug/L	333509	Standard

Sample ID: L1510121510 WG544075-01

Report Date/Time: Tuesday, October 27, 2015 16:31:36

Page 1

Approved: October 28, 2015

Γ	Na	23	0.0					mg/L	0	Standard
Ĺ	Mg	24	3198.7	3.1	7.1794	0.525	7.3	mg/L	10	Standard
ĺ	ĸ	39	26.7	54.1	0.1063	0.176	166.0	mg/L	32	Standard
ĺ	Ca	43	63.3	22.8	-4.8606	2.086	42.9	mg/L	85	Standard
ĺ	Fe	54	69.1	26.3	0.0264	0.041	156.7	mg/L	82	Standard
ĺ	Fe	57	203.3	9.3	-0.0599	0.138	230.9	mg/L	217	Standard
L>	Sc-1	45	15389.5	4.1				mg/L	14524	Standard
	CI	35	71050.9	0.4				ug/L	53193	Standard
	Kr	83	6.0	28.9				ug/L	3	Standard
	Br	81	840.0	10.2				ug/L	327	Standard
	Р	31	16110.2	2.9				ug/L	13329	Standard
	S	34	3490.4	2.3				ug/L	3234	Standard
	Sr	88	136.7	18.0				ug/L	87	Standard
	С	12	146.7	10.4				mg/L	103	Standard
	N	14	0.0					mg/L	0	Standard
	Hg	202	3.3	173.2				mg/L	3	Standard
	Dy	164	12.7	122.3				mg/L	10	Standard
	Ho-1	165	6.7	86.6				mg/L	3	Standard
	Er	166	13.3	173.2				mg/L	7	Standard
	I	127	52885.6	4.9				mg/L	3612	Standard

Analyte √> Li	Mass 6	QC Std % Recovery	Int Std % Recovery 111.548	Spike % Recovery
Be	9			
L AI	27			
「 Sc	45			
Ti	47			
V	51			
Cr	52			
Cr	53			
Mn	55			
Co	59			
Ni	60			
Cu	65			
Zn	66			
> Ge	72		103.379	
As	75			
Se	82			
∟ Se-1	77			
「⊳ Ga	71			

Sample ID: L1510121510 WG544075-01

Report Date/Time: Tuesday, October 27, 2015 16:31:36

Page 2

Approved: October 28, 2015

L Rb	85			
ΓΥ	89			
$\lfloor_>$ Rh	103			
Mo	98			
Ag	107			
Cd	111			
Cd	114			
 > In	115			103.953
Sn	118			
Sb	123			
_ Ba	135			
Ce	140			
_> Tb	159			
Ho	165			
TI	203			
TI	205			
Pb	206			
Pb	207			
Pb	208			
U	238			
∟ _{>} Bi	209			102.226
Na	23			. •
Mg	24			
K	39			
Ca	43			
Fe	54			
Fe	57			
> Sc-1	45			
CI	35			
Kr	83			
Br	81			
Р	31			
S	34			
Sr	88			
C	12			
N	14			
Hg	202			
Dy	164			
Ho-1	165			
Er	166			
I	127			
OC O	ut of Limits			
		. با . ا	Mass	Out of Limita Massaca
ivieasure	ment Type	Analyte	Mass	Out of Limits Message
Ti 47 Lov	wer	Ti	47	

Sample ID: L1510121510 WG544075-01 Report Date/Time: Tuesday, October 27, 2015 16:31:36

Page 3

Sample ID: L1510121510S WG544075-06

Sample Date/Time: Tuesday, October 27, 2015 16:20:14

Number of Replicates: 3 Autosampler Position: 321 Sample Description: 5

Method File: C:\NexIONData\Method\6020a.mth

Aliquot Volume (mL): Diluted to Volume (mL):

User Name: BKT Nexion300X Cumulative Autodilution Factor: 1

Nexion-ICP 200.8\6020

0	ncon	tration	Results	
Lα	ncen	itration	Results	

					Concentra	ation Res	นเเอ			
IS	Analyt	e Mass	Intensity	RSD	Conc.	SD	RSD	Units	Blank Intens.	Mode
Γ>	Li	6	28717.3	6.5				ug/L	26270	Standard
	Be	9	5781.1	5.1	10.1664	0.203	2.0	ug/L	2	Standard
L	ΑI	27	424787.6	2.3	6.9237	0.309	4.5	ug/L	403	Standard
Γ	Sc	45	15651.4	3.0				ug/L	14524	Standard
	Ti	47	138.3	7.8	-1.2570	0.068	5.4	ug/L	365	Standard
	٧	51	38129.6	0.9	10.6029	0.121	1.1	ug/L	805	Standard
	Cr	52	51993.7	0.7	10.6919	0.088	8.0	ug/L	5481	Standard
	Cr	53	6131.2	4.0	10.7584	0.426	4.0	ug/L	268	Standard
	Mn	55	44152.2	0.4	12.7514	0.035	0.3	ug/L	670	Standard
	Co	59	33828.7	0.9	10.4738	0.092	0.9	ug/L	146	Standard
	Ni	60	12193.9	0.5	10.3901	0.026	0.2	ug/L	220	Standard
	Cu	65	11985.4	1.5	10.4906	0.125	1.2	ug/L	147	Standard
	Zn	66	7886.1	1.4	11.2636	0.159	1.4	ug/L	211	Standard
>	Ge	72	215388.8	0.3				ug/L	210599	Standard
	As	75	7511.7	2.4	10.5555	10.5555 0.225		ug/L	-47	Standard
	Se	82	639.1			0.276	2.7	ug/L	15	Standard
L	Se-1	77	464.0	5.5	10.5795	0.674	6.4	ug/L	65	Standard
Γ>	Ga	71	21.7	13.3				mg/L	27	Standard
L	Rb	85	191.7	8.4				ug/L	17	Standard
Γ	Υ	89	224925.6	8.0				ug/L	216672	Standard
_>	Rh	103	15.0	33.3				ug/L	18	Standard
Γ	Мо	98	21.6	10.0	0.0127	0.001	10.9	ug/L	11	Standard
ļ	Ag	107	47646.8	0.4	9.8857	0.182	1.8	ug/L	55	Standard
ļ	Cd	111	14902.6	0.5	10.3188	0.232	2.2	mg/L	7	Standard
ļ	Cd	114	36682.9	1.8	10.3972	0.283	2.7	ug/L	4	Standard
>	In	115	332312.4	1.8				ug/L	322525	Standard
ļ	Sn	118	366.7	7.9	-0.0629	0.006	9.9	ug/L	345	Standard
ļ	Sb	123	39000.0	1.2	10.0226	0.302	3.0	ug/L	88	Standard
Ē	Ва	135	23292.6	8.0	14.1138	0.359	2.5	ug/L	12	Standard
ļ	Ce	140	86.7	17.6				ug/L	37	Standard
Ĺ>	Tb	159	618247.2	3.1				ug/L	631826	Standard
ļ	Но	165	10.0	50.0				ug/L	3	Standard
	TI	203	66061.4	0.4	10.2078	0.221	2.2	ug/L	7	Standard
	TI	205	44846.3	1.6	10.2939	0.308	3.0	ug/L	7	Standard
	Pb	206	41896.5	0.9	10.5256	0.250	2.4	ug/L	159	Standard
-	Pb	207	35909.2	0.9	9.9495	0.331	3.3	ug/L	120	Standard
-	Pb	208	150677.1	0.5	10.4522	0.276	2.6	ug/L	503	Standard
-	U	238	53841.8	0.7	10.1460	0.310	3.1	ug/L	5	Standard
L>	Bi	209	334342.6	2.4				ug/L	333509	Standard

Sample ID: L1510121510S WG544075-06

Report Date/Time: Tuesday, October 27, 2015 16:31:38

Page 1

Approved: October 28, 2015

Page 519

L15101055 / Revision: 0 / 760 total pages Generated: 10/30/2015 10:11

_										
	Na	23	3.3	86.6				mg/L	0	Standard
	Mg	24	3277.0	3.8	7.2217	0.331	4.6	mg/L	10	Standard
	K	39	13.3	108.3	-0.0599	0.160	266.4	mg/L	32	Standard
	Ca	43	78.3	3.7	-2.7593	0.406	14.7	mg/L	85	Standard
	Fe	54	63.9	24.2	0.0118	0.035	298.3	mg/L	82	Standard
	Fe	57	230.0	11.5	0.1504	0.288	191.6	mg/L	217	Standard
L>	Sc-1	45	15651.4	3.0				mg/L	14524	Standard
	CI	35	73132.8	1.8				ug/L	53193	Standard
	Kr	83	3.0	57.7				ug/L	3	Standard
	Br	81	913.4	20.3				ug/L	327	Standard
	Р	31	16278.7	2.6				ug/L	13329	Standard
	S	34	3627.1	2.3				ug/L	3234	Standard
	Sr	88	123.3	22.3				ug/L	87	Standard
	С	12	193.3	21.5				mg/L	103	Standard
	N	14	0.0					mg/L	0	Standard
	Hg	202	3.3	173.2				mg/L	3	Standard
	Dy	164	15.9	94.6				mg/L	10	Standard
	Ho-1	165	10.0	50.0				mg/L	3	Standard
	Er	166	16.7	34.6				mg/L	7	Standard
	1	127	58097.9	3.7				mg/L	3612	Standard

Analyte	Mass	QC Std % Recovery	Int Std % Recovery	Spike % Recovery
「⊳ Li	6		109.317	
Be	9			
L AI	27			
「 Sc	45			
Ti	47			
V	51			
Cr	52			
Cr	53			
Mn	55			
Co	59			
Ni	60			
Cu	65			
Zn	66			
> Ge	72		102.274	
As	75			
Se	82			
∟ Se-1	77			
「⊳ Ga	71			

Sample ID: L1510121510S WG544075-06 Report Date/Time: Tuesday, October 27, 2015 16:31:38

Page 2

Approved: October 28, 2015

L Rb	85			
ΓΥ	89			
$\lfloor_>$ Rh	103			
「 Mo	98			
Ag	107			
Cd	111			
Cd	114			
 > In	115			103.035
Sn	118			
Sb	123			
Ba	135			
Ce	140			
> Tb	159			
Ho	165			
TI	203			
TI	205			
Pb	206			
Pb	207			
Pb	208			
U	238			
∣	209			100.250
∫ Na	23			100.200
Mg	24			
K	39			
Ca	43			
Fe	54			
Fe	57			
Sc-1	45			
Cl	35			
Kr	83			
Br	81			
P	31			
S	34			
Sr	88			
C	12			
N	14			
Hg	202			
Dy	164			
Ho-1	165			
Er	166			
_, 	127			
000	ut of Limits			
Measure	ement Type	Analyte	Mass	Out of Limits Message
Ti 47 Lo	wer	Ti	47	

Sample ID: L1510121510S WG544075-06 Report Date/Time: Tuesday, October 27, 2015 16:31:38

Page 3

Sample ID: L1510121510SD WG544075-07

Sample Date/Time: Tuesday, October 27, 2015 16:23:25

Number of Replicates: 3 Autosampler Position: 322 Sample Description: 5

Method File: C:\NexIONData\Method\6020a.mth

Aliquot Volume (mL): Diluted to Volume (mL):

User Name: BKT Nexion300X Cumulative Autodilution Factor: 1

Nexion-ICP 200.8\6020

Concentration	Results
---------------	---------

					Concentia	tion ites	uito			
IS	Analyt	e Mass	Intensity	RSD	Conc.	SD	RSD	Units	Blank Intens.	Mode
Γ>	Li	6	30393.8	2.1				ug/L	26270	Standard
	Ве	9	5746.1	2.3	9.5427	0.352	3.7	ug/L	2	Standard
L	ΑI	27	423728.8	1.1	6.5128	0.085	1.3	ug/L	403	Standard
Γ	Sc	45	16000.1	4.1				ug/L	14524	Standard
	Ti	47	133.0	7.5	-1.3003	0.065	5.0	ug/L	365	Standard
	٧	51	37692.2	2.2	10.3446	0.225	2.2	ug/L	805	Standard
	Cr	52	50327.5	1.6	10.1626	0.157	1.5	ug/L	5481	Standard
	Cr	53	5986.2	5.1	10.3549	0.549	5.3	ug/L	268	Standard
	Mn	55	43693.6	1.3	12.4545	0.211	1.7	ug/L	670	Standard
	Co	59	33532.1	0.9	10.2523	0.146	1.4	ug/L	146	Standard
	Ni	60	11930.0	0.9	10.0316	0.131	1.3	ug/L	220	Standard
	Cu	65	11704.2	1.4	10.1113	0.176	1.7	ug/L	147	Standard
	Zn	66	8005.4	1.3	11.2942	0.208	1.8	ug/L	211	Standard
>	Ge	72	218101.9	0.6				ug/L	210599	Standard
	As	75	7492.3	0.9	10.3995	0.151	1.5	ug/L	-47	Standard
	Se	82	643.5 2.3 10.3419		10.3419	0.263	2.5	ug/L	15	Standard
L	Se-1	77	449.7	5.2	10.0729	0.633	6.3	ug/L	65	Standard
Γ>	Ga	71	16.7	45.8				mg/L	27	Standard
L	Rb	85	253.3	12.8				ug/L	17	Standard
Γ	Υ	89	226918.7	1.9				ug/L	216672	Standard
L>	Rh	103	28.3	40.8				ug/L	18	Standard
Γ	Mo	98	27.1	12.2	0.0160	0.002	12.6	ug/L	11	Standard
	Ag	107	47365.3	0.6	9.5971	0.161	1.7	ug/L	55	Standard
	Cd	111	14762.1	0.6	9.9816	0.159	1.6	mg/L	7	Standard
	Cd	114	35852.6	0.3	9.9236	0.107	1.1	ug/L	4	Standard
>	In	115	340248.2	1.3				ug/L	322525	Standard
	Sn	118	428.3	19.4	-0.0503	0.020	39.6	ug/L	345	Standard
	Sb	123	38995.3	1.4	9.7862	0.267	2.7	ug/L	88	Standard
L	Ва	135	23292.6	0.6	13.7813	0.185	1.3	ug/L	12	Standard
ļ	Ce	140	96.7	24.4				ug/L	37	Standard
<u>_</u> >	Tb	159	635587.4	2.1				ug/L	631826	Standard
ļ	Но	165	8.3	34.6				ug/L	3	Standard
ļ	TI	203	66159.5	0.6	9.8660	0.133	1.3	ug/L	7	Standard
ļ	TI	205	45376.2	2.4	10.0523	0.317	3.2	ug/L	7	Standard
ļ	Pb	206	41748.1	0.6	10.1192	0.033	0.3	ug/L	159	Standard
ļ	Pb	207	35827.3	0.6	9.5762	0.116	1.2	ug/L	120	Standard
ļ	Pb	208	148279.4	0.4	9.9233	0.127	1.3	ug/L	503	Standard
ļ	U	238	53787.6	1.3	9.7805	0.183	1.9	ug/L	5	Standard
_>	Bi	209	346346.7	8.0				ug/L	333509	Standard

Sample ID: L1510121510SD WG544075-07

Report Date/Time: Tuesday, October 27, 2015 16:31:39

Page 1

Approved: October 28, 2015

Γ	Na	23	0.0					mg/L	0	Standard
	Mg	24	3380.4	3.4	7.2986	0.544	7.5	mg/L	10	Standard
	K	39	20.0	25.0	0.0141	0.048	337.9	mg/L	32	Standard
	Ca	43	63.3	12.1	-5.1949	1.330	25.6	mg/L	85	Standard
ĺ	Fe	54	78.0	41.9	0.0382	0.066	172.7	mg/L	82	Standard
	Fe	57	258.3	12.6	0.3391	0.190	56.2	mg/L	217	Standard
L>	Sc-1	45	16000.1	4.1				mg/L	14524	Standard
	CI	35	70805.7	1.5				ug/L	53193	Standard
	Kr	83	5.7	56.7				ug/L	3	Standard
	Br	81	783.4	18.7				ug/L	327	Standard
	Р	31	15883.3	3.3				ug/L	13329	Standard
	S	34	3463.7	4.9				ug/L	3234	Standard
	Sr	88	106.7	42.0				ug/L	87	Standard
	С	12	180.0	24.2				mg/L	103	Standard
	N	14	0.0					mg/L	0	Standard
	Hg	202	3.3	173.2				mg/L	3	Standard
	Dy	164	6.3	99.7				mg/L	10	Standard
	Ho-1	165	8.3	34.6				mg/L	3	Standard
	Er	166	6.7	173.2				mg/L	7	Standard
	I	127	59881.6	4.2				mg/L	3612	Standard

	Analyte	Mass	QC Std % Recovery	Int Std % Recovery	Spike % Recovery
Γ>	Li	6		115.699	
	Be	9			
L	Al	27			
Γ	Sc	45			
	Ti	47			
	V	51			
	Cr	52			
	Cr	53			
	Mn	55			
	Co	59			
	Ni	60			
	Cu	65			
	Zn	66			
>	Ge	72		103.563	
	As	75			
	Se	82			
L	Se-1	77			
Γ>	Ga	71			

Sample ID: L1510121510SD WG544075-07Report Date/Time: Tuesday, October 27, 2015 16:31:39

Page 2

Approved: October 28, 2015

∟ Rb	85			
ΓY	89			
$\lfloor_>$ Rh	103			
Mo	98			
Ag	107			
Cd	111			
Cd	114			
 > In	115			105.495
Sn	118			
Sb	123			
L Ba	135			
¯ Ce	140			
_> Tb	159			
Ho	165			
TI TI	203			
ті	205			
Pb	206			
Pb	207			
Pb	208			
Ü	238			
Ĺ _{>} Bi	209			103.849
Na	23			
Mg	24			
ίκ	39			
Ca	43			
Fe	54			
Fe	57			
_> Sc-1	45			
CI	35			
Kr	83			
Br	81			
Р	31			
S	34			
Sr	88			
С	12			
N	14			
Hg	202			
Dy	164			
Ho-1	165			
Er	166			
1	127			
QC Oi	ıt of Limits			
	ment Type	Analyte	Mass	Out of Limits Message
Ti 47 Lo		Ti	47	
1147 Lowel		• •	••	

Sample ID: L1510121510SD WG544075-07Report Date/Time: Tuesday, October 27, 2015 16:31:39

Page 3

Sample ID: L1510121301

Sample Date/Time: Tuesday, October 27, 2015 16:26:37

Number of Replicates: 3 Autosampler Position: 323 Sample Description: 1

Method File: C:\NexIONData\Method\6020a.mth

Aliquot Volume (mL): Diluted to Volume (mL):

User Name: BKT Nexion300X Cumulative Autodilution Factor: 1

Nexion-ICP 200.8\6020

0	ncon	tration	Results	
Lα	ncen	itration	Results	

					Concentra	incentration results						
IS	Analyt	e Mass	Intensity	RSD	Conc.	SD	RSD	Units	Blank Intens.	Mode		
Γ>	Li	6	22261.4	4.7				ug/L	26270	Standard		
	Be	9	20.0	66.1	0.0099	0.027	277.7	ug/L	2	Standard		
L	Αl	27	17839459.2	3.6	376.4258	30.543	8.1	ug/L	403	Standard		
Γ	Sc	45	13964.8	4.1				ug/L	14524	Standard		
	Ti	47	2985.3	13.6	18.5007	3.039	16.4	ug/L	365	Standard		
	٧	51	5951.0	20.5	1.6201	0.375	23.2	ug/L	805	Standard		
	Cr	52	16621.5	5.4	2.9500	0.280	9.5	ug/L	5481	Standard		
	Cr	53	32685.3	4.6	66.2366	2.088	3.2	ug/L	268	Standard		
	Mn	55	158869.9	8.0	51.9929	1.149	2.2	ug/L	670	Standard		
	Co	59	1131.4	3.5	0.3447	0.012	3.6	ug/L	146	Standard		
	Ni	60	3506.7	2.9	3.1636	0.138	4.3	ug/L	220	Standard		
	Cu	65	3832.2	2.0	3.6088	0.127	3.5	ug/L	147	Standard		
	Zn	66	19796.9	3.0	32.5161	1.363	4.2	ug/L	211	Standard		
>	Ge	72	194063.7	1.5				ug/L	210599	Standard		
	As	75	-444.7	37.1	-0.6096	0.253	41.6	ug/L	-47	Standard		
	Se	82	-165.3	28.9	-3.2216	0.912	28.3	ug/L	15	Standard		
L	Se-1	77	3923.5	5.5	109.7020	7.069	6.4	ug/L	65	Standard		
Γ>	Ga	71	176.7	31.3				mg/L	27	Standard		
L	Rb	85	156314.4	3.1				ug/L	17	Standard		
Γ	Υ	89	196969.5	3.2				ug/L	216672	Standard		
L>	Rh	103	368.3	27.8				ug/L	18	Standard		
Γ	Мо	98	16263.6	0.3	13.7272	0.356	2.6	ug/L	11	Standard		
	Ag	107	63.3	6.6	0.0046	0.001	12.6	ug/L	55	Standard		
	Cd	111	19.5	51.8	0.0099	0.008	80.4	mg/L	7	Standard		
	Cd	114	104.0	25.4	0.0413	0.010	24.2	ug/L	4	Standard		
>	In	115	273965.7	3.0				ug/L	322525	Standard		
	Sn	118	535.0	11.0	0.0066	0.022	326.1	ug/L	345	Standard		
	Sb	123	975.8	4.3	0.2941	0.021	7.3	ug/L	88	Standard		
L	Ва	135	19517.9	0.6	14.3509	0.489	3.4	ug/L	12	Standard		
Γ	Ce	140	4117.2	4.7				ug/L	37	Standard		
_>	Tb	159	555012.6	5.1				ug/L	631826	Standard		
Γ	Но	165	86.7	39.3				ug/L	3	Standard		
ļ	TI	203	307.3	5.8	0.0543	0.003	5.2	ug/L	7	Standard		
	TI	205	191.7	13.1	0.0552	0.006	10.5	ug/L	7	Standard		
	Pb	206	888.4	3.7	0.2094	0.002	1.1	ug/L	159	Standard		
ļ	Pb	207	723.0	1.5	0.1844	0.005	2.7	ug/L	120	Standard		
ļ	Pb	208	2778.4	3.6	0.1785	0.007	3.7	ug/L	503	Standard		
ļ	U	238	1119.0	6.2	0.2490	0.022	8.7	ug/L	5	Standard		
_>	Bi	209	278514.4	3.1				ug/L	333509	Standard		

Sample ID: L1510121301

Report Date/Time: Tuesday, October 27, 2015 16:31:40

Page 1

Approved: October 28, 2015

Page 525

L15101055 / Revision: 0 / 760 total pages

_										
Γ	Na	23	0.0					mg/L	0	Standard
	Mg	24	360281.7	3.6	894.4709	4.750	0.5	mg/L	10	Standard
	K	39	3927.2	6.0	50.6981	1.021	2.0	mg/L	32	Standard
	Ca	43	163.3	18.7	13.1262	6.212	47.3	mg/L	85	Standard
	Fe	54	129.6	18.6	0.1959	0.054	27.5	mg/L	82	Standard
	Fe	57	250.0	5.3	0.5852	0.046	7.8	mg/L	217	Standard
L>	Sc-1	45	13964.8	4.1				mg/L	14524	Standard
	CI	35	105850.7	3.0				ug/L	53193	Standard
	Kr	83	4.0	50.0				ug/L	3	Standard
	Br	81	3287.0	7.5				ug/L	327	Standard
	Р	31	16033.5	2.4				ug/L	13329	Standard
	S	34	3728.8	6.4				ug/L	3234	Standard
	Sr	88	135.0	9.8				ug/L	87	Standard
	С	12	876.7	18.3				mg/L	103	Standard
	N	14	0.0					mg/L	0	Standard
	Hg	202	6.7	86.6				mg/L	3	Standard
	Dy	164	121.4	48.6				mg/L	10	Standard
	Ho-1	165	86.7	39.3				mg/L	3	Standard
	Er	166	110.0	9.1				mg/L	7	Standard
	I	127	298391.2	8.4				mg/L	3612	Standard

Analyte	Mass	QC Std % Recovery	Int Std % Recovery	Spike % Recovery
「> Li	6		84.742	
Be	9			
L AI	27			
「 Sc	45			
Ti	47			
V	51			
Cr	52			
Cr	53			
Mn	55			
Co	59			
Ni	60			
Cu	65			
Zn	66			
> Ge	72		92.149	
As	75			
Se	82			
Se-1	77			
「̄> Ga	71			

Sample ID: L1510121301

Report Date/Time: Tuesday, October 27, 2015 16:31:40

Page 2

Approved: October 28, 2015

∟ Rb	85				
Γ̈́Υ	89				
_ _> Rh	103				
☐ Mo	98				
Ag	107				
Cd	111				
Cd	114				
> In	115			84.944	
Sn	118			01.011	
Sb	123				
L Ba	135				
□ Ce	140				
	159				
L> Tb Γ Ho	165				
TI	203				
'' TI	205				
11 Pb	206				
Pb	207				
Pb	208				
U	238				
				83.510	
L> Bi □ No	209			65.510	
「 Na └ Ma	23				
Mg	24				
K	39				
Ca	43				
Fe	54				
Fe	57 45				
L> Sc-1	45				
Cl	35				
Kr	83				
Br	81				
P	31				
S	34				
Sr	88				
С	12				
N	14				
Hg	202				
Dy	164				
Ho-1	165				
Er	166				
<u> </u>	127				
	ut of Limits				
	ement Type		ass	Out of Limits Message	
	oper, S, EEE	Al	27		
As 75 L		As	75		
C ~ 00 I		C ~	00		

Sample ID: L1510121301

Se 82 Lower

Report Date/Time: Tuesday, October 27, 2015 16:31:40

Se

82

Page 3

Se-1 77 Upper, S, EEE Se-1 77

Sample ID: L1510121301

Report Date/Time: Tuesday, October 27, 2015 16:31:40

Page 4

Approved: October 28, 2015

Sample ID: L1510121501

Sample Date/Time: Tuesday, October 27, 2015 16:36:42

Number of Replicates: 3 Autosampler Position: 334 Sample Description: 5

Method File: C:\NexIONData\Method\6020a.mth

Aliquot Volume (mL): Diluted to Volume (mL):

User Name: BKT Nexion300X Cumulative Autodilution Factor: 1

Nexion-ICP 200.8\6020

0		44:	D	14.
COH	cen	tration	Resu	ILS -

					Concentiat		Juita			
IS	Analyt	e Mass	Intensity	RSD	Conc.	SD	RSD	Units	Blank Intens.	Mode
Γ>	Li	6	30896.5	2.1				ug/L	26270	Standard
	Be	9	13.3	57.3	-0.0131	0.012	92.4	ug/L	2	Standard
L	Αl	27	1625489.0	1.3	24.6417	0.802	3.3	ug/L	403	Standard
Γ	Sc	45	16654.2	2.2				ug/L	14524	Standard
	Ti	47	561.0	5.8	1.2026	0.223	18.5	ug/L	365	Standard
	٧	51	2435.7	2.8	0.4006	0.021	5.3	ug/L	805	Standard
	Cr	52	8485.4	1.8	0.5528	0.019	3.4	ug/L	5481	Standard
	Cr	53	1971.8	3.4	2.9262	0.141	4.8	ug/L	268	Standard
	Mn	55	20280.6	0.6	5.3749	0.086	1.6	ug/L	670	Standard
	Co	59	502.0	3.4	0.1028	0.004	3.9	ug/L	146	Standard
	Ni	60	713.4	3.6	0.3650	0.026	7.1	ug/L	220	Standard
	Cu	65	416.7	3.2	0.1743	0.009	5.4	ug/L	147	Standard
	Zn	66	3130.0	3.1	3.8638	0.165	4.3	ug/L	211	Standard
>	Ge	72	226360.4	0.9				ug/L	210599	Standard
	As	75	48.8	90.5	0.1425	0.058	40.7	ug/L	-47	Standard
	Se	82	39.0	11.2	0.4368	0.064	14.7	ug/L	15	Standard
L	Se-1	77	135.3	3.5	2.0420	0.112	5.5	ug/L	65	Standard
Γ>	Ga	71	125.0	10.6				mg/L	27	Standard
L	Rb	85	1921.8	2.4				ug/L	17	Standard
Γ	Υ	89	231806.7	1.4				ug/L	216672	Standard
L>	Rh	103	61.7	16.9				ug/L	18	Standard
Γ	Мо	98	105.5	6.4	0.0690	0.005	6.6	ug/L	11	Standard
	Ag	107	56.3	7.4	0.0000	0.001	3131.7	ug/L	55	Standard
	Cd	111	19.1	36.8	0.0065	0.005	71.9	mg/L	7	Standard
	Cd	114	28.2	61.8	0.0132	0.005	36.8	ug/L	4	Standard
>	In	115	341615.0	0.5				ug/L	322525	Standard
	Sn	118	501.7	14.1	-0.0332	0.017	51.6	ug/L	345	Standard
	Sb	123	106.7	23.6	0.0159	0.006	38.7	ug/L	88	Standard
L	Ва	135	12231.6	2.1	7.1955	0.116	1.6	ug/L	12	Standard
Γ	Ce	140	7358.5	4.9				ug/L	37	Standard
L>	Tb	159	654795.4	1.6				ug/L	631826	Standard
Γ	Но	165	125.0	20.8				ug/L	3	Standard
	TI	203	167.7	4.4	0.0221	0.001	3.5	ug/L	7	Standard
	TI	205	95.0	32.0	0.0233	0.007	28.5	ug/L	7	Standard
	Pb	206	479.3	9.4	0.0560	0.012	22.1	ug/L	159	Standard
	Pb	207	391.0	3.1	0.0468	0.003	7.5	ug/L	120	Standard
	Pb	208	1643.4	1.3	0.0556	0.003	5.1	ug/L	503	Standard
	U	238	1572.7	4.0	0.2790	0.011	4.0	ug/L	5	Standard
L>	Bi	209	349511.7	1.3				ug/L	333509	Standard

Sample ID: L1510121501

Report Date/Time: Tuesday, October 27, 2015 16:38:58

Page 1

Approved: October 28, 2015

Page 529

L15101055 / Revision: 0 / 760 total pages

Γ	Na	23	1.7	173.2				mg/L	0	Standard
i	Mg	24	4975.8	3.6	10.3158	0.221	2.1	mg/L	10	Standard
i	K	39	33.3	70.9	0.1515	0.259	170.7	mg/L	32	Standard
i	Ca	43	83.3	21.1	-2.7953	2.236	80.0	mg/L	85	Standard
i	Fe	54	143.5	15.1	0.1734	0.047	27.1	mg/L	82	Standard
i	Fe	57	268.3	13.7	0.3430	0.340	99.0	mg/L	217	Standard
>	Sc-1	45	16654.2	2.2	0.0400	0.010	00.0	mg/L	14524	Standard
	CI	35	78435.2	2.3				ug/L	53193	Standard
	Kr	83	1.7	124.9				ug/L	3	Standard
	Br	81	2386.9	6.1				ug/L	327	Standard
	P.	31	16584.1	1.6				ug/L	13329	Standard
	s	34	4047.2	1.7				ug/L	3234	Standard
	Sr	88	138.3	5.5				ug/L	87	Standard
	C	12	123.3	30.7				mg/L	103	Standard
	N	14	0.0	30.7				mg/L	0	Standard
		202	0.0					mg/L	3	Standard
	Hg	164	188.9	47.2				mg/L	10	Standard
	Dy	165	125.0	20.8				•	3	Standard
	Ho-1							mg/L	7	
	Er	166	93.3	72.9				mg/L		Standard
	ı	127	12400.1	1.9				mg/L	3612	Standard

Analyte	Mass	QC Std % Recovery	Int Std % Recovery	Spike % Recovery
「⊳ Li	6		117.613	
Be	9			
L AI	27			
「 Sc	45			
Ti	47			
V	51			
Cr	52			
Cr	53			
Mn	55			
Co	59			
Ni	60			
Cu	65			
Zn	66			
> Ge	72		107.484	
As	75			
Se	82			
∟ Se-1	77			
「> Ga	71			

Sample ID: L1510121501

Report Date/Time: Tuesday, October 27, 2015 16:38:58

Page 2

Approved: October 28, 2015

```
Rb
             85
  Υ
             89
| > Rh
             103
  Мо
             98
             107
  Ag
  Cd
             111
  Cd
             114
                                                   105.919
| > In
            115
  Sn
            118
             123
  Sb
  Ва
             135
             140
  Ce
L> Tb
             159
  Но
             165
  ΤI
            203
  ΤI
            205
  Pb
            206
  Pb
            207
            208
  Pb
  U
            238
            209
                                                   104.798
L> Bi
  Na
             23
  Mg
             24
             39
  Κ
  Ca
             43
  Fe
             54
  Fe
             57
             45
|> Sc-1
  CI
             35
             83
  Kr
  Br
             81
  Ρ
             31
  S
              34
  Sr
             88
  С
              12
  Ν
             14
            202
  Hg
  Dy
             164
  Ho-1
             165
             166
  Er
             127
  QC Out of Limits
  Measurement Type
                           Analyte Mass
                                                  Out of Limits Message
```

Sample ID: L1510121501

Report Date/Time: Tuesday, October 27, 2015 16:38:58

Page 3

Sample ID: L1510121501PS WG544216-05

Sample Date/Time: Tuesday, October 27, 2015 16:43:41

Number of Replicates: 3 Autosampler Position: 342 Sample Description: 5

Method File: C:\NexIONData\Method\6020a.mth

Aliquot Volume (mL): Diluted to Volume (mL):

User Name: BKT Nexion300X Cumulative Autodilution Factor: 1

Nexion-ICP 200.8\6020

O			D	.14.
Con	ceni	ration	Resu	IIIS

					0011001111		Juito			
IS	Analyt	e Mass	Intensity	RSD	Conc.	SD	RSD	Units	Blank Intens.	Mode
Γ>	Li	6	30068.2	2.5				ug/L	26270	Standard
	Be	9	30069.8	1.8	50.6202	1.088	2.1	ug/L	2	Standard
L	ΑI	27	1561961.2	0.2	24.3308	0.662	2.7	ug/L	403	Standard
Γ	Sc	45	16427.2	3.0				ug/L	14524	Standard
	Ti	47	589.3	1.9	1.4440	0.131	9.1	ug/L	365	Standard
	V	51	195036.2	0.5	53.7366	0.949	1.8	ug/L	805	Standard
	Cr	52	245952.0	1.2	53.8721	1.428	2.7	ug/L	5481	Standard
	Cr	53	31582.9	2.0	55.9867	1.966	3.5	ug/L	268	Standard
	Mn	55	209874.3	0.6	60.1881	1.451	2.4	ug/L	670	Standard
	Co	59	177257.2	1.0	53.5290	1.521	2.8	ug/L	146	Standard
	Ni	60	62688.4	1.3	52.8219	1.626	3.1	ug/L	220	Standard
	Cu	65	61671.6	1.2	53.1789	1.391	2.6	ug/L	147	Standard
	Zn	66	39932.9	1.3	57.8926	1.407	2.4	ug/L	211	Standard
>	Ge	72	221682.0	1.8				ug/L	210599	Standard
	As	75	39974.2	0.9	54.2717	1.415	2.6	ug/L	-47	Standard
	Se	82	3403.3	0.5	54.5615	0.795	1.5	ug/L	15	Standard
L	Se-1	77	2262.5	3.3	54.7384	1.376	2.5	ug/L	65	Standard
Γ>	Ga	71	145.0	15.0				mg/L	27	Standard
L	Rb	85	2011.8	5.2				ug/L	17	Standard
Γ	Υ	89	230231.5	2.1				ug/L	216672	Standard
L>	Rh	103	68.3	18.4				ug/L	18	Standard
Γ	Мо	98	114.0	9.8	0.0758	0.006	8.1	ug/L	11	Standard
	Ag	107	236721.0	0.9	48.5056	1.907	3.9	ug/L	55	Standard
	Cd	111	76595.6	2.3	52.3643	2.666	5.1	mg/L	7	Standard
	Cd	114	186710.1	1.1	52.1904	1.986	3.8	ug/L	4	Standard
>	In	115	336992.4	3.1				ug/L	322525	Standard
	Sn	118	628.3	12.7	-0.0008	0.021	2621.3	ug/L	345	Standard
	Sb	123	196507.5	0.9	49.8634	1.943	3.9	ug/L	88	Standard
Ĺ	Ва	135	97493.3	8.0	58.3392	1.378	2.4	ug/L	12	Standard
ļ	Ce	140	7170.0	0.4				ug/L	37	Standard
<u>_</u> >	Tb	159	642782.0	2.2				ug/L	631826	Standard
Γ	Но	165	128.3	18.4				ug/L	3	Standard
ļ	TI	203	340924.8	0.9	51.6862	1.359	2.6	ug/L	7	Standard
ļ	TI	205	233141.8	0.9	52.4792	1.292	2.5	ug/L	7	Standard
ļ	Pb	206	207905.1	0.7	51.4818	1.991	3.9	ug/L	159	Standard
ļ	Pb	207	188797.4	1.1	51.5589	2.111	4.1	ug/L	120	Standard
ļ	Pb	208	768577.1	1.9	52.5231	2.146	4.1	ug/L	503	Standard
ļ	U	238	285129.5	2.7	52.7434	2.792	5.3	ug/L	5	Standard
L>	Bi	209	340917.0	3.3				ug/L	333509	Standard

Sample ID: L1510121501PS WG544216-05

Report Date/Time: Tuesday, October 27, 2015 16:45:58

Page 1

Approved: October 28, 2015

Γ	Na	23	1.7	173.2				mg/L	0	Standard
	Mg	24	4914.1	2.5	10.3413	0.562	5.4	mg/L	10	Standard
	K	39	45.0	22.2	0.2840	0.100	35.1	mg/L	32	Standard
	Ca	43	105.0	31.2	0.5437	4.973	914.6	mg/L	85	Standard
	Fe	54	133.6	24.6	0.1548	0.063	40.7	mg/L	82	Standard
	Fe	57	271.7	2.8	0.4001	0.114	28.4	mg/L	217	Standard
Ĺ>	Sc-1	45	16427.2	3.0				mg/L	14524	Standard
	CI	35	75587.4	1.6				ug/L	53193	Standard
	Kr	83	3.7	41.7				ug/L	3	Standard
	Br	81	2640.2	5.3				ug/L	327	Standard
	Р	31	16235.4	2.8				ug/L	13329	Standard
	S	34	3770.5	5.4				ug/L	3234	Standard
	Sr	88	108.3	11.6				ug/L	87	Standard
	С	12	143.3	21.3				mg/L	103	Standard
	N	14	0.0					mg/L	0	Standard
	Hg	202	0.0					mg/L	3	Standard
	Dy	164	220.4	25.5				mg/L	10	Standard
	Ho-1	165	128.3	18.4				mg/L	3	Standard
	Er	166	130.0	30.8				mg/L	7	Standard
	I	127	11264.2	1.8				mg/L	3612	Standard

Analyte	Mass	QC Std % Recovery	Int Std % Recovery	Spike % Recovery
「> Li	6		114.460	
Be	9			
L AI	27			
「 Sc	45			
Ti	47			
V	51			
Cr	52			
Cr	53			
Mn	55			
Co	59			
Ni	60			
Cu	65			
Zn	66			
> Ge	72		105.263	
As	75			
Se	82			
L Se-1	77			
「̄> Ga	71			

Sample ID: L1510121501PS WG544216-05Report Date/Time: Tuesday, October 27, 2015 16:45:58

Page 2

Approved: October 28, 2015

	Rb Y	85 89			
	Rh	103			
	Мо	98			
	Ag	107			
	Cd	111			
	Cd	114			
>		115			104.486
	Sn	118			
	Sb	123			
	Ва	135			
	Ce	140			
	Tb	159			
	Но	165			
	TI	203			
	TI	205			
	Pb	206			
	Pb	207			
	Pb U	208 238			
	Bi	209			102.221
	Na	23			102.221
	Mg	24			
	K	39			
	Ca	43			
	Fe	54			
	Fe	57			
Ĺ>	Sc-1	45			
	CI	35			
	Kr	83			
	Br	81			
	Р	31			
	S	34			
	Sr	88			
	С	12			
	N	14			
	Hg	202			
	Dy	164			
	Ho-1 Er	165 166			
		127			
		of Limits			
	Measurem	ent Type	Analyte	Mass	Out of Limits Message

Sample ID: L1510121501PS WG544216-05Report Date/Time: Tuesday, October 27, 2015 16:45:58

Page 3

Approved: October 28, 2015

Sample ID: L1510121501SDL WG544216-06

Sample Date/Time: Tuesday, October 27, 2015 16:46:53

Number of Replicates: 3 Autosampler Position: 343 Sample Description: 25

Method File: C:\NexIONData\Method\6020a.mth

Aliquot Volume (mL): Diluted to Volume (mL):

User Name: BKT Nexion300X Cumulative Autodilution Factor: 1

Nexion-ICP 200.8\6020

0	ncon	tration	Results	
Lα	ncen	itration	Results	

	Concentration Results									
IS	Analyt	e Mass	Intensity	RSD	Conc.	SD	RSD	Units	Blank Intens.	Mode
Γ>	Li	6	29368.5	7.4				ug/L	26270	Standard
	Ве	9	65.0	106.6	0.0749	0.114	151.7	ug/L	2	Standard
L	Αl	27	321130.9	0.8	5.1234	0.420	8.2	ug/L	403	Standard
Γ	Sc	45	16632.5	4.5				ug/L	14524	Standard
	Ti	47	211.3	6.7	-0.8807	0.082	9.3	ug/L	365	Standard
	٧	51	1632.7	20.6	0.1782	0.092	51.8	ug/L	805	Standard
	Cr	52	7442.8	7.4	0.3062	0.125	40.9	ug/L	5481	Standard
	Cr	53	978.4	4.3	1.1668	0.082	7.0	ug/L	268	Standard
	Mn	55	5105.2	7.2	1.0731	0.109	10.1	ug/L	670	Standard
	Co	59	466.3	56.9	0.0909	0.078	86.1	ug/L	146	Standard
	Ni	60	394.0	31.7	0.0971	0.104	106.9	ug/L	220	Standard
	Cu	65	290.3	34.9	0.0649	0.086	132.6	ug/L	147	Standard
	Zn	66	1489.4	4.3	1.4861	0.102	6.9	ug/L	211	Standard
>	Ge	72	228868.0	0.6				ug/L	210599	Standard
	As	75	35.0	139.7	0.1240	0.065	52.0	ug/L	-47	Standard
	Se	82	22.6	17.1	0.1751	0.062	35.4	ug/L	15	Standard
L	Se-1	77	81.3	13.1	0.7129	0.266	37.3	ug/L	65	Standard
Γ>	Ga	71	40.0	33.1				mg/L	27	Standard
L	Rb	85	353.3	5.7				ug/L	17	Standard
Γ	Υ	89	233614.1	1.4				ug/L	216672	Standard
L>	Rh	103	36.7	28.4				ug/L	18	Standard
Γ	Mo	98	21.8	15.1	0.0123	0.002	16.4	ug/L	11	Standard
	Ag	107	257.0	116.6	0.0402	0.060	148.8	ug/L	55	Standard
	Cd	111	104.9	119.9	0.0638	0.084	131.2	mg/L	7	Standard
	Cd	114	232.7	127.5	0.0690	0.081	116.9	ug/L	4	Standard
>	In	115	343553.6	2.3				ug/L	322525	Standard
	Sn	118	460.0	8.6	-0.0436	0.012	27.1	ug/L	345	Standard
	Sb	123	971.4	21.1	0.2309	0.050	21.6	ug/L	88	Standard
Ĺ	Ва	135	2534.2	7.6	1.4645	0.126	8.6	ug/L	12	Standard
	Ce	140	1491.7	3.7				ug/L	37	Standard
Ĺ>	Tb	159	657653.1	2.0				ug/L	631826	Standard
ļ	Но	165	33.3	8.7				ug/L	3	Standard
ļ	TI	203	367.0	113.8	0.0511	0.062	120.5	ug/L	7	Standard
ļ	TI	205	258.3	119.6	0.0587	0.068	115.2	ug/L	7	Standard
ļ	Pb	206	526.3	62.5	0.0656	0.080	121.7	ug/L	159	Standard
ļ	Pb	207	456.7	63.8	0.0628	0.078	124.3	ug/L	120	Standard
ļ	Pb	208	1774.4	68.7	0.0629	0.082	129.8	ug/L	503	Standard
ļ	U	238	664.7	71.3	0.1139	0.086	75.3	ug/L	5	Standard
L>	Bi	209	355537.2	2.1				ug/L	333509	Standard

Sample ID: L1510121501SDL WG544216-06

Report Date/Time: Tuesday, October 27, 2015 16:49:10

Page 1

Approved: October 28, 2015

Γ	Na	23	0.0					mg/L	0	Standard
	Mg	24	988.4	11.4	2.0190	0.208	10.3	mg/L	10	Standard
	K	39	13.3	43.3	-0.0644	0.068	105.8	mg/L	32	Standard
	Ca	43	85.0	15.6	-2.5497	1.337	52.5	mg/L	85	Standard
ĺ	Fe	54	62.6	20.2	-0.0001	0.022	34666.5	mg/L	82	Standard
	Fe	57	225.0	8.0	-0.0161	0.121	753.4	mg/L	217	Standard
L>	Sc-1	45	16632.5	4.5				mg/L	14524	Standard
	CI	35	73340.4	1.1				ug/L	53193	Standard
	Kr	83	5.7	36.7				ug/L	3	Standard
	Br	81	733.4	19.3				ug/L	327	Standard
	Р	31	15865.0	1.8				ug/L	13329	Standard
	S	34	3790.5	4.3				ug/L	3234	Standard
	Sr	88	128.3	11.2				ug/L	87	Standard
	С	12	120.0	8.3				mg/L	103	Standard
	N	14	0.0					mg/L	0	Standard
	Hg	202	6.7	86.6				mg/L	3	Standard
	Dy	164	40.6	25.7				mg/L	10	Standard
	Ho-1	165	33.3	8.7				mg/L	3	Standard
	Er	166	56.7	44.4				mg/L	7	Standard
	I	127	5391.0	2.3				mg/L	3612	Standard

Analyte	Mass	QC Std % Recovery	Int Std % Recovery	Spike % Recovery
「⊳ Li	6		111.796	
Be	9			
L AI	27			
「 Sc	45			
Ti	47			
V	51			
Cr	52			
Cr	53			
Mn	55			
Co	59			
Ni	60			
Cu	65			
Zn	66			
> Ge	72		108.675	
As	75			
Se	82			
L Se-1	77			
「⊳ Ga	71			

Sample ID: L1510121501SDL WG544216-06Report Date/Time: Tuesday, October 27, 2015 16:49:10

Page 2

Approved: October 28, 2015

L Rb	85			
ΓΥ	89			
$\lfloor_>$ Rh	103			
「 Mo	98			
Ag	107			
Cd	111			
Cd	114			
 > In	115			106.520
Sn	118			
Sb	123			
Ва	135			
Ce	140			
> Tb	159			
Ho	165			
TI	203			
TI	205			
Pb	206			
Pb	207			
Pb	208			
U	238			
∟ _{>} Bi	209			106.605
∫ Na	23			100.000
Mg	24			
K	39			
Ca	43			
Fe	54			
Fe	57			
Sc-1	45			
Cl	35			
Kr	83			
Br	81			
P	31			
S	34			
Sr	88			
C	12			
N	14			
Hg	202			
Dy	164			
Ho-1	165			
Er	166			
 I	127			
00 0	ut of Limits			
		A ! (Out of Directo Manager
Measure	ement Type	Analyte	Mass	Out of Limits Message
Ti 47 Lo	wer	Ti	47	

Sample ID: L1510121501SDL WG544216-06Report Date/Time: Tuesday, October 27, 2015 16:49:10

Page 3

Approved: October 28, 2015

Sample ID: QC Std 6

Sample Date/Time: Tuesday, October 27, 2015 16:50:06

Number of Replicates: 3 Autosampler Position: 101 Sample Description:

Method File: C:\NexIONData\Method\6020a.mth

Aliquot Volume (mL): Diluted to Volume (mL):

User Name: BKT Nexion300X Cumulative Autodilution Factor: 1

Nexion-ICP 200.8\6020

					Concentra	tion Res	ults			
IS	Analyte	e Mass	Intensity	RSD	Conc.	SD	RSD	Units	Blank Intens.	Mode
Γ>	Li	6	30096.7	8.7				ug/L	26270	Standard
Ï	Be	9	28263.0	3.9	47.8521	5.903	12.3	ug/L	2	Standard
Ĺ	Al	27	2980514.3	1.8	46.6555	4.807	10.3	ug/L	403	Standard
Ī	Sc	45	16974.6	8.8				ug/L	14524	Standard
Ĺ	Ti	47	17796.8	3.5	101.7904	10.302	10.1	ug/L	365	Standard
ĺ	V	51	183733.8	2.8	48.8875	4.491	9.2	ug/L	805	Standard
ĺ	Cr	52	232692.7	3.6	49.1505	5.109	10.4	ug/L	5481	Standard
	Cr	53	28855.8	4.1	49.3697	5.089	10.3	ug/L	268	Standard
	Mn	55	177784.5	3.5	49.2081	4.903	10.0	ug/L	670	Standard
	Co	59	166353.3	4.2	48.5581	5.170	10.6	ug/L	146	Standard
	Ni	60	59548.9	3.0	48.4632	4.622	9.5	ug/L	220	Standard
	Cu	65	57565.6	4.3	47.9515	4.913	10.2	ug/L	147	Standard
	Zn	66	34923.6	2.8	48.8029	4.248	8.7	ug/L	211	Standard
>	Ge	72	230273.0	6.4				ug/L	210599	Standard
	As	75	37290.3	3.1	48.9274	4.655	9.5	ug/L	-47	Standard
	Se	82	3187.9	2.4	49.3545	4.271	8.7	ug/L	15	Standard
L	Se-1	77	2106.1	4.3	49.1110	4.754	9.7	ug/L	65	Standard
>	Ga	71	21.7	53.3				mg/L	27	Standard
L	Rb	85	505.0	13.9				ug/L	17	Standard
Γ	Υ	89	242031.2	5.2				ug/L	216672	Standard
Γ>	Rh	103	45.0	11.1				ug/L	18	Standard
	Мо	98	149166.0	3.7	97.9298	11.868	12.1	ug/L	11	Standard
!	Ag	107	237364.5	3.3	46.5036	5.438	11.7	ug/L	55	Standard
!	Cd	111	73012.8	2.9	47.7053	5.389	11.3	mg/L	7	Standard
	Cd	114	179696.6	1.7	47.9887	4.850	10.1	ug/L	4	Standard
>	In	115	354411.5	8.2		= 440	40 =	ug/L	322525	Standard
	Sn	118	208491.9	2.6	47.9939	5.149	10.7	ug/L	345	Standard
	Sb	123	189299.1	3.6	45.9353	5.523	12.0	ug/L	88	Standard
Ĺ	Ba	135 140	79929.0 246.7	2.8 9.6	45.7279	5.118	11.2	ug/L	12 37	Standard Standard
	Ce	159	676131.8	9.6 8.0				ug/L	631826	Standard
L>	Tb Ho	165	11.7	65.5				ug/L ug/L	3	Standard
	по TI	203	324765.1	2.5	47.0365	5.755	12.2	ug/L ug/L	7	Standard
	TI	205	224013.2	3.0	48.1812	6.009	12.5	ug/L ug/L	7	Standard
	Pb	205	205020.1	1.9	48.4661	5.670	11.7	ug/L ug/L	159	Standard
1	Pb	207	185106.5	2.1	48.2586	5.683	11.7	ug/L ug/L	120	Standard
1	Pb	207	752984.4	2.1	49.1388	5.924	12.1	ug/L ug/L	503	Standard
1	U	238	268590.6	2.5 3.5	49.1366 47.4706	6.292	13.3	ug/L ug/L	505	Standard
L>	О Ві	209	359395.2	9.4	41.4100	0.232	10.0	ug/L ug/L	333509	Standard
L>	ום	203	308083.Z	<i>3.</i> ┿				uy/L	333309	Glariuaru

Sample ID: QC Std 6

Report Date/Time: Tuesday, October 27, 2015 16:52:23

Page 1

Approved: October 28, 2015

_										
	Na	23	0.0					mg/L	0	Standard
	Mg	24	2240.2	3.7	4.5615	0.491	10.8	mg/L	10	Standard
	K	39	436.7	19.2	4.4549	0.848	19.0	mg/L	32	Standard
	Ca	43	101.7	41.8	-0.2095	6.332	3023.4	mg/L	85	Standard
	Fe	54	2324.3	8.4	4.7469	0.277	5.8	mg/L	82	Standard
	Fe	57	825.0	5.8	4.8668	0.981	20.2	mg/L	217	Standard
L>	Sc-1	45	16974.6	8.8				mg/L	14524	Standard
	CI	35	71269.3	1.7				ug/L	53193	Standard
	Kr	83	4.7	12.4				ug/L	3	Standard
	Br	81	400.0	25.4				ug/L	327	Standard
	Р	31	16640.8	4.0				ug/L	13329	Standard
	S	34	4430.6	5.8				ug/L	3234	Standard
	Sr	88	126.7	12.7				ug/L	87	Standard
	С	12	133.3	11.5				mg/L	103	Standard
	N	14	0.0					mg/L	0	Standard
	Hg	202	3.3	173.2				mg/L	3	Standard
	Dy	164	2.9	203.0				mg/L	10	Standard
	Ho-1	165	11.7	65.5				mg/L	3	Standard
	Er	166	10.0	100.0				mg/L	7	Standard
	1	127	3110.3	5.2				mg/L	3612	Standard

Analyte	Mass	QC Std % Recovery	Int Std % Recovery	Spike % Recovery
「> Li	6			
Be	9	95.704		
L AI	27	93.311		
「 Sc	45			
Ti	47	101.790		
V	51	97.775		
Cr	52	98.301		
Cr	53			
Mn	55	98.416		
Co	59	97.116		
Ni	60	96.926		
Cu	65	95.903		
Zn	66	97.606		
> Ge	72		109.342	
As	75	97.855		
Se	82	98.709		
∟ Se-1	77			
「⊳ Ga	71			

Sample ID: QC Std 6

Report Date/Time: Tuesday, October 27, 2015 16:52:23

Page 2

Approved: October 28, 2015

. DI	0.5		
L Rb	85		
ΓΥ	89		
_> Rh	103	07.020	
Γ Mo	98 107	97.930 93.007	
Ag Cd	111	95.411	
Cd Cd	114	95.411	
Cu > In	115		109.887
> Sn	118	95.988	109.007
Sb	123	91.871	
Ba	135	91.456	
Г Се	140	31.430	
OC > Tb	159		
[Ho	165		
TI	203	94.073	
i Ti	205	01.070	
Pb	206		
Pb	207		
Pb	208	98.278	
Ü	238	94.941	
Ĺ> Bi	209		107.762
- Na	23		
Mg	24		
K	39		
Ca	43		
Fe	54		
Fe	57		
_> Sc-1	45		
CI	35		
Kr	83		
Br	81		
Р	31		
S	34		
Sr	88		
С	12		
N	14		
Hg	202		
Dy	164		
Ho-1	165 166		
Er I	166 127		
	t of Limits		
Measurer	nent Type	Analyte Mass	Out of Limits Message

Sample ID: QC Std 6

Report Date/Time: Tuesday, October 27, 2015 16:52:23

Page 3

Sample ID: QC Std 7

Sample Date/Time: Tuesday, October 27, 2015 16:53:17

Number of Replicates: 3 Autosampler Position: 102 Sample Description:

Method File: C:\NexIONData\Method\6020a.mth

Aliquot Volume (mL): Diluted to Volume (mL):

User Name: BKT Nexion300X Cumulative Autodilution Factor: 1

Nexion-ICP 200.8\6020

Concentration Re	sults
------------------	-------

					Ooncenti	ation ites	uits			
IS	Analyte Mass		Intensity	RSD	Conc.	SD	RSD	Units	Blank Intens.	Mode
Γ>	Li	6	29951.4	7.6				ug/L	26270	Standard
	Ве	9	55.0	101.2	0.0621	0.104	167.4	ug/L	2	Standard
L	ΑI	27	4646.6	135.9	0.0572	0.108	189.5	ug/L	403	Standard
Γ	Sc	45	16552.4	4.2				ug/L	14524	Standard
	Ti	47	125.3	31.6	-1.3589	0.301	22.1	ug/L	365	Standard
	٧	51	1064.8	39.4	0.0363	0.140	385.7	ug/L	805	Standard
	Cr	52	6035.2	6.3	0.0280	0.185	662.2	ug/L	5481	Standard
	Cr	53	606.7	9.2	0.5466	0.182	33.3	ug/L	268	Standard
	Mn	55	847.7	38.0	-0.1076	0.113	105.2	ug/L	670	Standard
	Co	59	395.3	78.8	0.0766	0.105	137.7	ug/L	146	Standard
	Ni	60	273.3	44.6	0.0069	0.123	1771.9	ug/L	220	Standard
	Cu	65	212.7	48.0	0.0071	0.104	1465.1	ug/L	147	Standard
	Zn	66	178.7	31.1	-0.3657	0.103	28.1	ug/L	211	Standard
>	Ge	72	225589.7	7.2				ug/L	210599	Standard
	As	75	-5.7	1205.4	0.0748	0.095	126.5	ug/L	-47	Standard
	Se	82	20.4	32.3	0.1514	0.132	87.3	ug/L	15	Standard
L	Se-1	77	64.3	5.9	0.3279	0.023	7.0	ug/L	65	Standard
Γ>	Ga	71	21.7	70.5				mg/L	27	Standard
L	Rb	85	30.0	28.9				ug/L	17	Standard
Γ	Υ	89	235608.8	8.0				ug/L	216672	Standard
L>	Rh	103	23.3	53.9				ug/L	18	Standard
Γ	Мо	98	364.2	86.4	0.2485	0.230	92.5	ug/L	11	Standard
	Ag	107	289.3	118.9	0.0488	0.074	151.3	ug/L	55	Standard
	Cd	111	99.2	141.8	0.0630	0.100	158.7	mg/L	7	Standard
	Cd	114	252.7	136.6	0.0776	0.100	129.5	ug/L	4	Standard
>	In	115	347639.5	5.7				ug/L	322525	Standard
	Sn	118	768.4	41.9	0.0304	0.088	290.1	ug/L	345	Standard
	Sb	123	404.1	70.3	0.0915	0.078	85.2	ug/L	88	Standard
Ĺ	Ва	135	132.7	126.3	0.0569	0.105	184.3	ug/L	12	Standard
ļ	Ce	140	15.0	57.7				ug/L	37	Standard
<u>_</u> >	Tb	159	650959.0	5.3				ug/L	631826	Standard
ļ	Но	165	6.7	43.3				ug/L	3	Standard
ļ	TI	203	336.3	145.9	0.0499	0.078	156.9	ug/L	7	Standard
ļ	TI	205	223.3	146.1	0.0543	0.077	142.3	ug/L	7	Standard
ļ	Pb	206	378.3	91.3	0.0342	0.093	270.9	ug/L	159	Standard
ļ	Pb	207	355.0	88.3	0.0399	0.093	232.7	ug/L	120	Standard
ļ	Pb	208	1446.4	89.1	0.0452	0.096	211.3	ug/L	503	Standard
ļ	U	238	356.0	140.5	0.0631	0.097	154.3	ug/L	5	Standard
L>	Bi	209	356604.6	7.5				ug/L	333509	Standard

Sample ID: QC Std 7

Report Date/Time: Tuesday, October 27, 2015 16:55:34

Page 1

Approved: October 28, 2015

Γ	Na	23	0.0					mg/L	0	Standard
	Mg	24	23.3	24.7	0.0089	0.014	160.2	mg/L	10	Standard
	K	39	10.0	86.6	-0.1037	0.089	86.0	mg/L	32	Standard
	Ca	43	41.7	50.0	-8.6238	2.920	33.9	mg/L	85	Standard
	Fe	54	84.4	21.3	0.0480	0.037	78.0	mg/L	82	Standard
	Fe	57	228.3	16.4	0.0303	0.376	1240.3	mg/L	217	Standard
L>	Sc-1	45	16552.4	4.2				mg/L	14524	Standard
	CI	35	71535.8	1.2				ug/L	53193	Standard
	Kr	83	5.7	53.9				ug/L	3	Standard
	Br	81	363.3	1.6				ug/L	327	Standard
	Р	31	16896.1	4.1				ug/L	13329	Standard
	S	34	4263.9	4.0				ug/L	3234	Standard
	Sr	88	130.0	11.5				ug/L	87	Standard
	С	12	146.7	25.8				mg/L	103	Standard
	N	14	0.0					mg/L	0	Standard
	Hg	202	3.3	173.2				mg/L	3	Standard
	Dy	164	22.7	53.9				mg/L	10	Standard
	Ho-1	165	6.7	43.3				mg/L	3	Standard
	Er	166	13.3	114.6				mg/L	7	Standard
	I	127	2796.9	3.4				mg/L	3612	Standard

Analyte	Mass	QC Std % Recovery	Int Std % Recovery	Spike % Recovery
√> Li	6			
Be	9			
L AI	27			
「 Sc	45			
Ti	47			
V	51			
Cr	52			
Cr	53			
Mn	55			
Co	59			
Ni	60			
Cu	65			
Zn	66			
> Ge	72		107.118	
As	75			
Se	82			
∟ Se-1	77			
「> Ga	71			

Sample ID: QC Std 7

Report Date/Time: Tuesday, October 27, 2015 16:55:34

Page 2

Approved: October 28, 2015

Ī	Rb	85			
	Υ	89			
_>	Rh	103			
Γ	Мо	98			
	Ag	107			
	Cd	111			
ĺ	Cd	114			
>	In	115			107.787
i	Sn	118			
i	Sb	123			
i	Ва	135			
È	Ce	140			
_ -	Tb	159			
Γ	Но	165			
l I	TI	203			
ŀ	Ti	205			
l I	Pb	206			
l I	Pb	207			
l i					
ļ	Pb	208			
	U	238			100.005
Ľ>	Bi N-	209			106.925
ļ	Na	23			
	Mg	24			
ļ	K	39			
ļ	Ca	43			
ļ	Fe	54			
ļ	Fe	57			
L>	Sc-1	45			
	CI	35			
	Kr	83			
	Br	81			
	Р	31			
	S	34			
	Sr	88			
	С	12			
	N	14			
	Hg	202			
	Dy	164			
	Ho-1	165			
	Er	166			
	1	127			
	QC Out	of Limits			
			Anglyta	Mass	Out of Limits Mossage
	Measurem	ен туре	Analyte	Mass	Out of Limits Message
	QC Std 7		Ti	47	
	QC Std 7		TI	203	

Sample ID: QC Std 7

Report Date/Time: Tuesday, October 27, 2015 16:55:34

Page 3

Sample ID: L1510121503

Sample Date/Time: Tuesday, October 27, 2015 17:09:25

RSD

0.8

Number of Replicates: 3 Autosampler Position: 335 Sample Description: 5

Method File: C:\NexIONData\Method\6020a.mth

Intensity

31060.1

Aliquot Volume (mL): Diluted to Volume (mL):

User Name: BKT Nexion300X Cumulative Autodilution Factor: 1 Nexion-ICP 200.8\6020

IS Analyte Mass

- 1 -		•	0.000	0.0				~g, _		O talla
	Be	9	130.0	20.4	0.1773	0.045	25.2	ug/L	2	Standard
L	Al	27	232762.7	8.0	3.4908	0.006	0.2	ug/L	403	Standard
Γ	Sc	45	17521.8	1.5				ug/L	14524	Standard
	Ti	47	2556.9	1.1	13.0242	0.207	1.6	ug/L	365	Standard
	V	51	20182.3	0.9	5.2176	0.062	1.2	ug/L	805	Standard
	Cr	52	23223.8	1.4	3.7963	0.062	1.6	ug/L	5481	Standard
	Cr	53	2571.9	5.0	3.9822	0.232	5.8	ug/L	268	Standard
	Mn	55	51867.0	0.9	14.3123	0.156	1.1	ug/L	670	Standard
	Co	59	5369.0	3.1	1.5448	0.051	3.3	ug/L	146	Standard
	Ni	60	4198.6	1.5	3.2561	0.047	1.4	ug/L	220	Standard
	Cu	65	2852.6	2.7	2.2404	0.060	2.7	ug/L	147	Standard
	Zn	66	20750.2	1.1	29.1796	0.288	1.0	ug/L	211	Standard
1:	> Ge	72	226095.4	0.2				ug/L	210599	Standard
	As	75	282.7	4.5	0.4536	0.017	3.7	ug/L	-47	Standard
	Se	82	20.6	12.2	0.1482	0.040	26.9	ug/L	15	Standard
L	Se-1	77	80.3	11.6	0.7113	0.222	31.2	ug/L	65	Standard
Γ:	> Ga	71	2215.2	5.3				mg/L	27	Standard
L	Rb	85	32331.1	1.4				ug/L	17	Standard
Γ	Υ	89	266397.6	2.6				ug/L	216672	Standard
Ŀ	> Rh	103	28.3	40.8				ug/L	18	Standard
Γ	Мо	98	93.8	7.3	0.0604	0.005	7.5	ug/L	11	Standard
	Ag	107	92.0	13.6	0.0070	0.002	35.1	ug/L	55	Standard
	Cd	111	103.5	4.9	0.0626	0.003	5.2	mg/L	7	Standard

0.0713

0.0926

0.0193

27.3003

0.0403

0.0444

1.5679

1.3766

1.5080

0.2145

0.001

0.026

0.006

0.225

0.003

0.009

0.054

0.011

0.017

0.002

8.0

28.6

29.0

8.0

8.3

3.5

8.0

1.1

1.1

20.7

ug/L

ug/L

ug/L

ug/L

ug/L

ug/L

ug/L

ug/L

ug/L

ug/L

ug/L

ug/L

ug/L

ug/L

ug/L

Concentration Results

Conc.

SD

RSD

Units

ug/L

Blank Intens.

26270

Mode

Standard

Standard

Standard

Standard

Standard

Standard

Standard

Standard

Standard

Standard

Standard

Standard

Standard

Standard

Standard

Standard

322525

631826

345

88

12

37

3

7

159

503

333509

5

Sample ID: L1510121503

Report Date/Time: Tuesday, October 27, 2015 17:11:41

242.1

1041.7

46833.3

262482.6

657909.9

3068.6

291.7

191.7

6757.2

5397.0

1218.4

23492.1

350449.6

121.3

345603.9

0.8

0.2

10.8

18.8

1.1

1.2

1.8

9.6

8.6

22.2

4.4

1.8

2.1

1.9

1.2

Page 1

Cd

In

Sn

Sb

Ва

Се

Tb

Но

ΤI

ΤI

Ph

Pb

Pb

U

Bi

114

115

118

123

135

140

159

165

203

205

206

207

208

238

209

Approved: October 28, 2015

_								_		
	Na	23	0.0					mg/L	0	Standard
	Mg	24	901.7	5.6	1.7437	0.096	5.5	mg/L	10	Standard
	K	39	46.7	16.4	0.2721	0.086	31.5	mg/L	32	Standard
	Ca	43	53.3	44.3	-7.3373	3.295	44.9	mg/L	85	Standard
	Fe	54	1058.5	13.3	2.0184	0.295	14.6	mg/L	82	Standard
	Fe	57	476.7	4.7	1.8656	0.169	9.1	mg/L	217	Standard
L>	Sc-1	45	17521.8	1.5				mg/L	14524	Standard
	CI	35	69294.8	0.9				ug/L	53193	Standard
	Kr	83	3.0	57.7				ug/L	3	Standard
	Br	81	640.0	7.2				ug/L	327	Standard
	Р	31	19258.9	1.6				ug/L	13329	Standard
	S	34	3608.8	5.6				ug/L	3234	Standard
	Sr	88	126.7	30.7				ug/L	87	Standard
	С	12	123.3	24.8				mg/L	103	Standard
	N	14	0.0					mg/L	0	Standard
	Hg	202	16.7	124.9				mg/L	3	Standard
	Dy	164	4787.1	3.7				mg/L	10	Standard
	Ho-1	165	3068.6	9.6				mg/L	3	Standard
	Er	166	3070.3	7.3				mg/L	7	Standard
	1	127	18229.3	8.8				mg/L	3612	Standard

Analyte	Mass	QC Std % Recovery	Int Std % Recovery	Spike % Recovery
「⊳ Li	6		118.236	
Be	9			
L AI	27			
「 Sc	45			
Ti	47			
V	51			
Cr	52			
Cr	53			
Mn	55			
Co	59			
Ni	60			
Cu	65			
Zn	66			
> Ge	72		107.358	
As	75			
Se	82			
L Se-1	77			
「⊳ Ga	71			

Sample ID: L1510121503

Report Date/Time: Tuesday, October 27, 2015 17:11:41

Page 2

Approved: October 28, 2015

L Rb	85			
Γ Y	89			
Ĺ> Rh	103			
Γ Mo	98			
Ag	107			
Cd	111			
Cd	114		107.156	
> In Sn	115 118		107.156	
Sh Sb				
:	123 135			
∟ Ba Γ Ce	140			
Ce _{>} Tb	159			
[> Ho	165			
TI	203			
'' Ti	205			
Pb	206			
Pb	207			
Pb	208			
Ü	238			
∟> Bi	209		105.079	
ر ا Na	23			
Mg	24			
K	39			
Ca	43			
Fe	54			
Fe	57			
_> Sc-1	45			
CI	35			
Kr	83			
Br	81			
Р	31			
S	34			
Sr	88			
С	12			
N	14			
Hg	202			
Dy	164			
Ho-1	165			
Er I	166 127			
	ut of Limits			
Measure	ement Type	Analyte Mass	Out of Limits Message	

Sample ID: L1510121503

Report Date/Time: Tuesday, October 27, 2015 17:11:41

Page 3

Sample ID: L1510121504

Sample Date/Time: Tuesday, October 27, 2015 17:12:36

Number of Replicates: 3 Autosampler Position: 336 Sample Description: 5

Method File: C:\NexIONData\Method\6020a.mth

Aliquot Volume (mL): Diluted to Volume (mL):

User Name: BKT Nexion300X Cumulative Autodilution Factor: 1

Nexion-ICP 200.8\6020

0	ncon	tration	Results	
Lα	ncen	itration	Results	

					Jonetha	ation ite.	Juita			
IS	Analyt	e Mass	Intensity	RSD	Conc.	SD	RSD	Units	Blank Intens.	Mode
Γ>	Li	6	30502.4	3.4				ug/L	26270	Standard
	Ве	9	10.0	100.0	-0.0186	0.016	86.2	ug/L	2	Standard
L	Αl	27	104737.4	0.6	1.5894	0.045	2.8	ug/L	403	Standard
Γ	Sc	45	16428.9	3.8				ug/L	14524	Standard
	Ti	47	230.0	13.7	-0.7249	0.200	27.6	ug/L	365	Standard
	٧	51	1600.1	1.8	0.1840	0.010	5.3	ug/L	805	Standard
	Cr	52	7212.4	2.0	0.3096	0.034	10.8	ug/L	5481	Standard
	Cr	53	726.7	1.1	0.7739	0.039	5.0	ug/L	268	Standard
	Mn	55	2948.3	7.9	0.4973	0.036	7.2	ug/L	670	Standard
	Co	59	304.3	6.8	0.0462	0.003	6.8	ug/L	146	Standard
	Ni	60	358.7	5.3	0.0777	0.012	15.9	ug/L	220	Standard
	Cu	65	275.3	1.6	0.0600	0.006	10.5	ug/L	147	Standard
	Zn	66	1511.4	9.4	1.5864	0.123	7.8	ug/L	211	Standard
>	Ge	72	221400.6	4.0				ug/L	210599	Standard
	As	75	50.5	66.3	0.1467	0.047	32.0	ug/L	-47	Standard
	Se	82	117.1	2.5	1.7124	0.118	6.9	ug/L	15	Standard
L	Se-1	77	147.0	5.3	2.4110	0.296	12.3	ug/L	65	Standard
Γ>	Ga	71	43.3	37.1				mg/L	27	Standard
L	Rb	85	458.3	23.0				ug/L	17	Standard
Γ	Υ	89	229291.7	3.5				ug/L	216672	Standard
L>	Rh	103	38.3	32.8				ug/L	18	Standard
Γ	Мо	98	59.3	6.7	0.0377	0.004	9.4	ug/L	11	Standard
	Ag	107	57.0	29.9	0.0001	0.003	4143.3	ug/L	55	Standard
	Cd	111	10.9	39.9	0.0009	0.003	304.9	mg/L	7	Standard
	Cd	114	32.3	99.8	0.0141	0.009	60.4	ug/L	4	Standard
>	In	115	342707.3	2.8				ug/L	322525	Standard
	Sn	118	471.7	7.1	-0.0406	0.009	21.3	ug/L	345	Standard
ļ	Sb	123	69.5	3.9	0.0066	0.000	2.9	ug/L	88	Standard
Ĺ	Ва	135	10695.8	1.4	6.2724	0.189	3.0	ug/L	12	Standard
!	Се	140	2706.9	22.6				ug/L	37	Standard
Ĺ>	Tb	159	650533.5	2.8				ug/L	631826	Standard
!	Но	165	45.0	66.7				ug/L	3	Standard
!	TI	203	36.0	54.7	0.0026	0.003	105.1	ug/L	7	Standard
!	TI	205	20.0	50.0	0.0069	0.002	33.7	ug/L	7	Standard
!	Pb	206	280.7	13.2	0.0080	0.008	98.9	ug/L	159	Standard
	Pb	207	227.3	18.5	0.0032	0.010	300.0	ug/L	120	Standard
	Pb	208	909.7	6.5	0.0068	0.002	29.3	ug/L	503	Standard
	U	238	21.0	60.8	-0.0008	0.002	286.0	ug/L	5	Standard
L>	Bi	209	348433.4	3.2				ug/L	333509	Standard

Sample ID: L1510121504

Report Date/Time: Tuesday, October 27, 2015 17:14:53

Page 1

Approved: October 28, 2015

_										
	Na	23	0.0					mg/L	0	Standard
	Mg	24	1725.1	1.0	3.6041	0.170	4.7	mg/L	10	Standard
	K	39	18.3	31.5	-0.0074	0.071	964.3	mg/L	32	Standard
	Ca	43	60.0	8.3	-5.9392	0.664	11.2	mg/L	85	Standard
	Fe	54	64.3	28.9	0.0051	0.036	698.9	mg/L	82	Standard
	Fe	57	251.7	16.1	0.2403	0.407	169.3	mg/L	217	Standard
L>	Sc-1	45	16428.9	3.8				mg/L	14524	Standard
	CI	35	66438.7	0.7				ug/L	53193	Standard
	Kr	83	5.7	10.2				ug/L	3	Standard
	Br	81	516.7	11.0				ug/L	327	Standard
	Р	31	16604.1	3.4				ug/L	13329	Standard
	S	34	3508.7	4.8				ug/L	3234	Standard
	Sr	88	136.7	18.8				ug/L	87	Standard
	С	12	136.7	15.2				mg/L	103	Standard
	N	14	0.0					mg/L	0	Standard
	Hg	202	3.3	173.2				mg/L	3	Standard
	Dy	164	61.1	22.5				mg/L	10	Standard
	Ho-1	165	45.0	66.7				mg/L	3	Standard
	Er	166	46.7	99.0				mg/L	7	Standard
	I	127	10473.6	1.5				mg/L	3612	Standard

Analyte		QC Std % Recovery	Int Std % Recovery	Spike % Recovery
「> Li	6		116.113	
Be	9			
L AI	27			
「 Sc	45			
Ti	47			
V	51			
Cr	52			
Cr	53			
Mn	55			
Co	59			
Ni	60			
Cu	65			
Zn	66			
> Ge	72		105.129	
As	75			
Se	82			
Se-1	77			
「̄> Ga	71			

Sample ID: L1510121504

Report Date/Time: Tuesday, October 27, 2015 17:14:53

Page 2

Approved: October 28, 2015

L Rb 85 √ 89 L> Rh 103 √ Mo 98 Ag 107 Cd 111 Cd 114 > In 115 Sn 118 Sb 123 Ba 135 Ce 140 L> Tb 159 Ho 165 TI 203 TI 205 Pb 206 Pb 207			106.258
Pb 208 U 238			
_> Bi 209			104.475
「 Na 23 │ Mg 24			
K 39			
Ca 43			
Fe 54			
Fe 57			
L> Sc-1 45 Cl 35			
Kr 83			
Br 81			
P 31			
S 34 Sr 88			
C 12			
N 14			
Hg 202			
Dy 164			
Ho-1 165 Er 166			
I 127			
QC Out of Limits			
Measurement Type	Analyte M	lass	Out of Limits Message
Ti 47 Lower	Ti	47	

Sample ID: L1510121504Report Date/Time: Tuesday, October 27, 2015 17:14:53

Page 3

Sample ID: L1510121505

Sample Date/Time: Tuesday, October 27, 2015 17:15:47

Number of Replicates: 3 Autosampler Position: 337 Sample Description: 5

Method File: C:\NexIONData\Method\6020a.mth

Aliquot Volume (mL): Diluted to Volume (mL):

User Name: BKT Nexion300X Cumulative Autodilution Factor: 1

Nexion-ICP 200.8\6020

Concentratio	n Resu	lts

IS	Analyt	e Mass	Intensity	RSD	Conc.	SD	RSD	Units	Blank Intens.	Mode
Γ>	Li	6	29702.4	3.7	Oone.	OB	ROD	ug/L	26270	Standard
	Be	9	11.7	89.2	-0.0146	0.018	125.0	ug/L	2	Standard
i	Al	27	108169.7	0.1	1.6874	0.065	3.8	ug/L	403	Standard
ř	Sc	45	16195.3	1.9		0.000	0.0	ug/L	14524	Standard
i	Ti	47	232.7	11.5	-0.6505	0.192	29.5	ug/L	365	Standard
i	٧	51	1671.6	3.7	0.2229	0.030	13.4	ug/L	805	Standard
í	Cr	52	7254.7	1.5	0.3856	0.057	14.9	ug/L	5481	Standard
i	Cr	53	676.7	2.8	0.7346	0.084	11.4	ug/L	268	Standard
i	Mn	55	3509.4	2.7	0.7029	0.068	9.6	ug/L	670	Standard
ĺ	Co	59	294.7	4.9	0.0472	0.008	16.9	ug/L	146	Standard
	Ni	60	406.0	3.6	0.1321	0.020	15.4	ug/L	220	Standard
	Cu	65	477.3	3.3	0.2523	0.030	12.0	ug/L	147	Standard
	Zn	66	1666.4	0.7	1.9186	0.114	5.9	ug/L	211	Standard
>	Ge	72	212795.5	4.1				ug/L	210599	Standard
	As	75	63.0	80.0	0.1655	0.070	42.4	ug/L	-47	Standard
	Se	82	125.9	12.1	1.9275	0.172	8.9	ug/L	15	Standard
L	Se-1	77	119.7	6.3	1.8558	0.319	17.2	ug/L	65	Standard
Γ>	Ga	71	68.3	16.9				mg/L	27	Standard
L	Rb	85	488.3	12.5				ug/L	17	Standard
Γ	Υ	89	221244.2	4.6				ug/L	216672	Standard
L>	Rh	103	13.3	43.3				ug/L	18	Standard
Γ	Мо	98	56.2	1.9	0.0367	0.001	1.9	ug/L	11	Standard
ļ	Ag	107	52.3	21.7	-0.0005	0.002	384.9	ug/L	55	Standard
ļ	Cd	111	11.5	25.0	0.0017	0.002	123.0	mg/L	7	Standard
ļ	Cd	114	26.7	20.3	0.0130	0.002	12.7	ug/L	4	Standard
>	ln	115	332825.8	3.4				ug/L	322525	Standard
!	Sn	118	495.0	8.3	-0.0314	0.013	41.7	ug/L	345	Standard
!	Sb	123	69.5	19.1	0.0071	0.003	43.1	ug/L	88	Standard
Ļ	Ва	135	10685.4	0.7	6.4555	0.249	3.9	ug/L	12	Standard
	Ce	140 159	2313.5 622020.4	3.8 2.3				ug/L	37 631826	Standard
[>	Tb	165	622020.4 40.0	2.3 12.5				ug/L	631826	Standard Standard
1	Ho TI	203	40.0 25.3	8.2	0.0012	0.000	33.5	ug/L ug/L	3 7	Standard
-	TI	205	18.3	31.5	0.0012	0.000	19.6	ug/L ug/L	7	Standard
	Pb	206	281.3	9.7	0.0066	0.001	76.7	ug/L ug/L	7 159	Standard
	Pb	207	231.3	5.2	0.0066	0.008	68.3	ug/L ug/L	120	Standard
i	Pb	208	986.0	4.0	0.0142	0.004	19.5	ug/L	503	Standard
i	U	238	20.7	17.0	-0.0007	0.003	90.4	ug/L	505	Standard
>	о Ві	209	337038.3	2.3	-0.0007	0.001	30. 1	ug/L ug/L	333509	Standard
L>	اد	200	337 030.3	2.5				ug/L	333309	Standard

Sample ID: L1510121505

Report Date/Time: Tuesday, October 27, 2015 17:18:04

Page 1

Γ	Na	23	3.3	173.2				mg/L	0	Standard
	Mg	24	1863.4	4.8	3.9516	0.264	6.7	mg/L	10	Standard
	K	39	25.0	72.1	0.0688	0.200	291.4	mg/L	32	Standard
	Ca	43	71.7	33.0	-4.1595	3.294	79.2	mg/L	85	Standard
	Fe	54	69.0	14.1	0.0180	0.019	103.5	mg/L	82	Standard
	Fe	57	236.7	8.8	0.1358	0.213	156.5	mg/L	217	Standard
L>	Sc-1	45	16195.3	1.9				mg/L	14524	Standard
	CI	35	67865.7	0.4				ug/L	53193	Standard
	Kr	83	0.7	173.2				ug/L	3	Standard
	Br	81	683.3	13.6				ug/L	327	Standard
	Р	31	16458.9	4.4				ug/L	13329	Standard
	S	34	3573.8	4.7				ug/L	3234	Standard
	Sr	88	95.0	24.1				ug/L	87	Standard
	С	12	150.0	11.5				mg/L	103	Standard
	N	14	0.0					mg/L	0	Standard
	Hg	202	3.3	173.2				mg/L	3	Standard
	Dy	164	61.3	33.7				mg/L	10	Standard
	Ho-1	165	40.0	12.5				mg/L	3	Standard
	Er	166	43.3	13.3				mg/L	7	Standard
	I	127	9743.1	2.1				mg/L	3612	Standard

Analyte	Mass	QC Std % Recovery	Int Std % Recovery	Spike % Recovery
「> Li	6		113.068	
Be	9			
L AI	27			
「 Sc	45			
Ti	47			
V	51			
Cr	52			
Cr	53			
Mn	55			
Co	59			
Ni	60			
Cu	65			
Zn	66			
> Ge	72		101.043	
As	75			
Se	82			
L Se-1	77			
「⊳ Ga	71			

Sample ID: L1510121505

Report Date/Time: Tuesday, October 27, 2015 17:18:04

Page 2

Approved: October 28, 2015

∟ Rb	85			
ΓY	89			
$\lfloor_>$ Rh	103			
Г Мо	98			
Ag	107			
Cd	111			
Cd	114			
 > In	115			103.194
Sn	118			
Sb	123			
L Ba	135			
Ce	140			
_> Tb	159			
Γ Ho	165			
j тı	203			
j тı	205			
Pb	206			
Pb	207			
Pb	208			
į U	238			
Ĺ> Bi	209			101.058
Г Na	23			
Mg	24			
K	39			
Ca	43			
Fe	54			
Fe	57			
L> Sc-1	45			
CI	35			
Kr	83			
Br	81			
Р	31			
S	34			
Sr	88			
С	12			
N	14			
Hg	202			
Dy	164			
Ho-1	165			
Er	166			
I	127			
QC Oı	it of Limits			
Measure	ment Type	Analyte	Mass	Out of Limits Message
Ti 47 Lov		Ti	47	ŭ

Sample ID: L1510121505

Report Date/Time: Tuesday, October 27, 2015 17:18:04

Page 3

Sample ID: L1510121506

Sample Date/Time: Tuesday, October 27, 2015 17:18:59

Number of Replicates: 3 Autosampler Position: 338 Sample Description: 5

Method File: C:\NexIONData\Method\6020a.mth

Aliquot Volume (mL): Diluted to Volume (mL):

User Name: BKT Nexion300X Cumulative Autodilution Factor: 1

Nexion-ICP 200.8\6020

		Concentration Results											
IS	Analy	te Mass	Intensity	RSD	Conc.	SD	RSD	Units	Blank Intens.	Mode			
Γ>	•	6	28797.4	4.0				ug/L	26270	Standard			
Ĺ	Ве	9	6.7	114.6	-0.0234	0.013	54.5	ug/L	2	Standard			
Ĺ	ΑI	27	216367.5	1.6	3.5026	0.110	3.1	ug/L	403	Standard			
Γ	Sc	45	15813.2	1.9				ug/L	14524	Standard			
	Ti	47	130.7	10.9	-1.3252	0.090	6.8	ug/L	365	Standard			
	V	51	1046.2	11.7	0.0306	0.033	108.3	ug/L	805	Standard			
	Cr	52	6600.1	1.9	0.1738	0.041	23.7	ug/L	5481	Standard			
	Cr	53	1153.4	3.9	1.5402	0.065	4.2	ug/L	268	Standard			
	Mn	55	5830.1	2.4	1.3333	0.055	4.2	ug/L	670	Standard			
	Co	59	186.0	5.6	0.0106	0.003	30.0	ug/L	146	Standard			
	Ni	60	265.0	4.9	-0.0012	0.012	948.0	ug/L	220	Standard			
	Cu	65	186.3	13.7	-0.0171	0.021	123.2	ug/L	147	Standard			
	Zn	66	1375.4	3.7	1.3928	0.064	4.6	ug/L	211	Standard			
>		72	221042.8	0.9				ug/L	210599	Standard			
	As	75	22.8	114.2	0.1090	0.035	32.4	ug/L	-47	Standard			
ļ	Se	82	22.6	21.8	0.1882	0.082	43.3	ug/L	15	Standard			
Ĺ	Se-1	77	84.7	10.7	0.8637	0.226	26.2	ug/L	65	Standard			
>		71	43.3	29.0				mg/L	27	Standard			
Ĺ	Rb	85	8840.9	2.1				ug/L	17	Standard			
!	Υ	89	224308.4	1.5				ug/L	216672	Standard			
Į>		103	35.0	62.3				ug/L	18	Standard			
- !	Мо	98	428.5	6.5	0.2935	0.023	7.7	ug/L	11	Standard			
	Ag	107	50.0	18.3	-0.0010	0.002	194.2	ug/L	55	Standard			
-	Cd	111	10.1	40.2	0.0006	0.003	484.2	mg/L	7	Standard			
-	Cd	114	11.6 334986.5	85.3 1.3	0.0087	0.003	32.7	ug/L	4	Standard			
>	In Sn	115	334986.5 498.3	1.3 8.2	-0.0316	0.010	31.0	ug/L	322525 345	Standard Standard			
1	Sb	118 123	496.3 49.0	0.2 7.4	0.0018	0.010	59.1	ug/L ug/L	345 88	Standard			
	Ba	135	49.0 15745.2	0.7	9.4551	0.001	1.8	ug/L ug/L	12	Standard			
L	Ce	140	373.3	10.4	3.4331	0.109	1.0	ug/L ug/L	37	Standard			
		159	637971.7	0.9				ug/L	631826	Standard			
Γ	Ho	165	15.0	88.2				ug/L	3	Standard			
i	TI	203	101.3	13.9	0.0127	0.002	15.8	ug/L	7	Standard			
i	TI	205	66.7	30.3	0.0175	0.004	25.4	ug/L	7	Standard			
i	Pb	206	222.7	8.7	-0.0046	0.005	99.7	ug/L	159	Standard			
i	Pb	207	176.0	9.9	-0.0091	0.005	53.7	ug/L	120	Standard			
i	Pb	208	776.0	5.5	-0.0008	0.003	374.7	ug/L	503	Standard			
Ĺ	U	238	87.3	13.6	0.0116	0.002	18.0	ug/L	5	Standard			
Ĺ>	Bi	209	339797.6	0.9				ug/L	333509	Standard			

Sample ID: L1510121506

Report Date/Time: Tuesday, October 27, 2015 17:21:16

Page 1

Approved: October 28, 2015

Page 553

L15101055 / Revision: 0 / 760 total pages

Γ	Na	23	1.7	173.2				mg/L	0	Standard
	Mg	24	5861.1	1.1	12.8116	0.257	2.0	mg/L	10	Standard
	K	39	41.7	38.6	0.2682	0.194	72.1	mg/L	32	Standard
	Ca	43	70.0	28.6	-4.0813	3.168	77.6	mg/L	85	Standard
	Fe	54	69.2	26.1	0.0222	0.040	180.2	mg/L	82	Standard
	Fe	57	243.3	23.1	0.2419	0.496	205.0	mg/L	217	Standard
L>	Sc-1	45	15813.2	1.9				mg/L	14524	Standard
	CI	35	67924.6	1.3				ug/L	53193	Standard
	Kr	83	5.3	84.5				ug/L	3	Standard
	Br	81	1423.4	11.2				ug/L	327	Standard
	Р	31	15462.9	0.8				ug/L	13329	Standard
	S	34	3592.1	3.3				ug/L	3234	Standard
	Sr	88	148.3	10.8				ug/L	87	Standard
	С	12	143.3	44.9				mg/L	103	Standard
	N	14	6.7	173.2				mg/L	0	Standard
	Hg	202	10.0	100.0				mg/L	3	Standard
	Dy	164	16.2	99.2				mg/L	10	Standard
	Ho-1	165	15.0	88.2				mg/L	3	Standard
	Er	166	10.0	173.2				mg/L	7	Standard
	I	127	23843.8	3.7				mg/L	3612	Standard

Analyte	Mass	QC Std % Recovery	Int Std % Recovery	Spike % Recovery
「⊳ Li	6		109.622	
Be	9			
L AI	27			
「 Sc	45			
Ti	47			
V	51			
Cr	52			
Cr	53			
Mn	55			
Co	59			
Ni	60			
Cu	65			
Zn	66			
> Ge	72		104.959	
As	75			
Se	82			
∟ Se-1	77			
√̄> Ga	71			

Sample ID: L1510121506

Report Date/Time: Tuesday, October 27, 2015 17:21:16

Page 2

Approved: October 28, 2015

L Rb 85 √ 89 L> Rh 103 √ Mo 98 Ag 107 Cd 111 Cd 114 In 115 Sn 118 Sb 123 L Ba 135 √ Ce 140 L> Tb 159 √ Ho 165 √ TI 203 √ TI 205		103.864	
Pb 206 Pb 207 Pb 208 U 238 Si 209 Na 23 Mg 24 K 39 Ca 43 Fe 54 Fe 57 Sc-1 45 Cl 35 Kr 83 Br 81		101.885	
P 31 S 34 Sr 88 C 12 N 14 Hg 202 Dy 164 Ho-1 165 Er 166 I 127 QC Out of Limits Measurement Type Ti 47 Lower	Analyte Mass Ti 47	Out of Limits Message	

Sample ID: L1510121506Report Date/Time: Tuesday, October 27, 2015 17:21:16

Page 3

Sample ID: L1510121507

Sample Date/Time: Tuesday, October 27, 2015 17:22:10

Number of Replicates: 3 Autosampler Position: 339 Sample Description: 5

Method File: C:\NexIONData\Method\6020a.mth

Aliquot Volume (mL): Diluted to Volume (mL):

User Name: BKT Nexion300X Cumulative Autodilution Factor: 1

Nexion-ICP 200.8\6020

\sim	ncon	tration	Results	
υo	ncer	itration	Results	

					Ooncentia	tion ites	uito			
IS	Analyt	e Mass	Intensity	RSD	Conc.	SD	RSD	Units	Blank Intens.	Mode
Γ>	Li	6	30256.9	2.6				ug/L	26270	Standard
	Be	9	8.3	34.6	-0.0209	0.005	22.6	ug/L	2	Standard
L	Αl	27	510768.2	1.8	7.8907	0.108	1.4	ug/L	403	Standard
Γ	Sc	45	16255.4	1.6				ug/L	14524	Standard
	Ti	47	143.0	6.7	-1.2426	0.062	5.0	ug/L	365	Standard
	٧	51	2002.6	7.2	0.3015	0.043	14.1	ug/L	805	Standard
	Cr	52	6816.2	1.5	0.2366	0.030	12.9	ug/L	5481	Standard
	Cr	53	823.4	11.9	0.9626	0.181	18.8	ug/L	268	Standard
	Mn	55	1697.4	1.7	0.1423	0.011	7.7	ug/L	670	Standard
	Co	59	235.7	5.0	0.0263	0.003	13.3	ug/L	146	Standard
	Ni	60	289.3	9.7	0.0217	0.024	109.0	ug/L	220	Standard
	Cu	65	232.0	6.5	0.0245	0.012	49.8	ug/L	147	Standard
	Zn	66	1121.4	3.7	1.0352	0.064	6.2	ug/L	211	Standard
>	Ge	72	219000.7	0.6				ug/L	210599	Standard
	As	75	274.5	13.4	0.4543	0.048	10.6	ug/L	-47	Standard
	Se	82	490.3	2.9	7.8040	0.215	2.8	ug/L	15	Standard
L	Se-1	77	372.3	2.3	8.0875	0.181	2.2	ug/L	65	Standard
Γ>	Ga	71	165.0	10.5				mg/L	27	Standard
L	Rb	85	613.3	2.9				ug/L	17	Standard
Γ	Υ	89	225402.9	1.8				ug/L	216672	Standard
L>	Rh	103	26.7	57.3				ug/L	18	Standard
Γ	Мо	98	93.5	6.0	0.0608	0.003	5.6	ug/L	11	Standard
	Ag	107	60.3	28.2	0.0008	0.003	414.7	ug/L	55	Standard
	Cd	111	23.2	20.4	0.0093	0.003	34.6	mg/L	7	Standard
	Cd	114	37.7	18.5	0.0158	0.002	12.6	ug/L	4	Standard
>	In	115	341864.2	0.7				ug/L	322525	Standard
	Sn	118	458.3	16.9	-0.0437	0.018	40.7	ug/L	345	Standard
	Sb	123	100.5	8.4	0.0144	0.002	14.3	ug/L	88	Standard
L	Ва	135	8276.6	1.0	4.8579	0.054	1.1	ug/L	12	Standard
Γ	Ce	140	855.0	21.7				ug/L	37	Standard
L>	Tb	159	646488.7	1.2				ug/L	631826	Standard
Γ	Но	165	16.7	62.4				ug/L	3	Standard
	TI	203	91.7	29.6	0.0110	0.004	34.9	ug/L	7	Standard
	TI	205	43.3	46.6	0.0121	0.005	37.6	ug/L	7	Standard
	Pb	206	241.0	7.3	-0.0011	0.004	315.0	ug/L	159	Standard
	Pb	207	227.7	7.0	0.0039	0.004	94.0	ug/L	120	Standard
	Pb	208	866.0	9.5	0.0043	0.005	111.4	ug/L	503	Standard
	U	238	215.3	8.5	0.0347	0.003	8.1	ug/L	5	Standard
L>	Bi	209	345672.9	1.4				ug/L	333509	Standard

Sample ID: L1510121507

Report Date/Time: Tuesday, October 27, 2015 17:24:27

Page 1

Approved: October 28, 2015

Page 556

L15101055 / Revision: 0 / 760 total pages

Γ	Na	23	0.0					mg/L	0	Standard
	Mg	24	3857.2	7.2	8.1810	0.471	5.8	mg/L	10	Standard
	K	39	25.0	34.6	0.0681	0.098	144.5	mg/L	32	Standard
	Ca	43	71.7	4.0	-4.1630	0.360	8.6	mg/L	85	Standard
	Fe	54	82.7	14.3	0.0473	0.023	49.2	mg/L	82	Standard
	Fe	57	226.7	7.1	0.0411	0.127	308.7	mg/L	217	Standard
L>	Sc-1	45	16255.4	1.6				mg/L	14524	Standard
	CI	35	69363.1	0.2				ug/L	53193	Standard
	Kr	83	3.7	56.8				ug/L	3	Standard
	Br	81	1600.1	7.4				ug/L	327	Standard
	Р	31	16193.7	2.2				ug/L	13329	Standard
	S	34	3432.1	4.4				ug/L	3234	Standard
	Sr	88	103.3	26.6				ug/L	87	Standard
	С	12	203.3	36.9				mg/L	103	Standard
	N	14	0.0					mg/L	0	Standard
	Hg	202	3.3	173.2				mg/L	3	Standard
	Dy	164	5.7	94.7				mg/L	10	Standard
	Ho-1	165	16.7	62.4				mg/L	3	Standard
	Er	166	20.0	86.6				mg/L	7	Standard
	I	127	13224.1	3.9				mg/L	3612	Standard

Analyte		QC Std % Recovery	Int Std % Recovery	Spike % Recovery
「> Li	6		115.178	
Be	9			
L AI	27			
「 Sc	45			
Ti	47			
V	51			
Cr	52			
Cr	53			
Mn	55			
Co	59			
Ni	60			
Cu	65			
Zn	66			
> Ge	72		103.990	
As	75			
Se	82			
Se-1	77			
「̄> Ga	71			

Sample ID: L1510121507

Report Date/Time: Tuesday, October 27, 2015 17:24:27

Page 2

Approved: October 28, 2015

∟ Rb	85			
ΓΥ	89			
$\lfloor_>$ Rh	103			
Г Мо	98			
Ag	107			
Cd	111			
Cd	114			
> In	115			105.996
Sn	118			
Sb	123			
Ва	135			
¯ Ce	140			
_ _> Tb	159			
Γ Ho	165			
j тı	203			
j тı	205			
Pb	206			
Pb	207			
Pb	208			
į U	238			
Ĺ _{>} Bi	209			103.647
- Na	23			
Mg	24			
K	39			
Ca	43			
Fe	54			
Fe	57			
L> Sc-1	45			
CI	35			
Kr	83			
Br	81			
Р	31			
S	34			
Sr	88			
С	12			
N	14			
Hg	202			
Dy	164			
Ho-1	165			
Er	166			
I	127			
QC Oi	ıt of Limits			
	ment Type	Analyte	Mass	Out of Limits Message
Ti 47 Lov		Ti	47	

Sample ID: L1510121507

Report Date/Time: Tuesday, October 27, 2015 17:24:27

Page 3

Sample ID: L1510121509

Sample Date/Time: Tuesday, October 27, 2015 17:25:21

Number of Replicates: 3 Autosampler Position: 340 Sample Description: 5

Method File: C:\NexIONData\Method\6020a.mth

Aliquot Volume (mL): Diluted to Volume (mL):

User Name: BKT Nexion300X Cumulative Autodilution Factor: 1

Nexion-ICP 200.8\6020

Concentration	Results
---------------	---------

IS	Analyte Mass		Intensity	RSD	Conc.	SD	RSD	Units	Blank Intens.	Mode
Γ>	Li	6	30794.6	1.0				ug/L	26270	Standard
	Be	9	16.7	62.4	-0.0075	0.017	224.4	ug/L	2	Standard
L	Al	27	33854.4	0.2	0.4946	0.005	1.0	ug/L	403	Standard
Γ	Sc	45	15494.6	0.7				ug/L	14524	Standard
	Ti	47	173.0	9.6	-1.0533	0.117	11.1	ug/L	365	Standard
	٧	51	1255.8	7.7	0.0935	0.022	23.9	ug/L	805	Standard
	Cr	52	7430.5	0.4	0.3840	0.031	8.1	ug/L	5481	Standard
	Cr	53	615.0	9.1	0.5893	0.086	14.5	ug/L	268	Standard
	Mn	55	11231.2	1.2	2.9404	0.012	0.4	ug/L	670	Standard
	Co	59	1008.0	1.7	0.2639	0.001	0.3	ug/L	146	Standard
	Ni	60	718.7	7.2	0.3922	0.045	11.4	ug/L	220	Standard
	Cu	65	253.0	2.9	0.0439	0.006	13.9	ug/L	147	Standard
	Zn	66	1345.4	0.3	1.3768	0.024	1.7	ug/L	211	Standard
>	Ge	72	218000.0	1.5				ug/L	210599	Standard
	As	75	18.4	143.3	0.1031	0.036	35.3	ug/L	-47	Standard
	Se	82	26.2	23.3	0.2504	0.097	38.6	ug/L	15	Standard
L	Se-1	77	69.3	18.8	0.5106	0.353	69.1	ug/L	65	Standard
Γ>	Ga	71	45.0	11.1				mg/L	27	Standard
L	Rb	85	540.0	6.4				ug/L	17	Standard
Γ	Υ	89	228339.5	1.1				ug/L	216672	Standard
L>	Rh	103	8.3	91.7				ug/L	18	Standard
Γ	Мо	98	14.6	38.7	0.0077	0.004	49.4	ug/L	11	Standard
	Ag	107	67.0	19.1	0.0024	0.003	108.4	ug/L	55	Standard
	Cd	111	14.6	38.8	0.0036	0.004	102.7	mg/L	7	Standard
	Cd	114	27.7	75.3	0.0132	0.006	45.5	ug/L	4	Standard
>	In	115	336328.5	1.6				ug/L	322525	Standard
	Sn	118	456.7	41.6	-0.0426	0.044	104.2	ug/L	345	Standard
	Sb	123	47.8	19.5	0.0015	0.003	176.8	ug/L	88	Standard
Ĺ	Ва	135	8828.2	0.3	5.2699	0.096	1.8	ug/L	12	Standard
ļ	Ce	140	2841.9	2.5				ug/L	37	Standard
<u>_</u> >	Tb	159	642811.0	1.4				ug/L	631826	Standard
ļ	Но	165	78.3	22.4				ug/L	3	Standard
ļ	TI	203	22.3	22.5	0.0006	0.001	118.4	ug/L	7	Standard
ļ	TI	205	6.7	114.6	0.0039	0.002	42.9	ug/L	7	Standard
ļ	Pb	206	264.3	3.8	0.0045	0.002	47.1	ug/L	159	Standard
ļ	Pb	207	206.7	2.7	-0.0018	0.001	79.0	ug/L	120	Standard
ļ	Pb	208	868.7	1.4	0.0045	0.001	31.3	ug/L	503	Standard
!	U	238	18.0	34.7	-0.0013	0.001	88.5	ug/L	5	Standard
<u>_</u> >	Bi	209	346162.3	1.1				ug/L	333509	Standard

Sample ID: L1510121509

Report Date/Time: Tuesday, October 27, 2015 17:27:38

Page 1

Approved: October 28, 2015

_										
	Na	23	1.7	173.2				mg/L	0	Standard
	Mg	24	901.7	5.8	1.9777	0.131	6.6	mg/L	10	Standard
	K	39	20.0	90.1	0.0225	0.209	930.3	mg/L	32	Standard
	Ca	43	50.0	30.0	-6.9486	2.230	32.1	mg/L	85	Standard
	Fe	54	67.9	11.4	0.0225	0.018	79.7	mg/L	82	Standard
	Fe	57	251.7	10.9	0.3587	0.260	72.5	mg/L	217	Standard
L>	Sc-1	45	15494.6	0.7				mg/L	14524	Standard
	CI	35	66708.5	0.8				ug/L	53193	Standard
	Kr	83	5.3	65.8				ug/L	3	Standard
	Br	81	536.7	6.0				ug/L	327	Standard
	Р	31	16624.1	1.4				ug/L	13329	Standard
	S	34	3420.4	4.9				ug/L	3234	Standard
	Sr	88	128.3	22.2				ug/L	87	Standard
	С	12	223.3	6.8				mg/L	103	Standard
	N	14	0.0					mg/L	0	Standard
	Hg	202	6.7	86.6				mg/L	3	Standard
	Dy	164	83.5	34.4				mg/L	10	Standard
	Ho-1	165	78.3	22.4				mg/L	3	Standard
	Er	166	66.7	37.7				mg/L	7	Standard
	1	127	18928.5	2.3				mg/L	3612	Standard

Analyte		QC Std % Recovery	Int Std % Recovery	Spike % Recovery
「> Li	6		117.225	
Be	9			
L AI	27			
「 Sc	45			
Ti	47			
V	51			
Cr	52			
Cr	53			
Mn	55			
Co	59			
Ni	60			
Cu	65			
Zn	66			
> Ge	72		103.514	
As	75			
Se	82			
∟ Se-1	77			
「̄> Ga	71			

Sample ID: L1510121509

Report Date/Time: Tuesday, October 27, 2015 17:27:38

Page 2

Approved: October 28, 2015

└ Rb 「 Y	85			
⊢ f L> Rh	89 103			
L> Mo	98			
Ag	107			
	111			
Cd	114			
	115			104.280
Sn	118			101.200
Sb	123			
L Ba	135			
Ce	140			
_> Tb	159			
Γ Ho	165			
j TI	203			
į ΤΙ	205			
Pb	206			
Pb	207			
Pb	208			
U	238			
∟> Bi	209			103.794
Г Nа	23			
Mg	24			
K	39			
Ca	43			
Fe	54 			
Fe	57			
L> Sc-1	45 25			
Cl	35			
Kr Dr	83			
Br	81			
P S	31 34			
Sr	88			
C	12			
N	14			
Hg	202			
Dy	164			
Ho-1	165			
Er	166			
I.	127			
=	ıt of Limits			
		Analyta	Mass	Out of Limita Managa
	ment Type	Analyte Ti	Mass	Out of Limits Message
Ti 47 Lower		11	47	

Sample ID: L1510121509

Report Date/Time: Tuesday, October 27, 2015 17:27:38

Page 3

Sample ID: L1510121504

Sample Date/Time: Tuesday, October 27, 2015 17:33:51

Number of Replicates: 3 Autosampler Position: 352 Sample Description: 1

Method File: C:\NexIONData\Method\6020a.mth

Aliquot Volume (mL): Diluted to Volume (mL):

User Name: BKT Nexion300X Cumulative Autodilution Factor: 1

Nexion-ICP 200.8\6020

					Concential	ion ites	uito			
IS	Analyt	e Mass	Intensity	RSD	Conc.	SD	RSD	Units	Blank Intens.	Mode
Γ>	Li	6	32656.9	5.5				ug/L	26270	Standard
	Be	9	10.0	50.0	-0.0195	0.007	36.7	ug/L	2	Standard
L	Al	27	524139.9	2.3	7.5219	0.604	8.0	ug/L	403	Standard
Γ	Sc	45	17036.2	3.6				ug/L	14524	Standard
	Ti	47	592.7	1.5	1.4352	0.175	12.2	ug/L	365	Standard
	V	51	4098.0	5.0	0.8683	0.121	14.0	ug/L	805	Standard
	Cr	52	10794.5	3.2	1.0952	0.213	19.5	ug/L	5481	Standard
	Cr	53	1248.4	12.0	1.6892	0.298	17.6	ug/L	268	Standard
	Mn	55	10604.0	3.7	2.6866	0.287	10.7	ug/L	670	Standard
	Co	59	744.7	4.7	0.1780	0.023	13.1	ug/L	146	Standard
	Ni	60	785.0	3.6	0.4334	0.050	11.5	ug/L	220	Standard
	Cu	65	435.3	2.4	0.1952	0.024	12.1	ug/L	147	Standard
	Zn	66	1263.4	2.4	1.2104	0.132	10.9	ug/L	211	Standard
>	Ge	72	223778.3	5.5				ug/L	210599	Standard
	As	75	377.6	9.8	0.5841	0.022	3.9	ug/L	-47	Standard
	Se	82	580.9	2.3	9.1028	0.702	7.7	ug/L	15	Standard
L	Se-1	77	414.7	10.1	8.9852	1.621	18.0	ug/L	65	Standard
Γ>	Ga	71	130.0	27.7				mg/L	27	Standard
L	Rb	85	1810.1	6.3				ug/L	17	Standard
Γ	Υ	89	237371.1	3.1				ug/L	216672	Standard
L>	Rh	103	18.3	41.7				ug/L	18	Standard
Γ	Мо	98	198.3	4.1	0.1291	0.009	7.0	ug/L	11	Standard
	Ag	107	49.3	18.4	-0.0015	0.002	147.8	ug/L	55	Standard
	Cd	111	30.6	19.9	0.0138	0.003	24.4	mg/L	7	Standard
	Cd	114	74.1	12.0	0.0253	0.002	6.2	ug/L	4	Standard
>	In	115	349402.5	4.6				ug/L	322525	Standard
	Sn	118	470.0	10.8	-0.0427	0.017	40.2	ug/L	345	Standard
	Sb	123	153.0	6.0	0.0267	0.001	3.2	ug/L	88	Standard
L	Ва	135	52449.3	8.0	30.2952	1.651	5.4	ug/L	12	Standard
Γ	Ce	140	10335.2	2.5				ug/L	37	Standard
_>	Tb	159	652162.8	5.8				ug/L	631826	Standard
Γ	Но	165	100.0	18.0				ug/L	3	Standard
	TI	203	64.3	2.4	0.0068	0.001	7.8	ug/L	7	Standard
	TI	205	51.7	62.2	0.0136	0.007	49.1	ug/L	7	Standard
	Pb	206	608.0	6.8	0.0875	0.018	20.8	ug/L	159	Standard
ļ	Pb	207	473.7	2.3	0.0691	0.009	12.7	ug/L	120	Standard
ļ	Pb	208	2068.1	3.1	0.0842	0.011	12.7	ug/L	503	Standard
ļ	U	238	96.0	5.8	0.0127	0.001	5.6	ug/L	5	Standard
L>	Bi	209	349658.6	5.6				ug/L	333509	Standard

Sample ID: L1510121504

Report Date/Time: Tuesday, October 27, 2015 17:36:08

Page 1

Approved: October 28, 2015

Γ	Na	23	1.7	173.2				mg/L	0	Standard
i	Mg	24	8834.2	1.0	17.9554	0.803	4.5	mg/L	10	Standard
İ	ĸ	39	33.3	52.7	0.1431	0.182	127.2	mg/L	32	Standard
ĺ	Ca	43	70.0	21.4	-4.8481	2.128	43.9	mg/L	85	Standard
ĺ	Fe	54	154.2	11.7	0.1895	0.046	24.0	mg/L	82	Standard
ĺ	Fe	57	290.0	12.1	0.4680	0.307	65.6	mg/L	217	Standard
Ĺ>	Sc-1	45	17036.2	3.6				mg/L	14524	Standard
	CI	35	74398.9	1.2				ug/L	53193	Standard
	Kr	83	3.3	45.8				ug/L	3	Standard
	Br	81	1923.5	10.7				ug/L	327	Standard
	Р	31	23326.3	3.1				ug/L	13329	Standard
	S	34	3277.0	3.5				ug/L	3234	Standard
	Sr	88	120.0	7.2				ug/L	87	Standard
	С	12	296.7	19.2				mg/L	103	Standard
	N	14	6.7	173.2				mg/L	0	Standard
	Hg	202	16.7	34.6				mg/L	3	Standard
	Dy	164	168.1	38.7				mg/L	10	Standard
	Ho-1	165	100.0	18.0				mg/L	3	Standard
	Er	166	110.0	15.7				mg/L	7	Standard
	I	127	40280.2	2.3				mg/L	3612	Standard

	Analyte	Mass	QC Std % Recovery	Int Std % Recovery	Spike % Recovery
[>	Li	6		124.314	
	Ве	9			
L	Al	27			
Γ	Sc	45			
	Ti	47			
	V	51			
	Cr	52			
	Cr	53			
	Mn	55			
	Co	59			
	Ni	60			
	Cu	65			
	Zn	66			
>	Ge	72		106.258	
	As	75			
	Se	82			
L	Se-1	77			
Γ>	Ga	71			

Sample ID: L1510121504

Report Date/Time: Tuesday, October 27, 2015 17:36:08

Page 2

Approved: October 28, 2015

L Rb 85 √ 89 L> Rh 103 √ Mo 98 Ag 107 Cd 111 Cd 114 I In 115 Sn 118 Sb 123 Ba 135 Ce 140 L> Tb 159 Ho 165 TI 203 TI 205		108.334	
Pb 206 Pb 207 Pb 208 U 238 Description 23 Mg 24 K 39 Ca 43 Fe 54 Fe 57 Sc-1 45 Cl 35 Kr 83 Br 81		104.842	
P 31 S 34 Sr 88 C 12 N 14 Hg 202 Dy 164 Ho-1 165 Er 166 I 127 QC Out of Limits Measurement Type Li 6 Int Std for sample	Analyte Mass Li 6	Out of Limits Message Rerun sample	

Sample ID: L1510121504Report Date/Time: Tuesday, October 27, 2015 17:36:08

Page 3

Sample ID: L1510121505

Sample Date/Time: Tuesday, October 27, 2015 17:37:02

Number of Replicates: 3 Autosampler Position: 353 Sample Description: 1

Method File: C:\NexIONData\Method\6020a.mth

Aliquot Volume (mL): Diluted to Volume (mL):

User Name: BKT Nexion300X Cumulative Autodilution Factor: 1 Nexion-ICP 200.8\6020

Concentration Results

					Ooncentrat	iation results				
IS	Analyt	e Mass	Intensity	RSD	Conc.	SD	RSD	Units	Blank Intens.	Mode
Γ>	Li	6	31577.9	3.8				ug/L	26270	Standard
	Be	9	21.7	35.3	-0.0004	0.011	2985.7	ug/L	2	Standard
L	Αl	27	540257.9	1.5	8.0062	0.414	5.2	ug/L	403	Standard
Γ	Sc	45	16462.3	1.2				ug/L	14524	Standard
	Ti	47	750.7	3.2	2.5799	0.271	10.5	ug/L	365	Standard
	٧	51	4657.4	3.5	1.0760	0.086	8.0	ug/L	805	Standard
	Cr	52	11394.0	2.2	1.3364	0.136	10.2	ug/L	5481	Standard
	Cr	53	1448.4	6.8	2.1573	0.257	11.9	ug/L	268	Standard
	Mn	55	10583.7	2.9	2.8090	0.185	6.6	ug/L	670	Standard
	Co	59	772.7	1.6	0.1960	0.011	5.5	ug/L	146	Standard
	Ni	60	917.0	5.2	0.5778	0.063	10.9	ug/L	220	Standard
	Cu	65	518.7	2.9	0.2857	0.011	4.0	ug/L	147	Standard
	Zn	66	1207.7	3.5	1.2049	0.099	8.2	ug/L	211	Standard
>	Ge	72	214205.4	2.9				ug/L	210599	Standard
	As	75	391.3	20.8	0.6280	0.122	19.4	ug/L	-47	Standard
	Se	82	599.5	3.1	9.8128	0.608	6.2	ug/L	15	Standard
L	Se-1	77	446.0	8.0	10.1892	0.342	3.4	ug/L	65	Standard
Γ>	Ga	71	158.3	6.6				mg/L	27	Standard
L	Rb	85	2190.2	8.7				ug/L	17	Standard
Γ	Υ	89	228144.4	5.1				ug/L	216672	Standard
L>	Rh	103	25.0	40.0				ug/L	18	Standard
Γ	Мо	98	218.1	5.0	0.1478	0.003	2.1	ug/L	11	Standard
	Ag	107	55.0	15.5	-0.0001	0.001	1585.8	ug/L	55	Standard
	Cd	111	26.9	8.5	0.0122	0.002	19.1	mg/L	7	Standard
	Cd	114	61.5	8.7	0.0226	0.001	3.7	ug/L	4	Standard
>	In	115	335616.8	4.3				ug/L	322525	Standard
	Sn	118	440.0	5.2	-0.0459	0.006	12.9	ug/L	345	Standard
	Sb	123	139.4	8.3	0.0247	0.002	6.4	ug/L	88	Standard
L	Ва	135	52985.8	0.7	31.8550	1.560	4.9	ug/L	12	Standard
Γ	Се	140	11027.3	3.3				ug/L	37	Standard
_>	Tb	159	628379.2	5.2				ug/L	631826	Standard
Γ	Но	165	141.7	19.4				ug/L	3	Standard
	TI	203	77.0	16.3	0.0091	0.002	23.3	ug/L	7	Standard
	TI	205	55.0	15.7	0.0149	0.002	13.3	ug/L	7	Standard
ļ	Pb	206	626.0	3.0	0.0962	0.005	5.4	ug/L	159	Standard
	Pb	207	542.7	4.0	0.0920	0.009	9.9	ug/L	120	Standard
ļ	Pb	208	2230.1	2.6	0.0995	0.004	4.1	ug/L	503	Standard
ļ	U	238	93.0	13.1	0.0127	0.002	17.8	ug/L	5	Standard
L>	Bi	209	338640.1	2.8				ug/L	333509	Standard

Sample ID: L1510121505

Report Date/Time: Tuesday, October 27, 2015 17:39:19

Page 1

Approved: October 28, 2015

_										
	Na	23	0.0					mg/L	0	Standard
	Mg	24	9106.1	2.6	19.1345	0.378	2.0	mg/L	10	Standard
	K	39	41.7	18.3	0.2468	0.078	31.7	mg/L	32	Standard
	Ca	43	70.0	35.7	-4.5065	3.650	81.0	mg/L	85	Standard
	Fe	54	142.4	23.0	0.1744	0.071	40.7	mg/L	82	Standard
	Fe	57	278.3	11.0	0.4490	0.256	57.0	mg/L	217	Standard
L>	Sc-1	45	16462.3	1.2				mg/L	14524	Standard
	CI	35	74220.0	1.1				ug/L	53193	Standard
	Kr	83	5.3	10.8				ug/L	3	Standard
	Br	81	1936.8	6.7				ug/L	327	Standard
	Р	31	23052.5	2.8				ug/L	13329	Standard
	S	34	3410.4	8.3				ug/L	3234	Standard
	Sr	88	128.3	11.9				ug/L	87	Standard
	С	12	223.3	14.4				mg/L	103	Standard
	N	14	0.0					mg/L	0	Standard
	Hg	202	6.7	173.2				mg/L	3	Standard
	Dy	164	188.1	7.9				mg/L	10	Standard
	Ho-1	165	141.7	19.4				mg/L	3	Standard
	Er	166	110.0	27.3				mg/L	7	Standard
	I	127	37471.3	1.5				mg/L	3612	Standard

Analyte	Mass	QC Std % Recovery	Int Std % Recovery	Spike % Recovery
「⊳ Li	6		120.207	
Be	9			
L AI	27			
「 Sc	45			
Ti	47			
V	51			
Cr	52			
Cr	53			
Mn	55			
Co	59			
Ni	60			
Cu	65			
Zn	66			
> Ge	72		101.713	
As	75			
Se	82			
L Se-1	77			
「> Ga	71			

Sample ID: L1510121505

Report Date/Time: Tuesday, October 27, 2015 17:39:19

Page 2

Approved: October 28, 2015

∟ Rb	85			
ΓY	89			
$\lfloor_>$ Rh	103			
Г Мо	98			
Ag	107			
Cď	111			
Cd	114			
> In	115		104.059	
Sn	118			
Sb	123			
L Ba	135			
∟ Ba Γ Ce	140			
	159			
[> Ib [Ho	165			
TI	203			
TI	205			
Pb	206			
Pb	207			
Pb	208			
U	238		404 500	
Ĺ> Bi	209		101.538	
Na	23			
Mg	24			
K	39			
Ca	43			
Fe	54			
Fe	57			
_> Sc-1	45			
CI	35			
Kr	83			
Br	81			
Р	31			
S	34			
Sr	88			
С	12			
N	14			
Hg	202			
Dy	164			
Ho-1	165			
Er	166			
ı	127			
OC O	ut of Limits			
		Amalusta NA	Out of Limits BAssass	
	ement Type	Analyte Mass	Out of Limits Message	
LIBINTS	Std for sample	Li 6	Rerun sample	

Sample ID: L1510121505

Report Date/Time: Tuesday, October 27, 2015 17:39:19

Page 3

Sample ID: L1510121507

Sample Date/Time: Tuesday, October 27, 2015 17:40:13

Number of Replicates: 3 Autosampler Position: 354 Sample Description: 1

Method File: C:\NexIONData\Method\6020a.mth

Aliquot Volume (mL): Diluted to Volume (mL):

User Name: BKT Nexion300X Cumulative Autodilution Factor: 1

Nexion-ICP 200.8\6020

\sim	ncon	tration	Results	
υo	ncer	itration	Results	

				Concentra	alion results					
IS	Analyt	e Mass	Intensity	RSD	Conc.	SD	RSD	Units	Blank Intens.	Mode
Γ>	Li	6	34651.4	7.7				ug/L	26270	Standard
	Be	9	11.7	24.7	-0.0179	0.003	15.6	ug/L	2	Standard
L	Αl	27	2355189.2	3.4	31.9908	3.273	10.2	ug/L	403	Standard
Γ	Sc	45	17546.8	4.8				ug/L	14524	Standard
	Ti	47	382.7	6.0	0.1468	0.253	172.4	ug/L	365	Standard
	V	51	5787.0	3.3	1.3083	0.139	10.6	ug/L	805	Standard
	Cr	52	8860.6	1.7	0.6334	0.145	23.0	ug/L	5481	Standard
	Cr	53	2125.1	4.5	3.1816	0.058	1.8	ug/L	268	Standard
	Mn	55	5393.6	3.2	1.1695	0.137	11.7	ug/L	670	Standard
	Co	59	415.7	0.3	0.0770	0.007	9.7	ug/L	146	Standard
	Ni	60	683.7	5.3	0.3402	0.057	16.9	ug/L	220	Standard
	Cu	65	562.0	4.1	0.2971	0.041	13.9	ug/L	147	Standard
	Zn	66	1458.4	4.0	1.4643	0.201	13.8	ug/L	211	Standard
>	Ge	72	227263.8	6.0				ug/L	210599	Standard
	As	75	1499.7	10.4	2.0639	0.224	10.9	ug/L	-47	Standard
	Se	82	2369.3	2.6	37.0959	2.768	7.5	ug/L	15	Standard
L	Se-1	77	1586.1	1.9	37.1604	2.963	8.0	ug/L	65	Standard
Γ>	Ga	71	655.0	10.8				mg/L	27	Standard
L	Rb	85	2982.0	4.3				ug/L	17	Standard
Γ	Υ	89	239353.4	5.9				ug/L	216672	Standard
L>	Rh	103	68.3	11.2				ug/L	18	Standard
Γ	Мо	98	356.9	2.7	0.2297	0.006	2.6	ug/L	11	Standard
	Ag	107	53.7	6.5	-0.0009	0.001	117.9	ug/L	55	Standard
	Cd	111	62.2	11.3	0.0341	0.006	17.4	mg/L	7	Standard
	Cd	114	169.6	29.6	0.0505	0.014	28.5	ug/L	4	Standard
>	In	115	355799.3	4.6				ug/L	322525	Standard
	Sn	118	636.7	18.1	-0.0075	0.022	291.1	ug/L	345	Standard
	Sb	123	250.4	7.5	0.0494	0.002	3.5	ug/L	88	Standard
L	Ва	135	40146.5	3.4	22.7816	1.758	7.7	ug/L	12	Standard
Γ	Ce	140	3857.2	3.0				ug/L	37	Standard
_>	Tb	159	670292.5	5.2				ug/L	631826	Standard
Γ	Но	165	41.7	36.7				ug/L	3	Standard
	TI	203	182.7	6.1	0.0240	0.002	8.8	ug/L	7	Standard
	TI	205	121.7	34.5	0.0291	0.010	35.5	ug/L	7	Standard
	Pb	206	484.0	4.0	0.0556	0.004	7.0	ug/L	159	Standard
	Pb	207	403.3	7.8	0.0488	0.007	14.4	ug/L	120	Standard
ļ	Pb	208	1755.4	3.3	0.0617	0.005	8.4	ug/L	503	Standard
ļ	U	238	1048.7	2.3	0.1824	0.007	4.1	ug/L	5	Standard
_>	Bi	209	354082.5	6.4				ug/L	333509	Standard

Sample ID: L1510121507

Report Date/Time: Tuesday, October 27, 2015 17:42:30

Page 1

Approved: October 28, 2015

Page 568

L15101055 / Revision: 0 / 760 total pages

Γ	Na	23	5.0	173.2				mg/L	0	Standard
	Mg	24	19599.3	2.0	38.7559	2.392	6.2	mg/L	10	Standard
	K	39	71.7	22.4	0.5316	0.184	34.5	mg/L	32	Standard
	Ca	43	135.0	7.4	3.6180	2.088	57.7	mg/L	85	Standard
	Fe	54	121.0	20.5	0.1107	0.038	33.9	mg/L	82	Standard
	Fe	57	290.0	1.7	0.4012	0.141	35.2	mg/L	217	Standard
Ĺ>	Sc-1	45	17546.8	4.8				mg/L	14524	Standard
	CI	35	82584.5	1.2				ug/L	53193	Standard
	Kr	83	4.7	44.6				ug/L	3	Standard
	Br	81	6878.2	2.4				ug/L	327	Standard
	Р	31	22243.0	1.3				ug/L	13329	Standard
	S	34	3217.0	2.3				ug/L	3234	Standard
	Sr	88	188.3	3.1				ug/L	87	Standard
	С	12	180.0	9.6				mg/L	103	Standard
	N	14	3.3	173.2				mg/L	0	Standard
	Hg	202	26.7	21.7				mg/L	3	Standard
	Dy	164	68.1	38.5				mg/L	10	Standard
	Ho-1	165	41.7	36.7				mg/L	3	Standard
	Er	166	40.0	75.0				mg/L	7	Standard
	I	127	55822.7	2.9				mg/L	3612	Standard

	Analyte	Mass	QC Std % Recovery	Int Std % Recovery	Spike % Recovery
[>	Li	6		131.907	
	Ве	9			
L	Al	27			
Γ	Sc	45			
	Ti	47			
	V	51			
	Cr	52			
	Cr	53			
	Mn	55			
	Co	59			
	Ni	60			
	Cu	65			
	Zn	66			
>	Ge	72		107.913	
	As	75			
	Se	82			
L	Se-1	77			
Γ>	Ga	71			

Sample ID: L1510121507

Report Date/Time: Tuesday, October 27, 2015 17:42:30

Page 2

Approved: October 28, 2015

L Rb	85			
ΓY	89			
$\lfloor_>$ Rh	103			
Г Мо	98			
Ag	107			
Cď	111			
Cd	114			
> In	115		110.317	
Sn	118		110.011	
Sb	123			
L Ba	135			
∟ Da Γ Ce	140			
	159			
L> Tb 「 Ho				
	165			
TI	203			
TI	205			
Pb	206			
Pb	207			
Pb	208			
U	238			
L> Bi	209		106.169	
Г Na	23			
Mg	24			
K	39			
Ca	43			
Fe	54			
Fe	57			
L> Sc-1	45			
CI	35			
Kr	83			
Br	81			
Р	31			
S	34			
Sr	88			
C	12			
N	14			
Hg	202			
Dy	164			
Ho-1	165			
	166			
Er	127			
1				
	ut of Limits			
	ement Type	Analyte Mass	Out of Limits Message	
Li 6 Int S	Std for sample	Li 6	Rerun sample	

Sample ID: L1510121507

Report Date/Time: Tuesday, October 27, 2015 17:42:30

Page 3

Sample ID: FBLANK 76 WG544075-05

Sample Date/Time: Tuesday, October 27, 2015 17:45:54

Number of Replicates: 3 Autosampler Position: 341 Sample Description: 1

Method File: C:\NexIONData\Method\6020a.mth

Aliquot Volume (mL): Diluted to Volume (mL):

User Name: BKT Nexion300X Cumulative Autodilution Factor: 1

Nexion-ICP 200.8\6020

Concentration	Results
---------------	---------

					Comcontin	41.011 1100	uito			
IS	Analyt	e Mass	Intensity	RSD	Conc.	SD	RSD	Units	Blank Intens.	Mode
Γ>	Li	6	33687.4	3.9				ug/L	26270	Standard
	Be	9	11.7	49.5	-0.0174	0.009	49.4	ug/L	2	Standard
L	ΑI	27	1955.1	12.8	0.0066	0.003	51.0	ug/L	403	Standard
Γ	Sc	45	17623.6	9.0				ug/L	14524	Standard
	Ti	47	92.7	11.8	-1.5797	0.093	5.9	ug/L	365	Standard
	٧	51	1068.6	11.6	0.0230	0.035	153.5	ug/L	805	Standard
	Cr	52	6828.5	2.0	0.1536	0.095	61.8	ug/L	5481	Standard
	Cr	53	448.3	11.9	0.2399	0.121	50.4	ug/L	268	Standard
	Mn	55	1587.7	4.4	0.0850	0.039	46.0	ug/L	670	Standard
	Co	59	200.0	10.5	0.0119	0.006	47.9	ug/L	146	Standard
	Ni	60	231.7	10.2	-0.0384	0.026	66.6	ug/L	220	Standard
	Cu	65	172.7	4.9	-0.0358	0.011	30.2	ug/L	147	Standard
	Zn	66	1098.7	2.0	0.9109	0.084	9.2	ug/L	211	Standard
>	Ge	72	232308.8	5.1				ug/L	210599	Standard
	As	75	8.2	361.4	0.0872	0.038	44.1	ug/L	-47	Standard
	Se	82	17.7	6.4	0.0945	0.015	16.1	ug/L	15	Standard
L	Se-1	77	56.7	2.0	0.1024	0.055	53.4	ug/L	65	Standard
Γ>	Ga	71	21.7	26.6				mg/L	27	Standard
L	Rb	85	30.0	16.7				ug/L	17	Standard
Γ	Υ	89	249144.4	2.8				ug/L	216672	Standard
L>	Rh	103	20.0	50.0				ug/L	18	Standard
Γ	Мо	98	12.8	28.7	0.0056	0.002	36.8	ug/L	11	Standard
	Ag	107	51.3	13.8	-0.0018	0.001	68.9	ug/L	55	Standard
	Cd	111	15.6	20.6	0.0033	0.002	49.0	mg/L	7	Standard
	Cd	114	41.2	59.6	0.0160	0.007	41.9	ug/L	4	Standard
>	In	115	370061.0	4.4				ug/L	322525	Standard
	Sn	118	515.0	6.8	-0.0391	0.013	32.6	ug/L	345	Standard
	Sb	123	75.6	9.7	0.0068	0.002	22.4	ug/L	88	Standard
Ĺ	Ва	135	132.3	8.7	0.0485	0.010	19.6	ug/L	12	Standard
ļ	Ce	140	65.0	15.4				ug/L	37	Standard
Ĺ>	Tb	159	691176.8	3.7				ug/L	631826	Standard
ļ	Но	165	8.3	69.3				ug/L	3	Standard
ļ	TI	203	54.3	24.0	0.0049	0.002	34.9	ug/L	7	Standard
ļ	TI	205	36.7	34.3	0.0101	0.003	29.0	ug/L	7	Standard
ļ	Pb	206	251.0	12.8	-0.0028	0.005	183.2	ug/L	159	Standard
ļ	Pb	207	219.0	2.0	-0.0022	0.001	61.9	ug/L	120	Standard
-	Pb	208	870.7	1.7	0.0009	0.002	231.2	ug/L	503	Standard
-	U	238	33.3	4.6	0.0011	0.000	23.2	ug/L	5	Standard
L>	Bi	209	369791.7	4.4				ug/L	333509	Standard

Sample ID: FBLANK 76 WG544075-05

Report Date/Time: Tuesday, October 27, 2015 17:48:11

Page 1

Γ	Na	23	1.7	173.2				mg/L	0	Standard
	Mg	24	31.7	74.6	0.0214	0.045	209.8	mg/L	10	Standard
	K	39	25.0	20.0	0.0491	0.065	133.2	mg/L	32	Standard
	Ca	43	55.0	48.1	-6.9458	4.061	58.5	mg/L	85	Standard
ĺ	Fe	54	72.2	9.7	0.0126	0.013	101.3	mg/L	82	Standard
ĺ	Fe	57	235.0	24.0	-0.0528	0.355	672.7	mg/L	217	Standard
Ĺ>	Sc-1	45	17623.6	9.0				mg/L	14524	Standard
	CI	35	71328.8	0.4				ug/L	53193	Standard
	Kr	83	3.3	62.4				ug/L	3	Standard
	Br	81	480.0	6.3				ug/L	327	Standard
	Р	31	16320.5	1.6				ug/L	13329	Standard
	S	34	3528.7	1.6				ug/L	3234	Standard
	Sr	88	113.3	38.5				ug/L	87	Standard
	С	12	166.7	28.4				mg/L	103	Standard
	N	14	0.0					mg/L	0	Standard
	Hg	202	0.0					mg/L	3	Standard
	Dy	164	12.9	93.1				mg/L	10	Standard
	Ho-1	165	8.3	69.3				mg/L	3	Standard
	Er	166	10.0	100.0				mg/L	7	Standard
	I	127	2878.6	1.2				mg/L	3612	Standard

Analyte	Mass	QC Std % Recovery	Int Std % Recovery	Spike % Recovery
「⊳ Li	6		128.237	
Be	9			
L AI	27			
「 Sc	45			
Ti	47			
V	51			
Cr	52			
Cr	53			
Mn	55			
Co	59			
Ni	60			
Cu	65			
Zn	66			
> Ge	72		110.309	
As	75			
Se	82			
L Se-1	77			
「⊳ Ga	71			

Sample ID: FBLANK 76 WG544075-05

Report Date/Time: Tuesday, October 27, 2015 17:48:11

Page 2

Approved: October 28, 2015

U	Rb Y Rh Mo Ag Cd In Sh Ba Ce Tb TI Pb Pb	85 89 103 98 107 111 114 115 118 123 135 140 159 165 203 205 206 207 208		114.739	
Na				110.970	
Mg				110.079	
K 39					
Ca					
Fe					
Fe					
Sc-1					
CI 35 Kr 83 Br 81 P 31 S 34 Sr 88 C 12 N 14 Hg 202 Dy 164 Ho-1 165 Er 166 I 127 QC Out of Limits Measurement Type Analyte Mass Out of Limits Message Li 6 Int Std for sample Li 6 Rerun sample					
Kr 83 Br 81 P 31 S 34 Sr 88 C 12 N 14 Hg 202 Dy 164 Ho-1 165 Er 166 I 127 QC Out of Limits Measurement Type Analyte Mass Out of Limits Message Li 6 Int Std for sample Li 6 Rerun sample					
Br 81 P 31 S 34 Sr 88 C 12 N 14 Hg 202 Dy 164 Ho-1 165 Er 166 I 127 QC Out of Limits Measurement Type Analyte Mass Out of Limits Message Li 6 Int Std for sample Li 6 Rerun sample					
P 31 S 34 Sr 88 C 12 N 14 Hg 202 Dy 164 Ho-1 165 Er 166 I 127 QC Out of Limits Measurement Type Analyte Mass Out of Limits Message Li 6 Int Std for sample Li 6 Rerun sample					
S 34 Sr 88 C 12 N 14 Hg 202 Dy 164 Ho-1 165 Er 166 I 127 QC Out of Limits Measurement Type Analyte Mass Out of Limits Message Li 6 Int Std for sample Li 6 Rerun sample					
Sr 88 C 12 N 14 Hg 202 Dy 164 Ho-1 165 Er 166 I 127 QC Out of Limits Measurement Type Analyte Mass Out of Limits Message Li 6 Int Std for sample Li 6 Rerun sample	S				
N 14 Hg 202 Dy 164 Ho-1 165 Er 166 I 127 QC Out of Limits Measurement Type Analyte Mass Out of Limits Message Li 6 Int Std for sample Li 6 Rerun sample	Sr				
Hg 202 Dy 164 Ho-1 165 Er 166 I 127 QC Out of Limits Measurement Type Analyte Mass Out of Limits Message Li 6 Int Std for sample Li 6 Rerun sample	С				
Dy 164 Ho-1 165 Er 166 I 127 QC Out of Limits Measurement Type Analyte Mass Out of Limits Message Li 6 Int Std for sample Li 6 Rerun sample					
Ho-1 165 Er 166 I 127 QC Out of Limits Measurement Type Analyte Mass Out of Limits Message Li 6 Int Std for sample Li 6 Rerun sample					
Er 166 I 127 QC Out of Limits Measurement Type Analyte Mass Out of Limits Message Li 6 Int Std for sample Li 6 Rerun sample					
I 127 QC Out of Limits Measurement Type Analyte Mass Out of Limits Message Li 6 Int Std for sample Li 6 Rerun sample					
QC Out of Limits Measurement Type Analyte Mass Out of Limits Message Li 6 Int Std for sample Li 6 Rerun sample	Er				
Measurement Type Analyte Mass Out of Limits Message Li 6 Int Std for sample Li 6 Rerun sample	00.0				
Li 6 Int Std for sample Li 6 Rerun sample					
			•		
Ti 47 Lower Ti 47				Rerun sample	
	Ti 47 Lov	ver	11 47		

Sample ID: FBLANK 76 WG544075-05

Report Date/Time: Tuesday, October 27, 2015 17:48:11

Page 3

Sample ID: QC Std 6

Sample Date/Time: Tuesday, October 27, 2015 17:49:07

Number of Replicates: 3 Autosampler Position: 101 Sample Description:

Method File: C:\NexIONData\Method\6020a.mth

Aliquot Volume (mL): Diluted to Volume (mL):

User Name: BKT Nexion300X Cumulative Autodilution Factor: 1

Nexion-ICP 200.8\6020

					Concentra	tion Res	ults			
IS	Analyt	e Mass	Intensity	RSD	Conc.	SD	RSD	Units	Blank Intens.	Mode
Γ>	Li	6	29557.2	2.9				ug/L	26270	Standard
i	Be	9	29405.2	0.3	50.3712	1.391	2.8	ug/L	2	Standard
Ĺ	Al	27	3024041.9	1.4	47.9422	1.370	2.9	ug/L	403	Standard
Ī	Sc	45	16287.1	3.6				ug/L	14524	Standard
	Ti	47	17968.0	1.7	109.7163	2.555	2.3	ug/L	365	Standard
	V	51	186643.3	1.1	52.9850	1.287	2.4	ug/L	805	Standard
	Cr	52	237278.2	0.7	53.5360	0.832	1.6	ug/L	5481	Standard
	Cr	53	29538.8	0.5	53.9247	1.000	1.9	ug/L	268	Standard
	Mn	55	179750.0	1.1	53.0714	1.301	2.5	ug/L	670	Standard
	Co	59	169303.7	1.3	52.6725	1.188	2.3	ug/L	146	Standard
	Ni	60	60181.6	1.5	52.2391	1.229	2.4	ug/L	220	Standard
	Cu	65	57889.4	0.7	51.4227	0.918	1.8	ug/L	147	Standard
	Zn	66	34818.3	1.6	51.9352	0.192	0.4	ug/L	211	Standard
>	Ge	72	215137.5	1.3				ug/L	210599	Standard
	As	75	37195.7	0.2	52.0291	0.752	1.4	ug/L	-47	Standard
	Se	82	3199.2	1.7	52.8336	0.331	0.6	ug/L	15	Standard
L	Se-1	77	2122.8	2.0	52.8950	1.608	3.0	ug/L	65	Standard
[>	Ga	71	23.3	61.9				mg/L	27	Standard
Ī	Rb	85	595.0	9.4				ug/L	17	Standard
Γ	Υ	89	228227.8	0.9				ug/L	216672	Standard
Ļ>	Rh	103	25.0	34.6				ug/L	18	Standard
ļ	Мо	98	152234.9	0.2	102.2117	1.313	1.3	ug/L	11	Standard
ļ	Ag	107	242237.2	1.1	48.5414	0.338	0.7	ug/L	55	Standard
- !	Cd	111	74658.0	0.6	49.9059	0.498	1.0	mg/L	7	Standard
ļ	Cd	114	184656.6	1.9	50.4864	1.288	2.6	ug/L	4	Standard
>	In	115	344324.5	1.3				ug/L	322525	Standard
-	Sn	118	211550.3	1.9	49.8552	1.484	3.0	ug/L	345	Standard
-	Sb	123	195048.1	1.7	48.3995	0.388	8.0	ug/L	88	Standard
Ļ	Ba	135 140	82537.9 226.7	0.9 20.5	48.3141	0.450	0.9	ug/L	12 37	Standard Standard
1.	Ce Tb	159	642738.4	20.5				ug/L	631826	Standard
L>	Но	165	18.3	31.5				ug/L ug/L	3	Standard
	по TI	203	333937.7	1.5	50.1820	0.556	1.1	ug/L ug/L	7	Standard
1	TI	205	228901.1	0.4	51.0769	0.536	1.1	ug/L ug/L	7	Standard
1	Pb	206	207035.9	0.4	50.8038	0.343	0.8	ug/L ug/L	7 159	Standard
	Pb	207	187467.3	0.2	50.7307	0.413	0.5	ug/L ug/L	120	Standard
1	Pb	208	771220.8	0.5	52.2296	0.160	0.3	ug/L	503	Standard
1	U	238	275686.6	0.9	50.5248	0.100	0.8	ug/L	5	Standard
- !	J .	200	210000.0	0.5	30.3240	0.507	0.0	ug/L		Clandard

Sample ID: QC Std 6

209

Report Date/Time: Tuesday, October 27, 2015 17:51:23

343741.6

0.7

Page 1

L> Bi

Approved: October 28, 2015

Standard

Page 574

ug/L

333509

Γ	Na	23	1.7	173.2				mg/L	0	Standard
i	Mg	24	2350.2	0.7	4.9655	0.146	2.9	mg/L	10	Standard
i	K	39	358.3	13.0	3.7891	0.646	17.1	mg/L	32	Standard
i	Ca	43	96.7	20.9	-0.5153	3.231	627.0	mg/L	85	Standard
i	Fe	54	2220.8	5.1	4.7243	0.290	6.1	mg/L	82	Standard
i	Fe	57	878.4	13.7	5.5472	1.041	18.8	mg/L	217	Standard
>	Sc-1	45	16287.1	3.6	0.04.2			mg/L	14524	Standard
	CI	35	70421.9	0.6				ug/L	53193	Standard
	Kr	83	3.7	15.7				ug/L	3	Standard
	Br	81	440.0	27.6				ug/L	327	Standard
	P	31	16100.2	1.9				ug/L	13329	Standard
	S	34	3677.1	1.0				ug/L	3234	Standard
	Sr	88	143.3	8.1				ug/L	87	Standard
	C	12	176.7	11.8				mg/L	103	Standard
	N	14	0.0					mg/L	0	Standard
	Hg	202	3.3	173.2				mg/L	3	Standard
	Dy	164	9.0	113.3				mg/L	10	Standard
	Ho-1	165	18.3	31.5				mg/L	3	Standard
	Er	166	20.0	50.0				mg/L	7	Standard
	1	127	2691.9	6.3				mg/L	3612	Standard
	-							J. –		

	Analyte	Mass	QC Std % Recovery	Int Std % Recovery	Spike % Recovery
Γ>	Li	6			
	Ве	9	100.742		
L	Al	27	95.884		
Γ	Sc	45			
	Ti	47	109.716		
	V	51	105.970		
	Cr	52	107.072		
	Cr	53			
	Mn	55	106.143		
	Co	59	105.345		
	Ni	60	104.478		
	Cu	65	102.845		
	Zn	66	103.870		
>	Ge	72		102.155	
	As	75	104.058		
	Se	82	105.667		
L	Se-1	77			
Γ>	Ga	71			

Sample ID: QC Std 6

Report Date/Time: Tuesday, October 27, 2015 17:51:23

Page 2

Approved: October 28, 2015

L Rb	85			
Γ Y	89			
Ĺ> Rh	103	100.040		
Γ Mo	98	102.212		
Ag	107	97.083		
Cd	111	99.812		
Cd	114		400.750	
> In	115	00.740	106.759	
Sn	118	99.710		
Sb	123	96.799		
L Ba	135	96.628		
Г Се	140			
L> Tb	159			
Γ Ho	165	100.264		
TI	203	100.364		
TI	205			
Pb	206			
Pb	207	104.450		
Pb U	208 238	104.459 101.050		
	209	101.050	103.068	
L> Bi Γ Na	23		103.006	
Na Mg	23 24			
Nig K	39			
Ca	43			
Fe	54			
Fe	5 7 57			
	45			
CI	35			
Kr	83			
Br	81			
P	31			
S	34			
Sr	88			
C	12			
N	14			
Hg	202			
Dy	164			
Ho-1	165			
Er	166			
I	127			
OC O	ut of Limits			
		Analyta Maas	Out of Limita Magaza	
ivieasure	ement Type	Analyte Mass	Out of Limits Message	

Sample ID: QC Std 6

Report Date/Time: Tuesday, October 27, 2015 17:51:23

Page 3

Approved: October 28, 2015

Sample ID: QC Std 7

Sample Date/Time: Tuesday, October 27, 2015 17:52:18

Number of Replicates: 3 Autosampler Position: 102 Sample Description:

Method File: C:\NexIONData\Method\6020a.mth

Aliquot Volume (mL): Diluted to Volume (mL):

User Name: BKT Nexion300X Cumulative Autodilution Factor: 1 Nexion-ICP 200.8\6020

Concentration Results

					Concenti	audii Nes	uits			
IS	Analyte Mass		Intensity	RSD	Conc.	SD	RSD	Units	Blank Intens.	Mode
Γ>	Li	6	30784.6	3.4				ug/L	26270	Standard
	Be	9	20.0	86.6	-0.0025	0.027	1079.5	ug/L	2	Standard
L	Αl	27	1306.8	118.3	-0.0012	0.023	1934.4	ug/L	403	Standard
Γ	Sc	45	17153.1	7.0				ug/L	14524	Standard
	Ti	47	84.7	12.5	-1.6113	0.074	4.6	ug/L	365	Standard
	V	51	881.9	3.2	-0.0189	0.006	32.8	ug/L	805	Standard
	Cr	52	6028.2	8.0	0.0240	0.052	216.2	ug/L	5481	Standard
	Cr	53	325.0	16.6	0.0471	0.110	233.3	ug/L	268	Standard
	Mn	55	646.3	10.3	-0.1693	0.018	10.8	ug/L	670	Standard
	Co	59	221.3	35.8	0.0203	0.024	119.1	ug/L	146	Standard
	Ni	60	191.0	13.0	-0.0666	0.021	32.2	ug/L	220	Standard
	Cu	65	131.3	22.4	-0.0664	0.026	39.4	ug/L	147	Standard
	Zn	66	168.0	13.3	-0.3848	0.034	8.8	ug/L	211	Standard
>	Ge	72	224689.5	3.1				ug/L	210599	Standard
	As	75	1.9	1565.0	0.0812	0.039	48.3	ug/L	-47	Standard
	Se	82	16.6	26.6	0.0877	0.077	87.9	ug/L	15	Standard
L	Se-1	77	64.0	9.5	0.3272	0.173	52.9	ug/L	65	Standard
Γ>	Ga	71	18.3	63.0				mg/L	27	Standard
L	Rb	85	11.7	49.5				ug/L	17	Standard
Γ	Υ	89	239276.4	1.3				ug/L	216672	Standard
L>	Rh	103	26.7	60.3				ug/L	18	Standard
Γ	Мо	98	142.4	53.4	0.0914	0.052	56.7	ug/L	11	Standard
	Ag	107	108.0	80.4	0.0098	0.017	176.9	ug/L	55	Standard
	Cd	111	20.7	62.4	0.0071	0.009	120.4	mg/L	7	Standard
	Cd	114	52.5	70.7	0.0194	0.010	52.3	ug/L	4	Standard
>	In	115	354071.2	3.1				ug/L	322525	Standard
	Sn	118	590.0	3.7	-0.0171	0.001	5.0	ug/L	345	Standard
	Sb	123	159.7	39.1	0.0280	0.016	56.5	ug/L	88	Standard
L	Ва	135	28.3	78.9	-0.0077	0.013	171.2	ug/L	12	Standard
ļ	Ce	140	10.0	50.0				ug/L	37	Standard
Ĺ>	Tb	159	661837.4	2.7				ug/L	631826	Standard
ļ	Но	165	8.3	69.3				ug/L	3	Standard
ļ	TI	203	101.3	100.1	0.0119	0.015	124.3	ug/L	7	Standard
ļ	TI	205	65.0	127.1	0.0164	0.018	108.7	ug/L	7	Standard
ļ	Pb	206	206.0	37.1	-0.0113	0.018	162.3	ug/L	159	Standard
ļ	Pb	207	187.0	45.0	-0.0087	0.022	254.6	ug/L	120	Standard
ļ	Pb	208	736.0	36.6	-0.0060	0.018	297.0	ug/L	503	Standard
ļ	U	238	73.0	130.6	0.0084	0.017	202.6	ug/L	5	Standard
L>	Bi	209	357990.3	2.8				ug/L	333509	Standard

Sample ID: QC Std 7

Report Date/Time: Tuesday, October 27, 2015 17:54:35

Page 1

Approved: October 28, 2015

Γ	Na	23	0.0					mg/L	0	Standard
	Mg	24	15.0	88.2	-0.0093	0.028	301.4	mg/L	10	Standard
	K	39	13.3	78.1	-0.0659	0.118	179.5	mg/L	32	Standard
	Ca	43	41.7	30.2	-8.7966	1.823	20.7	mg/L	85	Standard
ĺ	Fe	54	76.1	36.3	0.0275	0.066	240.0	mg/L	82	Standard
ĺ	Fe	57	248.3	4.6	0.1184	0.110	93.1	mg/L	217	Standard
Ĺ>	Sc-1	45	17153.1	7.0				mg/L	14524	Standard
_	CI	35	70756.9	1.5				ug/L	53193	Standard
	Kr	83	3.7	15.7				ug/L	3	Standard
	Br	81	403.3	6.2				ug/L	327	Standard
	Р	31	15501.3	3.0				ug/L	13329	Standard
	S	34	3818.8	4.3				ug/L	3234	Standard
	Sr	88	116.7	8.9				ug/L	87	Standard
	С	12	113.3	10.2				mg/L	103	Standard
	N	14	0.0					mg/L	0	Standard
	Hg	202	0.0					mg/L	3	Standard
	Dy	164	2.7	237.5				mg/L	10	Standard
	Ho-1	165	8.3	69.3				mg/L	3	Standard
	Er	166	13.3	173.2				mg/L	7	Standard
	I	127	2348.5	9.1				mg/L	3612	Standard

Analyte	Mass	QC Std % Recovery	Int Std % Recovery	Spike % Recovery
「⊳ Li	6			
Be	9			
L AI	27			
「 Sc	45			
Ti	47			
V	51			
Cr	52			
Cr	53			
Mn	55			
Co	59			
Ni	60			
Cu	65			
Zn	66			
> Ge	72		106.691	
As	75			
Se	82			
L Se-1	77			
「 _{>} Ga	71			

Sample ID: QC Std 7

Report Date/Time: Tuesday, October 27, 2015 17:54:35

Page 2

Approved: October 28, 2015

∟ Rb	85			
ΓΥ	89			
$\lfloor_>$ Rh	103			
ГМо	98			
Ag	107			
Cd	111			
Cd	114			
> In	115			109.781
Sn	118			
Sb	123			
L Ba	135			
¯ Ce	140			
_ _> Tb	159			
⊢ Ho	165			
į TI	203			
TI	205			
Pb	206			
Pb	207			
Pb	208			
į U	238			
Ĺ> Bi	209			107.340
Г Na	23			
Mg	24			
K	39			
Ca	43			
Fe	54			
Fe	57			
_> Sc-1	45			
CI	35			
Kr	83			
Br	81			
Р	31			
S	34			
Sr	88			
С	12			
N	14			
Hg	202			
Dy	164			
Ho-1	165			
Er	166			
1	127			
QC Ou	it of Limits			
Measure	ment Type	Analyte	Mass	Out of Limits Message
QC Std 7		Ti	47	Ŭ

Sample ID: QC Std 7

Report Date/Time: Tuesday, October 27, 2015 17:54:35

Page 3

Sample ID: QC Std 8

Sample Date/Time: Tuesday, October 27, 2015 17:56:24

Number of Replicates: 3 Autosampler Position: 202 Sample Description:

Method File: C:\NexIONData\Method\6020a.mth

Aliquot Volume (mL): Diluted to Volume (mL):

User Name: BKT Nexion300X Cumulative Autodilution Factor: 1

Nexion-ICP 200.8\6020

Concentration	Results
---------------	---------

IS	Analyte Mass		Intensity	RSD	Conc.	SD	RSD	Units	Blank Intens.	Mode
Γ>	Li 6		29779.3	3.3				ug/L	26270	Standard
	Be	9	110.0	18.2	0.1517	0.029	19.1	ug/L	2	Standard
L	Al	27	718.4	102.7	-0.0091	0.012	131.0	ug/L	403	Standard
Γ	Sc	45	15851.6	1.9				ug/L	14524	Standard
	Ti	47	86.3	7.5	-1.5780	0.044	2.8	ug/L	365	Standard
	V	51	2353.8	8.8	0.4134	0.059	14.3	ug/L	805	Standard
	Cr	52	9630.7	1.0	0.9211	0.048	5.2	ug/L	5481	Standard
	Cr	53	856.7	2.0	1.0546	0.015	1.4	ug/L	268	Standard
	Mn	55	2384.9	2.1	0.3574	0.016	4.6	ug/L	670	Standard
	Co	59	1425.4	3.2	0.3993	0.016	4.1	ug/L	146	Standard
	Ni	60	1972.5	3.3	1.4981	0.067	4.5	ug/L	220	Standard
	Cu	65	1045.4	1.4	0.7557	0.022	3.0	ug/L	147	Standard
	Zn	66	4454.3	1.6	6.1158	0.166	2.7	ug/L	211	Standard
>	Ge	72	214561.3	1.1				ug/L	210599	Standard
	As	75	249.7	4.9	0.4277	0.020	4.8	ug/L	-47	Standard
	Se	82	39.8	4.0	0.4844	0.031	6.3	ug/L	15	Standard
L	Se-1	77	68.0	17.3	0.4990	0.284	56.9	ug/L	65	Standard
Γ>	Ga	71	10.0	50.0				mg/L	27	Standard
L	Rb	85	6.7	86.6				ug/L	17	Standard
Γ	Υ	89	227571.4	8.0				ug/L	216672	Standard
L>	Rh	103	13.3	86.6				ug/L	18	Standard
Γ	Мо	98	24.4	33.0	0.0144	0.006	39.1	ug/L	11	Standard
	Ag	107	1884.8	1.3	0.3739	0.003	0.8	ug/L	55	Standard
	Cd	111	380.6	3.1	0.2531	0.008	3.3	mg/L	7	Standard
	Cd	114	920.1	8.8	0.2619	0.024	9.0	ug/L	4	Standard
>	In	115	337648.4	0.6				ug/L	322525	Standard
	Sn	118	371.7	10.2	-0.0632	0.009	13.7	ug/L	345	Standard
	Sb	123	1500.0	1.8	0.3690	0.009	2.5	ug/L	88	Standard
L	Ва	135	1226.7	1.9	0.7087	0.016	2.3	ug/L	12	Standard
Γ	Ce	140	18.3	31.5				ug/L	37	Standard
L>	Tb	159	638997.4	2.3				ug/L	631826	Standard
Γ	Но	165	10.0					ug/L	3	Standard
	TI	203	519.7	3.8	0.0762	0.004	4.8	ug/L	7	Standard
	TI	205	343.3	5.1	0.0798	0.004	5.5	ug/L	7	Standard
	Pb	206	967.4	3.5	0.1800	0.007	3.6	ug/L	159	Standard
	Pb	207	806.7	4.4	0.1632	0.008	5.1	ug/L	120	Standard
	Pb	208	3504.2	3.5	0.1858	0.007	4.0	ug/L	503	Standard
	U	238	2165.2	1.0	0.3962	0.008	1.9	ug/L	5	Standard
<u></u> >	Bi	209	340436.3	0.9				ug/L	333509	Standard

Sample ID: QC Std 8

Report Date/Time: Tuesday, October 27, 2015 17:58:41

Page 1

Approved: October 28, 2015

_										
Γ	Na	23	0.0					mg/L	0	Standard
	Mg	24	13.3	78.1	-0.0109	0.023	214.5	mg/L	10	Standard
	K	39	20.0	43.3	0.0178	0.100	560.7	mg/L	32	Standard
	Ca	43	45.0	29.4	-7.8712	1.839	23.4	mg/L	85	Standard
ĺ	Fe	54	64.0	14.1	0.0102	0.021	202.1	mg/L	82	Standard
	Fe	57	263.3	4.0	0.4079	0.053	13.1	mg/L	217	Standard
L>	Sc-1	45	15851.6	1.9				mg/L	14524	Standard
	CI	35	70798.4	0.7				ug/L	53193	Standard
	Kr	83	5.7	27.0				ug/L	3	Standard
	Br	81	296.7	1.9				ug/L	327	Standard
	Р	31	15591.4	1.6				ug/L	13329	Standard
	S	34	3697.1	1.5				ug/L	3234	Standard
	Sr	88	91.7	31.5				ug/L	87	Standard
	С	12	203.3	27.1				mg/L	103	Standard
	N	14	3.3	173.2				mg/L	0	Standard
	Hg	202	3.3	173.2				mg/L	3	Standard
	Dy	164	6.2	186.8				mg/L	10	Standard
	Ho-1	165	10.0					mg/L	3	Standard
	Er	166	10.0	100.0				mg/L	7	Standard
	I	127	676.7	17.1				mg/L	3612	Standard

	Analyte	Mass	QC Std % Recovery	Int Std % Recovery	Spike % Recovery
Γ>	Li	6			
	Ве	9	75.874		
L	Al	27			
Γ	Sc	45			
	Ti	47			
	V	51	103.355		
	Cr	52	115.142		
	Cr	53			
	Mn	55	71.483		
	Co	59	99.817		
	Ni	60	93.632		
	Cu	65	94.464		
	Zn	66	97.853		
>	Ge	72		101.882	
	As	75	106.914		
	Se	82	121.102		
L	Se-1	77			
Γ>	Ga	71			

Sample ID: QC Std 8

Report Date/Time: Tuesday, October 27, 2015 17:58:41

Page 2

Approved: October 28, 2015

∟ Rb	85		
ΓΥ	89		
$\lfloor_>$ Rh	103		
ГМо	98		
Ag	107	93.467	
Cd	111	105.472	
Cd	114		
> In	115		104.689
Sn	118		
Sb	123	92.247	
∟ Ba	135	94.495	
Г Се	140		
$\lfloor_>$ Tb	159		
Γ Ho	165		
TI	203	95.234	
TI	205		
Pb	206		
Pb	207		
Pb	208	92.913	
U	238	99.044	
Ĺ> Bi	209		102.077
Г Na	23		
Mg	24		
K	39		
Ca	43		
Fe	54		
Fe	57		
L> Sc-1	45		
CI	35		
Kr	83		
Br	81		
Р	31		
S	34		
Sr	88		
С	12		
N	14		
Hg	202		
Dy	164 165		
Ho-1 Er	165 166		
Er I	166 127		
	ut of Limit		
Measu	rement Type	Analyte Mass	Out of Limits Message

Sample ID: QC Std 8

Report Date/Time: Tuesday, October 27, 2015 17:58:41

Page 3

Sample ID: L1510121301

Sample Date/Time: Tuesday, October 27, 2015 18:02:10

Number of Replicates: 3 Autosampler Position: 344 Sample Description: 10

Method File: C:\NexIONData\Method\6020a.mth

Aliquot Volume (mL): Diluted to Volume (mL):

User Name: BKT Nexion300X Cumulative Autodilution Factor: 1 Nexion-ICP 200.8\6020

Concentration Results

				Concentration Results						
IS	Analyt	e Mass	Intensity	RSD	Conc.	SD	RSD	Units	Blank Intens.	Mode
Γ>	Li	6	28286.5	7.2				ug/L	26270	Standard
	Be	9	13.3	21.7	-0.0110	0.005	40.9	ug/L	2	Standard
L	Αl	27	2152810.7	2.3	35.7440	2.298	6.4	ug/L	403	Standard
Γ	Sc	45	15090.9	8.2				ug/L	14524	Standard
	Ti	47	425.0	20.1	0.5962	0.429	72.0	ug/L	365	Standard
	٧	51	1528.0	17.4	0.1904	0.080	42.2	ug/L	805	Standard
	Cr	52	7683.3	2.0	0.5228	0.106	20.4	ug/L	5481	Standard
	Cr	53	12398.4	5.6	23.1345	2.830	12.2	ug/L	268	Standard
	Mn	55	19559.6	1.2	5.6548	0.463	8.2	ug/L	670	Standard
	Co	59	278.7	1.5	0.0439	0.007	16.0	ug/L	146	Standard
	Ni	60	557.7	3.0	0.2768	0.048	17.4	ug/L	220	Standard
	Cu	65	602.3	4.7	0.3749	0.012	3.1	ug/L	147	Standard
	Zn	66	3163.3	8.0	4.3047	0.289	6.7	ug/L	211	Standard
>	Ge	72	208802.6	6.3				ug/L	210599	Standard
	As	75	-53.9	13.7	0.0006	0.006	987.0	ug/L	-47	Standard
	Se	82	19.6	32.8	0.1540	0.094	61.2	ug/L	15	Standard
L	Se-1	77	641.0	4.2	15.6203	0.588	3.8	ug/L	65	Standard
Γ>	Ga	71	21.7	70.5				mg/L	27	Standard
L	Rb	85	18434.5	1.9				ug/L	17	Standard
Γ	Υ	89	213812.0	7.6				ug/L	216672	Standard
L>	Rh	103	43.3	54.5				ug/L	18	Standard
Γ	Мо	98	1810.1	1.0	1.3150	0.100	7.6	ug/L	11	Standard
	Ag	107	58.0	20.9	0.0011	0.002	161.8	ug/L	55	Standard
	Cd	111	11.6	61.1	0.0019	0.005	258.6	mg/L	7	Standard
	Cd	114	28.6	43.4	0.0139	0.004	26.2	ug/L	4	Standard
>	In	115	318715.9	6.7				ug/L	322525	Standard
	Sn	118	426.7	10.6	-0.0438	0.008	18.7	ug/L	345	Standard
ļ	Sb	123	146.2	11.8	0.0284	0.002	8.6	ug/L	88	Standard
Ĺ	Ва	135	2337.8	0.2	1.4597	0.101	7.0	ug/L	12	Standard
!	Се	140	508.3	11.5				ug/L	37	Standard
Ĺ>	Tb	159	611764.5	7.0				ug/L	631826	Standard
!	Но	165	15.0	88.2				ug/L	3	Standard
!	TI	203	139.3	15.6	0.0198	0.003	13.8	ug/L	7	Standard
!	TI	205	86.7	14.5	0.0232	0.003	10.9	ug/L	7	Standard
!	Pb	206	277.0	3.8	0.0133	0.003	21.1	ug/L	159	Standard
	Pb	207	223.3	5.7	0.0078	0.004	56.4	ug/L	120	Standard
	Pb	208	899.7	3.8	0.0116	0.002	19.9	ug/L	503	Standard
	U	238	142.7	9.3	0.0235	0.001	5.5	ug/L	5	Standard
L>	Bi	209	319809.2	7.2				ug/L	333509	Standard

Sample ID: L1510121301

Report Date/Time: Tuesday, October 27, 2015 18:04:27

Page 1

Approved: October 28, 2015

Γ	Na	23	0.0					mg/L	0	Standard
	Mg	24	39138.8	0.5	90.2807	7.569	8.4	mg/L	10	Standard
	K	39	255.0	9.0	2.8684	0.421	14.7	mg/L	32	Standard
	Ca	43	76.7	3.8	-2.5108	1.392	55.4	mg/L	85	Standard
ĺ	Fe	54	66.1	39.0	0.0255	0.073	287.0	mg/L	82	Standard
	Fe	57	251.7	16.1	0.4269	0.419	98.1	mg/L	217	Standard
L>	Sc-1	45	15090.9	8.2				mg/L	14524	Standard
	CI	35	75470.2	1.8				ug/L	53193	Standard
	Kr	83	5.0	20.0				ug/L	3	Standard
	Br	81	543.3	11.2				ug/L	327	Standard
	Р	31	15454.6	3.4				ug/L	13329	Standard
	S	34	3747.1	2.4				ug/L	3234	Standard
	Sr	88	103.3	17.0				ug/L	87	Standard
	С	12	160.0	12.5				mg/L	103	Standard
	N	14	0.0					mg/L	0	Standard
	Hg	202	0.0					mg/L	3	Standard
	Dy	164	18.6	103.9				mg/L	10	Standard
	Ho-1	165	15.0	88.2				mg/L	3	Standard
	Er	166	30.0	57.7				mg/L	7	Standard
	I	127	37814.0	7.1				mg/L	3612	Standard

Analyte	Mass	QC Std % Recovery	Int Std % Recovery	Spike % Recovery
「> Li	6		107.677	
Be	9			
L AI	27			
「 Sc	45			
Ti	47			
V	51			
Cr	52			
Cr	53			
Mn	55			
Co	59			
Ni	60			
Cu	65			
Zn	66			
> Ge	72		99.147	
As	75			
Se	82			
Se-1	77			
√> Ga	71			

Sample ID: L1510121301

Report Date/Time: Tuesday, October 27, 2015 18:04:27

Page 2

Approved: October 28, 2015

L Rb	85			
ΓY	89			
Ĺ> Rh	103			
Γ Mo	98			
Ag	107			
Cd	111			
Cd	114			00.040
_{>} In Sn	115			98.819
Sh	118			
	123 135			
∟ Ba Γ Ce	140			
•	159			
L> Tb 「 Ho	165			
TI	203			
"." Ti	205			
Pb	206			
Pb	207			
Pb	208			
Ü	238			
∟> Bi	209			95.892
Na	23			
Mg	24			
ίκ	39			
Ca	43			
Fe	54			
Fe	57			
_> Sc-1	45			
CI	35			
Kr	83			
Br	81			
Р	31			
S	34			
Sr	88			
С	12			
N	14			
Hg	202			
Dy	164			
Ho-1	165			
Er	166			
1	127			
	ut of Limits			
Measure	ement Type	Analyte	Mass	Out of Limits Message

Sample ID: L1510121301Report Date/Time: Tuesday, October 27, 2015 18:04:27

Page 3

Sample ID: L1510121302

Sample Date/Time: Tuesday, October 27, 2015 18:05:20

Number of Replicates: 3 Autosampler Position: 345 Sample Description: 10

Method File: C:\NexIONData\Method\6020a.mth

Aliquot Volume (mL): Diluted to Volume (mL):

User Name: BKT Nexion300X Cumulative Autodilution Factor: 1

Nexion-ICP 200.8\6020

Concentration	Results
---------------	---------

					Concentra	ation results				
IS	Analyt	e Mass	Intensity	RSD	Conc.	SD	RSD	Units	Blank Intens.	Mode
Γ>	Li	6	28551.9	4.1				ug/L	26270	Standard
	Be	9	8.3	34.6	-0.0199	0.006	27.9	ug/L	2	Standard
L	Αl	27	1938316.3	2.0	31.8158	1.140	3.6	ug/L	403	Standard
Γ	Sc	45	15551.3	3.7				ug/L	14524	Standard
	Ti	47	91.0	16.2	-1.5560	0.069	4.4	ug/L	365	Standard
	٧	51	754.7	20.6	-0.0446	0.051	114.6	ug/L	805	Standard
	Cr	52	7525.9	1.6	0.4192	0.089	21.2	ug/L	5481	Standard
	Cr	53	11484.4	1.7	20.5131	0.504	2.5	ug/L	268	Standard
	Mn	55	15075.5	0.4	4.1019	0.180	4.4	ug/L	670	Standard
	Co	59	274.7	5.1	0.0392	0.005	12.5	ug/L	146	Standard
	Ni	60	409.0	5.1	0.1280	0.005	3.7	ug/L	220	Standard
	Cu	65	362.0	4.6	0.1424	0.024	16.6	ug/L	147	Standard
	Zn	66	1533.4	1.4	1.6749	0.115	6.9	ug/L	211	Standard
>	Ge	72	216544.9	3.8				ug/L	210599	Standard
	As	75	-38.8	122.9	0.0248	0.066	264.2	ug/L	-47	Standard
	Se	82	18.3	60.3	0.1295	0.189	146.1	ug/L	15	Standard
L	Se-1	77	652.0	8.7	15.3182	1.901	12.4	ug/L	65	Standard
Γ>	Ga	71	31.7	9.1				mg/L	27	Standard
L	Rb	85	18838.4	8.0				ug/L	17	Standard
Γ	Υ	89	219358.3	4.2				ug/L	216672	Standard
L>	Rh	103	43.3	48.0				ug/L	18	Standard
Γ	Мо	98	1816.6	2.8	1.2617	0.069	5.4	ug/L	11	Standard
	Ag	107	50.0	36.4	-0.0010	0.004	389.2	ug/L	55	Standard
	Cd	111	6.6	47.3	-0.0018	0.002	118.3	mg/L	7	Standard
	Cd	114	15.3	35.7	0.0097	0.001	14.7	ug/L	4	Standard
>	In	115	332528.5	2.8				ug/L	322525	Standard
ļ	Sn	118	361.7	9.0	-0.0641	0.009	14.4	ug/L	345	Standard
ļ	Sb	123	127.5	24.0	0.0221	0.008	36.3	ug/L	88	Standard
Ē	Ва	135	2201.8	3.0	1.3122	0.064	4.9	ug/L	12	Standard
ļ	Ce	140	40.0	12.5				ug/L	37	Standard
Γ>	Tb	159	637345.6	3.2				ug/L	631826	Standard
ļ	Но	165	10.0	132.3				ug/L	3	Standard
ļ	TI	203	113.7	11.0	0.0150	0.002	12.5	ug/L	7	Standard
ļ	TI	205	50.0	30.0	0.0140	0.003	24.5	ug/L	7	Standard
ļ	Pb	206	210.3	4.8	-0.0065	0.001	13.9	ug/L	159	Standard
	Pb	207	160.0	13.0	-0.0125	0.006	50.9	ug/L	120	Standard
	Pb	208	738.0	2.6	-0.0022	0.001	32.8	ug/L	503	Standard
	U	238	136.7	2.6	0.0214	0.001	6.4	ug/L	5	Standard
L>	Bi	209	332094.7	3.2				ug/L	333509	Standard

Sample ID: L1510121302

Report Date/Time: Tuesday, October 27, 2015 18:07:37

Page 1

Approved: October 28, 2015

Page 586

L15101055 / Revision: 0 / 760 total pages

_										
Γ	Na	23	1.7	173.2				mg/L	0	Standard
	Mg	24	38577.4	3.0	86.0078	3.130	3.6	mg/L	10	Standard
	K	39	296.7	21.2	3.2574	0.795	24.4	mg/L	32	Standard
	Ca	43	56.7	20.4	-5.9878	1.457	24.3	mg/L	85	Standard
	Fe	54	69.2	45.4	0.0249	0.070	283.7	mg/L	82	Standard
	Fe	57	293.3	16.8	0.7208	0.447	62.1	mg/L	217	Standard
L>	Sc-1	45	15551.3	3.7				mg/L	14524	Standard
	CI	35	78621.5	0.6				ug/L	53193	Standard
	Kr	83	3.3	45.8				ug/L	3	Standard
	Br	81	683.3	8.1				ug/L	327	Standard
	Р	31	15561.3	3.2				ug/L	13329	Standard
	S	34	3763.8	2.9				ug/L	3234	Standard
	Sr	88	108.3	27.0				ug/L	87	Standard
	С	12	223.3	13.7				mg/L	103	Standard
	N	14	0.0					mg/L	0	Standard
	Hg	202	0.0					mg/L	3	Standard
	Dy	164	2.2	286.4				mg/L	10	Standard
	Ho-1	165	10.0	132.3				mg/L	3	Standard
	Er	166	23.3	65.5				mg/L	7	Standard
	I	127	39373.1	10.2				mg/L	3612	Standard

Analyte		QC Std % Recovery	Int Std % Recovery	Spike % Recovery
「⊳ Li	6		108.688	
Be	9			
L AI	27			
「 Sc	45			
Ti	47			
V	51			
Cr	52			
Cr	53			
Mn	55			
Co	59			
Ni	60			
Cu	65			
Zn	66			
> Ge	72		102.823	
As	75			
Se	82			
∟ Se-1	77			
「̄> Ga	71			

Sample ID: L1510121302

Report Date/Time: Tuesday, October 27, 2015 18:07:37

Page 2

Approved: October 28, 2015

L Rb	85			
ΓY	89			
$\lfloor_>$ Rh	103			
Mo	98			
Ag	107			
Cd	111			
Cd	114			
> In	115			103.102
Sn	118			
Sb	123			
Ba	135			
Ce	140			
> Tb	159			
Ho	165			
TI	203			
TI	205			
Pb	206			
Pb	207			
Pb	208			
U	238			
∣	209			99.576
∫ Na	23			00.070
Mg	24			
K	39			
Ca	43			
Fe	54			
Fe	57			
Sc-1	45			
CI	35			
Kr	83			
Br	81			
P	31			
S	34			
Sr	88			
C	12			
N	14			
Hg	202			
Dy	164			
Ho-1	165			
Er	166			
 I	127			
טר טי	ut of Limits			
		A 1 1		Out of Divide Manager
Measure	ement Type	Analyte	Mass	Out of Limits Message
Ti 47 Lov	wer	Ti	47	

Sample ID: L1510121302Report Date/Time: Tuesday, October 27, 2015 18:07:37

Page 3

Sample ID: L1510121303

Sample Date/Time: Tuesday, October 27, 2015 18:08:32

Number of Replicates: 3 Autosampler Position: 346 Sample Description: 10

Method File: C:\NexIONData\Method\6020a.mth

Aliquot Volume (mL): Diluted to Volume (mL):

User Name: BKT Nexion300X Cumulative Autodilution Factor: 1

Nexion-ICP 200.8\6020

	Concentration Results												
IS	Analyt	e Mass	Intensity	RSD	Conc.	SD	RSD	Units	Blank Intens.	Mode			
Γ>	Li	6	29363.4	2.5				ug/L	26270	Standard			
i	Be	9	11.7	65.5	-0.0145	0.014	94.5	ug/L	2	Standard			
i	Αl	27	5882155.2	0.7	93.8785	2.255	2.4	ug/L	403	Standard			
Ī	Sc	45	15948.4	5.5				ug/L	14524	Standard			
i	Ti	47	109.3	6.1	-1.4352	0.048	3.3	ug/L	365	Standard			
ĺ	V	51	1758.9	14.8	0.2409	0.055	22.9	ug/L	805	Standard			
	Cr	52	8469.7	3.9	0.6488	0.028	4.3	ug/L	5481	Standard			
	Cr	53	8492.4	5.2	15.1881	1.583	10.4	ug/L	268	Standard			
	Mn	55	10887.2	1.9	2.8917	0.218	7.5	ug/L	670	Standard			
	Co	59	259.3	2.9	0.0351	0.004	10.2	ug/L	146	Standard			
	Ni	60	547.7	6.6	0.2519	0.029	11.4	ug/L	220	Standard			
	Cu	65	450.7	7.0	0.2243	0.039	17.6	ug/L	147	Standard			
	Zn	66	2148.8	2.8	2.6257	0.223	8.5	ug/L	211	Standard			
>	Ge	72	214953.0	4.8				ug/L	210599	Standard			
	As	75	-54.2	5.4	0.0021	0.002	118.0	ug/L	-47	Standard			
	Se	82	17.7	8.1	0.1162	0.024	20.5	ug/L	15	Standard			
L	Se-1	77	482.3	7.7	11.0590	0.371	3.4	ug/L	65	Standard			
[>	Ga	71	30.0	0.0				mg/L	27	Standard			
L	Rb	85	17987.3	4.1				ug/L	17	Standard			
Γ	Υ	89	226682.0	8.1				ug/L	216672	Standard			
Ĺ>	Rh	103	31.7	18.2				ug/L	18	Standard			
ļ	Мо	98	1458.5	3.0	1.0087	0.076	7.5	ug/L	11	Standard			
ļ	Ag	107	44.0	8.2	-0.0023	0.001	31.7	ug/L	55	Standard			
ļ	Cd	111	6.2	17.2	-0.0021	0.001	36.7	mg/L	7	Standard			
ļ	Cd	114	14.8	63.4	0.0096	0.003	29.8	ug/L	4	Standard			
>	In	115	334193.4	4.4				ug/L	322525	Standard			
ļ	Sn	118	503.3	8.7	-0.0299	0.014	46.0	ug/L	345	Standard			
!	Sb	123	195.3	3.6	0.0393	0.001	3.3	ug/L	88	Standard			
Ļ	Ва	135	3894.2	1.0	2.3291	0.119	5.1	ug/L	12	Standard			
-	Ce	140	156.7	14.7				ug/L	37	Standard			
[>	Tb	159	635109.6	4.0				ug/L	631826	Standard			
-	Ho	165 203	13.3 98.7	43.3 6.6	0.0400	0.001	11.8	ug/L	3	Standard			
	TI T'	205	98.7 68.3	27.7	0.0126			ug/L	7 7	Standard			
1	TI Pb	205 206	325.7	27.7 6.7	0.0180 0.0224	0.004 0.005	19.9 20.6	ug/L	7 159	Standard Standard			
1	Pb Pb	206	325.7 288.3	4.6	0.0224	0.005	20.6 4.7	ug/L	120	Standard			
1	Pb Pb	207	200.3 1108.3	4.6 6.6		0.001	4.7 11.2	ug/L	503	Standard			
	PD	200	1100.3	0.0	0.0232	0.003	11.2	ug/L	503	Standard			

0.0305

Sample ID: L1510121303

238

209

Report Date/Time: Tuesday, October 27, 2015 18:10:49

185.0

334187.0

8.5

4.9

Page 1

U

∟> Bi

Approved: October 28, 2015

5

333509

Standard

Standard

Page 589

ug/L

ug/L

0.005 15.2

г	N.	23	3.3	173.2					0	Ctandard
!	Na							mg/L		Standard
	Mg	24	24843.7	2.9	54.1283	4.538	8.4	mg/L	10	Standard
	K	39	231.7	16.2	2.4369	0.556	22.8	mg/L	32	Standard
	Ca	43	65.0	15.4	-4.9635	1.193	24.0	mg/L	85	Standard
	Fe	54	75.7	27.3	0.0368	0.053	145.0	mg/L	82	Standard
	Fe	57	273.3	17.0	0.4709	0.284	60.3	mg/L	217	Standard
L>	Sc-1	45	15948.4	5.5				mg/L	14524	Standard
	CI	35	84276.4	0.7				ug/L	53193	Standard
	Kr	83	3.7	68.6				ug/L	3	Standard
	Br	81	726.7	15.1				ug/L	327	Standard
	Р	31	15841.6	0.9				ug/L	13329	Standard
	S	34	3883.8	2.7				ug/L	3234	Standard
	Sr	88	101.7	23.2				ug/L	87	Standard
	С	12	100.0	0.0				mg/L	103	Standard
	N	14	0.0					mg/L	0	Standard
	Hg	202	0.0					mg/L	3	Standard
	Dy	164	3.2	186.4				mg/L	10	Standard
	Ho-1	165	13.3	43.3				mg/L	3	Standard
	Er	166	3.3	173.2				mg/L	7	Standard
	1	127	32070.6	5.3				mg/L	3612	Standard

Analyte	Mass	QC Std % Recovery	Int Std % Recovery	Spike % Recovery
「⊳ Li	6		111.777	
Be	9			
L AI	27			
「 Sc	45			
Ti	47			
V	51			
Cr	52			
Cr	53			
Mn	55			
Co	59			
Ni	60			
Cu	65			
Zn	66			
> Ge	72		102.068	
As	75			
Se	82			
L Se-1	77			
「⊳ Ga	71			

Sample ID: L1510121303

Report Date/Time: Tuesday, October 27, 2015 18:10:49

Page 2

Approved: October 28, 2015

l Dh	0.5			
L Rb Γ Y	85 80			
	89 103			
L> Rh □ Mo	103			
Γ Mo	98 107			
Ag				
Cd	111 114			
Cd				103.618
> In	115			103.016
Sn Sb	118 123			
L Ba □ Co	135			
「 Ce ⊤h	140 159			
_> Tb □ Ho	165			
「 Ho ∣ TI	203			
'' TI	205			
11 Pb	206			
Pb	207			
Pb	208			
U	238			
i	209			100.203
∟ _{>} Bi Γ Na	23			100.203
Mg	24			
Wig K	39			
Ca	43			
Fe	54			
Fe	57			
Sc-1	45			
CI	35			
Kr	83			
Br	81			
P	31			
S	34			
Sr	88			
C	12			
N	14			
Hg	202			
Dy	164			
Ho-1	165			
Er	166			
1	127			
QC Ou	ıt of Limits			
	ment Type	Analyte	Mass	Out of Limits Message
Ti 47 Lo		Ti	47	Out of Littlite Message
114/ LO	WC1	11	71	

Sample ID: L1510121303

Report Date/Time: Tuesday, October 27, 2015 18:10:49

Page 3

Sample ID: L1510121304

Sample Date/Time: Tuesday, October 27, 2015 18:11:44

Number of Replicates: 3 Autosampler Position: 347 Sample Description: 10

Method File: C:\NexIONData\Method\6020a.mth

Aliquot Volume (mL): Diluted to Volume (mL):

User Name: BKT Nexion300X Cumulative Autodilution Factor: 1

Nexion-ICP 200.8\6020

Concentration	Results
---------------	---------

	Concentration Results									
18	S Ana	lyte Mass	Intensity	RSD	Conc.	SD	RSD	Units	Blank Intens.	Mode
Γ:	> Li	6	29351.8	3.6				ug/L	26270	Standard
	Ве	9	11.7	24.7	-0.0148	0.004	29.2	ug/L	2	Standard
L	ΑI	27	5873294.0	0.5	93.8276	3.772	4.0	ug/L	403	Standard
Γ	Sc	45	15838.3	3.8				ug/L	14524	Standard
	Ti	47	87.7	7.6	-1.5810	0.038	2.4	ug/L	365	Standard
	V	51	2018.2	16.0	0.3052	0.085	27.9	ug/L	805	Standard
	Cr	52	9103.4	1.5	0.7562	0.028	3.7	ug/L	5481	Standard
	Cr	53	7705.3	1.9	13.4270	0.358	2.7	ug/L	268	Standard
	Mn	55	1529.7	4.2	0.0935	0.020	21.1	ug/L	670	Standard
	Co	59	257.3	5.7	0.0329	0.003	9.9	ug/L	146	Standard
	Ni	60	520.7	3.2	0.2200	0.020	9.3	ug/L	220	Standard
	Cu	65	383.0	5.4	0.1568	0.020	12.8	ug/L	147	Standard
	Zn	66	1912.8	2.8	2.2099	0.099	4.5	ug/L	211	Standard
:	> Ge	72	218974.6	1.6				ug/L	210599	Standard
	As	75	1.2	5686.1	0.0790	0.091	114.8	ug/L	-47	Standard
	Se	82	17.1	45.9	0.1010	0.128	126.7	ug/L	15	Standard
L	Se-1		491.0	6.3	11.0712	0.959	8.7	ug/L	65	Standard
Γ:	> Ga	71	30.0	57.7				mg/L	27	Standard
L	Rb	85	17610.2	2.8				ug/L	17	Standard
Γ	Υ	89	224616.4	1.8				ug/L	216672	Standard
Ŀ	> R h	103	28.3	20.4				ug/L	18	Standard
Γ	Мо	98	1426.6	2.0	0.9829	0.022	2.3	ug/L	11	Standard
	Ag	107	49.7	19.6	-0.0011	0.002	183.8	ug/L	55	Standard
	Cd	111	8.6	6.7	-0.0004	0.000	85.0	mg/L	7	Standard
	Cd	114	32.2	21.9	0.0144	0.002	13.9	ug/L	4	Standard
:	> In	115	334729.4	0.4				ug/L	322525	Standard
	Sn	118	416.7	5.4	-0.0514	0.006	11.4	ug/L	345	Standard
	Sb	123	199.3	13.2	0.0402	0.007	16.3	ug/L	88	Standard
L	Ва	135	3423.4	0.2	2.0383	0.006	0.3	ug/L	12	Standard
	Се	140	33.3	8.7				ug/L	37	Standard
Ŀ		159	630120.1	1.1				ug/L	631826	Standard
ļ	Но	165	10.0	86.6				ug/L	3	Standard
ļ	TI	203	110.7	3.2	0.0144	0.001	5.2	ug/L	7	Standard
ļ	TI	205	78.3	47.0	0.0204	0.009	42.3	ug/L	7	Standard
ļ	Pb	206	366.7	3.7	0.0324	0.004	13.2	ug/L	159	Standard
ļ	Pb	207	324.3	3.7	0.0327	0.002	7.2	ug/L	120	Standard
- [Pb	208	1299.0	6.4	0.0363	0.005	14.5	ug/L	503	Standard
- [U	238	195.0	4.1	0.0321	0.002	5.9	ug/L	5	Standard
Ŀ	> Bi	209	335238.8	1.2				ug/L	333509	Standard

Sample ID: L1510121304

Report Date/Time: Tuesday, October 27, 2015 18:14:01

Page 1

Approved: October 28, 2015

_										
	Na	23	1.7	173.2				mg/L	0	Standard
	Mg	24	25498.1	2.5	55.8311	2.792	5.0	mg/L	10	Standard
	K	39	236.7	11.6	2.4960	0.298	12.0	mg/L	32	Standard
	Ca	43	73.3	32.2	-3.6769	3.245	88.2	mg/L	85	Standard
	Fe	54	74.3	20.1	0.0345	0.040	116.2	mg/L	82	Standard
	Fe	57	298.3	11.8	0.7096	0.217	30.5	mg/L	217	Standard
L>	Sc-1	45	15838.3	3.8				mg/L	14524	Standard
	CI	35	88507.8	1.3				ug/L	53193	Standard
	Kr	83	4.0	50.0				ug/L	3	Standard
	Br	81	663.3	15.4				ug/L	327	Standard
	Р	31	15294.4	2.5				ug/L	13329	Standard
	S	34	3898.8	3.4				ug/L	3234	Standard
	Sr	88	120.0	11.0				ug/L	87	Standard
	С	12	133.3	31.2				mg/L	103	Standard
	N	14	3.3	173.2				mg/L	0	Standard
	Hg	202	0.0					mg/L	3	Standard
	Dy	164	6.3	93.2				mg/L	10	Standard
	Ho-1	165	10.0	86.6				mg/L	3	Standard
	Er	166	6.7	86.6				mg/L	7	Standard
	1	127	31243.9	5.0				mg/L	3612	Standard

Analyte	Mass	QC Std % Recovery	Int Std % Recovery	Spike % Recovery
「⊳ Li	6		111.733	
Be	9			
L AI	27			
「 Sc	45			
Ti	47			
V	51			
Cr	52			
Cr	53			
Mn	55			
Co	59			
Ni	60			
Cu	65			
Zn	66			
> Ge	72		103.977	
As	75			
Se	82			
L Se-1	77			
「⊳ Ga	71			

Sample ID: L1510121304

Report Date/Time: Tuesday, October 27, 2015 18:14:01

Page 2

Approved: October 28, 2015

L Rb	85			
ΓY	89			
$\lfloor_>$ Rh	103			
Г Мо	98			
Ag	107			
Cd	111			
Cd	114			
 > In	115			103.784
Sn	118			
Sb	123			
Ва	135			
Ce	140			
_> Tb	159			
Ho	165			
TI	203			
TI	205			
Pb	206			
Pb	207			
Pb	208			
U	238			
∟> Bi	209			100.519
Na	23			
Mg	24			
K	39			
Ca	43			
Fe	54			
Fe	57			
> Sc-1	45			
CI	35			
Kr	83			
Br	81			
Р	31			
S	34			
Sr	88			
C	12			
N	14			
Hg	202			
Dy	164			
Ho-1	165			
Er	166			
1	127			
OC O	ıt of Limits			
		Analyta	Mass	Out of Limita Massage
	ment Type	Analyte	Mass	Out of Limits Message
Ti 47 Lower		Ti	47	

Sample ID: L1510121304Report Date/Time: Tuesday, October 27, 2015 18:14:01

Page 3

Sample ID: L1510121305

Sample Date/Time: Tuesday, October 27, 2015 18:14:56

Number of Replicates: 3 Autosampler Position: 348 Sample Description: 10

Method File: C:\NexIONData\Method\6020a.mth

Aliquot Volume (mL): Diluted to Volume (mL):

User Name: BKT Nexion300X Cumulative Autodilution Factor: 1 Nexion-ICP 200.8\6020

Concentration Results

IS	S Analyte Mass		Intensity	RSD	Conc.	SD	RSD	Units	Blank Intens.	Mode
Γ>	Li	6 e iviass	29949.6	4.5	Conc.	OD	NOD	ug/L	26270	Standard
	Be	9	10.0	50.0	-0.0182	0.008	42.5	ug/L	20270	Standard
i	Al	27	5565132.9	1.0	87.1411	3.259	3.7	ug/L	403	Standard
Ĺ	Sc	45	16862.7	4.6	0111411	0.200	0.1	ug/L	14524	Standard
i	Ti	47	101.7	16.5	-1.4986	0.106	7.1	ug/L	365	Standard
i	V	51	2200.7	11.8	0.3531	0.070	19.8	ug/L	805	Standard
i	Cr	52	9357.9	0.2	0.8014	0.025	3.1	ug/L	5481	Standard
i	Cr	53	7121.7	6.4	12.2933	0.871	7.1	ug/L	268	Standard
í	Mn	55	4877.1	1.5	1.0622	0.015	1.5	ug/L	670	Standard
ĺ	Co	59	254.0	4.8	0.0315	0.004	13.9	ug/L	146	Standard
ĺ	Ni	60	477.0	1.9	0.1800	0.008	4.5	ug/L	220	Standard
ĺ	Cu	65	400.3	10.6	0.1700	0.039	22.8	ug/L	147	Standard
ĺ	Zn	66	1621.8	5.3	1.7629	0.116	6.6	ug/L	211	Standard
>	Ge	72	220284.9	0.9				ug/L	210599	Standard
	As	75	-34.9	71.0	0.0306	0.033	108.5	ug/L	-47	Standard
	Se	82	17.8	23.5	0.1114	0.069	62.1	ug/L	15	Standard
L	Se-1	77	460.0	4.9	10.2185	0.620	6.1	ug/L	65	Standard
Γ>	Ga	71	21.7	26.6				mg/L	27	Standard
L	Rb	85	16992.9	0.7				ug/L	17	Standard
Γ	Υ	89	227250.0	4.1				ug/L	216672	Standard
L>	Rh	103	45.0	29.4				ug/L	18	Standard
Γ	Мо	98	1289.7	1.9	0.8730	0.004	0.4	ug/L	11	Standard
	Ag	107	51.7	26.1	-0.0009	0.003	320.1	ug/L	55	Standard
	Cd	111	9.7	31.7	0.0002	0.002	901.1	mg/L	7	Standard
	Cd	114	13.8	92.0	0.0092	0.004	38.6	ug/L	4	Standard
>	In	115	340561.8	1.6				ug/L	322525	Standard
ļ	Sn	118	418.3	11.3	-0.0526	0.013	24.0	ug/L	345	Standard
ļ	Sb	123	181.8	9.4	0.0349	0.004	10.3	ug/L	88	Standard
Ĺ	Ва	135	3122.7	0.9	1.8251	0.013	0.7	ug/L	12	Standard
!	Ce	140	130.0	30.0				ug/L	37	Standard
L>	Tb	159	653955.1	1.6				ug/L	631826	Standard
-	Ho	165	5.0	100.0		0.000	40.0	ug/L	3	Standard
	TI	203	102.7	13.3	0.0129	0.002	16.8	ug/L	7	Standard
	TI	205	63.3	40.5	0.0167	0.006	33.2	ug/L	7	Standard
	Pb	206	231.3	1.9	-0.0024	0.001	34.4	ug/L	159	Standard
	Pb	207 208	187.7	6.9	-0.0060	0.003	47.6 846.6	ug/L	120 503	Standard
	Pb		780.3	4.5	-0.0004	0.004		ug/L		Standard
	U D:	238	185.3	14.8	0.0299	0.006	19.4	ug/L	5	Standard
L>	Bi	209	339609.6	2.1				ug/L	333509	Standard

Sample ID: L1510121305

Report Date/Time: Tuesday, October 27, 2015 18:17:13

Page 1

Approved: October 28, 2015

_								_	_	
	Na	23	1.7	173.2				mg/L	0	Standard
	Mg	24	23615.1	0.3	48.5748	2.189	4.5	mg/L	10	Standard
	K	39	248.3	12.9	2.4498	0.220	9.0	mg/L	32	Standard
	Ca	43	78.3	26.6	-3.6480	2.624	71.9	mg/L	85	Standard
	Fe	54	87.3	18.2	0.0507	0.033	64.5	mg/L	82	Standard
	Fe	57	306.7	11.5	0.6281	0.312	49.7	mg/L	217	Standard
L>	Sc-1	45	16862.7	4.6				mg/L	14524	Standard
	CI	35	86274.3	1.3				ug/L	53193	Standard
	Kr	83	4.0	43.3				ug/L	3	Standard
	Br	81	736.7	10.9				ug/L	327	Standard
	Р	31	15094.2	0.5				ug/L	13329	Standard
	S	34	3813.8	2.2				ug/L	3234	Standard
	Sr	88	123.3	41.0				ug/L	87	Standard
	С	12	146.7	15.7				mg/L	103	Standard
	N	14	3.3	173.2				mg/L	0	Standard
	Hg	202	0.0					mg/L	3	Standard
	Dy	164	19.0	52.7				mg/L	10	Standard
	Ho-1	165	5.0	100.0				mg/L	3	Standard
	Er	166	20.0	86.6				mg/L	7	Standard
	I	127	30873.3	8.9				mg/L	3612	Standard

Analyte	Mass	QC Std % Recovery	Int Std % Recovery	Spike % Recovery
「> Li	6		114.008	
Be	9			
L AI	27			
「 Sc	45			
Ti	47			
V	51			
Cr	52			
Cr	53			
Mn	55			
Co	59			
Ni	60			
Cu	65			
Zn	66			
> Ge	72		104.599	
As	75			
Se	82			
L Se-1	77			
「⊳ Ga	71			

Sample ID: L1510121305

Report Date/Time: Tuesday, October 27, 2015 18:17:13

Page 2

Approved: October 28, 2015

∟ Rb	85			
ΓY	89			
$\lfloor_>$ Rh	103			
Г Мо	98			
Ag	107			
Cd	111			
Cd	114			
> In	115			105.592
Sn	118			
Sb	123			
L Ba	135			
_ Ce	140			
_> Tb	159			
⊢ Ho	165			
j TI	203			
į ΤΙ	205			
Pb	206			
Pb	207			
Pb	208			
U	238			
Ĺ> Bi	209			101.829
Г Na	23			
Mg	24			
K	39			
Ca	43			
Fe	54			
Fe	57			
L> Sc-1	45			
CI	35			
Kr	83			
Br	81			
Р	31			
S	34			
Sr	88			
С	12			
N	14			
Hg	202			
Dy	164			
Ho-1	165			
Er	166			
1	127			
QC Oi	ıt of Limits			
	ment Type	Analyte	Mass	Out of Limits Message
Ti 47 Lo		Ti	47	2 a. c. Linite moodage
11 11 LO		• • • • • • • • • • • • • • • • • • • •	• • • • • • • • • • • • • • • • • • • •	

Sample ID: L1510121305

Report Date/Time: Tuesday, October 27, 2015 18:17:13

Page 3

Sample ID: L1510121306

Sample Date/Time: Tuesday, October 27, 2015 18:18:07

Number of Replicates: 3 Autosampler Position: 349 Sample Description: 10

Method File: C:\NexIONData\Method\6020a.mth

Aliquot Volume (mL): Diluted to Volume (mL):

User Name: BKT Nexion300X Cumulative Autodilution Factor: 1

Nexion-ICP 200.8\6020

0	ncon	tration	Results	
Lα	ncen	itration	Results	

	Concentration results									
IS	Analyt	e Mass	Intensity	RSD	Conc.	SD	RSD	Units	Blank Intens.	Mode
Γ>	Li	6	28395.1	9.2				ug/L	26270	Standard
	Ве	9	13.3	57.3	-0.0109	0.013	121.6	ug/L	2	Standard
L	ΑI	27	5967950.6	1.9	99.1403	11.106	11.2	ug/L	403	Standard
Γ	Sc	45	15427.9	6.4				ug/L	14524	Standard
	Ti	47	75.3	3.1	-1.6308	0.027	1.7	ug/L	365	Standard
	٧	51	2075.1	9.0	0.3537	0.058	16.4	ug/L	805	Standard
	Cr	52	9522.7	0.9	0.9726	0.148	15.3	ug/L	5481	Standard
	Cr	53	7288.4	1.3	13.4061	0.819	6.1	ug/L	268	Standard
	Mn	55	1110.7	3.6	-0.0110	0.018	165.5	ug/L	670	Standard
	Co	59	264.0	2.5	0.0396	0.008	20.7	ug/L	146	Standard
	Ni	60	479.7	7.4	0.2086	0.054	25.8	ug/L	220	Standard
	Cu	65	387.7	8.0	0.1800	0.026	14.5	ug/L	147	Standard
	Zn	66	1296.7	1.0	1.4039	0.144	10.3	ug/L	211	Standard
>	Ge	72	207975.2	7.0				ug/L	210599	Standard
	As	75	-67.5	10.4	-0.0205	0.018	85.8	ug/L	-47	Standard
	Se	82	14.4	19.4	0.0685	0.036	53.0	ug/L	15	Standard
L	Se-1	77	510.3	8.8	12.2737	1.568	12.8	ug/L	65	Standard
Γ>	Ga	71	16.7	34.6				mg/L	27	Standard
L	Rb	85	18449.6	0.3				ug/L	17	Standard
Γ	Υ	89	215415.6	7.1				ug/L	216672	Standard
L>	Rh	103	46.7	27.0				ug/L	18	Standard
Γ	Мо	98	1431.2	3.4	1.0377	0.106	10.2	ug/L	11	Standard
	Ag	107	43.7	19.5	-0.0020	0.001	67.9	ug/L	55	Standard
	Cd	111	5.2	30.1	-0.0026	0.001	43.0	mg/L	7	Standard
	Cd	114	16.9	122.4	0.0107	0.007	62.6	ug/L	4	Standard
>	In	115	319524.7	6.6				ug/L	322525	Standard
	Sn	118	425.0	15.8	-0.0449	0.010	22.9	ug/L	345	Standard
	Sb	123	224.7	5.3	0.0497	0.007	14.7	ug/L	88	Standard
Ĺ	Ва	135	3388.4	2.5	2.1230	0.196	9.2	ug/L	12	Standard
ļ	Ce	140	20.0	25.0				ug/L	37	Standard
[>	Tb	159	607987.1	6.8				ug/L	631826	Standard
ļ	Но	165	18.3	31.5				ug/L	3	Standard
ļ	TI	203	93.0	17.8	0.0125	0.003	21.2	ug/L	7	Standard
ļ	TI	205	75.0	24.0	0.0208	0.006	26.6	ug/L	7	Standard
!	Pb	206	195.3	9.3	-0.0079	0.003	31.8	ug/L	159	Standard
ļ	Pb	207	164.0	10.0	-0.0089	0.008	87.2	ug/L	120	Standard
!	Pb	208	658.7	8.0	-0.0056	0.001	23.0	ug/L	503	Standard
!	U	238	189.7	8.5	0.0332	0.001	3.8	ug/L	5	Standard
L>	Bi	209	316563.4	6.0				ug/L	333509	Standard

Sample ID: L1510121306

Report Date/Time: Tuesday, October 27, 2015 18:20:24

Page 1

Approved: October 28, 2015

Page 598

L15101055 / Revision: 0 / 760 total pages

_										
	Na	23	3.3	86.6				mg/L	0	Standard
	Mg	24	25833.7	2.1	58.2002	4.637	8.0	mg/L	10	Standard
	K	39	245.0	21.6	2.6791	0.675	25.2	mg/L	32	Standard
	Ca	43	51.7	14.8	-6.5830	1.670	25.4	mg/L	85	Standard
	Fe	54	82.5	15.4	0.0586	0.041	70.4	mg/L	82	Standard
	Fe	57	283.3	20.9	0.6546	0.546	83.4	mg/L	217	Standard
L>	Sc-1	45	15427.9	6.4				mg/L	14524	Standard
	CI	35	87868.8	1.4				ug/L	53193	Standard
	Kr	83	5.0	34.6				ug/L	3	Standard
	Br	81	663.3	14.0				ug/L	327	Standard
	Р	31	14872.3	1.3				ug/L	13329	Standard
	S	34	3977.2	1.0				ug/L	3234	Standard
	Sr	88	135.0	7.4				ug/L	87	Standard
	С	12	106.7	23.6				mg/L	103	Standard
	N	14	6.7	86.6				mg/L	0	Standard
	Hg	202	0.0					mg/L	3	Standard
	Dy	164	9.4	106.9				mg/L	10	Standard
	Ho-1	165	18.3	31.5				mg/L	3	Standard
	Er	166	13.3	43.3				mg/L	7	Standard
	I	127	31711.6	8.2				mg/L	3612	Standard

Analyte	Mass	QC Std % Recovery	Int Std % Recovery	Spike % Recovery
「⊳ Li	6		108.091	
Be	9			
L AI	27			
「 Sc	45			
Ti	47			
V	51			
Cr	52			
Cr	53			
Mn	55			
Co	59			
Ni	60			
Cu	65			
Zn	66			
> Ge	72		98.754	
As	75			
Se	82			
L Se-1	77			
「⊳ Ga	71			

Sample ID: L1510121306

Report Date/Time: Tuesday, October 27, 2015 18:20:24

Page 2

Approved: October 28, 2015

L Rb 85 √ 89 L Rh 103 Mo 98 Ag 107 Cd 111 Cd 114 In 115 Sn 118 Sb 123 Ba 135 Ce 140 Nb 159 Ho 165 TI 203 Pb 206 Pb 207 Pb 208 U 238 Bi 209 Na 23 Mg 24 K 39 Ca 43 Fe 54 Fe 57 L> Sc-1 45 CI 35 Kr 83 Br 81 P 31 S 34 Sr 88 C 12 N 14 Hg 202			99.070
QC Out of Limits			
Measurement Type	Analyte	Mass	Out of Limits Message
Ti 47 Lower	Ti	47	

Sample ID: L1510121306Report Date/Time: Tuesday, October 27, 2015 18:20:24

Page 3

Sample ID: L1510121307

Sample Date/Time: Tuesday, October 27, 2015 18:21:19

Number of Replicates: 3 Autosampler Position: 350 Sample Description: 10

Method File: C:\NexIONData\Method\6020a.mth

Aliquot Volume (mL): Diluted to Volume (mL):

User Name: BKT Nexion300X Cumulative Autodilution Factor: 1

Nexion-ICP 200.8\6020

Concentration Resul	ts
---------------------	----

Concentration Results										
IS	Analyt	e Mass	Intensity	RSD	Conc.	SD	RSD	Units	Blank Intens.	Mode
Γ>	Li	6	30425.5	2.9				ug/L	26270	Standard
	Be	9	3.3	173.2	-0.0291	0.010	34.2	ug/L	2	Standard
L	ΑI	27	3812790.1	2.3	58.7550	3.049	5.2	ug/L	403	Standard
Γ	Sc	45	16694.2	7.3				ug/L	14524	Standard
	Ti	47	103.3	6.8	-1.5072	0.055	3.7	ug/L	365	Standard
	V	51	2176.8	9.9	0.3270	0.037	11.4	ug/L	805	Standard
	Cr	52	9851.9	1.8	0.8463	0.098	11.5	ug/L	5481	Standard
	Cr	53	6919.9	1.8	11.5553	0.529	4.6	ug/L	268	Standard
	Mn	55	38393.9	2.1	10.4634	0.700	6.7	ug/L	670	Standard
	Co	59	273.0	9.5	0.0349	0.010	29.9	ug/L	146	Standard
	Ni	60	539.3	7.9	0.2184	0.018	8.5	ug/L	220	Standard
	Cu	65	2848.9	1.7	2.2286	0.152	6.8	ug/L	147	Standard
	Zn	66	2409.5	3.6	2.8228	0.286	10.1	ug/L	211	Standard
>	Ge	72	227351.9	4.5				ug/L	210599	Standard
	As	75	24.1	229.0	0.1112	0.072	65.2	ug/L	-47	Standard
	Se	82	23.0	9.1	0.1848	0.049	26.6	ug/L	15	Standard
L	Se-1	77	481.0	2.6	10.3788	0.471	4.5	ug/L	65	Standard
Γ>	Ga	71	30.0	28.9				mg/L	27	Standard
L	Rb	85	20712.5	2.7				ug/L	17	Standard
Γ	Υ	89	232723.5	5.2				ug/L	216672	Standard
L>	Rh	103	33.3	22.9				ug/L	18	Standard
Γ	Mo	98	1483.8	4.1	1.0018	0.089	8.9	ug/L	11	Standard
	Ag	107	49.7	18.3	-0.0013	0.002	157.7	ug/L	55	Standard
	Cd	111	8.7	20.6	-0.0005	0.001	255.9	mg/L	7	Standard
	Cd	114	27.9	94.8	0.0129	0.007	53.2	ug/L	4	Standard
>	In	115	342531.8	4.7				ug/L	322525	Standard
	Sn	118	698.3	4.8	0.0137	0.015	110.2	ug/L	345	Standard
	Sb	123	863.4	5.7	0.2053	0.020	9.6	ug/L	88	Standard
L	Ва	135	3075.6	1.6	1.7894	0.093	5.2	ug/L	12	Standard
Γ	Ce	140	166.7	13.9				ug/L	37	Standard
L>	Tb	159	664870.0	5.1				ug/L	631826	Standard
Γ	Но	165	21.7	26.6				ug/L	3	Standard
	TI	203	94.3	4.0	0.0115	0.000	1.7	ug/L	7	Standard
	TI	205	50.0	26.5	0.0136	0.003	18.8	ug/L	7	Standard
	Pb	206	587.3	4.7	0.0846	0.001	1.2	ug/L	159	Standard
	Pb	207	481.3	3.0	0.0734	0.003	4.3	ug/L	120	Standard
	Pb	208	1947.7	1.1	0.0785	0.006	7.3	ug/L	503	Standard
	U	238	130.0	11.1	0.0194	0.003	16.3	ug/L	5	Standard
<u>_</u> >	Bi	209	342980.7	4.1				ug/L	333509	Standard

Sample ID: L1510121307

Report Date/Time: Tuesday, October 27, 2015 18:23:36

Page 1

Approved: October 28, 2015

Page 601

L15101055 / Revision: 0 / 760 total pages

_										
	Na	23	1.7	173.2				mg/L	0	Standard
	Mg	24	23504.9	2.7	48.9280	3.480	7.1	mg/L	10	Standard
	K	39	296.7	10.3	3.0360	0.586	19.3	mg/L	32	Standard
	Ca	43	73.3	10.4	-4.2120	0.489	11.6	mg/L	85	Standard
	Fe	54	97.4	50.2	0.0723	0.096	132.3	mg/L	82	Standard
	Fe	57	228.3	5.1	0.0144	0.213	1480.2	mg/L	217	Standard
L>	Sc-1	45	16694.2	7.3				mg/L	14524	Standard
	CI	35	87824.5	1.7				ug/L	53193	Standard
	Kr	83	5.0	20.0				ug/L	3	Standard
	Br	81	813.4	13.1				ug/L	327	Standard
	Р	31	14753.8	2.5				ug/L	13329	Standard
	S	34	3863.8	1.4				ug/L	3234	Standard
	Sr	88	131.7	20.9				ug/L	87	Standard
	С	12	173.3	12.0				mg/L	103	Standard
	N	14	0.0					mg/L	0	Standard
	Hg	202	3.3	173.2				mg/L	3	Standard
	Dy	164	12.5	45.0				mg/L	10	Standard
	Ho-1	165	21.7	26.6				mg/L	3	Standard
	Er	166	16.7	34.6				mg/L	7	Standard
	I	127	54319.0	5.3				mg/L	3612	Standard

Analyte	Mass	QC Std % Recovery	Int Std % Recovery	Spike % Recovery
「⊳ Li	6		115.820	
Be	9			
L AI	27			
「 Sc	45			
Ti	47			
V	51			
Cr	52			
Cr	53			
Mn	55			
Co	59			
Ni	60			
Cu	65			
Zn	66			
> Ge	72		107.955	
As	75			
Se	82			
∟ Se-1	77			
「⊳ Ga	71			

Sample ID: L1510121307

Report Date/Time: Tuesday, October 27, 2015 18:23:36

Page 2

Approved: October 28, 2015

∟ Rb	85			
ΓY	89			
$\lfloor_>$ Rh	103			
Г Мо	98			
Ag	107			
Cd	111			
Cd	114			
> In	115			106.203
Sn	118			
Sb	123			
L Ba	135			
_ Ce	140			
_> Tb	159			
⊢ Ho	165			
j TI	203			
į ΤΙ	205			
Pb	206			
Pb	207			
Pb	208			
į U	238			
Ĺ> Bi	209			102.840
Г Na	23			
Mg	24			
K	39			
Ca	43			
Fe	54			
Fe	57			
L> Sc-1	45			
CI	35			
Kr	83			
Br	81			
Р	31			
S	34			
Sr	88			
С	12			
N	14			
Hg	202			
Dy	164			
Ho-1	165			
Er	166			
1	127			
QC Oi	ıt of Limits			
	ment Type	Analyte	Mass	Out of Limits Message
Ti 47 Lo		Ti	47	out of Emilio Moodago
11 11 LO		• • • • • • • • • • • • • • • • • • • •	• • • • • • • • • • • • • • • • • • • •	

Sample ID: L1510121307

Report Date/Time: Tuesday, October 27, 2015 18:23:36

Page 3

Sample ID: L1510121308

Sample Date/Time: Tuesday, October 27, 2015 18:24:30

Number of Replicates: 3 Autosampler Position: 351 Sample Description: 10

Method File: C:\NexIONData\Method\6020a.mth

Aliquot Volume (mL): Diluted to Volume (mL):

User Name: BKT Nexion300X Cumulative Autodilution Factor: 1

Nexion-ICP 200.8\6020

Concentration Resu	ılte

	Concentration Results									
IS	Analyt	e Mass	Intensity	RSD	Conc.	SD	RSD	Units	Blank Intens.	Mode
Γ>	Li	6	28738.9	1.6				ug/L	26270	Standard
	Be	9	1.7	173.2	-0.0319	0.005	15.8	ug/L	2	Standard
L	ΑI	27	3990481.7	2.1	65.0639	2.335	3.6	ug/L	403	Standard
Γ	Sc	45	15870.0	3.2				ug/L	14524	Standard
	Ti	47	87.3	12.6	-1.5813	0.056	3.6	ug/L	365	Standard
	٧	51	2066.1	12.4	0.3208	0.058	18.2	ug/L	805	Standard
	Cr	52	9898.6	2.5	0.9491	0.124	13.0	ug/L	5481	Standard
	Cr	53	7326.8	1.4	12.8070	0.467	3.6	ug/L	268	Standard
	Mn	55	32746.7	1.8	9.2584	0.446	4.8	ug/L	670	Standard
	Co	59	277.7	3.6	0.0396	0.003	8.8	ug/L	146	Standard
	Ni	60	651.7	0.2	0.3348	0.017	5.1	ug/L	220	Standard
	Cu	65	429.3	5.1	0.1994	0.028	13.9	ug/L	147	Standard
	Zn	66	1657.8	2.7	1.8447	0.140	7.6	ug/L	211	Standard
>	Ge	72	217994.5	2.9				ug/L	210599	Standard
	As	75	6.1	722.3	0.0866	0.059	68.7	ug/L	-47	Standard
	Se	82	17.9	24.2	0.1165	0.071	61.3	ug/L	15	Standard
L	Se-1	77	505.3	3.4	11.4760	0.076	0.7	ug/L	65	Standard
Γ>	Ga	71	33.3	31.2				mg/L	27	Standard
L	Rb	85	22615.2	2.3				ug/L	17	Standard
Γ	Υ	89	223933.6	3.0				ug/L	216672	Standard
L>	Rh	103	45.0	11.1				ug/L	18	Standard
Γ	Мо	98	1574.9	2.5	1.1096	0.032	2.8	ug/L	11	Standard
	Ag	107	48.0	15.0	-0.0013	0.001	110.0	ug/L	55	Standard
	Cd	111	6.2	117.6	-0.0020	0.005	250.1	mg/L	7	Standard
	Cd	114	30.0	39.3	0.0140	0.003	24.6	ug/L	4	Standard
>	In	115	327476.4	1.8				ug/L	322525	Standard
	Sn	118	373.3	20.3	-0.0597	0.021	34.5	ug/L	345	Standard
	Sb	123	928.6	2.2	0.2317	0.008	3.6	ug/L	88	Standard
Ē	Ва	135	3235.3	2.8	1.9688	0.076	3.9	ug/L	12	Standard
ļ	Ce	140	35.0	37.8				ug/L	37	Standard
[>	Tb	159	627280.7	4.2				ug/L	631826	Standard
ļ	Но	165	8.3	124.9				ug/L	3	Standard
ļ	TI	203	76.3	13.1	0.0093	0.002	19.6	ug/L	7	Standard
ļ	TI	205	55.0	15.7	0.0152	0.002	12.8	ug/L	7	Standard
ļ	Pb	206	223.7	2.9	-0.0028	0.001	42.5	ug/L	159	Standard
	Pb	207	192.3	6.6	-0.0031	0.005	157.7	ug/L	120	Standard
- !	Pb	208	835.3	3.0	0.0050	0.003	59.0	ug/L	503	Standard
- !	U	238	133.0	15.4	0.0209	0.005	22.1	ug/L	5	Standard
_>	Bi	209	330337.9	2.7				ug/L	333509	Standard

Sample ID: L1510121308

Report Date/Time: Tuesday, October 27, 2015 18:26:46

Page 1

Approved: October 28, 2015

Page 604

L15101055 / Revision: 0 / 760 total pages

Γ	Na	23	3.3	86.6				mg/L	0	Standard
i	Mg	24	24633.3	1.1	53.8070	1.848	3.4	mg/L	10	Standard
i	ĸ	39	305.0	12.4	3.2784	0.504	15.4	mg/L	32	Standard
İ	Ca	43	65.0	23.1	-4.8445	2.523	52.1	mg/L	85	Standard
ĺ	Fe	54	74.3	17.9	0.0329	0.027	82.7	mg/L	82	Standard
ĺ	Fe	57	258.3	8.7	0.3598	0.126	35.1	mg/L	217	Standard
L>	Sc-1	45	15870.0	3.2				mg/L	14524	Standard
	CI	35	89973.1	1.5				ug/L	53193	Standard
	Kr	83	5.7	36.7				ug/L	3	Standard
	Br	81	926.7	12.6				ug/L	327	Standard
	P	31	14957.4	1.7				ug/L	13329	Standard
	S	34	4257.3	6.8				ug/L	3234	Standard
	Sr	88	118.3	6.5				ug/L	87	Standard
	С	12	146.7	17.2				mg/L	103	Standard
	N	14	0.0					mg/L	0	Standard
	Hg	202	6.7	173.2				mg/L	3	Standard
	Dy	164	9.4	3.0				mg/L	10	Standard
	Ho-1	165	8.3	124.9				mg/L	3	Standard
	Er	166	13.3	43.3				mg/L	7	Standard
	I	127	61265.6	6.4				mg/L	3612	Standard

_	Analyte		QC Std % Recovery	Int Std % Recovery	Spike % Recovery
[>	Li	6		109.400	
	Be	9			
L	Al	27			
Γ	Sc	45			
	Ti	47			
	V	51			
	Cr	52			
	Cr	53			
	Mn	55			
	Co	59			
	Ni	60			
	Cu	65			
	Zn	66			
>	Ge	72		103.512	
	As	75			
	Se	82			
L	Se-1	77			
Γ>	Ga	71			

Sample ID: L1510121308

Report Date/Time: Tuesday, October 27, 2015 18:26:46

Page 2

∟ Rb	85			
[Y	89			
∣	103			
Mo	98			
Ag	107			
Cd	111			
Cd	114			
	115			101.535
Sn	118			101.000
Sb	123			
L Ba	135			
∟ Ce	140			
Tb	159			
Ho	165			
TI	203			
TI	205			
Pb	206			
Pb	207			
Pb	208			
įυ	238			
Ĺ _{>} Bi	209			99.049
- Na	23			
Mg	24			
K	39			
Ca	43			
Fe	54			
Fe	57			
_> Sc-1	45			
CI	35			
Kr	83			
Br	81			
Р	31			
S	34			
Sr	88			
С	12			
N	14			
Hg	202			
Dy	164			
Ho-1	165			
Er	166			
l 	127			
QC O	ut of Limits			
Measure	ement Type	Analyte	Mass	Out of Limits Message
Ti 47 Lo		Ti	47	

Sample ID: L1510121308

Report Date/Time: Tuesday, October 27, 2015 18:26:46

Page 3

Sample ID: QC Std 6

Sample Date/Time: Tuesday, October 27, 2015 18:27:42

Number of Replicates: 3 Autosampler Position: 101 Sample Description:

Method File: C:\NexIONData\Method\6020a.mth

Aliquot Volume (mL): Diluted to Volume (mL):

User Name: BKT Nexion300X Cumulative Autodilution Factor: 1

Nexion-ICP 200.8\6020

\sim	ncon	tration	Results	
υo	ncer	itration	Results	

	Concentration Results									
IS	Analyt	e Mass	Intensity	RSD	Conc.	SD	RSD	Units	Blank Intens.	Mode
Γ>	Li	6	30175.1	4.7				ug/L	26270	Standard
	Be	9	28675.4	0.8	48.1452	1.846	3.8	ug/L	2	Standard
L	Αl	27	3056301.9	3.1	47.4904	2.213	4.7	ug/L	403	Standard
Γ	Sc	45	16540.7	2.0				ug/L	14524	Standard
	Ti	47	18196.6	1.8	108.4662	1.205	1.1	ug/L	365	Standard
	٧	51	188818.1	0.7	52.3378	0.877	1.7	ug/L	805	Standard
	Cr	52	235991.4	1.8	51.9559	0.963	1.9	ug/L	5481	Standard
	Cr	53	29495.4	1.9	52.5685	1.349	2.6	ug/L	268	Standard
	Mn	55	178856.5	1.0	51.5525	0.747	1.4	ug/L	670	Standard
	Co	59	167295.9	0.7	50.8224	0.769	1.5	ug/L	146	Standard
	Ni	60	60632.1	1.1	51.3868	0.647	1.3	ug/L	220	Standard
	Cu	65	58253.8	0.8	50.5288	0.891	1.8	ug/L	147	Standard
	Zn	66	34696.7	0.3	50.5277	0.353	0.7	ug/L	211	Standard
>	Ge	72	220299.4	1.0				ug/L	210599	Standard
	As	75	37044.7	0.7	50.6025	0.623	1.2	ug/L	-47	Standard
	Se	82	3175.8	1.2	51.2174	0.801	1.6	ug/L	15	Standard
L	Se-1	77	2144.5	0.7	52.1565	0.490	0.9	ug/L	65	Standard
Γ>	Ga	71	28.3	44.4				mg/L	27	Standard
L	Rb	85	555.0	3.1				ug/L	17	Standard
Γ	Υ	89	228416.0	2.1				ug/L	216672	Standard
L>	Rh	103	46.7	27.0				ug/L	18	Standard
Γ	Мо	98	150499.1	0.9	103.2042	0.694	0.7	ug/L	11	Standard
	Ag	107	242274.6	1.6	49.5904	0.808	1.6	ug/L	55	Standard
	Cd	111	74420.2	1.6	50.8106	0.717	1.4	mg/L	7	Standard
	Cd	114	179852.3	2.1	50.2230	1.133	2.3	ug/L	4	Standard
>	In	115	337084.4	0.2				ug/L	322525	Standard
	Sn	118	212124.9	1.8	51.0552	0.864	1.7	ug/L	345	Standard
	Sb	123	195061.9	0.2	49.4436	0.120	0.2	ug/L	88	Standard
L	Ва	135	82093.5	0.4	49.0835	0.160	0.3	ug/L	12	Standard
Γ	Ce	140	260.0	12.0				ug/L	37	Standard
L>	Tb	159	654444.6	1.2				ug/L	631826	Standard
Γ	Но	165	1.7	173.2				ug/L	3	Standard
	TI	203	331517.1	1.0	50.0334	0.455	0.9	ug/L	7	Standard
	TI	205	227764.2	0.6	51.0450	0.968	1.9	ug/L	7	Standard
	Pb	206	210012.5	0.2	51.7615	0.989	1.9	ug/L	159	Standard
	Pb	207	188624.9	0.5	51.2708	1.115	2.2	ug/L	120	Standard
	Pb	208	765613.7	1.4	52.0854	1.603	3.1	ug/L	503	Standard
	U	238	271956.7	0.6	50.0633	1.145	2.3	ug/L	5	Standard
L>	Bi	209	342300.1	1.7				ug/L	333509	Standard

Sample ID: QC Std 6

Report Date/Time: Tuesday, October 27, 2015 18:29:59

Page 1

Approved: October 28, 2015

Page 607

L15101055 / Revision: 0 / 760 total pages

г		00	0.0						•	01
	Na	23	0.0					mg/L	0	Standard
	Mg	24	2450.2	4.4	5.0961	0.239	4.7	mg/L	10	Standard
	K	39	418.3	8.1	4.3725	0.405	9.3	mg/L	32	Standard
	Ca	43	86.7	34.8	-2.1605	4.506	208.5	mg/L	85	Standard
	Fe	54	2276.3	3.1	4.7692	0.256	5.4	mg/L	82	Standard
	Fe	57	796.7	2.8	4.7507	0.226	4.8	mg/L	217	Standard
L>	Sc-1	45	16540.7	2.0				mg/L	14524	Standard
	CI	35	75942.8	4.9				ug/L	53193	Standard
	Kr	83	3.7	83.3				ug/L	3	Standard
	Br	81	380.0	16.4				ug/L	327	Standard
	Р	31	17049.6	2.4				ug/L	13329	Standard
	S	34	4399.0	0.5				ug/L	3234	Standard
	Sr	88	120.0	18.2				ug/L	87	Standard
	С	12	150.0	17.6				mg/L	103	Standard
	N	14	0.0					mg/L	0	Standard
	Hg	202	0.0					mg/L	3	Standard
	Dy	164	12.9	41.7				mg/L	10	Standard
	Ho-1	165	1.7	173.2				mg/L	3	Standard
	Er	166	10.0	100.0				mg/L	7	Standard
	I	127	4185.6	14.9				mg/L	3612	Standard

	Analyte	Mass	QC Std % Recovery	Int Std % Recovery	Spike % Recovery
Γ>	Li	6			
	Ве	9	96.290		
L	Al	27	94.981		
Γ	Sc	45			
	Ti	47	108.466		
	V	51	104.676		
	Cr	52	103.912		
	Cr	53			
	Mn	55	103.105		
	Co	59	101.645		
	Ni	60	102.774		
	Cu	65	101.058		
	Zn	66	101.055		
>	Ge	72		104.606	
	As	75	101.205		
	Se	82	102.435		
L	Se-1	77			
[>	Ga	71			

Sample ID: QC Std 6

Report Date/Time: Tuesday, October 27, 2015 18:29:59

Page 2

Approved: October 28, 2015

	₹b	85			
	/	89			
	Rh 4-	103	400.00	4	
	Иo	98	103.20		
	∖ g	107	99.18		
	Cd	111	101.62	.1	
	Cd	114			404 544
>		115	400.44	0	104.514
	Sn Sh	118	102.11		
	Sb	123	98.88		
	3a	135	98.16	1	
	Ce	140			
	Γb	159			
	Ho Fi	165	100.00	7	
	ΓI 	203	100.06	1	
	ΓI	205			
	Pb Pb	206			
		207	104.17	4	
	Pb J	208 238	104.17		
i -		209	100.12	1	102.636
					102.030
	Na Ma	23 24			
	Иg С	39			
	Ca	43			
	- - е	54			
	-e =e	57			
		45			
	CI	35			
	ζr	83			
	Sr Sr	81			
F		31			
		34			
	Sr .	88			
	5	12			
	N	14			
	- Hg	202			
	.g Dy	164			
		165			
	Er	166			
Ī		127			
C	OC Out	of Limits			
	leasurem		Analyte	Mass	Out of Limits Message
14		J. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.	. andry to	11.000	Cat of Ellinto Moodage

Sample ID: QC Std 6

Report Date/Time: Tuesday, October 27, 2015 18:29:59

Page 3

Approved: October 28, 2015

Concentration Results

ug/L

ug/L

ug/L

ug/L

ug/L

ug/L

ug/L

ug/L

ug/L

71.2

38.8

10.2

29.6

13.7

908.8

631826

3

7

159

503

333509

5

Standard

Standard

Standard

Standard

Standard

Standard

Standard

Standard

Standard

Sample ID: QC Std 7

Sample Date/Time: Tuesday, October 27, 2015 18:30:54

Number of Replicates: 3 Autosampler Position: 102 Sample Description:

Method File: C:\NexIONData\Method\6020a.mth

Aliquot Volume (mL): Diluted to Volume (mL):

User Name: BKT Nexion300X Cumulative Autodilution Factor: 1

Nexion-ICP 200.8\6020

IS	Analyt	e Mass	Intensity	RSD	Conc.	SD	RSD	Units	Blank Intens.	Mode
Γ>	. Li	6	30405.5	4.6				ug/L	26270	Standard
	Be	9	15.0	120.2	-0.0097	0.031	316.1	ug/L	2	Standard
L	Al	27	716.7	6.3	-0.0095	0.001	8.3	ug/L	403	Standard
Γ	Sc	45	17163.1	5.6				ug/L	14524	Standard
	Ti	47	69.7	4.6	-1.7042	0.025	1.5	ug/L	365	Standard
	V	51	952.4	10.6	-0.0012	0.029	2458.9	ug/L	805	Standard
	Cr	52	5899.5	1.9	-0.0129	0.057	442.3	ug/L	5481	Standard
	Cr	53	700.0	6.8	0.7002	0.105	15.1	ug/L	268	Standard
	Mn	55	596.0	5.2	-0.1847	0.006	3.5	ug/L	670	Standard
	Co	59	202.7	5.1	0.0144	0.006	40.5	ug/L	146	Standard
	Ni	60	186.3	10.0	-0.0718	0.011	15.2	ug/L	220	Standard
	Cu	65	140.7	1.1	-0.0592	0.006	10.9	ug/L	147	Standard
	Zn	66	141.7	3.6	-0.4243	0.009	2.2	ug/L	211	Standard
>	Ge	72	226248.1	4.7				ug/L	210599	Standard
	As	75	-33.0	65.5	0.0347	0.028	81.1	ug/L	-47	Standard
	Se	82	10.4	48.8	-0.0107	0.085	788.8	ug/L	15	Standard
L	Se-1	77	71.7	7.9	0.4985	0.060	12.1	ug/L	65	Standard
Γ>	Ga	71	16.7	121.2				mg/L	27	Standard
L	Rb	85	16.7	45.8				ug/L	17	Standard
Γ	Υ	89	236721.2	3.4				ug/L	216672	Standard
L>		103	13.3	21.7				ug/L	18	Standard
Γ	Мо	98	119.1	14.6	0.0755	0.010	12.8	ug/L	11	Standard
	Ag	107	73.0	2.4	0.0029	0.001	19.9	ug/L	55	Standard
	Cd	111	10.7	42.3	0.0006	0.003	450.2	mg/L	7	Standard
	Cd	114	11.2	65.2	0.0083	0.002	22.2	ug/L	4	Standard
>		115	353136.0	2.8				ug/L	322525	Standard
	Sn	118	575.0	2.3	-0.0202	0.002	10.7	ug/L	345	Standard
	Sb	123	114.0	31.7	0.0170	0.009	54.7	ug/L	88	Standard
Ĺ	Ва	135	19.0	19.0	-0.0130	0.002	17.8	ug/L	12	Standard
Γ	Ce	140	8.3	124.9				ug/L	37	Standard

0.0023

0.0088

-0.0212

-0.0204

-0.0177

-0.0002

0.002

0.003

0.002

0.006

0.002

0.002

Sample ID: QC Std 7

159

165

203

205

206

207

208

238

209

Report Date/Time: Tuesday, October 27, 2015 18:33:11

662606.0

1.7

34.7

30.0

165.0

142.3

561.7

25.0

359640.2

3.7

173.2

30.8

57.7

5.6

10.3

42.1

4.0

Page 1

Tb Но

ΤI

ΤI

Ph

Pb

Pb

U

Bi

Approved: October 28, 2015

Γ	Na	23	3.3	173.2				mg/L	0	Standard
	Mg	24	23.3	49.5	0.0062	0.022	355.0	mg/L	10	Standard
	K	39	23.3	53.9	0.0332	0.124	374.2	mg/L	32	Standard
ĺ	Ca	43	56.7	60.1	-6.6868	4.782	71.5	mg/L	85	Standard
	Fe	54	57.4	30.5	-0.0148	0.033	220.1	mg/L	82	Standard
	Fe	57	265.0	7.5	0.2479	0.128	51.6	mg/L	217	Standard
L>	Sc-1	45	17163.1	5.6				mg/L	14524	Standard
	CI	35	72303.4	0.5				ug/L	53193	Standard
	Kr	83	4.7	81.1				ug/L	3	Standard
	Br	81	410.0	10.6				ug/L	327	Standard
	Р	31	16278.7	1.1				ug/L	13329	Standard
	S	34	4078.9	2.8				ug/L	3234	Standard
	Sr	88	123.3	18.3				ug/L	87	Standard
	С	12	133.3	15.6				mg/L	103	Standard
	N	14	6.7	86.6				mg/L	0	Standard
	Hg	202	10.0	100.0				mg/L	3	Standard
	Dy	164	9.0	102.8				mg/L	10	Standard
	Ho-1	165	1.7	173.2				mg/L	3	Standard
	Er	166	20.0	86.6				mg/L	7	Standard
	I	127	2726.9	4.2				mg/L	3612	Standard

Analyte	Mass	QC Std % Recovery	Int Std % Recovery	Spike % Recovery
「> Li	6			
Be	9			
L AI	27			
「 Sc	45			
Ti	47			
V	51			
Cr	52			
Cr	53			
Mn	55			
Co	59			
Ni	60			
Cu	65			
Zn	66			
> Ge	72		107.431	
As	75			
Se	82			
L Se-1	77			
「⊳ Ga	71			

Sample ID: QC Std 7

Report Date/Time: Tuesday, October 27, 2015 18:33:11

Page 2

Approved: October 28, 2015

L Rb	85			
ΓΥ	89			
$\lfloor_>$ Rh	103			
Г Мо	98			
Ag	107			
Cd	111			
Cd	114			
> In	115			109.491
Sn	118			
Sb	123			
L Ba	135			
¯ Ce	140			
_ _> Tb	159			
Γ Ho	165			
į TI	203			
TI	205			
Pb	206			
Pb	207			
Pb	208			
įυ	238			
Ĺ _{>} Bi	209			107.835
Na	23			
Mg	24			
K	39			
Ca	43			
Fe	54			
Fe	57			
> Sc-1	45			
CI	35			
Kr	83			
Br	81			
Р	31			
S	34			
Sr	88			
С	12			
N	14			
Hg	202			
Dÿ	164			
Ho-1	165			
Er	166			
1	127			
OC O	it of Limits			
		Analyta	Mass	Out of Limita Massage
ivieasure	ment Type	Analyte	Mass	Out of Limits Message
QC Std 7		Ti	47	

Sample ID: QC Std 7

Report Date/Time: Tuesday, October 27, 2015 18:33:11

Page 3

Sample ID: PBW 44 WG544285-02

Sample Date/Time: Tuesday, October 27, 2015 18:47:09

Number of Replicates: 3 Autosampler Position: 205 Sample Description: 1

Method File: C:\NexIONData\Method\6020a.mth

Aliquot Volume (mL): Diluted to Volume (mL):

User Name: BKT Nexion300X Cumulative Autodilution Factor: 1

Nexion-ICP 200.8\6020

Concentration	ı Kes	uits
_	0.0	D05

					Concentiati	ion ves	นแร			
IS	Analyt	e Mass	Intensity	RSD	Conc.	SD	RSD	Units	Blank Intens.	Mode
Γ>	Li	6	30499.0	1.1				ug/L	26270	Standard
	Be	9	8.3	91.7	-0.0211	0.013	59.7	ug/L	2	Standard
L	Αl	27	2108.5	5.9	0.0118	0.002	15.2	ug/L	403	Standard
Γ	Sc	45	17076.3	1.1				ug/L	14524	Standard
	Ti	47	90.0	2.9	-1.5823	0.015	0.9	ug/L	365	Standard
	V	51	1138.1	0.5	0.0501	0.001	1.9	ug/L	805	Standard
	Cr	52	7062.6	1.3	0.2473	0.022	9.1	ug/L	5481	Standard
	Cr	53	496.7	1.2	0.3454	0.013	3.8	ug/L	268	Standard
	Mn	55	1466.7	4.4	0.0629	0.019	29.6	ug/L	670	Standard
	Co	59	202.7	4.0	0.0145	0.003	18.0	ug/L	146	Standard
	Ni	60	247.3	2.7	-0.0203	0.005	27.1	ug/L	220	Standard
	Cu	65	225.3	7.4	0.0131	0.014	108.6	ug/L	147	Standard
	Zn	66	1057.0	3.2	0.8957	0.053	5.9	ug/L	211	Standard
>	Ge	72	225348.1	0.4				ug/L	210599	Standard
	As	75	-33.3	66.8	0.0336	0.029	87.5	ug/L	-47	Standard
	Se	82	13.9	52.6	0.0429	0.116	270.7	ug/L	15	Standard
L	Se-1	77	65.3	9.7	0.3533	0.160	45.3	ug/L	65	Standard
Γ>	Ga	71	18.3	15.7				mg/L	27	Standard
L	Rb	85	93.3	25.3				ug/L	17	Standard
Γ	Υ	89	233494.6	2.7				ug/L	216672	Standard
L>	Rh	103	30.0	44.1				ug/L	18	Standard
Γ	Мо	98	19.1	11.0	0.0106	0.001	13.0	ug/L	11	Standard
	Ag	107	65.0	5.5	0.0018	0.001	35.4	ug/L	55	Standard
	Cd	111	10.0	26.7	0.0004	0.002	464.3	mg/L	7	Standard
	Cd	114	25.5	52.7	0.0124	0.004	29.6	ug/L	4	Standard
>	In	115	340809.4	0.9				ug/L	322525	Standard
	Sn	118	541.7	3.7	-0.0234	0.005	20.6	ug/L	345	Standard
	Sb	123	73.9	16.0	0.0078	0.003	37.6	ug/L	88	Standard
Ĺ	Ва	135	338.3	5.3	0.1762	0.009	5.1	ug/L	12	Standard
	Ce	140	233.3	4.5				ug/L	37	Standard
Ĺ>	Tb	159	650599.7	0.2				ug/L	631826	Standard
	Но	165	8.3	34.6				ug/L	3	Standard
	TI	203	21.3	31.9	0.0005	0.001	202.8	ug/L	7	Standard
	TI	205	15.0	88.2	0.0058	0.003	50.6	ug/L	7	Standard
	Pb	206	219.3	6.8	-0.0062	0.004	61.8	ug/L	159	Standard
	Pb	207	162.3	13.4	-0.0135	0.006	41.8	ug/L	120	Standard
	Pb	208	706.3	2.7	-0.0062	0.001	20.4	ug/L	503	Standard
	U	238	12.0	16.7	-0.0024	0.000	16.1	ug/L	5	Standard
_>	Bi	209	344353.3	8.0				ug/L	333509	Standard

Sample ID: PBW 44 WG544285-02

Report Date/Time: Tuesday, October 27, 2015 18:49:26

Page 1

Approved: October 28, 2015

Page 613

L15101055 / Revision: 0 / 760 total pages

Mg	andard andard andard andard andard andard andard andard
K 39 18.3 15.7 -0.0163 0.032 198.1 mg/L 32 Sta Ca 43 56.7 43.5 -6.7012 3.486 52.0 mg/L 85 Sta Fe 54 61.2 34.5 -0.0061 0.043 696.2 mg/L 82 Sta Fe 57 253.3 6.3 0.1632 0.110 67.3 mg/L 217 Sta	andard andard andard andard andard
Ca	andard andard andard andard
Fe 54 61.2 34.5	andard andard andard
Fe 57 253.3 6.3 0.1632 0.110 67.3 mg/L 217 Sta	andard andard
9	andard
· · · · · · · · · · · · · · · · · · ·	
> Sc-1 45 17076.3 1.1 mg/L 14524 Sta	andard
CI 35 75703.3 1.2 ug/L 53193 Sta	
	andard
	andard
P 31 16175.3 1.3 ug/L 13329 Sta	andard
S 34 4095.6 1.9 ug/L 3234 Sta	andard
Sr 88 120.0 23.2 ug/L 87 Sta	andard
C 12 143.3 46.5 mg/L 103 Sta	andard
N 14 0.0 mg/L 0 Sta	andard
Hg 202 3.3 173.2 mg/L 3 Sta	andard
Dy 164 21.9 112.8 mg/L 10 Sta	andard
Ho-1 165 8.3 34.6 mg/L 3 Sta	andard
	andard
-	andard

Analyte	Mass	QC Std % Recovery	Int Std % Recovery	Spike % Recovery
「⊳ Li	6		116.100	
Be	9			
L AI	27			
「 Sc	45			
Ti	47			
V	51			
Cr	52			
Cr	53			
Mn	55			
Co	59			
Ni	60			
Cu	65			
Zn	66			
> Ge	72		107.003	
As	75			
Se	82			
∟ Se-1	77			
「⊳ Ga	71			

Sample ID: PBW 44 WG544285-02Report Date/Time: Tuesday, October 27, 2015 18:49:26

Page 2

Approved: October 28, 2015

L Rb 85 √ 89 L> Rh 103 √ Mo 98 Ag 107 Cd 111 Cd 114 I In 115 Sn 118 Sb 123 L Ba 135 √ Ce 140 L> Tb 159 √ Ho 165 √ TI 203 √ TI 205		105.669	
Pb 206 Pb 207 Pb 208 U 238 Si 209 Na 23 Mg 24 K 39 Ca 43 Fe 54 Fe 57 Sc-1 45 Cl 35 Kr 83		103.251	
Br 81 P 31 S 34 Sr 88 C 12 N 14 Hg 202 Dy 164 Ho-1 165 Er 166 I 127 QC Out of Limits Measurement Type	Analyte Mass	s Out of Limits Message	
Ti 47 Lower	Ti 47		

Sample ID: PBW 44 WG544285-02Report Date/Time: Tuesday, October 27, 2015 18:49:26

Page 3

Sample ID: LCSW 44 WG544285-03

Sample Date/Time: Tuesday, October 27, 2015 18:50:21

Number of Replicates: 3 Autosampler Position: 206 Sample Description: 1

Method File: C:\NexIONData\Method\6020a.mth

Aliquot Volume (mL): Diluted to Volume (mL):

User Name: BKT Nexion300X Cumulative Autodilution Factor: 1 Nexion-ICP 200.8\6020

Concentration Results

			Concentration Results								
IS	Analyt	e Mass	Intensity	RSD	Conc.	SD	RSD	Units	Blank Intens.	Mode	
Γ>	Li	6	29973.0	2.5				ug/L	26270	Standard	
	Be	9	28189.5	1.0	47.6059	0.956	2.0	ug/L	2	Standard	
L	ΑI	27	1215.0	1.4	-0.0016	0.000	17.4	ug/L	403	Standard	
Γ	Sc	45	17370.0	5.5				ug/L	14524	Standard	
	Ti	47	85.3	15.1	-1.6054	0.087	5.4	ug/L	365	Standard	
	٧	51	188100.7	8.0	51.3407	1.351	2.6	ug/L	805	Standard	
	Cr	52	240577.0	0.9	52.1701	1.517	2.9	ug/L	5481	Standard	
	Cr	53	29794.3	8.0	52.2943	1.631	3.1	ug/L	268	Standard	
	Mn	55	184873.8	8.0	52.4835	1.342	2.6	ug/L	670	Standard	
	Co	59	170594.0	0.4	51.0371	1.316	2.6	ug/L	146	Standard	
	Ni	60	60704.0	1.4	50.6554	0.846	1.7	ug/L	220	Standard	
	Cu	65	60325.5	0.7	51.5262	0.889	1.7	ug/L	147	Standard	
	Zn	66	35362.2	1.4	50.7182	1.445	2.8	ug/L	211	Standard	
>	Ge	72	223769.2	2.4				ug/L	210599	Standard	
	As	75	36717.6	0.6	49.3918	0.955	1.9	ug/L	-47	Standard	
	Se	82	3216.4	0.3	51.0815	1.092	2.1	ug/L	15	Standard	
L	Se-1	77	2111.5	1.4	50.5418	1.684	3.3	ug/L	65	Standard	
Γ>	Ga	71	21.7	48.0				mg/L	27	Standard	
L	Rb	85	38.3	52.7				ug/L	17	Standard	
Γ	Υ	89	236841.8	0.6				ug/L	216672	Standard	
_>	Rh	103	35.0	24.7				ug/L	18	Standard	
Γ	Мо	98	18.9	8.5	0.0101	0.001	8.8	ug/L	11	Standard	
ļ	Ag	107	243403.2	0.6	48.1031	0.951	2.0	ug/L	55	Standard	
ļ	Cd	111	74044.5	0.9	48.8122	1.057	2.2	mg/L	7	Standard	
ļ	Cd	114	181300.1	1.6	48.8855	1.490	3.0	ug/L	4	Standard	
>	ln	115	349186.0	1.4				ug/L	322525	Standard	
ļ	Sn	118	3457.1	4.6	0.6533	0.047	7.2	ug/L	345	Standard	
ļ	Sb	123	190917.7	1.0	46.7249	1.073	2.3	ug/L	88	Standard	
Ĺ	Ва	135	81900.1	0.6	47.2789	0.955	2.0	ug/L	12	Standard	
ļ	Се	140	158.3	14.9				ug/L	37	Standard	
Ĺ>	Tb	159	648194.1	1.8				ug/L	631826	Standard	
ļ	Но	165	8.3	34.6				ug/L	3	Standard	
	TI	203	331777.5	0.4	48.5776	0.339	0.7	ug/L	7	Standard	
!	TI	205	226365.3	1.5	49.2143	1.019	2.1	ug/L	7	Standard	
!	Pb	206	208222.5	1.2	49.7838	1.044	2.1	ug/L	159	Standard	
-	Pb	207	178395.4	0.4	47.0322	0.585	1.2	ug/L	120	Standard	
-	Pb	208	751881.1	0.6	49.6106	0.670	1.4	ug/L	503	Standard	
-	U	238	269151.0	1.0	48.0621	0.854	1.8	ug/L	5	Standard	
L>	Bi	209	352817.5	0.9				ug/L	333509	Standard	

Sample ID: LCSW 44 WG544285-03

Report Date/Time: Tuesday, October 27, 2015 18:52:38

Page 1

Approved: October 28, 2015

Page 616

L15101055 / Revision: 0 / 760 total pages

_										
	Na	23	5.0	100.0				mg/L	0	Standard
	Mg	24	25.0	34.6	0.0092	0.015	161.9	mg/L	10	Standard
	K	39	26.7	28.6	0.0649	0.065	100.0	mg/L	32	Standard
	Ca	43	46.7	24.7	-8.2402	1.270	15.4	mg/L	85	Standard
	Fe	54	100.2	35.5	0.0696	0.063	90.5	mg/L	82	Standard
	Fe	57	258.3	13.7	0.1712	0.279	162.9	mg/L	217	Standard
L>	Sc-1	45	17370.0	5.5				mg/L	14524	Standard
	CI	35	75549.9	2.1				ug/L	53193	Standard
	Kr	83	3.7	68.6				ug/L	3	Standard
	Br	81	416.7	22.8				ug/L	327	Standard
	Р	31	18439.7	12.1				ug/L	13329	Standard
	S	34 3918.8		2.3				ug/L	3234	Standard
	Sr	88	98.3	29.4				ug/L	87	Standard
	С	12	166.7	24.2				mg/L	103	Standard
	N	14	0.0					mg/L	0	Standard
	Hg	202	6.7	86.6				mg/L	3	Standard
	Dy	164	9.7	100.8				mg/L	10	Standard
	Ho-1	165	8.3	34.6				mg/L	3	Standard
	Er	166	6.7	86.6				mg/L	7	Standard
	I	127	4288.9	1.4				mg/L	3612	Standard

Analyte	Mass	QC Std % Recovery	Int Std % Recovery	Spike % Recovery
「⊳ Li	6		114.097	
Be	9			
L AI	27			
「 Sc	45			
Ti	47			
V	51			
Cr	52			
Cr	53			
Mn	55			
Co	59			
Ni	60			
Cu	65			
Zn	66			
> Ge	72		106.254	
As	75			
Se	82			
L Se-1	77			
「⊳ Ga	71			

Sample ID: LCSW 44 WG544285-03

Report Date/Time: Tuesday, October 27, 2015 18:52:38

Page 2

Approved: October 28, 2015

L Rb	85			
ΓΥ	89			
$\lfloor_>$ Rh	103			
Mo	98			
Ag	107			
Cd	111			
Cd	114			
 > In	115			108.266
Sn	118			
Sb	123			
Ba	135			
Ce	140			
_> Tb	159			
Ho	165			
TI	203			
TI	205			
Pb	206			
Pb	207			
Pb	208			
U	238			
∟ _{>} Bi	209			105.789
∫ Na	23			
Mg	24			
K	39			
Ca	43			
Fe	54			
Fe	57			
> Sc-1	45			
CI	35			
Kr	83			
Br	81			
Р	31			
S	34			
Sr	88			
C	12			
N	14			
Hg	202			
Dy	164			
Ho-1	165			
Er	166			
 I	127			
OC O	ut of Limits			
		A I4	Mana	Out of Limits Massacs
Measure	ement Type	Analyte	Mass	Out of Limits Message
Ti 47 Lov	wer	Ti	47	

Sample ID: LCSW 44 WG544285-03

Report Date/Time: Tuesday, October 27, 2015 18:52:38

Page 3

Approved: October 28, 2015

Sample ID: L1510122410 WG544285-01

Sample Date/Time: Tuesday, October 27, 2015 18:53:32

Number of Replicates: 3 Autosampler Position: 207 Sample Description: 1

Method File: C:\NexIONData\Method\6020a.mth

Aliquot Volume (mL): Diluted to Volume (mL):

User Name: BKT Nexion300X Cumulative Autodilution Factor: 1

Nexion-ICP 200.8\6020

0	noon	tration	Results	
La	ncen	tration	Results	

	Concentration Results									
IS	Analyt	e Mass	Intensity	RSD	Conc.	SD	RSD	Units	Blank Intens.	Mode
Γ>	Li	6	34235.4	6.3				ug/L	26270	Standard
	Be	9	26.7	57.3	0.0056	0.024	435.5	ug/L	2	Standard
L	ΑI	27	86069340.2	4.2	1182.6449	114.620	9.7	ug/L	403	Standard
Γ	Sc	45	15749.9	8.7				ug/L	14524	Standard
	Ti	47	107.3	3.9	-1.4640	0.061	4.2	ug/L	365	Standard
	٧	51	1651.9	8.1	0.2012	0.058	29.0	ug/L	805	Standard
	Cr	52	8145.9	3.2	0.5260	0.101	19.1	ug/L	5481	Standard
	Cr	53	1031.7	15.5	1.3169	0.177	13.4	ug/L	268	Standard
	Mn	55	1710485.0	1.7	496.1196	35.865	7.2	ug/L	670	Standard
	Co	59	1848.8	2.8	0.5169	0.050	9.6	ug/L	146	Standard
	Ni	60	9038.0	2.0	7.4690	0.565	7.6	ug/L	220	Standard
	Cu	65	2550.2	2.3	2.0429	0.188	9.2	ug/L	147	Standard
	Zn	66	3648.8	1.7	4.7519	0.373	7.8	ug/L	211	Standard
>	Ge	72	220929.2	6.5				ug/L	210599	Standard
	As	75	446.1	7.9	0.6857	0.054	7.9	ug/L	-47	Standard
	Se	82	119.3	19.0	1.7661	0.462	26.1	ug/L	15	Standard
L	Se-1	77	110.0	7.8	1.5021	0.294	19.5	ug/L	65	Standard
Γ>	Ga	71	36.7	15.7				mg/L	27	Standard
L	Rb	85	20048.3	4.5				ug/L	17	Standard
Γ	Υ	89	231537.4	7.6				ug/L	216672	Standard
L>	Rh	103	58.3	26.2				ug/L	18	Standard
Γ	Мо	98	824.1	1.7	0.5540	0.038	6.9	ug/L	11	Standard
	Ag	107	114.3	53.4	0.0118	0.013	110.6	ug/L	55	Standard
	Cd	111	40.3	63.2	0.0209	0.018	86.4	mg/L	7	Standard
	Cd	114	118.5	36.1	0.0381	0.013	33.5	ug/L	4	Standard
>	In	115	343336.5	6.1				ug/L	322525	Standard
	Sn	118	491.7	4.1	-0.0361	0.002	6.3	ug/L	345	Standard
	Sb	123	861.0	22.2	0.2057	0.058	28.2	ug/L	88	Standard
L	Ва	135	10707.8	2.0	6.2845	0.487	7.8	ug/L	12	Standard
Γ	Ce	140	441.7	24.9				ug/L	37	Standard
_>	Tb	159	657480.1	6.2				ug/L	631826	Standard
Γ	Но	165	60.0	30.0				ug/L	3	Standard
	TI	203	1436.1	10.6	0.2101	0.024	11.2	ug/L	7	Standard
	TI	205	1005.0	17.6	0.2240	0.043	19.0	ug/L	7	Standard
	Pb	206	323.0	27.6	0.0181	0.021	117.6	ug/L	159	Standard
ļ	Pb	207	279.3	15.8	0.0174	0.013	76.7	ug/L	120	Standard
ļ	Pb	208	974.7	9.9	0.0112	0.007	62.8	ug/L	503	Standard
ļ	U	238	9907.2	2.6	1.7877	0.117	6.5	ug/L	5	Standard
_>	Bi	209	348867.1	4.0				ug/L	333509	Standard

Sample ID: L1510122410 WG544285-01

Report Date/Time: Tuesday, October 27, 2015 18:55:48

Page 1

Approved: October 28, 2015

Page 619

L15101055 / Revision: 0 / 760 total pages Generated: 10/30/2015 10:11

Γ	Na	23	10.0	50.0				mg/L	0	Standard
	Mg	24	18594.8	4.3	41.1662	4.897	11.9	mg/L	10	Standard
	K	39	273.3	18.5	2.9343	0.558	19.0	mg/L	32	Standard
	Ca	43	456.7	4.4	53.8031	4.083	7.6	mg/L	85	Standard
ĺ	Fe	54	84.0	21.5	0.0576	0.048	82.8	mg/L	82	Standard
ĺ	Fe	57	420.0	1.2	1.8073	0.272	15.0	mg/L	217	Standard
L>	Sc-1	45	15749.9	8.7				mg/L	14524	Standard
	CI	35	372017.3	5.9				ug/L	53193	Standard
	Kr	83	5.0	72.1				ug/L	3	Standard
	Br	81	8886.0	11.9				ug/L	327	Standard
	Р	31	17121.3	1.0				ug/L	13329	Standard
	S	34	4285.6	8.3				ug/L	3234	Standard
	Sr	88	155.0	5.6				ug/L	87	Standard
	С	12	426.7	17.6				mg/L	103	Standard
	N	14	0.0					mg/L	0	Standard
	Hg	202	0.0					mg/L	3	Standard
	Dy	164	90.9	36.3				mg/L	10	Standard
	Ho-1	165	60.0	30.0				mg/L	3	Standard
	Er	166	50.0	40.0				mg/L	7	Standard
	1	127	46765.7	8.5				mg/L	3612	Standard

Analyte	Mass	QC Std % Recovery	Int Std % Recovery	Spike % Recovery
「⊳ Li	6		130.323	
Be	9			
L AI	27			
「 Sc	45			
Ti	47			
V	51			
Cr	52			
Cr	53			
Mn	55			
Co	59			
Ni	60			
Cu	65			
Zn	66			
> Ge	72		104.905	
As	75			
Se	82			
L Se-1	77			
√̄> Ga	71			

Sample ID: L1510122410 WG544285-01

Report Date/Time: Tuesday, October 27, 2015 18:55:48

Page 2

Approved: October 28, 2015

 	Ho TI TI Pb Pb Pb	85 89 103 98 107 111 114 115 118 123 135 140 159 165 203 205 206 207 208			106.453	
 -	U Bi	238 209			104.605	
Γ	Na	23			104.000	
-	Mg	24				
i	K	39				
l I	Ca	43				
i i	Fe	54				
l I	Fe	5 7				
l I.		45				
<u>_</u> >	Cl	35				
	Kr	83				
	Br	81				
	P	31				
	S	34				
	Sr	88				
	С	12				
	N	14				
	Hg	202				
	Dy	164				
	Ho-1	165				
	Er	166				
		127				
	QC Out	of Limits				
	Measurem		Analyte	Mass	Out of Limits Message	
	Li 6 Int Sto	d for sample	Li	6	Rerun sample	
	Al 27 Uppe		Al	27		
	Ti 47 Lowe	er	Ti	47		

Sample ID: L1510122410 WG544285-01 Report Date/Time: Tuesday, October 27, 2015 18:55:48

Page 3

Approved: October 28, 2015

Mn 55 Upper, S, EEE

Mn

55

Sample ID: L1510122410 WG544285-01 Report Date/Time: Tuesday, October 27, 2015 18:55:48

Page 4

Approved: October 28, 2015

Sample ID: L1510122410DP WG544285-04

Sample Date/Time: Tuesday, October 27, 2015 18:56:42

Number of Replicates: 3 Autosampler Position: 208 Sample Description: 1

Method File: C:\NexIONData\Method\6020a.mth

Aliquot Volume (mL): Diluted to Volume (mL):

User Name: BKT Nexion300X Cumulative Autodilution Factor: 1

Nexion-ICP 200.8\6020

0	ncon	tration	Results	
Lα	ncen	itration	Results	

	Concentration Results									
IS	Analyt	e Mass	Intensity	RSD	Conc.	SD	RSD	Units	Blank Intens.	Mode
Γ>	Li	6	37149.0	8.2				ug/L	26270	Standard
	Be	9	15.0	33.3	-0.0140	0.008	57.4	ug/L	2	Standard
L	Αl	27	89485979.7	5.3	1136.0593	139.952	12.3	ug/L	403	Standard
Γ	Sc	45	14889.0	8.1				ug/L	14524	Standard
	Ti	47	97.7	5.6	-1.5347	0.059	3.9	ug/L	365	Standard
	V	51	1551.1	5.8	0.1646	0.050	30.5	ug/L	805	Standard
	Cr	52	8267.6	1.3	0.5183	0.137	26.4	ug/L	5481	Standard
	Cr	53	983.4	9.5	1.2114	0.261	21.6	ug/L	268	Standard
	Mn	55	1716475.4	1.7	488.0246	37.801	7.7	ug/L	670	Standard
	Co	59	1840.4	2.4	0.5031	0.048	9.5	ug/L	146	Standard
	Ni	60	8876.3	3.0	7.1892	0.719	10.0	ug/L	220	Standard
	Cu	65	2554.9	4.6	2.0053	0.244	12.2	ug/L	147	Standard
	Zn	66	3541.7	1.6	4.4931	0.419	9.3	ug/L	211	Standard
>	Ge	72	225492.7	7.0				ug/L	210599	Standard
	As	75	359.1	10.9	0.5593	0.076	13.5	ug/L	-47	Standard
	Se	82	110.9	11.7	1.5893	0.304	19.1	ug/L	15	Standard
L	Se-1	77	106.3	10.8	1.3458	0.139	10.3	ug/L	65	Standard
Γ>	Ga	71	26.7	39.0				mg/L	27	Standard
L	Rb	85	20243.5	4.0				ug/L	17	Standard
Γ	Υ	89	243708.7	6.8				ug/L	216672	Standard
L>	Rh	103	48.3	48.9				ug/L	18	Standard
Γ	Мо	98	816.0	2.2	0.5312	0.050	9.4	ug/L	11	Standard
	Ag	107	65.7	27.3	0.0015	0.004	261.2	ug/L	55	Standard
	Cd	111	19.6	49.0	0.0067	0.007	102.8	mg/L	7	Standard
	Cd	114	35.5	35.9	0.0149	0.004	25.3	ug/L	4	Standard
>	In	115	355193.0	7.6				ug/L	322525	Standard
	Sn	118	480.0	14.7	-0.0423	0.019	44.0	ug/L	345	Standard
	Sb	123	284.0	15.2	0.0584	0.015	25.8	ug/L	88	Standard
L	Ва	135	10610.7	1.7	6.0267	0.535	8.9	ug/L	12	Standard
Γ	Ce	140	431.7	18.6				ug/L	37	Standard
L>	Tb	159	663677.1	7.7				ug/L	631826	Standard
Γ	Но	165	40.0	21.7				ug/L	3	Standard
	TI	203	1356.7	3.3	0.1919	0.019	9.7	ug/L	7	Standard
	TI	205	935.0	11.1	0.2019	0.032	15.9	ug/L	7	Standard
	Pb	206	241.0	5.1	-0.0036	0.001	28.0	ug/L	159	Standard
	Pb	207	245.7	8.6	0.0058	0.002	35.8	ug/L	120	Standard
	Pb	208	913.3	3.3	0.0049	0.002	41.6	ug/L	503	Standard
	U	238	9758.1	2.2	1.7020	0.148	8.7	ug/L	5	Standard
L>	Bi	209	361675.6	6.9				ug/L	333509	Standard

Sample ID: L1510122410DP WG544285-04

Report Date/Time: Tuesday, October 27, 2015 18:58:59

Page 1

Approved: October 28, 2015

								•	0, , ,
Na							•		Standard
Mg	24	18599.8	6.0	43.5715	5.717	13.1	mg/L	10	Standard
K	39	393.3	10.4	4.5691	0.141	3.1	mg/L	32	Standard
Ca	43	503.3	8.1	65.3382	10.201	15.6	mg/L	85	Standard
Fe	54	88.9	22.3	0.0778	0.033	42.2	mg/L	82	Standard
Fe	57	433.3	3.5	2.1445	0.355	16.6	mg/L	217	Standard
Sc-1	45	14889.0	8.1				mg/L	14524	Standard
CI	35	403361.4	3.7				ug/L	53193	Standard
Kr	83	2.3	65.5				ug/L	3	Standard
Br	81	9953.3	6.7				ug/L	327	Standard
Р	31	18002.4	3.0				ug/L	13329	Standard
S	34	4537.3	1.8				ug/L	3234	Standard
Sr	88	168.3	14.7				ug/L	87	Standard
С	12	496.7	1.2				mg/L	103	Standard
N	14	3.3	173.2				mg/L	0	Standard
Hg	202	10.0	100.0				mg/L	3	Standard
Dy	164	54.1	37.6				mg/L	10	Standard
Ho-1	165	40.0	21.7				mg/L	3	Standard
Er	166	53.3	39.0				mg/L	7	Standard
I	127	43450.7	5.7				mg/L	3612	Standard
	K Ca Fe Fe Sc-1 CI Kr Br S S C N Hg Dy Ho-1	Mg 24 K 39 Ca 43 Fe 54 Fe 57 Sc-1 45 Cl 35 Kr 83 Br 81 P 31 S 34 Sr 88 C 12 N 14 Hg 202 Dy 164 Ho-1 165 Er 166	Mg 24 18599.8 K 39 393.3 Ca 43 503.3 Fe 54 88.9 Fe 57 433.3 Sc-1 45 14889.0 Cl 35 403361.4 Kr 83 2.3 Br 81 9953.3 P 31 18002.4 S 34 4537.3 Sr 88 168.3 C 12 496.7 N 14 3.3 Hg 202 10.0 Dy 164 54.1 Ho-1 165 40.0 Er 166 53.3	Mg 24 18599.8 6.0 K 39 393.3 10.4 Ca 43 503.3 8.1 Fe 54 88.9 22.3 Fe 57 433.3 3.5 Sc-1 45 14889.0 8.1 Cl 35 403361.4 3.7 Kr 83 2.3 65.5 Br 81 9953.3 6.7 P 31 18002.4 3.0 S 34 4537.3 1.8 Sr 88 168.3 14.7 C 12 496.7 1.2 N 14 3.3 173.2 Hg 202 10.0 100.0 Dy 164 54.1 37.6 Ho-1 165 40.0 21.7 Er 166 53.3 39.0	Mg 24 18599.8 6.0 43.5715 K 39 393.3 10.4 4.5691 Ca 43 503.3 8.1 65.3382 Fe 54 88.9 22.3 0.0778 Fe 57 433.3 3.5 2.1445 Sc-1 45 14889.0 8.1 1.2 CI 35 403361.4 3.7 7.7 Kr 83 2.3 65.5 65.5 Br 81 9953.3 6.7 7 P 31 18002.4 3.0 3.0 S 34 4537.3 1.8 3.8 Sr 88 168.3 14.7 7 C 12 496.7 1.2 1.2 N 14 3.3 173.2 Hg 202 10.0 100.0 Dy 164 54.1 37.6 Ho-1 165 40.0 21.7 Er 166 53.3 39.0	Mg 24 18599.8 6.0 43.5715 5.717 K 39 393.3 10.4 4.5691 0.141 Ca 43 503.3 8.1 65.3382 10.201 Fe 54 88.9 22.3 0.0778 0.033 Fe 57 433.3 3.5 2.1445 0.355 Sc-1 45 14889.0 8.1 2.1445 0.355 Sc-1 45 403361.4 3.7 3.7 4.7	Mg 24 18599.8 6.0 43.5715 5.717 13.1 K 39 393.3 10.4 4.5691 0.141 3.1 Ca 43 503.3 8.1 65.3382 10.201 15.6 Fe 54 88.9 22.3 0.0778 0.033 42.2 Fe 57 433.3 3.5 2.1445 0.355 16.6 Sc-1 45 14889.0 8.1 2.1445 0.355 16.6 Sc-1 45 14889.0 8.1 2.1445 0.355 16.6 Sc-1 45 14889.0 8.1 2.1445 0.355 16.6 Sr 81 9953.3 6.7 9 31 18002.4 3.0 3 <th>Mg 24 18599.8 6.0 43.5715 5.717 13.1 mg/L K 39 393.3 10.4 4.5691 0.141 3.1 mg/L Ca 43 503.3 8.1 65.3382 10.201 15.6 mg/L Fe 54 88.9 22.3 0.0778 0.033 42.2 mg/L Fe 57 433.3 3.5 2.1445 0.355 16.6 mg/L Sc-1 45 14889.0 8.1 403361.4 3.7 403361.4 4.7 40361.4 4.7 40361.4 4.7 4037.4 4.0</th> <th>Mg 24 18599.8 6.0 43.5715 5.717 13.1 mg/L 10 K 39 393.3 10.4 4.5691 0.141 3.1 mg/L 32 Ca 43 503.3 8.1 65.3382 10.201 15.6 mg/L 85 Fe 54 88.9 22.3 0.0778 0.033 42.2 mg/L 82 Fe 57 433.3 3.5 2.1445 0.355 16.6 mg/L 217 Sc-1 45 14889.0 8.1 14524</th>	Mg 24 18599.8 6.0 43.5715 5.717 13.1 mg/L K 39 393.3 10.4 4.5691 0.141 3.1 mg/L Ca 43 503.3 8.1 65.3382 10.201 15.6 mg/L Fe 54 88.9 22.3 0.0778 0.033 42.2 mg/L Fe 57 433.3 3.5 2.1445 0.355 16.6 mg/L Sc-1 45 14889.0 8.1 403361.4 3.7 403361.4 4.7 40361.4 4.7 40361.4 4.7 4037.4 4.0	Mg 24 18599.8 6.0 43.5715 5.717 13.1 mg/L 10 K 39 393.3 10.4 4.5691 0.141 3.1 mg/L 32 Ca 43 503.3 8.1 65.3382 10.201 15.6 mg/L 85 Fe 54 88.9 22.3 0.0778 0.033 42.2 mg/L 82 Fe 57 433.3 3.5 2.1445 0.355 16.6 mg/L 217 Sc-1 45 14889.0 8.1 14524

Analyte	Mass	QC Std % Recovery	Int Std % Recovery	Spike % Recovery
「⊳ Li	6		141.414	
Be	9			
L AI	27			
「 Sc	45			
Ti	47			
V	51			
Cr	52			
Cr	53			
Mn	55			
Co	59			
Ni	60			
Cu	65			
Zn	66			
> Ge	72		107.072	
As	75			
Se	82			
∟ Se-1	77			
「⊳ Ga	71			

Sample ID: L1510122410DP WG544285-04Report Date/Time: Tuesday, October 27, 2015 18:58:59

Page 2

Approved: October 28, 2015

L	Rb	85				
Γ	Υ	89				
L>	Rh	103				
Γ	Мо	98				
į	Ag	107				
i	Cd	111				
i	Cd	114				
i.	In	115			110.129	
	Sn	118			110.120	
	Sb	123				
l I	Ва	135				
L	Се	140				
l						
L>	Tb	159				
	Ho	165				
	TI	203				
	TI	205				
	Pb	206				
	Pb	207				
	Pb	208				
ļ	U	238				
_>		209			108.445	
Γ	Na	23				
	Mg	24				
	K	39				
	Ca	43				
	Fe	54				
	Fe	57				
L>	Sc-1	45				
	CI	35				
	Kr	83				
	Br	81				
	Р	31				
	S	34				
	Sr	88				
	C	12				
	N	14				
	Hg	202				
	Dy	164				
	Ho-1	165				
	Er	166				
		127				
	•					
		of Limits				
	Measurem		Analyte	Mass	Out of Limits Message	
		for sample	Li	6	Rerun sample	
	Al 27 Uppe		Al	27		
	Ti 47 Lowe	er	Ti	47		

Sample ID: L1510122410DP WG544285-04Report Date/Time: Tuesday, October 27, 2015 18:58:59

Page 3

Approved: October 28, 2015

Mn 55 Upper, S, EEE

Mn

55

Sample ID: L1510122410DP WG544285-04Report Date/Time: Tuesday, October 27, 2015 18:58:59

Page 4

Approved: October 28, 2015

Sample ID: L1510122410S WG544285-05

Sample Date/Time: Tuesday, October 27, 2015 18:59:53

Number of Replicates: 3 Autosampler Position: 209 Sample Description: 1

Method File: C:\NexIONData\Method\6020a.mth

Aliquot Volume (mL): Diluted to Volume (mL):

User Name: BKT Nexion300X Cumulative Autodilution Factor: 1

Nexion-ICP 200.8\6020

0	ncon	tration	Results	
Lα	ncen	itration	Results	

					Concentia	lion ites	uito			
IS	Analyt	e Mass	Intensity	RSD	Conc.	SD	RSD	Units	Blank Intens.	Mode
Γ>	Li	6	35444.8	2.9				ug/L	26270	Standard
	Be	9	34526.0	0.5	49.3232	1.642	3.3	ug/L	2	Standard
L	ΑI	27	98326255.5	3.0	1300.7683	62.148	4.8	ug/L	403	Standard
Γ	Sc	45	13879.7	6.0				ug/L	14524	Standard
	Ti	47	116.0	14.7	-1.3861	0.068	4.9	ug/L	365	Standard
	٧	51	189457.2	1.1	54.7052	2.272	4.2	ug/L	805	Standard
	Cr	52	219422.4	0.5	50.2971	2.791	5.5	ug/L	5481	Standard
	Cr	53	26780.3	1.2	49.6785	2.030	4.1	ug/L	268	Standard
	Mn	55	1926988.9	1.0	582.4816	35.252	6.1	ug/L	670	Standard
	Co	59	180385.5	0.9	57.1135	3.357	5.9	ug/L	146	Standard
	Ni	60	63872.7	1.2	56.4381	3.331	5.9	ug/L	220	Standard
	Cu	65	56605.5	0.7	51.1535	2.577	5.0	ug/L	147	Standard
	Zn	66	36484.5	0.7	55.4285	3.188	5.8	ug/L	211	Standard
>	Ge	72	211808.5	5.3				ug/L	210599	Standard
	As	75	39976.7	1.6	56.8630	2.342	4.1	ug/L	-47	Standard
	Se	82	3768.3	2.5	63.3283	2.623	4.1	ug/L	15	Standard
L	Se-1	77	2326.8	1.0	59.1320	3.344	5.7	ug/L	65	Standard
Γ>	Ga	71	21.7	13.3				mg/L	27	Standard
L	Rb	85	21073.0	2.8				ug/L	17	Standard
Γ	Υ	89	227014.6	5.4				ug/L	216672	Standard
L>	Rh	103	95.0	9.1				ug/L	18	Standard
Γ	Мо	98	921.5	3.5	0.6383	0.036	5.7	ug/L	11	Standard
	Ag	107	243298.2	1.7	50.4693	1.909	3.8	ug/L	55	Standard
	Cd	111	75908.5	0.6	52.5381	2.341	4.5	mg/L	7	Standard
	Cd	114	183534.8	1.4	51.9436	2.112	4.1	ug/L	4	Standard
>	In	115	333017.5	5.0				ug/L	322525	Standard
	Sn	118	451.7	11.1	-0.0425	0.007	16.9	ug/L	345	Standard
	Sb	123	199996.3	0.2	51.4007	2.635	5.1	ug/L	88	Standard
L	Ва	135	90330.8	0.4	54.7660	2.883	5.3	ug/L	12	Standard
Γ	Ce	140	478.3	8.9				ug/L	37	Standard
_>	Tb	159	620457.1	4.5				ug/L	631826	Standard
Γ	Но	165	61.7	16.9				ug/L	3	Standard
	TI	203	340815.5	0.2	51.6307	2.824	5.5	ug/L	7	Standard
	TI	205	239493.6	2.3	53.8256	1.738	3.2	ug/L	7	Standard
ļ	Pb	206	222789.7	0.5	55.1040	2.715	4.9	ug/L	159	Standard
ļ	Pb	207	191983.3	0.7	52.3645	2.620	5.0	ug/L	120	Standard
ļ	Pb	208	741623.0	0.4	50.6215	2.560	5.1	ug/L	503	Standard
	U	238	291236.0	0.1	53.8029	2.859	5.3	ug/L	5	Standard
L>	Bi	209	341644.2	5.3				ug/L	333509	Standard

Sample ID: L1510122410S WG544285-05

Report Date/Time: Tuesday, October 27, 2015 19:02:10

Page 1

Approved: October 28, 2015

Page 627

L15101055 / Revision: 0 / 760 total pages Generated: 10/30/2015 10:11

Γ	Na	23	13.3	57.3				mg/L	0	Standard
	Mg	24	20150.1	0.7	50.4162	3.236	6.4	mg/L	10	Standard
	K	39	303.3	19.0	3.7793	0.964	25.5	mg/L	32	Standard
	Ca	43	481.7	1.6	67.1888	4.653	6.9	mg/L	85	Standard
	Fe	54	62.9	13.6	0.0292	0.032	110.6	mg/L	82	Standard
	Fe	57	446.7	14.6	2.5355	0.396	15.6	mg/L	217	Standard
L>	Sc-1	45	13879.7	6.0				mg/L	14524	Standard
	CI	35	441621.2	1.6				ug/L	53193	Standard
	Kr	83	6.3	9.1				ug/L	3	Standard
	Br	81	13896.4	3.7				ug/L	327	Standard
	Р	31	18576.4	1.5				ug/L	13329	Standard
	S	34	4629.0	0.6				ug/L	3234	Standard
	Sr	88	196.7	1.5				ug/L	87	Standard
	С	12	540.0	4.9				mg/L	103	Standard
	N	14	0.0					mg/L	0	Standard
	Hg	202	3.3	173.2				mg/L	3	Standard
	Dy	164	59.5	47.1				mg/L	10	Standard
	Ho-1	165	61.7	16.9				mg/L	3	Standard
	Er	166	80.0	25.0				mg/L	7	Standard
	I	127	40156.5	1.2				mg/L	3612	Standard

Analyte	Mass	QC Std % Recovery	Int Std % Recovery	Spike % Recovery
「⊳ Li	6		134.927	
Be	9			
L AI	27			
「 Sc	45			
Ti	47			
V	51			
Cr	52			
Cr	53			
Mn	55			
Co	59			
Ni	60			
Cu	65			
Zn	66			
> Ge	72		100.574	
As	75			
Se	82			
L Se-1	77			
「⊳ Ga	71			

Sample ID: L1510122410S WG544285-05Report Date/Time: Tuesday, October 27, 2015 19:02:10

Page 2

Approved: October 28, 2015

Mo Ag Cd Cd In Sn Sb Ba Ce Tb Ho Tl Tl Pb Pb	85 89 103 98 107 111 114 115 118 123 135 140 159 165 203 205 206 207 208 238 209 23 24 39 43 54 57 45 35 83 81 31 34 88 12 14 14 15 15 16 16 16 16 16 16 16 16 16 16			103.253	
C N	12 14				
	202				
Ho-1 Er	165 166				
Er I	166 127				
=					
	of Limits				
Measurem		Analyte	Mass	Out of Limits Message	
	for sample	Li	6	Rerun sample	
Al 27 Uppe		Al Ti	27		
11 17 L 0440	r	Ti	17		

Ti 47 Lower

Sample ID: L1510122410S WG544285-05Report Date/Time: Tuesday, October 27, 2015 19:02:10

Τi

47

Page 3

Approved: October 28, 2015

Mn 55 Upper, S, EEE Mn

55

Sample ID: L1510122410S WG544285-05Report Date/Time: Tuesday, October 27, 2015 19:02:10

Page 4

Approved: October 28, 2015

Sample ID: L1510122410SD WG544285-06

Sample Date/Time: Tuesday, October 27, 2015 19:03:05

Number of Replicates: 3 Autosampler Position: 210 Sample Description: 1

Method File: C:\NexIONData\Method\6020a.mth

Aliquot Volume (mL): Diluted to Volume (mL):

User Name: BKT Nexion300X Cumulative Autodilution Factor: 1

Nexion-ICP 200.8\6020

O		44!	D = = 4 =	
COI	ıcen	tration	Results	

					Concentra	tion Res	uits			
IS	Analyt	e Mass	Intensity	RSD	Conc.	SD	RSD	Units	Blank Intens.	Mode
Γ>	Li	6	36286.7	1.7				ug/L	26270	Standard
	Be	9	34469.2	1.8	48.0691	0.463	1.0	ug/L	2	Standard
L	Αl	27	97485925.4	1.5	1258.8355	7.804	0.6	ug/L	403	Standard
Γ	Sc	45	14084.9	2.6				ug/L	14524	Standard
	Ti	47	91.0	16.6	-1.5458	0.089	5.7	ug/L	365	Standard
	٧	51	183278.5	1.0	52.5182	1.421	2.7	ug/L	805	Standard
	Cr	52	214726.7	1.3	48.7962	1.414	2.9	ug/L	5481	Standard
	Cr	53	27588.4	1.2	50.8155	1.627	3.2	ug/L	268	Standard
	Mn	55	1946287.7	2.3	583.5857	20.538	3.5	ug/L	670	Standard
	Co	59	178507.1	1.1	56.0705	1.832	3.3	ug/L	146	Standard
	Ni	60	63064.6	1.1	55.2866	2.120	3.8	ug/L	220	Standard
	Cu	65	55661.1	0.9	49.9305	2.310	4.6	ug/L	147	Standard
	Zn	66	35761.2	0.9	53.8911	1.965	3.6	ug/L	211	Standard
>	Ge	72	213222.5	3.7				ug/L	210599	Standard
	As	75	39041.6	0.5	55.1335	1.785	3.2	ug/L	-47	Standard
	Se	82	3672.2	1.5	61.2814	2.708	4.4	ug/L	15	Standard
L	Se-1	77	2268.5	3.8	57.1154	0.422	0.7	ug/L	65	Standard
Γ>	Ga	71	36.7	28.4				mg/L	27	Standard
L	Rb	85	22109.5	1.6				ug/L	17	Standard
Γ	Υ	89	230151.0	3.2				ug/L	216672	Standard
L>	Rh	103	73.3	21.9				ug/L	18	Standard
Γ	Мо	98	908.4	2.7	0.6110	0.012	2.0	ug/L	11	Standard
	Ag	107	241622.1	0.7	48.7110	1.080	2.2	ug/L	55	Standard
	Cd	111	75019.4	1.4	50.4516	1.436	2.8	mg/L	7	Standard
	Cd	114	181111.2	2.9	49.8001	1.229	2.5	ug/L	4	Standard
>	In	115	342359.6	2.4				ug/L	322525	Standard
	Sn	118	455.0	4.0	-0.0445	0.006	12.9	ug/L	345	Standard
ļ	Sb	123	194786.4	0.2	48.6329	1.259	2.6	ug/L	88	Standard
Ē	Ва	135	90799.6	0.9	53.4782	1.543	2.9	ug/L	12	Standard
ļ	Ce	140	428.3	22.6				ug/L	37	Standard
Ľ>	Tb	159	649455.3	2.7				ug/L	631826	Standard
ļ	Но	165	66.7	22.9				ug/L	3	Standard
ļ	TI	203	336931.7	0.1	50.0640	1.106	2.2	ug/L	7	Standard
ļ	TI	205	234687.1	1.0	51.7693	0.620	1.2	ug/L	7	Standard
!	Pb	206	218928.7	0.6	53.1193	1.215	2.3	ug/L	159	Standard
-	Pb	207	188164.3	1.1	50.3399	0.807	1.6	ug/L	120	Standard
-	Pb	208	729064.4	0.9	48.8158	1.155	2.4	ug/L	503	Standard
-	U	238	286107.8	0.8	51.8453	1.225	2.4	ug/L	5	Standard
L>	Bi	209	347758.8	2.2				ug/L	333509	Standard

Sample ID: L1510122410SD WG544285-06

Report Date/Time: Tuesday, October 27, 2015 19:05:22

Page 1

Approved: October 28, 2015

Page 631

L15101055 / Revision: 0 / 760 total pages

Γ	Na	23	15.0	57.7				mg/L	0	Standard
-		24	20470.5	4.2	50.3316	0.957	1.9	mg/L	10	Standard
!	Mg							•		
	K	39	296.7	21.5	3.5927	0.718	20.0	mg/L	32	Standard
	Ca	43	466.7	8.1	63.2491	4.284	6.8	mg/L	85	Standard
	Fe	54	87.2	13.8	0.0873	0.034	39.2	mg/L	82	Standard
	Fe	57	450.0	12.5	2.5293	0.653	25.8	mg/L	217	Standard
L>	Sc-1	45	14084.9	2.6				mg/L	14524	Standard
	CI	35	442574.9	0.6				ug/L	53193	Standard
	Kr	83	5.0	52.9				ug/L	3	Standard
	Br	81	11457.7	5.9				ug/L	327	Standard
	Р	31	17216.4	2.7				ug/L	13329	Standard
	S	34	4509.0	0.7				ug/L	3234	Standard
	Sr	88	171.7	13.1				ug/L	87	Standard
	С	12	503.3	16.1				mg/L	103	Standard
	N	14	0.0					mg/L	0	Standard
	Hg	202	13.3	114.6				mg/L	3	Standard
	Dy	164	57.8	15.8				mg/L	10	Standard
	Ho-1	165	66.7	22.9				mg/L	3	Standard
	Er	166	46.7	65.5				mg/L	7	Standard
	I	127	50168.0	2.6				mg/L	3612	Standard

Analyte	Mass	QC Std % Recovery	Int Std % Recovery	Spike % Recovery
「⊳ Li	6		138.132	
Be	9			
L AI	27			
「 Sc	45			
Ti	47			
V	51			
Cr	52			
Cr	53			
Mn	55			
Co	59			
Ni	60			
Cu	65			
Zn	66			
> Ge	72		101.246	
As	75			
Se	82			
L Se-1	77			
「⊳ Ga	71			

Sample ID: L1510122410SD WG544285-06Report Date/Time: Tuesday, October 27, 2015 19:05:22

Page 2

Approved: October 28, 2015

∟ Rb	85				
ΓY	89				
$\lfloor_>$ Rh	103				
Г Мо	98				
Ag	107				
Cd	111				
Cd	114				
> In	115			106.150	
Sn	118				
Sb	123				
L Ba	135				
Γ Ce	140				
> Tb	159				
Ho	165				
TI	203				
i Ti	205				
Pb	206				
Pb	207				
Pb	208				
U	238				
∣	209			104.273	
[⊳ Na	23			104.273	
Mg	24				
Wig K	39				
Ca	43				
Fe	54				
Fe	57				
1 0 4	45				
L> Sc-1 Cl	35				
Kr	83				
Br	81				
P	31				
S	34				
Sr	88				
C	12				
N	14				
Hg	202				
	164				
Dy Ho-1	165				
Er	166				
 	127				
	t of Limits				
	ment Type	Analyte	Mass	Out of Limits Message	
Li 6 Int S	td for sample	Li	6	Rerun sample	
Al 27 Up	oer, S, EEE	Al	27		
Ti 47 Lov	vor	T:	47		

Ti 47 Lower

Sample ID: L1510122410SD WG544285-06Report Date/Time: Tuesday, October 27, 2015 19:05:22

Τi

47

Page 3

Approved: October 28, 2015

Mn 55 Upper, S, EEE

Mn

55

Sample ID: L1510122410SD WG544285-06Report Date/Time: Tuesday, October 27, 2015 19:05:22

Page 4

Approved: October 28, 2015

Sample ID: L1510122402

Sample Date/Time: Tuesday, October 27, 2015 19:06:16

Number of Replicates: 3 Autosampler Position: 211 Sample Description: 1

Method File: C:\NexIONData\Method\6020a.mth

Aliquot Volume (mL): Diluted to Volume (mL):

User Name: BKT Nexion300X Cumulative Autodilution Factor: 1

Nexion-ICP 200.8\6020

Concentration	Results
---------------	---------

					Concentit	ation ites	uito			
IS	Analyt	e Mass	Intensity	RSD	Conc.	SD	RSD	Units	Blank Intens.	Mode
Γ>	Li	6	37834.2	11.2				ug/L	26270	Standard
	Ве	9	36.7	41.7	0.0146	0.022	152.6	ug/L	2	Standard
L	Αl	27	4026761.8	1.3	50.2806	5.807	11.5	ug/L	403	Standard
Γ	Sc	45	15491.3	7.9				ug/L	14524	Standard
	Ti	47	97.7	10.8	-1.5458	0.036	2.3	ug/L	365	Standard
	٧	51	1243.5	9.9	0.0734	0.006	8.8	ug/L	805	Standard
	Cr	52	7427.5	7.7	0.3034	0.043	14.2	ug/L	5481	Standard
	Cr	53	566.7	13.2	0.4568	0.150	32.8	ug/L	268	Standard
	Mn	55	764982.0	1.3	214.3354	18.458	8.6	ug/L	670	Standard
	Co	59	9718.1	1.8	2.8118	0.250	8.9	ug/L	146	Standard
	Ni	60	6138.6	1.7	4.8284	0.455	9.4	ug/L	220	Standard
	Cu	65	528.7	6.2	0.2648	0.008	3.1	ug/L	147	Standard
	Zn	66	3980.9	1.0	5.0476	0.479	9.5	ug/L	211	Standard
>	Ge	72	228827.4	7.9				ug/L	210599	Standard
	As	75	1949.3	1.6	2.6485	0.215	8.1	ug/L	-47	Standard
	Se	82	28.7	20.3	0.2708	0.092	34.0	ug/L	15	Standard
L	Se-1	77	75.0	8.3	0.5626	0.125	22.2	ug/L	65	Standard
Γ>	Ga	71	33.3	22.9				mg/L	27	Standard
L	Rb	85	4710.7	3.1				ug/L	17	Standard
Γ	Υ	89	242267.4	10.0				ug/L	216672	Standard
L>	Rh	103	11.7	24.7				ug/L	18	Standard
Γ	Мо	98	147.3	4.9	0.0903	0.010	11.0	ug/L	11	Standard
	Ag	107	118.7	18.9	0.0109	0.005	41.5	ug/L	55	Standard
	Cd	111	15.0	16.8	0.0031	0.002	59.5	mg/L	7	Standard
	Cd	114	8.3	123.1	0.0074	0.003	34.2	ug/L	4	Standard
>	In	115	369446.4	8.1				ug/L	322525	Standard
	Sn	118	745.0	13.4	0.0125	0.030	236.3	ug/L	345	Standard
	Sb	123	253.0	7.7	0.0483	0.009	18.3	ug/L	88	Standard
L	Ва	135	20440.4	0.7	11.1803	0.893	8.0	ug/L	12	Standard
Γ	Ce	140	123.3	38.3				ug/L	37	Standard
L>	Tb	159	679402.7	7.3				ug/L	631826	Standard
Γ	Но	165	11.7	24.7				ug/L	3	Standard
	TI	203	135.7	13.1	0.0158	0.001	5.8	ug/L	7	Standard
	TI	205	91.7	26.9	0.0212	0.006	27.9	ug/L	7	Standard
	Pb	206	292.0	4.2	0.0057	0.008	135.8	ug/L	159	Standard
	Pb	207	249.0	3.3	0.0042	0.005	115.0	ug/L	120	Standard
	Pb	208	1031.7	6.1	0.0097	0.004	37.6	ug/L	503	Standard
	U	238	110.3	6.4	0.0139	0.002	14.4	ug/L	5	Standard
L>	Bi	209	378138.6	8.2				ug/L	333509	Standard

Sample ID: L1510122402

Report Date/Time: Tuesday, October 27, 2015 19:08:32

Page 1

Approved: October 28, 2015

_									_	
	Na	23	6.7	86.6				mg/L	0	Standard
	Mg	24	208.3	9.1	0.4286	0.066	15.4	mg/L	10	Standard
	K	39	70.0	21.4	0.6031	0.125	20.8	mg/L	32	Standard
	Ca	43	130.0	26.9	5.0073	3.631	72.5	mg/L	85	Standard
	Fe	54	1281.2	2.6	2.8197	0.176	6.3	mg/L	82	Standard
	Fe	57	625.0	5.6	3.7111	0.719	19.4	mg/L	217	Standard
L>	Sc-1	45	15491.3	7.9				mg/L	14524	Standard
	CI	35	99891.8	3.1				ug/L	53193	Standard
	Kr	83	6.3	32.9				ug/L	3	Standard
	Br	81	1223.4	2.5				ug/L	327	Standard
	Р	31	17571.9	1.8				ug/L	13329	Standard
	S	34	3732.1	1.9				ug/L	3234	Standard
	Sr	88	123.3	18.3				ug/L	87	Standard
	С	12	383.3	6.0				mg/L	103	Standard
	N	14	0.0					mg/L	0	Standard
	Hg	202	3.3	173.2				mg/L	3	Standard
	Dy	164	9.0	116.3				mg/L	10	Standard
	Ho-1	165	11.7	24.7				mg/L	3	Standard
	Er	166	20.0	100.0				mg/L	7	Standard
	I	127	8242.2	2.3				mg/L	3612	Standard

	Analyte	Mass	QC Std % Recovery	Int Std % Recovery	Spike % Recovery
Γ>	Li	6		144.023	
	Be	9			
L	Al	27			
Γ	Sc	45			
	Ti	47			
	V	51			
	Cr	52			
	Cr	53			
	Mn	55			
	Co	59			
	Ni	60			
	Cu	65			
	Zn	66			
>	Ge	72		108.656	
	As	75			
	Se	82			
L	Se-1	77			
Γ>	Ga	71			

Sample ID: L1510122402

Report Date/Time: Tuesday, October 27, 2015 19:08:32

Page 2

Approved: October 28, 2015

L Rb	85				
ΓΥ	89				
Ĺ _{>} Rh	103				
Mo	98				
Ag	107				
Cd	111				
Cd	114				
> In	115			114.548	
Sn	118			114.040	
Sb	123				
L Ba	135				
Г Се	140				
[> Tb	159 165				
Γ Ho	165				
TI	203				
TI	205				
Pb	206				
Pb	207				
Pb	208				
U	238			440.000	
L> Bi	209			113.382	
Na	23				
Mg	24				
K	39				
Ca	43				
Fe	54				
Fe	57				
_> Sc-1	45				
CI	35				
Kr	83				
Br	81				
Р	31				
S	34				
Sr	88				
С	12				
Ν	14				
Hg	202				
Dy	164				
Ho-1	165				
Er	166				
I	127				
OC Ou	t of Limits				
		A 1 1	N4	Out of Livette Man	
	nent Type	Analyte	Mass	Out of Limits Message	
	d for sample	Li 	6	Rerun sample	
Ti 47 Low	er	Ti	47 55		
N/10 EE 110	nor C EEE	N/In	EE		

Sample ID: L1510122402

Report Date/Time: Tuesday, October 27, 2015 19:08:32

Mn

55

Mn 55 Upper, S, EEE

Page 3

Approved: October 28, 2015

Sample ID: L1510122402PS WG544595-01

Sample Date/Time: Tuesday, October 27, 2015 19:09:27

Number of Replicates: 3 Autosampler Position: 212 Sample Description: 1

Method File: C:\NexIONData\Method\6020a.mth

Aliquot Volume (mL): Diluted to Volume (mL):

User Name: BKT Nexion300X Cumulative Autodilution Factor: 1

Nexion-ICP 200.8\6020

0	ncon	tration	Results	
Lα	ncen	itration	Results	

					Joneontia	centration results					
IS	S Analyt	t e Mass	Intensity	RSD	Conc.	SD	RSD	Units	Blank Intens.	Mode	
Γ>	. Li	6	33844.5	5.8				ug/L	26270	Standard	
	Be	9	32935.8	1.9	49.3663	3.290	6.7	ug/L	2	Standard	
L	Αl	27	4043833.1	4.4	56.1702	5.417	9.6	ug/L	403	Standard	
Γ	Sc	45	14099.9	2.5				ug/L	14524	Standard	
	Ti	47	108.0	4.0	-1.4352	0.044	3.1	ug/L	365	Standard	
	V	51	191548.8	1.5	55.1109	1.368	2.5	ug/L	805	Standard	
	Cr	52	226501.6	1.1	51.7638	2.055	4.0	ug/L	5481	Standard	
	Cr	53	28206.2	2.0	52.1816	2.312	4.4	ug/L	268	Standard	
	Mn	55	954368.5	1.4	287.2621	14.534	5.1	ug/L	670	Standard	
	Co	59	192006.3	0.7	60.5687	2.646	4.4	ug/L	146	Standard	
	Ni	60	64067.2	1.5	56.4065	2.792	4.9	ug/L	220	Standard	
	Cu	65	57710.7	0.5	51.9671	1.931	3.7	ug/L	147	Standard	
	Zn	66	38317.1	8.0	58.0140	2.016	3.5	ug/L	211	Standard	
>	Ge	72	212397.1	3.8				ug/L	210599	Standard	
	As	75	41569.5	2.0	58.9278	2.255	3.8	ug/L	-47	Standard	
	Se	82	3397.1	1.2	56.8892	2.071	3.6	ug/L	15	Standard	
L	Se-1	77	2155.8	2.4	54.5142	3.287	6.0	ug/L	65	Standard	
Γ>		71	55.0	15.7				mg/L	27	Standard	
L	Rb	85	4730.7	6.4				ug/L	17	Standard	
Γ	Υ	89	227424.2	1.1				ug/L	216672	Standard	
L>	Rh	103	28.3	10.2				ug/L	18	Standard	
Γ	Mo	98	151.4	6.2	0.1008	0.006	6.4	ug/L	11	Standard	
	Ag	107	246691.8	0.5	50.1656	1.212	2.4	ug/L	55	Standard	
	Cd	111	79281.2	8.0	53.7776	1.299	2.4	mg/L	7	Standard	
	Cd	114	190312.6	2.1	52.7909	1.383	2.6	ug/L	4	Standard	
>		115	339415.2	2.3				ug/L	322525	Standard	
	Sn	118	773.4	5.5	0.0329	0.013	40.1	ug/L	345	Standard	
	Sb	123	200072.1	8.0	50.3835	1.273	2.5	ug/L	88	Standard	
L	Ва	135	106333.5	0.9	63.1735	1.828	2.9	ug/L	12	Standard	
Γ	Ce	140	116.7	10.8				ug/L	37	Standard	
L>		159	635848.7	1.7				ug/L	631826	Standard	
Γ	Но	165	8.3	91.7				ug/L	3	Standard	
	TI	203	360915.1	0.7	53.3112	1.969	3.7	ug/L	7	Standard	
	TI	205	249723.0	1.2	54.7545	1.417	2.6	ug/L	7	Standard	
	Pb	206	226271.8	0.9	54.5844	2.250	4.1	ug/L	159	Standard	
	Pb	207	203744.1	0.6	54.1931	1.834	3.4	ug/L	120	Standard	
	Pb	208	780289.3	1.5	51.9345	1.803	3.5	ug/L	503	Standard	
	U	238	288525.1	1.0	51.9751	1.980	3.8	ug/L	5	Standard	
L>	∍ Bi	209	350023.8	3.7				ug/L	333509	Standard	

Sample ID: L1510122402PS WG544595-01

Report Date/Time: Tuesday, October 27, 2015 19:11:44

Page 1

Approved: October 28, 2015

Γ	Na	23	5.0	0.0				mg/L	0	Standard
İ	Mg	24	206.7	7.8	0.4684	0.050	10.6	mg/L	10	Standard
ĺ	ĸ	39	71.7	21.3	0.7106	0.204	28.7	mg/L	32	Standard
ĺ	Ca	43	130.0	21.4	7.1102	4.454	62.6	mg/L	85	Standard
	Fe	54	1241.4	4.0	3.0006	0.087	2.9	mg/L	82	Standard
	Fe	57	621.7	8.6	4.1840	0.414	9.9	mg/L	217	Standard
L>	Sc-1	45	14099.9	2.5				mg/L	14524	Standard
	CI	35	94242.9	0.5				ug/L	53193	Standard
	Kr	83	3.0	33.3				ug/L	3	Standard
	Br	81	1213.4	9.8				ug/L	327	Standard
	Р	31	18022.4	5.0				ug/L	13329	Standard
	S	34	3890.5	3.2				ug/L	3234	Standard
	Sr	88	128.3	27.6				ug/L	87	Standard
	С	12	266.7	19.2				mg/L	103	Standard
	N	14	3.3	173.2				mg/L	0	Standard
	Hg	202	3.3	173.2				mg/L	3	Standard
	Dy	164	5.5	117.2				mg/L	10	Standard
	Ho-1	165	8.3	91.7				mg/L	3	Standard
	Er	166	23.3	89.2				mg/L	7	Standard
	I	127	8015.5	2.7				mg/L	3612	Standard

_	Analyte		QC Std % Recovery	Int Std % Recovery	Spike % Recovery
Γ>	Li	6		128.835	
	Be	9			
L	Al	27			
Γ	Sc	45			
	Ti	47			
	V	51			
	Cr	52			
	Cr	53			
	Mn	55			
	Co	59			
	Ni	60			
	Cu	65			
	Zn	66			
>	Ge	72		100.854	
	As	75			
	Se	82			
L	Se-1	77			
Γ>	Ga	71			

Sample ID: L1510122402PS WG544595-01

Report Date/Time: Tuesday, October 27, 2015 19:11:44

Page 2

Approved: October 28, 2015

	0=				
L Rb	85				
ΓY	89				
Ĺ> Rh	103				
Мо	98				
Ag	107				
Cd	111				
Cd	114				
> In	115			105.237	
Sn	118				
Sb	123				
∟ Ba	135				
「 Ce	140				
$\lfloor_>$ Tb	159				
Γ Ho	165				
TI	203				
TI	205				
Pb	206				
Pb	207				
Pb	208				
U	238				
L> Bi	209			104.952	
Na	23				
Mg	24				
K	39				
Ca	43				
Fe	54				
Fe	57				
_> Sc-1	45				
CI	35				
Kr	83				
Br	81				
Р	31				
S	34				
Sr	88				
С	12				
N	14				
Hg	202				
Dy	164				
Ho-1					
Er	166				
00	127				
	Out of Limits				
	surement Type	Analyte	Mass	Out of Limits Message	
	nt Std for sample	Li	6	Rerun sample	
Ti 47	Lower	Ti	47		

Mn 55 Upper, S, EEE

Sample ID: L1510122402PS WG544595-01 Report Date/Time: Tuesday, October 27, 2015 19:11:44

Mn

55

Page 3

Approved: October 28, 2015

Sample ID: L1510122402SDL WG544595-02

Sample Date/Time: Tuesday, October 27, 2015 19:12:39

Number of Replicates: 3 Autosampler Position: 213 Sample Description: 5

Method File: C:\NexIONData\Method\6020a.mth

Aliquot Volume (mL): Diluted to Volume (mL):

User Name: BKT Nexion300X Cumulative Autodilution Factor: 1

Nexion-ICP 200.8\6020

0	ncon	tration	Results	
Lα	ncen	itration	Results	

					Concenti	ation Nes	uits			
IS	Analyt	e Mass	Intensity	RSD	Conc.	SD	RSD	Units	Blank Intens.	Mode
Γ>	Li	6	33365.1	6.0				ug/L	26270	Standard
	Be	9	68.3	91.5	0.0656	0.086	131.4	ug/L	2	Standard
L	ΑI	27	875155.8	0.7	12.3012	0.793	6.4	ug/L	403	Standard
Γ	Sc	45	15172.6	4.8				ug/L	14524	Standard
	Ti	47	80.0	5.7	-1.6355	0.034	2.1	ug/L	365	Standard
	٧	51	1229.6	18.4	0.0782	0.053	67.2	ug/L	805	Standard
	Cr	52	6745.5	8.0	0.1960	0.032	16.3	ug/L	5481	Standard
	Cr	53	441.7	13.5	0.2568	0.087	33.9	ug/L	268	Standard
	Mn	55	154160.8	1.6	43.9332	1.394	3.2	ug/L	670	Standard
	Co	59	2248.5	7.3	0.6301	0.031	4.9	ug/L	146	Standard
	Ni	60	1462.1	5.7	1.0047	0.037	3.7	ug/L	220	Standard
	Cu	65	283.3	21.6	0.0646	0.046	71.1	ug/L	147	Standard
	Zn	66	1461.7	1.3	1.5055	0.066	4.4	ug/L	211	Standard
>	Ge	72	222647.4	2.8				ug/L	210599	Standard
	As	75	388.1	17.6	0.6004	0.079	13.1	ug/L	-47	Standard
	Se	82	20.9	41.5	0.1560	0.132	84.5	ug/L	15	Standard
L	Se-1	77	63.3	2.4	0.3230	0.007	2.3	ug/L	65	Standard
Γ>	Ga	71	20.0	25.0				mg/L	27	Standard
L	Rb	85	968.4	3.0				ug/L	17	Standard
Γ	Υ	89	240395.1	3.3				ug/L	216672	Standard
L>	Rh	103	10.0	50.0				ug/L	18	Standard
Γ	Мо	98	38.0	13.3	0.0224	0.004	18.3	ug/L	11	Standard
	Ag	107	212.0	106.7	0.0286	0.041	144.2	ug/L	55	Standard
	Cd	111	64.6	134.6	0.0340	0.053	157.0	mg/L	7	Standard
	Cd	114	154.4	117.5	0.0449	0.045	101.1	ug/L	4	Standard
>	In	115	355957.2	4.2				ug/L	322525	Standard
ļ	Sn	118	458.3	8.9	-0.0476	0.013	27.0	ug/L	345	Standard
ļ	Sb	123	872.1	9.2	0.1984	0.011	5.7	ug/L	88	Standard
Ĺ	Ва	135	4257.9	1.8	2.3904	0.094	3.9	ug/L	12	Standard
!	Ce	140	26.7	65.8				ug/L	37	Standard
Ĺ>	Tb	159	663545.9	2.5				ug/L	631826	Standard
!	Но	165	5.0	100.0				ug/L	3	Standard
!	TI	203	242.0	125.1	0.0308	0.041	134.2	ug/L	7	Standard
	TI	205	176.7	153.6	0.0386	0.055	143.1	ug/L	7	Standard
	Pb	206	350.7	62.9	0.0203	0.048	237.7	ug/L	159	Standard
	Pb	207	284.7	69.0	0.0144	0.048	330.9	ug/L	120	Standard
	Pb	208	1175.7	72.5	0.0201	0.052	257.5	ug/L	503	Standard
	U	238	240.0	129.9	0.0359	0.052	144.6	ug/L	5	Standard
L>	Bi	209	365271.1	2.6				ug/L	333509	Standard

Sample ID: L1510122402SDL WG544595-02

Report Date/Time: Tuesday, October 27, 2015 19:14:55

Page 1

Approved: October 28, 2015

_										
	Na	23	0.0					mg/L	0	Standard
	Mg	24	53.3	32.9	0.0804	0.035	43.1	mg/L	10	Standard
	K	39	26.7	92.5	0.1160	0.314	270.5	mg/L	32	Standard
	Ca	43	65.0	7.7	-4.4269	1.092	24.7	mg/L	85	Standard
	Fe	54	324.1	1.5	0.6285	0.048	7.6	mg/L	82	Standard
	Fe	57	321.7	5.0	1.0435	0.190	18.2	mg/L	217	Standard
L>	Sc-1	45	15172.6	4.8				mg/L	14524	Standard
	CI	35	87798.4	2.7				ug/L	53193	Standard
	Kr	83	4.3	13.3				ug/L	3	Standard
	Br	81	583.3	13.0				ug/L	327	Standard
	Р	31	16172.0	0.7				ug/L	13329	Standard
	S	34	3952.2	1.2				ug/L	3234	Standard
	Sr	88	135.0	11.1				ug/L	87	Standard
	С	12	200.0	10.0				mg/L	103	Standard
	N	14	0.0					mg/L	0	Standard
	Hg	202	0.0					mg/L	3	Standard
	Dy	164	12.2	51.9				mg/L	10	Standard
	Ho-1	165	5.0	100.0				mg/L	3	Standard
	Er	166	23.3	65.5				mg/L	7	Standard
	I	127	4045.5	3.2				mg/L	3612	Standard

Analyte	Mass	QC Std % Recovery	Int Std % Recovery	Spike % Recovery
「⊳ Li	6		127.010	
Be	9			
L AI	27			
「 Sc	45			
Ti	47			
V	51			
Cr	52			
Cr	53			
Mn	55			
Co	59			
Ni	60			
Cu	65			
Zn	66			
> Ge	72		105.721	
As	75			
Se	82			
L Se-1	77			
「⊳ Ga	71			

Sample ID: L1510122402SDL WG544595-02Report Date/Time: Tuesday, October 27, 2015 19:14:55

Page 2

Approved: October 28, 2015

L Rb	85				
[Y	89				
∟ . ∟ _{>} Rh	103				
Mo	98				
Ag	107				
Cd	111				
Cd	114				
> In	115			110.366	
Sn	118				
Sb	123				
L Ba	135				
Г Се	140				
[> Tb	159				
Γ Ho	165				
TI	203				
TI Pb	205 206				
Pb	207				
Pb	208				
U	238				
∟> Bi	209			109.524	
Na	23				
Mg	24				
K	39				
Ca	43				
Fe	54				
Fe	57				
L> Sc-1	45				
Cl	35				
Kr Br	83 81				
Р	31				
S	34				
Sr	88				
C	12				
N	14				
Hg	202				
Dy	164				
Ho-1	165				
Er	166				
I	127				
QC O	ut of Limits				
	ement Type	Analyte	Mass	Out of Limits Message	
	Std for sample	Li	6	Rerun sample	
Ti 47 Lo	wer	Ti	47		

Sample ID: L1510122402SDL WG544595-02Report Date/Time: Tuesday, October 27, 2015 19:14:55

Page 3

Approved: October 28, 2015

Sample ID: L1510122402SDL WG544595-02

Sample Date/Time: Tuesday, October 27, 2015 19:15:50

Number of Replicates: 3 Autosampler Position: 214 Sample Description: 25

Method File: C:\NexIONData\Method\6020a.mth

Aliquot Volume (mL): Diluted to Volume (mL):

User Name: BKT Nexion300X Cumulative Autodilution Factor: 1

Nexion-ICP 200.8\6020

Concentration F	Results
------------------------	---------

					Ouncenti	ation ites	Juita			
IS	Analyt	e Mass	Intensity	RSD	Conc.	SD	RSD	Units	Blank Intens.	Mode
Γ>	Li	6	31307.4	4.4				ug/L	26270	Standard
	Ве	9	20.0	109.0	-0.0014	0.038	2671.9	ug/L	2	Standard
L	ΑI	27	208934.4	26.0	3.1343	0.972	31.0	ug/L	403	Standard
Γ	Sc	45	14558.7	6.6				ug/L	14524	Standard
	Ti	47	54.0	18.8	-1.7753	0.074	4.2	ug/L	365	Standard
	٧	51	1097.9	5.3	0.0571	0.008	14.2	ug/L	805	Standard
	Cr	52	6599.4	2.6	0.2341	0.075	32.1	ug/L	5481	Standard
	Cr	53	448.3	16.1	0.3104	0.153	49.3	ug/L	268	Standard
	Mn	55	32123.4	2.9	9.3204	0.588	6.3	ug/L	670	Standard
	Co	59	594.3	3.0	0.1418	0.012	8.1	ug/L	146	Standard
	Ni	60	1320.4	3.2	0.9401	0.070	7.4	ug/L	220	Standard
	Cu	65	178.3	23.6	-0.0169	0.044	258.1	ug/L	147	Standard
	Zn	66	988.4	1.3	0.8837	0.066	7.5	ug/L	211	Standard
>	Ge	72	212559.6	3.1				ug/L	210599	Standard
	As	75	61.7	21.2	0.1655	0.021	12.7	ug/L	-47	Standard
	Se	82	11.7	35.1	0.0208	0.071	339.5	ug/L	15	Standard
L	Se-1	77	58.7	9.4	0.2767	0.135	48.9	ug/L	65	Standard
Γ>	Ga	71	5.0	100.0				mg/L	27	Standard
L	Rb	85	190.0	7.0				ug/L	17	Standard
Γ	Υ	89	222353.9	2.9				ug/L	216672	Standard
L>	Rh	103	11.7	24.7				ug/L	18	Standard
Γ	Мо	98	11.8	43.9	0.0056	0.003	60.4	ug/L	11	Standard
	Ag	107	60.0	18.9	0.0009	0.003	311.9	ug/L	55	Standard
	Cd	111	11.0	79.5	0.0013	0.006	495.6	mg/L	7	Standard
	Cd	114	33.7	143.1	0.0151	0.014	93.5	ug/L	4	Standard
>	In	115	339337.5	4.7				ug/L	322525	Standard
	Sn	118	421.7	4.5	-0.0516	0.001	1.8	ug/L	345	Standard
	Sb	123	203.3	22.3	0.0403	0.010	25.3	ug/L	88	Standard
Ē	Ва	135	889.7	1.7	0.5058	0.033	6.6	ug/L	12	Standard
ļ	Ce	140	23.3	49.5				ug/L	37	Standard
Ĺ>	Tb	159	624934.5	3.3				ug/L	631826	Standard
ļ	Но	165	10.0					ug/L	3	Standard
ļ	TI	203	30.3	93.5	0.0019	0.004	230.9	ug/L	7	Standard
ļ	TI	205	108.3	149.5	0.0273	0.037	137.0	ug/L	7	Standard
ļ	Pb	206	177.3	12.2	-0.0165	0.007	40.9	ug/L	159	Standard
ļ	Pb	207	151.7	5.6	-0.0165	0.003	19.1	ug/L	120	Standard
ļ	Pb	208	772.3	43.1	-0.0015	0.025	1641.8	ug/L	503	Standard
ļ	U	238	108.3	159.7	0.0159	0.033	206.4	ug/L	5	Standard
L>	Bi	209	346144.8	3.3				ug/L	333509	Standard

Sample ID: L1510122402SDL WG544595-02

Report Date/Time: Tuesday, October 27, 2015 19:18:07

Page 1

Approved: October 28, 2015

Γ	Na	23	0.0					mg/L	0	Standard
i	Mg	24	40.0	65.0	0.0578	0.070	121.7	mg/L	10	Standard
i	K	39	35.0	49.5	0.2241	0.211	94.1	mg/L	32	Standard
i	Ca	43	41.7	36.7	-7.6728	2.888	37.6	mg/L	85	Standard
i	Fe	54	122.5	32.7	0.1660	0.094	56.4	mg/L	82	Standard
i	Fe	57	355.0	5.1	1.4951	0.401	26.8	mg/L	217	Standard
>	Sc-1	45	14558.7	6.6				mg/L	14524	Standard
	CI	35	86762.4	0.5				ug/L	53193	Standard
	Kr	83	4.7	32.7				ug/L	3	Standard
	Br	81	493.3	3.1				ug/L	327	Standard
	Р	31	16071.9	0.0				ug/L	13329	Standard
	S	34	3903.8	1.2				ug/L	3234	Standard
	Sr	88	113.3	14.2				ug/L	87	Standard
	С	12	173.3	8.8				mg/L	103	Standard
	N	14	0.0					mg/L	0	Standard
	Hg	202	0.0					mg/L	3	Standard
	Dy	164	13.3	43.3				mg/L	10	Standard
	Ho-1	165	10.0					mg/L	3	Standard
	Er	166	0.0					mg/L	7	Standard
	1	127	3227.0	0.9				mg/L	3612	Standard
								-		

Analyte		QC Std % Recovery	Int Std % Recovery	Spike % Recovery
「> Li	6		119.177	
Be	9			
L AI	27			
「 Sc	45			
Ti	47			
V	51			
Cr	52			
Cr	53			
Mn	55			
Co	59			
Ni	60			
Cu	65			
Zn	66			
> Ge	72		100.931	
As	75			
Se	82			
Se-1	77			
「̄> Ga	71			

Sample ID: L1510122402SDL WG544595-02Report Date/Time: Tuesday, October 27, 2015 19:18:07

Page 2

Approved: October 28, 2015

L Rb	85			
ΓΥ	89			
$\lfloor_>$ Rh	103			
Г Мо	98			
Ag	107			
Cd	111			
Cd	114			
> In	115			105.213
Sn	118			
Sb	123			
L Ba	135			
「 Ce	140			
L> Tb	159			
「 Ho	165			
TI	203			
TI	205			
Pb	206			
Pb	207			
Pb	208			
Ü	238			
Ĺ> Bi	209			103.789
- Na	23			
Mg	24			
K	39			
Ca	43			
Fe	54			
Fe	57			
_> Sc-1	45			
CI	35			
Kr	83			
Br	81			
Р	31			
S	34			
Sr	88			
С	12			
Ν	14			
Hg	202			
Dy	164			
Ho-1	165			
Er	166			
1	127			
QC O	ıt of Limits			
	ment Type	Analyte	Mass	Out of Limits Message
Ti 47 Lo	ment Type	Ti	47	Out of Limits Message
1141 LO	MCI	11	41	

Sample ID: L1510122402SDL WG544595-02Report Date/Time: Tuesday, October 27, 2015 19:18:07

Page 3

Approved: October 28, 2015

Sample ID: QC Std 6

Sample Date/Time: Tuesday, October 27, 2015 19:19:03

Number of Replicates: 3 Autosampler Position: 101 Sample Description:

Method File: C:\NexIONData\Method\6020a.mth

Aliquot Volume (mL): Diluted to Volume (mL):

User Name: BKT Nexion300X Cumulative Autodilution Factor: 1

Nexion-ICP 200.8\6020

Concentration Results										
IS	IS Analyte Mass		Intensity	RSD	Conc.	SD	RSD	Units	Blank Intens.	Mode
Γ>	Li	6	31232.2	4.9				ug/L	26270	Standard
İ	Be	9	30625.9	0.7	49.6916	2.172	4.4	ug/L	2	Standard
Ĺ	Al	27	3186544.9	1.3	47.8673	2.567	5.4	ug/L	403	Standard
Γ	Sc	45	14450.2	2.5				ug/L	14524	Standard
	Ti	47	16331.5	1.7	101.6041	0.933	0.9	ug/L	365	Standard
	V	51	181321.2	1.7	52.5186	0.621	1.2	ug/L	805	Standard
	Cr	52	220351.5	1.0	50.6667	0.543	1.1	ug/L	5481	Standard
	Cr	53	27321.3	1.7	50.8671	0.949	1.9	ug/L	268	Standard
	Mn	55	180003.1	1.6	54.2352	0.643	1.2	ug/L	670	Standard
	Co	59	172191.3	0.7	54.6660	0.188	0.3	ug/L	146	Standard
	Ni	60	56735.0	0.7	50.2468	0.644	1.3	ug/L	220	Standard
	Cu	65	55420.8	1.2	50.2302	0.139	0.3	ug/L	147	Standard
	Zn	66	33204.4	1.7	50.5297	0.560	1.1	ug/L	211	Standard
>	Ge	72	210800.4	0.9				ug/L	210599	Standard
	As	75	36452.8	2.4	52.0284	0.852	1.6	ug/L	-47	Standard
	Se	82	3186.4	2.1	53.7049	0.658	1.2	ug/L	15	Standard
L	Se-1	77	2056.1	3.0	52.2572	1.249	2.4	ug/L	65	Standard
Γ>	Ga	71	15.0	66.7				mg/L	27	Standard
L	Rb	85	563.3	10.8				ug/L	17	Standard
Γ	Υ	89	221686.7	0.8				ug/L	216672	Standard
<u>_</u> >	Rh	103	20.0	50.0				ug/L	18	Standard
Γ	Мо	98	155661.2	0.2	106.4992	1.079	1.0	ug/L	11	Standard
	Ag	107	237106.6	0.6	48.4201	0.539	1.1	ug/L	55	Standard
	Cd	111	74839.8	0.5	50.9787	0.297	0.6	mg/L	7	Standard
!	Cd	114	178566.3	1.5	49.7485	0.935	1.9	ug/L	4	Standard
>	ln	115	337882.2	0.8				ug/L	322525	Standard
	Sn	118	205154.9	1.9	49.2626	1.275	2.6	ug/L	345	Standard
ļ	Sb	123	191596.7	0.6	48.4541	0.683	1.4	ug/L	88	Standard
Ĺ	Ва	135	80370.3	1.8	47.9444	1.137	2.4	ug/L	12	Standard
Γ	Ce	140	295.0	18.6				ug/L	37	Standard
[>	Tb	159	638331.8	1.2				ug/L	631826	Standard
	Ho	165	6.7	86.6		0.404	0.0	ug/L	3	Standard
	TI T'	203	336650.4	0.7	50.3222	0.404	0.8	ug/L	7 7	Standard
	TI	205	233997.3	2.8	51.9426	1.846	3.6	ug/L		Standard
	Pb	206	220590.9	0.7	53.8463	0.710	1.3	ug/L	159	Standard
1	Pb	207	198109.4	0.4	53.3279	0.308	0.6	ug/L	120	Standard

Sample ID: QC Std 6

208

238

209

Report Date/Time: Tuesday, October 27, 2015 19:21:19

771359.4

274415.5

345585.6

0.5

0.7

0.9

Page 1

Pb

U

∟> Bi

Approved: October 28, 2015

Standard

Standard

Standard

503

333509

5

Page 647

0.587

0.721

1.1 ug/L

1.4

ug/L

ug/L

51.9625

50.0269

Γ	Na	23	1.7	173.2				mg/L	0	Standard
	Mg	24	2350.2	3.1	5.5992	0.181	3.2	mg/L	10	Standard
	K	39	423.3	12.5	5.1085	0.803	15.7	mg/L	32	Standard
	Ca	43	63.3	22.8	-4.2451	2.160	50.9	mg/L	85	Standard
	Fe	54	2156.6	0.4	5.1818	0.139	2.7	mg/L	82	Standard
	Fe	57	863.4	3.7	6.3423	0.224	3.5	mg/L	217	Standard
L>	Sc-1	45	14450.2	2.5				mg/L	14524	Standard
	CI	35	80254.7	1.6				ug/L	53193	Standard
	Kr	83	4.0	43.3				ug/L	3	Standard
	Br	81	336.7	16.9				ug/L	327	Standard
	Р	31	16901.1	1.9				ug/L	13329	Standard
	S	34	4187.2	2.5				ug/L	3234	Standard
	Sr	88	111.7	18.1				ug/L	87	Standard
	С	12	176.7	28.5				mg/L	103	Standard
	N	14	0.0					mg/L	0	Standard
	Hg	202	3.3	173.2				mg/L	3	Standard
	Dy	164	-0.5	100.0				mg/L	10	Standard
	Ho-1	165	6.7	86.6				mg/L	3	Standard
	Er	166	10.0	100.0				mg/L	7	Standard
	I	127	2140.2	5.3				mg/L	3612	Standard

Analyte	Mass	QC Std % Recovery	Int Std % Recovery	Spike % Recovery
「> Li	6	•		
Be	9	99.383		
L AI	27	95.735		
「 Sc	45			
Ti	47	101.604		
V	51	105.037		
Cr	52	101.333		
Cr	53			
Mn	55	108.470		
Co	59	109.332		
Ni	60	100.494		
Cu	65	100.460		
Zn	66	101.059		
> Ge	72		100.096	
As	75	104.057		
Se	82	107.410		
L Se-1	77			
「⊳ Ga	71			

Sample ID: QC Std 6

Report Date/Time: Tuesday, October 27, 2015 19:21:19

Page 2

Approved: October 28, 2015

∟ Rb 8	35		
Γ Y 8	39		
_> Rh 10)3		
「 Mo 9	98 106	.499	
Ag 10		5.840	
Cd 11	1 101	.957	
Cd 11	4		
> In 11	5		104.762
Sn 11	8 98	3.525	
Sb 12	23 96	5.908	
L Ba 13	95	5.889	
「 Ce 14	0		
> Tb 15	59		
_ Ho 16	55		
TI 20	3 100	.644	
TI 20)5		
Pb 20	06		
Pb 20	7		
Pb 20	103	.925	
U 23	38 100	.054	
_> Bi 20			103.621
	23		
	24		
	39		
	13		
	54		
	57		
	! 5		
	35		
	33		
	31		
	31		
	34		
	88		
	2		
	4		
Hg 20			
Dy 16			
Ho-1 16			
Er 16			
1 12			
QC Out of			
Measurement	Type Analy	rte Mass	Out of Limits Message

Sample ID: QC Std 6

Report Date/Time: Tuesday, October 27, 2015 19:21:19

Page 3

Approved: October 28, 2015

Sample ID: QC Std 7

Sample Date/Time: Tuesday, October 27, 2015 19:22:14

Number of Replicates: 3 Autosampler Position: 102 Sample Description:

Method File: C:\NexIONData\Method\6020a.mth

Aliquot Volume (mL): Diluted to Volume (mL):

User Name: BKT Nexion300X Cumulative Autodilution Factor: 1

Nexion-ICP 200.8\6020

Concentration Results												
IS	Analyt	e Mass	Intensity	RSD	Conc.	SD	RSD	Units	Blank Intens.	Mode		
Γ>	Li	6	30458.9	2.8				ug/L	26270	Standard		
	Be	9	16.7	17.3	-0.0071	0.005	70.6	ug/L	2	Standard		
L	Al	27	9035.9	134.6	0.1188	0.189	158.8	ug/L	403	Standard		
Γ	Sc	45	15219.3	2.2				ug/L	14524	Standard		
	Ti	47	62.3	7.6	-1.7271	0.027	1.5	ug/L	365	Standard		
	٧	51	864.2	6.3	-0.0120	0.014	116.5	ug/L	805	Standard		
	Cr	52	5519.3	1.1	-0.0285	0.024	82.6	ug/L	5481	Standard		
	Cr	53	368.3	10.2	0.1540	0.071	46.1	ug/L	268	Standard		
	Mn	55	699.7	29.2	-0.1439	0.063	43.6	ug/L	670	Standard		
	Co	59	236.0	9.2	0.0281	0.007	24.9	ug/L	146	Standard		
	Ni	60	201.3	4.6	-0.0496	0.009	19.0	ug/L	220	Standard		
	Cu	65	151.7	11.6	-0.0428	0.015	35.2	ug/L	147	Standard		
	Zn	66	146.0	9.1	-0.4062	0.021	5.1	ug/L	211	Standard		
>	Ge	72	213999.7	0.8				ug/L	210599	Standard		
	As	75	-18.1	175.7	0.0525	0.045	85.0	ug/L	-47	Standard		
	Se	82	19.3	46.0	0.1446	0.146	100.9	ug/L	15	Standard		
L	Se-1	77	50.3	8.0	0.0523	0.094	180.0	ug/L	65	Standard		
Γ>	Ga	71	15.0	33.3				mg/L	27	Standard		
L	Rb	85	16.7	86.6				ug/L	17	Standard		
Γ	Υ	89	225435.0	1.7				ug/L	216672	Standard		
L>	Rh	103	15.0	33.3				ug/L	18	Standard		
Γ	Мо	98	137.7	29.1	0.0918	0.027	29.3	ug/L	11	Standard		
	Ag	107	76.0	15.8	0.0042	0.002	58.0	ug/L	55	Standard		
	Cd	111	13.4	57.7	0.0028	0.005	190.2	mg/L	7	Standard		
	Cd	114	21.0	66.1	0.0112	0.004	34.1	ug/L	4	Standard		
>	In	115	337657.2	0.6				ug/L	322525	Standard		
	Sn	118	523.3	8.7	-0.0266	0.011	41.8	ug/L	345	Standard		
	Sb	123	188.8	18.4	0.0371	0.009	24.3	ug/L	88	Standard		
L	Ва	135	20.3	41.8	-0.0118	0.005	43.0	ug/L	12	Standard		
Γ	Ce	140	13.3	43.3				ug/L	37	Standard		
L>	Tb	159	636527.1	0.2				ug/L	631826	Standard		
Γ	Но	165	5.0	100.0				ug/L	3	Standard		
	TI	203	36.0	48.8	0.0026	0.003	97.9	ug/L	7	Standard		
	TI	205	51.7	92.0	0.0136	0.010	74.8	ug/L	7	Standard		
	Pb	206	176.3	7.3	-0.0176	0.003	18.3	ug/L	159	Standard		
	Pb	207	138.7	22.1	-0.0206	0.008	39.3	ug/L	120	Standard		
	Pb	208	700.0	24.7	-0.0077	0.011	139.5	ug/L	503	Standard		
	U	238	80.3	84.5	0.0097	0.012	122.7	ug/L	5	Standard		

Sample ID: QC Std 7

209

Report Date/Time: Tuesday, October 27, 2015 19:24:31

351438.0

1.6

Page 1

∟> Bi

Approved: October 28, 2015

Standard

ug/L

333509

г.		00	0.0					//	0	Otan dand
:	Na	23	0.0					mg/L	0	Standard
	Mg	24	25.0	72.1	0.0161	0.040	249.4	mg/L	10	Standard
	K	39	23.3	86.6	0.0633	0.233	368.2	mg/L	32	Standard
(Ca	43	35.0	42.9	-9.0928	2.376	26.1	mg/L	85	Standard
	Fe	54	65.7	8.5	0.0203	0.013	63.7	mg/L	82	Standard
1	Fe	57	326.7	6.4	1.0744	0.135	12.6	mg/L	217	Standard
L> \$	Sc-1	45	15219.3	2.2				mg/L	14524	Standard
(CI	35	79502.7	0.4				ug/L	53193	Standard
- 1	Kr	83	5.3	10.8				ug/L	3	Standard
- 1	Br	81	350.0	7.6				ug/L	327	Standard
ı	Р	31	16565.7	2.2				ug/L	13329	Standard
;	s	34	4202.3	5.1				ug/L	3234	Standard
;	Sr	88	115.0	8.7				ug/L	87	Standard
(С	12	126.7	18.2				mg/L	103	Standard
ı	N	14	3.3	173.2				mg/L	0	Standard
ı	Hg	202	0.0					mg/L	3	Standard
ı	Dy	164	3.2	186.4				mg/L	10	Standard
1	Ho-1	165	5.0	100.0				mg/L	3	Standard
ı	Er	166	3.3	173.2				mg/L	7	Standard
ı	I	127	1993.5	4.4				mg/L	3612	Standard

Analyte	Mass	QC Std % Recovery	Int Std % Recovery	Spike % Recovery
「> Li	6	•		
Be	9			
L AI	27			
「 Sc	45			
Ti	47			
V	51			
Cr	52			
Cr	53			
Mn	55			
Co	59			
Ni	60			
Cu	65			
Zn	66			
> Ge	72		101.615	
As	75			
Se	82			
L Se-1	77			
「⊳ Ga	71			

Sample ID: QC Std 7

Report Date/Time: Tuesday, October 27, 2015 19:24:31

Page 2

Approved: October 28, 2015

L Rb	85			
Y	89			
 _{>} Rh	103			
[Mo	98			
Ag	107			
Cd	111			
Cd	114			
_{>} In	115			104.692
Sn	118			
Sb	123			
L Ba	135			
¯ Ce	140			
_ _> Tb	159			
⊢ Ho	165			
TI	203			
į ΤΙ	205			
Pb	206			
Pb	207			
Pb	208			
U	238			
L> Bi	209			105.376
Г Na	23			
Mg	24			
K	39			
Ca	43			
Fe	54			
Fe	57			
_> Sc-1	45			
CI	35			
Kr	83			
Br	81			
P	31			
S	34			
Sr	88			
С	12			
N	14			
Hg	202			
Dy	164			
Ho-1	165			
Er	166			
00.0	127			
	ıt of Limits			
Measurement Type		Analyte	Mass	Out of Limits Message
QC Std 7		Ti	47	

Sample ID: QC Std 7

Report Date/Time: Tuesday, October 27, 2015 19:24:31

Page 3

Approved: October 28, 2015

Sample ID: L1510122404

Sample Date/Time: Tuesday, October 27, 2015 19:25:27

Number of Replicates: 3
Autosampler Position: 215
Sample Description: 1

Method File: C:\NexIONData\Method\6020a.mth

Aliquot Volume (mL): Diluted to Volume (mL):

User Name: BKT Nexion300X Cumulative Autodilution Factor: 1

Nexion-ICP 200.8\6020

Concentration	Results
---------------	---------

		Concentration Results												
IS	Analyt	e Mass	Intensity	RSD	Conc.	SD	RSD	Units	Blank Intens.	Mode				
Γ>	Li	6	39509.9	6.6				ug/L	26270	Standard				
	Be	9	88.3	40.9	0.0806	0.055	68.7	ug/L	2	Standard				
L	ΑI	27	101597859.7	1.9	1207.5941	63.313	5.2	ug/L	403	Standard				
Γ	Sc	45	14206.7	2.9				ug/L	14524	Standard				
	Ti	47	118.7	5.6	-1.3826	0.046	3.3	ug/L	365	Standard				
	٧	51	1163.7	0.9	0.0703	0.009	13.4	ug/L	805	Standard				
	Cr	52	5898.8	2.2	0.0450	0.060	133.4	ug/L	5481	Standard				
	Cr	53	503.3	13.2	0.3957	0.144	36.4	ug/L	268	Standard				
	Mn	55	27172725.7	0.4	8028.6010	196.448	2.4	ug/L	670	Standard				
	Co	59	543679.8	8.0	168.2517	3.442	2.0	ug/L	146	Standard				
	Ni	60	272096.6	1.0	235.6165	6.715	2.8	ug/L	220	Standard				
	Cu	65	3639.4	1.3	3.0463	0.058	1.9	ug/L	147	Standard				
	Zn	66	101340.8	1.5	151.5345	5.826	3.8	ug/L	211	Standard				
>	Ge	72	216441.3	2.4				ug/L	210599	Standard				
	As	75	1283.0	0.2	1.8597	0.048	2.6	ug/L	-47	Standard				
	Se	82	40.0	17.0	0.4813	0.099	20.6	ug/L	15	Standard				
L	Se-1	77	69.3	10.8	0.5235	0.234	44.7	ug/L	65	Standard				
Γ>	Ga	71	271.7	17.4				mg/L	27	Standard				
L	Rb	85	15082.5	0.9				ug/L	17	Standard				
Γ	Υ	89	237456.7	1.9				ug/L	216672	Standard				
L>	Rh	103	55.0	15.7				ug/L	18	Standard				
Γ	Mo	98	127.2	12.8	0.0825	0.009	11.3	ug/L	11	Standard				
	Ag	107	81.7	12.9	0.0049	0.002	36.8	ug/L	55	Standard				
	Cd	111	156.4	19.0	0.0975	0.018	18.4	mg/L	7	Standard				
	Cd	114	368.7	4.3	0.1057	0.006	5.3	ug/L	4	Standard				
>	In	115	346021.1	2.0				ug/L	322525	Standard				
	Sn	118	545.0	10.6	-0.0246	0.012	47.2	ug/L	345	Standard				
	Sb	123	144.4	24.9	0.0248	0.008	33.3	ug/L	88	Standard				
L	Ва	135	8854.9	0.5	5.1373	0.082	1.6	ug/L	12	Standard				
Γ	Ce	140	1778.4	7.4				ug/L	37	Standard				
_>	Tb	159	653439.9	1.4				ug/L	631826	Standard				
Γ	Но	165	53.3	23.6				ug/L	3	Standard				
	TI	203	305.3	9.3	0.0416	0.003	8.3	ug/L	7	Standard				
	TI	205	173.3	24.0	0.0398	0.009	21.4	ug/L	7	Standard				
	Pb	206	513.7	7.4	0.0619	0.007	10.9	ug/L	159	Standard				
ļ	Pb	207	429.0	5.6	0.0549	0.004	7.6	ug/L	120	Standard				
ļ	Pb	208	1723.4	5.0	0.0589	0.004	7.2	ug/L	503	Standard				
ļ	U	238	132.7	20.7	0.0189	0.005	24.0	ug/L	5	Standard				
L>	Bi	209	355577.7	2.0				ug/L	333509	Standard				

Sample ID: L1510122404

Report Date/Time: Tuesday, October 27, 2015 19:27:44

Page 1

Approved: October 28, 2015

Page 653

L15101055 / Revision: 0 / 760 total pages

Γ	Na	23	11.7	49.5				mg/L	0	Standard
	Mg	24	928.4	5.8	2.2273	0.169	7.6	mg/L	10	Standard
	K	39	103.3	43.4	1.1070	0.570	51.5	mg/L	32	Standard
	Ca	43	951.7	6.3	142.9120	9.988	7.0	mg/L	85	Standard
	Fe	54	22928.3	2.1	57.3502	1.909	3.3	mg/L	82	Standard
	Fe	57	6368.0	3.4	59.7804	0.393	0.7	mg/L	217	Standard
L>	Sc-1	45	14206.7	2.9				mg/L	14524	Standard
	CI	35	601337.8	3.7				ug/L	53193	Standard
	Kr	83	3.7	15.7				ug/L	3	Standard
	Br	81	430.0	18.6				ug/L	327	Standard
	Р	31	19928.1	0.4				ug/L	13329	Standard
	S	34	4694.1	2.2				ug/L	3234	Standard
	Sr	88	195.0	11.2				ug/L	87	Standard
	С	12	393.3	5.3				mg/L	103	Standard
	N	14	0.0					mg/L	0	Standard
	Hg	202	10.0	100.0				mg/L	3	Standard
	Dy	164	68.1	14.3				mg/L	10	Standard
	Ho-1	165	53.3	23.6				mg/L	3	Standard
	Er	166	40.0	25.0				mg/L	7	Standard
	I	127	3665.4	1.8				mg/L	3612	Standard

Analyte	Mass	QC Std % Recovery	Int Std % Recovery	Spike % Recovery
「⊳ Li	6		150.401	
Be	9			
L AI	27			
「 Sc	45			
Ti	47			
V	51			
Cr	52			
Cr	53			
Mn	55			
Co	59			
Ni	60			
Cu	65			
Zn	66			
> Ge	72		102.774	
As	75			
Se	82			
L Se-1	77			
「⊳ Ga	71			

Sample ID: L1510122404

Report Date/Time: Tuesday, October 27, 2015 19:27:44

Page 2

Approved: October 28, 2015

L Rb	85			
Γ̈Y	89			
> Rh	103			
Mo	98			
Ag	107			
Cd	111			
Cd	114			
	115		107.285	
Sn	118		107.200	
Sb	123			
L Ba	135			
Г Се	140			
[> Tb	159			
Γ Ho	165			
TI	203			
TI	205			
Pb	206			
Pb	207			
Pb	208			
U	238			
L> Bi	209		106.617	
Г Nа	23			
Mg	24			
K	39			
Ca	43			
Fe	54			
Fe	57			
> Sc-1	45			
Cl	35			
Kr	83			
Br	81			
P	31			
S	34			
Sr	88			
C	12			
N	14			
Hg	202			
Dy	164			
Ho-1	165			
Er	166			
ı	127			
QC C	Out of Limits			
Measu	rement Type	Analyte Mass	Out of Limits Message	
	Std for sample	Li 6	Rerun sample	
	Jpper, S, EEE	Al 27		
Ti 47 L	ower	Ti 47		
1171 L	.01101	11 7/		

Sample ID: L1510122404 Report Date/Time: Tuesday, October 27, 2015 19:27:44

Page 3

Approved: October 28, 2015

Mn 55 Upper, S, EEE	Mn	55
Co 59 Upper, S, EEE	Co	59
Ni 60 Upper, S, EEE	Ni	60
Zn 66 Upper, S, EEE	Zn	66

Sample ID: L1510122404 Report Date/Time: Tuesday, October 27, 2015 19:27:44

Page 4

Approved: October 28, 2015

Sample ID: L1510122406

Sample Date/Time: Tuesday, October 27, 2015 19:28:38

Number of Replicates: 3 Autosampler Position: 216 Sample Description: 1

Method File: C:\NexIONData\Method\6020a.mth

Aliquot Volume (mL): Diluted to Volume (mL):

User Name: BKT Nexion300X Cumulative Autodilution Factor: 1

Nexion-ICP 200.8\6020

\sim	ncon	tration	Results	
υu	ncen	urauon	Results	

Concentration Results										
IS	Analyt	e Mass	Intensity	RSD	Conc.	SD	RSD	Units	Blank Intens.	Mode
Γ>	Li	6	36988.5	3.7				ug/L	26270	Standard
	Be	9	33.3	31.2	0.0112	0.016	144.7	ug/L	2	Standard
L	ΑI	27	46958480.3	0.6	595.4114	23.886	4.0	ug/L	403	Standard
Γ	Sc	45	13684.5	5.9				ug/L	14524	Standard
	Ti	47	79.7	11.3	-1.6146	0.060	3.7	ug/L	365	Standard
	٧	51	1134.4	2.0	0.0682	0.017	24.3	ug/L	805	Standard
	Cr	52	7089.0	1.5	0.3496	0.089	25.5	ug/L	5481	Standard
	Cr	53	493.3	10.3	0.3903	0.061	15.6	ug/L	268	Standard
	Mn	55	4881011.7	1.4	1468.9183	48.767	3.3	ug/L	670	Standard
	Co	59	10262.5	2.2	3.1917	0.153	4.8	ug/L	146	Standard
	Ni	60	12305.7	2.2	10.6477	0.666	6.3	ug/L	220	Standard
	Cu	65	2385.5	1.6	1.9747	0.054	2.7	ug/L	147	Standard
	Zn	66	6303.0	1.1	9.0156	0.473	5.2	ug/L	211	Standard
>	Ge	72	212542.4	3.8				ug/L	210599	Standard
	As	75	112.1	16.8	0.2360	0.022	9.2	ug/L	-47	Standard
	Se	82	44.6	13.2	0.5705	0.081	14.3	ug/L	15	Standard
L	Se-1	77	59.7	7.6	0.3063	0.168	55.0	ug/L	65	Standard
Γ>	Ga	71	100.0	25.0				mg/L	27	Standard
L	Rb	85	23927.2	1.8				ug/L	17	Standard
Γ	Υ	89	230591.4	3.8				ug/L	216672	Standard
L>	Rh	103	83.3	17.3				ug/L	18	Standard
Γ	Мо	98	206.0	11.1	0.1361	0.015	10.7	ug/L	11	Standard
	Ag	107	75.7	14.1	0.0039	0.002	64.3	ug/L	55	Standard
	Cd	111	25.6	17.9	0.0108	0.003	27.2	mg/L	7	Standard
	Cd	114	39.1	48.7	0.0160	0.005	31.3	ug/L	4	Standard
>	In	115	344097.6	2.8				ug/L	322525	Standard
ļ	Sn	118	466.7	3.1	-0.0423	0.006	13.2	ug/L	345	Standard
ļ	Sb	123	204.6	10.2	0.0402	0.006	14.7	ug/L	88	Standard
Ĺ	Ва	135	7898.4	1.0	4.6074	0.163	3.5	ug/L	12	Standard
ļ	Ce	140	190.0	10.5				ug/L	37	Standard
Ę>	Tb	159	640973.0	1.0				ug/L	631826	Standard
ļ	Но	165	13.3	21.7				ug/L	3	Standard
ļ	TI	203	31.0	71.3	0.0019	0.003	172.9	ug/L	7	Standard
ļ	TI	205	18.3	63.0	0.0065	0.003	39.8	ug/L	7	Standard
!	Pb	206	229.0	3.1	-0.0045	0.002	43.5	ug/L	159	Standard
!	Pb	207	201.7	9.2	-0.0036	0.004	117.2	ug/L	120	Standard
	Pb	208	776.7	8.1	-0.0022	0.003	159.6	ug/L	503	Standard
	U	238	242.0	11.6	0.0391	0.004	10.7	ug/L	5	Standard
L>	Bi	209	348977.2	2.8				ug/L	333509	Standard

Sample ID: L1510122406

Report Date/Time: Tuesday, October 27, 2015 19:30:55

Page 1

Approved: October 28, 2015

Page 657

L15101055 / Revision: 0 / 760 total pages

_										
	Na	23	10.0	86.6				mg/L	0	Standard
	Mg	24	1126.7	2.2	2.8183	0.112	4.0	mg/L	10	Standard
	K	39	158.3	6.6	1.8874	0.141	7.5	mg/L	32	Standard
	Ca	43	1006.7	13.2	158.1718	18.295	11.6	mg/L	85	Standard
	Fe	54	540.6	11.1	1.2742	0.146	11.4	mg/L	82	Standard
	Fe	57	828.4	3.9	6.4689	0.575	8.9	mg/L	217	Standard
L>	Sc-1	45	13684.5	5.9				mg/L	14524	Standard
	CI	35	455512.8	8.0				ug/L	53193	Standard
	Kr	83	2.7	94.4				ug/L	3	Standard
	Br	81	636.7	23.6				ug/L	327	Standard
	Р	31	19167.1	3.4				ug/L	13329	Standard
	S	34	4625.7	6.9				ug/L	3234	Standard
	Sr	88	241.7	24.2				ug/L	87	Standard
	С	12	390.0	22.8				mg/L	103	Standard
	N	14	0.0					mg/L	0	Standard
	Hg	202	3.3	173.2				mg/L	3	Standard
	Dy	164	9.5	102.6				mg/L	10	Standard
	Ho-1	165	13.3	21.7				mg/L	3	Standard
	Er	166	10.0	100.0				mg/L	7	Standard
	I	127	3758.8	2.7				mg/L	3612	Standard

_	Analyte		QC Std % Recovery	Int Std % Recovery	Spike % Recovery
Γ>	Li	6		140.803	
	Be	9			
L	Al	27			
Γ	Sc	45			
	Ti	47			
	V	51			
	Cr	52			
	Cr	53			
	Mn	55			
	Co	59			
	Ni	60			
	Cu	65			
	Zn	66			
>	Ge	72		100.923	
	As	75			
	Se	82			
L	Se-1	77			
Γ>	Ga	71			

Sample ID: L1510122406

Report Date/Time: Tuesday, October 27, 2015 19:30:55

Page 2

Approved: October 28, 2015

	Rb	85				
Γ,	Υ	89				
	Rh	103				
	Мо	98				
-	Ag	107				
	Cď	111				
	Cd	114				
	In	115			106.689	
	Sn	118			100.000	
	Sb	123				
	Ва	135				
	Ce	140				
	Tb	159				
	Но	165				
	TI	203				
	TI	205				
	Pb	206				
	Pb	207				
	Pb	208				
	U	238				
i .	Bi	209			104.638	
	Na	23			104.000	
		23 24				
	Mg ⊭	39				
	K Co	43				
	Ca Fe	54				
	re Fe					
	Sc-1	57 45				
	Cl	35				
		83				
	Kr Br	81				
	Р					
		31				
	S S=	34				
	Sr C	88				
	C	12				
	N 	14				
	Hg	202				
	Dy	164				
	Ho-1	165				
	Er	166				
	 	127				
(QC Out	of Limits				
	Measurem		Analyte	Mass	Out of Limits Message	
		for sample	Li	6	Rerun sample	
A	Al 27 Uppε	er, S, EEE	Al	27		
	Γi 47 Lowe		Ti	47		

Report Date/Time: Tuesday, October 27, 2015 19:30:55

Page 3

Mn 55 Upper, S, EEE Mn

55

Sample ID: L1510122406

Report Date/Time: Tuesday, October 27, 2015 19:30:55

Page 4

Approved: October 28, 2015

Sample ID: L1510122408

Sample Date/Time: Tuesday, October 27, 2015 19:31:50

Number of Replicates: 3 Autosampler Position: 217 Sample Description: 1

Method File: C:\NexIONData\Method\6020a.mth

Aliquot Volume (mL): Diluted to Volume (mL):

User Name: BKT Nexion300X Cumulative Autodilution Factor: 1

Nexion-ICP 200.8\6020

Concentration	Results
---------------	---------

	Concentration Results									
IS	Analyt	e Mass	Intensity	RSD	Conc.	SD	RSD	Units	Blank Intens.	Mode
Γ>	Li	6	36280.1	1.9				ug/L	26270	Standard
	Be	9	38.3	19.9	0.0185	0.010	52.3	ug/L	2	Standard
L	ΑI	27	130214381.3	2.4	1681.7743	30.586	1.8	ug/L	403	Standard
Γ	Sc	45	13724.6	3.3				ug/L	14524	Standard
	Ti	47	85.7	2.9	-1.5664	0.026	1.6	ug/L	365	Standard
	٧	51	1416.6	8.6	0.1578	0.043	27.0	ug/L	805	Standard
	Cr	52	7673.9	2.2	0.5196	0.020	3.9	ug/L	5481	Standard
	Cr	53	1278.4	3.5	1.9041	0.099	5.2	ug/L	268	Standard
	Mn	55	6173357.0	2.5	1893.5221	57.391	3.0	ug/L	670	Standard
	Co	59	119728.0	1.8	38.4381	1.016	2.6	ug/L	146	Standard
	Ni	60	88032.7	1.2	78.9940	1.713	2.2	ug/L	220	Standard
	Cu	65	3069.6	1.9	2.6465	0.101	3.8	ug/L	147	Standard
	Zn	66	22524.7	1.1	34.4773	0.557	1.6	ug/L	211	Standard
>	Ge	72	208427.4	1.8				ug/L	210599	Standard
	As	75	1079.3	5.6	1.6332	0.070	4.3	ug/L	-47	Standard
	Se	82	198.8	2.8	3.2233	0.087	2.7	ug/L	15	Standard
L	Se-1	77	122.7	10.3	1.9883	0.289	14.5	ug/L	65	Standard
Γ>	Ga	71	58.3	42.3				mg/L	27	Standard
L	Rb	85	21031.3	1.8				ug/L	17	Standard
Γ	Υ	89	228948.6	0.9				ug/L	216672	Standard
L>	Rh	103	88.3	37.7				ug/L	18	Standard
Γ	Мо	98	489.1	2.0	0.3399	0.007	1.9	ug/L	11	Standard
	Ag	107	55.7	26.0	0.0003	0.003	1096.1	ug/L	55	Standard
	Cd	111	12.0	50.6	0.0021	0.004	210.7	mg/L	7	Standard
	Cd	114	7.4	145.8	0.0075	0.003	41.2	ug/L	4	Standard
>	In	115	330340.7	1.0				ug/L	322525	Standard
ļ	Sn	118	470.0	21.7	-0.0370	0.025	66.8	ug/L	345	Standard
ļ	Sb	123	88.0	13.2	0.0121	0.003	25.2	ug/L	88	Standard
Ĺ	Ва	135	15249.0	0.7	9.2849	0.139	1.5	ug/L	12	Standard
!	Ce	140	503.3	13.4				ug/L	37	Standard
Ĺ>	Tb	159	624312.1	1.9				ug/L	631826	Standard
!	Но	165	148.3	13.6				ug/L	3	Standard
!	TI	203	152.0	6.0	0.0208	0.002	8.2	ug/L	7	Standard
!	TI	205	96.7	41.8	0.0247	0.009	37.9	ug/L	7	Standard
!	Pb	206	240.3	13.6	0.0008	0.008	977.7	ug/L	159	Standard
!	Pb	207	184.7	12.5	-0.0058	0.007	123.3	ug/L	120	Standard
	Pb	208	765.3	5.3	-0.0006	0.002	384.4	ug/L	503	Standard
	U	238	9855.5	3.0	1.8556	0.050	2.7	ug/L	5	Standard
L>	Bi	209	333798.6	1.4				ug/L	333509	Standard

Sample ID: L1510122408

Report Date/Time: Tuesday, October 27, 2015 19:34:07

Page 1

Approved: October 28, 2015

Such hum

_									_	a
	Na	23	18.3	41.7				mg/L	0	Standard
	Mg	24	33164.6	2.1	83.7586	1.577	1.9	mg/L	10	Standard
	K	39	261.7	17.7	3.2335	0.508	15.7	mg/L	32	Standard
	Ca	43	1101.7	5.0	174.0419	5.779	3.3	mg/L	85	Standard
	Fe	54	1225.8	5.7	3.0456	0.131	4.3	mg/L	82	Standard
	Fe	57	991.7	3.4	8.0717	0.506	6.3	mg/L	217	Standard
L>	Sc-1	45	13724.6	3.3				mg/L	14524	Standard
	CI	35	604382.7	0.5				ug/L	53193	Standard
	Kr	83	3.7	56.8				ug/L	3	Standard
	Br	81	18287.7	4.3				ug/L	327	Standard
	Р	31	17415.0	4.5				ug/L	13329	Standard
	S	34	4454.0	3.3				ug/L	3234	Standard
	Sr	88	276.7	17.1				ug/L	87	Standard
	С	12	720.0	7.3				mg/L	103	Standard
	N	14	0.0					mg/L	0	Standard
	Hg	202	3.3	173.2				mg/L	3	Standard
	Dy	164	141.4	1.4				mg/L	10	Standard
	Ho-1	165	148.3	13.6				mg/L	3	Standard
	Er	166	180.0	22.2				mg/L	7	Standard
	I	127	79987.3	1.7				mg/L	3612	Standard

_ Analyte		QC Std % Recovery	Int Std % Recovery	Spike % Recovery
「> Li	6		138.106	
Be	9			
L AI	27			
「 Sc	45			
Ti	47			
V	51			
Cr	52			
Cr	53			
Mn	55			
Co	59			
Ni	60			
Cu	65			
Zn	66			
> Ge	72		98.969	
As	75			
Se	82			
Se-1	77			
√> Ga	71			

Sample ID: L1510122408

Report Date/Time: Tuesday, October 27, 2015 19:34:07

Page 2

Approved: October 28, 2015

L Rb	85			
ΓΥ	89			
_ > Rh	103			
Γ Mo	98			
Ag	107			
Cd	111			
Cd	114			
> In	115		102.423	
Sn	118			
Sb	123			
∟ Ba	135			
「 Ce	140			
L> Tb	159			
ГНо	165			
TI	203			
TI	205			
Pb	206			
Pb	207			
Pb	208			
U	238			
_> Bi	209		100.087	
「 Na	23			
Mg	24			
K	39			
Ca	43 54			
Fe Fe	54 57			
Fe > Sc-1	45			
CI	35			
Kr	83			
Br	81			
P	31			
S	34			
Sr	88			
С	12			
N	14			
Hg	202			
Dy	164			
Ho-1	165			
Er	166			
I	127			
QC (Out of Limits			
Measu	rement Type	Analyte Mass	Out of Limits Message	
	Std for sample	Li 6	Rerun sample	
	Jpper, S, EEE	Al 27	•	
Ti 47 L		Ti 47		

Report Date/Time: Tuesday, October 27, 2015 19:34:07

Page 3

Mn 55 Upper, S, EEE

Mn

55

Sample ID: L1510122408

Report Date/Time: Tuesday, October 27, 2015 19:34:07

Page 4

Approved: October 28, 2015

Sample ID: L1510122412

Sample Date/Time: Tuesday, October 27, 2015 19:35:01

Number of Replicates: 3 Autosampler Position: 218 Sample Description: 1

Method File: C:\NexIONData\Method\6020a.mth

Aliquot Volume (mL): Diluted to Volume (mL):

User Name: BKT Nexion300X Cumulative Autodilution Factor: 1

Nexion-ICP 200.8\6020

\sim	ncon	tration	Results	
υu	ncen	urauon	Results	

	Concentration Results									
IS	Analyt	e Mass	Intensity	RSD	Conc.	SD	RSD	Units	Blank Intens.	Mode
Γ>	Li	6	34521.0	2.9				ug/L	26270	Standard
	Ве	9	11.7	24.7	-0.0177	0.004	24.5	ug/L	2	Standard
L	ΑI	27	10836174.9	4.5	147.0176	2.497	1.7	ug/L	403	Standard
Γ	Sc	45	14687.1	2.5				ug/L	14524	Standard
	Ti	47	69.0	12.4	-1.6833	0.062	3.7	ug/L	365	Standard
	٧	51	1347.5	12.1	0.1277	0.048	37.5	ug/L	805	Standard
	Cr	52	7978.8	1.2	0.5479	0.057	10.4	ug/L	5481	Standard
	Cr	53	966.7	7.2	1.2656	0.092	7.3	ug/L	268	Standard
	Mn	55	967649.7	0.9	289.5760	11.409	3.9	ug/L	670	Standard
	Co	59	3840.5	1.9	1.1598	0.051	4.4	ug/L	146	Standard
	Ni	60	4002.5	1.9	3.2912	0.131	4.0	ug/L	220	Standard
	Cu	65	1095.0	5.2	0.8061	0.078	9.7	ug/L	147	Standard
	Zn	66	2396.2	3.6	3.0207	0.218	7.2	ug/L	211	Standard
>	Ge	72	213536.5	3.1				ug/L	210599	Standard
	As	75	192.7	18.6	0.3493	0.051	14.7	ug/L	-47	Standard
	Se	82	75.0	18.6	1.0803	0.259	24.0	ug/L	15	Standard
L	Se-1	77	90.0	10.6	1.0809	0.315	29.1	ug/L	65	Standard
Γ>	Ga	71	31.7	55.5				mg/L	27	Standard
L	Rb	85	6481.4	2.6				ug/L	17	Standard
Γ	Υ	89	227447.8	0.7				ug/L	216672	Standard
L>	Rh	103	11.7	24.7				ug/L	18	Standard
Γ	Мо	98	70.9	26.7	0.0451	0.013	28.3	ug/L	11	Standard
	Ag	107	68.0	20.2	0.0022	0.003	123.5	ug/L	55	Standard
	Cd	111	14.2	52.7	0.0031	0.005	160.6	mg/L	7	Standard
	Cd	114	15.4	137.1	0.0096	0.006	60.3	ug/L	4	Standard
>	In	115	345463.0	0.7				ug/L	322525	Standard
	Sn	118	418.3	9.3	-0.0542	0.009	16.9	ug/L	345	Standard
	Sb	123	83.8	21.0	0.0100	0.004	43.9	ug/L	88	Standard
Ĺ	Ва	135	7697.6	2.7	4.4698	0.152	3.4	ug/L	12	Standard
ļ	Ce	140	88.3	11.8				ug/L	37	Standard
<u>_</u> >	Tb	159	644501.5	1.8				ug/L	631826	Standard
ļ	Но	165	13.3	57.3				ug/L	3	Standard
ļ	TI	203	131.0	31.4	0.0167	0.006	35.3	ug/L	7	Standard
ļ	TI	205	70.0	37.1	0.0179	0.006	32.6	ug/L	7	Standard
ļ	Pb	206	246.3	15.7	-0.0003	0.009	2643.3	ug/L	159	Standard
ļ	Pb	207	213.0	26.4	-0.0006	0.014	2504.3	ug/L	120	Standard
ļ	Pb	208	851.0	12.6	0.0028	0.007	229.7	ug/L	503	Standard
ļ	U	238	334.7	4.4	0.0559	0.002	3.4	ug/L	5	Standard
L>	Bi	209	348457.2	1.7				ug/L	333509	Standard

Sample ID: L1510122412

Report Date/Time: Tuesday, October 27, 2015 19:37:17

Page 1

Approved: October 28, 2015

_			- 0	4000					•	
	Na	23	5.0	100.0				mg/L	0	Standard
	Mg	24	378.3	5.5	0.8527	0.046	5.4	mg/L	10	Standard
	K	39	78.3	24.2	0.7564	0.243	32.1	mg/L	32	Standard
	Ca	43	403.3	13.9	50.0688	9.710	19.4	mg/L	85	Standard
	Fe	54	410.8	14.4	0.8604	0.118	13.7	mg/L	82	Standard
	Fe	57	531.7	11.8	3.0985	0.515	16.6	mg/L	217	Standard
L>	Sc-1	45	14687.1	2.5				mg/L	14524	Standard
	CI	35	160722.7	8.0				ug/L	53193	Standard
	Kr	83	4.3	35.3				ug/L	3	Standard
	Br	81	6364.7	5.5				ug/L	327	Standard
	Р	31	16926.1	2.9				ug/L	13329	Standard
	S	34	3762.1	1.6				ug/L	3234	Standard
	Sr	88	146.7	18.8				ug/L	87	Standard
	С	12	363.3	15.2				mg/L	103	Standard
	N	14	0.0					mg/L	0	Standard
	Hg	202	6.7	86.6				mg/L	3	Standard
	Dy	164	16.2	35.7				mg/L	10	Standard
	Ho-1	165	13.3	57.3				mg/L	3	Standard
	Er	166	10.0					mg/L	7	Standard
	I	127	10003.3	4.0				mg/L	3612	Standard

Analyte	Mass	QC Std % Recovery	Int Std % Recovery	Spike % Recovery
「⊳ Li	6		131.410	
Be	9			
L AI	27			
「 Sc	45			
Ti	47			
V	51			
Cr	52			
Cr	53			
Mn	55			
Co	59			
Ni	60			
Cu	65			
Zn	66			
> Ge	72		101.395	
As	75			
Se	82			
∟ Se-1	77			
「⊳ Ga	71			

Sample ID: L1510122412

Report Date/Time: Tuesday, October 27, 2015 19:37:17

Page 2

Approved: October 28, 2015

	Rb Y Rh Mo Ag Cd Cd In Sh Ba Ce Tb Ho Tl Tl Pb Pb	85 89 103 98 107 111 114 115 118 123 135 140 159 165 203 205 206 207 208			107.112
 	U Bi	238 209			104.482
Ĺ	Na	23			
i	Mg	24			
i	K	39			
İ	Ca	43			
ļ	Fe	54			
İ	Fe	57			
	Sc-1	45			
L/	CI	35			
	Kr	83			
	Br	81			
	Р	31			
	S	34			
	Sr	88			
	С	12			
	N	14			
	Hg	202			
	Dy	164			
	Ho-1	165			
	Er	166			
	I	127			
	QC Out	of Limits			
	Measurem		Analyte	Mass	Out of Limits Message
		I for sample	Li	6	Rerun sample
	410711	or C EEE	ΛI	07	
	Al 27 Uppe Ti 47 Lowe		Al Ti	27 47	

Report Date/Time: Tuesday, October 27, 2015 19:37:17

Page 3

Mn 55 Upper, S, EEE Mn 55

Sample ID: L1510122412

Report Date/Time: Tuesday, October 27, 2015 19:37:17

Page 4

Approved: October 28, 2015

Sample ID: L1510122414

Sample Date/Time: Tuesday, October 27, 2015 19:38:12

Number of Replicates: 3 Autosampler Position: 219 Sample Description: 1

Method File: C:\NexIONData\Method\6020a.mth

Aliquot Volume (mL): Diluted to Volume (mL):

User Name: BKT Nexion300X Cumulative Autodilution Factor: 1

Nexion-ICP 200.8\6020

					Concentra	ation Res	sults			
IS	Analyt	e Mass	Intensity	RSD	Conc.	SD	RSD	Units	Blank Intens.	Mode
Γ>	Li	6	37359.4	2.6				ug/L	26270	Standard
	Be	9	41.7	42.1	0.0215	0.023	107.0	ug/L	2	Standard
L	Al	27	50695029.8	2.6	635.8834	13.262	2.1	ug/L	403	Standard
Γ	Sc	45	14396.8	2.5				ug/L	14524	Standard
	Ti	47	112.3	8.4	-1.4156	0.080	5.7	ug/L	365	Standard
	٧	51	817.4	7.0	-0.0264	0.014	51.9	ug/L	805	Standard
	Cr	52	5491.3	1.0	-0.0395	0.053	134.9	ug/L	5481	Standard
	Cr	53	506.7	14.1	0.4069	0.134	32.9	ug/L	268	Standard
	Mn	55	17914409.6	0.9	5331.0544	131.904	2.5	ug/L	670	Standard
	Co	59	267381.8	1.0	83.3204	1.834	2.2	ug/L	146	Standard
	Ni	60	205630.7	0.9	179.2776	4.253	2.4	ug/L	220	Standard
	Cu	65	2117.1	2.8	1.7104	0.022	1.3	ug/L	147	Standard
	Zn	66	129021.1	1.5	194.4273	4.042	2.1	ug/L	211	Standard
>	Ge	72	214918.2	3.1				ug/L	210599	Standard
	As	75	949.5	3.5	1.4062	0.067	4.8	ug/L	-47	Standard
	Se	82	27.5	6.7	0.2785	0.024	8.6	ug/L	15	Standard
L	Se-1	77	69.0	5.0	0.5253	0.118	22.4	ug/L	65	Standard
Γ>	Ga	71	151.7	1.9				mg/L	27	Standard
L	Rb	85	10333.5	1.4				ug/L	17	Standard
Γ	Υ	89	238256.9	3.6				ug/L	216672	Standard
L>	Rh	103	36.7	34.3				ug/L	18	Standard
Γ	Мо	98	56.7	6.3	0.0360	0.003	8.0	ug/L	11	Standard
ļ	Ag	107	57.7	22.0	0.0003	0.002	905.5	ug/L	55	Standard
ļ	Cd	111	40.2	18.8	0.0207	0.005	24.1	mg/L	7	Standard
ļ	Cd	114	88.2	18.3	0.0297	0.005	16.4	ug/L	4	Standard
>	In	115	341836.8	2.1				ug/L	322525	Standard
ļ	Sn	118	441.7	20.3	-0.0475	0.021	44.8	ug/L	345	Standard
	Sb	123	53.5	27.5	0.0026	0.004	135.8	ug/L	88	Standard
Ļ	Ва	135	8314.9	0.2	4.8822	0.095	1.9	ug/L	12	Standard
	Ce	140	2466.9	9.4				ug/L	37	Standard
L>	Tb	159	633211.4	3.3 21.6				ug/L	631826 3	Standard
-	Ho	165	141.7	21.6 5.1	0.0004	0.004	0.4	ug/L		Standard
-	TI	203	59.3	38.6	0.0061	0.001 0.004	9.4	ug/L	7 7	Standard
	TI	205	41.7		0.0117		32.7	ug/L		Standard
I	Pb	206 207	242.7 215.0	1.0 4.9	-0.0011	0.001	96.0 3249.2	ug/L	159 120	Standard
1	Pb	207	215.0 885.0	4.9 5.4	0.0001	0.002 0.002	3249.2 41.1	ug/L ug/L	503	Standard Standard
-	Pb U	208 238	18.7	5.4 62.1	0.0052 -0.0012	0.002	176.3	ug/L ug/L	503 5	Standard
1.		209	348415.2	2.6	-0.0012	0.002	170.3	•	333509	Standard
L>	Bi	209	340413.2	2.0				ug/L	<i>ააა</i> ი09	Standard

Sample ID: L1510122414

Report Date/Time: Tuesday, October 27, 2015 19:40:29

Page 1

Approved: October 28, 2015

Page 669

L15101055 / Revision: 0 / 760 total pages

Γ	Na	23	6.7	43.3				mg/L	0	Standard
	Mg	24	670.0	7.2	1.5734	0.117	7.4	mg/L	10	Standard
	K	39	125.0	10.6	1.3610	0.152	11.2	mg/L	32	Standard
	Ca	43	645.0	10.9	90.8625	12.814	14.1	mg/L	85	Standard
ĺ	Fe	54	15472.3	1.8	38.1529	1.653	4.3	mg/L	82	Standard
ĺ	Fe	57	4639.0	2.8	42.4533	0.832	2.0	mg/L	217	Standard
L>	Sc-1	45	14396.8	2.5				mg/L	14524	Standard
	CI	35	364305.2	2.8				ug/L	53193	Standard
	Kr	83	4.3	13.3				ug/L	3	Standard
	Br	81	746.7	20.1				ug/L	327	Standard
	Р	31	19275.6	4.8				ug/L	13329	Standard
	S	34	4095.6	3.4				ug/L	3234	Standard
	Sr	88	183.3	6.9				ug/L	87	Standard
	С	12	346.7	14.5				mg/L	103	Standard
	N	14	0.0					mg/L	0	Standard
	Hg	202	0.0					mg/L	3	Standard
	Dy	164	180.9	37.3				mg/L	10	Standard
	Ho-1	165	141.7	21.6				mg/L	3	Standard
	Er	166	120.0	22.0				mg/L	7	Standard
	1	127	4315.6	2.1				mg/L	3612	Standard

_ Analyte		QC Std % Recovery	Int Std % Recovery	Spike % Recovery
「> Li	6		142.215	
Be	9			
L AI	27			
「 Sc	45			
Ti	47			
V	51			
Cr	52			
Cr	53			
Mn	55			
Co	59			
Ni	60			
Cu	65			
Zn	66			
> Ge	72		102.051	
As	75			
Se	82			
Se-1	77			
「̄> Ga	71			

Sample ID: L1510122414

Report Date/Time: Tuesday, October 27, 2015 19:40:29

Page 2

Approved: October 28, 2015

L Rb 85 T Y 89 L> Rh 103 Mo 98 L Ag 107 Cd 111 Cd 114 In 115 Sn 118 Sb 123 L Ba 135 Ce 140 L> Tb 159 Ho 165 TI 203 TI 203 Pb 206 Pb 207 Pb 208 U 238 L Pb 208 L De 208 L Na 23 Mg 24 K 39 Ca 43 Fe 57 L> Sc-1 Kr 83 Br 81 P 31 S 34 Sr 88 C 12		104.469	
I 127 QC Out of Limits Measurement Type Li 6 Int Std for sample	Analyte Mass Li 6	Out of Limits Message Rerun sample	
Al 27 Upper, S, EEE Ti 47 Lower	Al 27 Ti 47	rterum sampie	

Report Date/Time: Tuesday, October 27, 2015 19:40:29

Page 3

Approved: October 28, 2015

Mn 55 Upper, S, EEE	Mn	55
Ni 60 Upper, S, EEE	Ni	60
Zn 66 Upper, S, EEE	Zn	66

Report Date/Time: Tuesday, October 27, 2015 19:40:29

Page 4

Approved: October 28, 2015

Sample ID: L1510122416

Sample Date/Time: Tuesday, October 27, 2015 19:41:23

RSD

3.1

Number of Replicates: 3 Autosampler Position: 220 Sample Description: 1

Method File: C:\NexIONData\Method\6020a.mth

Intensity

37680.2

68.1

55.7

31.9

112.7

520.0

88.8

7687.0

5025.8

151.7

160.0

128.3

227.0

200.0

830.0

652890.5

350742.8

17.5

4.5

20.6

17.6

0.4

3.5

12.3

3.2

17.2

1.5

10.6

4.3

21.5

3.1

6.5

2.5

Aliquot Volume (mL): Diluted to Volume (mL):

User Name: BKT Nexion300X Cumulative Autodilution Factor: 1

Nexion-ICP 200.8\6020

98

107

111

114

115

118

123

135

140

159

165

203

205

206

207

208

Мо

Ag

Cd

Cd

In

Sn

Sb

Ва

Се

Th

Но

ΤI

ΤI

Ph

Pb

Pb

Page 1

IS Analyte Mass

	Ве	9	25.0	40.0	-0.0013	0.013	1030.8	ug/L	2	Standard
Į	Al	27	50682233.4	5.2	629.9463	13.876	2.2	ug/L	403	Standard
	Sc	45	14859.0	2.3				ug/L	14524	Standard
	Ti	47	90.7	6.6	-1.5665	0.046	2.9	ug/L	365	Standard
	V	51	898.2	6.5	-0.0099	0.019	187.6	ug/L	805	Standard
	Cr	52	5715.1	3.3	-0.0237	0.024	103.0	ug/L	5481	Standard
	Cr	53	458.3	8.9	0.2948	0.070	23.8	ug/L	268	Standard
	Mn	55	17526002.9	2.5	5075.6529	42.336	0.8	ug/L	670	Standard
	Co	59	246323.1	2.3	74.7015	0.501	0.7	ug/L	146	Standard
	Ni	60	168665.8	2.8	143.0598	1.753	1.2	ug/L	220	Standard
	Cu	65	2018.8	4.0	1.5747	0.042	2.7	ug/L	147	Standard
	Zn	66	77542.6	1.7	113.4815	0.286	0.3	ug/L	211	Standard
	> Ge	72	220706.8	1.6				ug/L	210599	Standard
	As	75	868.0	1.2	1.2598	0.029	2.3	ug/L	-47	Standard
	Se	82	29.1	12.3	0.2931	0.057	19.4	ug/L	15	Standard
	Se-1	77	62.3	12.0	0.3140	0.212	67.4	ug/L	65	Standard
	> G a	71	161.7	18.9				mg/L	27	Standard
	Rb	85	11222.5	4.4				ug/L	17	Standard
	Υ	89	235585.5	3.5				ug/L	216672	Standard
Į	> R h	103	35.0	14.3				ug/L	18	Standard

0.0425

-0.0004

0.0146

0.0356

-0.0321

0.0109

4.3952

0.0202

0.0298

-0.0068

-0.0058

-0.0004

Concentration Results

Conc.

SD

0.008

0.001

0.004

0.005

0.004

0.003

0.137

0.001

0.006

0.002

0.004

0.001

Page 673

18.3

126.1

29.8

14.6

12.4

25.0

3.1

4.7

20.0

26.9

60.9

285.7

ug/L

ug/L

mg/L

ug/L

ug/L

ug/L

ug/L

ug/L

ug/L

ug/L

ug/L

ug/L

ug/L

ug/L

ug/L

ug/L

RSD

Units

ug/L

Blank Intens.

26270

Mode

Standard

Standard

Standard

Standard

Standard

Standard

Standard

Standard

Standard

Standard

Standard

Standard

Standard

Standard

Standard

Standard

Standard

11

7

322525

631826

345

88

12

37

3

7

159

120

503

U 238 52.3 16.7 0.0046 0.002 34.0 ug/L 5 Standard Bi 209 360804.8 0.4 ug/L 333509 Standard Sample ID: L1510122416 Report Date/Time: Tuesday, October 27, 2015 19:43:40

Γ	Na	23	6.7	43.3				mg/L	0	Standard
	Mg	24	676.7	7.1	1.5374	0.082	5.3	mg/L	10	Standard
	K	39	110.0	39.6	1.1329	0.538	47.5	mg/L	32	Standard
	Ca	43	583.3	5.8	77.7950	6.905	8.9	mg/L	85	Standard
	Fe	54	8818.6	2.2	20.9964	0.328	1.6	mg/L	82	Standard
	Fe	57	2713.6	3.8	23.2503	0.947	4.1	mg/L	217	Standard
L>	Sc-1	45	14859.0	2.3				mg/L	14524	Standard
	CI	35	334903.4	1.5				ug/L	53193	Standard
	Kr	83	6.0	60.1				ug/L	3	Standard
	Br	81	796.7	13.1				ug/L	327	Standard
	Р	31	19596.0	1.6				ug/L	13329	Standard
	S	34	4292.3	1.8				ug/L	3234	Standard
	Sr	88	170.0	10.6				ug/L	87	Standard
	С	12	310.0	16.1				mg/L	103	Standard
	N	14	3.3	173.2				mg/L	0	Standard
	Hg	202	3.3	173.2				mg/L	3	Standard
	Dy	164	183.6	24.9				mg/L	10	Standard
	Ho-1	165	151.7	10.6				mg/L	3	Standard
	Er	166	133.3	4.3				mg/L	7	Standard
	1	127	4295.6	4.6				mg/L	3612	Standard

Analyte	Mass	QC Std % Recovery	Int Std % Recovery	Spike % Recovery
「⊳ Li	6		143.436	
Be	9			
L AI	27			
「 Sc	45			
Ti	47			
V	51			
Cr	52			
Cr	53			
Mn	55			
Co	59			
Ni	60			
Cu	65			
Zn	66			
> Ge	72		104.800	
As	75			
Se	82			
L Se-1	77			
「⊳ Ga	71			

Sample ID: L1510122416

Report Date/Time: Tuesday, October 27, 2015 19:43:40

Page 2

Approved: October 28, 2015

L Rb 85		108.749	
Pb 207 Pb 208 U 238 Description 23 23 24 24 24 24 24 24		108.184	
Br 81 P 31 S 34 Sr 88 C 12 N 14 Hg 202 Dy 164 Ho-1 165 Er 166 I 127 QC Out of Limits Measurement Type Li 6 Int Std for sample Al 27 Upper, S, EEE	Analyte Mass Li 6 Al 27	Out of Limits Message Rerun sample	

Report Date/Time: Tuesday, October 27, 2015 19:43:40

Page 3

Mn 55 Upper, S, EEE	Mn	55
Ni 60 Upper, S, EEE	Ni	60
Zn 66 Upper, S, EEE	Zn	66

Report Date/Time: Tuesday, October 27, 2015 19:43:40

Page 4

Approved: October 28, 2015

Sample ID: L1510122418

Sample Date/Time: Tuesday, October 27, 2015 19:44:35

Number of Replicates: 3 Autosampler Position: 221 Sample Description: 1

Method File: C:\NexIONData\Method\6020a.mth

Aliquot Volume (mL): Diluted to Volume (mL):

User Name: BKT Nexion300X Cumulative Autodilution Factor: 1

Nexion-ICP 200.8\6020

Concentration	Results
---------------	---------

					Ooncentra		Juita			
IS	Analyt	e Mass	Intensity	RSD	Conc.	SD	RSD	Units	Blank Intens.	Mode
Γ>	Li	6	34567.8	6.1				ug/L	26270	Standard
	Be	9	25.0	52.9	0.0015	0.018	1203.2	ug/L	2	Standard
L	Al	27	3733633.6	3.7	50.7231	3.736	7.4	ug/L	403	Standard
Γ	Sc	45	15322.8	6.0				ug/L	14524	Standard
	Ti	47	121.7	12.6	-1.3919	0.121	8.7	ug/L	365	Standard
	V	51	1646.7	3.2	0.1888	0.034	18.1	ug/L	805	Standard
	Cr	52	6474.7	0.5	0.1168	0.072	61.6	ug/L	5481	Standard
	Cr	53	545.0	3.2	0.4307	0.074	17.1	ug/L	268	Standard
	Mn	55	1322651.2	1.1	374.4889	13.652	3.6	ug/L	670	Standard
	Co	59	11618.1	0.5	3.4052	0.166	4.9	ug/L	146	Standard
	Ni	60	10505.0	2.0	8.5138	0.549	6.5	ug/L	220	Standard
	Cu	65	1936.8	1.9	1.4691	0.105	7.2	ug/L	147	Standard
	Zn	66	64708.6	2.2	92.6267	6.155	6.6	ug/L	211	Standard
>	Ge	72	225831.3	4.7				ug/L	210599	Standard
	As	75	1969.3	0.8	2.7016	0.123	4.6	ug/L	-47	Standard
	Se	82	19.7	22.6	0.1359	0.079	58.3	ug/L	15	Standard
L	Se-1	77	53.0	12.4	0.0520	0.176	338.6	ug/L	65	Standard
Γ>	Ga	71	55.0	39.6				mg/L	27	Standard
L	Rb	85	6111.2	2.3				ug/L	17	Standard
Γ	Υ	89	242460.8	4.8				ug/L	216672	Standard
L>	Rh	103	15.0	33.3				ug/L	18	Standard
Γ	Мо	98	110.8	13.5	0.0693	0.012	16.9	ug/L	11	Standard
	Ag	107	51.0	7.1	-0.0015	0.000	28.6	ug/L	55	Standard
	Cd	111	298.4	6.6	0.1858	0.020	10.6	mg/L	7	Standard
	Cd	114	753.0	12.7	0.2038	0.031	15.3	ug/L	4	Standard
>	In	115	358535.6	4.0				ug/L	322525	Standard
	Sn	118	508.3	11.9	-0.0369	0.017	47.1	ug/L	345	Standard
	Sb	123	54.9	4.6	0.0024	0.001	41.5	ug/L	88	Standard
L	Ва	135	59651.9	2.1	33.5759	1.948	5.8	ug/L	12	Standard
Γ	Ce	140	5104.2	5.8				ug/L	37	Standard
L>	Tb	159	660830.8	6.6				ug/L	631826	Standard
Γ	Но	165	110.0	24.1				ug/L	3	Standard
	TI	203	84.3	21.4	0.0092	0.003	31.9	ug/L	7	Standard
	TI	205	38.3	32.8	0.0104	0.002	22.6	ug/L	7	Standard
	Pb	206	3060.6	0.8	0.6439	0.037	5.7	ug/L	159	Standard
	Pb	207	2551.5	1.1	0.5898	0.038	6.4	ug/L	120	Standard
	Pb	208	10216.4	2.0	0.5946	0.042	7.1	ug/L	503	Standard
	U	238	81.3	10.2	0.0094	0.001	12.9	ug/L	5	Standard
L>	Bi	209	367825.7	5.0				ug/L	333509	Standard

Sample ID: L1510122418

Report Date/Time: Tuesday, October 27, 2015 19:46:52

Page 1

Approved: October 28, 2015

Γ	Na	23	0.0					mg/L	0	Standard
	Mg	24	136.7	16.5	0.2703	0.062	23.0	mg/L	10	Standard
	K	39	78.3	3.7	0.7184	0.087	12.1	mg/L	32	Standard
	Ca	43	135.0	19.6	6.0877	2.916	47.9	mg/L	85	Standard
ĺ	Fe	54	1399.6	7.7	3.1354	0.431	13.7	mg/L	82	Standard
ĺ	Fe	57	620.0	5.6	3.7119	0.604	16.3	mg/L	217	Standard
Ĺ>	Sc-1	45	15322.8	6.0				mg/L	14524	Standard
	CI	35	90940.1	0.9				ug/L	53193	Standard
	Kr	83	4.7	44.6				ug/L	3	Standard
	Br	81	670.0	11.3				ug/L	327	Standard
	Р	31	18544.7	1.9				ug/L	13329	Standard
	S	34	3968.9	0.6				ug/L	3234	Standard
	Sr	88	128.3	34.0				ug/L	87	Standard
	С	12	233.3	10.8				mg/L	103	Standard
	N	14	3.3	173.2				mg/L	0	Standard
	Hg	202	3.3	173.2				mg/L	3	Standard
	Dy	164	125.2	14.2				mg/L	10	Standard
	Ho-1	165	110.0	24.1				mg/L	3	Standard
	Er	166	100.0	17.3				mg/L	7	Standard
	1	127	3773.8	2.0				mg/L	3612	Standard

Analyte	Mass	QC Std % Recovery	Int Std % Recovery	Spike % Recovery
「⊳ Li	6		131.588	
Be	9			
L AI	27			
「 Sc	45			
Ti	47			
V	51			
Cr	52			
Cr	53			
Mn	55			
Co	59			
Ni	60			
Cu	65			
Zn	66			
> Ge	72		107.233	
As	75			
Se	82			
∟ Se-1	77			
「⊳ Ga	71			

Sample ID: L1510122418

Report Date/Time: Tuesday, October 27, 2015 19:46:52

Page 2

Approved: October 28, 2015

L Rb	85				
ΓY	89				
Ĺ> Rh	103				
Г Мо	98				
Ag	107				
Cd	111				
Cd	114				
> In	115			111.165	
Sn	118				
Sb	123				
∟ Ba	135				
「 Ce	140				
L> Tb	159				
Г Ho	165				
TI	203				
TI	205				
Pb	206				
Pb	207				
Pb	208				
U	238				
L> Bi	209			110.289	
Г Na	23				
Mg	24				
K	39				
Ca	43				
Fe	54				
Fe	57				
_> Sc-1	45				
CI	35				
Kr	83				
Br	81				
Р	31				
S	34				
Sr	88				
С	12				
N	14				
Hg	202				
Dy	164				
Ho-1	165				
Er	166				
I	127				
QC Ou	t of Limits				
Measurement Type		Analyte	Mass	Out of Limits Message	
	Li 6 Int Std for sample		6	Rerun sample	
Ti 47 Lower		Li Ti	47	·	

Report Date/Time: Tuesday, October 27, 2015 19:46:52

Mn

55

Mn 55 Upper, S, EEE

Page 3

Sample ID: L1510122420

Sample Date/Time: Tuesday, October 27, 2015 19:47:46

Number of Replicates: 3 Autosampler Position: 222 Sample Description: 1

Method File: C:\NexIONData\Method\6020a.mth

Aliquot Volume (mL): Diluted to Volume (mL):

User Name: BKT Nexion300X Cumulative Autodilution Factor: 1

Nexion-ICP 200.8\6020

					Concentrat	ion Res	sults			
IS	Analyt	e Mass	Intensity	RSD	Conc.	SD	RSD	Units	Blank Intens.	Mode
Γ>		6	31577.9	4.5				ug/L	26270	Standard
	Be	9	11.7	24.7	-0.0160	0.005	31.6	ug/L	2	Standard
L	Al	27	102193.6	12.4	1.5002	0.228	15.2	ug/L	403	Standard
Γ	Sc	45	14877.3	3.7				ug/L	14524	Standard
	Ti	47	57.0	7.6	-1.7567	0.026	1.5	ug/L	365	Standard
	V	51	947.2	6.6	0.0147	0.019	125.9	ug/L	805	Standard
	Cr	52	5929.5	1.7	0.0811	0.031	38.4	ug/L	5481	Standard
	Cr	53	336.7	20.1	0.1013	0.123	121.3	ug/L	268	Standard
	Mn	55	36911.8	8.3	10.7918	0.989	9.2	ug/L	670	Standard
	Co	59	604.3	4.0	0.1454	0.009	5.9	ug/L	146	Standard
	Ni	60	649.0	7.7	0.3487	0.048	13.7	ug/L	220	Standard
	Cu	65	359.7	5.5	0.1471	0.020	13.5	ug/L	147	Standard
	Zn	66	1179.0	6.6	1.1806	0.129	10.9	ug/L	211	Standard
>	Ge	72	211796.7	0.6				ug/L	210599	Standard
	As	75	-51.9	73.1	0.0045	0.053	1174.4	ug/L	-47	Standard
	Se	82	10.8	76.9	0.0048	0.141	2928.2	ug/L	15	Standard
L	Se-1	77	59.7	15.2	0.3070	0.226	73.8	ug/L	65	Standard
Γ>	Ga	71	33.3	45.8				mg/L	27	Standard
L	Rb	85	200.0	21.4				ug/L	17	Standard
Γ	Υ	89	228571.2	0.7				ug/L	216672	Standard
	Rh	103	18.3	56.8				ug/L	18	Standard
Γ	Мо	98	18.3	46.7	0.0100	0.006	57.8	ug/L	11	Standard
	Ag	107	49.7	13.4	-0.0013	0.001	101.1	ug/L	55	Standard
	Cd	111	10.3	22.4	0.0006	0.002	264.8	mg/L	7	Standard
	Cd	114	16.5	96.8	0.0099	0.004	44.1	ug/L	4	Standard
>	ln	115	342462.2	0.4				ug/L	322525	Standard
ļ	Sn	118	380.0	1.3	-0.0624	0.001	1.4	ug/L	345	Standard
ļ	Sb	123	39.1	14.3	-0.0010	0.001	149.0	ug/L	88	Standard
Ļ	Ва	135	696.7	4.1	0.3862	0.015	3.9	ug/L	12	Standard
	Ce	140	55.0					ug/L	37	Standard
[>	Tb 	159	637234.8	0.8				ug/L	631826	Standard
	Ho	165	13.3	94.4	0.0044	0.000	00.0	ug/L	3	Standard
	TI Ti	203	11.0	18.2	-0.0011	0.000	28.3	ug/L	7	Standard
	TI	205	8.3	91.7	0.0043	0.002	39.2	ug/L	7	Standard
	Pb	206 207	220.7 183.3	10.3 10.1	-0.0064	0.006 0.005	88.0 59.8	ug/L	159	Standard
	Pb	207	763.7	4.3	-0.0083	0.005	59.8 80.2	ug/L	120 503	Standard
	Pb				-0.0028			ug/L		Standard
	U	238	4.0	25.0	-0.0038	0.000	4.7	ug/L	5	Standard

Sample ID: L1510122420

209

Report Date/Time: Tuesday, October 27, 2015 19:50:03

347634.5

0.3

Page 1

∟> Bi

Approved: October 28, 2015

Standard

Page 680

ug/L

333509

Γ	Na	23	0.0					mg/L	0	Standard
İ	Mg	24	40.0	21.7	0.0534	0.024	44.6	mg/L	10	Standard
	K	39	15.0	66.7	-0.0312	0.115	369.3	mg/L	32	Standard
	Ca	43	31.7	9.1	-9.5045	0.641	6.7	mg/L	85	Standard
	Fe	54	74.1	24.6	0.0449	0.050	111.6	mg/L	82	Standard
	Fe	57	336.7	21.1	1.2479	0.712	57.1	mg/L	217	Standard
L>	Sc-1	45	14877.3	3.7				mg/L	14524	Standard
	CI	35	79812.3	0.2				ug/L	53193	Standard
	Kr	83	5.0	34.6				ug/L	3	Standard
	Br	81	470.0	6.4				ug/L	327	Standard
	Р	31	15052.5	1.8				ug/L	13329	Standard
	S	34	3872.2	3.0				ug/L	3234	Standard
	Sr	88	116.7	4.9				ug/L	87	Standard
	С	12	163.3	25.5				mg/L	103	Standard
	N	14	0.0					mg/L	0	Standard
	Hg	202	0.0					mg/L	3	Standard
	Dy	164	-0.8	124.9				mg/L	10	Standard
	Ho-1	165	13.3	94.4				mg/L	3	Standard
	Er	166	16.7	124.9				mg/L	7	Standard
	I	127	2568.6	5.0				mg/L	3612	Standard

Analyte	Mass	QC Std % Recovery	Int Std % Recovery	Spike % Recovery
「⊳ Li	6		120.207	
Be	9			
L AI	27			
「 Sc	45			
Ti	47			
V	51			
Cr	52			
Cr	53			
Mn	55			
Co	59			
Ni	60			
Cu	65			
Zn	66			
> Ge	72		100.569	
As	75			
Se	82			
∟ Se-1	77			
「> Ga	71			

Sample ID: L1510122420

Report Date/Time: Tuesday, October 27, 2015 19:50:03

Page 2

Approved: October 28, 2015

∟ Rb	85				
Y	89				
∟> Rh	103				
[> Mo	98				
•	107				
Ag					
Cd	111				
Cd	114			400 400	
> In	115			106.182	
Sn	118				
Sb	123				
L Ba	135				
Г Се	140				
Ĺ> Tb	159				
Г Ho	165				
TI	203				
TI	205				
Pb	206				
Pb	207				
Pb	208				
U	238				
L> Bi	209			104.235	
「Na	23				
Mg	24				
K	39				
Ca	43				
Fe	54				
Fe	57				
_> Sc-1	45				
CI	35				
Kr	83				
Br	81				
P	31				
S	34				
Sr	88				
C	12				
N	14				
Hg	202				
	164				
Dy Ho-1	165				
Er	166				
⊑ I	127				
00.0					
	ut of Limits				
	ment Type	Analyte		Out of Limits Message	
	Std for sample	Li	6	Rerun sample	
Ti 47 Lo	wer	Ti	47		

Report Date/Time: Tuesday, October 27, 2015 19:50:03

Page 3

Sample ID: QC Std 6

Sample Date/Time: Tuesday, October 27, 2015 19:51:00

Number of Replicates: 3 Autosampler Position: 101 Sample Description:

Method File: C:\NexIONData\Method\6020a.mth

Aliquot Volume (mL): Diluted to Volume (mL):

User Name: BKT Nexion300X Cumulative Autodilution Factor: 1

Nexion-ICP 200.8\6020

IS	Analyt	e Mass	Intensity	RSD	Conc.	SD	RSD	Units	Blank Intens.	Mode
Γ>	Li	6	31973.7	2.6				ug/L	26270	Standard
	Be	9	30253.5	2.0	47.9180	2.178	4.5	ug/L	2	Standard
L	Al	27	3162098.7	5.7	46.3849	3.816	8.2	ug/L	403	Standard
Γ	Sc	45	16368.9	10.9				ug/L	14524	Standard
	Ti	47	16468.6	2.0	97.3629	8.180	8.4	ug/L	365	Standard
	V	51	179976.6	2.6	49.5766	4.345	8.8	ug/L	805	Standard
	Cr	52	220356.1	3.5	48.1531	4.745	9.9	ug/L	5481	Standard
	Cr	53	27349.7	3.1	48.4077	4.282	8.8	ug/L	268	Standard
	Mn	55	175683.0	6.0	50.3910	5.986	11.9	ug/L	670	Standard
	Co	59	168244.3	3.3	50.8234	4.811	9.5	ug/L	146	Standard
	Ni	60	56347.6	2.1	47.4483	3.955	8.3	ug/L	220	Standard
	Cu	65	55078.6	1.3	47.4491	3.471	7.3	ug/L	147	Standard
	Zn	66	33287.2	2.6	48.1604	4.251	8.8	ug/L	211	Standard
>	Ge	72	222432.3	6.5				ug/L	210599	Standard
	As	75	35891.3	3.1	48.7497	4.462	9.2	ug/L	-47	Standard
	Se	82	3147.4	2.4	50.4519	4.316	8.6	ug/L	15	Standard
L	Se-1	77	2085.8	3.6	50.3894	4.667	9.3	ug/L	65	Standard
Γ>	Ga	71	30.0	28.9				mg/L	27	Standard
L	Rb	85	551.7	7.0				ug/L	17	Standard
Γ	Υ	89	242975.0	6.6				ug/L	216672	Standard
L>	Rh	103	25.0	34.6				ug/L	18	Standard
Γ	Mo	98	152522.9	3.5	98.5843	8.821	8.9	ug/L	11	Standard
	Ag	107	235697.1	2.4	45.4534	3.590	7.9	ug/L	55	Standard
	Cd	111	73789.8	3.3	47.4756	4.032	8.5	mg/L	7	Standard
	Cd	114	180579.3	3.2	47.5220	4.093	8.6	ug/L	4	Standard
>	In	115	358877.0	5.9				ug/L	322525	Standard
	Sn	118	207809.0	4.6	47.1548	4.785	10.1	ug/L	345	Standard
	Sb	123	189356.9	2.5	45.2211	3.590	7.9	ug/L	88	Standard
L	Ва	135	79262.6	3.6	44.6647	3.981	8.9	ug/L	12	Standard

47.5732

49.0520

50.1967

49.8165

48.9697

46.6251

Concentration Results

ug/L

ug/L

ug/L

ug/L

ug/L

ug/L

ug/L

ug/L

ug/L

ug/L

9.2

9.1

9.1

8.5

9.7

8.7

37

7

159

503

333509

5

631826

Standard

Standard

Standard

Standard

Standard

Standard

Standard

Standard

Standard

Standard

Sample ID: QC Std 6

Report Date/Time: Tuesday, October 27, 2015 19:53:16

316.7

5.0

662503.0

330326.4

229394.1

213468.1

192153.4

754358.7

265523.3

360242.6

15.0

6.4

2.4

2.4

2.3

1.8

3.0

2.0

7.1

100.0

Page 1

Се

Tb

Нο

ΤI

ΤI

Ph

Pb

Pb

U

Bi

140

159

165

203

205

206

207

208

238

209

Approved: October 28, 2015

Page 683

4.357

4.468

4.563

4.251

4.772

4.067

_									_	- · · ·
	Na	23	1.7	173.2				mg/L	0	Standard
	Mg	24	2353.5	4.8	4.9964	0.726	14.5	mg/L	10	Standard
	K	39	416.7	24.0	4.4433	1.330	29.9	mg/L	32	Standard
	Ca	43	70.0	7.1	-4.4365	0.693	15.6	mg/L	85	Standard
	Fe	54	2274.0	5.1	4.8658	0.741	15.2	mg/L	82	Standard
	Fe	57	803.4	1.9	4.9260	0.717	14.6	mg/L	217	Standard
L>	Sc-1	45	16368.9	10.9				mg/L	14524	Standard
	CI	35	78057.3	2.5				ug/L	53193	Standard
	Kr	83	4.3	13.3				ug/L	3	Standard
	Br	81	433.3	10.4				ug/L	327	Standard
	Р	31	17017.9	1.2				ug/L	13329	Standard
	S	34	4173.9	5.5				ug/L	3234	Standard
	Sr	88	128.3	15.7				ug/L	87	Standard
	С	12	163.3	24.7				mg/L	103	Standard
	N	14	0.0					mg/L	0	Standard
	Hg	202	6.7	173.2				mg/L	3	Standard
	Dy	164	8.9	121.2				mg/L	10	Standard
	Ho-1	165	5.0	100.0				mg/L	3	Standard
	Er	166	23.3	107.9				mg/L	7	Standard
	I	127	1908.5	4.6				mg/L	3612	Standard

Analyte	Mass	QC Std % Recovery	Int Std % Recovery	Spike % Recovery
「> Li	6			
Be	9	95.836		
L AI	27	92.770		
「 Sc	45			
Ti	47	97.363		
V	51	99.153		
Cr	52	96.306		
Cr	53			
Mn	55	100.782		
Co	59	101.647		
Ni	60	94.897		
Cu	65	94.898		
Zn	66	96.321		
> Ge	72		105.619	
As	75	97.499		
Se	82	100.904		
∟ Se-1	77			
「⊳ Ga	71			

Sample ID: QC Std 6

Report Date/Time: Tuesday, October 27, 2015 19:53:16

Page 2

Approved: October 28, 2015

∟ Rb	85		
ΓY	89		
$\lfloor_>$ Rh	103		
ГМо	98	98.584	
Ag	107	90.907	
Cd	111	94.951	
Cd	114		
> In	115		111.271
Sn	118	94.310	
Sb	123	90.442	
Ba	135	89.329	
_ Ce	140		
_ _> Tb	159		
Γ Ho	165		
į TI	203	95.146	
j тı	205		
Pb	206		
Pb	207		
Pb	208	97.939	
Ü	238	93.250	
∣	209	00.200	108.016
∫ Na	23		100.010
Mg	24		
K	39		
Ca	43		
Fe	54		
Fe	5 7		
Sc-1	45		
CI	35		
Kr	83		
Br	81		
P	31		
S	34		
Sr			
C	88 12		
N	14		
Hg	202		
Dy	164 165		
Ho-1	165		
Er	166		
1	127		
QC O	ut of Limits	•	
	ement Type	Analyte Mass	Out of Limits Message
QC Std		Ba 135	

Sample ID: QC Std 6

Report Date/Time: Tuesday, October 27, 2015 19:53:16

Page 3

Sample ID: QC Std 7

Sample Date/Time: Tuesday, October 27, 2015 19:54:11

Number of Replicates: 3 Autosampler Position: 102 Sample Description:

Method File: C:\NexIONData\Method\6020a.mth

Aliquot Volume (mL): Diluted to Volume (mL):

User Name: BKT Nexion300X Cumulative Autodilution Factor: 1 Nexion-ICP 200.8\6020

Concentration Results

					0000	u				
IS	Analyt	e Mass	Intensity	RSD	Conc.	SD	RSD	Units	Blank Intens.	Mode
Γ>	Li	6	30343.7	5.2				ug/L	26270	Standard
	Be	9	86.7	92.0	0.1148	0.144	125.6	ug/L	2	Standard
L	ΑI	27	9420.5	114.3	0.1311	0.179	136.4	ug/L	403	Standard
Γ	Sc	45	15326.1	3.6				ug/L	14524	Standard
	Ti	47	112.0	41.5	-1.3813	0.338	24.4	ug/L	365	Standard
	٧	51	1217.1	50.5	0.1075	0.201	187.2	ug/L	805	Standard
	Cr	52	5990.9	9.5	0.1379	0.202	146.7	ug/L	5481	Standard
	Cr	53	455.0	31.5	0.3547	0.321	90.4	ug/L	268	Standard
	Mn	55	1007.0	50.7	-0.0364	0.175	481.9	ug/L	670	Standard
	Co	59	625.0	83.7	0.1622	0.183	112.7	ug/L	146	Standard
	Ni	60	270.3	59.2	0.0239	0.159	665.2	ug/L	220	Standard
	Cu	65	267.0	71.8	0.0749	0.193	258.2	ug/L	147	Standard
	Zn	66	227.0	50.1	-0.2651	0.199	75.0	ug/L	211	Standard
>	Ge	72	206389.8	4.2				ug/L	210599	Standard
	As	75	66.1	152.2	0.1784	0.154	86.4	ug/L	-47	Standard
	Se	82	20.0	35.3	0.1709	0.125	73.3	ug/L	15	Standard
L	Se-1	77	57.0	31.6	0.2892	0.530	183.4	ug/L	65	Standard
Γ>	Ga	71	23.3	12.4				mg/L	27	Standard
L	Rb	85	26.7	21.7				ug/L	17	Standard
Γ	Υ	89	217226.3	4.3				ug/L	216672	Standard
L>	Rh	103	23.3	24.7				ug/L	18	Standard
Γ	Мо	98	488.9	92.9	0.3556	0.347	97.6	ug/L	11	Standard
	Ag	107	510.0	126.8	0.1013	0.146	144.1	ug/L	55	Standard
	Cd	111	181.2	119.7	0.1270	0.163	128.6	mg/L	7	Standard
	Cd	114	414.9	127.0	0.1305	0.162	124.0	ug/L	4	Standard
>	In	115	326317.2	5.0				ug/L	322525	Standard
	Sn	118	1000.0	62.8	0.1024	0.173	169.2	ug/L	345	Standard
	Sb	123	550.3	97.5	0.1384	0.151	109.4	ug/L	88	Standard
Ĺ	Ва	135	200.0	127.5	0.1053	0.168	159.6	ug/L	12	Standard
ļ	Ce	140	11.7	89.2				ug/L	37	Standard
<u>_</u> >	Tb	159	608744.6	5.3				ug/L	631826	Standard
ļ	Но	165	3.3	86.6				ug/L	3	Standard
ļ	TI	203	597.0	141.1	0.0927	0.136	147.0	ug/L	7	Standard
ļ	TI	205	395.0	129.9	0.0959	0.124	128.8	ug/L	7	Standard
ļ	Pb	206	643.7	101.7	0.1064	0.175	164.4	ug/L	159	Standard
ļ	Pb	207	578.0	101.3	0.1073	0.173	160.8	ug/L	120	Standard
ļ	Pb	208	2261.1	103.4	0.1073	0.172	160.6	ug/L	503	Standard
ļ	U	238	661.0	126.9	0.1238	0.166	134.0	ug/L	5	Standard
L>	Bi	209	336386.5	4.1				ug/L	333509	Standard

Sample ID: QC Std 7

Report Date/Time: Tuesday, October 27, 2015 19:56:28

Page 1

Approved: October 28, 2015

Page 686

L15101055 / Revision: 0 / 760 total pages

г		00	4 -	470.0					•	0111
	Na	23	1.7	173.2				mg/L	0	Standard
	Mg	24	23.3	53.9	0.0130	0.030	232.8	mg/L	10	Standard
	K	39	21.7	87.4	0.0401	0.220	548.3	mg/L	32	Standard
	Ca	43	46.7	43.3	-7.3620	3.050	41.4	mg/L	85	Standard
	Fe	54	72.6	4.6	0.0353	0.011	31.8	mg/L	82	Standard
	Fe	57	361.7	8.1	1.3691	0.224	16.3	mg/L	217	Standard
L>	Sc-1	45	15326.1	3.6				mg/L	14524	Standard
	CI	35	76650.1	1.0				ug/L	53193	Standard
	Kr	83	6.3	24.1				ug/L	3	Standard
	Br	81	383.3	9.2				ug/L	327	Standard
	Р	31	16680.8	0.5				ug/L	13329	Standard
	S	34	4268.9	0.9				ug/L	3234	Standard
	Sr	88	135.0	23.1				ug/L	87	Standard
	С	12	176.7	22.9				mg/L	103	Standard
	N	14	0.0					mg/L	0	Standard
	Hg	202	10.0	173.2				mg/L	3	Standard
	Dy	164	-0.2	173.2				mg/L	10	Standard
	Ho-1	165	3.3	86.6				mg/L	3	Standard
	Er	166	3.3	173.2				mg/L	7	Standard
	I	127	1853.4	3.1				mg/L	3612	Standard

Analyte	Mass	QC Std % Recovery	Int Std % Recovery	Spike % Recovery
「> Li	6			
Be	9			
L AI	27			
「 Sc	45			
Ti	47			
V	51			
Cr	52			
Cr	53			
Mn	55			
Co	59			
Ni	60			
Cu	65			
Zn	66			
> Ge	72		98.001	
As	75			
Se	82			
∟ Se-1	77			
「⊳ Ga	71			

Sample ID: QC Std 7

Report Date/Time: Tuesday, October 27, 2015 19:56:28

Page 2

Approved: October 28, 2015

∟ Rb	85			
ΓY	89			
$\lfloor_>$ Rh	103			
¯ Mo	98			
Ag	107			
Cď	111			
Cd	114			
> In	115			101.176
Sn	118			
Sb	123			
L Ba	135			
∟ Dα Γ Ce	140			
i	159			
L> Ib ∫ Ho	165			
TI	203			
'' Ti	205			
II Pb	206			
Pb	207			
Pb	208			
U Di	238			100.962
L> Bi □ No	209			100.863
Г Na ⊢ Ма	23			
Mg	24			
K	39			
Ca	43			
Fe	54			
Fe	57			
_> Sc-1	45			
Cl	35			
Kr	83			
Br	81			
Р	31			
S	34			
Sr	88			
С	12			
N	14			
Hg	202			
Dy	164			
Ho-1	165			
Er	166			
I	127			
QC Ou	it of Limits			
	ment Type	Analyte	Mass	Out of Limits Message
QC Std 7	7	Be	9	
QC Std 7		Ti	47	
OC 844 2		C4	111	

Sample ID: QC Std 7

QC Std 7

Report Date/Time: Tuesday, October 27, 2015 19:56:28

Cd

111

Page 3

QC Std 7 TI 203

Sample ID: QC Std 7

Report Date/Time: Tuesday, October 27, 2015 19:56:28

Page 4

Approved: October 28, 2015

Sample ID: L1510133901

Sample Date/Time: Tuesday, October 27, 2015 19:57:24

Number of Replicates: 3 Autosampler Position: 223 Sample Description: 50

Method File: C:\NexIONData\Method\6020a.mth

Aliquot Volume (mL): Diluted to Volume (mL):

User Name: BKT Nexion300X Cumulative Autodilution Factor: 1

Nexion-ICP 200.8\6020

					Concentrat	tion Res	ults			
IS	Analyt	e Mass	Intensity	RSD	Conc.	SD	RSD	Units	Blank Intens.	Mode
Γ>	Li	6	32256.0	6.0				ug/L	26270	Standard
	Be	9	11.7	65.5	-0.0160	0.013	83.9	ug/L	2	Standard
L	Αl	27	503531.3	1.4	7.3091	0.391	5.3	ug/L	403	Standard
Γ	Sc	45	16767.6	3.3				ug/L	14524	Standard
	Ti	47	140.3	6.4	-1.2824	0.046	3.6	ug/L	365	Standard
	٧	51	1081.6	2.9	0.0356	0.023	63.8	ug/L	805	Standard
	Cr	52	8278.3	2.1	0.5204	0.124	23.9	ug/L	5481	Standard
	Cr	53	780.0	5.8	0.8496	0.149	17.6	ug/L	268	Standard
	Mn	55	2115.8	3.8	0.2491	0.053	21.2	ug/L	670	Standard
	Co	59	386.0	0.9	0.0692	0.006	8.6	ug/L	146	Standard
	Ni	60	387.3	4.4	0.0966	0.011	11.0	ug/L	220	Standard
	Cu	65	1122.7	1.0	0.7790	0.058	7.5	ug/L	147	Standard
	Zn	66	2022.5	1.7	2.2924	0.128	5.6	ug/L	211	Standard
>	Ge	72	225246.1	5.1				ug/L	210599	Standard
	As	75	35.2	93.3	0.1235	0.041	33.6	ug/L	-47	Standard
	Se	82	22.5	42.5	0.1741	0.132	75.9	ug/L	15	Standard
L	Se-1	77	68.0	11.7	0.4225	0.220	52.2	ug/L	65	Standard
Γ>	Ga	71	26.7	39.0				mg/L	27	Standard
Ĺ	Rb	85	4283.9	1.6				ug/L	17	Standard
Γ	Υ	89	240716.0	6.7				ug/L	216672	Standard
L>	Rh	103	16.7	45.8				ug/L	18	Standard
Γ	Мо	98	155.6	15.1	0.0973	0.012	12.8	ug/L	11	Standard
ļ	Ag	107	61.3	9.0	0.0004	0.001	192.6	ug/L	55	Standard
ļ	Cd	111	15.3	19.9	0.0034	0.002	50.1	mg/L	7	Standard
ļ	Cd	114	21.3	45.7	0.0109	0.002	22.2	ug/L	4	Standard
>	ln	115	359818.8	2.8				ug/L	322525	Standard
ļ	Sn	118	883.4	6.6	0.0474	0.019	40.5	ug/L	345	Standard
ļ	Sb	123	701.1	7.1	0.1561	0.017	10.6	ug/L	88	Standard
Ļ	Ва	135	29475.3	2.3	16.5101	0.862	5.2	ug/L	12	Standard
ļ	Се	140	235.0	11.8				ug/L	37	Standard
L>	Tb	159	670854.6	4.6				ug/L	631826	Standard
ļ	Но	165	13.3	108.3				ug/L	3	Standard
- !	TI	203	27.0	13.4	0.0012	0.000	32.6	ug/L	7	Standard
- !	TI	205	26.7	84.5	0.0081	0.005	56.9	ug/L	7	Standard
- !	Pb	206	283.7	5.9	0.0064	0.006	101.2	ug/L	159	Standard
	Pb	207	243.7	3.0	0.0053	0.002	45.7	ug/L	120	Standard
- [Pb	208	967.0	1.4	0.0083	0.003	39.5	ug/L	503	Standard
	U	238	12.0	25.0	-0.0025	0.001	25.3	ug/L	5	Standard
L>	Bi	209	362094.9	4.5				ug/L	333509	Standard

Sample ID: L1510133901

Report Date/Time: Tuesday, October 27, 2015 19:59:41

Page 1

Approved: October 28, 2015

Page 690

Γ	Na	23	3.3	86.6				mg/L	0	Standard
1	Mg	24	12982.2	2.7	26.8355	1.619	6.0	mg/L	10	Standard
-	-							•		
	K	39	75.0	23.1	0.6038	0.217	36.0	mg/L	32	Standard
	Ca	43	33.3	31.2	-9.8141	1.637	16.7	mg/L	85	Standard
	Fe	54	82.3	9.1	0.0415	0.016	39.6	mg/L	82	Standard
	Fe	57	313.3	18.7	0.6907	0.447	64.7	mg/L	217	Standard
L>	Sc-1	45	16767.6	3.3				mg/L	14524	Standard
	CI	35	76193.8	1.2				ug/L	53193	Standard
	Kr	83	4.0	100.0				ug/L	3	Standard
	Br	81	1063.4	9.6				ug/L	327	Standard
	Р	31	15589.7	2.1				ug/L	13329	Standard
	S	34	3912.2	3.8				ug/L	3234	Standard
	Sr	88	115.0	4.3				ug/L	87	Standard
	С	12	163.3	30.2				mg/L	103	Standard
	N	14	3.3	173.2				mg/L	0	Standard
	Hg	202	3.3	173.2				mg/L	3	Standard
	Dy	164	19.4	51.7				mg/L	10	Standard
	Ho-1	165	13.3	108.3				mg/L	3	Standard
	Er	166	13.3	86.6				mg/L	7	Standard
	I	127	43845.2	7.4				mg/L	3612	Standard

_	Analyte		QC Std % Recovery	Int Std % Recovery	Spike % Recovery
Γ>	Li	6		122.788	
	Be	9			
L	Al	27			
Γ	Sc	45			
	Ti	47			
	V	51			
	Cr	52			
	Cr	53			
	Mn	55			
	Co	59			
	Ni	60			
	Cu	65			
	Zn	66			
>	Ge	72		106.955	
	As	75			
	Se	82			
L	Se-1	77			
Γ>	Ga	71			

Sample ID: L1510133901

Report Date/Time: Tuesday, October 27, 2015 19:59:41

Page 2

Approved: October 28, 2015

∟ Rb	85				
ΓY	89				
$\lfloor_>$ Rh	103				
ГМо	98				
Ag	107				
Cd	111				
Cd	114				
> In	115			111.563	
Sn	118				
Sb	123				
Ва	135				
Ce	140				
Tb	159				
Ho	165				
TI	203				
'' Ti	205				
11 Pb	206				
Pb	207				
Pb	208				
U	238				
				100 571	
Ĺ> Bi □ No	209			108.571	
Γ Na	23				
Mg	24				
K	39				
Ca	43				
Fe	54				
Fe	57				
_> Sc-1	45				
CI	35				
Kr	83				
Br	81				
Р	31				
S	34				
Sr	88				
С	12				
N	14				
Hg	202				
Dy	164				
Ho-1	165				
Er	166				
I	127				
QC O	ut of Limits				
	ement Type	Analyte	Mass	Out of Limits Message	
	Std for sample	Li	6	Rerun sample	
Ti 47 Lo		Ti	47	Refull Sumple	
1147 LO	VVCI	11	71		

Report Date/Time: Tuesday, October 27, 2015 19:59:41

Page 3

Sample ID: L1510141301

Sample Date/Time: Tuesday, October 27, 2015 20:00:35

Number of Replicates: 3 Autosampler Position: 224 Sample Description: 1

Method File: C:\NexIONData\Method\6020a.mth

Aliquot Volume (mL): Diluted to Volume (mL):

User Name: BKT Nexion300X Cumulative Autodilution Factor: 1 Nexion-ICP 200.8\6020

Concentration Results

			Concentration Results									
IS	Analyt	e Mass	Intensity	RSD	Conc.	SD	RSD	Units	Blank Intens.	Mode		
Γ>	Li	6	30694.4	2.1				ug/L	26270	Standard		
	Be	9	18.3	15.7	-0.0046	0.005	101.5	ug/L	2	Standard		
L	Al	27	1234993.0	2.0	18.8412	0.714	3.8	ug/L	403	Standard		
Γ	Sc	45	15242.7	7.0				ug/L	14524	Standard		
	Ti	47	368.7	2.5	0.2302	0.126	54.9	ug/L	365	Standard		
	V	51	1248.6	6.8	0.1048	0.033	32.0	ug/L	805	Standard		
	Cr	52	56691.9	0.5	12.0871	0.397	3.3	ug/L	5481	Standard		
	Cr	53	9014.3	1.7	16.4560	0.298	1.8	ug/L	268	Standard		
	Mn	55	5275.9	1.7	1.2496	0.041	3.3	ug/L	670	Standard		
	Co	59	425.0	5.5	0.0897	0.011	12.5	ug/L	146	Standard		
	Ni	60	36931.0	0.4	32.6928	1.115	3.4	ug/L	220	Standard		
	Cu	65	16543.4	1.0	14.8954	0.322	2.2	ug/L	147	Standard		
	Zn	66	51395.0	0.9	78.7036	2.034	2.6	ug/L	211	Standard		
>	Ge	72	210518.3	3.0				ug/L	210599	Standard		
	As	75	57.4	109.8	0.1584	0.088	55.4	ug/L	-47	Standard		
	Se	82	24.4	17.9	0.2359	0.063	26.5	ug/L	15	Standard		
L	Se-1	77	169.7	7.1	3.1795	0.185	5.8	ug/L	65	Standard		
Γ>	Ga	71	365.0	11.9				mg/L	27	Standard		
L	Rb	85	9404.6	3.7				ug/L	17	Standard		
Γ	Υ	89	217028.7	2.1				ug/L	216672	Standard		
L>	Rh	103	36.7	43.8				ug/L	18	Standard		
Γ	Мо	98	925.8	2.2	0.6544	0.015	2.3	ug/L	11	Standard		
	Ag	107	24089.5	1.0	5.0949	0.261	5.1	ug/L	55	Standard		
	Cd	111	108.6	13.3	0.0702	0.007	10.2	mg/L	7	Standard		
	Cd	114	300.8	18.0	0.0920	0.013	14.0	ug/L	4	Standard		
>	In	115	326054.4	4.4				ug/L	322525	Standard		
	Sn	118	9786.5	3.0	2.2943	0.166	7.2	ug/L	345	Standard		
	Sb	123	550.7	3.4	0.1339	0.011	8.2	ug/L	88	Standard		
L	Ва	135	20728.5	1.4	12.8164	0.736	5.7	ug/L	12	Standard		
Γ	Ce	140	441.7	12.6				ug/L	37	Standard		
L>	Tb	159	622926.3	5.1				ug/L	631826	Standard		
Γ	Но	165	8.3	34.6				ug/L	3	Standard		
	TI	203	157.3	28.0	0.0216	0.007	30.9	ug/L	7	Standard		
	TI	205	111.7	11.3	0.0281	0.003	11.6	ug/L	7	Standard		
	Pb	206	5156.9	1.6	1.2412	0.068	5.5	ug/L	159	Standard		
	Pb	207	4232.3	0.6	1.1201	0.057	5.0	ug/L	120	Standard		
	Pb	208	16926.0	1.6	1.1242	0.055	4.9	ug/L	503	Standard		
	U	238	36.7	45.0	0.0024	0.003	131.1	ug/L	5	Standard		
L>	Bi	209	335203.9	4.6				ug/L	333509	Standard		

Sample ID: L1510141301

Report Date/Time: Tuesday, October 27, 2015 20:02:52

Page 1

Approved: October 28, 2015

Page 693

L15101055 / Revision: 0 / 760 total pages

_										
	Na	23	0.0					mg/L	0	Standard
	Mg	24	13090.7	5.1	29.8062	2.098	7.0	mg/L	10	Standard
	K	39	205.0	25.8	2.2029	0.479	21.7	mg/L	32	Standard
	Ca	43	95.0	48.2	-0.1421	6.364	4477.9	mg/L	85	Standard
	Fe	54	99.7	6.7	0.0997	0.016	16.3	mg/L	82	Standard
	Fe	57	350.0	12.9	1.2748	0.224	17.5	mg/L	217	Standard
L>	Sc-1	45	15242.7	7.0				mg/L	14524	Standard
	CI	35	85387.3	1.2				ug/L	53193	Standard
	Kr	83	4.3	26.6				ug/L	3	Standard
	Br	81	1293.4	4.3				ug/L	327	Standard
	Р	31	18264.3	1.7				ug/L	13329	Standard
	S	34	3668.8	8.0				ug/L	3234	Standard
	Sr	88	106.7	28.6				ug/L	87	Standard
	С	12	186.7	20.3				mg/L	103	Standard
	N	14	0.0					mg/L	0	Standard
	Hg	202	16.7	34.6				mg/L	3	Standard
	Dy	164	32.7	18.1				mg/L	10	Standard
	Ho-1	165	8.3	34.6				mg/L	3	Standard
	Er	166	13.3	43.3				mg/L	7	Standard
	1	127	25923.8	0.6				mg/L	3612	Standard

Analyte	Mass	QC Std % Recovery	Int Std % Recovery	Spike % Recovery
「> Li	6		116.844	
Be	9			
L AI	27			
「 Sc	45			
Ti	47			
V	51			
Cr	52			
Cr	53			
Mn	55			
Co	59			
Ni	60			
Cu	65			
Zn	66			
> Ge	72		99.962	
As	75			
Se	82			
∟ Se-1	77			
「⊳ Ga	71			

Sample ID: L1510141301

Report Date/Time: Tuesday, October 27, 2015 20:02:52

Page 2

Approved: October 28, 2015

I	Rb	85		
L F	Y	89		
- 1	Rh	103		
Ē	Мо	98		
	Ag	107		
	Cd	111		
	Cd	114		404.004
>	In C	115		101.094
	Sn Sb	118 123		
Ĺ	Ba	135		
Ė	Ce	140		
	Tb	159		
Ē	Но	165		
	TI	203		
	TI	205		
	Pb	206		
	Pb	207		
l	Pb U	208 238		
 >	Bi	209		100.508
Ī	Na	23		
į	Mg	24		
	K	39		
	Ca	43		
	Fe	54		
	Fe So 1	57 45		
_>	Sc-1 Cl	45 35		
	Kr	83		
	Br	81		
	Р	31		
	S	34		
	Sr	88		
	С	12		
	N	14		
	Hg	202 164		
	Dy	165		
	H()- I	100		
	Ho-1 Er			
	Er I	166 127		
	Er I	166		

Report Date/Time: Tuesday, October 27, 2015 20:02:52

Page 3

Sample ID: L1510142301

Sample Date/Time: Tuesday, October 27, 2015 20:03:46

Number of Replicates: 3
Autosampler Position: 225
Sample Description: 1

Method File: C:\NexIONData\Method\6020a.mth

Aliquot Volume (mL): Diluted to Volume (mL):

User Name: BKT Nexion300X Cumulative Autodilution Factor: 1 Nexion-ICP 200.8\6020

Concentration Results

					Gonoonia		uito			
IS	Analyt	e Mass	Intensity	RSD	Conc.	SD	RSD	Units	Blank Intens.	Mode
Γ>	Li	6	33842.8	4.2				ug/L	26270	Standard
	Be	9	15.0	88.2	-0.0120	0.020	169.5	ug/L	2	Standard
L	ΑI	27	2189020.0	3.0	30.3461	2.129	7.0	ug/L	403	Standard
Γ	Sc	45	17044.6	8.7				ug/L	14524	Standard
	Ti	47	465.3	6.2	0.6744	0.287	42.6	ug/L	365	Standard
	٧	51	1266.7	16.4	0.0875	0.057	64.8	ug/L	805	Standard
	Cr	52	9798.2	2.1	0.8706	0.165	19.0	ug/L	5481	Standard
	Cr	53	2796.9	5.6	4.4443	0.544	12.2	ug/L	268	Standard
	Mn	55	10402.9	12.0	2.6293	0.462	17.6	ug/L	670	Standard
	Co	59	1560.1	5.6	0.4225	0.048	11.3	ug/L	146	Standard
	Ni	60	3305.7	2.1	2.5493	0.199	7.8	ug/L	220	Standard
	Cu	65	53488.9	1.6	45.7403	3.258	7.1	ug/L	147	Standard
	Zn	66	17430.4	2.2	24.7141	1.738	7.0	ug/L	211	Standard
>	Ge	72	223952.5	5.7				ug/L	210599	Standard
	As	75	167.5	8.7	0.3037	0.031	10.2	ug/L	-47	Standard
	Se	82	29.5	11.8	0.2923	0.030	10.3	ug/L	15	Standard
L	Se-1	77	138.3	14.8	2.1451	0.399	18.6	ug/L	65	Standard
Γ>	Ga	71	60.0	43.3				mg/L	27	Standard
L	Rb	85	2823.6	2.2				ug/L	17	Standard
Γ	Υ	89	236415.5	7.6				ug/L	216672	Standard
L>	Rh	103	2526.9	1.8				ug/L	18	Standard
Γ	Мо	98	320.5	9.8	0.2080	0.026	12.3	ug/L	11	Standard
	Ag	107	406.3	7.9	0.0681	0.005	7.5	ug/L	55	Standard
	Cd	111	1560.7	4.2	1.0133	0.070	6.9	mg/L	7	Standard
	Cd	114	3829.9	2.9	1.0286	0.065	6.3	ug/L	4	Standard
>	In	115	352825.1	3.6				ug/L	322525	Standard
	Sn	118	23388.1	3.7	5.2493	0.355	6.8	ug/L	345	Standard
	Sb	123	158.9	21.7	0.0280	0.009	33.7	ug/L	88	Standard
L	Ва	135	27212.4	2.2	15.5495	0.890	5.7	ug/L	12	Standard
Γ	Ce	140	5689.4	1.9				ug/L	37	Standard
L>	Tb	159	665093.5	6.0				ug/L	631826	Standard
Γ	Но	165	11.7	89.2				ug/L	3	Standard
	TI	203	86.7	30.4	0.0098	0.004	40.9	ug/L	7	Standard
	TI	205	46.7	34.4	0.0125	0.004	28.8	ug/L	7	Standard
	Pb	206	1341.1	1.6	0.2562	0.017	6.6	ug/L	159	Standard
	Pb	207	1094.7	3.7	0.2273	0.020	8.9	ug/L	120	Standard
	Pb	208	4502.6	1.6	0.2390	0.018	7.6	ug/L	503	Standard
	U	238	362.3	8.0	0.0592	0.007	11.2	ug/L	5	Standard
L>	Bi	209	358743.1	4.7				ug/L	333509	Standard

Sample ID: L1510142301

Report Date/Time: Tuesday, October 27, 2015 20:06:03

Page 1

Approved: October 28, 2015

Page 696

L15101055 / Revision: 0 / 760 total pages

Γ	Na	23	0.0					mg/L	0	Standard
i	Mg	24	5874.5	3.4	11.9685	1.115	9.3	mg/L	10	Standard
i	ĸ	39	233.3	26.8	2,3139	0.878	37.9	mg/L	32	Standard
i	Ca	43	150.0	30.0	6.4627	7.125	110.3	mg/L	85	Standard
i	Fe	54	117.5	35.5	0.1083	0.064	59.5	mg/L	82	Standard
İ	Fe	57	340.0	5.9	0.8899	0.395	44.4	mg/L	217	Standard
Ĺ>	Sc-1	45	17044.6	8.7				mg/L	14524	Standard
	CI	35	83345.3	2.1				ug/L	53193	Standard
	Kr	83	3.3	17.3				ug/L	3	Standard
	Br	81	1720.1	6.0				ug/L	327	Standard
	Р	31	16927.8	0.4				ug/L	13329	Standard
	S	34	3588.8	4.6				ug/L	3234	Standard
	Sr	88	133.3	26.6				ug/L	87	Standard
	С	12	400.0	17.3				mg/L	103	Standard
	N	14	0.0					mg/L	0	Standard
	Hg	202	43.3	70.5				mg/L	3	Standard
	Dy	164	9.2	8.0				mg/L	10	Standard
	Ho-1	165	11.7	89.2				mg/L	3	Standard
	Er	166	16.7	91.7				mg/L	7	Standard
	I	127	7386.8	6.5				mg/L	3612	Standard

_	Analyte		QC Std % Recovery	Int Std % Recovery	Spike % Recovery
Γ>	Li	6		128.828	
	Be	9			
L	Al	27			
Γ	Sc	45			
	Ti	47			
	V	51			
	Cr	52			
	Cr	53			
	Mn	55			
	Co	59			
	Ni	60			
	Cu	65			
	Zn	66			
>	Ge	72		106.341	
	As	75			
	Se	82			
L	Se-1	77			
Γ>	Ga	71			

Sample ID: L1510142301

Report Date/Time: Tuesday, October 27, 2015 20:06:03

Page 2

Approved: October 28, 2015

L Rb	85			
ΓΥ	89			
$\lfloor_>$ Rh	103			
- Mo	98			
Ag	107			
Cď	111			
Cd	114			
> In	115		109.395	
Sn	118			
Sb	123			
Ba	135			
∟ Ce	140			
Tb	159			
Ho	165			
TI	203			
Ti	205			
Pb	206			
Pb	207			
Pb	208			
U	238			
∟> Bi	209		107.566	
√ Na	23			
Mg	24			
K	39			
Ca	43			
Fe	54			
Fe	57			
> Sc-1	45			
CI	35			
Kr	83			
Br	81			
Р	31			
S	34			
Sr	88			
С	12			
N	14			
Hg	202			
Dy	164			
Ho-1	165			
Er	166			
I	127			
QC Oi	ut of Limits			
		Analyte Mass	Out of Limits Message	
	ement Type Std for sample	Analyte Mass Li 6	Out of Limits Message Rerun sample	
LIOIIICS	olu ioi sairipie	LI O	Refull Sample	

Report Date/Time: Tuesday, October 27, 2015 20:06:03

Page 3

Sample ID: L1510142901

Sample Date/Time: Tuesday, October 27, 2015 20:06:58

Number of Replicates: 3 Autosampler Position: 226 Sample Description: 1

Method File: C:\NexIONData\Method\6020a.mth

Aliquot Volume (mL): Diluted to Volume (mL):

User Name: BKT Nexion300X Cumulative Autodilution Factor: 1

Nexion-ICP 200.8\6020

			Concentration Results								
IS	Analyt	e Mass	Intensity	RSD	Conc.	SD	RSD	Units	Blank Intens.	Mode	
Γ>	Li	6	29592.2	2.9				ug/L	26270	Standard	
	Be	9	10.0	50.0	-0.0176	0.009	50.8	ug/L	2	Standard	
L	ΑI	27	4301629.6	1.3	68.1470	2.876	4.2	ug/L	403	Standard	
Γ	Sc	45	15524.6	6.5				ug/L	14524	Standard	
	Ti	47	523.7	9.2	1.2510	0.424	33.9	ug/L	365	Standard	
	V	51	1509.7	15.8	0.1834	0.061	33.2	ug/L	805	Standard	
	Cr	52	10283.2	1.3	1.1403	0.104	9.1	ug/L	5481	Standard	
	Cr	53	11669.5	9.2	21.5946	1.005	4.7	ug/L	268	Standard	
	Mn	55	23517.9	1.3	6.8615	0.495	7.2	ug/L	670	Standard	
	Co	59	721.0	5.8	0.1863	0.026	13.9	ug/L	146	Standard	
	Ni	60	1551.4	2.4	1.1704	0.110	9.4	ug/L	220	Standard	
	Cu	65	46427.0	8.0	42.5240	2.519	5.9	ug/L	147	Standard	
	Zn	66	32419.7	1.9	49.8606	2.503	5.0	ug/L	211	Standard	
>	Ge	72	208902.3	5.4				ug/L	210599	Standard	
	As	75	70.5	79.0	0.1784 1.1801	0.076	42.8	ug/L	-47	Standard	
	Se	82		79.2 5.3		0.149	12.6	ug/L	15	Standard	
Ē	Se-1	77	716.0	1.9	17.5904	0.824	4.7	ug/L	65	Standard	
[>	Ga	71	101.7	12.4				mg/L	27	Standard	
Ē	Rb	85	39015.2	2.9				ug/L	17	Standard	
	Υ	89	221883.6	2.6				ug/L	216672	Standard	
[>	Rh	103	20.0	25.0				ug/L	18	Standard	
!	Мо	98	14619.9	2.8	10.5444	0.491	4.7	ug/L	11	Standard	
ļ	Ag	107	165.3	3.3	0.0242	0.000	1.8	ug/L	55	Standard	
	Cd	111	29.6	7.6	0.0150	0.002	16.3	mg/L	7	Standard	
!	Cd	114	95.7	17.3	0.0336	0.006	18.2	ug/L	4	Standard	
>	In O	115	320769.1	4.1	0.0440	0.005	44.4	ug/L	322525	Standard	
	Sn	118	1838.4	3.2	0.3146	0.035	11.1	ug/L	345	Standard	
	Sb	123	246.0	5.9	0.0549	0.004	6.6	ug/L	88	Standard	
Ļ	Ва	135 140	91932.7 288.3	0.5 24.7	57.8419	2.737	4.7	ug/L	12 37	Standard Standard	
I.	Ce Tb	159	200.3 614395.2	5.0				ug/L ug/L	631826	Standard	
L>	Но	165	18.3	56.8				ug/L ug/L	3	Standard	
1	по Ti	203	90.7	7.8	0.0110	0.001	10.3	_	7	Standard	
	TI	205	71.7	7.6 34.4	0.0110	0.001	33.7	ug/L ug/L	7	Standard	
	Pb	206	1947.1	1.6	0.4198	0.008	6.7	ug/L ug/L	159	Standard	
1	Pb	207	1667.1	2.5	0.3951	0.028	3.1	ug/L ug/L	120	Standard	
1	PU Db	207	6676.0	2.0	0.3931	0.012		ug/L	120 503	Standard	

0.4001

0.1799

Sample ID: L1510142901

208

238

209

Report Date/Time: Tuesday, October 27, 2015 20:09:15

6676.9

1004.4

343272.8

2.2

2.5

4.2

Page 1

Pb

U

Bi

Approved: October 28, 2015

Generated: 10/30/2015 10:11

503

5

333509

Standard

Standard

Standard

Page 699

0.029

0.004

7.3 ug/L

2.3

ug/L

ug/L

_										
	Na	23	0.0					mg/L	0	Standard
	Mg	24	59262.3	0.9	132.7045	9.605	7.2	mg/L	10	Standard
	K	39	590.0	13.2	6.6889	0.964	14.4	mg/L	32	Standard
	Ca	43	113.3	15.5	2.6000	2.134	82.1	mg/L	85	Standard
	Fe	54	144.2	19.2	0.2003	0.083	41.6	mg/L	82	Standard
	Fe	57	388.3	3.9	1.5784	0.345	21.9	mg/L	217	Standard
L>	Sc-1	45	15524.6	6.5				mg/L	14524	Standard
	CI	35	90148.7	0.7				ug/L	53193	Standard
	Kr	83	4.0	66.1				ug/L	3	Standard
	Br	81	3650.4	2.6				ug/L	327	Standard
	Р	31	17903.9	2.4				ug/L	13329	Standard
	S	34	3817.1	3.1				ug/L	3234	Standard
	Sr	88	161.7	3.6				ug/L	87	Standard
	С	12	1046.7	14.9				mg/L	103	Standard
	N	14	0.0					mg/L	0	Standard
	Hg	202	80.0	87.5				mg/L	3	Standard
	Dy	164	19.7	100.4				mg/L	10	Standard
	Ho-1	165	18.3	56.8				mg/L	3	Standard
	Er	166	6.7	86.6				mg/L	7	Standard
	I	127	1884449.3	2.9				mg/L	3612	Standard

Analyte	Mass	QC Std % Recovery	Int Std % Recovery	Spike % Recovery
「⊳ Li	6		112.648	
Be	9			
L AI	27			
「 Sc	45			
Ti	47			
V	51			
Cr	52			
Cr	53			
Mn	55			
Co	59			
Ni	60			
Cu	65			
Zn	66			
> Ge	72		99.194	
As	75			
Se	82			
∟ Se-1	77			
「⊳ Ga	71			

Sample ID: L1510142901

Report Date/Time: Tuesday, October 27, 2015 20:09:15

Page 2

Approved: October 28, 2015

L Rb	85			
ΓY	89			
Ĺ> Rh	103			
Мо	98			
Ag	107			
Cd	111			
Cd	114			
> In	115			99.456
Sn	118			
Sb	123			
L Ba	135			
ГСе	140			
Ĺ> Tb	159			
Г Но	165			
TI	203			
TI	205			
Pb	206			
Pb	207			
Pb	208			
U	238			
Ĺ> Bi	209			102.927
Г Na	23			
Mg	24			
K	39			
Ca	43			
Fe	54			
Fe	57			
_> Sc-1	45			
CI	35			
Kr	83			
Br	81			
Р	31			
S	34			
Sr	88			
С	12			
N	14			
Hg	202			
Dy	164			
Ho-1	165			
Er	166			
	127			
	ut of Limits	Analyte		
Measure	Measurement Type		Mass	Out of Limits Message

Report Date/Time: Tuesday, October 27, 2015 20:09:15

Page 3

Concentration Results

Conc.

SD

RSD Units

Blank Intens.

12

37

3

7

159

503

333509

5

631826

Standard

Standard

Standard

Standard

Standard

Standard

Standard

Standard

Standard

Standard

Standard

Mode

Sample ID: L1510143001

Sample Date/Time: Tuesday, October 27, 2015 20:10:09

RSD

Number of Replicates: 3 Autosampler Position: 227 Sample Description: 1

Method File: C:\NexIONData\Method\6020a.mth

Intensity

Aliquot Volume (mL): Diluted to Volume (mL):

User Name: BKT Nexion300X Cumulative Autodilution Factor: 1

Nexion-ICP 200.8\6020

IS Analyte Mass

Γ>	Li	6	31537.8	0.6				ug/L	26270	Standard
	Be	9	16.7	62.4	-0.0081	0.017	208.5	ug/L	2	Standard
L	ΑI	27	5214987.0	1.7	77.4574	1.110	1.4	ug/L	403	Standard
Γ	Sc	45	16197.0	4.0				ug/L	14524	Standard
	Ti	47	592.7	4.4	1.5504	0.140	9.0	ug/L	365	Standard
	V	51	1182.6	28.6	0.0757	0.096	126.2	ug/L	805	Standard
	Cr	52	10352.5	2.9	1.0688	0.084	7.8	ug/L	5481	Standard
	Cr	53	14837.3	5.1	26.6749	1.582	5.9	ug/L	268	Standard
	Mn	55	22796.8	1.1	6.3840	0.121	1.9	ug/L	670	Standard
	Co	59	708.0	4.9	0.1735	0.012	6.9	ug/L	146	Standard
	Ni	60	1688.4	5.4	1.2379	0.089	7.2	ug/L	220	Standard
	Cu	65	45446.1	0.9	40.1010	0.319	8.0	ug/L	147	Standard
	Zn	66	29733.2	1.7	44.0096	0.535	1.2	ug/L	211	Standard
>	Ge	72	216335.2	0.7				ug/L	210599	Standard
	As	75	75.4	63.2	0.1829	0.067	36.5	ug/L	-47	Standard
	Se	82	66.6	3.3	0.9206	0.044	4.8	ug/L	15	Standard
L	Se-1	77	813.7	2.6	19.3938	0.585	3.0	ug/L	65	Standard
Γ>	Ga	71	110.0	16.4				mg/L	27	Standard
L	Rb	85	41023.8	3.1				ug/L	17	Standard
Γ	Υ	89	229952.1	1.5				ug/L	216672	Standard
L>	Rh	103	28.3	40.8				ug/L	18	Standard
Γ	Mo	98	13174.8	0.9	9.1458	0.121	1.3	ug/L	11	Standard
	Ag	107	128.7	9.0	0.0153	0.002	14.6	ug/L	55	Standard
	Cd	111	25.3	9.4	0.0112	0.002	15.8	mg/L	7	Standard
	Cd	114	122.7	27.4	0.0401	0.010	24.3	ug/L	4	Standard
>	In	115	332923.8	0.7				ug/L	322525	Standard
	Sn	118	1640.1	9.8	0.2480	0.037	14.8	ug/L	345	Standard
	Sb	123	229.6	12.3	0.0482	0.007	14.7	ug/L	88	Standard

32.5014

0.0106

0.0154

0.3405

0.3194

0.3254

0.1576

0.290

0.003

0.004

0.010

0.004

800.0

0.003

0.9

24.6

27.6

3.0

1.4

2.5

ug/L

ug/L

ug/L

ug/L

ug/L

ug/L

ug/L

ug/L

ug/L

ug/L

ug/L

Sample ID: L1510143001

135

140

159

165

203

205

206

207

208

238

209

Report Date/Time: Tuesday, October 27, 2015 20:12:26

53703.0

641599.5

366.7

15.0

88.7

58.3

1637.1

1396.7

5620.4

888.4

345199.1

1.4

3.4

2.0

57.7

19.2

32.5

2.8

1.5

2.1

1.6

0.5

Page 1

Ва

Се

Tb Но

ΤI

ΤI

Ph

Pb

Pb

U

Bi

Approved: October 28, 2015

_										
	Na	23	5.0	100.0				mg/L	0	Standard
	Mg	24	62247.6	1.2	133.3297	5.495	4.1	mg/L	10	Standard
	K	39	641.7	4.3	6.9657	0.188	2.7	mg/L	32	Standard
	Ca	43	171.7	13.8	10.3147	2.502	24.3	mg/L	85	Standard
	Fe	54	127.5	19.4	0.1457	0.044	30.5	mg/L	82	Standard
	Fe	57	353.3	8.0	1.1335	0.364	32.1	mg/L	217	Standard
L>	Sc-1	45	16197.0	4.0				mg/L	14524	Standard
	CI	35	87587.2	1.8				ug/L	53193	Standard
	Kr	83	3.3	34.6				ug/L	3	Standard
	Br	81	3377.0	2.7				ug/L	327	Standard
	Р	31	18144.2	8.0				ug/L	13329	Standard
	S	34	3870.5	5.2				ug/L	3234	Standard
	Sr	88	151.7	13.3				ug/L	87	Standard
	С	12	986.7	9.8				mg/L	103	Standard
	N	14	0.0					mg/L	0	Standard
	Hg	202	60.0	57.7				mg/L	3	Standard
	Dy	164	16.0	67.7				mg/L	10	Standard
	Ho-1	165	15.0	57.7				mg/L	3	Standard
	Er	166	13.3	114.6				mg/L	7	Standard
	I	127	2212239.9	3.4				mg/L	3612	Standard

Analyte	Mass	QC Std % Recovery	Int Std % Recovery	Spike % Recovery
「⊳ Li	6		120.054	
Be	9			
L AI	27			
「 Sc	45			
Ti	47			
V	51			
Cr	52			
Cr	53			
Mn	55			
Co	59			
Ni	60			
Cu	65			
Zn	66			
> Ge	72		102.724	
As	75			
Se	82			
∟ Se-1	77			
√̄> Ga	71			

Sample ID: L1510143001

Report Date/Time: Tuesday, October 27, 2015 20:12:26

Page 2

Approved: October 28, 2015

L Rb 85 √ 89 L> Rh 103 √ Mo 98 Ag 107 Cd 111 Cd 114 > In 115 Sn 118 Sb 123 Ba 135 Ce 140 L> Tb 159 Ho 165 TI 203		103.224
TI		103.505
Br 81 P 31 S 34 Sr 88 C 12 N 14 Hg 202 Dy 164 Ho-1 165 Er 166 I 127 QC Out of Limits Measurement Type Li 6 Int Std for sample	Analyte Mass Li 6	Out of Limits Message Rerun sample

Report Date/Time: Tuesday, October 27, 2015 20:12:26

Page 3

Sample ID: L1510143101

Sample Date/Time: Tuesday, October 27, 2015 20:13:20

Number of Replicates: 3 Autosampler Position: 228 Sample Description: 5

Method File: C:\NexIONData\Method\6020a.mth

Aliquot Volume (mL): Diluted to Volume (mL):

User Name: BKT Nexion300X Cumulative Autodilution Factor: 1 Nexion-ICP 200.8\6020

Concentration Results

					Ooncential	1011 1103	uito			
IS	Analyt	e Mass	Intensity	RSD	Conc.	SD	RSD	Units	Blank Intens.	Mode
Γ>	Li	6	32379.6	3.5				ug/L	26270	Standard
	Ве	9	16.7	17.3	-0.0088	0.004	49.9	ug/L	2	Standard
L	Αl	27	759732.8	2.6	10.9825	0.484	4.4	ug/L	403	Standard
Γ	Sc	45	16987.9	4.3				ug/L	14524	Standard
	Ti	47	183.3	23.4	-1.0422	0.243	23.3	ug/L	365	Standard
	V	51	1300.3	1.4	0.0901	0.009	9.5	ug/L	805	Standard
	Cr	52	8083.2	3.4	0.4510	0.056	12.4	ug/L	5481	Standard
	Cr	53	3088.6	8.2	4.8403	0.421	8.7	ug/L	268	Standard
	Mn	55	4520.3	2.2	0.9139	0.033	3.6	ug/L	670	Standard
	Co	59	309.7	1.0	0.0452	0.003	5.6	ug/L	146	Standard
	Ni	60	496.0	3.1	0.1818	0.017	9.4	ug/L	220	Standard
	Cu	65	13240.1	3.0	10.9499	0.215	2.0	ug/L	147	Standard
	Zn	66	3645.1	1.2	4.5640	0.153	3.4	ug/L	211	Standard
>	Ge	72	228104.6	1.8				ug/L	210599	Standard
	As	75	75.7	47.8	0.1779	0.048	27.1	ug/L	-47	Standard
	Se	82	62.7	15.0	0.8048	0.162	20.1	ug/L	15	Standard
L	Se-1	77	167.7	5.1	2.7965	0.250	8.9	ug/L	65	Standard
Γ>	Ga	71	45.0	11.1				mg/L	27	Standard
L	Rb	85	4469.0	5.3				ug/L	17	Standard
Γ	Υ	89	234873.3	1.2				ug/L	216672	Standard
L>	Rh	103	18.3	41.7				ug/L	18	Standard
Γ	Mo	98	2907.0	2.8	1.9452	0.067	3.4	ug/L	11	Standard
	Ag	107	71.0	13.4	0.0029	0.002	75.7	ug/L	55	Standard
	Cd	111	8.3	17.5	-0.0008	0.001	102.5	mg/L	7	Standard
	Cd	114	30.4	91.4	0.0138	0.008	57.0	ug/L	4	Standard
>	In	115	345150.8	2.4				ug/L	322525	Standard
	Sn	118	731.7	6.8	0.0197	0.010	48.1	ug/L	345	Standard
	Sb	123	65.9	1.2	0.0056	0.000	7.5	ug/L	88	Standard
L	Ва	135	2504.5	1.9	1.4394	0.012	8.0	ug/L	12	Standard
Γ	Ce	140	105.0	12.6				ug/L	37	Standard
L>	Tb	159	654393.3	3.7				ug/L	631826	Standard
Γ	Но	165	8.3	69.3				ug/L	3	Standard
	TI	203	82.0	11.0	0.0093	0.001	16.1	ug/L	7	Standard
	TI	205	60.0	14.4	0.0154	0.002	12.6	ug/L	7	Standard
	Pb	206	562.3	6.3	0.0738	0.008	10.3	ug/L	159	Standard
	Pb	207	485.3	2.1	0.0700	0.004	6.0	ug/L	120	Standard
	Pb	208	1957.0	5.2	0.0744	0.005	6.4	ug/L	503	Standard
	U	238	250.0	4.5	0.0399	0.003	7.1	ug/L	5	Standard
L>	Bi	209	354898.7	1.9				ug/L	333509	Standard

Sample ID: L1510143101

Report Date/Time: Tuesday, October 27, 2015 20:15:37

Page 1

Approved: October 28, 2015

_									•	0, , ,
	Na	23	0.0					mg/L	0	Standard
	Mg	24	10645.4	0.5	21.7073	0.827	3.8	mg/L	10	Standard
	K	39	98.3	7.8	0.8400	0.111	13.2	mg/L	32	Standard
	Ca	43	41.7	38.6	-8.7949	2.008	22.8	mg/L	85	Standard
	Fe	54	76.0	17.2	0.0265	0.033	124.9	mg/L	82	Standard
	Fe	57	308.3	6.8	0.6225	0.190	30.5	mg/L	217	Standard
L>	Sc-1	45	16987.9	4.3				mg/L	14524	Standard
	CI	35	85245.1	0.6				ug/L	53193	Standard
	Kr	83	4.0	90.1				ug/L	3	Standard
	Br	81	4810.8	10.9				ug/L	327	Standard
	Р	31	16467.3	2.2				ug/L	13329	Standard
	S	34	4028.9	5.7				ug/L	3234	Standard
	Sr	88	108.3	21.8				ug/L	87	Standard
	С	12	213.3	7.2				mg/L	103	Standard
	N	14	0.0					mg/L	0	Standard
	Hg	202	3.3	173.2				mg/L	3	Standard
	Dy	164	12.7	123.3				mg/L	10	Standard
	Ho-1	165	8.3	69.3				mg/L	3	Standard
	Er	166	13.3	114.6				mg/L	7	Standard
	I	127	100663.6	3.9				mg/L	3612	Standard

Analyte	Mass	QC Std % Recovery	Int Std % Recovery	Spike % Recovery
「> Li	6		123.259	
Be	9			
L AI	27			
「 Sc	45			
Ti	47			
V	51			
Cr	52			
Cr	53			
Mn	55			
Co	59			
Ni	60			
Cu	65			
Zn	66			
> Ge	72		108.312	
As	75			
Se	82			
L Se-1	77			
「⊳ Ga	71			

Sample ID: L1510143101

Report Date/Time: Tuesday, October 27, 2015 20:15:37

Page 2

Approved: October 28, 2015

L Rb 85 √ 89 L> Rh 103 √ Mo 98 Ag 107 Cd 111 Cd 114 In 115 Sn 118 Sb 123 Ba 135 Ce 140 L> Tb Tb 159 Ho 165 TI 203 TI 205 Pb 206 Pb 207 Pb 208 U 238 Bi 209 Na 23 Mg 24 K 39 Ca 43 Fe 54		107.015
Fe 57 -> Sc-1 45 Cl 35 Kr 83		
Br 81		
P 31 S 34		
Sr 88		
C 12		
N 14 Hg 202		
Dy 164		
Ho-1 165		
Er 166 I 127		
QC Out of Limits		
Measurement Type	Analyte Mass	Out of Limits Message
Li 6 Int Std for sample	Li 6	Rerun sample
Ti 47 Lower	Ti 47	

Report Date/Time: Tuesday, October 27, 2015 20:15:37

Page 3

Sample ID: L1510143201

Sample Date/Time: Tuesday, October 27, 2015 20:16:32

Number of Replicates: 3 Autosampler Position: 229 Sample Description: 5

Method File: C:\NexIONData\Method\6020a.mth

Aliquot Volume (mL): Diluted to Volume (mL):

User Name: BKT Nexion300X Cumulative Autodilution Factor: 1

Nexion-ICP 200.8\6020

					Ooncentra	11011 1103	uito			
IS	Analyt	e Mass	Intensity	RSD	Conc.	SD	RSD	Units	Blank Intens.	Mode
Γ>	Li	6	30031.5	5.2				ug/L	26270	Standard
	Be	9	3.3	86.6	-0.0291	0.005	17.1	ug/L	2	Standard
L	Αl	27	1464855.0	1.6	22.8660	0.917	4.0	ug/L	403	Standard
Γ	Sc	45	16629.1	5.9				ug/L	14524	Standard
	Ti	47	1416.7	15.8	6.7540	1.659	24.6	ug/L	365	Standard
	٧	51	6413.1	3.7	1.5758	0.113	7.2	ug/L	805	Standard
	Cr	52	11052.0	1.2	1.2529	0.149	11.9	ug/L	5481	Standard
	Cr	53	2235.2	6.6	3.6102	0.416	11.5	ug/L	268	Standard
	Mn	55	15954.4	2.5	4.4069	0.330	7.5	ug/L	670	Standard
	Co	59	555.0	3.2	0.1276	0.011	8.3	ug/L	146	Standard
	Ni	60	876.7	2.6	0.5411	0.053	9.8	ug/L	220	Standard
	Cu	65	10397.6	1.2	9.1245	0.587	6.4	ug/L	147	Standard
	Zn	66	18880.4	1.7	27.9910	1.922	6.9	ug/L	211	Standard
>	Ge	72	214744.2	5.0				ug/L	210599	Standard
	As	75	351.4	2.4	0.5700	0.013	2.3	ug/L	-47	Standard
	Se	82	164.9	4.2	2.5629	0.092	3.6	ug/L	15	Standard
L	Se-1	77	120.0	12.9	1.8210	0.276	15.1	ug/L	65	Standard
Γ>	Ga	71	51.7	29.6				mg/L	27	Standard
L	Rb	85	11716.2	2.4				ug/L	17	Standard
Γ	Υ	89	223230.4	5.3				ug/L	216672	Standard
L>	Rh	103	10.0	86.6				ug/L	18	Standard
Γ	Мо	98	25495.5	2.0	17.8433	0.725	4.1	ug/L	11	Standard
	Ag	107	104.7	9.6	0.0105	0.001	11.6	ug/L	55	Standard
	Cd	111	35.8	33.3	0.0187	0.009	46.0	mg/L	7	Standard
	Cd	114	199.3	8.3	0.0622	0.005	8.3	ug/L	4	Standard
>	In	115	330667.8	5.0				ug/L	322525	Standard
	Sn	118	2323.5	2.0	0.4203	0.038	8.9	ug/L	345	Standard
	Sb	123	209.0	11.6	0.0433	0.006	13.9	ug/L	88	Standard
L	Ва	135	7595.2	1.4	4.6153	0.241	5.2	ug/L	12	Standard
Γ	Ce	140	1853.4	6.3				ug/L	37	Standard
L>	Tb	159	626427.3	4.5				ug/L	631826	Standard
Γ	Но	165	43.3	6.7				ug/L	3	Standard
	TI	203	76.0	25.1	0.0080	0.003	38.8	ug/L	7	Standard
	TI	205	40.0	50.0	0.0108	0.004	41.4	ug/L	7	Standard
	Pb	206	3336.4	2.7	0.7019	0.053	7.5	ug/L	159	Standard
	Pb	207	2716.2	1.6	0.6263	0.039	6.2	ug/L	120	Standard
	Pb	208	11299.0	0.1	0.6574	0.031	4.7	ug/L	503	Standard
	U	238	71.7	52.5	0.0078	0.007	90.1	ug/L	5	Standard
L>	Bi	209	370540.3	4.2				ug/L	333509	Standard

Sample ID: L1510143201

Report Date/Time: Tuesday, October 27, 2015 20:18:49

Page 1

Approved: October 28, 2015

Page 708

L15101055 / Revision: 0 / 760 total pages

_										
	Na	23	0.0					mg/L	0	Standard
	Mg	24	3910.5	4.4	8.1421	0.798	9.8	mg/L	10	Standard
	K	39	165.0	8.0	1.5880	0.142	9.0	mg/L	32	Standard
	Ca	43	48.3	6.0	-7.6876	0.308	4.0	mg/L	85	Standard
	Fe	54	177.6	14.0	0.2474	0.056	22.8	mg/L	82	Standard
	Fe	57	373.3	17.3	1.1980	0.344	28.7	mg/L	217	Standard
L>	Sc-1	45	16629.1	5.9				mg/L	14524	Standard
	CI	35	83990.2	2.0				ug/L	53193	Standard
	Kr	83	5.3	47.2				ug/L	3	Standard
	Br	81	14470.2	1.5				ug/L	327	Standard
	Р	31	16297.1	3.1				ug/L	13329	Standard
	S	34	3882.2	2.8				ug/L	3234	Standard
	Sr	88	145.0	26.9				ug/L	87	Standard
	С	12	370.0	17.7				mg/L	103	Standard
	N	14	0.0					mg/L	0	Standard
	Hg	202	13.3	173.2				mg/L	3	Standard
	Dy	164	72.1	19.8				mg/L	10	Standard
	Ho-1	165	43.3	6.7				mg/L	3	Standard
	Er	166	26.7	78.1				mg/L	7	Standard
	I	127	8732.5	4.5				mg/L	3612	Standard

	Analyte	Mass	QC Std % Recovery	Int Std % Recovery	Spike % Recovery
Γ>	Li	6		114.320	
	Ве	9			
L	Al	27			
Γ	Sc	45			
	Ti	47			
	V	51			
	Cr	52			
	Cr	53			
	Mn	55			
	Co	59			
	Ni	60			
	Cu	65			
	Zn	66			
>	Ge	72		101.968	
	As	75			
	Se	82			
L	Se-1	77			
Γ>	Ga	71			

Sample ID: L1510143201

Report Date/Time: Tuesday, October 27, 2015 20:18:49

Page 2

Approved: October 28, 2015

```
Rb
             85
  Υ
             89
| > Rh
             103
  Мо
             98
             107
  Ag
  Cd
             111
  Cd
             114
                                                   102.525
| > In
            115
  Sn
            118
             123
  Sb
  Ва
             135
             140
  Ce
L> Tb
             159
  Но
             165
  ΤI
            203
  ΤI
            205
  Pb
            206
  Pb
            207
            208
  Pb
  U
            238
            209
L> Bi
                                                   111.103
  Na
             23
  Mg
             24
             39
  Κ
  Ca
             43
  Fe
             54
  Fe
             57
             45
|> Sc-1
  CI
             35
             83
  Kr
  Br
             81
  Ρ
             31
  S
              34
  Sr
             88
  С
              12
  Ν
             14
            202
  Hg
  Dy
             164
  Ho-1
             165
             166
  Er
             127
  QC Out of Limits
  Measurement Type
                                                  Out of Limits Message
                           Analyte Mass
```

Report Date/Time: Tuesday, October 27, 2015 20:18:49

Page 3

Sample ID: L1510143401

Sample Date/Time: Tuesday, October 27, 2015 20:19:43

Number of Replicates: 3 Autosampler Position: 230 Sample Description: 1

Method File: C:\NexIONData\Method\6020a.mth

Aliquot Volume (mL): Diluted to Volume (mL):

User Name: BKT Nexion300X Cumulative Autodilution Factor: 1

Nexion-ICP 200.8\6020

	Concentration Results									
IS	Analyt	e Mass	Intensity	RSD	Conc.	SD	RSD	Units	Blank Intens.	Mode
Γ>	Li	6	30717.8	2.1				ug/L	26270	Standard
	Ве	9	10.0	86.6	-0.0182	0.014	78.8	ug/L	2	Standard
L	Αl	27	3604452.2	2.7	54.9901	2.392	4.3	ug/L	403	Standard
Γ	Sc	45	16452.3	3.8				ug/L	14524	Standard
	Ti	47	964.7	1.8	3.9355	0.309	7.8	ug/L	365	Standard
	٧	51	1087.7	18.6	0.0526	0.057	108.7	ug/L	805	Standard
	Cr	52	10403.2	2.9	1.1137	0.153	13.8	ug/L	5481	Standard
	Cr	53	11854.6	2.0	21.4855	0.635	3.0	ug/L	268	Standard
	Mn	55	28931.3	2.2	8.3150	0.490	5.9	ug/L	670	Standard
	Co	59	681.3	4.0	0.1678	0.004	2.5	ug/L	146	Standard
	Ni	60	1686.4	7.0	1.2576	0.152	12.1	ug/L	220	Standard
	Cu	65	59949.4	0.6	53.6728	2.154	4.0	ug/L	147	Standard
	Zn	66	15285.4	2.0	22.6346	1.181	5.2	ug/L	211	Standard
>	Ge	72	213651.7	3.5				ug/L	210599	Standard
	As	75	455.9	9.3	0.7191	0.056	7.7	ug/L	-47	Standard
	Se	82	220.9	6.0	3.5126	0.250	7.1	ug/L	15	Standard
L	Se-1	77	597.7	9.4	14.0927	1.111	7.9	ug/L	65	Standard
Γ>	Ga	71	146.7	22.2				mg/L	27	Standard
L	Rb	85	22217.9	1.7				ug/L	17	Standard
Γ	Υ	89	229605.1	1.0				ug/L	216672	Standard
L>	Rh	103	25.0	40.0				ug/L	18	Standard
Γ	Mo	98	14399.1	1.1	10.0191	0.422	4.2	ug/L	11	Standard
	Ag	107	164.0	7.0	0.0228	0.003	14.9	ug/L	55	Standard
	Cd	111	13.1	28.3	0.0027	0.002	85.3	mg/L	7	Standard
	Cd	114	91.8	46.1	0.0312	0.011	36.8	ug/L	4	Standard
>	In	115	332430.5	3.1				ug/L	322525	Standard
	Sn	118	2356.9	6.0	0.4250	0.048	11.3	ug/L	345	Standard
	Sb	123	286.7	11.0	0.0629	0.006	9.3	ug/L	88	Standard
L	Ва	135	13739.6	1.5	8.3169	0.343	4.1	ug/L	12	Standard
Γ	Ce	140	430.0	13.4				ug/L	37	Standard
L>	Tb	159	628018.9	3.7				ug/L	631826	Standard
Γ	Но	165	25.0	20.0				ug/L	3	Standard
	TI	203	81.3	12.1	0.0094	0.002	18.0	ug/L	7	Standard
	TI	205	46.7	6.2	0.0128	0.001	4.8	ug/L	7	Standard
	Pb	206	2328.8	1.2	0.5060	0.017	3.4	ug/L	159	Standard
	Pb	207	1913.5	2.9	0.4554	0.020	4.5	ug/L	120	Standard
	Pb	208	7850.8	2.1	0.4727	0.026	5.4	ug/L	503	Standard
	U	238	1211.7	8.9	0.2149	0.017	7.8	ug/L	5	Standard
L>	Bi	209	347682.3	2.8				ug/L	333509	Standard

Sample ID: L1510143401

Report Date/Time: Tuesday, October 27, 2015 20:22:00

Page 1

_										
	Na	23	1.7	173.2				mg/L	0	Standard
	Mg	24	56174.0	1.9	118.4798	6.271	5.3	mg/L	10	Standard
	K	39	451.7	7.0	4.7737	0.514	10.8	mg/L	32	Standard
	Ca	43	135.0	7.4	4.7563	1.209	25.4	mg/L	85	Standard
	Fe	54	118.9	11.3	0.1233	0.020	16.5	mg/L	82	Standard
	Fe	57	336.7	3.1	0.9416	0.159	16.9	mg/L	217	Standard
L>	Sc-1	45	16452.3	3.8				mg/L	14524	Standard
	CI	35	88892.7	0.4				ug/L	53193	Standard
	Kr	83	2.7	94.4				ug/L	3	Standard
	Br	81	20266.9	3.7				ug/L	327	Standard
	Р	31	18568.0	1.3				ug/L	13329	Standard
	S	34	3978.9	0.6				ug/L	3234	Standard
	Sr	88	136.7	13.9				ug/L	87	Standard
	С	12	586.7	23.6				mg/L	103	Standard
	N	14	0.0					mg/L	0	Standard
	Hg	202	13.3	114.6				mg/L	3	Standard
	Dy	164	15.2	73.2				mg/L	10	Standard
	Ho-1	165	25.0	20.0				mg/L	3	Standard
	Er	166	30.0	57.7				mg/L	7	Standard
	I	127	484421.9	3.1				mg/L	3612	Standard

Analyte	Mass	QC Std % Recovery	Int Std % Recovery	Spike % Recovery
「> Li	6		116.933	
Be	9			
L AI	27			
「 Sc	45			
Ti	47			
V	51			
Cr	52			
Cr	53			
Mn	55			
Co	59			
Ni	60			
Cu	65			
Zn	66			
> Ge	72		101.450	
As	75			
Se	82			
L Se-1	77			
「⊳ Ga	71			

Sample ID: L1510143401

Report Date/Time: Tuesday, October 27, 2015 20:22:00

Page 2

Approved: October 28, 2015

```
Rb
             85
  Υ
             89
| > Rh
             103
  Мо
             98
             107
  Ag
  Cd
             111
  Cd
             114
                                                   103.071
| > In
            115
  Sn
            118
             123
  Sb
  Ва
             135
             140
  Ce
L> Tb
             159
  Но
             165
  ΤI
            203
  ΤI
            205
  Pb
            206
  Pb
            207
            208
  Pb
  U
            238
            209
L> Bi
                                                   104.250
  Na
             23
  Mg
             24
             39
  Κ
  Ca
             43
  Fe
             54
  Fe
             57
             45
|> Sc-1
  CI
             35
             83
  Kr
  Br
             81
  Ρ
             31
  S
              34
  Sr
             88
  С
              12
  Ν
             14
            202
  Hg
  Dy
             164
  Ho-1
             165
             166
  Er
             127
  QC Out of Limits
  Measurement Type
                                                  Out of Limits Message
                           Analyte Mass
```

Report Date/Time: Tuesday, October 27, 2015 20:22:00

Page 3

Sample ID: L1510144101

Sample Date/Time: Tuesday, October 27, 2015 20:22:54

Number of Replicates: 3 Autosampler Position: 231 Sample Description: 1

Method File: C:\NexIONData\Method\6020a.mth

Aliquot Volume (mL): Diluted to Volume (mL):

User Name: BKT Nexion300X Cumulative Autodilution Factor: 1 Nexion-ICP 200.8\6020

Concentration Results

					0000		aito			
IS	Analyt	e Mass	Intensity	RSD	Conc.	SD	RSD	Units	Blank Intens.	Mode
Γ>	Li	6	31297.3	3.3				ug/L	26270	Standard
	Be	9	8.3	173.2	-0.0209	0.024	115.1	ug/L	2	Standard
L	Al	27	5204370.6	3.6	77.8920	0.666	0.9	ug/L	403	Standard
Γ	Sc	45	16907.8	6.5				ug/L	14524	Standard
	Ti	47	4709.4	31.6	26.7633	8.680	32.4	ug/L	365	Standard
	V	51	1396.0	40.6	0.1325	0.156	117.4	ug/L	805	Standard
	Cr	52	10758.8	0.6	1.1469	0.037	3.2	ug/L	5481	Standard
	Cr	53	16707.5	3.0	29.9019	0.483	1.6	ug/L	268	Standard
	Mn	55	25389.3	3.4	7.1034	0.244	3.4	ug/L	670	Standard
	Co	59	750.7	1.2	0.1853	0.006	3.3	ug/L	146	Standard
	Ni	60	1752.4	1.5	1.2838	0.035	2.7	ug/L	220	Standard
	Cu	65	50918.1	2.2	44.6735	0.860	1.9	ug/L	147	Standard
	Zn	66	27937.8	3.3	41.0507	0.858	2.1	ug/L	211	Standard
>	Ge	72	217678.8	1.5				ug/L	210599	Standard
	As	75	109.2	58.1	0.2278	0.085	37.3	ug/L	-47	Standard
	Se	82	76.4	5.6	1.0735	0.056	5.2	ug/L	15	Standard
L	Se-1	77	949.4	1.6	22.6904	0.710	3.1	ug/L	65	Standard
Γ>	Ga	71	120.0	19.1				mg/L	27	Standard
L	Rb	85	41760.8	0.2				ug/L	17	Standard
Γ	Υ	89	229102.7	4.1				ug/L	216672	Standard
L>	Rh	103	33.3	37.7				ug/L	18	Standard
Γ	Мо	98	12901.2	1.4	9.0411	0.162	1.8	ug/L	11	Standard
	Ag	107	162.3	4.1	0.0226	0.002	7.4	ug/L	55	Standard
	Cd	111	20.1	15.0	0.0076	0.002	25.9	mg/L	7	Standard
	Cd	114	108.1	22.2	0.0362	0.007	18.5	ug/L	4	Standard
>	In	115	329792.4	8.0				ug/L	322525	Standard
	Sn	118	6843.2	2.2	1.5360	0.042	2.7	ug/L	345	Standard
	Sb	123	327.4	10.4	0.0741	0.008	11.3	ug/L	88	Standard
L	Ва	135	71342.3	1.8	43.5961	0.704	1.6	ug/L	12	Standard
Γ	Ce	140	666.7	3.4				ug/L	37	Standard
L>	Tb	159	644730.2	0.6				ug/L	631826	Standard
Γ	Но	165	28.3	20.4				ug/L	3	Standard
	TI	203	78.0	5.1	0.0087	0.001	7.7	ug/L	7	Standard
	TI	205	30.0	16.7	0.0090	0.001	12.3	ug/L	7	Standard
	Pb	206	2001.5	1.7	0.4195	0.004	1.0	ug/L	159	Standard
	Pb	207	1647.8	0.7	0.3779	0.007	1.8	ug/L	120	Standard
	Pb	208	6535.9	1.9	0.3781	0.012	3.3	ug/L	503	Standard
	U	238	916.0	1.8	0.1592	0.004	2.8	ug/L	5	Standard
L>	Bi	209	352516.9	1.0				ug/L	333509	Standard

Sample ID: L1510144101

Report Date/Time: Tuesday, October 27, 2015 20:25:11

Page 1

Approved: October 28, 2015

Γ	Na	23	3.3	86.6				mg/L	0	Standard
	Mg	24	62853.4	0.9	129.1361	7.057	5.5	mg/L	10	Standard
	K	39	706.7	5.0	7.3706	0.407	5.5	mg/L	32	Standard
	Ca	43	150.0	11.5	6.3027	1.746	27.7	mg/L	85	Standard
	Fe	54	187.3	14.5	0.2626	0.070	26.7	mg/L	82	Standard
	Fe	57	368.3	8.0	1.1280	0.188	16.7	mg/L	217	Standard
L>	Sc-1	45	16907.8	6.5				mg/L	14524	Standard
	CI	35	86973.6	8.0				ug/L	53193	Standard
	Kr	83	4.0	86.6				ug/L	3	Standard
	Br	81	4470.7	5.5				ug/L	327	Standard
	Р	31	18399.5	2.2				ug/L	13329	Standard
	S	34	4052.2	1.8				ug/L	3234	Standard
	Sr	88	158.3	31.8				ug/L	87	Standard
	С	12	896.7	4.2				mg/L	103	Standard
	N	14	0.0					mg/L	0	Standard
	Hg	202	80.0	50.0				mg/L	3	Standard
	Dy	164	15.5	33.7				mg/L	10	Standard
	Ho-1	165	28.3	20.4				mg/L	3	Standard
	Er	166	23.3	65.5				mg/L	7	Standard
	I	127	2784034.3	2.2				mg/L	3612	Standard

Analyte	Mass	QC Std % Recovery	Int Std % Recovery	Spike % Recovery
「⊳ Li	6		119.139	
Be	9			
L AI	27			
「 Sc	45			
Ti	47			
V	51			
Cr	52			
Cr	53			
Mn	55			
Co	59			
Ni	60			
Cu	65			
Zn	66			
> Ge	72		103.362	
As	75			
Se	82			
L Se-1	77			
「⊳ Ga	71			

Sample ID: L1510144101

Report Date/Time: Tuesday, October 27, 2015 20:25:11

Page 2

Approved: October 28, 2015

L Rb	85			
[Y	89			
$\lfloor_>$ Rh	103			
Г Мо	98			
Ag	107			
Cd	111			
Cd	114			
 > In	115		102.253	
Sn	118			
Sb	123			
L Ba	135			
Ce	140			
> Tb	159			
Ho	165			
j TI	203			
į тı	205			
Pb	206			
Pb	207			
Pb	208			
Ü	238			
∟> Bi	209		105.699	
Na	23			
Mg	24			
ίκ	39			
Ca	43			
Fe	54			
Fe	57			
_> Sc-1	45			
CI	35			
Kr	83			
Br	81			
Р	31			
S	34			
Sr	88			
С	12			
N	14			
Hg	202			
Dy	164			
Ho-1	165			
Er	166			
I	127			
QC O	ut of Limits			
Measurement Type		Analyte Mas	s Out of Limits Messag	е

Report Date/Time: Tuesday, October 27, 2015 20:25:11

Page 3

Sample ID: QC Std 6

Sample Date/Time: Tuesday, October 27, 2015 20:26:08

Number of Replicates: 3 Autosampler Position: 101 Sample Description:

Method File: C:\NexIONData\Method\6020a.mth

Aliquot Volume (mL): Diluted to Volume (mL):

User Name: BKT Nexion300X Cumulative Autodilution Factor: 1

Nexion-ICP 200.8\6020

0		44:	D	14.
COH	cen	tration	Resu	ILS -

					Concential		uito			
IS	Analyt	e Mass	Intensity	RSD	Conc.	SD	RSD	Units	Blank Intens.	Mode
Γ>	Li	6	29767.6	3.0				ug/L	26270	Standard
	Be	9	29582.2	3.6	50.2837	0.389	8.0	ug/L	2	Standard
L	Αl	27	3205697.0	2.8	50.4410	0.153	0.3	ug/L	403	Standard
Γ	Sc	45	17017.9	1.6				ug/L	14524	Standard
	Ti	47	17976.3	1.7	108.5851	2.526	2.3	ug/L	365	Standard
	٧	51	192580.1	0.8	54.0895	0.477	0.9	ug/L	805	Standard
	Cr	52	236094.8	1.3	52.6855	1.038	2.0	ug/L	5481	Standard
	Cr	53	29724.1	0.9	53.6829	0.729	1.4	ug/L	268	Standard
	Mn	55	180350.4	0.5	52.6744	0.241	0.5	ug/L	670	Standard
	Co	59	170280.2	0.8	52.4085	0.127	0.2	ug/L	146	Standard
	Ni	60	59926.0	1.6	51.4615	1.124	2.2	ug/L	220	Standard
	Cu	65	57726.1	1.6	50.7319	1.126	2.2	ug/L	147	Standard
	Zn	66	34852.4	0.3	51.4351	0.389	8.0	ug/L	211	Standard
>	Ge	72	217427.3	0.6				ug/L	210599	Standard
	As	75	37103.4	0.8	51.3476	0.204	0.4	ug/L	-47	Standard
	Se	82	3212.9	0.9	52.5011	0.199	0.4	ug/L	15	Standard
L	Se-1	77	2166.8	1.9	53.4225	0.912	1.7	ug/L	65	Standard
Γ>	Ga	71	26.7	60.3				mg/L	27	Standard
L	Rb	85	553.3	8.9				ug/L	17	Standard
Γ	Υ	89	228214.9	2.5				ug/L	216672	Standard
L>	Rh	103	43.3	26.6				ug/L	18	Standard
Γ	Мо	98	148548.0	0.4	101.2046	0.967	1.0	ug/L	11	Standard
	Ag	107	240146.7	1.2	48.8347	0.704	1.4	ug/L	55	Standard
	Cd	111	74184.8	0.4	50.3213	0.482	1.0	mg/L	7	Standard
	Cd	114	184840.8	0.3	51.2777	0.182	0.4	ug/L	4	Standard
>	In	115	339303.9	0.6				ug/L	322525	Standard
	Sn	118	209578.0	1.2	50.1109	0.617	1.2	ug/L	345	Standard
	Sb	123	193908.1	0.3	48.8301	0.230	0.5	ug/L	88	Standard
L	Ва	135	81974.9	2.1	48.6907	0.886	1.8	ug/L	12	Standard
Γ	Ce	140	321.7	12.6				ug/L	37	Standard
L>	Tb	159	651192.3	1.2				ug/L	631826	Standard
Γ	Но	165	3.3	86.6				ug/L	3	Standard
	TI	203	334621.4	1.3	50.2901	0.728	1.4	ug/L	7	Standard
	TI	205	227266.8	0.6	50.7132	0.171	0.3	ug/L	7	Standard
	Pb	206	218905.1	0.8	53.7231	0.634	1.2	ug/L	159	Standard
	Pb	207	195968.9	0.9	53.0396	0.821	1.5	ug/L	120	Standard
	Pb	208	765016.6	0.5	51.8142	0.608	1.2	ug/L	503	Standard
	U	238	269851.5	0.5	49.4606	0.605	1.2	ug/L	5	Standard
L>	Bi	209	343721.5	0.7				ug/L	333509	Standard

Sample ID: QC Std 6

Report Date/Time: Tuesday, October 27, 2015 20:28:25

Page 1

Approved: October 28, 2015

_										<u> </u>
	Na	23	3.3	173.2				mg/L	0	Standard
	Mg	24	2528.5	4.9	5.1118	0.275	5.4	mg/L	10	Standard
	K	39	448.3	16.4	4.5663	0.831	18.2	mg/L	32	Standard
	Ca	43	73.3	10.4	-4.3909	1.110	25.3	mg/L	85	Standard
	Fe	54	2345.2	4.0	4.7728	0.193	4.0	mg/L	82	Standard
	Fe	57	891.7	4.6	5.3342	0.400	7.5	mg/L	217	Standard
L>	Sc-1	45	17017.9	1.6				mg/L	14524	Standard
	CI	35	74676.3	2.5				ug/L	53193	Standard
	Kr	83	3.3	17.3				ug/L	3	Standard
	Br	81	473.3	6.1				ug/L	327	Standard
	Р	31	16967.8	3.1				ug/L	13329	Standard
	S	34	4382.3	8.8				ug/L	3234	Standard
	Sr	88	113.3	11.1				ug/L	87	Standard
	С	12	136.7	23.5				mg/L	103	Standard
	N	14	0.0					mg/L	0	Standard
	Hg	202	0.0					mg/L	3	Standard
	Dy	164	15.1	94.8				mg/L	10	Standard
	Ho-1	165	3.3	86.6				mg/L	3	Standard
	Er	166	33.3	62.5				mg/L	7	Standard
	I	127	29104.8	52.9				mg/L	3612	Standard

Analyte	Mass	QC Std % Recovery	Int Std % Recovery	Spike % Recovery
「> Li	6			
Be	9	100.567		
L AI	27	100.882		
「 Sc	45			
Ti	47	108.585		
V	51	108.179		
Cr	52	105.371		
Cr	53			
Mn	55	105.349		
Co	59	104.817		
Ni	60	102.923		
Cu	65	101.464		
Zn	66	102.870		
> Ge	72		103.242	
As	75	102.695		
Se	82	105.002		
∟ Se-1	77			
「⊳ Ga	71			

Sample ID: QC Std 6

Report Date/Time: Tuesday, October 27, 2015 20:28:25

Page 2

Approved: October 28, 2015

l 51		
L Rb 85		
Γ Y 89		
L> Rh 103	404.005	
「 Mo 98	101.205	
Ag 107	97.669	
Cd 111 Cd 114	100.643	
·		105.202
> In 115 Sn 118	100.222	105.202
Sb 123	97.660	
Ba 135	97.381	
[Се 140	97.301	
Ce 140 _{>} Tb 159		
[> 10 139		
TI 203	100.580	
TI 205	100.300	
Pb 206		
Pb 207		
Pb 208	103.628	
U 238	98.921	
> Bi 209		103.062
Na 23		
Mg 24		
K 39		
Ca 43		
Fe 54		
Fe 57		
L> Sc-1 45		
CI 35		
Kr 83		
Br 81		
P 31		
S 34		
Sr 88		
C 12		
N 14		
Hg 202		
Dy 164		
Ho-1 165		
Er 166		
1 127		
QC Out of Limits		
Measurement Type	Analyte Mass	Out of Limits Message

Sample ID: QC Std 6

Report Date/Time: Tuesday, October 27, 2015 20:28:25

Page 3

Sample ID: QC Std 7

Sample Date/Time: Tuesday, October 27, 2015 20:29:19

Number of Replicates: 3 Autosampler Position: 102 Sample Description:

Method File: C:\NexIONData\Method\6020a.mth

Aliquot Volume (mL): Diluted to Volume (mL):

User Name: BKT Nexion300X Cumulative Autodilution Factor: 1

Nexion-ICP 200.8\6020

						Concentrat	tion Res	sults			
1	s i	Analyte N	/lass	Intensity	RSD	Conc.	SD	RSD	Units	Blank Intens.	Mode
Γ		Li	6	30176.7	1.7				ug/L	26270	Standard
i	ı	Be	9	25.0	0.0	0.0071	0.001	10.2	ug/L	2	Standard
i	,	Al	27	1638.4	3.9	0.0049	0.001	13.6	ug/L	403	Standard
Ī	•	Sc	45	17179.7	0.4				ug/L	14524	Standard
i	•	Ti	47	55.0	19.7	-1.7795	0.070	3.9	ug/L	365	Standard
ĺ	,	V	51	918.5	7.3	-0.0017	0.022	1334.5	ug/L	805	Standard
ĺ	(Cr	52	5611.0	2.2	-0.0341	0.040	116.8	ug/L	5481	Standard
ĺ	(Cr	53	628.3	20.4	0.6104	0.225	36.9	ug/L	268	Standard
	ı	Mn	55	647.0	4.3	-0.1640	0.007	4.0	ug/L	670	Standard
	(Co	59	262.0	6.5	0.0346	0.005	15.9	ug/L	146	Standard
	ı	Ni	60	235.7	9.8	-0.0237	0.022	92.7	ug/L	220	Standard
	(Cu	65	160.3	12.4	-0.0381	0.016	42.1	ug/L	147	Standard
	2	Zn	66	156.7	3.3	-0.3950	0.007	1.8	ug/L	211	Standard
	> (Ge	72	218525.4	1.3				ug/L	210599	Standard
	1	As	75	4.0	500.6	0.0835	0.028	33.4	ug/L	-47	Standard
	;	Se	82	14.6	14.2	0.0621	0.033	53.5	ug/L	15	Standard
L	. ;	Se-1	77	79.0	8.9	0.7443	0.151	20.3	ug/L	65	Standard
Γ	> (Ga	71	16.7	17.3				mg/L	27	Standard
L		Rb	85	18.3	63.0				ug/L	17	Standard
Γ	•	Υ	89	230461.2	0.7				ug/L	216672	Standard
L	> I	Rh	103	15.0	57.7				ug/L	18	Standard
Γ	١	Мо	98	153.2	8.0	0.1031	0.009	8.5	ug/L	11	Standard
	1	Ag	107	101.3	8.2	0.0095	0.002	20.0	ug/L	55	Standard
		Cd	111	26.4	16.9	0.0117	0.003	25.3	mg/L	7	Standard
	(Cd	114	49.8	20.6	0.0193	0.003	14.2	ug/L	4	Standard
	> I	In	115	335739.5	1.0				ug/L	322525	Standard
		Sn	118	565.0	4.9	-0.0157	0.007	47.0	ug/L	345	Standard
	;	Sb	123	160.5	18.0	0.0302	0.008	25.4	ug/L	88	Standard
L		Ва	135	40.0	15.2	0.0001	0.003	4019.0	ug/L	12	Standard
Γ	(Ce	140	10.0	50.0				ug/L	37	Standard
L		Tb	159	631644.0	0.1				ug/L	631826	Standard
Γ		Но	165	6.7	114.6				ug/L	3	Standard
		TI	203	93.7	33.7	0.0113	0.005	40.9	ug/L	7	Standard
		TI	205	70.0	14.3	0.0180	0.002	12.9	ug/L	7	Standard
	I	Pb	206	218.0	5.7	-0.0066	0.003	47.9	ug/L	159	Standard
- 1			007	000.7	400		0 000	040.7	- /1	400	01 1 1

-0.0026

-0.0057

0.0110

Sample ID: QC Std 7

208

238

209

Report Date/Time: Tuesday, October 27, 2015 20:31:35

202.7

3.5

21.2

0.7

714.3

85.0

344747.4

Page 1

Pb

Pb

U

Bi

Approved: October 28, 2015

Standard

Standard

Standard

Standard

503

333509

5

Page 720

0.006 219.7

30.5

30.7

0.002

0.003

ug/L

ug/L

ug/L

ug/L

Na	23	0.0					mg/L	0	Standard
Mg	24	26.7	28.6	0.0134	0.015	113.9	mg/L	10	Standard
K	39	25.0	40.0	0.0524	0.105	200.2	mg/L	32	Standard
Ca	43	31.7	59.8	-10.1852	2.595	25.5	mg/L	85	Standard
Fe	54	84.5	10.3	0.0415	0.017	41.8	mg/L	82	Standard
Fe	57	311.7	11.8	0.6193	0.301	48.5	mg/L	217	Standard
Sc-1	45	17179.7	0.4				mg/L	14524	Standard
CI	35	74537.6	1.4				ug/L	53193	Standard
Kr	83	6.0	28.9					3	Standard
Br	81	363.3	20.3				ug/L	327	Standard
Р	31	16557.4	2.1				ug/L	13329	Standard
S	34	4232.3	0.9				ug/L	3234	Standard
Sr	88	118.3	20.8				ug/L	87	Standard
С	12	146.7	40.0				mg/L	103	Standard
N	14	0.0					mg/L	0	Standard
Hg	202	3.3	173.2				mg/L	3	Standard
Dy	164	13.2	114.0				mg/L	10	Standard
Ho-1	165	6.7	114.6				mg/L	3	Standard
Er	166	3.3	173.2				mg/L	7	Standard
I	127	7823.7	7.8				mg/L	3612	Standard
	Mg K Ca Fe Fe Sc-1 CI Kr Br P S C C N Hg Dy Ho-1	Mg 24 K 39 Ca 43 Fe 54 Fe 57 Sc-1 45 Cl 35 Kr 83 Br 81 P 31 S 34 Sr 88 C 12 N 14 Hg 202 Dy 164 Ho-1 165 Er 166	Mg 24 26.7 K 39 25.0 Ca 43 31.7 Fe 54 84.5 Fe 57 311.7 Sc-1 45 17179.7 Cl 35 74537.6 Kr 83 6.0 Br 81 363.3 P 31 16557.4 S 34 4232.3 Sr 88 118.3 C 12 146.7 N 14 0.0 Hg 202 3.3 Dy 164 13.2 Ho-1 165 6.7 Er 166 3.3	Mg 24 26.7 28.6 K 39 25.0 40.0 Ca 43 31.7 59.8 Fe 54 84.5 10.3 Fe 57 311.7 11.8 Sc-1 45 17179.7 0.4 Cl 35 74537.6 1.4 Kr 83 6.0 28.9 Br 81 363.3 20.3 20.3 P 31 16557.4 2.1 S 34 4232.3 0.9 Sr 88 118.3 20.8 C 12 146.7 40.0 N 14 0.0 40.0 Hg 202 3.3 173.2 Dy 164 13.2 114.0 Ho-1 165 6.7 114.6 Er 166 3.3 173.2	Mg 24 26.7 28.6 0.0134 K 39 25.0 40.0 0.0524 Ca 43 31.7 59.8 -10.1852 Fe 54 84.5 10.3 0.0415 Fe 57 311.7 11.8 0.6193 Sc-1 45 17179.7 0.4 0.6193 Cl 35 74537.6 1.4 4 1.4 4	Mg 24 26.7 28.6 0.0134 0.015 K 39 25.0 40.0 0.0524 0.105 Ca 43 31.7 59.8 -10.1852 2.595 Fe 54 84.5 10.3 0.0415 0.017 Fe 57 311.7 11.8 0.6193 0.301 Sc-1 45 17179.7 0.4 7.7 <th>Mg 24 26.7 28.6 0.0134 0.015 113.9 K 39 25.0 40.0 0.0524 0.105 200.2 Ca 43 31.7 59.8 -10.1852 2.595 25.5 Fe 54 84.5 10.3 0.0415 0.017 41.8 Fe 57 311.7 11.8 0.6193 0.301 48.5 Sc-1 45 17179.7 0.4 0.6193 0.301 48.5 Sc-1 45 17179.7 0.4 0.6193 0.301 48.5 Sc-1 45 17179.7 0.4 0.6193 0.301 48.5 Kr 83 6.0 28.9 8 1.2<</th> <th>Mg 24 26.7 28.6 0.0134 0.015 113.9 mg/L K 39 25.0 40.0 0.0524 0.105 200.2 mg/L Ca 43 31.7 59.8 -10.1852 2.595 25.5 mg/L Fe 54 84.5 10.3 0.0415 0.017 41.8 mg/L Fe 57 311.7 11.8 0.6193 0.301 48.5 mg/L Sc-1 45 17179.7 0.4 0.6193 0.301 48.5 mg/L Kr 83 6.0 28.9 mg/L ug/L ug/L Kr 83 6.0 28.9 ug/L ug/L ug/L P 31 16557.4 2.1 ug/L ug/L ug/L Sr 88 118.3 20.8 ug/L ug/L ug/L C 12 146.7 40.0 ug/L ug/L ug/L Mg/L<!--</th--><th>Mg 24 26.7 28.6 0.0134 0.015 113.9 mg/L 10 K 39 25.0 40.0 0.0524 0.105 200.2 mg/L 32 Ca 43 31.7 59.8 -10.1852 2.595 25.5 mg/L 85 Fe 54 84.5 10.3 0.0415 0.017 41.8 mg/L 82 Fe 57 311.7 11.8 0.6193 0.301 48.5 mg/L 217 Sc-1 45 17179.7 0.4 mg/L 48.5 mg/L 217 Sc-1 45 17179.7 0.4 mg/L 48.5 mg/L 14524 Cl 35 74537.6 1.4 mg/L 3</th></th>	Mg 24 26.7 28.6 0.0134 0.015 113.9 K 39 25.0 40.0 0.0524 0.105 200.2 Ca 43 31.7 59.8 -10.1852 2.595 25.5 Fe 54 84.5 10.3 0.0415 0.017 41.8 Fe 57 311.7 11.8 0.6193 0.301 48.5 Sc-1 45 17179.7 0.4 0.6193 0.301 48.5 Sc-1 45 17179.7 0.4 0.6193 0.301 48.5 Sc-1 45 17179.7 0.4 0.6193 0.301 48.5 Kr 83 6.0 28.9 8 1.2<	Mg 24 26.7 28.6 0.0134 0.015 113.9 mg/L K 39 25.0 40.0 0.0524 0.105 200.2 mg/L Ca 43 31.7 59.8 -10.1852 2.595 25.5 mg/L Fe 54 84.5 10.3 0.0415 0.017 41.8 mg/L Fe 57 311.7 11.8 0.6193 0.301 48.5 mg/L Sc-1 45 17179.7 0.4 0.6193 0.301 48.5 mg/L Kr 83 6.0 28.9 mg/L ug/L ug/L Kr 83 6.0 28.9 ug/L ug/L ug/L P 31 16557.4 2.1 ug/L ug/L ug/L Sr 88 118.3 20.8 ug/L ug/L ug/L C 12 146.7 40.0 ug/L ug/L ug/L Mg/L </th <th>Mg 24 26.7 28.6 0.0134 0.015 113.9 mg/L 10 K 39 25.0 40.0 0.0524 0.105 200.2 mg/L 32 Ca 43 31.7 59.8 -10.1852 2.595 25.5 mg/L 85 Fe 54 84.5 10.3 0.0415 0.017 41.8 mg/L 82 Fe 57 311.7 11.8 0.6193 0.301 48.5 mg/L 217 Sc-1 45 17179.7 0.4 mg/L 48.5 mg/L 217 Sc-1 45 17179.7 0.4 mg/L 48.5 mg/L 14524 Cl 35 74537.6 1.4 mg/L 3</th>	Mg 24 26.7 28.6 0.0134 0.015 113.9 mg/L 10 K 39 25.0 40.0 0.0524 0.105 200.2 mg/L 32 Ca 43 31.7 59.8 -10.1852 2.595 25.5 mg/L 85 Fe 54 84.5 10.3 0.0415 0.017 41.8 mg/L 82 Fe 57 311.7 11.8 0.6193 0.301 48.5 mg/L 217 Sc-1 45 17179.7 0.4 mg/L 48.5 mg/L 217 Sc-1 45 17179.7 0.4 mg/L 48.5 mg/L 14524 Cl 35 74537.6 1.4 mg/L 3

Analyte	Mass	QC Std % Recovery	Int Std % Recovery	Spike % Recovery
「> Li	6			
Be	9			
L AI	27			
「 Sc	45			
Ti	47			
V	51			
Cr	52			
Cr	53			
Mn	55			
Co	59			
Ni	60			
Cu	65			
Zn	66			
> Ge	72		103.764	
As	75			
Se	82			
∟ Se-1	77			
「⊳ Ga	71			

Sample ID: QC Std 7

Report Date/Time: Tuesday, October 27, 2015 20:31:35

Page 2

Approved: October 28, 2015

L Rb	85			
[Y	89			
∟> Rh	103			
[Mo	98			
Ag	107			
Ag Cd	111			
Cd	114			
	115			104.097
Sn	118			10 1.007
Sb	123			
L Ba	135			
∟ Ce	140			
Tb	159			
Ho	165			
TI	203			
TI	205			
Pb	206			
Pb	207			
Pb	208			
į U	238			
Ĺ _{>} Bi	209			103.370
- Na	23			
Mg	24			
K	39			
Ca	43			
Fe	54			
Fe	57			
_> Sc-1	45			
CI	35			
Kr	83			
Br	81			
Р	31			
S	34			
Sr	88			
С	12			
N	14			
Hg	202			
Dy	164			
Ho-1	165			
Er	166			
00.0	127			
	ut of Limits			
Measure	ement Type	Analyte	Mass	Out of Limits Message
QC Std 7	7	Ti	47	

Sample ID: QC Std 7

Report Date/Time: Tuesday, October 27, 2015 20:31:35

Page 3

2.1.3 Metals CVAA Data (Mercury)

2.1.3.1 Summary Data

Microbac

Lab Project #: 2551.096

Project Name: Longhorn Army Ammunition

Lab Contact: Stephanie Mossburg

Certificate of Analysis

Sample #: L15101055-01

Client ID: 35AWW13F-101515

Analyte

Matrix: Water

Workgroup #: WG543786

Collect Date: 10/15/2015 14:00

Sample Tag: 01

Mercury

U

PrePrep Method: N/A

Prep Method: 7470A

Analytical Method: 7470A

Analyst: PDM

Dilution: 1
Units: mg/L

Result

0.000200

CAS#

7439-97-6

Analyte was not detected. The concentration is below the reported LOD.

Instrument: CVAA1

Prep Date: 10/21/2015 07:09
Cal Date: 10/21/2015 14:31
Run Date: 10/21/2015 15:03

File ID: M7.102115.150358

Qual	LOQ	LOD	DL
U	0.000400	0.000200	0.000100

Page 1 of 2

Generated at Oct 30, 2015 10:22

Lab Project #: 2551.096

Project Name: Longhorn Army Ammunition

Lab Contact: Stephanie Mossburg

Page 2 of 2 Generated at Oct 30, 2015 10:22

2.1.3.2 QC Summary

Example Cold Vapor Mercury Calculations Hydra AA Mercury Analyzer / CETAC M-7600 Quick Trace Mercury Analyzer

1.0 Initial Calibration (ICAL) Parameters

The system performs linear regression from data consisting of a blank and five standards.

2.0 Calculating the concentration (C) of an element in water using data from run log and quantitation report (note: the data system performs this calculation automatically when correction factors have been entered):

$$Cx = Cs \times \frac{Vf}{Vi} \times D$$

Where:	Example:
Cs = Concentration computed by the data system (ug/L)	0.1
Vf = Diluted to Volume (mL)	40
Vi = Aliquot Volume (mL)	40
D = Manual dilution factor, if required (10X = 10)	1
Cx = Concentration of element in ppb (ug/L)	0.1

3.0 Calculating the concentration (C) of an element in soil using data from prep log and quantitation report (note: the data system performs this calculation automatically when correction factors have been entered):

$$Cx = Cs \times \frac{Vf}{Ws} \times D$$

Where:	Example:
Cs = Concentration computed by the data system (ug/L)	0.1
Vf = Diluted to volume (mL)	40
Ws = Aliquot weight (g)	0.6
D = Manual dilution factor	1
Cx = Concentration of element in ug/kg	6.67

4.0 Adjusting the concentration to dry weight:

$$Cdry = \frac{Cx \times 100}{Px}$$

1 Cx = Concentration calculated as received (wet basis)	6.67
Px = Percent solids of sample (%wt)	80
Cdru = Concentration calculated as dry weight (ug/kg)	8.33

8.33 ug/kg = 0.00833 mg/kg

Microbac Laboratories Inc. Metals Digest Log

Workgroup: WG543702

Analyst: REK

Spike Analyst: REK

Method: 7470A

Run Date: 10/21/2015 07:09

Hotblock Start Temp: 95.5 @ 07:00

Hotblock End Temp: 95.5 @ 09:00

Instrument: HB6

SOP: ME404 Revison 17

Spike Solution: STD73091

Spike Witness: VC

40 & 50 ML. DIGESTION TUCOA18222

H2SO4 Lot #: COA18359

HNO3 Lot #: COA18442

K2S2O8 1:1 Lot #: RGT35013

KMnO4 1:1 Lot #: RGT35069

Mercury Water ICV Lot #: STD73093

HG H2O STDS 10PPM Lot #: STD73099

	SAMPLE #	Type	Matrix	Initial Amount	Final Volume	Spike Amount	Due Date
1	WG543702-03	BLANK	1	40 mL	40 mL		
2	WG543702-04	LCS	1	40 mL	40 mL	4 mL	
3	WG543702-01	REF	2	40 mL	40 mL		
4	L15101042-01	SAMP	2	40 mL	40 mL		10/23/15
5	L15101042-03	SAMP	2	40 mL	40 mL		10/23/15
6	L15101042-05	SAMP	2	40 mL	40 mL		10/23/15
7	L15101043-01	SAMP	2	40 mL	40 mL		10/23/15
8	WG543702-02	REF	1	40 mL	40 mL		
9	L15101055-01	SAMP	1	40 mL	40 mL		10/27/15
10	L15101088-01	SAMP	2	40 mL	40 mL		10/23/15
11	L15101088-02	SAMP	2	40 mL	40 mL		10/23/15
12	L15101088-03	SAMP	2	40 mL	40 mL		10/23/15
13	WG543702-05	DUP	1	40 mL	40 mL		
14	WG543702-06	MS	1	36 mL	40 mL	4 mL	
15	WG543702-07	MSD	1	36 mL	40 mL	4 mL	

* All calibration and check standards are prepared and digested with sample batch following the procedures in section 7.0 of SOP ME404/ME405.

 ${\tt HB_DIG}$ - Modified 07/26/2012

PDF ID: 4453999
Report generated: 10/21/2015 10:37

Microbac Laboratories Inc.

Instrument Run Log

Instrument:	CVAA1	Datas	set: 102115B.CSV		
Analyst1:	PDM	Analys	st2: N/A		
Method:	7470/245.1		OP: ME404	Rev: <u>17</u>	
Maintenance Log ID:					
Calibration Std: STD	73099	ICV Std:	STD73093	Post Spike: STD73099	
ICSA: N/A		ICSAB:	N/A	Int. Std:	
CCV:		LLCCV:		Tuning Sol :	
Stannous : RG	Γ33705	Hydroxylamine:	RGT33707	-	

Workgroups: <u>543786</u>

Comments:

Seq.	File ID	Sample	ID	Prep	Dil	Reference	Date/Time
1	M7.102115.141819	WG543825-01	Calibration Point		1		10/21/15 14:18
2	M7.102115.142051	WG543825-02	Calibration Point		1		10/21/15 14:20
3	M7.102115.142323	WG543825-03	Calibration Point		1		10/21/15 14:23
4	M7.102115.142555	WG543825-04	Calibration Point		1		10/21/15 14:25
5	M7.102115.142828	WG543825-05	Calibration Point		1		10/21/15 14:28
6	M7.102115.143102	WG543825-06	Calibration Point		1		10/21/15 14:31
7	M7.102115.143336	WG543825-07	Initial Calibration Verification		1		10/21/15 14:33
8	M7.102115.143607	WG543825-08	Initial Calib Blank		1		10/21/15 14:36
9	M7.102115.143840	WG543825-09	CCV		1		10/21/15 14:38
10	M7.102115.144110	WG543825-10	ССВ		1		10/21/15 14:41
11	M7.102115.144341	WG543702-03	Method/Prep Blank	40/40	1		10/21/15 14:43
12	M7.102115.144612	WG543702-04	Laboratory Control S	40/40	1		10/21/15 14:46
13	M7.102115.144844	WG543702-01	Reference Sample	40/40	1	L15101042-01	10/21/15 14:48
14	M7.102115.145115	WG543786-01	Post Digestion Spike		1	L15101042-01	10/21/15 14:51
15	M7.102115.145347	WG543702-05	Duplicate	40/40	1	L15101042-01	10/21/15 14:53
16	M7.102115.145619	L15101042-03	S5J1125-02	40/40	1		10/21/15 14:56
17	M7.102115.145852	L15101042-05	S5J1125-03	40/40	1		10/21/15 14:58
18	M7.102115.150125	L15101043-01	15J0916-01	40/40	1		10/21/15 15:01
19	M7.102115.150358	WG543702-02	Reference Sample	40/40	1	L15101055-01	10/21/15 15:03
20	M7.102115.150631	WG543702-06	Matrix Spike	36/40	1	L15101055-01	10/21/15 15:06
21	M7.102115.151158	WG543825-11	CCV		1		10/21/15 15:11
22	M7.102115.151429	WG543825-12	CCB		1		10/21/15 15:14
23	M7.102115.151703	WG543702-07	Matrix Spike Duplica	36/40	1	L15101055-01	10/21/15 15:17
24	M7.102115.151937	L15101088-01	J5K0016-02	40/40	1		10/21/15 15:19
25	M7.102115.152207	L15101088-02	J5K0016-04	40/40	1		10/21/15 15:22
26	M7.102115.152438	L15101088-03	J5K0016-06	40/40	1		10/21/15 15:24
27	M7.102115.152710	WG543825-13	CCV		1		10/21/15 15:27
28	M7.102115.152941	WG543825-14	ССВ		1		10/21/15 15:29

Page: 1 Approved: October 23, 2015

B. L. Zun

Checklist ID: 1074320894593

Microbac Laboratories Inc.

Data Checklist

Date:	21-OCT-2015
Analyst:	PDM
Analyst:	<u>NA</u>
Method:	7470/245.1
Instrument:	CVAA1
Curve Workgroup:	543825
Runlog ID:	71199
Analytical Workgroups:	543786

Calibration/Linearity	X
ICV/CCV	X
ICV RSD < 3% (EPA 200.7 only)	
ICB/CCB	X
ICSA/ICSAB	
CRI	
Blank/LCS	X
MS/MSD	X
Post Spike/Serial Dilution	X
Upload Results	X
Data Qualifiers	
Generate PDF Instrument Data	X
Sign/Annotate PDF Data	X
Upload Curve Data	X
Workgroup Forms	X
Case Narrative	1055,1043
Client Forms	X
Level X	
Level 3	
Level 4	1055
Check for compliance with method and project specific requirements	X
Check the completeness of reported information	X
Check the information for the report narrative	X
Primary Reviewer	PDM
Secondary Reviewer	BKT
Comments	

Primary Reviewer: 21-OCT-2015

Secondary Reviewer: 23-OCT-2015

Pierce Monis Bruh Zum

CHECKLIST1 - Modified 03/05/2008

Generated: OCT-23-2015 13:28:57

Microbac Laboratories Inc.

00894594

HOLDING TIMES EQUIVALENT TO AFCEE FORM 9

Analytical Method: 7470A

Login Number:L15101055

AAB#:WG543786	
AAD#:WG343/00	

Client ID	ID	Date Collected	TCLP Date	Time Held	Max Hold	Q	Extract Date	Time Held	Max Hold	Q	Run Date	Time Held	Max Hold	Q
35AWW13F-101515	01	10/15/15					10/21/2015	5.7	28		10/21/15	6	28	

* = SEE PROJECT QAPP REQUIREMENTS

HOLD_TIMES - Modified 03/06/2008 PDF File ID: 4454633 Report generated 10/21/2015 15:50

Page 732

L15101055 / Revision: 0 / 760 total pages Generated: 10/30/2015 10:11

METHOD BLANK SUMMARY

Login Number: L15101055

Blank File ID: M7.102115.144341

Prep Date: 10/21/15 07:09

Analyzed Date: 10/21/15 14:43

Work Group: WG543786

Blank Sample ID: WG543702-03

Instrument ID: CVAA1

Method: 7470A

Analyst:PDM

This Method Blank Applies To The Following Samples:

Client ID	Lab Sample ID	Lab File ID	Time Analyzed	TAG
LCS	WG543702-04	M7.102115.144612	10/21/15 14:46	01
DUP	WG543702-05	M7.102115.145347	10/21/15 14:53	01
35AWW13F-101515	L15101055-01	M7.102115.150358	10/21/15 15:03	01

Report Name: BLANK_SUMMARY
PDF File ID: 4454634
Report generated 10/21/2015 15:50

Microbac Laboratories Inc. METHOD BLANK REPORT

Analytes	DL	LOQ	Concentration	Dilution	Qualifier
Mercury	0.000100	0.000400	0.000100	1	υ

DL Method Detection Limit

LOQ Reporting/Practical Quantitation Limit

ND Analyte Not detected at or above reporting limit

* |Analyte concentration| > 1/2 RL

Report Name:BLANK
PDF ID: 4454635
21-OCT-2015 15:50

Analytes	Expected	Found	% Rec	LCS Limits	Q
Mercury	0.00400	0.00434	109	80 - 120	

LCS - Modified 03/06/2008 PDF File ID: 4454636 Report generated: 10/21/2015 15:50

Microbac Laboratories Inc. MATRIX SPIKE AND MATRIX SPIKE DUP (MS/MSD)

 Loginnum: L15101055
 Cal ID: CVAA1 Worknum: WG543786

 Instrument ID: CVAA1
 Contract #: Method: 7470A

 Parent ID: WG543702-02
 File ID: M7.102115.150358
 Dil: 1
 Matrix: WATER

 Sample ID: WG543702-06
 MS
 File ID: M7.102115.150631
 Dil: 1
 Units: mg/L

 Sample ID: WG543702-07
 MSD
 File ID: M7.102115.151703
 Dil: 1
 Dil: 1

	Analyte	Parent	MS Spiked	MS Found	MS %Rec	MSD Spiked	MSD Found	MSD %Rec	%RPD	%Rec Limits	RPD Limit	Q
Μe	ercury	ND	0.00444	0.00425	95.5	0.00444	0.00409	92.0	3.76	80 - 120	20	

^{*} FAILS %REC LIMIT

 ${\tt NOTE:}$ This is an internal quality control sample.

WG_MS_MSD_DRYWT - Modified 05/26/2011 PDF File ID: 4454637 Report generated 10/21/2015 15:50

[#] FAILS RPD LIMIT

Microbac Laboratories Inc. POST SPIKE REPORT

 Sample Login ID:
 L15101055

 Worknum:
 WG543786

Instrument ID: CVAA1 Method: 7470A

Post Spike ID: WG543786-01 File ID:M7.102115.145115 Dil:1 Units: ug/L

Sample ID: L15101042-01 File ID:M7.102115.144844 Dil:1 Matrix: Water

Analyte	Post Spike Result	С	Sample Result	С	Spike Added(SA)	% R	Control Limit %R	Q
MERCURY	1.06		0	U	1	106.2	85 - 115	

N = % Recovery exceeds control limits

F = Result is between MDL and RL

U = Sample result is below MDL. A value of zero is used in the calculation

Login Number:L15101055
Analytical Method:7470A

ICAL Worknum:WG543825

Workgroup (AAB#):WG543786

Instrument ID: CVAA1

Initial Calibration Date: 10/21/2015 14:31

	WG543825-01 WG543825-02 WG543825-03		WG5	43825-04	WG543825-05		WG543825-06					
Analyte	STD	INT	STD	INT	STD	INT	STD	INT	STD	INT	STD	INT
Mercury	0	183.7	0.200	2784	1.00	13010	2.00	25860	5.00	63600	10.0	124200

INT = Instrument intensity

R = Coefficient of correlation

Q = Data Qualifier

* = Out of Compliance; R < 0.995

Login Number:L15101055
Analytical Method:7470A
ICAL Worknum:WG543825

Workgroup (AAB#):WG543786

Instrument ID:CVAA1

Initial Calibration Date:10/21/2015 14:31

Analyte	R	Q
Mercury	1.000	

INT = Instrument intensity

R = Coefficient of correlation

Q = Data Qualifier

* = Out of Compliance; R < 0.995

Microbac Laboratories Inc. INITIAL CALIBRATION BLANK (ICB)

 Login Number: L15101055
 Run Date: 10/21/2015
 Sample ID: WG543825-08

 Instrument ID: CVAA1
 Run Time: 14:36
 Method: 7470A

 _____Units: ug/L File ID: M7.102115.143607 Analyst: PDM

Matrix:WATER

Analytes	MDL	RDL	Concentration	Qualifier
MERCURY	.1	.4	.1	υ

U = Result is less than 2 x MDL

F = Result is between MDL and 2 x MDL

* = Result is above 2 x MDL

ICB - Modified 07/14/2009 PDF File ID: 4454642 Report generated 10/21/2015 15:50

 Login Number:
 L15101055
 Run Date:
 10/21/2015
 Sample ID:
 WG543825-10

 Instrument ID:
 CVAA1
 Run Time:
 14:41
 Method:
 7470A

 File ID:
 M7.102115.144110
 Analyst:
 PDM
 Units:
 Units:
 Units:
 Units:
 Units:
 QAPP:
 DOD4
 DOD4
 DOD4
 DOD4
 DOD4
 DOD4
 DOD4
 DOD4
 DOD4
 DOD4
 DOD4
 DOD4
 DOD4
 DOD4
 DOD4
 DOD4
 DOD4
 DOD4
 DOD4
 DOD4
 DOD4
 DOD4
 DOD4
 DOD4
 DOD4
 DOD4
 DOD4
 DOD4
 DOD4
 DOD4
 DOD4
 DOD4
 DOD4
 DOD4
 DOD4
 DOD4
 DOD4
 DOD4
 DOD4
 DOD4
 DOD4
 DOD4
 DOD4
 DOD4
 DOD4
 DOD4
 DOD4
 DOD4
 DOD4
 DOD4
 DOD4
 DOD4
 DOD4
 DOD4
 DOD4
 DOD4
 DOD4
 DOD4
 DOD4
 DOD4
 DOD4
 DOD4
 DOD4
 DOD4
 DOD4
 DOD4
 DOD4
 DOD4
 DOD4
 DOD4
 DOD4
 DOD4
 DOD4</td

Analytes	MDL	RDL	Concentration	Qualifier
Mercury	0.100	0.400	0.100	Ū

U = Result is less than MDL.

F = Result is between MDL and RL.

* = Result is above RL.

CCB - Modified 03/05/2008 PDF File ID: 4454644 Report generated 10/21/2015 15:50

Analytes	MDL	RDL	Concentration	Qualifier
Mercury	0.100	0.400	0.100	υ

U = Result is less than MDL.

F = Result is between MDL and RL.

* = Result is above RL.

CCB - Modified 03/05/2008 PDF File ID: 4454644 Report generated 10/21/2015 15:50

Microbac Laboratories Inc. CONTINUING CALIBRATION BLANK (CCB)

Login Number: L15101055 Run Date: 10/21/2015 Sample ID: WG543825-14 Instrument ID: CVAA1 Run Time: 15:29

Run Time: 15:29

Analyst: PDM Method: 7470A Units:ug/L Workgroup (AAB#): WG543786 Cal ID: CVAA1 - 21-OCT-15 Matrix:WATER

QAPP: DOD4

Analytes	MDL	RDL	Concentration	Qualifier
Mercury	0.100	0.400	0.100	Ū

U = Result is less than MDL.

F = Result is between MDL and RL.

* = Result is above RL.

CCB - Modified 03/05/2008 PDF File ID: 4454644 Report generated 10/21/2015 15:50

Microbac Laboratories Inc. INITIAL CALIBRATION VERIFICATION (ICV) (Alternate Source)

Login Number:L15101055 Run Date:10/21/2015 Sample ID:WG543825-07

Instrument ID:CVAA1 Run Time:14:33 Method:7470A

File ID:M7.102115.143336 Analyst:PDM Units:ug/L

Workgroup (AAB#):WG543786 Cal ID: CVAA1 - 21-OCT-15

QC Key:DOD4

Analyte	Expected	Found	%REC	LIMITS	Q
Mercury	2	2.01	101	90 - 110	

^{*} Exceeds LIMITS Limit

ICV - Modified 03/06/2008 PDF File ID: 4454641 Report generated 10/21/2015 15:50

 Login Number:
 L15101055
 Run Date:
 10/21/2015
 Sample ID:
 WG543825-09

 Instrument ID:
 CVAA1
 Run Time:
 14:38
 Method:
 7470A

 File ID:
 M7.102115.143840
 Analyst:
 PDM
 QC Key:
 DOD4

 Workgroup (AAB#):
 WG543786
 Cal ID:
 CVAA1 - 21-OCT-15
 COUNTY OF THE COUN

Analyte	Expected	Found	UNITS	%REC	LIMITS	Q
Mercury, Total	0.00200	0.00211	mg/L	105	80 - 120	

^{*} Exceeds LIMITS Criteria

CCV - Modified 03/05/2008 PDF File ID: 4454643 Report generated 10/21/2015 15:50

 Login Number:
 L15101055
 Run Date:
 10/21/2015
 Sample ID:
 WG543825-11

 Instrument ID:
 CVAA1
 Run Time:
 15:11
 Method:
 7470A

 File ID:
 M7.102115.151158
 Analyst:
 PDM
 QC Key:
 DOD4

 Workgroup (AAB#):
 WG543786
 Cal ID:
 CVAA1 - 21-OCT-15
 COUNTY OF THE COUN

Analyte	Expected	Found	UNITS	%REC	LIMITS	Q
Mercury, Total	0.00200	0.00191	mg/L	95.6	80 - 120	

^{*} Exceeds LIMITS Criteria

CCV - Modified 03/05/2008 PDF File ID: 4454643 Report generated 10/21/2015 15:50

Login Number:L15101055 Run Date:10/21/2015 Sample ID:WG543825-13

Instrument ID:CVAA1 Run Time:15:27 Method:7470A

File ID:M7.102115.152710 Analyst:PDM QC Key:DOD4

Workgroup (AAB#):WG543786 Cal ID: CVAA1 - 21-OCT-15

Matrix:WATER

Analyte	Expected	Found	UNITS	%REC	LIMITS	Q
Mercury, Total	0.00200	0.00196	mg/L	97.9	80 - 120	

^{*} Exceeds LIMITS Criteria

CCV - Modified 03/05/2008 PDF File ID: 4454643 Report generated 10/21/2015 15:50

2.1.3.3 Raw Data

PDM

Report Generated By CETAC QuickTrace

Analyst: VOA

Worksheet file: C:\Program Files (x86)\QuickTrace\Worksheets\102115B.wsz

Date Started: 10/21/2015 2:03:24 PM

Comment:

Results

Sample Name				Type	Date/Time	Conc (ug/L)	μAbs	%RSD Flags	DF
Standard #0 Replicates	187.8	188.1	186.6	STD 172.	10/21/15 02:18:19 pm 3	0.0000	184	4.16	1.00
Standard #1 (0.2 ug/L) Replicates	2750.2	2794.3	2781.3	STD 2809.	10/21/15 02:20:51 pm 8	0.2000	2784	0.91	1.00
Standard #2 (1.0 ug/L) Replicates	12987.9	13022.9	13009.5	STD 13006.	10/21/15 02:23:23 pm 7	1.0000	13007	0.11	1.00
Standard #3 (2.0 ug/L) Replicates	25756.8	25875.0	25917.0	STD 25897.	10/21/15 02:25:55 pm 0	2.0000	25861	0.28	1.00
Standard #4 (5.0 ug/L) Replicates	63388.4	63658.0	63716.5	STD 63634.	10/21/15 02:28:28 pm 2	5.0000	63599	0.23	1.00
Standard #5 (10.0 ug/L) Replicates	123704.5	124311.1	124498.1	STD 124459.	10/21/15 02:31:02 pm 0	10.0000	124243	0.30	1.00
Calibration Equation: A = 62 R2: 0.9998 SEE: 623.98 Flags:		2414.570C		uAbsorbance	0 2	4 6 exentration (ug	/L)	10	
ICV Replicates % Recovery	25476.7 100.60	25614.5	25681.6	ICV 25625.	10/21/15 02:33:36 pm 6	2.0120	25600	0.34	1.00

10/21/2015 3:38:47 PM 102115B.wsz Page 1

Approved: October 28, 2015

DF

·	ie Name				Type Date/Time	(ug/L)	μAbs	%RSD Flags	DF
ICB	Replicates	132.5	125.8	138.8	ICB 10/21/15 02:36:07 130.5	′ pm -0.0395	132	4.09	1.00
CCV	Replicates % Recovery	26665.9 105.37	26786.2	26846.5	CCV 10/21/15 02:38:40 26838.7) pm 2.1070	26784	0.31	1.00
ССВ	Replicates	155.3	178.2	147.7	CCB 10/21/15 02:41:10 147.7) pm -0.0374	157	9.18	1.00
WG54	3702-03 Replicates	328.8	316.7	305.5	MB 10/21/15 02:43:41 326.4	pm -0.0244	319	3.32	1.00
WG54	3702-04 Replicates % Recovery	54203.8 108.59	54535.6	54682.2	LCS 10/21/15 02:46:12 54754.7	? pm 4.3430	54544	0.45	1.00
L1510	104201 Replicates	133.0	146.1	139.1	UNK 10/21/15 02:48:44 148.7	pm -0.0387	142	5.02	1.00
WG54	3786-01 Replicates % Recovery	13701.4 110.05	13793.7	13846.5	SPK 10/21/15 02:51:15 13872.7	5 pm 1.0620	13804	0.55	1.00
WG54	3702-05 Replicates	140.8	167.7 RPD 0.00	163.7	DUP 10/21/15 02:53:47 169.5	′ pm -0.0372	160	8.28	1.00
L1510	104203 Replicates	161.0	166.2	154.5	UNK 10/21/15 02:56:19 159.9) pm -0.0372	160	2.98	1.00
L1510	104205 Replicates	156.1	183.3	167.8	UNK 10/21/15 02:58:52 185.5	? pm -0.0362	173	7.98	1.00
L1510	104301 Replicates	253.2	263.8	223.9	UNK 10/21/15 03:01:25 238.6	5 pm -0.0304	245	7.09	1.00
L1510	105501 Replicates	204.7	215.9	212.3	UNK 10/21/15 03:03:58 216.9	3 pm -0.0330	212	2.62	1.00

Type

Date/Time

Conc

μAbs %RSD Flags

Approved: October 28, 2015

Pinel Monis

102115B.wsz

10/21/2015 3:38:47 PM

Sample Name

Page 2

Samp	le Name				Туре	Date/Time	Conc (ug/L)	μAbs	%RSD Fla	gs DF
WG54	3702-06 Replicates % Recovery	47519.4 96.36	47998.6	48307.4	MSK 48426	10/21/15 03:06:31 pm .6	3.8210	48063	0.84	1.00
CCV	Replicates % Recovery	24091.6 95.57	24349.2	24444.3	CCV 24517	10/21/15 03:11:58 pm .5	1.9110	24351	0.76	1.00
ССВ	Replicates	151.3	154.0	173.7	CCB 174	10/21/15 03:14:29 pm .7	-0.0370	163	7.64	1.00
WG54	3702-07 Replicates % Recovery	45742.9 92.83	46244.9 RPD 204.06	46534.7	MSDUP 46718	10/21/15 03:17:03 pm 9	3.6800	46310	0.92 D	1.00
L1510	108801 Replicates	161.8	172.1	155.9	UNK 149	10/21/15 03:19:37 pm .9	-0.0372	160	5.91	1.00
L1510	108802 Replicates	536.0	550.5	544.3	UNK 515	10/21/15 03:22:07 pm .8	-0.0069	537	2.81	1.00
L1510	108803 Replicates	493.3	513.5	520.7	UNK 519	10/21/15 03:24:38 pm .2	-0.0089	512	2.47	1.00
CCV	Replicates % Recovery	24686.7 97.88	24886.4	25043.6	CCV 25085	10/21/15 03:27:10 pm .9	1.9580	24926	0.73	1.00
ССВ	Replicates	168.5	153.6	144.5	CCB 120	10/21/15 03:29:41 pm .8	-0.0383	147	13.63	1.00

10/21/2015 3:38:47 PM 102115B.wsz Page 3

Approved: October 28, 2015
Pinel Monis

3.0 Attachments

Microbac Laboratories Inc. Ohio Valley Division Analyst List October 30, 2015

001 - BIO-CHEM TESTING WVDEP 220 002 - REIC Consultants, Inc. WVDEP 060 003 - Sturm Environmental 004 - MICROBAC PITTSBURGH 005 - ES LABORATORIES 006 - ALCOSAN LABORATORIES 007 - ALS LABORATORIES 008 - BENCHMARK LABORATORIES AC - AMBER R. CARMICH ADG - APRIL D. GREENE 010 - MICROBAC CHICAGOLAND AC - AMBER R. CARMICHAEL ADC - ANTHONY D. CANTER AED - ALLEN E. DAVIS ALS - ADRIANE L. STEED AZH - AFTER HOURS AWE - ANDREW W. ESSIG BLG - BRENDA L. GREENWALT

CAA - CASSIE A. AUGENSTEIN

CEB - CHAD E. BARNES

BKT - BRENDAN TORRENCE

BRG - BRENDA R. GREGORY

CAF - CHERYL A. FLOWERS

CID - COMMITTEE

CID - COMMITTEE

CID - COMMITTEE

CID - COMMITTEE

CID - COMMITTEE

CID - COMMITTEE

CID - COMMITTEE

CID - COMMITTEE

CID - COMMITTEE

CID - COMMITTEE

CID - COMMITTEE

CID - COMMITTEE

CID - COMMITTEE

CID - COMMITTEE

CID - COMMITTEE

CID - COMMITTEE

CID - COMMITTEE

CID - COMMITTEE

CID - COMMITTEE

CID - COMMITTEE

CID - COMMITTEE

CID - COMMITTEE

CID - COMMITTEE

CID - COMMITTEE

CID - COMMITTEE

CID - COMMITTEE

CID - COMMITTEE

CID - COMMITTEE

CID - COMMITTEE

CID - COMMITTEE

CID - COMMITTEE

CID - COMMITTEE

CID - COMMITTEE

CID - COMMITTEE

CID - COMMITTEE

CID - COMMITTEE

CID - COMMITTEE

CID - COMMITTEE

CID - COMMITTEE

CID - COMMITTEE

CID - COMMITTEE

CID - COMMITTEE

CID - COMMITTEE

CID - COMMITTEE

CID - COMMITTEE

CID - COMMITTEE

CID - COMMITTEE

CID - COMMITTEE

CID - COMMITTEE

CID - COMMITTEE

CID - COMMITTEE

CID - COMMITTEE

CID - COMMITTEE

CID - COMMITTEE

CID - COMMITTEE

CID - COMMITTEE

CID - COMMITTEE

CID - COMMITTEE

CID - COMMITTEE

CID - COMMITTEE

CID - COMMITTEE

CID - COMMITTEE

CID - COMMITTEE

CID - COMMITTEE

CID - COMMITTEE

CID - COMMITTEE

CID - COMMITTEE

CID - COMMITTEE

CID - COMMITTEE

CID - COMMITTEE

CID - COMMITTEE

CID - COMMITTEE

CID - COMMITTEE

CID - COMMITTEE

CID - COMMITTEE

CID - COMMITTEE

CID - COMMITTEE

CID - COMMITTEE

CID - COMMITTEE

CID - COMMITTEE

CID - COMMITTEE

CID - COMMITTEE

CID - COMMITTEE

CID - COMMITTEE

CID - COMMITTEE

CID - COMMITTEE

CID - COMMITTEE

CID - COMMITTEE

CID - COMMITTEE

CID - COMMITTEE

CID - COMMITTEE

CID - COMMITTEE

CID - COMMITTEE

CID - COMMITTEE

CID - COMMITTEE

CID - COMMITTEE

CID - COMMITTEE

CID - COMMITTEE

CID - COMMITTEE

CID - COMMITTEE

CID - COMMITTEE

CID - COMMITTEE

CID - COMMITTEE

CID - COMMITTEE

CID - COMMITTEE

CID - COMMITTEE

CID - COMMITTEE

CID - COMMITTEE

CID - COMMITTEE

CID - COMMITTEE

CID - COMMITTEE

CID - CO CJR - COURTNEY J. REXROAD CLC - CHRYS L. CRAWFORD CLS - CARA L. STRICKLER CPD - CHAD P. DAVIS CLW - CHARISSA L. WINTERS CSH - CHRIS S. HILL DAK - DEAN A. KETELSEN DCM - DAVID C. MERCKLE DEV - DAVID E. VANDENBERG DLB - DAVID L. BUMGARNER DIH - DEANNA I. HESSON DLP - DOROTHY L. PAYNE DLW - DIANA L. WRIGHT DSM - DAVID S. MOSSOR ECL - ERIC C. LAWSON EPT - ETHAN P. TIDD ENY - EMILY N. YOAK FJB - FRANCES J. BOLDEN JDH - JUSTIN D. HESSON JJS - JOHN J. STE MARIE ERP - ERIN R. PORTER JBK - JEREMY B. KINNEY JDS - JARED D. SMITH JKP - JACQUELINE K. PARSONS JLL - JOHN L. LENT JMW - JEANA M. WHITE JTP - JOSHUA T. PEMBERTON JWS - JACK W. SHEAVES JWR - JOHN W. RICHARDS KAJ - KELLIE A. JOHNSON KDW - KATHRYN D. WELCH KHR - KIM H. RHODES KRA - KATHY R. ALBERTSON KRP - KATHY R. PARSONS JYH - JI Y. HU KAT - KATHY A. TUCKER KEB - KATIE E. BARNES KKB - KERRI K. BUCK KRB - KAELY R. BECKER LKN - LINDA K. NEDEFF LEC - LAURA E. CARPENTER LLS - LARRY L. STEPHENS LSB - LESLIE S. BUCINA MBK - MORGAN B. KNOWLTON MDA - MIKE D. ALBERTSON MES - MARY E. SCHILLING MDC - MIKE D. COCHRAN MLB - MEGAN L. BACHE MMB - MAREN M. BEERY MRT - MICHELLE R. TAYLOR MSW - MATT S. WILSON PDM - PIERCE D. MORRIS PIT - MICROBAC WARRENDALE PRL - PAIGE R. LAMB PSW - PEGGY S. WEBB QX - QIN XU RAH - ROY A. HALSTEAD REK - BOB E. KYER RLB - BOB BUCHANAN RNP - RICK N. PETTY SAV - SARAH A. VAND RM - RAYMOND MALEKE RST - ROBIN S. TURNER SAV - SARAH A. VANDENBERG SCB - SARAH C. BOGOLIN SLM - STEPHANIE L. MOSSBURG SDC - SHALYN D. CONLEY SLP - SHERI L. PFALZGRAF TB - TODD BOYLE TGF - TIM G. FELTON TMB - TIFFANY M. BAILEY TMM - TAMMY M. MORRIS WJB - WILL J. BEASLEY VC - VICKI COLLIER WRR - WESLEY R. RICHARDS WTD - WADE T. DELONG XXX - UNAVAILABLE OR SUBCONTRACT

Microbac Laboratories Inc. List of Valid Qualifiers October 30, 2015

Qualkey: DOD

Qualifier	Description
*	Surrogate or spike compound out of range
+	Correlation coefficient for the MSA is less than 0.995
<	Result is less than the associated numerical value.
>	Greater than
A	See the report narrative
В В,Н1	The reported result is associated with a contaminated method blank. Analyte present in method blank. Sample analysis performed past holding time.
B1	Target analyte detected in method blank at or above the method reporting limit
B3	Target analyte detected in calibration blank at or above the method reporting limit
B4	The BOD unseeded dilution water blank exceeded 0.2 mg/L
С	Confirmed by GC/MS
CG CT1	Confluent growth
DL	Cooler temperature at sample reciept exceeded regulatory limit. Surrogate or spike compound was diluted out
Ē	Estimated concentration due to sample matrix interference
E,CT1	Estimated results. The cooler temperature at receipt exceeded regulatory guidelines for requested testing.
EDL	Elevated sample reporting limits, presence of non-target analytes
EMPC	Estimated Maximum Possible Concentration Estimated result below quantitation limit, method of standard additions (MSA)
F, S F,CT1	Estimated result below quantitation limit; method of standard additions(MSA) Estimated value; the analyte concentration was less than the RL/LOQ. The cooler temperature at receipt exceeded regula
FL	Free Liquid
FP1	Did not İgnite.
H1	Sample analysis performed past holding time.
H1,CT1	Sample analysis performed past holding time. The cooler temperature at receipt exceeded regulatory guidelines for reque Semiguantitative result (out of instrument calibration range)
I J	Estimated concentration; sample matrix interference.
Ĵ	Estimated value; the analyte concentration was greater than the highest standard
J	Estimated value; the analyte concentration was less than the LOQ.
J	The reported result is an estimated value.
J,B J,CT1	Analyte detected in both the method blank and sample above the MDL.
J,H1	Estimated value; the analyte concentration was less than the LOQ. Cooler temperature at sample reciept exceeded regu Estimated value; the analyte concentration was less than the LOQ. Sample analysis performed past holding time.
J,H1	The reported result is an estimated value. Sample was analyzed past holding time.
J,P	Estimate; columns don't agree to within 40%
J,S	Estimated concentration; analyzed by method of standard addition (MSA)
JB IO	The reported result is an estimated value. The reported result is also associated with a contaminated method blank.
JQ L	The reported result is an estimated value and one or more quality control criteria failed. See narrative. Sample reporting limits elevated due to matrix interference
	The associated blank spike (LCS) recovery was above the laboratory acceptance limits.
L2	The associated blank spike (LCS) recovery was below the laboratory acceptance limits.
M	Matrix effect; the concentration is an estimate due to matrix effect.
N	Nontarget analyte; the analyte is a tentativlely identified compound (TIC) by GC/MS
NA ND	Not applicable Not detected at or above the reporting limit (RL)
ND, B	Not detected at or above the reporting limit (RL). Analyte present in method blank.
ND, CT1	Analyte was not detected. The concentration is below the reported LOD. The cooler temperature at receipt exceeded reg
ND, L	Not detected; sample reporting limit (RL) elevated due to interference
ND, S ND,H1	Not detected; analyzed by method of standard addition (MSA) Not detected; Sample analysis performed past holding time.
ND,H1,CT1	Not detected; Sample analysis performed past holding time. The cooler temperature at receipt exceeded regulatory guide
NF	Not found by library search
NFL	No free liquid
NI	Non-ignitable
NR NS	Analyte is not required to be analyzed Not spiked
P	Concentrations >40% difference between the two GC columns
Q	One or more quality control criteria failed. See narrative.
Q,H1	One or more quality control criteria failed. Sample analyzed past holding time. See narrative.
QNS	Quantity of sample not sufficient to perform analysis
RA RE	Reanalysis confirms reported results Reanalysis confirms sample matrix interference
S	Analyzed by method of standard addition (MSA)
SMI	Sample matrix interference on surrogate
SP	Reported results are for spike compounds only
T5 TIC	Laboratory not licensed for this parameter Library Search Compound
TNTC	Too numerous to count

Microbac Laboratories Inc. List of Valid Qualifiers October 30, 2015

Qualkey: DOD

TNTC, B	Too numerous to count. Analyte present in method blank.
TNTC,CT1	Too numerous to count. The cooler temperature at receipt exceeded regulatory guidelines for requested testing.
TNTC,H1	Too numerous to count. Sample analysis performed past holding time.
U	Analyte was not detected. The concentration is below the reported LOD.
U,CT1	Analyte was not detected. The concentration is below the reported LOD. Cooler temperature at sample reciept exceeded
U,H1	Not detected; Sample analysis performed past holding time.
UJ	Undetected; the MDL and RL are estimated due to quality control discrepancies.
UQ	Undetected; the analyte was analyzed for, but not detected.
W	Post-digestion spike for furnace AA out of control limits
Χ	Exceeds regulatory limit
X, S	Exceeds regulatory limit; method of standard additions (MSA)
Z	Cannot be resolved from isomer - see below

Microbac °

	AECOM				ฉ	Chain of Custody Record	ರ	stod	ly Re	cord		-			၁၀၁	COC Number:			ī
Laboratory:	Microbac POC: Stephanie Mossburg	burg	٢	Project Manager:	anager:	l	Mark Heaston	ston						Mail to:	•	Linda Raabe	pe		
Address:	te Drive)		Phone/Fax Number:	K Numbe		210-296-2000	2000							•	112 East Pecan		400	
	Marietta, OH 45750			Sampler (print):	print):	တ္တ	Scott Beesinger	singer							•	San Antonio, TX		78205	
Phone:	1-800-373-4071															210-296-2000	000		_
Client:	AECOM		_	Signature:		Y		ري ح	١	,				red Ex	red Ex Airbiil No:	::			
Address:	112 East Pecan Ste. 400	-			-)	3	1		3		l	ŀ						Т
	San Antonio, TX 78205												•	Program:	ä				
Turn Around Time:	Time: STANDARD			Ä					s				····						
Project Name/Location:									ergis			······································							-т
Project Number:		2							PIAI 1						ERPII	MS REQU	ERPIMS REQUIRED FIELDS	DS	
							_	19qu	sìo'					BDE	ר ום	101	LOT CONTROL NUMBERS	MBERS	
Site Name	Sample ID/Location ID	SBD	SED	Date	Time	moD srĐ	ntsM				······································		-	ev co	elooD	ABLOT	EBLOT	TBLOT	
	35AWW(3R101515			00/11-0/9/o	8	7	3		7										Т
									_				_						
																			—Т
																			1
7(_						 -
) 3																			Т
111							_						-						
S								;		_ _									
								Micr. Receiv	Microbac UVD Received: 10/16/	Microbac UVD Received: 10/16/2015	15 10:26	10							_
									SHUA PI	By: JOSHUA PEMBERTON			2210	221000076964	4				γ
								9	Don Lort	+	and the second s								
	Comments: STANDARD TAT	J TAT	1000			Salahaya Ye											eranora ranga		/ Service Service
Relinquished by		Date		Time 1/200/	Received by: (Signature)	by: (Sig	nature)			-	Received by: (Signature)	by: (Sign	ature)	Date	Time	Relinquished	Relinquished by: (Signature)	re)	
Relinquished by:		Date		1	Received for Laboratory by: (Signature)	for Labo e)	ratory by				Date			Ε	Time	Remarks:			908
-Homogenize	-Homogenize all composite samples prior to analysis						Distri	bution:	White to	Labor	atory, C.	anary to	Project	Manage	ır, Pink (Distribution: White to Laboratory, Canary to Project Manager, Pink QA/QC Manager	ıager		9461
							 ,												8

Microbac Laboratories Inc.

Internal Chain of Custody Report

Login: L15101055
Account: 2551
Project: 2551.096

Samples: 1

Due Date: 27-OCT-2015

<u>Samplenum</u> <u>Container ID</u> <u>Products</u>

L15101055-01 648606 CU-MS FE HG K MG MN-MS NA NI-MS PB-MS SB-MS SF

Bottle: 1

Seq.	Purpose	From	То	Date/Time	Accept	Relinquish	Нq
1	LOGIN	COOLER	W1	17-OCT-2015 09:34	CLS		
2	PREP	W1	DIG	19-OCT-2015 12:51	ERP	CLS	
3	STORE	DIG	A1	21-OCT-2015 13:07	BRG	AC	
4	ANALYZ*	DIG	METALS	21-OCT-2015 13:16	JYH	ERP	

^{*}Sample extract/digestate/leachate

A1 - Sample Archive (COLD)

A2 - Sample Archive (AMBIENT)

F1 - Volatiles Freezer in Login

V1 - Volatiles Refrigerator in Login

W1 - Walkin Cooler in Login

NELAP Addendum - October 15, 2015

Non-NELAP LIMS Product and Description

The following is a list of those tests that are not included in the Microbac – OVD NELAP Scope of Accreditation:

Heat of Combustion (BTU)
Total Halide by Bomb Combustion (TX)
Particle Sizing - 200 Mesh (PS200)
Specific Gravity/Density (SPGRAV)
Total Residual Chlorine (CL-TRL)
Total Volatile Solids (all forms) (TVS)
Total Coliform Bacteria (all methods)
Fecal Coliform Bacteria (all methods)
Sulfite (SO3)
Propionaldehyde (HPLC-UV)

SOLID AND HAZARDOUS CHEMICALS

Nitrogen, Ammonia by Method 350.1 Chromium, Hexavalent, Leachable by SM3500 Cr-B 2009 Phenolics, Total by Method 420.1 ASTM D3987-06

NELAP Accreditation by Laboratory SOP

NONPOTABLE WATER

OVD HPLC02/HPLC-UV

Nitroglycerin Acetic acid Butyric acid Lactic acid Propionic acid Pyruvic acid

OVD MSS01/GC-MS

1,4-Phenylenediamine
1-Methylnaphthalene
1,4-Dioxane
Atrazine
Benzaldehyde
Biphenyl
Caprolactam
Hexamethylphosphoramide (HMPA)
Pentachlorobenzene
Pentachloroethane

NELAP Accreditation by Laboratory SOP

NONPOTABLE WATER

OVD MSV01/GC-MS

1, 1, 2-Trichloro-1,2,2-trifluoroethane

1,3-Butadiene

Cyclohexane

Cyclohexanone

Dimethyl disulfide

Dimethylsulfide

Ethyl-t-butylether (ETBE)

Isoprene

Methylacetate

Methylcyclohexane

T-amylmethylether (TAME)

Tetrahydrofuran (THF)

OVD HPLC07/HPLC-MS-MS

Hexamethylphosphoramide (XMPA-LCMS)

OVD HPLC12/HPLC/UV

Acetate

Formate

OVD RSK01/GC-FID

Acetylene

Propane

OVD K9305/ISE

Fluoroborate

SOLID AND HAZARDOUS CHEMICALS

OVD MSS0I/GC-MS

1-Methylnaphthalene

Benzaldehyde

Biphenyl

Caprolactam

Pentachloroethane

Page 759

NELAP Accreditation by Laboratory SOP

SOLID AND HAZARDOUS CHEMICALS

OVD MSV0I/GC-MS

1.3-Butadiene
Cyclohexane
Cyclohexanone
Dimethyl disulfide
Dimethylsulfide
Ethyl-t-butylether (ETBE)
Isoprene
Methylacetate
Methylcyclohexane
n-Hexane
T-amylmethylether (TAME)

Non-DoD LIMS Product and Description

The following is a list of those tests that are not included in the Microbac – OVD DoD Scope of Accreditation:

SOLID AND HAZARDOUS CHEMICALS

Fluoride by EPA 300.0/9056/9056A Bromide by EPA 9056/9056A Nitrate as N by EPA 9056/9056A

Laboratory Report Number: L16050013

Kayla Teague AECOM Technical Services, Inc. 16000 Dallas Parkway Dallas, TX 75248

Please find enclosed the analytical results for the samples you submitted to Microbac Laboratories. Review and compilation of your report was completed by Microbac's Ohio Valley Division (OVD). If you have any questions, comments, or require further assistance regarding this report, please contact your service representative listed below.

Laboratory Contact: Stephanie Mossburg – Team Chemist/Data Specialist (740) 373-4071 Stephanie.Mossburg@microbac.com

I certify that all test results meet all of the requirements of the DoD QSM and other applicable contract terms and conditions. Any exceptions are attached to this cover page or addressed in the method narratives presented in the report. All results for soil samples are reported on a 'dry-weight' basis unless specified otherwise. Analytical results for water and wastes are reported on a 'as received' basis unless specified otherwise. A statement of uncertainty for each analysis is available upon request. This laboratory report shall not be reproduced, except in full, without the written approval of Microbac Laboratories, DoD ELAP certification number 2936.01. The reported results are related only to the samples analyzed as received.

This report was certified on May 19 2016

David E. Vardenberg

David Vandenberg – Managing Director

State of Origin: TX

Accrediting Authority: Texas Commission on Environmental Quality ID:T104704252-07-TX

QAPP: DOD Ver 4.1

Microbac Laboratories * Ohio Valley Division
158 Starlite Drive, Marietta, OH 45750 * T: (740) 373-4071 F: (740) 373-4835 * www.microbac.com

Χ

NA

Discrepancy

0.0

Gun

Н

Lab Project #: 2551.096

Project Name: Longhorn Army Ammunition

Lab Contact: Stephanie Mossburg

Resolution

J2317165670

Record of Sample Receipt and Inspection

Comments/Discrepancies

This is the record of the shipment conditions and the inspection records for the samples received and reported as a sample delivery group (SDG). All of the samples were inspected and observed to conform to our receipt policies, except as noted below.

There were no discrepancies.

00113843

12

Coolers					
Cooler #	Temperature	Temperature	COC#	Airbill #	Temp Required?

Inspe	ction Checklist	
#	Question	Result
1	Were shipping coolers sealed?	Yes
2	Were custody seals intact?	Yes
3	Were cooler temperatures in range of 0-6?	Yes
4	Was ice present?	Yes
5	Were COC's received/information complete/signed and dated?	Yes
6	Were sample containers intact and match COC?	Yes
7	Were sample labels intact and match COC?	Yes
8	Were the correct containers and volumes received?	Yes
9	Were samples received within EPA hold times?	Yes
10	All samples were checked for pH and met the standard. Exceptions are noted above under discrepancy. (water only)	Yes
11	Were pH ranges acceptable? (voa's excluded)	Yes

Were VOA samples free of headspace (less than 6mm)?

Lab Project #: L16050013 **Lab Project #:** 2551.096

Project Name: Longhorn Army Ammunition

Lab Contact: Stephanie Mossburg

amples Received			
Client ID	Laboratory ID	Date Collected	Date Received
35AWW13-042916	L16050013-01	04/29/2016 14:30	04/30/2016 11:41
35AWW13FD-042916	L16050013-02	04/29/2016 14:30	04/30/2016 11:41
35AWW13MS-042916	L16050013-03	04/29/2016 14:30	04/30/2016 11:41
35AWW13MSD-042916	L16050013-04	04/29/2016 14:30	04/30/2016 11:41
LHAAP02 EQUIPMENT RINSE- 042916	L16050013-05	04/29/2016 14:45	04/30/2016 11:41

Microbac REPORT L16050013 PREPARED FOR AECOM Technical Services, Inc. WORK ID:

1.0 Summary Data	
1.1 Narratives	
1.2 Certificate of Analysis	
2.0 Full Sample Data Package	
2.1 Metals Data	
2.1.1 Metals I C P Data	54
2.1.1.1 Summary Data	55
2.1.1.2 QC Summary Data	
2.1.1.3 Raw Data	
2.1.2 Metals ICP-MS Data	
2.1.2.1 Summary Data	
2.1.2.2 QC Summary Data	
2.1.2.3 Raw Data	
2.1.3 Metals CVAA Data (Mercury)	
2.1.3.1 Summary Data	
2.1.3.2 QC Summary	
2.1.3.3 Raw Data	
3.0 Attachments	1400

1.0 Summary Data

1.1 Narratives

Laboratory Name:	Microbac OVD	Laboratory Log Number:	L16050013
Project Name:		Method:	6010
Prep Batch Number(s):	WG567310	Reviewer Name:	Brendan Torrence
LRC Date:	2016-05-19 00:00:00		

Laboratory Data Package Cover Page

R2 S	Field chain-of-custody documentation; Sample identification cross-reference; Test reports (analytical data sheets) for each environmental sample that includes: (a) Items consistent with NELAC Chapter 5, (b) dilution factors, (c) preparation methods, (d) cleanup methods, and (e) a.if required for the project, tentatively identified compounds (TICs). Surrogate recovery data including: (a) Calculated recovery (%R), and (b) the laboratory's surrogate QC limits.
R3	Test reports (analytical data sheets) for each environmental sample that includes: (a) Items consistent with NELAC Chapter 5, (b) dilution factors, (c) preparation methods, (d) cleanup methods, and (e) a.if required for the project, tentatively identified compounds (TICs). Surrogate recovery data including: (a) Calculated recovery (%R), and (b) the laboratory's surrogate QC
r	with NELAC Chapter 5, (b) dilution factors, (c) preparation methods, (d) cleanup methods, and (e) a.if required for the project, tentatively identified compounds (TICs). Surrogate recovery data including: (a) Calculated recovery (%R), and (b) the laboratory's surrogate QC
R4 9	
R5 -	Test reports/summary forms for blank samples;
	Test reports/summary forms for laboratory control samples (LCSs) including: (a) LCS spiking amounts, (b) calculated %R for each analyte, and (c) the laboratory's LCS QC limits.
\ 6	Test reports for project matrix spike/matrix spike duplicates (MS/MSDs) including: (a) samples associated with the MS/MSD clearly identified, (b) MS/MSD spiking compounds, (c) concentration of each MS/MSD analyte measured in the parent and spiked samples, (d) calculated %Rs and relative percent differences (RPDs), and (e) the laboratory's MS/MSD QC limits.
	Laboratory analytical duplicate (if applicable) recovery and precision: (a) the amount of analyte measured in the duplicate, (b) the calculated RPD, and (c) the laboratory's QC limits for analytical duplicates.
	List of method quantitation limits (MQLs) and detectability check sample results for each analyte for each method and matrix.
R10 (Other problems or anomalies.

Name (Printed)	Signature	Official Title (Printed)	Date
Brendan Torrence	Buch Tun	Analyst	2016-05-19 19:26:26

Laboratory Name:	Microbac OVD	Laboratory Log Number:	L16050013
Project Name:		Method:	6010
Prep Batch Number(s):	WG567310	Reviewer Name:	Brendan Torrence
LRC Date:	2016-05-19 00:00:00		

Description	Yes	No	NA	NR	ER#
Chain-of-custody (C-O-C)					
Did samples meet the laboratory's standard conditions of sample acceptability upon receipt?	Х				
Were all departures from standard conditions described in an exception report?	Х				
Sample and quality control (QC) identification	Х				
Are all field sample ID numbers cross-referenced to the laboratory ID numbers?	Х				
Are all laboratory ID numbers cross-referenced to the corresponding QC data?	Х				
Test reports	Х				
Were all samples prepared and analyzed within holding times?	Х				
Other than those results < MQL, were all other raw values bracketed by calibration standards?		Х			ER#4
Were calculations checked by a peer or supervisor?	Х				
Were all analyte identifications checked by a peer or supervisor?	Х				
Were sample detection limits reported for all analytes not detected?	Х				
Were all results for soil and sediment samples reported on a dry weight basis?	Х				
Were % moisture (or solids) reported for all soil and sediment samples?	Х				
Were bulk soils/solids samples for volatile analysis extracted with methanol per SW846 Method 5035?			Х		
If required for the project, are TICs reported?			Х		
Surrogate recovery data					
Were surrogates added prior to extraction?			Х		
Were surrogate percent recoveries in all samples within the laboratory QC limits?			Х		
Test reports/summary forms for blank samples					
Were appropriate type(s) of blanks analyzed?	Х				
Were blanks analyzed at the appropriate frequency?	Х				
Were method blanks taken through the entire analytical process, including preparation and, if applicable, cleanup procedures?	Х				
Were blank concentrations < MQL?	Х				
Laboratory control samples (LCS):	Х				
Were all COCs included in the LCS?	Х				

RG-366/TRRP-13 May 2010

Laboratory Name:	Microbac OVD	Laboratory Log Number:	L16050013
Project Name:		Method:	6010
Prep Batch Number(s):	WG567310	Reviewer Name:	Brendan Torrence
LRC Date:	2016-05-19 00:00:00		

Was each LCC taken through the entire analytical presenting including areas and	V			
Was each LCS taken through the entire analytical procedure, including prep and cleanup steps?	Х			
Were LCSs analyzed at the required frequency?	Х			
Were LCS (and LCSD, if applicable) %Rs within the laboratory QC limits?	Х			
Does the detectability check sample data document the laboratory's capability to detect the COCs at the MDL used to calculate the SDLs?	Х			
Was the LCSD RPD within QC limits?			Х	
Matrix spike (MS) and matrix spike duplicate (MSD) data				
Were the project/method specified analytes included in the MS and MSD?	Х			
Were MS/MSD analyzed at the appropriate frequency?	Х			
Were MS (and MSD, if applicable) %Rs within the laboratory QC limits?		Х		ER#3
Were MS/MSD RPDs within laboratory QC limits?	Х			
Analytical duplicate data				
Were appropriate analytical duplicates analyzed for each matrix?			Х	
Were analytical duplicates analyzed at the appropriate frequency?			Х	
Were RPDs or relative standard deviations within the laboratory QC limits?			Х	
Method quantitation limits (MQLs):				
Are the MQLs for each method analyte included in the laboratory data package?	Х			
Do the MQLs correspond to the concentration of the lowest non-zero calibration standard?	Х			
Are unadjusted MQLs and DCSs included in the laboratory data package?	Х			
Other problems/anomalies				
Are all known problems/anomalies/special conditions noted in this LRC and ER?	Х			
Was applicable and available technology used to lower the SDL to minimize the matrix interference effects on the sample results?	Х			
Is the laboratory NELAC-accredited under the Texas Laboratory Accreditation Program for the analytes, matrices and methods associated with this laboratory data package?	Х			
Initial calibration (ICAL)				
Were response factors and/or relative response factors for each analyte within QC limits?	Х			
Were percent RSDs or correlation coefficient criteria met?		Х		ER#1

RG-366/TRRP-13 May 2010

Laboratory Name:	Microbac OVD	Laboratory Log Number:	L16050013
Project Name:		Method:	6010
Prep Batch Number(s):	WG567310	Reviewer Name:	Brendan Torrence
LRC Date:	2016-05-19 00:00:00		

Was the number of standards recommended in the method used for all analytes?	Х			
Were all points generated between the lowest and highest standard used to calculate the curve?				
Are ICAL data available for all instruments used?	Х			
Has the initial calibration curve been verified using an appropriate second source standard?	Х			
Initial and continuing calibration verification (ICCV and CCV) and continuing calibration blank (CCB):				
Was the CCV analyzed at the method-required frequency?	Х			
Were percent differences for each analyte within the method-required QC limits?		Х		ER#2
Was the ICAL curve verified for each analyte?	Х			
Was the absolute value of the analyte concentration in the inorganic CCB < MDL?	Х			
Mass spectral tuning				
Was the appropriate compound for the method used for tuning?			Х	
Were ion abundance data within the method-required QC limits?			Х	
Internal standards (IS)				
Were IS area counts and retention times within the method-required QC limits?			Х	
Raw data (NELAC Section 5.5.10)				
Were the raw data (for example, chromatograms, spectral data) reviewed by an analyst?	Х			
Were data associated with manual integrations flagged on the raw data?			Х	
Dual column confirmation				
Did dual column confirmation results meet the method-required QC?			Х	
Tentatively identified compounds (TICs)				
If TICs were requested, were the mass spectra and TIC data subject to appropriate checks?			Х	
Interference Check Sample (ICS) results				
Were percent recoveries within method QC limits?	Х			
Serial dilutions, post digestion spikes, and method of standard additions				
Were percent differences, recoveries, and the linearity within the QC limits specified in the method?	Х			
Method detection limit (MDL) studies				

RG-366/TRRP-13 May 2010

Laboratory Name:	Microbac OVD	Laboratory Log Number:	L16050013
Project Name:		Method:	6010
Prep Batch Number(s):	WG567310	Reviewer Name:	Brendan Torrence
LRC Date:	2016-05-19 00:00:00		

Was a MDL study performed for each reported analyte?	Х	
Is the MDL either adjusted or supported by the analysis of DCSs?	Х	
Proficiency test reports		
Was the laboratory's performance acceptable on the applicable proficiency tests or evaluation studies?	Х	
Standards documentation		
Are all standards used in the analyses NIST-traceable or obtained from other appropriate sources?	X	
Compound/analyte identification procedures		
Are the procedures for compound/analyte identification documented?	X	
Demonstration of analyst competency (DOC)		
Was DOC conducted consistent with NELAC Chapter 5?	Х	
Is documentation of the analyst's competency up-to-date and on file?	Х	
Verification/validation documentation for methods (NELAC Chapter 5)		
Are all the methods used to generate the data documented, verified, and validated, where applicable?	Х	
Laboratory standard operating procedures (SOPs)		
Are laboratory SOPs current and on file for each method performed	Х	

- 1. Items identified by the letter "R" must be included in the laboratory data package submitted in the TRRP-required report(s). Items identified by the letter "S" should be retained and made available upon request for the appropriate retention period;
- 2. O = organic analyses; I = inorganic analyses (and general chemistry, when applicable);
- 3. NA = Not applicable;
- 4. NR = Not reviewed;
- 5. ER# = Exception Report identification number (an Exception Report should be completed for an item if "NR" or "No" is checked).

The Exception Report for each "No" or "Not Reviewed (NR)" item in Laboratory Review Checklist and for each analyte, matrix, and method for which the laboratory does not hold NELAC accreditation under the Texas Laboratory Accreditation Program.

Release Statement: I am responsible for the release of this laboratory data package. This laboratory is NELAC accredited under the Texas Laboratory Accreditation Program for all the methods, analytes, and matrices reported in this data package except as noted in the Exception Reports. The data have been reviewed and are technically compliant with the requirements of the methods used, except where noted by the laboratory in the Exception Reports. By my signature

RG-366/TRRP-13 May 2010

Laboratory Name:	Microbac OVD	Laboratory Log Number:	L16050013
Project Name:		Method:	6010
Prep Batch Number(s):	WG567310	Reviewer Name:	Brendan Torrence
LRC Date:	2016-05-19 00:00:00		

are noted in the Exception Reports herein. The official signing the cover page of the report in which these data are used is responsible for releasing this data package and is by signature affirming the above release statement is true.
Check, if applicable: [] This laboratory meets an exception under 30 TAC §25.6 and was last inspection by [] TCEQ or [] on (enter date of last inspection). Any findings affecting the data in this laboratory data package
below, I affirm to the best of my knowledge all problems/anomalies observed by the laboratory have been identified in the Laboratory Review Checklist, and no information affecting the quality of the data has been knowingly withheld.

ER#1 - Due to initial calibration failure for magnesium, all client samples and batch QA/QC samples were reanalyzed on 16-May-2016 for magnesium.

ER#2 - The closing low level continuing calibration verification analyzed on 16-May-2016 at 12:43 yielded a noncompliant recovery for magnesium. All client samples and batch QA/QC samples were reanalyzed on a later calibration which was compliant for magnesium.

ER#3 - Sample 01 was chosen by the client for MS/MSD analysis. Samples 03 (MS) and 04 (MSD) yielded noncompliant recoveries for two analytes.

ER#4 - Client samples 01, 02, 03, and 04 required dilution analyses in order to obtain results for calcium, magnesium, and sodium within the calibration range.

Laboratory Name:	Microbac OVD	Laboratory Log Number:	L16050013
Project Name:		Method:	6020
Prep Batch Number(s):	WG567404	Reviewer Name:	Brendan Torrence
LRC Date:	2016-05-19 00:00:00		

Laboratory Data Package Cover Page

R2 S	Field chain-of-custody documentation; Sample identification cross-reference; Test reports (analytical data sheets) for each environmental sample that includes: (a) Items consistent with NELAC Chapter 5, (b) dilution factors, (c) preparation methods, (d) cleanup methods, and (e) a.if required for the project, tentatively identified compounds (TICs). Surrogate recovery data including: (a) Calculated recovery (%R), and (b) the laboratory's surrogate QC limits.
R3	Test reports (analytical data sheets) for each environmental sample that includes: (a) Items consistent with NELAC Chapter 5, (b) dilution factors, (c) preparation methods, (d) cleanup methods, and (e) a.if required for the project, tentatively identified compounds (TICs). Surrogate recovery data including: (a) Calculated recovery (%R), and (b) the laboratory's surrogate QC
r	with NELAC Chapter 5, (b) dilution factors, (c) preparation methods, (d) cleanup methods, and (e) a.if required for the project, tentatively identified compounds (TICs). Surrogate recovery data including: (a) Calculated recovery (%R), and (b) the laboratory's surrogate QC
R4 9	
R5 -	Test reports/summary forms for blank samples;
	Test reports/summary forms for laboratory control samples (LCSs) including: (a) LCS spiking amounts, (b) calculated %R for each analyte, and (c) the laboratory's LCS QC limits.
\ 6	Test reports for project matrix spike/matrix spike duplicates (MS/MSDs) including: (a) samples associated with the MS/MSD clearly identified, (b) MS/MSD spiking compounds, (c) concentration of each MS/MSD analyte measured in the parent and spiked samples, (d) calculated %Rs and relative percent differences (RPDs), and (e) the laboratory's MS/MSD QC limits.
	Laboratory analytical duplicate (if applicable) recovery and precision: (a) the amount of analyte measured in the duplicate, (b) the calculated RPD, and (c) the laboratory's QC limits for analytical duplicates.
	List of method quantitation limits (MQLs) and detectability check sample results for each analyte for each method and matrix.
R10 (Other problems or anomalies.

Name (Printed)	Signature	Official Title (Printed)	Date
Brendan Torrence	Buch Tun	Analyst	2016-05-19 19:19:49

Laboratory Name:	Microbac OVD	Laboratory Log Number:	L16050013
Project Name:		Method:	6020
Prep Batch Number(s):	WG567404	Reviewer Name:	Brendan Torrence
LRC Date:	2016-05-19 00:00:00		

Description	Yes	No	NA	NR	ER#
Chain-of-custody (C-O-C)					
Did samples meet the laboratory's standard conditions of sample acceptability upon receipt?	Х				
Were all departures from standard conditions described in an exception report?	Х				
Sample and quality control (QC) identification	Х				
Are all field sample ID numbers cross-referenced to the laboratory ID numbers?	Х				
Are all laboratory ID numbers cross-referenced to the corresponding QC data?	Х				
Test reports	Х				
Were all samples prepared and analyzed within holding times?	Х				
Other than those results < MQL, were all other raw values bracketed by calibration standards?		Х			ER#1
Were calculations checked by a peer or supervisor?	Х				
Were all analyte identifications checked by a peer or supervisor?	Х				
Were sample detection limits reported for all analytes not detected?	Х				
Were all results for soil and sediment samples reported on a dry weight basis?	Х				
Were % moisture (or solids) reported for all soil and sediment samples?	Х				
Were bulk soils/solids samples for volatile analysis extracted with methanol per SW846 Method 5035?			Х		
If required for the project, are TICs reported?			Х		
Surrogate recovery data					
Were surrogates added prior to extraction?			Х		
Were surrogate percent recoveries in all samples within the laboratory QC limits?			Х		
Test reports/summary forms for blank samples					
Were appropriate type(s) of blanks analyzed?	Х				
Were blanks analyzed at the appropriate frequency?	Х				
Were method blanks taken through the entire analytical process, including preparation and, if applicable, cleanup procedures?	Х				
Were blank concentrations < MQL?	Х				
Laboratory control samples (LCS):					
Were all COCs included in the LCS?	Х				

RG-366/TRRP-13 May 2010

Laboratory Name:	Microbac OVD	Laboratory Log Number:	L16050013
Project Name:		Method:	6020
Prep Batch Number(s):	WG567404	Reviewer Name:	Brendan Torrence
LRC Date:	2016-05-19 00:00:00		

Was each LCS taken through the entire analytical procedure, including prep and cleanup steps?	Х		
Were LCSs analyzed at the required frequency?	Х		
Were LCS (and LCSD, if applicable) %Rs within the laboratory QC limits?	Х		
Does the detectability check sample data document the laboratory's capability to detect the COCs at the MDL used to calculate the SDLs?	Х		
Was the LCSD RPD within QC limits?		Х	
Matrix spike (MS) and matrix spike duplicate (MSD) data			
Were the project/method specified analytes included in the MS and MSD?	Х		
Were MS/MSD analyzed at the appropriate frequency?	Х		
Were MS (and MSD, if applicable) %Rs within the laboratory QC limits?	Х		
Were MS/MSD RPDs within laboratory QC limits?	Х		
Analytical duplicate data			
Were appropriate analytical duplicates analyzed for each matrix?		Х	
Were analytical duplicates analyzed at the appropriate frequency?		Х	
Were RPDs or relative standard deviations within the laboratory QC limits?		Х	
Method quantitation limits (MQLs):			
Are the MQLs for each method analyte included in the laboratory data package?	Х		
Do the MQLs correspond to the concentration of the lowest non-zero calibration standard?	Х		
Are unadjusted MQLs and DCSs included in the laboratory data package?	Х		
Other problems/anomalies			
Are all known problems/anomalies/special conditions noted in this LRC and ER?	Х		
Was applicable and available technology used to lower the SDL to minimize the matrix interference effects on the sample results?	Х		
Is the laboratory NELAC-accredited under the Texas Laboratory Accreditation Program for the analytes, matrices and methods associated with this laboratory data package?	Х		
Initial calibration (ICAL)			
Were response factors and/or relative response factors for each analyte within QC limits?	Х		
Were percent RSDs or correlation coefficient criteria met?	Х		

RG-366/TRRP-13 May 2010

Laboratory Name:	Microbac OVD	Laboratory Log Number:	L16050013
Project Name:		Method:	6020
Prep Batch Number(s):	WG567404	Reviewer Name:	Brendan Torrence
LRC Date:	2016-05-19 00:00:00		

Was the number of standards recommended in the method used for all analytes?	Х		
Were all points generated between the lowest and highest standard used to calculate the curve?			
Are ICAL data available for all instruments used?	Х		
Has the initial calibration curve been verified using an appropriate second source standard?	Х		
Initial and continuing calibration verification (ICCV and CCV) and continuing calibration blank (CCB):			
Was the CCV analyzed at the method-required frequency?	Х		
Were percent differences for each analyte within the method-required QC limits?	Х		
Was the ICAL curve verified for each analyte?	Х		
Was the absolute value of the analyte concentration in the inorganic CCB < MDL?	Х		
Mass spectral tuning			
Was the appropriate compound for the method used for tuning?	Х		
Were ion abundance data within the method-required QC limits?	Х		
Internal standards (IS)			
Were IS area counts and retention times within the method-required QC limits?	Х		
Raw data (NELAC Section 5.5.10)			
Were the raw data (for example, chromatograms, spectral data) reviewed by an analyst?	Х		
Were data associated with manual integrations flagged on the raw data?		Х	
Dual column confirmation			
Did dual column confirmation results meet the method-required QC?		Х	
Tentatively identified compounds (TICs)			
If TICs were requested, were the mass spectra and TIC data subject to appropriate checks?		Х	
Interference Check Sample (ICS) results			
Were percent recoveries within method QC limits?	Х		
Serial dilutions, post digestion spikes, and method of standard additions			
Were percent differences, recoveries, and the linearity within the QC limits specified in the method?	Х		
Method detection limit (MDL) studies			

RG-366/TRRP-13 May 2010

Laboratory Name:	Microbac OVD	Laboratory Log Number:	L16050013
Project Name:		Method:	6020
Prep Batch Number(s):	WG567404	Reviewer Name:	Brendan Torrence
LRC Date:	2016-05-19 00:00:00		

Was a MDL study performed for each reported analyte?	Х		
Is the MDL either adjusted or supported by the analysis of DCSs?	Х		
Proficiency test reports			
Was the laboratory's performance acceptable on the applicable proficiency tests or evaluation studies?	X		
Standards documentation			
Are all standards used in the analyses NIST-traceable or obtained from other appropriate sources?	X		
Compound/analyte identification procedures			
Are the procedures for compound/analyte identification documented?	Х		
Demonstration of analyst competency (DOC)			
Was DOC conducted consistent with NELAC Chapter 5?	Х		
Is documentation of the analyst's competency up-to-date and on file?	Х		
Verification/validation documentation for methods (NELAC Chapter 5)			
Are all the methods used to generate the data documented, verified, and validated, where applicable?	X		
Laboratory standard operating procedures (SOPs)			
Are laboratory SOPs current and on file for each method performed	Х		
		 	

- 1. Items identified by the letter "R" must be included in the laboratory data package submitted in the TRRP-required report(s). Items identified by the letter "S" should be retained and made available upon request for the appropriate retention period;
- 2. O = organic analyses; I = inorganic analyses (and general chemistry, when applicable);
- 3. NA = Not applicable;
- 4. NR = Not reviewed;
- 5. ER# = Exception Report identification number (an Exception Report should be completed for an item if "NR" or "No" is checked).

The Exception Report for each "No" or "Not Reviewed (NR)" item in Laboratory Review Checklist and for each analyte, matrix, and method for which the laboratory does not hold NELAC accreditation under the Texas Laboratory Accreditation Program.

Release Statement: I am responsible for the release of this laboratory data package. This laboratory is NELAC accredited under the Texas Laboratory Accreditation Program for all the methods, analytes, and matrices reported in this data package except as noted in the Exception Reports. The data have been reviewed and are technically compliant with the requirements of the methods used, except where noted by the laboratory in the Exception Reports. By my signature

RG-366/TRRP-13 May 2010

Laboratory Name:	Microbac OVD	Laboratory Log Number:	L16050013
Project Name:		Method:	6020
Prep Batch Number(s):	WG567404	Reviewer Name:	Brendan Torrence
LRC Date:	2016-05-19 00:00:00		

Exceptions Report
Check, if applicable: [] This laboratory meets an exception under 30 TAC §25.6 and was last inspection by [] TCEQ or [] on (enter date of last inspection). Any findings affecting the data in this laboratory data package are noted in the Exception Reports herein. The official signing the cover page of the report in which these data are used is responsible for releasing this data package and is by signature affirming the above release statement is true.
below, I affirm to the best of my knowledge all problems/anomalies observed by the laboratory have been identified in the Laboratory Review Checklist, and no information affecting the quality of the data has been knowingly withheld.

ER#1 - Client samples 01, 02, 03, and 04 required dilution analyses in order to obtain results for manganese within the calibration range.

Laboratory Name:	Microbac OVD	Laboratory Log Number:	L16050013
Project Name:		Method:	7471
Prep Batch Number(s):	WG567297	Reviewer Name:	Brendan Torrence
LRC Date:	2016-05-19 00:00:00		

Laboratory Data Package Cover Page

R2 S	Field chain-of-custody documentation; Sample identification cross-reference; Test reports (analytical data sheets) for each environmental sample that includes: (a) Items consistent with NELAC Chapter 5, (b) dilution factors, (c) preparation methods, (d) cleanup methods, and (e) a.if required for the project, tentatively identified compounds (TICs). Surrogate recovery data including: (a) Calculated recovery (%R), and (b) the laboratory's surrogate QC limits.
R3	Test reports (analytical data sheets) for each environmental sample that includes: (a) Items consistent with NELAC Chapter 5, (b) dilution factors, (c) preparation methods, (d) cleanup methods, and (e) a.if required for the project, tentatively identified compounds (TICs). Surrogate recovery data including: (a) Calculated recovery (%R), and (b) the laboratory's surrogate QC
r	with NELAC Chapter 5, (b) dilution factors, (c) preparation methods, (d) cleanup methods, and (e) a.if required for the project, tentatively identified compounds (TICs). Surrogate recovery data including: (a) Calculated recovery (%R), and (b) the laboratory's surrogate QC
R4 9	
R5 -	Test reports/summary forms for blank samples;
	Test reports/summary forms for laboratory control samples (LCSs) including: (a) LCS spiking amounts, (b) calculated %R for each analyte, and (c) the laboratory's LCS QC limits.
\ 6	Test reports for project matrix spike/matrix spike duplicates (MS/MSDs) including: (a) samples associated with the MS/MSD clearly identified, (b) MS/MSD spiking compounds, (c) concentration of each MS/MSD analyte measured in the parent and spiked samples, (d) calculated %Rs and relative percent differences (RPDs), and (e) the laboratory's MS/MSD QC limits.
	Laboratory analytical duplicate (if applicable) recovery and precision: (a) the amount of analyte measured in the duplicate, (b) the calculated RPD, and (c) the laboratory's QC limits for analytical duplicates.
	List of method quantitation limits (MQLs) and detectability check sample results for each analyte for each method and matrix.
R10 (Other problems or anomalies.

Name (Printed)	Signature	Official Title (Printed)	Date
Brendan Torrence	Buch Tun	Analyst	2016-05-19 19:15:48

Laboratory Name:	Microbac OVD	Laboratory Log Number:	L16050013
Project Name:		Method:	7471
Prep Batch Number(s):	WG567297	Reviewer Name:	Brendan Torrence
LRC Date:	2016-05-19 00:00:00		

Description	Yes	No	NA	NR	ER#
Chain-of-custody (C-O-C)					
Did samples meet the laboratory's standard conditions of sample acceptability upon receipt?	Х				
Were all departures from standard conditions described in an exception report?	Х				
Sample and quality control (QC) identification	Х				
Are all field sample ID numbers cross-referenced to the laboratory ID numbers?	Х				
Are all laboratory ID numbers cross-referenced to the corresponding QC data?	Х				
Test reports	Х				
Were all samples prepared and analyzed within holding times?	Х				
Other than those results < MQL, were all other raw values bracketed by calibration standards?	Х				
Were calculations checked by a peer or supervisor?	Х				
Were all analyte identifications checked by a peer or supervisor?	Х				
Were sample detection limits reported for all analytes not detected?	Х				
Were all results for soil and sediment samples reported on a dry weight basis?	Х				
Were % moisture (or solids) reported for all soil and sediment samples?	Х				
Were bulk soils/solids samples for volatile analysis extracted with methanol per SW846 Method 5035?			Х		
If required for the project, are TICs reported?			Х		
Surrogate recovery data					
Were surrogates added prior to extraction?			Х		
Were surrogate percent recoveries in all samples within the laboratory QC limits?			Х		
Test reports/summary forms for blank samples					
Were appropriate type(s) of blanks analyzed?	Х				
Were blanks analyzed at the appropriate frequency?	Х				
Were method blanks taken through the entire analytical process, including preparation and, if applicable, cleanup procedures?	Х				
Were blank concentrations < MQL?	Х				
Laboratory control samples (LCS):	Х				
Were all COCs included in the LCS?	Х				

RG-366/TRRP-13 May 2010

Laboratory Name:	Microbac OVD	Laboratory Log Number:	L16050013
Project Name:		Method:	7471
Prep Batch Number(s):	WG567297	Reviewer Name:	Brendan Torrence
LRC Date:	2016-05-19 00:00:00		

Was each LCS taken through the entire analytical procedure, including prep and cleanup steps?	Х			
Were LCSs analyzed at the required frequency?	Х			
Were LCS (and LCSD, if applicable) %Rs within the laboratory QC limits?	Х			
Does the detectability check sample data document the laboratory's capability to detect the COCs at the MDL used to calculate the SDLs?	Х			
Was the LCSD RPD within QC limits?		Х		
Matrix spike (MS) and matrix spike duplicate (MSD) data				
Were the project/method specified analytes included in the MS and MSD?	Х			
Were MS/MSD analyzed at the appropriate frequency?	X			
Were MS (and MSD, if applicable) %Rs within the laboratory QC limits?	Х			
Were MS/MSD RPDs within laboratory QC limits?	Х			
Analytical duplicate data				
Were appropriate analytical duplicates analyzed for each matrix?		Х		
Were analytical duplicates analyzed at the appropriate frequency?		Х		
Were RPDs or relative standard deviations within the laboratory QC limits?		Х		
Method quantitation limits (MQLs):				
Are the MQLs for each method analyte included in the laboratory data package?	X			
Do the MQLs correspond to the concentration of the lowest non-zero calibration standard?	Х			
Are unadjusted MQLs and DCSs included in the laboratory data package?	X			
Other problems/anomalies				
Are all known problems/anomalies/special conditions noted in this LRC and ER?	Х			
Was applicable and available technology used to lower the SDL to minimize the matrix interference effects on the sample results?	Х			
Is the laboratory NELAC-accredited under the Texas Laboratory Accreditation Program for the analytes, matrices and methods associated with this laboratory data package?	Х			
Initial calibration (ICAL)				
Were response factors and/or relative response factors for each analyte within QC limits?	Х			
Were percent RSDs or correlation coefficient criteria met?	Х			
			1	

RG-366/TRRP-13 May 2010

Laboratory Name:	Microbac OVD	Laboratory Log Number:	L16050013
Project Name:		Method:	7471
Prep Batch Number(s):	WG567297	Reviewer Name:	Brendan Torrence
LRC Date:	2016-05-19 00:00:00		

Was the number of standards recommended in the method used for all analytes?	Х		
Were all points generated between the lowest and highest standard used to calculate the curve?			
Are ICAL data available for all instruments used?	Х		
Has the initial calibration curve been verified using an appropriate second source standard?	Х		
Initial and continuing calibration verification (ICCV and CCV) and continuing calibration blank (CCB):			
Was the CCV analyzed at the method-required frequency?	Х		
Were percent differences for each analyte within the method-required QC limits?	Х		
Was the ICAL curve verified for each analyte?	Х		
Was the absolute value of the analyte concentration in the inorganic CCB < MDL?	Х		
Mass spectral tuning			
Was the appropriate compound for the method used for tuning?	Х		
Were ion abundance data within the method-required QC limits?	Х		
Internal standards (IS)			
Were IS area counts and retention times within the method-required QC limits?	Х		
Raw data (NELAC Section 5.5.10)			
Were the raw data (for example, chromatograms, spectral data) reviewed by an analyst?	Х		
Were data associated with manual integrations flagged on the raw data?		Х	
Dual column confirmation			
Did dual column confirmation results meet the method-required QC?		Х	
Tentatively identified compounds (TICs)			
If TICs were requested, were the mass spectra and TIC data subject to appropriate checks?		Х	
Interference Check Sample (ICS) results			
Were percent recoveries within method QC limits?	Х		
Serial dilutions, post digestion spikes, and method of standard additions			
Were percent differences, recoveries, and the linearity within the QC limits specified in the method?	Х		
Method detection limit (MDL) studies			
	1 1		

RG-366/TRRP-13 May 2010

Laboratory Name:	Microbac OVD	Laboratory Log Number:	L16050013
Project Name:		Method:	7471
Prep Batch Number(s):	WG567297	Reviewer Name:	Brendan Torrence
LRC Date:	2016-05-19 00:00:00		

Was a MDL study performed for each reported analyte?	Х	
Is the MDL either adjusted or supported by the analysis of DCSs?	Х	
Proficiency test reports		
Was the laboratory's performance acceptable on the applicable proficiency tests or evaluation studies?	Х	
Standards documentation		
Are all standards used in the analyses NIST-traceable or obtained from other appropriate sources?	X	
Compound/analyte identification procedures		
Are the procedures for compound/analyte identification documented?	X	
Demonstration of analyst competency (DOC)		
Was DOC conducted consistent with NELAC Chapter 5?	Х	
Is documentation of the analyst's competency up-to-date and on file?	Х	
Verification/validation documentation for methods (NELAC Chapter 5)		
Are all the methods used to generate the data documented, verified, and validated, where applicable?	Х	
Laboratory standard operating procedures (SOPs)		
Are laboratory SOPs current and on file for each method performed	Х	

- 1. Items identified by the letter "R" must be included in the laboratory data package submitted in the TRRP-required report(s). Items identified by the letter "S" should be retained and made available upon request for the appropriate retention period;
- 2. O = organic analyses; I = inorganic analyses (and general chemistry, when applicable);
- 3. NA = Not applicable;
- 4. NR = Not reviewed;
- 5. ER# = Exception Report identification number (an Exception Report should be completed for an item if "NR" or "No" is checked).

The Exception Report for each "No" or "Not Reviewed (NR)" item in Laboratory Review Checklist and for each analyte, matrix, and method for which the laboratory does not hold NELAC accreditation under the Texas Laboratory Accreditation Program.

Release Statement: I am responsible for the release of this laboratory data package. This laboratory is NELAC accredited under the Texas Laboratory Accreditation Program for all the methods, analytes, and matrices reported in this data package except as noted in the Exception Reports. The data have been reviewed and are technically compliant with the requirements of the methods used, except where noted by the laboratory in the Exception Reports. By my signature

RG-366/TRRP-13 May 2010

Laboratory Name:	Microbac OVD	Laboratory Log Number:	L16050013
Project Name:		Method:	7471
Prep Batch Number(s):	WG567297	Reviewer Name:	Brendan Torrence
LRC Date:	2016-05-19 00:00:00		

Exceptions Report
Check, if applicable: [] This laboratory meets an exception under 30 TAC §25.6 and was last inspection by [] TCEQ or [] on (enter date of last inspection). Any findings affecting the data in this laboratory data package are noted in the Exception Reports herein. The official signing the cover page of the report in which these data are use is responsible for releasing this data package and is by signature affirming the above release statement is true.
below, I affirm to the best of my knowledge all problems/anomalies observed by the laboratory have been identified in t Laboratory Review Checklist, and no information affecting the quality of the data has been knowingly withheld.

RG-366/TRRP-13 May 2010

1.2 Certificate of Analysis

Lab Project #: 2551.096

Project Name: Longhorn Army Ammunition

Lab Contact: Stephanie Mossburg

Certificate of Analysis

 Sample #:
 L16050013-01
 PrePrep Method:
 N/A
 Instrument:
 ICP-THERMO3

 Client ID:
 35AWW13-042916
 Prep Method:
 3015
 Prep Date:
 05/03/2016 11:48

 Matrix:
 Water
 Analytical Method:
 6010C
 Cal Date:
 05/13/2016 15:26

 Workgroup #:
 WG567345
 Analyst:
 JYH
 Run Date:
 05/13/2016 17:43

Sample Tag: 01 Units: mg/L

Analyte	CAS#	Result	Qual	LOQ	LOD	DL		
Aluminum, Total	7429-90-5	0.195	J	0.200	0.100	0.0500		
Beryllium, Total	7440-41-7	0.0100	U	0.0200	0.0100	0.00500		
Iron, Total	7439-89-6	0.465		0.200	0.100	0.0500		
Potassium, Total	7440-09-7	0.685	J	2.00	1.00	0.500		
Selenium, Total	7782-49-2	0.0100	U	0.0200	0.0100	0.00500		
1 Festimated value is the analytic concentration was less than the LOO								

J Estimated value ; the analyte concentration was less than the LOQ.
U Analyte was not detected. The concentration is below the reported LOD.

Page 1 of 25 Generated at May 19, 2016 16:33

Lab Project #: 2551.096

Project Name: Longhorn Army Ammunition

Lab Contact: Stephanie Mossburg

Certificate of Analysis

 Sample #:
 L16050013-01
 PrePrep Method:
 N/A
 Instrument:
 ICP-THERMO3

 Client ID:
 35AWW13-042916
 Prep Method:
 3015
 Prep Date:
 05/03/2016 11:48

 Matrix:
 Water
 Analytical Method:
 6010C
 Cal Date:
 05/16/2016 09:59

 Workgroup #:
 WG567345
 Analyst:
 JYH
 Run Date:
 05/16/2016 12:08

 Collect Date:
 04/29/2016 14:30
 Dilution:
 10
 File ID:
 T3.051616.120826

Sample Tag: DL01 Units: mg/L

Analyte	CAS#	Result	Qual	LOQ	LOD	DL
Calcium, Total	7440-70-2	38.4		5.00	2.50	1.25
Sodium, Total	7440-23-5	199		10.0	5.00	2.50

U Analyte was not detected. The concentration is below the reported LOD.

Page 2 of 25 Generated at May 19, 2016 16:33

Lab Report #: L16050013 **Lab Project #:** 2551.096

Project Name: Longhorn Army Ammunition Lab Contact: Stephanie Mossburg

Certificate of Analysis

Sample #: L16050013-01 **Client ID:** 35AWW13-042916

Matrix: Water Workgroup #: WG567345 Analyst: JYH

Collect Date: 04/29/2016 14:30 Sample Tag: DL02

PrePrep Method: N/A Prep Method: 3015 Analytical Method: 6010C

Dilution: 10

Units: mg/L

Instrument: ICP-THERMO3

Prep Date: 05/03/2016 11:48 Cal Date: 05/17/2016 10:10

Run Date: 05/17/2016 10:58

File ID: T3.051716.105823

Analyte	CAS#	Result	Qual	LOQ	LOD	DL
Magnesium, Total	7439-95-4	29.3		10.0	5.00	2.50

_						
J	Estimated value ; the analyte concentrat	ion was less than	the LOQ.			
U	Analyte was not detected. The concentra	ation is below the	reported LOD.			

Lab Project #: 2551.096

Project Name: Longhorn Army Ammunition

Lab Contact: Stephanie Mossburg

Certificate of Analysis

Sample #: L16050013-01 PrePrep Method: N/A Instrument: ICP-MS2

 Client ID:
 35AWW13-042916
 Prep Method:
 3015
 Prep Date:
 05/04/2016 07:31

 Matrix:
 Water
 Analytical Method:
 6020A
 Cal Date:
 05/04/2016 11:30

 Workgroup #:
 WG567470
 Analyst:
 JYH
 Run Date:
 05/04/2016 12:04

 Collect Date:
 04/29/2016 14:30
 Dilution:
 1
 File ID:
 NI.050416.120436

Sample Tag: 01 Units: mg/L

Analyte	CAS#	Result	Qual	LOQ	LOD	DL
Antimony, Total	7440-36-0	0.00135	J	0.00200	0.00100	0.000500
Arsenic, Total	7440-38-2	0.00237		0.00200	0.00100	0.000500
Barium, Total	7440-39-3	0.0294		0.00600	0.00300	0.00150
Cadmium, Total	7440-43-9	0.000600	U	0.00120	0.000600	0.000300
Chromium, Total	7440-47-3	0.00187	J	0.00400	0.00200	0.00100
Cobalt, Total	7440-48-4	0.00390		0.00200	0.00100	0.000500
Copper, Total	7440-50-8	0.00207	J	0.00400	0.00200	0.00100
Lead, Total	7439-92-1	0.00100	U	0.00200	0.00100	0.000500
Nickel, Total	7440-02-0	0.00849		0.00800	0.00400	0.00200
Silver, Total	7440-22-4	0.00100	U	0.00200	0.00100	0.000500
Thallium, Total	7440-28-0	0.000105	J	0.000400	0.000200	0.000100
Vanadium, Total	7440-62-2	0.00231		0.00200	0.00100	0.000500
Zinc, Total	7440-66-6	0.0250	U	0.0500	0.0250	0.0125

J	Estimated value ; the analyte concentration was less than the LOQ.
J	Estimated value ; the analyte concentration was greater than the highest standard
U	Analyte was not detected. The concentration is below the reported LOD.

Page 4 of 25 Generated at May 19, 2016 16:33

Lab Project #: 2551.096

Project Name: Longhorn Army Ammunition

Lab Contact: Stephanie Mossburg

Certificate of Analysis

Sample #: L16050013-01 PrePrep Method: N/A Instrument: ICP-MS2

 Client ID:
 35AWW13-042916
 Prep Method:
 3015
 Prep Date:
 05/04/2016 07:31

 Matrix:
 Water
 Analytical Method:
 6020A
 Cal Date:
 05/04/2016 11:30

 Workgroup #:
 WG567470
 Analyst:
 JYH
 Run Date:
 05/04/2016 13:35

 Collect Date:
 04/29/2016 14:30
 Dilution:
 50
 File ID:
 NI.050416.133555

Sample Tag: DL01 Units: mg/L

	Analyte	CAS#	Result	Qual	LOQ	LOD	DL
Manganese,	Total	7439-96-5	0.271		0.200	0.100	0.0500
11	Analyte was not detected. The concentration is helow the reported LOD						

Page 5 of 25 Generated at May 19, 2016 16:33

Page 30

Lab Project #: 2551.096

Project Name: Longhorn Army Ammunition

Lab Contact: Stephanie Mossburg

Certificate of Analysis

Sample #: L16050013-01

PrePrep Method: N/A

Instrument: CVAA1

Client ID: 35AWW13-042916

Prep Method: 7470A

Analytical Method: 7470A

Prep Date: 05/03/2016 10:12 **Cal Date:** 05/04/2016 13:43

Matrix: Water
Workgroup #: WG567450

Analyst: PDM

Run Date: 05/04/2016 14:47

Collect Date: 04/29/2016 14:30

Dilution: 1

File ID: M7.050416.144702

Sample Tag: 01

Units: mg/L

	Analyte	CAS#	Result	Qual	LOQ	LOD	DL
Mercury		7439-97-6	0.000200	U	0.000400	0.000200	0.000100
U	Analyte was not detected. The concentra	ation is below the	reported LOD.				

Lab Project #: L16050013 **Lab Project #:** 2551.096

Project Name: Longhorn Army Ammunition

Lab Contact: Stephanie Mossburg

Certificate of Analysis

 Sample #:
 L16050013-02
 PrePrep Method:
 N/A
 Instrument:
 ICP-THERMO3

 Client ID:
 35AWW13FD-042916
 Prep Method:
 3015
 Prep Date:
 05/03/2016 11:48

 Matrix:
 Water
 Analytical Method:
 6010C
 Cal Date:
 05/13/2016 15:26

 Workgroup #:
 WG567345
 Analyst:
 JYH
 Run Date:
 05/13/2016 17:47

Sample Tag: 01 Units: mg/L

Analyte	CAS#	Result	Qual	LOQ	LOD	DL
Aluminum, Total	7429-90-5	0.156	J	0.200	0.100	0.0500
Beryllium, Total	7440-41-7	0.0100	U	0.0200	0.0100	0.00500
Iron, Total	7439-89-6	0.378		0.200	0.100	0.0500
Potassium, Total	7440-09-7	0.581	J	2.00	1.00	0.500
Selenium, Total	7782-49-2	0.0100	U	0.0200	0.0100	0.00500

J	Estimated value ; the analyte concentration was less than the LOQ.
U	Analyte was not detected. The concentration is below the reported LOD.

Page 7 of 25 Generated at May 19, 2016 16:33

U

Lab Project #: 2551.096

Project Name: Longhorn Army Ammunition

Lab Contact: Stephanie Mossburg

Certificate of Analysis

 Sample #:
 L16050013-02
 PrePrep Method:
 N/A
 Instrument:
 ICP-THERMO3

 Client ID:
 35AWW13FD-042916
 Prep Method:
 3015
 Prep Date:
 05/03/2016 11:48

 Matrix:
 Water
 Analytical Method:
 6010C
 Cal Date:
 05/17/2016 10:10

 Workgroup #:
 WG567345
 Analyst:
 JYH
 Run Date:
 05/17/2016 11:02

Sample Tag: DL02 Units: mg/L

Analyte was not detected. The concentration is below the reported LOD.

	Analyte	CAS#	Result	Qual	LOQ	LOD	DL
Magnesium,	Total	7439-95-4	27.3		10.0	5.00	2.50
J Estimated value ; the analyte concentration was less than the LOQ.							

Lab Project #: L16050013 **Lab Project #:** 2551.096

Project Name: Longhorn Army Ammunition

Lab Contact: Stephanie Mossburg

Certificate of Analysis

 Sample #:
 L16050013-02
 PrePrep Method:
 N/A
 Instrument:
 ICP-THERMO3

 Client ID:
 35AWW13FD-042916
 Prep Method:
 3015
 Prep Date:
 05/03/2016 11:48

 Matrix:
 Water
 Analytical Method:
 6010C
 Cal Date:
 05/16/2016 09:59

 Workgroup #:
 WG567345
 Analyst:
 JYH
 Run Date:
 05/16/2016 12:12

Sample Tag: DL01 Units: mg/L

Analyte	CAS#	Result	Qual	LOQ	LOD	DL	
Calcium, Total	7440-70-2	41.5		5.00	2.50	1.25	
Sodium, Total	7440-23-5	215		10.0	5.00	2.50	

U Analyte was not detected. The concentration is below the reported LOD.

Lab Project #: 2551.096

Project Name: Longhorn Army Ammunition

Lab Contact: Stephanie Mossburg

Certificate of Analysis

Sample #: L16050013-02 PrePrep Method: N/A Instrument: ICP-MS2

 Client ID:
 35AWW13FD-042916
 Prep Method:
 3015
 Prep Date:
 05/04/2016 07:31

 Matrix:
 Water
 Analytical Method:
 6020A
 Cal Date:
 05/04/2016 11:30

 Workgroup #:
 WG567470
 Analyst:
 JYH
 Run Date:
 05/04/2016 12:52

 Collect Date:
 04/29/2016 14:30
 Dilution:
 1
 File ID:
 NI.050416.125232

Sample Tag: 01 Units: mg/L

Analyte	CAS#	Result	Qual	LOQ	LOD	DL
Antimony, Total	7440-36-0	0.00100	U	0.00200	0.00100	0.000500
Arsenic, Total	7440-38-2	0.00242		0.00200	0.00100	0.000500
Barium, Total	7440-39-3	0.0303		0.00600	0.00300	0.00150
Cadmium, Total	7440-43-9	0.000600	U	0.00120	0.000600	0.000300
Chromium, Total	7440-47-3	0.00160	J	0.00400	0.00200	0.00100
Cobalt, Total	7440-48-4	0.00407		0.00200	0.00100	0.000500
Copper, Total	7440-50-8	0.00193	J	0.00400	0.00200	0.00100
Lead, Total	7439-92-1	0.00100	U	0.00200	0.00100	0.000500
Nickel, Total	7440-02-0	0.00846		0.00800	0.00400	0.00200
Silver, Total	7440-22-4	0.00100	U	0.00200	0.00100	0.000500
Thallium, Total	7440-28-0	0.000200	U	0.000400	0.000200	0.000100
Vanadium, Total	7440-62-2	0.00220		0.00200	0.00100	0.000500
Zinc, Total	7440-66-6	0.0250	U	0.0500	0.0250	0.0125

J	Estimated value ; the analyte concentration was less than the LOQ.				
J Estimated value; the analyte concentration was greater than the highest standard					
U	Analyte was not detected. The concentration is below the reported LOD.				

Page 10 of 25 Generated at May 19, 2016 16:33

Lab Project #: L16050013 **Lab Project #:** 2551.096

Project Name: Longhorn Army Ammunition

Lab Contact: Stephanie Mossburg

Certificate of Analysis

Sample #: L16050013-02 PrePrep Method: N/A Instrument: ICP-MS2

 Client ID:
 35AWW13FD-042916
 Prep Method:
 3015
 Prep Date:
 05/04/2016 07:31

 Matrix:
 Water
 Analytical Method:
 6020A
 Cal Date:
 05/04/2016 11:30

 Workgroup #:
 WG567470
 Analyst:
 JYH
 Run Date:
 05/04/2016 13:45

Sample Tag: DL01 Units: mg/L

	Analyte	CAS#	Result	Qual	LOQ	LOD	DL	
Manganese, Total		7439-96-5	0.292		0.200	0.100	0.0500	
U	Analyte was not detected. The concentration is below the reported LOD.							

Page 11 of 25

Generated at May 19, 2016 16:33

Lab Report #: L16050013
Lab Project #: 2551.096

Project Name: Longhorn Army Ammunition

Lab Contact: Stephanie Mossburg

Certificate of Analysis

Sample #: L16050013-02 PrePrep Me

 Client ID:
 35AWW13FD-042916
 Prep Method:
 7470A

 Matrix:
 Water
 Analytical Method:
 7470A

 Workgroup #:
 WG567450
 Analyst:
 PDM

 Collect Date:
 04/29/2016 14:30
 Dilution:
 1

 Sample Tag:
 01
 Units:
 mg/L

PrePrep Method: N/A Instrument: CVAA1

Prep Date: 05/03/2016 10:12
Cal Date: 05/04/2016 13:43
Run Date: 05/04/2016 14:49

File ID: M7.050416.144935

	Analyte	CAS#	Result	Qual	LOQ	LOD	DL
Mercury		7439-97-6	0.000200	U	0.000400	0.000200	0.000100
U Analyte was not detected. The concentration is below the reported LOD.							

Page 12 of 25 Generated at May 19, 2016 16:33

Microbac

Lab Project #: 2551.096

Project Name: Longhorn Army Ammunition

Lab Contact: Stephanie Mossburg

Certificate of Analysis

 Sample #:
 L16050013-03
 PrePrep Method:
 N/A
 Instrument:
 ICP-THERMO3

 Client ID:
 35AWW13MS-042916
 Prep Method:
 3015
 Prep Date:
 05/03/2016 11:45

 Matrix:
 Water
 Analytical Method:
 6010C
 Cal Date:
 05/13/2016 15:26

 Workgroup #:
 WG567345
 Analyst:
 JYH
 Run Date:
 05/13/2016 17:51

 Collect Date:
 04/29/2016 14:30
 Dilution:
 1
 File ID:
 T3.051316.175153

Sample Tag: 01 Units: mg/L

Analyte	CAS#	Result	Qual	LOQ	LOD	DL
Aluminum, Total	7429-90-5	6.75		0.200	0.100	0.0500
Beryllium, Total	7440-41-7	0.0322		0.0200	0.0100	0.00500
Iron, Total	7439-89-6	3.02		0.200	0.100	0.0500
Potassium, Total	7440-09-7	33.7		2.00	1.00	0.500
Selenium, Total	7782-49-2	0.252		0.0200	0.0100	0.00500

Certificate of Analysis

 Sample #:
 L16050013-03
 PrePrep Method:
 N/A
 Instrument:
 ICP-THERMO3

 Client ID:
 35AWW13MS-042916
 Prep Method:
 3015
 Prep Date:
 05/03/2016 11:45

 Matrix:
 Water
 Analytical Method:
 6010C
 Cal Date:
 05/17/2016 10:10

 Workgroup #:
 WG567345
 Analyst:
 JYH
 Run Date:
 05/17/2016 11:06

 Collect Date:
 04/29/2016 14:30
 Dilution:
 10
 File ID:
 T3.051716.110632

Sample Tag: DL02 Units: mg/L

	Analyte	CAS#	Result	Qual	LOQ	LOD	DL
Magnesium, To	otal	7439-95-4	34.6		10.0	5.00	2.50
U Analyte was not detected. The concentration is below the reported LOD.							

Page 13 of 25

Generated at May 19, 2016 16:33

Generated: 05/19/2016 16:37

Microbac

Lab Project #: 2551.096

Project Name: Longhorn Army Ammunition

Lab Contact: Stephanie Mossburg

Certificate of Analysis

 Sample #:
 L16050013-03
 PrePrep Method:
 N/A
 Instrument:
 ICP-THERMO3

 Client ID:
 35AWW13MS-042916
 Prep Method:
 3015
 Prep Date:
 05/03/2016 11:45

 Matrix:
 Water
 Analytical Method:
 6010C
 Cal Date:
 05/16/2016 09:59

 Workgroup #:
 WG567345
 Analyst:
 JYH
 Run Date:
 05/16/2016 12:16

Sample Tag: DL01 Units: mg/L

Analyte	CAS#	Result	Qual	LOQ	LOD	DL
Calcium, Total	7440-70-2	47.1		5.00	2.50	1.25
Sodium, Total	7440-23-5	244		10.0	5.00	2.50

U Analyte was not detected. The concentration is below the reported LOD.

Project Name: Longhorn Army Ammunition

Lab Contact: Stephanie Mossburg

Certificate of Analysis

Sample #: L16050013-03 PrePrep Method: N/A Instrument: ICP-MS2

 Client ID:
 35AWW13MS-042916
 Prep Method:
 3015
 Prep Date:
 05/04/2016 07:31

 Matrix:
 Water
 Analytical Method:
 6020A
 Cal Date:
 05/04/2016 11:30

 Workgroup #:
 WG567470
 Analyst:
 JYH
 Run Date:
 05/04/2016 12:07

 Collect Date:
 04/29/2016 14:30
 Dilution:
 1
 File ID:
 NI.050416.120748

Sample Tag: 01 Units: mg/L

Analyte	CAS#	Result	Qual	LOQ	LOD	DL
Antimony, Total	7440-36-0	0.128		0.00200	0.00100	0.000500
Arsenic, Total	7440-38-2	0.134		0.00200	0.00100	0.000500
Barium, Total	7440-39-3	0.152		0.00600	0.00300	0.00150
Cadmium, Total	7440-43-9	0.125		0.00120	0.000600	0.000300
Chromium, Total	7440-47-3	0.125		0.00400	0.00200	0.00100
Cobalt, Total	7440-48-4	0.131		0.00200	0.00100	0.000500
Copper, Total	7440-50-8	0.126		0.00400	0.00200	0.00100
Lead, Total	7439-92-1	0.134		0.00200	0.00100	0.000500
Nickel, Total	7440-02-0	0.130		0.00800	0.00400	0.00200
Silver, Total	7440-22-4	0.120		0.00200	0.00100	0.000500
Thallium, Total	7440-28-0	0.130		0.000400	0.000200	0.000100
Vanadium, Total	7440-62-2	0.130		0.00200	0.00100	0.000500
Zinc, Total	7440-66-6	0.132		0.0500	0.0250	0.0125

Estimated value, the analyte concentration was greater than the highest standard

U

Lab Project #: L16050013 **Lab Project #:** 2551.096

Project Name: Longhorn Army Ammunition

Lab Contact: Stephanie Mossburg

Certificate of Analysis

Sample #: L16050013-03 PrePrep Method: N/A Instrument: ICP-MS2

 Client ID:
 35AWW13MS-042916
 Prep Method:
 3015
 Prep Date:
 05/04/2016 07:31

 Matrix:
 Water
 Analytical Method:
 6020A
 Cal Date:
 05/04/2016 11:30

 Workgroup #:
 WG567470
 Analyst:
 JYH
 Run Date:
 05/04/2016 13:39

Collect Date: 04/29/2016 14:30 **Dilution:** 50 **File ID:** NI.050416.133907

Sample Tag: DL01 Units: mg/L

Analyte was not detected. The concentration is below the reported LOD.

	Analyte	CAS#	Result	Qual	LOQ	LOD	DL
Manganese, Total		7439-96-5	0.398		0.200	0.100	0.0500
J Estimated value ; the analyte concentration was less than the LOQ.							

Microbac

Lab Project #: 2551.096

Project Name: Longhorn Army Ammunition

Lab Contact: Stephanie Mossburg

Certificate of Analysis

Sample #: L16050013-03 PrePrep Method: N/A Instrument: CVAA1

 Client ID:
 35AWW13MS-042916
 Prep Method:
 7470A
 Prep Date:
 05/03/2016 10:11

 Matrix:
 Water
 Analytical Method:
 7470A
 Cal Date:
 05/04/2016 13:43

 Workgroup #:
 WG567450
 Analyst:
 PDM
 Run Date:
 05/04/2016 14:57

 Collect Date:
 04/29/2016 14:30
 Dilution:
 1
 File ID:
 M7.050416.145710

Sample Tag: 01 Units: mg/L

Analyte	CAS#	Result	Qual	LOQ	LOD	DL
Mercury	7439-97-6	0.00402		0.000444	0.000222	0.000111

Certificate of Analysis

 Sample #:
 L16050013-04
 PrePrep Method:
 N/A
 Instrument:
 ICP-THERMO3

 Client ID:
 35AWW13MSD-042916
 Prep Method:
 3015
 Prep Date:
 05/03/2016 11:45

 Matrix:
 Water
 Analytical Method:
 6010C
 Cal Date:
 05/13/2016 15:26

 Workgroup #:
 WG567345
 Analyst:
 JYH
 Run Date:
 05/13/2016 17:55

 Collect Date:
 04/29/2016 14:30
 Dilution:
 1
 File ID:
 T3.051316.175540

Sample Tag: 01 Units: mg/L

Analyte	CAS#	Result	Qual	LOQ	LOD	DL
Aluminum, Total	7429-90-5	6.71		0.200	0.100	0.0500
Beryllium, Total	7440-41-7	0.0326		0.0200	0.0100	0.00500
Iron, Total	7439-89-6	2.94		0.200	0.100	0.0500
Potassium, Total	7440-09-7	33.7		2.00	1.00	0.500
Selenium, Total	7782-49-2	0.263		0.0200	0.0100	0.00500

Certificate of Analysis

 Sample #:
 L16050013-04
 PrePrep Method:
 N/A
 Instrument:
 ICP-THERMO3

 Client ID:
 35AWW13MSD-042916
 Prep Method:
 3015
 Prep Date:
 05/03/2016 11:45

 Matrix:
 Water
 Analytical Method:
 6010C
 Cal Date:
 05/16/2016 09:59

 Workgroup #:
 WG567345
 Analyst:
 JYH
 Run Date:
 05/16/2016 12:20

 Collect Date:
 04/29/2016 14:30
 Dilution:
 10
 File ID:
 T3.051616.122020

Sample Tag: DL01 Units: mg/L

Analyte	CAS#	Result	Qual	LOQ	LOD	DL	
Calcium, Total	7440-70-2	45.9		5.00	2.50	1.25	
Sodium, Total	7440-23-5	237		10.0	5.00	2.50	
II Analyte was not detected. The concentration is helow the reported LOD							

Page 17 of 25

Lab Report #: L16050013 **Lab Project #: 2551.096**

Project Name: Longhorn Army Ammunition Lab Contact: Stephanie Mossburg

Certificate of Analysis

Sample #: L16050013-04 Client ID: 35AWW13MSD-042916 Matrix: Water

Workgroup #: WG567345

Collect Date: 04/29/2016 14:30 Sample Tag: DL02

PrePrep Method: N/A Prep Method: 3015 Analytical Method: 6010C

> Analyst: JYH Dilution: 10 Units: mg/L

Instrument: ICP-THERMO3

Prep Date: 05/03/2016 11:45 Cal Date: 05/17/2016 10:10

Run Date: 05/17/2016 11:10 File ID: T3.051716.111036

	Analyte	CAS#	Result	Qual	LOQ	LOD	DL	
Magnesium, To	otal	7439-95-4	34.6		10.0	5.00	2.50	

Analyte was not detected. The concentration is below the reported LOD. U

Lab Report #: L16050013 **Lab Project #: 2551.096**

Project Name: Longhorn Army Ammunition Lab Contact: Stephanie Mossburg

Certificate of Analysis

Sample #: L16050013-04 PrePrep Method: N/A Instrument: ICP-MS2

Client ID: 35AWW13MSD-042916 Prep Method: 3015 Prep Date: 05/04/2016 07:31 Matrix: Water Analytical Method: 6020A Cal Date: 05/04/2016 11:30 Workgroup #: WG567470 Analyst: JYH Run Date: 05/04/2016 12:10 Collect Date: 04/29/2016 14:30 Dilution: 1 File ID: NI.050416.121059

Sample Tag: 01 Units: mg/L

Analyte	CAS#	Result	Qual	LOQ	LOD	DL
Antimony, Total	7440-36-0	0.128		0.00200	0.00100	0.000500
Arsenic, Total	7440-38-2	0.133		0.00200	0.00100	0.000500
Barium, Total	7440-39-3	0.151		0.00600	0.00300	0.00150
Cadmium, Total	7440-43-9	0.125		0.00120	0.000600	0.000300
Chromium, Total	7440-47-3	0.124		0.00400	0.00200	0.00100
Cobalt, Total	7440-48-4	0.134		0.00200	0.00100	0.000500
Copper, Total	7440-50-8	0.125		0.00400	0.00200	0.00100
Lead, Total	7439-92-1	0.127		0.00200	0.00100	0.000500
Nickel, Total	7440-02-0	0.129		0.00800	0.00400	0.00200
Silver, Total	7440-22-4	0.122		0.00200	0.00100	0.000500
Thallium, Total	7440-28-0	0.127		0.000400	0.000200	0.000100
Vanadium, Total	7440-62-2	0.128		0.00200	0.00100	0.000500
Zinc, Total	7440-66-6	0.131		0.0500	0.0250	0.0125

Project Name: Longhorn Army Ammunition

Lab Contact: Stephanie Mossburg

Certificate of Analysis

Sample #: L16050013-04 PrePrep Method: N/A Instrument: ICP-MS2

 Client ID:
 35AWW13MSD-042916
 Prep Method:
 3015
 Prep Date:
 05/04/2016 07:31

 Matrix:
 Water
 Analytical Method:
 6020A
 Cal Date:
 05/04/2016 11:30

 Workgroup #:
 WG567470
 Analyst:
 JYH
 Run Date:
 05/04/2016 13:42

 Collect Date:
 04/29/2016 14:30
 Dilution:
 50
 File ID:
 NI.050416.134218

Sample Tag: DL01 Units: mg/L

	Analyte	CAS#	Result	Qual	LOQ	LOD	DL
Manganese, Total		7439-96-5	0.411		0.200	0.100	0.0500
1 Estimated value: the analyte concentration was less than the LOO							

J Estimated value; the analyte concentration was less than the LOQ.
U Analyte was not detected. The concentration is below the reported LOD.

Microbac

Lab Project #: 2551.096

Project Name: Longhorn Army Ammunition

Lab Contact: Stephanie Mossburg

Certificate of Analysis

Sample #: L16050013-04 PrePrep Method: N/A Instrument: CVAA1

 Client ID:
 35AWW13MSD-042916
 Prep Method:
 7470A
 Prep Date:
 05/03/2016 10:11

 Matrix:
 Water
 Analytical Method:
 7470A
 Cal Date:
 05/04/2016 13:43

 Workgroup #:
 WG567450
 Analyst:
 PDM
 Run Date:
 05/04/2016 14:59

 Collect Date:
 04/29/2016 14:30
 Dilution:
 1
 File ID:
 M7.050416.145943

Sample Tag: 01 Units: mg/L

Analyte	CAS#	Result	Qual	LOQ	LOD	DL
Mercury	7439-97-6	0.00405		0.000444	0.000222	0.000111

Certificate of Analysis

Sample #: L16050013-05 PrePrep Method: N/A Instrument: ICP-THERMO3

 Client ID:
 LHAAP02 EQUIPMENT
 Prep Method:
 3015
 Prep Date:
 05/03/2016 11:48

 RINSE-042916
 05/03/2016 11:48
 05/03/2016 11:48
 05/03/2016 11:48
 05/03/2016 11:48

 Matrix:
 Water
 Analytical Method:
 6010C
 Cal Date:
 05/13/2016 15:26

 Workgroup #:
 WG567345
 Analyst:
 JYH
 Run Date:
 05/13/2016 17:59

 Collect Date:
 04/29/2016 14:45
 Dilution:
 1
 File ID:
 T3.051316.175926

Sample Tag: 01 Units: mg/L

	Analyte	CAS#	Result	Qual	LOQ	LOD	DL
Aluminum, Tota	al	7429-90-5	0.100	U	0.200	0.100	0.0500
Beryllium, Tota	l	7440-41-7	0.0100	U	0.0200	0.0100	0.00500
Calcium, Total		7440-70-2	0.250	U	0.500	0.250	0.125
Iron, Total		7439-89-6	0.100	U	0.200	0.100	0.0500
Potassium, Tot	al	7440-09-7	1.00	U	2.00	1.00	0.500
Selenium, Tota	I	7782-49-2	0.0100	U	0.0200	0.0100	0.00500
Sodium, Total		7440-23-5	0.500	U	1.00	0.500	0.250
U Analyte was not detected. The concentration is below the reported LOD.							

Page 21 of 25

Project Name: Longhorn Army Ammunition

Lab Contact: Stephanie Mossburg

Certificate of Analysis

Sample #: L16050013-05

Client ID: LHAAP02 EQUIPMENT RINSE-042916

RINSE-042916

Matrix: Water

Workgroup #: WG567345

Collect Date: 04/29/2016 14:45

Sample Tag: 03

PrePrep Method: N/A

Prep Method: 3015

Analytical Method: 6010C
Analyst: JYH
Dilution: 1

Units: mg/L

Instrument: ICP-THERMO3

Prep Date: 05/03/2016 11:48

Cal Date: 05/17/2016 10:10 **Run Date:** 05/17/2016 11:14

File ID: T3.051716.111439

		Analyte	CAS#	Result	Qual	LOQ	LOD	DL	
Magnesium, Total 7439-95-4 0.500 U 1.00 0.500						0.250			
	U Analyte was not detected. The concentration is below the reported LOD.								

Page 22 of 25 Generated at May 19, 2016 16:33

Lab Report #: L16050013 **Lab Project #: 2551.096**

Project Name: Longhorn Army Ammunition Lab Contact: Stephanie Mossburg

Certificate of Analysis

Sample #: L16050013-05

PrePrep Method: N/A

Instrument: ICP-MS2

Client ID: LHAAP02 EQUIPMENT RINSE-042916

Prep Method: 3015

Prep Date: 05/04/2016 07:31

Analytical Method: 6020A

Cal Date: 05/04/2016 11:30

Matrix: Water Workgroup #: WG567470

Analyst: JYH

Run Date: 05/04/2016 12:55

Collect Date: 04/29/2016 14:45

Dilution: 1

File ID: NI.050416.125543

Sample Tag:	01	Units:	mg/L

Analyte	CAS#	Result	Qual	LOQ	LOD	DL
Antimony, Total	7440-36-0	0.00100	U	0.00200	0.00100	0.000500
Arsenic, Total	7440-38-2	0.00100	U	0.00200	0.00100	0.000500
Barium, Total	7440-39-3	0.00300	U	0.00600	0.00300	0.00150
Cadmium, Total	7440-43-9	0.000600	U	0.00120	0.000600	0.000300
Chromium, Total	7440-47-3	0.00200	U	0.00400	0.00200	0.00100
Cobalt, Total	7440-48-4	0.00100	U	0.00200	0.00100	0.000500
Copper, Total	7440-50-8	0.00107	J	0.00400	0.00200	0.00100
Lead, Total	7439-92-1	0.00100	U	0.00200	0.00100	0.000500
Manganese, Total	7439-96-5	0.00200	U	0.00400	0.00200	0.00100
Nickel, Total	7440-02-0	0.00400	U	0.00800	0.00400	0.00200
Silver, Total	7440-22-4	0.00100	U	0.00200	0.00100	0.000500
Thallium, Total	7440-28-0	0.000200	U	0.000400	0.000200	0.000100
Vanadium, Total	7440-62-2	0.00100	U	0.00200	0.00100	0.000500
Zinc, Total	7440-66-6	0.0250	U	0.0500	0.0250	0.0125

J	Estimated value ; the analyte concentration	on was less than	the LOQ.			
U	Analyte was not detected. The concentrate	ion is below the i	reported LOD.			

Lab Project #: L16050013 **Lab Project #:** 2551.096

Project Name: Longhorn Army Ammunition

Lab Contact: Stephanie Mossburg

Certificate of Analysis

Sample #: L16050013-05

PrePrep Method: N/A

Instrument: CVAA1

Client ID: LHAAP02 EQUIPMENT RINSE-042916

Prep Method: 7470A

Prep Date: 05/03/2016 10:12

Matrix: Water

Analytical Method: 7470A

Cal Date: 05/04/2016 13:43

Workgroup #: WG567450

Analyst: PDM

Run Date: 05/04/2016 15:02

Collect Date: 04/29/2016 14:45

Dilution: 1

File ID: M7.050416.150216

Sample Tag: 01

Units: mg/L

Analyte		CAS#	Result	Qual	LOQ	LOD	DL
Mercury 7439-97-6 0.000200 U 0.000400 0.000200 0.000100					0.000100		
U	U Analyte was not detected. The concentration is below the reported LOD.						

Page 49

Page 24 of 25 Generated at May 19, 2016 16:33

Project Name: Longhorn Army Ammunition

Lab Contact: Stephanie Mossburg

Page 25 of 25

Microbac

Lab Report #: L16050013

Lab Project #: 2551.096

Project Name: Longhorn Army Ammunition

Lab Contact: Stephanie Mossburg

Certificate of Analysis

Page 1 of 1

2.0 Full Sample Data Package

2.1 Metals Data

2.1.1 Metals I C P Data

2.1.1.1 Summary Data

Project Name: Longhorn Army Ammunition

Lab Contact: Stephanie Mossburg

Certificate of Analysis

Page 1 of 1

Microbac

Lab Project #: 2551.096

Project Name: Longhorn Army Ammunition

Lab Contact: Stephanie Mossburg

Certificate of Analysis

Sample #: L16050013-01 **Client ID**: 35AWW13-042916

PrePrep Method: N/A
Prep Method: 3015

Instrument: ICP-THERMO3
Prep Date: 05/03/2016 11:48

Matrix: Water
Workgroup #: WG567345

Analytical Method: 6010C
Analyst: JYH

Cal Date: 05/13/2016 15:26

Run Date: 05/13/2016 17:43

Collect Date: 04/29/2016 14:30

Dilution: 1

File ID: T3.051316.174353

Sample Tag: 01 Units: mg/L

Analyte	CAS#	Result	Qual	LOQ	LOD	DL
Aluminum, Total	7429-90-5	0.195	J	0.200	0.100	0.0500
Beryllium, Total	7440-41-7	0.0100	U	0.0200	0.0100	0.00500
Iron, Total	7439-89-6	0.465		0.200	0.100	0.0500
Potassium, Total	7440-09-7	0.685	J	2.00	1.00	0.500
Selenium, Total	7782-49-2	0.0100	U	0.0200	0.0100	0.00500

J Estimated value; the analyte concentration was less than the LOQ.

U Analyte was not detected. The concentration is below the reported LOD.

Page 1 of 13

Collect Date: 04/29/2016 14:30

Lab Project #: 2551.096

Project Name: Longhorn Army Ammunition

Lab Contact: Stephanie Mossburg

Instrument: ICP-THERMO3

Prep Date: 05/03/2016 11:48

Certificate of Analysis

 Sample #:
 L16050013-01
 PrePrep Method:
 N/A

 Client ID:
 35AWW13-042916
 Prep Method:
 3015

 Matrix:
 Water
 Analytical Method:
 6010C

 Workgroup #:
 WG567345
 Analyst:
 JYH

 ical Method:
 6010C
 Cal Date:
 05/17/2016 10:10

 Analyst:
 JYH
 Run Date:
 05/17/2016 10:58

 Dilution:
 10
 File ID:
 T3.051716.105823

Sample Tag: DL02 Units: mg/L

Magnesium, Total 7439-95-4 29.3 10.0 5.00 2.5		Analyte	CAS#	Result	Qual	LOQ	LOD	DL	
Magnesiani, 18ta 1400 30 4 20.0 2.0	Magnesium, To	otal	7439-95-4	29.3		10.0	5.00	2.50	

J	Estimated value ; the analyte concentration was less than the LOQ.
U	Analyte was not detected. The concentration is below the reported LOD.

Page 2 of 13

Project Name: Longhorn Army Ammunition

Lab Contact: Stephanie Mossburg

Certificate of Analysis

 Sample #:
 L16050013-01
 PrePrep Method:
 N/A

 Client ID:
 35AWW13-042916
 Prep Method:
 3015

 Matrix:
 Water
 Analytical Method:
 6010C

 Workgroup #:
 WG567345
 Analyst:
 JYH

Prep Date: 05/03/2016 11:48
Cal Date: 05/16/2016 09:59
Run Date: 05/16/2016 12:08
File ID: T3.051616.120826

Instrument: ICP-THERMO3

	Analyte	CAS#	Result	Qual	LOQ	LOD	DL
Calcium, Total		7440-70-2	38.4		5.00	2.50	1.25
Sodium, Total		7440-23-5	199		10.0	5.00	2.50
U Analyte was not detected. The concentration is below the reported LOD.							

Page 3 of 13 Generated at May 19, 2016 16:34

Project Name: Longhorn Army Ammunition

Lab Contact: Stephanie Mossburg

Certificate of Analysis

 Sample #:
 L16050013-02
 PrePrep Method:
 N/A
 Instrument:
 ICP-THERMO3

 Client ID:
 35AWW13FD-042916
 Prep Method:
 3015
 Prep Date:
 05/03/2016 11:48

 Matrix:
 Water
 Analytical Method:
 6010C
 Cal Date:
 05/13/2016 15:26

 Workgroup #:
 WG567345
 Analyst:
 JYH
 Run Date:
 05/13/2016 17:47

 Collect Date:
 04/29/2016 14:30
 Dilution:
 1
 File ID:
 T3.051316.174753

Sample Tag: 01 Units: mg/L

Analyte	CAS#	Result	Qual	LOQ	LOD	DL
Aluminum, Total	7429-90-5	0.156	J	0.200	0.100	0.0500
Beryllium, Total	7440-41-7	0.0100	U	0.0200	0.0100	0.00500
Iron, Total	7439-89-6	0.378		0.200	0.100	0.0500
Potassium, Total	7440-09-7	0.581	J	2.00	1.00	0.500
Selenium, Total	7782-49-2	0.0100	U	0.0200	0.0100	0.00500

J	Estimated value ; the analyte concentration was less than the LOQ.
U	Analyte was not detected. The concentration is below the reported LOD.

Page 4 of 13

Collect Date: 04/29/2016 14:30

Lab Project #: 2551.096

Project Name: Longhorn Army Ammunition

Lab Contact: Stephanie Mossburg

Instrument: ICP-THERMO3

Prep Date: 05/03/2016 11:48

Cal Date: 05/17/2016 10:10

Certificate of Analysis

 Sample #:
 L16050013-02
 PrePrep Method:
 N/A

 Client ID:
 35AWW13FD-042916
 Prep Method:
 3015

 Matrix:
 Water
 Analytical Method:
 6010C

 Workgroup #:
 WG567345
 Analyst:
 JYH

 Analyst:
 JYH
 Run Date:
 05/17/2016 11:02

 Dilution:
 10
 File ID:
 T3.051716.110228

Sample Tag: DL02 Units: mg/L

Analyte	CAS#	Result	Qual	LOQ	LOD	DL	
Magnesium, Total	7439-95-4	27.3		10.0	5.00	2.50	

J	Estimated value ; the analyte concentration was less than the LOQ.
U	Analyte was not detected. The concentration is below the reported LOD.

Page 5 of 13

Collect Date: 04/29/2016 14:30

Lab Project #: 2551.096

Project Name: Longhorn Army Ammunition

Lab Contact: Stephanie Mossburg

Instrument: ICP-THERMO3

Prep Date: 05/03/2016 11:48

Certificate of Analysis

 Sample #:
 L16050013-02
 PrePrep Method:
 N/A

 Client ID:
 35AWW13FD-042916
 Prep Method:
 3015

 Matrix:
 Water
 Analytical Method:
 6010C

 Workgroup #:
 WG567345
 Analyst:
 JYH

 Method:
 6010C
 Cal Date:
 05/16/2016 09:59

 Analyst:
 JYH
 Run Date:
 05/16/2016 12:12

 Dilution:
 10
 File ID:
 T3.051616.121225

Sample Tag: DL01 Units: mg/L

	Analyte	CAS#	Result	Qual	LOQ	LOD	DL
Calcium, Total		7440-70-2	41.5		5.00	2.50	1.25
Sodium, Total		7440-23-5	215		10.0	5.00	2.50
U	Analyte was not detected. The concentra	ation is below the	reported LOD.				

Page 6 of 13

Lab Report #: L16050013 Lab Project #: 2551.096

Project Name: Longhorn Army Ammunition Lab Contact: Stephanie Mossburg

Certificate of Analysis

Sample #: L16050013-03 PrePrep Method: N/A Instrument: ICP-THERMO3 Client ID: 35AWW13MS-042916 Prep Method: 3015 Prep Date: 05/03/2016 11:45 Matrix: Water Analytical Method: 6010C Cal Date: 05/13/2016 15:26 Run Date: 05/13/2016 17:51 Workgroup #: WG567345 Analyst: JYH

Collect Date: 04/29/2016 14:30 Dilution: 1 File ID: T3.051316.175153

Sample Tag: 01 Units: mg/L

Analyte	CAS#	Result	Qual	LOQ	LOD	DL
Aluminum, Total	7429-90-5	6.75		0.200	0.100	0.0500
Beryllium, Total	7440-41-7	0.0322		0.0200	0.0100	0.00500
Iron, Total	7439-89-6	3.02		0.200	0.100	0.0500
Potassium, Total	7440-09-7	33.7		2.00	1.00	0.500
Selenium, Total	7782-49-2	0.252		0.0200	0.0100	0.00500

Certificate of Analysis

Sample #: L16050013-03 PrePrep Method: N/A Instrument: ICP-THERMO3 Client ID: 35AWW13MS-042916 Prep Method: 3015 Prep Date: 05/03/2016 11:45 Matrix: Water Analytical Method: 6010C Cal Date: 05/16/2016 09:59 Workgroup #: WG567345 Analyst: JYH Run Date: 05/16/2016 12:16 Collect Date: 04/29/2016 14:30 Dilution: 10 File ID: T3.051616.121623 Sample Tag: DL01 Units: mg/L

Analyte	CAS#	Result	Qual	LOQ	LOD	DL
Calcium, Total	7440-70-2	47.1		5.00	2.50	1.25
Sodium, Total	7440-23-5	244		10.0	5.00	2.50

U Analyte was not detected. The concentration is below the reported LOD.

Page 7 of 13

Project Name: Longhorn Army Ammunition

Lab Contact: Stephanie Mossburg

Certificate of Analysis

 Sample #:
 L16050013-03

 Client ID:
 35AWW13MS-042916

 Matrix:
 Water

PrePrep Method: N/A
Prep Method: 3015
Analytical Method: 6010C
Analyst: JYH

Prep Date: 05/03/2016 11:45
Cal Date: 05/17/2016 10:10
Run Date: 05/17/2016 11:06
File ID: T3.051716.110632

Instrument: ICP-THERMO3

Workgroup #: WG567345
Collect Date: 04/29/2016 14:30

Sample Tag: DL02 Units: mg/L

Analyte	CAS#	Result	Qual	LOQ	LOD	DL
Magnesium, Total	7439-95-4	34.6		10.0	5.00	2.50

Dilution: 10

U Analyte was not detected. The concentration is below the reported LOD.

Page 8 of 13 Generated at May 19, 2016 16:34

Microbac

Lab Project #: 2551.096

Project Name: Longhorn Army Ammunition

Lab Contact: Stephanie Mossburg

Certificate of Analysis

 Sample #:
 L16050013-04
 PrePrep Method:
 N/A
 Instrument:
 ICP-THERMO3

 Client ID:
 35AWW13MSD-042916
 Prep Method:
 3015
 Prep Date:
 05/03/2016 11:45

 Matrix:
 Water
 Analytical Method:
 6010C
 Cal Date:
 05/13/2016 15:26

 Workgroup #:
 WG567345
 Analyst:
 JYH
 Run Date:
 05/13/2016 17:55

 Collect Date:
 04/29/2016 14:30
 Dilution:
 1
 File ID:
 T3.051316.175540

Sample Tag: 01 Units: mg/L

Analyte	CAS#	Result	Qual	LOQ	LOD	DL
Aluminum, Total	7429-90-5	6.71		0.200	0.100	0.0500
Beryllium, Total	7440-41-7	0.0326		0.0200	0.0100	0.00500
Iron, Total	7439-89-6	2.94		0.200	0.100	0.0500
Potassium, Total	7440-09-7	33.7		2.00	1.00	0.500
Selenium, Total	7782-49-2	0.263		0.0200	0.0100	0.00500

Certificate of Analysis

Sample #: L16050013-04 PrePrep Method: N/A Instrument: ICP-THERMO3 Client ID: 35AWW13MSD-042916 Prep Method: 3015 Prep Date: 05/03/2016 11:45 Matrix: Water Analytical Method: 6010C Cal Date: 05/17/2016 10:10 Workgroup #: WG567345 Analyst: JYH Run Date: 05/17/2016 11:10 Collect Date: 04/29/2016 14:30 Dilution: 10 File ID: T3.051716.111036 Sample Tag: DL02 Units: mg/L

Analyte	CAS#	Result	Qual	LOQ	LOD	DL
Magnesium, Total	7439-95-4	34.6		10.0	5.00	2.50
Analyte was not detected. The concentration is below the reported LOD						

U Analyte was not detected. The concentration is below the reported LOD.

Page 9 of 13 Generated at May 19, 2016 16:34

Project Name: Longhorn Army Ammunition

Lab Contact: Stephanie Mossburg

Certificate of Analysis

 Sample #:
 L16050013-04
 PrePrep Method:
 N/A
 Instrument:
 ICP-THERMO3

 Client ID:
 35AWW13MSD-042916
 Prep Method:
 3015
 Prep Date:
 05/03/2016 11:45

 Matrix:
 Water
 Analytical Method:
 6010C
 Cal Date:
 05/16/2016 09:59

 Workgroup #:
 WG567345
 Analyst:
 JYH
 Run Date:
 05/16/2016 12:20

 Workgroup #:
 WG567345
 Analyst:
 JYH
 Run Date:
 05/16/2016 12:20

 Collect Date:
 04/29/2016 14:30
 Dilution:
 10
 File ID:
 T3.051616.122020

Sample Tag: DL01 Units: mg/L

	Analyte	CAS#	Result	Qual	LOQ	LOD	DL
Calcium, Total		7440-70-2	45.9		5.00	2.50	1.25
Sodium, Total		7440-23-5	237		10.0	5.00	2.50
U	Analyte was not detected. The concentra	ation is below the	reported LOD.				

Page 10 of 13

Project Name: Longhorn Army Ammunition

Lab Contact: Stephanie Mossburg

Certificate of Analysis

 Sample #:
 L16050013-05
 PrePrep Method:
 N/A
 Instrument:
 ICP-THERMO3

 Client ID:
 LHAAP02 EQUIPMENT
 Prep Method:
 3015
 Prep Date:
 05/03/2016 11:48

RINSE-042916

Matrix: Water

Workgroup #: WG567345

Collect Date: 04/29/2016 14:45

 Analytical Method:
 6010C
 Cal Date:
 05/13/2016 15:26

 Analyst:
 JYH
 Run Date:
 05/13/2016 17:59

 Dilution:
 1
 File ID:
 T3.051316.175926

Sample Tag: 01 Units: mg/L

	Analyte	CAS#	Result	Qual	LOQ	LOD	DL
Aluminum, Tota	al	7429-90-5	0.100	U	0.200	0.100	0.0500
Beryllium, Tota	I	7440-41-7	0.0100	U	0.0200	0.0100	0.00500
Calcium, Total		7440-70-2	0.250	U	0.500	0.250	0.125
Iron, Total		7439-89-6	0.100	U	0.200	0.100	0.0500
Potassium, Tot	al	7440-09-7	1.00	U	2.00	1.00	0.500
Selenium, Tota	I	7782-49-2	0.0100	U	0.0200	0.0100	0.00500
Sodium, Total		7440-23-5	0.500	U	1.00	0.500	0.250
U	Analyte was not detected. The concentration is below the reported LOD.						

Page 11 of 13 Generated at May 19, 2016 16:34

Matrix: Water

Workgroup #: WG567345

Collect Date: 04/29/2016 14:45

Lab Project #: 2551.096

Project Name: Longhorn Army Ammunition

Lab Contact: Stephanie Mossburg

File ID: T3.051716.111439

Certificate of Analysis

 Sample #:
 L16050013-05
 PrePrep Method:
 N/A
 Instrument:
 ICP-THERMO3

 Client ID:
 LHAAP02 EQUIPMENT
 Prep Method:
 3015
 Prep Date:
 05/03/2016 11:48

Dilution: 1

RINSE-042916

 Analytical Method:
 6010C
 Cal Date:
 05/17/2016 10:10

 Analyst:
 JYH
 Run Date:
 05/17/2016 11:14

Sample Tag: 03 Units: mg/L

	Analyte	CAS#	Result	Qual	LOQ	LOD	DL
Magnesium, To	otal	7439-95-4	0.500	U	1.00	0.500	0.250
U Analyte was not detected. The concentration is below the reported LOD.							

Page 12 of 13 Generated at May 19, 2016 16:34

Project Name: Longhorn Army Ammunition

Lab Contact: Stephanie Mossburg

Page 13 of 13

2.1.1.2 QC Summary Data

Example 6010 Calculations Thermo Scientific iCAP

1.0 Initial Calibration (ICAL) Parameters

For a multi-point calibration, the system performs linear regression from data consisting of a blank and four standards.

2.0 Calculating the concentration (C) of an element in water using data from prep log, run log, and quantitation report (note:the data system performs this calculation automatically when correction factors have been entered):

$$Cx = Cs \times \frac{Vf}{Vi} \times D$$

Where:	Example:
Cs = Concentration computed by the data system in ug/mL (ppm)	0.1
Vf = Final volume (mL)	50
Vi = Initial volume (mL)	50
D = Dilution factor as a multiplier (10X = 10)	1
Cx = Concentration of element in ug/mL (mg/L)	0.1

3.0 Calculating the concentration (C) of an element in soil using data from prep log, run log, and quantitation report (note: the data system performs this calculation automatically when correction factors have been entered):

$$Cx = Cs \times \frac{Vf}{Vi} \times D$$

Where:	Example:
Cs = Concentration computed by the data system (mg/L) (ppm)	0.1
Vf = Final volume (mL)	50
Vi = Initial weight (g)	1
D = Dilution factor as a multiplier (10X = 10)	1
Cx = Concentration of element in ug/g (mg/kg)	5

4.0 Adjusting the concentration to dry weight:

$$Cdry = \frac{Cx \times 100}{Px}$$

Where:	Example:
Cx = Concentration calculated as received (wet basis)	5
Px = Percent solids of sample (%wt)	80
Cdry = Concentration calculated as dry weight (mg/kg)	6.25

TCLP Non-Volatile

Filter Lot #: 94 86030 Microbac SOP: TCLP ()1 Rev #: 12 Agitator Speed 30 ± 2 rpm Jug	5.05 4,98 6.21 5:36
Microbac SOP: TCP 61 Rev #: 12 Agitator Speed 30 ± 2 rpm Jug Sample # Tests Method Fluid Matrix % Pretest pH Int. Wt. (g) Vol. (mL) NA 04-150101 ME 1311 FTL W <-5 N/A N/A 100.00 100.00 D 04-1604-01 ME 1 F1-175 6 100 0.24 260 100.207.004 100.00 D 04-1602-01 ME 1 F1-175 6 100 0.24 260 100.207.004 100.00 D 04-1601-01 ME, SV	Final extract pH 9.0 5.05 4.48 6.21 5.36
Microbac SOP: T(1P 61 Rev #: 12 Agitator Speed 30 ± 2 rpm Jug Sample # Tests Method # Matrix % Pretest pH Int. Wt. (g) Vol. (mL) MA 04-150761 ME 1311 FT1 N <-5 N/A N/A 100.00 100.00 D 04-1604-01 ME 1 F1-175 6 100 9.24 240 100.207.004 100.00 D 04-1602-01 ME 1 F1-175 6 100 9.24 240 100.207.004 100.00 D 04-1601-01 ME, SV	Final extract pH 9.0 5.05 4.98 6.21 5136
Agitator Speed 30 ± 2 rpm Jug	Final extract pH 9.0 5.05 4.98 6.21 5.36
Sample # Tests Method Fluid Matrix % Solid Int. Wt. (g) Fluid Vol. (mL) MA	extract pH 9.0 5.05 4.98 6.21 5136
Sample # Tests Method Fill Math Solid Initial Final (g) Vol. (mL) MA	extract pH 9.0 5.05 4.98 6.21 5136
D 04-1604-01 ME D 04-1602-01 ME SV S-1404-1547-01 ME, SV C-2 04-1607-01 ME, SV, PEST, Herb. L F2-577 L T. 67 5.81 100.09 2002 N/A FRIK 1 ME, SV N/A FRIK 1 ME, SV, PEST, Herb 1311 F2-377 L L L L SPEN 1 L L SPEN 2 N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A	5.05 4,98 6.21 5:36
D 04-1604-01 ME D 04-1602-01 ME D 04-1602-01 ME D 04-1602-01 ME, SV S-1404-1547-01 ME, SV S-2 04-1607-01 ME, SV, PEST, Herb. D 14-1602-01 ME, SV D 1311 F1-175 N/A N/A N/A N/A N/A 100.00 100.00 N/A FRIX 1 ME, SV, PEST, Herb 1311 F2-371 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	4,98 6.21 5136
D D4-1602-01 ME -1404-1547-01 ME, SV -2-1404-1547-01 ME, SV -2-204-1607-01 ME, SV, PEST, Herb. J F2-377 J J 7.67 5.81 100.09 2002 N/A FBLK 1 ME, SV 1311 F1-175 N/A N/A N/A N/A 100.00 100.00 N/A BBLK 2 ME, SV, Pest, Herb. 1311 F2-377 J J J J J J J J J J J J J J J J J J	4,98 6.21 5136
6-1404-1547-01 ME, SV 2-2 04-1607-01 ME, SV, PEST, Herb. I F2-377 I I 7.67 S.81 100.09 2002 N/A FBLK 1 ME, SV 1311 F1-175 N/A N/A N/A N/A 100.00 100.00 N/A BBLK 2 ME, SV, Pest, Herb 1311 F2-377 I I I I I I I SELVINOR OF THE SELVINOR OF	6.21 5136
E-2 04-1607-01 ME, SV, PEST, Herb. I F2-377 I I T.67 S.81 100.09 2002 N/A FRIK I ME, SV 1311 F1-715 N/A N/A N/A N/A 100.00 100.00 N/A BBLK 7 ME, SV, Pest, Herb 1311 F2-377 I I I I I I I I SBLW 1 SW. N/A BBLK 2 ME, SV, Pest, Herb 1311 F2-377 I I I I I I I I I I I I I I I I I I	5,36
1/A FBLK 1 ME, SV 1311 F1-N5 N/A N/A N/A N/A 100.00 100.00 1/A BBLV 7 ME, SV, Rest, Herb. 1311 F2-311 I I I I I I I I I I I I I I I I I I	
N/A BBLK7 ME, SV, Pest, Herb 1311 F2-371 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	
	2.91
CRD SIZIN	
The state of the s	
*Matrix Code: (S = solid, sand, soil or sludge) (P = paint) (O = organic) (W = water or aqueous waste) D = Disposable plastic jug	
TCLP Pretest weight will be 5.0 g (± 0.1) unless otherwise noted. Temperature shall be maintained at 23° ± 2 for 18 ± 2 hours unless otherwise noted.	
Temperature shall be maintained at 23° ± 2 for 18 ± 2 flours unless otherwise noted.	
Comments: HIA	
Door Boulow But	
Peer Review By:	

Page 72

Microbac Laboratories Inc. Microwave Digestion Log

Workgroup: WG567310

Analyst:AC

Spike Analyst:AC

Run Date: 05/03/2016 11:48

Method: 3015

Balance: BAL019

Instrument: MW-4

Instrument Start: 05/03/2016 11:48

SOP: ME407 Revison 19

Spike Solution: STD75837

Spike Witness: VC

HNO3 Lot #: COA18838

HCL Lot #: COA18769

ICP Filters- fisher-Lot#RGT35619

40 & 50 ML. DIGESTION TUCOA18772

	SAMPLE #	Type	Matrix	Initial Amount	Final Volume	Initial Vessel Wt	Final Vessel Wt	Spike Amount	Due Date
1	WG567310-02	BLANK	1	40 mL	50 mL	206.087 g	206.077 g		
2	WG567125-01	FBLK1	17	5 mL	50 mL	204.105 g	204.097 g		
3	WG567125-02	FBLK2	17	5 mL	50 mL	204.824 g	204.814 g		
4	WG567310-03	LCS	1	40 mL	50 mL	211.156 g	211.147 g	5 mL	
5	L16041547-01	SAMP	17	5 mL	50 mL	204.841 g	204.831 g		05/09/16
6	L16041602-01	SAMP	17	5 mL	50 mL	206.162 g	206.15 g		05/06/16
7	L16041604-01	SAMP	17	5 mL	50 mL	207.862 g	207.851 g		05/06/16
8	L16041607-01	SAMP	17	5 mL	50 mL	206.379 g	206.357 g		05/10/16
9	L16041613-02	SAMP	1	40 mL	50 mL	203.488 g	203.471 g		05/10/16
10	L16041613-04	SAMP	1	40 mL	50 mL	204.163 g	204.148 g		05/10/16
11	L16041613-06	SAMP	1	40 mL	50 mL	206.058 g	206.041 g		05/10/16
12	L16041613-08	SAMP	1	40 mL	50 mL	206.749 g	206.74 g		05/10/16
13	L16041613-10	SAMP	1	40 mL	50 mL	206.201 g	206.187 g		05/10/16
14	L16041613-12	SAMP	1	40 mL	50 mL	206.193 g	206.173 g		05/10/16
15	L16041613-14	SAMP	1	40 mL	50 mL	207.515 g	207.498 g		05/10/16
16	WG567310-01	REF	1	40 mL	50 mL	206.293 g	206.271 g		
17	L16050013-01	RS01	1	40 mL	50 mL	206.293 g	206.271 g		05/13/16
18	L16050013-02	SAMP	1	40 mL	50 mL	207.315 g	207.296 g		05/13/16
19	WG567310-04	MS	1	40 mL	50 mL	210.77 g	210.753 g	5 mL	
20	L16050013-03	MS01	1	40 mL	50 mL	210.77 g	210.753 g	5 mL	05/13/16
21	WG567310-05	MSD	1	40 mL	50 mL	210.015 g	209.991 g	5 mL	
22	L16050013-04	SD01	1	40 mL	50 mL	210.015 g	209.991 g	5 mL	05/13/16
23	L16050013-05	SAMP	1	40 mL	50 mL	207.388 g	207.361 g		05/13/16
24	L16050029-01	SAMP	1	40 mL	50 mL	204.458 g	204.437 g		05/09/16
25	L16050072-01	SAMP	12	1 mL	50 mL	205.885 g	205.834 g		05/04/16
26	L16050072-02	SAMP	12	1 mL	50 mL	204.431 g	203.555 g		05/04/16

Analyst:

Reviewer:

MW_DIG - Modified 09/30/2009

PDF ID: 4744923
Report generated: 05/03/2016 12:41

Microbac

Instrument Run Log

Instrument:	ICP-THERMO3	Data	aset: <u>051316T3.3R.TX</u>	Т
Analyst1:	JYH	Analy	/st2: N/A	
Method:	200.7/6010B/6010C	s	OP: <u>ME600G</u>	Rev: <u>8</u>
Maintenance Log ID:				
Calibration Std: STE	076065	ICV Std:	STD76066	Post Spike: STD75473
ICSA: STE	75925	ICSAB:	STD75702	Int. Std: RGT35157
CCV: STE	076132	LLCCV:	STD76067	Tuning Sol :

568672,567345,568110,568231

Hydroxylamine: _

Comments:

Stannous :

Workgroups:

Seq.	File ID	Sample	ID	Prep	Dil	Reference	Date/Time
1	T3.051316.151043	WG568892-01	Calibration Point		1		05/13/16 15:10
2	T3.051316.151446	WG568892-02	Calibration Point		1		05/13/16 15:14
3	T3.051316.151850	WG568892-03	Calibration Point		1		05/13/16 15:18
4	T3.051316.152255	WG568892-04	Calibration Point		1		05/13/16 15:22
5	T3.051316.152638	WG568892-05	Calibration Point		1		05/13/16 15:26
6	T3.051316.153021	WG568892-06	Initial Calibration Verification		1		05/13/16 15:30
7	T3.051316.153404	WG568892-07	Initial Calib Blank		1		05/13/16 15:34
8	T3.051316.153808	WG568892-08	Low Level Initial Calibration V		1		05/13/16 15:38
9	T3.051316.154211	WG568892-09	Low Level Initial Calibration V		1		05/13/16 15:42
10	T3.051316.154612	WG568892-10	Interference Check		1		05/13/16 15:46
11	T3.051316.155010	WG568892-11	Interference Check		1		05/13/16 15:50
12	T3.051316.155400	WG568892-12	CCV		1		05/13/16 15:54
13	T3.051316.155743	WG568892-13	ССВ		1		05/13/16 15:57
14	T3.051316.160432	WG568333-02	Method/Prep Blank	40/50	1		05/13/16 16:04
15	T3.051316.160835	WG568333-03	Laboratory Control S	40/50	1		05/13/16 16:08
16	T3.051316.161223	WG568186-01	Fluid Blank 1		1		05/13/16 16:12
17	T3.051316.161626	WG568186-02	Fluid Blank 2		1		05/13/16 16:16
18	T3.051316.162029	WG568333-01	Reference Sample		1	L16050434-05	05/13/16 16:20
19	T3.051316.162430	WG568333-04	Matrix Spike	40/50	1	L16050434-05	05/13/16 16:24
20	T3.051316.162818	WG568333-05	Matrix Spike Duplica	40/50	1	L16050434-05	05/13/16 16:28
21	T3.051316.163207	L16050565-03	27-6-13 RW1 (T)	40/50	1		05/13/16 16:32
22	T3.051316.163608	WG568672-03	Post Digestion Spike		1	L16050565-03	05/13/16 16:36
23	T3.051316.163955	WG568672-04	Serial Dilution		5	L16050565-03	05/13/16 16:39
24	T3.051316.164358	WG568892-14	CCV		1		05/13/16 16:43
25	T3.051316.164740	WG568892-15	ССВ		1		05/13/16 16:47
26	T3.051316.165146	L16050427-05	K6E0168-05	5/50	5		05/13/16 16:51
27	T3.051316.165556	L16050427-05	K6E0168-05		10		05/13/16 16:55
28	T3.051316.165959	L16050427-01	K6E0168-01	5/50	1		05/13/16 16:59
29	T3.051316.170400	L16050427-02	K6E0168-02	5/50	1		05/13/16 17:04
30	T3.051316.170810	L16050427-03	K6E0168-03	5/50	1		05/13/16 17:08
31	T3.051316.171212	L16050427-04	K6E0168-04	5/50	1		05/13/16 17:12
32	T3.051316.171611	L16050477-02	LH18/24-SP650-6359-GRAB	40/50	1		05/13/16 17:16
33	T3.051316.172011	WG568892-16	CCV		1		05/13/16 17:20
34	T3.051316.172353	WG568892-17	ССВ		1		05/13/16 17:23

Page: 1 Approved:

May 16, 2016 Hym H. Rhoder

Instrument Run Log

Instrument:	ICP-THERMO3	Dataset:	051316T3.3R.TXT	
Analyst1:	JYH	Analyst2:	N/A	
Method:	200.7/6010B/6010C	SOP:	ME600G	Rev: <u>8</u>
Maintenance Log ID:				

Stannous : _____ Hydroxylamine : _____

Workgroups: <u>568672,567345,568110,568231</u>

Comments:

Seq.	File ID	Sample	ID	Prep	Dil	Reference	Date/Time
35	T3.051316.172800	WG568892-18	Low Level Continuing Calibra		1		05/13/16 17:28
36	T3.051316.173203	WG568892-19	Low Level Continuing Calibra		1		05/13/16 17:32
37	T3.051316.173603	WG567310-02	Method/Prep Blank	40/50	1		05/13/16 17:36
38	T3.051316.174006	WG567310-03	Laboratory Control S	40/50	1		05/13/16 17:40
39	T3.051316.174353	WG567310-01	Reference Sample		1	L16050013-01	05/13/16 17:43
40	T3.051316.174753	L16050013-02	35AWW13FD-042916	40/50	1		05/13/16 17:47
41	T3.051316.175153	WG567310-04	Matrix Spike	40/50	1	L16050013-01	05/13/16 17:51
42	T3.051316.175540	WG567310-05	Matrix Spike Duplica	40/50	1	L16050013-01	05/13/16 17:55
43	T3.051316.175926	L16050013-05	LHAAP02 EQUIPMENT RINS	40/50	1		05/13/16 17:59
44	T3.051316.180330	WG567345-03	Post Digestion Spike		1	L16050013-05	05/13/16 18:03
45	T3.051316.180718	WG567345-04	Serial Dilution		5	L16050013-05	05/13/16 18:07
46	T3.051316.181121	WG567345-04	Serial Dilution		25	L16050013-05	05/13/16 18:11
47	T3.051316.181526	WG568892-20	CCV		1		05/13/16 18:15
48	T3.051316.181909	WG568892-21	ССВ		1		05/13/16 18:19
49	T3.051316.182316	WG568892-22	Low Level Continuing Calibra		1		05/13/16 18:23
50	T3.051316.182718	WG567819-02	Method/Prep Blank	40/50	1		05/13/16 18:27
51	T3.051316.183121	WG567819-03	Laboratory Control S	40/50	1		05/13/16 18:31
52	T3.051316.183508	WG567819-01	Reference Sample		1	L16050154-01	05/13/16 18:35
53	T3.051316.183909	WG567819-04	Matrix Spike	40/50	1	L16050154-01	05/13/16 18:39
54	T3.051316.184256	WG567819-05	Matrix Spike Duplica	40/50	1	L16050154-01	05/13/16 18:42
55	T3.051316.184642	WG568110-03	Post Digestion Spike		1	L16050154-01	05/13/16 18:46
56	T3.051316.185029	WG568110-04	Serial Dilution		5	L16050154-01	05/13/16 18:50
57	T3.051316.185434	WG568892-23	CCV		1		05/13/16 18:54
58	T3.051316.185816	WG568892-24	CCB		1		05/13/16 18:58
59	T3.051316.190221	WG568184-02	Method/Prep Blank	40/50	1		05/13/16 19:02
60	T3.051316.190625	WG568184-03	Laboratory Control S	40/50	1		05/13/16 19:06
61	T3.051316.191013	WG568088-01	Fluid Blank 1		1		05/13/16 19:10
62	T3.051316.191416	WG568184-01	Reference Sample		1	L16050410-02	05/13/16 19:14
63	T3.051316.191816	WG568184-04	Matrix Spike	5/50	1	L16050410-02	05/13/16 19:18
64	T3.051316.192201	WG568184-05	Matrix Spike Duplica	5/50	1	L16050410-02	05/13/16 19:22
65	T3.051316.192546	L16050121-01	T1360	40/50	1		05/13/16 19:25
66	T3.051316.192947	L16050121-02	T1362	40/50	1		05/13/16 19:29
67	T3.051316.193348	L16050121-03	T1363	40/50	1		05/13/16 19:33
68	T3.051316.193758	WG568892-25	CCV		1		05/13/16 19:37

Page: 2 Approved: May 16, 2016

Instrument Run Log

	ICP-THERMO3		aset: <u>051316T3.3R.</u>	TXT
Analyst1:	JYH	Analy	/st2: <u>N/A</u>	
Method:	200.7/6010B/60	10C S	OP: <u>ME600G</u>	Rev: <u>8</u>
Maintenance Log ID:				
Calibration Std: STI	076065	ICV Std:	STD76066	Post Spike: STD75473
ICSA: STI	075925	ICSAB:	STD75702	Int. Std: RGT35157
CCV: STI	076132	LLCCV:	STD76067	Tuning Sol :
Stannous :		Hydroxylamine:		_
	Workgroups:	568672,567345,568	110,568231	
Comments:				

Seq.	File ID	Sample	ID	Prep	Dil	Reference	Date/Time
69	T3.051316.194139	WG568892-26	ССВ		1		05/13/16 19:41
70	T3.051316.194544	L16050229-01	B208 TANK 1	5/50	2		05/13/16 19:45
71	T3.051316.194946	+0.5 PPM AG	+0.5 PPM AG		2		05/13/16 19:49
72	T3.051316.195347	+1 PPM AG	+1 PPM AG		2		05/13/16 19:53
73	T3.051316.195748	+1.5 PPM AG	+1.5 PPM AG		2		05/13/16 19:57
74	T3.051316.200149	L16050121-04	T1365	40/50	1		05/13/16 20:01
75	T3.051316.200554	WG568231-01	Post Digestion Spike		1	L16050121-04	05/13/16 20:05
76	T3.051316.200940	WG568231-02	Serial Dilution		5	L16050121-04	05/13/16 20:09
77	T3.051316.201347	WG568892-27	CCV		1		05/13/16 20:13
78	T3.051316.201729	WG568892-28	ССВ		1		05/13/16 20:17

Comments

Seq.	Rerun	Dil.	Reason	Analytes			
70							
	Seq. 70-	73: wrong	g dilution factors. JYH				

Page: 3 Approved: May 16, 2016

Instrument Run Log

Instrument:	ICP-THERMO3	Datas	et: <u>051616T3.1R</u>	.TXT
Analyst1:	JYH	Analys	t2: N/A	
Method:	200.7/6010B/6010C	SC	P: <u>ME600G</u>	Rev: <u>8</u>
Maintenance Log ID:				
Calibration Std: STE	76065	ICV Std:	STD76066	Post Spike: STD75473
ICSA: STE	75925	ICSAB:	STD75702	Int. Std: RGT35157
CCV: STE	76132	LLCCV:	STD76067	Tuning Sol :

Workgroups: 568672,567345,568830,568394,568955,568110,569026

Hydroxylamine: __

Comments:

Stannous :

Seq.	File ID	Sample	ID	Prep	Dil	Reference	Date/Time
1	T3.051616.094341	WG568963-01	Calibration Point		1		05/16/16 09:43
2	T3.051616.094742	WG568963-02	Calibration Point		1		05/16/16 09:47
3	T3.051616.095142	WG568963-03	Calibration Point		1		05/16/16 09:51
4	T3.051616.095541	WG568963-04	Calibration Point		1		05/16/16 09:55
5	T3.051616.095920	WG568963-05	Calibration Point		1		05/16/16 09:59
6	T3.051616.100259	WG568963-06	Initial Calibration Verification		1		05/16/16 10:02
7	T3.051616.100626	WG568963-07	Initial Calib Blank		1		05/16/16 10:06
8	T3.051616.101025	WG568963-08	Low Level Initial Calibration V		1		05/16/16 10:10
9	T3.051616.101423	WG568963-09	Low Level Initial Calibration V		1		05/16/16 10:14
10	T3.051616.101822	WG568963-10	Interference Check		1		05/16/16 10:18
11	T3.051616.102217	WG568963-11	Interference Check		1		05/16/16 10:22
12	T3.051616.102603	WG568963-12	CCV		1		05/16/16 10:26
13	T3.051616.102941	WG568963-13	CCB		1		05/16/16 10:29
14	T3.051616.103342	WG568333-02	Method/Prep Blank	40/50	1		05/16/16 10:33
15	T3.051616.103743	WG568333-03	Laboratory Control S	40/50	1		05/16/16 10:37
16	T3.051616.104617	WG568186-01	Fluid Blank 1		1		05/16/16 10:46
17	T3.051616.105016	WG568186-02	Fluid Blank 2		1		05/16/16 10:50
18	T3.051616.105415	WG568333-01	Reference Sample		1	L16050434-05	05/16/16 10:54
19	T3.051616.105813	WG568333-04	Matrix Spike	40/50	1	L16050434-05	05/16/16 10:58
20	T3.051616.110155	WG568333-05	Matrix Spike Duplica	40/50	1	L16050434-05	05/16/16 11:01
21	T3.051616.110544	L15060565-03	L1506056503	40/50	1		05/16/16 11:05
22	T3.051616.110942	WG568672-03	Post Digestion Spike		1	L16050565-03	05/16/16 11:09
23	T3.051616.111325	WG568672-04	Serial Dilution		5	L16050565-03	05/16/16 11:13
24	T3.051616.111724	WG568963-14	CCV		1		05/16/16 11:17
25	T3.051616.112102	WG568963-15	CCB		1		05/16/16 11:21
26	T3.051616.112502	L16050427-05	K6E0168-05	5/50	5		05/16/16 11:25
27	T3.051616.112909	L16050427-01	K6E0168-01	5/50	1		05/16/16 11:29
28	T3.051616.113307	L16050427-02	K6E0168-02	5/50	1		05/16/16 11:33
29	T3.051616.113714	L16050427-03	K6E0168-03	5/50	1		05/16/16 11:37
30	T3.051616.114111	L16050427-04	K6E0168-04	5/50	1		05/16/16 11:41
31	T3.051616.114507	WG568963-16	CCV		1		05/16/16 11:45
32	T3.051616.114845	WG568963-17	CCB		1		05/16/16 11:48
33	T3.051616.115246	WG568963-18	Low Level Continuing Calibra		1		05/16/16 11:52
34	T3.051616.115644	WG568963-19	Low Level Continuing Calibra		1		05/16/16 11:56

Page: 1 Approved: May 16, 2016

May 16, 2016 Hym 71. Rhoder

Instrument Run Log

Analyst1:	JYH 200.7/6010B/6010C	_ Analyst2:	051616T3.1R.TXT N/A ME600G	 Rev: 8
Maintenance Log ID: Calibration Std: STD				Post Spike: STD75473

| ICSA: STD75925 | ICSAB: STD75702 | Int. Std: RGT35157 |
| CCV: STD76132 | LLCCV: STD76067 | Tuning Sol : |

Stannous : _____ Hydroxylamine : _____

Workgroups: 568672,567345,568830,568394,568955,568110,569026

Comments:

Seq.	File ID	Sample	ID	Prep	Dil	Reference	Date/Time
35	T3.051616.120042	WG567310-02	Method/Prep Blank	40/50	1		05/16/16 12:00
36	T3.051616.120443	WG567310-03	Laboratory Control S	40/50	1		05/16/16 12:04
37	T3.051616.120826	WG567310-01	Reference Sample		10	L16050013-01	05/16/16 12:08
38	T3.051616.121225	L16050013-02	35AWW13FD-042916	40/50	10		05/16/16 12:12
39	T3.051616.121623	WG567310-04	Matrix Spike	40/50	10	L16050013-01	05/16/16 12:16
40	T3.051616.122020	WG567310-05	Matrix Spike Duplica	40/50	10	L16050013-01	05/16/16 12:20
41	T3.051616.122418	L16050013-05	LHAAP02 EQUIPMENT RINS	40/50	1		05/16/16 12:24
42	T3.051616.122817	WG567345-03	Post Digestion Spike		1	L16050013-05	05/16/16 12:28
43	T3.051616.123159	WG567345-04	Serial Dilution		5	L16050013-05	05/16/16 12:31
44	T3.051616.123559	WG568963-20	CCV		1		05/16/16 12:35
45	T3.051616.123938	WG568963-21	ССВ		1		05/16/16 12:39
46	T3.051616.124337	WG568963-22	Low Level Continuing Calibra		1		05/16/16 12:43
47	T3.051616.124736	WG568531-02	Method/Prep Blank	40/50	1		05/16/16 12:47
48	T3.051616.125136	WG568531-03	Laboratory Control S	40/50	1		05/16/16 12:51
49	T3.051616.125521	WG568371-01	Fluid Blank 1		1		05/16/16 12:55
50	T3.051616.125920	WG568531-01	Reference Sample		1	L16050579-01	05/16/16 12:59
51	T3.051616.130318	WG568531-04	Matrix Spike	5/50	1	L16050579-01	05/16/16 13:03
52	T3.051616.130701	WG568531-05	Matrix Spike Duplica	5/50	1	L16050579-01	05/16/16 13:07
53	T3.051616.131044	WG568830-01	Post Digestion Spike		1	L16050579-01	05/16/16 13:10
54	T3.051616.131426	WG568830-02	Serial Dilution		5	L16050579-01	05/16/16 13:14
55	T3.051616.131826	WG568963-23	CCV		1		05/16/16 13:18
56	T3.051616.132205	WG568963-24	ССВ		1		05/16/16 13:22
57	T3.051616.132606	L16050512-01	AB10166	5/50	1		05/16/16 13:26
58	T3.051616.133005	L16050564-01	59-8-12.02 W1	40/50	1		05/16/16 13:30
59	T3.051616.133403	L16050567-01	2204-120 RW1	40/50	1		05/16/16 13:34
60	T3.051616.133758	L16050567-02	2204-120 RW1	40/50	1		05/16/16 13:37
61	T3.051616.134153	L16050586-01	LF6-7SW10	40/50	1		05/16/16 13:41
62	T3.051616.134549	L16050586-02	LF6-7SW10	40/50	1		05/16/16 13:45
63	T3.051616.134946	L16050589-02	PERMEATE	40/50	1		05/16/16 13:49
64	T3.051616.135345	L16050589-04	BLEED	40/50	1		05/16/16 13:53
65	T3.051616.135741	L16050589-06	N. DOCK FLUME	40/50	1		05/16/16 13:57
66	T3.051616.140141	L16050611-03	W16	40/50	1		05/16/16 14:01
67	T3.051616.140539	WG568963-25	CCV		1		05/16/16 14:05
68	T3.051616.140917	WG568963-26	CCB		1		05/16/16 14:09

Page: 2 Approved: May 16, 2016

May 16, 2016 Fym 71. Rhoder

Instrument Run Log

instrument.	ICP-THERIVIOS	_ Data	isei. <u>USTOTOTS.TR.TAT</u>		
Analyst1:	JYH	Analy	rst2: N/A		
Method:	200.7/6010B/6010C	_ s	OP: ME600G	Re	ev: <u>8</u>
Maintenance Log ID:		_			
Calibration Std: STD	76065	ICV Std:	STD76066	Post Spike:	STD75473
ICSA: STE	75925	ICSAB:	STD75702	Int. Std:	RGT35157
CCV: STD	076132	LLCCV:	STD76067	Tuning Sol:	

Hydroxylamine: _

Comments: [

Stannous : _____

5	Seq.	File ID	Sample	ID	Prep	Dil	Reference	Date/Time
	69	T3.051616.141316	L16050611-05	W6	40/50	1		05/16/16 14:13
	70	T3.051616.141713	L16050611-06	W6B	40/50	1		05/16/16 14:17
	71	T3.051616.142110	L16050611-07	W51	40/50	1		05/16/16 14:21
	72	T3.051616.142646	L16050611-09	W7A	40/50	1		05/16/16 14:26

Workgroups: 568672,567345,568830,568394,568955,568110,569026

69	T3.051616.141316	L16050611-05	W6	40/50	1		05/16/16 14:13
70	T3.051616.141713	L16050611-06	W6B	40/50	1		05/16/16 14:17
71	T3.051616.142110	L16050611-07	W51	40/50	1		05/16/16 14:21
72	T3.051616.142646	L16050611-09	W7A	40/50	1		05/16/16 14:26
73	T3.051616.143047	L16050611-11	W7B	40/50	1		05/16/16 14:30
74	T3.051616.143432	L16050611-13	W5	40/50	1		05/16/16 14:34
75	T3.051616.143828	L16050611-15	W17		1		05/16/16 14:38
76	T3.051616.144624	L16050611-15	W17	40/50	1		05/16/16 14:46
77	T3.051616.145021	L16050611-17	W27	40/50	1		05/16/16 14:50
78	T3.051616.145417	WG568963-27	CCV		1		05/16/16 14:54
79	T3.051616.145756	WG568963-28	ССВ		1		05/16/16 14:57
80	T3.051616.150155	WG568346-02	Method/Prep Blank	40/50	1		05/16/16 15:01
81	T3.051616.150555	WG568346-03	Laboratory Control S	40/50	1		05/16/16 15:05
82	T3.051616.150939	WG568346-01	Reference Sample		1	L16050507-13	05/16/16 15:09
83	T3.051616.151334	WG568346-04	Matrix Spike	40/50	1	L16050507-13	05/16/16 15:13
84	T3.051616.151718	WG568346-05	Matrix Spike Duplica	40/50	1	L16050507-13	05/16/16 15:17
85	T3.051616.152100	L16050446-01	6-10-8 S1	40/50	1		05/16/16 15:21
86	T3.051616.152457	L16050446-02	6-10-8 S2	40/50	1		05/16/16 15:24
87	T3.051616.152853	WG568394-03	Post Digestion Spike		1	L16050446-02	05/16/16 15:28
88	T3.051616.153236	WG568394-04	Serial Dilution		5	L16050446-02	05/16/16 15:32
89	T3.051616.153635	WG568394-04	Serial Dilution		25	L16050446-02	05/16/16 15:36
90	T3.051616.154034	WG568963-29	CCV		1		05/16/16 15:40
91	T3.051616.154413	WG568963-30	ССВ		1		05/16/16 15:44
92	T3.051616.154812	L16050450-01	27-6-9 RS1 (T)	40/50	1		05/16/16 15:48
93	T3.051616.155209	L16050450-02	27-6-9 RS1 (T)	40/50	1		05/16/16 15:52
94	T3.051616.155605	L16050450-03	27-6-9 RW2 (T)	40/50	1		05/16/16 15:56
95	T3.051616.160004	L16050450-04	27-6-9 RW2 (T)	40/50	1		05/16/16 16:00
96	T3.051616.160402	L16050450-05	27-6-9 RS1 (U)	40/50	1		05/16/16 16:04
97	T3.051616.160758	L16050450-06	27-6-9 RW2 (U)	40/50	1		05/16/16 16:07
98	T3.051616.161155	L16050450-07	27-6-9 RW1 (U)	40/50	1		05/16/16 16:11
99	T3.051616.161551	L16050450-08	27-6-9 RS2 (U)	40/50	1		05/16/16 16:15
100	T3.051616.161947	L16050507-02	W37WT	40/50	1		05/16/16 16:19
101	T3.051616.162343	L16050507-03	W1AR	40/50	1		05/16/16 16:23
102	T3.051616.162740	WG568963-31	CCV		1		05/16/16 16:27

Page: 3 Approved:

May 16, 2016 Hym H. Rhoder

Instrument Run Log

Instrument:	ICP-THERMO3	_ Data	set: <u>05161613.1R.TXT</u>		
Analyst1:	JYH	Analy	vst2: N/A		
Method:	200.7/6010B/6010C	_ s	OP: <u>ME600G</u>	Rev: <u>8</u>	
Maintenance Log ID:		_			
Calibration Std: STD	76065	ICV Std:	STD76066	Post Spike: STD75473	
ICSA: STE	75925	ICSAB:	STD75702	Int. Std: RGT35157	
CCV: STE	076132	H CCV.	STD76067	Tuning Sol:	

Workgroups: 568672,567345,568830,568394,568955,568110,569026

Hydroxylamine:

Comments:

Stannous : _

Seq.	File ID	Sample	ID	Prep	Dil	Reference	Date/Time
103	T3.051616.163117	WG568963-32	ССВ		1		05/16/16 16:31
104	T3.051616.163517	L16050507-04	W50	40/50	1		05/16/16 16:35
105	T3.051616.163913	L16050507-05	W18	40/50	1		05/16/16 16:39
106	T3.051616.164310	L16050507-07	W31WB	40/50	1		05/16/16 16:43
107	T3.051616.164706	L16050507-09	W29	40/50	1		05/16/16 16:47
108	T3.051616.165104	L16050507-11	W30WTR	40/50	1		05/16/16 16:51
109	T3.051616.165459	WG568963-33	CCV		1		05/16/16 16:54
110	T3.051616.165837	WG568963-34	ССВ		1		05/16/16 16:58
111	T3.051616.170237	WG568687-02	Method/Prep Blank	40/50	1		05/16/16 17:02
112	T3.051616.170637	WG568687-03	Laboratory Control S	40/50	1		05/16/16 17:06
113	T3.051616.171008	WG568558-01	Fluid Blank 1		1		05/16/16 17:10
114	T3.051616.171408	WG568558-02	Fluid Blank 2		1		05/16/16 17:14
115	T3.051616.171808	WG568687-01	Reference Sample		1	L16050674-07	05/16/16 17:18
116	T3.051616.172230	WG568687-04	Matrix Spike	40/50	1	L16050674-07	05/16/16 17:22
117	T3.051616.172643	WG568687-05	Matrix Spike Duplica	40/50	1	L16050674-07	05/16/16 17:26
118	T3.051616.173057	L16050674-10	SW01-051116	40/50	1		05/16/16 17:30
119	T3.051616.173453	WG568955-01	Post Digestion Spike		1	L16050674-10	05/16/16 17:34
120	T3.051616.173834	WG568955-02	Serial Dilution		5	L16050674-10	05/16/16 17:38
121	T3.051616.174231	WG568963-35	CCV		1		05/16/16 17:42
122	T3.051616.174610	WG568963-36	ССВ		1		05/16/16 17:46
123	T3.051616.175009	L16050459-01	FRN SALTCAKE	5/50	1		05/16/16 17:50
124	T3.051616.175414	L16050459-02	FRN FURNACE BAGHOUSE	5/50	1		05/16/16 17:54
125	T3.051616.175810	L16050459-03	FRN MILL FINES (SCREW 1	5/50	1		05/16/16 17:58
126	T3.051616.180206	L16050459-04	FRN MILL FINES (SCREW 8	5/50	1		05/16/16 18:02
127	T3.051616.180601	L16050571-02	50WW22FF-051016	40/50	1		05/16/16 18:06
128	T3.051616.180958	L16050571-04	50WW11FF-051016	40/50	1		05/16/16 18:09
129	T3.051616.181354	L16050571-06	50WW06FF-051016	40/50	1		05/16/16 18:13
130	T3.051616.181751	L16050571-08	50WW12FF-051016	40/50	1		05/16/16 18:17
131	T3.051616.182146	L16050571-10	50WW24FF-051016	40/50	1		05/16/16 18:21
132	T3.051616.182543	L16050571-12	50WW23FF-051016	40/50	1		05/16/16 18:25
133	T3.051616.182939	WG568963-37	CCV		1		05/16/16 18:29
134	T3.051616.183317	WG568963-38	ССВ		1		05/16/16 18:33
135	T3.051616.183717	L16050624-01	GH46_JACOBS_03-03-012	40/50	1		05/16/16 18:37
136	T3.051616.184113	L16050674-01	MW31-GW-051016	40/50	1		05/16/16 18:41

Page: 4 Approved: May 16, 2016

Instrument Run Log

	ICP-THERMO3	_	set: <u>051616T3.1R.TXT</u>	
Analyst1:	JIH	_ Anaiy	vst2: N/A	
Method:	200.7/6010B/6010C	_ S	OP: <u>ME600G</u>	Rev: <u>8</u>
Maintenance Log ID:		_		
Calibration Std: STE	076065	ICV Std:	STD76066	Post Spike: STD75473
ICSA: <u>STD75925</u>		ICSAB:	STD75702	Int. Std: RGT35157
CCV: STE	076132	LLCCV:	STD76067	Tuning Sol :

Hydroxylamine: _

Workgroups: 568672,567345,568830,568394,568955,568110,569026

Comments:

Stannous :

Seq.	File ID	Sample	ID	Prep	Dil	Reference	Date/Time
137	T3.051616.184510	L16050674-03	TCF-EB01-051116	40/50	1		05/16/16 18:45
138	T3.051616.184910	L16050674-04	MW32-GW-051116	40/50	1		05/16/16 18:49
139	T3.051616.185306	L16050674-05	MW26-GW-051116		1		05/16/16 18:53
140	T3.051616.185725	L16050674-06	BW02-GW-051116	40/50	1		05/16/16 18:57
141	T3.051616.190123	WG568963-39	CCV		1		05/16/16 19:01
142	T3.051616.190501	WG568963-40	ССВ		1		05/16/16 19:05
143	T3.051616.190901	WG567819-02	Method/Prep Blank	40/50	1		05/16/16 19:09
144	T3.051616.191300	WG567819-03	Laboratory Control S	40/50	1		05/16/16 19:13
145	T3.051616.191644	L16050154-01	POND OUTFALL		1	WG567819-01	05/16/16 19:16
146	T3.051616.192042	L16050154-02	POND OUTFALL MS	40/50	1	WG567819-04	05/16/16 19:20
147	T3.051616.192425	L16050154-03	POND OUTFALL MSD	40/50	1	WG567819-05	05/16/16 19:24
148	T3.051616.192807	L16050224-01	30500-F01-WQ-W0010	40/50	1		05/16/16 19:28
149	T3.051616.193208	WG568110-01	Post Digestion Spike		1	L16050224-01	05/16/16 19:32
150	T3.051616.193551	WG568110-02	Serial Dilution		5	L16050224-01	05/16/16 19:35
151	T3.051616.193950	WG568963-41	CCV		1		05/16/16 19:39
152	T3.051616.194329	WG568963-42	ССВ		1		05/16/16 19:43
153	T3.051616.194729	WG568963-43	Low Level Continuing Calibra		1		05/16/16 19:47
154	T3.051616.195128	WG568963-44	Low Level Continuing Calibra		1		05/16/16 19:51
155	T3.051616.195527	WG568874-02	Method/Prep Blank	40/50	1		05/16/16 19:55
156	T3.051616.195926	WG568874-03	Laboratory Control S	40/50	1		05/16/16 19:59
157	T3.051616.200310	WG568782-01	Fluid Blank 1		1		05/16/16 20:03
158	T3.051616.200710	WG568782-02	Fluid Blank 2		1		05/16/16 20:07
159	T3.051616.201110	WG568874-01	Reference Sample		1	L16050764-02	05/16/16 20:11
160	T3.051616.201507	WG568874-04	Matrix Spike	5/50	1	L16050764-02	05/16/16 20:15
161	T3.051616.201850	WG568874-05	Matrix Spike Duplica	5/50	1	L16050764-02	05/16/16 20:18
162	T3.051616.202230	L16050627-01	GH46_BURNS_03-03-0122	40/50	1		05/16/16 20:22
163	T3.051616.202628	WG569026-01	Post Digestion Spike		1	L16050627-01	05/16/16 20:26
164	T3.051616.203011	WG569026-02	Serial Dilution		5	L16050627-01	05/16/16 20:30
165	T3.051616.203400	WG568963-45	CCV		1		05/16/16 20:34
166	T3.051616.203738	WG568963-46	ССВ		1		05/16/16 20:37
167	T3.051616.204138	L16050658-02	W22	40/50	1		05/16/16 20:41
168	T3.051616.204535	L16050658-04	W14	40/50	1		05/16/16 20:45
169	T3.051616.204932	L16050658-06	W13	40/50	1		05/16/16 20:49
170	T3.051616.205328	L16050658-07	W30B	40/50	1		05/16/16 20:53

Page: 5 Approved:

May 16, 2016 Hym H. Rhoder

Instrument Run Log

Instrument: ICP-THERMO3			Datas	set: <u>051616T3.1R.TXT</u>			
Analys	Analyst1: JYH		Analyst2		st2: N/A		
Meth	od:	200.7/6010B/60	10C	SC	DP: ME600G	R	ev: <u>8</u>
Maintenance Log	ID:						
Calibration Std:	STD	76065		ICV Std:	STD76066	Post Spike:	STD75473
ICSA:	STD	75925		ICSAB:	STD75702	Int. Std:	RGT35157
CCV:	STD	76132		LLCCV:	STD76067	Tuning Sol	:
Stannous:			Hydroxy	/lamine :			

Workgroups: 568672,567345,568830,568394,568955,568110,569026

Comments:

Seq.	File ID	Sample	ID	Prep	Dil	Reference	Date/Time
					DII	Reference	
171	T3.051616.205733	L16050658-08	W52	40/50	1		05/16/16 20:57
172	T3.051616.210137	L16050658-10	W24	40/50	1		05/16/16 21:01
173	T3.051616.210542	L16050658-12	W35WB	40/50	1		05/16/16 21:05
174	T3.051616.210940	L16050658-14	W10R1	40/50	1		05/16/16 21:09
175	T3.051616.211342	L16050759-01	30300-B01-WQ-W0002	40/50	1		05/16/16 21:13
176	T3.051616.211742	L16050764-01	FLUME RESIDUE \#2	5/50	1		05/16/16 21:17
177	T3.051616.212138	WG568963-47	CCV		1		05/16/16 21:21
178	T3.051616.212515	WG568963-48	ССВ		1		05/16/16 21:25
179	T3.051616.212915	L16050764-03	LIQ FLUME RESIDUE \#2	5/50	1		05/16/16 21:29
180	T3.051616.213314	L16050764-04	LIQ FLUME RESIDUE \#1	5/50	1		05/16/16 21:33
181	T3.051616.213715	L16050765-01	MW23-GW-051216	40/50	1		05/16/16 21:37
182	T3.051616.214134	L16050765-02	MW28-GW-051216	40/50	1		05/16/16 21:41
183	T3.051616.214547	L16050765-03	MW28-GW-051216D	40/50	1		05/16/16 21:45
184	T3.051616.215005	L16050765-04	MW35-GW-051216		1		05/16/16 21:50
185	T3.051616.215425	WG568963-49	CCV		1		05/16/16 21:54
186	T3.051616.215803	WG568963-50	ССВ		1		05/16/16 21:58
187	T3.051616.220203	WG568963-51	Interference Check		1		05/16/16 22:02
188	T3.051616.220559	WG568963-52	Interference Check		1		05/16/16 22:05
189	T3.051616.220943	WG568963-53	CCV		1		05/16/16 22:09
190	T3.051616.221321	WG568963-54	ССВ		1		05/16/16 22:13

Comments

Seq.	Rerun	Dil.	Reason	Analytes					
21	21								
	Seq. 21- 23: Wrong sample label. JYH								
49									
	Wrong QA label. JYH								
148	8								
	Seq. 148-150: wrong sample labels. JYH								

Page: 6 Approved: May 16, 2016

Instrument Run Log

Instrument:	ICP-THERMO3	Datase	et: 051716T3.2R.TXT	-	
Analyst1:	JYH	Analyst	2: <u>N/A</u>		
Method:	200.7/6010B/6010C	SO	P: ME600G	R	ev: <u>8</u>
Maintenance Log ID:		_			
Calibration Std: STD	76065	ICV Std:	STD76066	Post Spike:	STD75473
ICSA: STE	75925	ICSAB: §	STD75702	Int. Std:	RGT35157

CCV: <u>STD76132</u> LLCCV: <u>STD76067</u> Tuning Sol: ______
Stannous: _____ Hydroxylamine: _____

Trydroxylamine :

Workgroups: 567345,568955,569026,569089,569189,569225,569228,569222

Comments:

Seq.	File ID	Sample	ID	Prep	Dil	Reference	Date/Time
1	T3.051716.095430	WG569211-01	Calibration Point		1		05/17/16 09:54
2	T3.051716.095835	WG569211-02	Calibration Point		1		05/17/16 09:58
3	T3.051716.100241	WG569211-03	Calibration Point		1		05/17/16 10:02
4	T3.051716.100649	WG569211-04	Calibration Point		1		05/17/16 10:06
5	T3.051716.101023	WG569211-05	Calibration Point		1		05/17/16 10:10
6	T3.051716.101408	WG569211-06	Initial Calibration Verification		1		05/17/16 10:14
7	T3.051716.101754	WG569211-07	Initial Calib Blank		1		05/17/16 10:17
8	T3.051716.102200	WG569211-08	LLICV		1		05/17/16 10:22
9	T3.051716.103037	WG569211-09	Low Level Initial Calibration V		1		05/17/16 10:30
10	T3.051716.103442	WG569211-10	Interference Check		1		05/17/16 10:34
11	T3.051716.103844	WG569211-11	Interference Check		1		05/17/16 10:38
12	T3.051716.104236	WG569211-12	CCV		1		05/17/16 10:42
13	T3.051716.104621	WG569211-13	ССВ		1		05/17/16 10:46
14	T3.051716.105029	WG567310-02	Method/Prep Blank	40/50	1		05/17/16 10:50
15	T3.051716.105435	WG567310-03	Laboratory Control S	40/50	1		05/17/16 10:54
16	T3.051716.105823	WG567310-01	Reference Sample		10	L16050013-01	05/17/16 10:58
17	T3.051716.110228	L16050013-02	35AWW13FD-042916	40/50	10		05/17/16 11:02
18	T3.051716.110632	L160500130-3S	L1605001303S	40/50	10		05/17/16 11:06
19	T3.051716.111036	L1605001304-SD	L1605001304SD	40/50	10		05/17/16 11:10
20	T3.051716.111439	L16050013-05	LHAAP02 EQUIPMENT RINS	40/50	1		05/17/16 11:14
21	T3.051716.111845	L16041607-01	XX9045	5/50	1		05/17/16 11:18
22	T3.051716.112249	WG567345-01	Post Digestion Spike		1	L16041607-01	05/17/16 11:22
23	T3.051716.112639	WG567345-02	Serial Dilution		5	L16041607-01	05/17/16 11:26
24	T3.051716.113044	WG569211-14	CCV		1		05/17/16 11:30
25	T3.051716.113428	WG569211-15	CCB		1		05/17/16 11:34
26	T3.051716.113835	WG569211-16	Low Level Continuing Calibra		1		05/17/16 11:38
27	T3.051716.114241	L16050459-01	FRN SALTCAKE	5/50	100		05/17/16 11:42
28	T3.051716.114647	L16050459-02	FRN FURNACE BAGHOUSE	5/50	100		05/17/16 11:46
29	T3.051716.115052	L16050459-03	FRN MILL FINES (SCREW 1	5/50	100		05/17/16 11:50
30	T3.051716.115457	L16050459-04	FRN MILL FINES (SCREW 8	5/50	100		05/17/16 11:54
31	T3.051716.115903	L16050674-05	MW26-GW-051116	40/50	100		05/17/16 11:59
32	T3.051716.120306	WG568687-01	Reference Sample		100	L16050674-07	05/17/16 12:03
33	T3.051716.120709	WG568687-04	Matrix Spike	40/50	100	L16050674-07	05/17/16 12:07
34	T3.051716.121113	WG568687-05	Matrix Spike Duplica	40/50	100	L16050674-07	05/17/16 12:11
		1	1				

Page: 1 Approved: May 19, 2016

Instrument Run Log

Instrument:	ICP-THERMO3	_ Data	set: 05171613.2R.TXT	
Analyst1:	JYH	_ Analy	vst2: N/A	
Method:	200.7/6010B/6010C	_ s	OP: <u>ME600G</u>	Rev: <u>8</u>
Maintenance Log ID:		_		
Calibration Std: STD	076065	ICV Std:	STD76066	Post Spike: STD75473
ICSA: STE	75925	ICSAB:	STD75702	Int. Std: RGT35157
CCV: STE	76132	LLCCV:	STD76067	Tuning Sol:

Hydroxylamine:

Workgroups: <u>567345,568955,569026,569089,569189,569225,569228,569222</u>

Comments:

Seq.	File ID	Sample	ID	Prep	Dil	Reference	Date/Time
35	T3.051716.121516	WG568955-03	Post Digestion Spike		100	L16050674-05	05/17/16 12:15
36	T3.051716.121905	WG568955-04	Serial Dilution		500	L16050674-05	05/17/16 12:19
37	T3.051716.122310	WG569211-17	CCV		1		05/17/16 12:23
38	T3.051716.122655	WG569211-18	ССВ		1		05/17/16 12:26
39	T3.051716.123103	WG569211-19	Interference Check		1		05/17/16 12:31
40	T3.051716.123505	WG569211-20	Interference Check		1		05/17/16 12:35
41	T3.051716.123857	WG569211-21	CCV		1		05/17/16 12:38
42	T3.051716.124243	WG569211-22	ССВ		1		05/17/16 12:42
43	T3.051716.124651	L16050764-01	FLUME RESIDUE \#2	5/50	1		05/17/16 12:46
44	T3.051716.125053	L16050764-03	LIQ FLUME RESIDUE \#2	5/50	1		05/17/16 12:50
45	T3.051716.125458	L16050764-04	LIQ FLUME RESIDUE \#1	5/50	1		05/17/16 12:54
46	T3.051716.125903	L16050765-04	MW35-GW-051216	40/50	100		05/17/16 12:59
47	T3.051716.130308	WG569211-23	CCV		1		05/17/16 13:03
48	T3.051716.130652	WG569211-24	ССВ		1		05/17/16 13:06
49	T3.051716.131101	WG569211-25	ICSA		1		05/17/16 13:11
50	T3.051716.131451	WG569211-26	ICSAB		1		05/17/16 13:14
51	T3.051716.132020	WG569211-27	Interference Check		1		05/17/16 13:20
52	T3.051716.132422	WG569211-28	Interference Check		1		05/17/16 13:24
53	T3.051716.132814	WG569211-29	CCV		1		05/17/16 13:28
54	T3.051716.133159	WG569211-30	ССВ		1		05/17/16 13:31
55	T3.051716.135336	WG568346-02	Method/Prep Blank		1		05/17/16 13:53
56	T3.051716.135741	WG568346-03	Laboratory Control S		1		05/17/16 13:57
57	T3.051716.140131	WG568346-01	Reference Sample		1	L16050507-13	05/17/16 14:01
58	T3.051716.140533	WG568346-04	Matrix Spike		1	L16050507-13	05/17/16 14:05
59	T3.051716.140923	WG568346-05	Matrix Spike Duplica		1	L16050507-13	05/17/16 14:09
60	T3.051716.141310	L16050507-02	W37WT		1		05/17/16 14:13
61	T3.051716.141713	L16050507-03	W1AR		1		05/17/16 14:17
62	T3.051716.142115	L16050507-04	W50		1		05/17/16 14:21
63	T3.051716.142516	WG568394-05	Post Digestion Spike		1	L16050507-04	05/17/16 14:25
64	T3.051716.142904	WG568394-06	Serial Dilution		5	L16050507-04	05/17/16 14:29
65	T3.051716.143311	WG569211-31	CCV		1		05/17/16 14:33
66	T3.051716.143655	WG569211-32	ССВ		1		05/17/16 14:36
67	T3.051716.144104	L16050507-05	W18		1	_	05/17/16 14:41
68	T3.051716.144506	L16050507-07	W31WB		1		05/17/16 14:45

Page: 2 Approved: May 19, 2016

Instrument Run Log

Instrument:	ICP-THERMO3	Dataset	: <u>051716T3.2R.TXT</u>		
Analyst1:	JYH	Analyst2	: <u>N/A</u>		
Method:	200.7/6010B/6010C	SOP	: <u>ME600G</u>	Re	ev: <u>8</u>
Maintenance Log ID:	-				
Calibration Std: STD	76065	ICV Std: S	TD76066	Post Spike:	STD75473
ICSA: STD	75925	ICSAB: S	TD75702	Int. Std:	RGT35157

Hydroxylamine: _

Workgroups: 567345,568955,569026,569089,569189,569225,569228,569222

LLCCV: STD76067

Tuning Sol :

Comments:

CCV: <u>STD76132</u>

Stannous : _____

Seq.	File ID	Sample	ID	Prep	Dil	Reference	Date/Time
69	T3.051716.144908	L16050507-09	W29		1		05/17/16 14:49
70	T3.051716.145310	L16050507-11	W30WTR		1		05/17/16 14:53
71	T3.051716.145712	WG569211-33	CCV		1		05/17/16 14:57
72	T3.051716.150056	WG569211-34	ССВ		1		05/17/16 15:00
73	T3.051716.150504	WG568673-01	Method/Prep Blank	1/50	1		05/17/16 15:05
74	T3.051716.150908	WG568673-02	Laboratory Control S	1/50	1		05/17/16 15:09
75	T3.051716.151310	WG568673-03	Laboratory Control S	1/50	1		05/17/16 15:13
76	T3.051716.151713	L16050644-41	17029-WP01-WP013	1/50	1		05/17/16 15:17
77	T3.051716.152115	L16050644-42	17029-WP01-WP014	1/50	1		05/17/16 15:21
78	T3.051716.152518	L16050644-43	17029-WP01-WP015	1/50	1		05/17/16 15:25
79	T3.051716.152924	L16050644-44	17029-WP01-WP016	1/50	1		05/17/16 15:29
80	T3.051716.153328	L16050644-45	17029-WP01-WP017	1/50	1		05/17/16 15:33
81	T3.051716.153733	L16050644-46	17029-WP01-WP018	1/50	1		05/17/16 15:37
82	T3.051716.154136	WG569089-01	Post Digestion Spike		1	L16050644-46	05/17/16 15:41
83	T3.051716.154530	WG569211-35	CCV		1		05/17/16 15:45
84	T3.051716.154914	WG569211-36	ССВ		1		05/17/16 15:49
85	T3.051716.155322	WG569089-02	Serial Dilution		5	L16050644-46	05/17/16 15:53
86	T3.051716.155730	WG569211-37	CCV		1		05/17/16 15:57
87	T3.051716.160114	WG569211-38	ССВ		1		05/17/16 16:01
88	T3.051716.160521	WG569080-02	Method/Prep Blank	40/50	1		05/17/16 16:05
89	T3.051716.160926	WG569080-03	Laboratory Control S	40/50	1		05/17/16 16:09
90	T3.051716.161316	WG569080-01	Reference Sample		1	L16050834-04	05/17/16 16:13
91	T3.051716.161719	WG569080-04	Matrix Spike	40/50	1	L16050834-04	05/17/16 16:17
92	T3.051716.162106	WG569080-05	Matrix Spike Duplica	40/50	1	L16050834-04	05/17/16 16:21
93	T3.051716.162455	L16050903-01	22-12-0158-S3	40/50	1		05/17/16 16:24
94	T3.051716.162859	L16050903-02	22-12-0158-S4	40/50	1		05/17/16 16:28
95	T3.051716.163301	WG569189-01	Post Digestion Spike		1	L16050903-02	05/17/16 16:33
96	T3.051716.163650	WG569189-02	Serial Dilution		5	L16050903-02	05/17/16 16:36
97	T3.051716.164055	WG569189-02	Serial Dilution		25	L16050903-02	05/17/16 16:40
98	T3.051716.164503	WG569211-39	CCV		1		05/17/16 16:45
99	T3.051716.164848	WG569211-40	ССВ		1		05/17/16 16:48
100	T3.051716.165256	L16050829-01	59-11-13.03 S1	40/50	1		05/17/16 16:52
101	T3.051716.165659	L16050829-02	59-11-13.03 S1	40/50	1		05/17/16 16:56
102	T3.051716.170101	L16050829-03	59-11-13.03 W1	40/50	1		05/17/16 17:01

Page: 3 Approved: May 19, 2016

Instrument Run Log

Instrument:	ICP-THERMO3	_ Dataset:	051716T3.2R.TXT	
Analyst1:	JYH	_ Analyst2:	N/A	
Method:	200.7/6010B/6010C	SOP:	ME600G	Rev: <u>8</u>
Maintenance Log ID:		_		
Calibration Std: STD	76065	ICV Std: ST	D76066	Post Spike: STD75473

Workgroups:

Comments:

•							
	File ID	Sample	ID	Prep	Dil	Reference	Date/Time

567345,568955,569026,569089,569189,569225,569228,569222

Seq.	File ID	Sample	ID	Prep	Dil	Reference	Date/Time
103	T3.051716.170504	L16050831-01	2211-129A RW2 (TB)	40/50	1		05/17/16 17:05
104	T3.051716.170909	L16050831-02	2211-129A RW2 (TK)	40/50	1		05/17/16 17:09
105	T3.051716.171312	L16050831-03	2211-129A RW2 (U)	40/50	1		05/17/16 17:13
106	T3.051716.171713	L16050834-01	15-12-23 S6	40/50	1		05/17/16 17:17
107	T3.051716.172116	L16050834-02	15-12-23 S10	40/50	1		05/17/16 17:21
108	T3.051716.172519	L16050834-03	15-12-23 S9	40/50	1		05/17/16 17:25
109	T3.051716.172922	L16050845-01	340021029000 P-1	40/50	1		05/17/16 17:29
110	T3.051716.173325	WG569211-41	CCV		1		05/17/16 17:33
111	T3.051716.173709	WG569211-42	ССВ		1		05/17/16 17:37
112	T3.051716.174116	L16050846-01	340021084001 DS-1	40/50	1		05/17/16 17:41
113	T3.051716.174518	L16050846-02	340021084001 W-1	40/50	1		05/17/16 17:45
114	T3.051716.174922	L16050848-01	280140070000 W-1	40/50	1		05/17/16 17:49
115	T3.051716.175323	L16050848-02	280140070000 DS-1	40/50	1		05/17/16 17:53
116	T3.051716.175726	L16050848-03	280140070000 DS-2	40/50	1		05/17/16 17:57
117	T3.051716.180128	L16050855-01	TP-WL01-051616	40/50	1		05/17/16 18:01
118	T3.051716.180531	WG569211-43	CCV		1		05/17/16 18:05
119	T3.051716.180915	WG569211-44	ССВ		1		05/17/16 18:09
120	T3.051716.181321	WG568666-01	Method/Prep Blank	1/50	1		05/17/16 18:13
121	T3.051716.181726	WG568666-02	Laboratory Control S	1/50	1		05/17/16 18:17
122	T3.051716.182129	WG568666-03	Laboratory Control S	1/50	1		05/17/16 18:21
123	T3.051716.182531	L16050644-01	15000-WP01-WP001	1/50	1		05/17/16 18:25
124	T3.051716.182926	L16050644-02	15000-WP01-WP002	1/50	1		05/17/16 18:29
125	T3.051716.183323	L16050644-03	15000-WP01-WP003	1/50	1		05/17/16 18:33
126	T3.051716.183724	L16050644-04	15000-WP01-WP004	1/50	1		05/17/16 18:37
127	T3.051716.184120	L16050644-05	15000-WP01-WP005	1/50	1		05/17/16 18:41
128	T3.051716.184521	WG569225-01	Post Digestion Spike		1	L16050644-05	05/17/16 18:45
129	T3.051716.184909	WG569225-02	Serial Dilution		5		05/17/16 18:49
130	T3.051716.185311	WG569211-45	CCV		1		05/17/16 18:53
131	T3.051716.185656	WG569211-46	ССВ		1		05/17/16 18:56
132	T3.051716.190103	L16050644-06	15000-WP01-WP006	1/50	1		05/17/16 19:01
133	T3.051716.190500	L16050644-07	15000-WP01-WP007	1/50	1		05/17/16 19:05
134	T3.051716.190903	L16050644-08	15000-WP01-WP008	1/50	1		05/17/16 19:09
135	T3.051716.191305	L16050644-09	15000-WP01-WP009	1/50	1		05/17/16 19:13
136	T3.051716.191707	L16050644-10	15000-WP01-WP010	1/50	1		05/17/16 19:17

Page: 4 Approved: May 19, 2016

Instrument Run Log

Instrument:	ICP-THERMO3	Dataset:	051716T3.2R.TXT	
Analyst1:	JYH	Analyst2:	N/A	
Method:	200.7/6010B/6010C	SOP:	ME600G	Rev: <u>8</u>
Maintenance Log ID:				

Comments:

Workgroups: 567345,568955,569026,569089,569189,569225,569228,569222

Seq.	File ID	Sample	ID	Prep	Dil	Reference	Date/Time
137	T3.051716.192109	L16050644-11	15000-WP01-WP011	1/50	1		05/17/16 19:21
138	T3.051716.192510	L16050644-12	15000-WP01-WP012	5000-WP01-WP012 1/50 1		05/17/16 19:25	
139	T3.051716.192912	L16050644-13	15000-WP01-WP013	1/50	1		05/17/16 19:29
140	T3.051716.193316	L16050644-14	15000-WP01-WP014	1/50	1		05/17/16 19:33
141	T3.051716.193717	L16050644-15	16474-WP01-WP001	1/50	1		05/17/16 19:37
142	T3.051716.194121	WG569211-47	CCV		1		05/17/16 19:41
143	T3.051716.194506	WG569211-48	ССВ		1		05/17/16 19:45
144	T3.051716.194913	L16050644-16	16474-WP01-WP002	1/50	1		05/17/16 19:49
145	T3.051716.195313	L16050644-17	16474-WP01-WP003	1/50	1		05/17/16 19:53
146	T3.051716.195712	L16050644-18	16474-WP01-WP004	1/50	1		05/17/16 19:57
147	T3.051716.200114	L16050644-19	16474-WP01-WP005	1/50	1		05/17/16 20:01
148	T3.051716.200518	L16050644-20	16474-WP01-WP006	1/50	1		05/17/16 20:05
149	T3.051716.200914	WG569211-49	CCV		1		05/17/16 20:09
150	T3.051716.201258	WG569211-50	ССВ		1		05/17/16 20:12
151	T3.051716.201705	WG568671-01	Method/Prep Blank	1/50	1		05/17/16 20:17
152	T3.051716.202109	WG568671-02	Laboratory Control S	1/50	1		05/17/16 20:21
153	T3.051716.202510	WG568671-03	Laboratory Control S	1/50	1		05/17/16 20:25
154	T3.051716.202912	L16050644-21	16474-WP01-WP007	1/50	1		05/17/16 20:29
155	T3.051716.203316	L16050644-22	16474-WP01-WP008	1/50	1		05/17/16 20:33
156	T3.051716.203719	L16050644-23	16474-WP01-WP009	1/50	1		05/17/16 20:37
157	T3.051716.204120	L16050644-24	16474-WP01-WP010	1/50	1		05/17/16 20:41
158	T3.051716.204524	L16050644-25	16474-WP01-WP011	1/50	1		05/17/16 20:45
159	T3.051716.204925	WG569228-01	Post Digestion Spike		1	L16050644-25	05/17/16 20:49
160	T3.051716.205313	WG569228-02	Serial Dilution		1	L16050644-25	05/17/16 20:53
161	T3.051716.205718	WG569211-51	CCV		1		05/17/16 20:57
162	T3.051716.210103	WG569211-52	ССВ		1		05/17/16 21:01
163	T3.051716.210510	L16050644-26	16474-WP01-WP012	1/50	1		05/17/16 21:05
164	T3.051716.210912	L16050644-27	16474-WP01-WP013	1/50	1		05/17/16 21:09
165	T3.051716.211314	L16050644-28	16474-WP01-WP014	1/50	1		05/17/16 21:13
166	T3.051716.211717	L16050644-29	17029-WP01-WP001	1/50	1		05/17/16 21:17
167	T3.051716.212114	L16050644-30	17029-WP01-WP002	1/50	1		05/17/16 21:21
168	T3.051716.212510	L16050644-31	17029-WP01-WP003	1/50	1		05/17/16 21:25
169	T3.051716.212913	L16050644-32	17029-WP01-WP004	1/50	1		05/17/16 21:29
170	T3.051716.213310	L16050644-33	17029-WP01-WP005	1/50	1		05/17/16 21:33

Page: 5 Approved: May 19, 2016

Instrument Run Log

Instrument:	ICP-THERMO3	Datase	t: <u>051716T3.2R.TXT</u>	
Analyst1:	JYH	_ Analyst2	2: <u>N/A</u>	
Method:	200.7/6010B/6010C	SOF	P: ME600G	Rev: <u>8</u>
Maintenance Log ID:		_		
Calibration Std: STD	76065	ICV Std: S	TD76066	Post Spike: STD75473
ICSA: STE	75925	ICSAB: S	TD75702	Int. Std: RGT35157

LLCCV: STD76067

567345,568955,569026,569089,569189,569225,569228,569222

Tuning Sol : _

Hydroxylamine:

Comments:

CCV: STD76132

Workgroups:

Stannous:

Seq.	File ID	Sample	ID	Prep	Dil	Reference	Date/Time
171	T3.051716.213708	L16050644-34	17029-WP01-WP006	1/50	1		05/17/16 21:37
172	T3.051716.214108	L16050644-35	17029-WP01-WP007	1/50	1		05/17/16 21:41
173	T3.051716.214511	WG569211-53	CCV		1		05/17/16 21:45
174	T3.051716.214856	WG569211-54	ССВ		1		05/17/16 21:48
175	T3.051716.215303	L16050644-36	17029-WP01-WP008	1/50	1		05/17/16 21:53
176	T3.051716.215707	L16050644-37	17029-WP01-WP009	1/50	1		05/17/16 21:57
177	T3.051716.220111	L16050644-38	17029-WP01-WP010	1/50	1		05/17/16 22:01
178	T3.051716.220514	L16050644-39	17029-WP01-WP011	1/50	1		05/17/16 22:05
179	T3.051716.220917	L16050644-40	17029-WP01-WP012	1/50	1		05/17/16 22:09
180	T3.051716.221322	WG569211-55	CCV		1		05/17/16 22:13
181	T3.051716.221706	WG569211-56	ССВ		1		05/17/16 22:17
182	T3.051716.222113	WG569135-02	Method/Prep Blank	40/50	1		05/17/16 22:21
183	T3.051716.222519	WG569135-03	Laboratory Control S	40/50	1		05/17/16 22:25
184	T3.051716.222909	WG569135-01	Reference Sample		1	L16050807-04	05/17/16 22:29
185	T3.051716.223311	WG569135-04	Matrix Spike	40/50	1	L16050807-04	05/17/16 22:33
186	T3.051716.223658	WG569135-05	Matrix Spike Duplica	40/50	1	L16050807-04	05/17/16 22:36
187	T3.051716.224045	L16050847-01	280140090000 W-1	40/50	1		05/17/16 22:40
188	T3.051716.224448	WG569221-01	Post Digestion Spike		1	L16050847-01	05/17/16 22:44
189	T3.051716.224837	WG569221-02	Serial Dilution		5	L16050847-01	05/17/16 22:48
190	T3.051716.225240	WG569221-02	Serial Dilution		25	L16050847-01	05/17/16 22:52
191	T3.051716.225647	WG569211-57	CCV		1		05/17/16 22:56
192	T3.051716.230031	WG569211-58	ССВ		1		05/17/16 23:00
193	T3.051716.230437	L16050807-02	W43WTR	40/50	1		05/17/16 23:04
194	T3.051716.230840	L16050807-03	W23	40/50	1		05/17/16 23:08

W32B

W46WB

W32WB

1805-132 W2

1805-132 W2

59-11-11.22 W1

59-11-11.11 W1

6-10-22 W1

CCV

ССВ

L16050807-07

L16050807-08

L16050807-10

L16050830-01

L16050830-02

L16050832-01

L16050832-02

L16050832-03

WG569211-59

WG569211-60

Page: 6 Approved: May 19, 2016

40/50

40/50

40/50

40/50

40/50

40/50

40/50

40/50

1

1

1

1

1

1

1

1

1

Him H. Rhoder

05/17/16 23:12

05/17/16 23:16

05/17/16 23:20 05/17/16 23:24

05/17/16 23:28

05/17/16 23:32

05/17/16 23:36

05/17/16 23:40

05/17/16 23:45

05/17/16 23:48

195

196

197

198

199

200

201

202

203

204

T3.051716.231242

T3.051716.231644

T3.051716.232047

T3.051716.232449

T3.051716.232851

T3.051716.233253

T3.051716.233655

T3.051716.234057

T3.051716.234501

T3.051716.234846

Instrument Run Log

Instrument:	ICP-THERMO3	Dataset:	051716T3.2R.TXT	
Analyst1:	JYH	Analyst2:	N/A	
Method:	200.7/6010B/6010C	SOP:	ME600G	Rev: <u>8</u>
Maintenance Log ID:				

Stannous: _____ Hydroxylamine: ____

Workgroups: <u>567345,568955,569026,569089,569189,569225,569228,569222</u>

Comments:

Seq.	File ID	Sample	ID	Prep	Dil	Reference	Date/Time
205	T3.051716.235254	L16050832-04	59-11-11.10 W1	40/50	1		05/17/16 23:52
206	T3.051716.235656	L16050832-05	59-11-11.10 W1	40/50	1		05/17/16 23:56
207	T3.051816.000059	L16050832-06	59-10-1.22 W1	40/50	1		05/18/16 00:00
208	T3.051816.000501	L16050833-01	2211-109 RW3	40/50	1		05/18/16 00:05
209	T3.051816.000901	L16050833-02	2211-109 RW3	40/50	1		05/18/16 00:09
210	T3.051816.001304	WG569211-61	CCV		1		05/18/16 00:13
211	T3.051816.001649	WG569211-62	ССВ		1		05/18/16 00:16

Comments

Seq.	Rerun	Dil.	Reason	Analytes		
18						
Seq. 18-19: wrong WG number. JYH						

Page: 7 Approved: May 19, 2016

Checklist ID: 114500894712

Microbac Laboratories Inc. Data Checklist

Date: 13-MAY-2016

Analyst: JYH

Analyst: NA

Method: 6010B/6010C/200.7

Instrument: ICP-THERMO3

Curve Workgroup: 568892

Runlog ID: 75088

Analytical Workgroups: 568672,567345,568110,568231

Add'I WGs	
STD ID#s on Runlog	X
Calibration/Linearity	X
ICV/CCV	X
ICV RSD < 3% (EPA 200.7 only)	X
ICB/CCB	X
ICSA/ICSAB	X
CRI	
Blank/LCS	X
MS/MSD	X
Post Spike/Serial Dilution	X
Upload Results	X
Data Qualifiers	
Generate PDF Instrument Data	X
Sign/Annotate PDF Data	X
Upload Curve Data	X
Workgroup Forms	X
Case Narrative	X
Client Forms	X
Level X	
Level 3	154
Level 4	013
Check for compliance with method and project specific requirements	X
Check the completeness of reported information	X
Check the information for the report narrative	X
Primary Reviewer	JYH
Secondary Reviewer	KHR
Comments	

Primary Reviewer:

Secondary Reviewer: 16-MAY-2016

J' Ye low From H. Rhoden

CHECKLIST1 - Modified 03/05/2008

Generated: MAY-16-2016 13:14:08

Checklist ID: 114600894713

Microbac Laboratories Inc.

Data Checklist

Date:	17-MAY-2016
Analyst:	<u>JYH</u>
Analyst:	NA
Method:	6010B/6010C/200.7
Instrument:	ICP-THERMO3
Curve Workgroup:	569211
Runlog ID:	<u>75128</u>
Analytical Workgroups:	567345,568955,569026,569089,569189,569225,569228,569222

Add'I WGs	
STD ID#s on Runlog	X
Calibration/Linearity	X
ICV/CCV	X
ICV RSD < 3% (EPA 200.7 only)	X
ICB/CCB	X
ICSA/ICSAB	X
CRI	
Blank/LCS	X
MS/MSD	X
Post Spike/Serial Dilution	X
Upload Results	X
Data Qualifiers	
Generate PDF Instrument Data	X
Sign/Annotate PDF Data	X
Upload Curve Data	X
Workgroup Forms	X
Case Narrative	X
Client Forms	X
Level X	
Level 3	
Level 4	674,765,013
Check for compliance with method and project specific requirements	X
Check the completeness of reported information	X
Check the information for the report narrative	X
Primary Reviewer	JYH
Secondary Reviewer	KHR
Comments	

Primary Reviewer:

Secondary Reviewer: 19-MAY-2016

J'ye 1hr Fim H. Rhoder

CHECKLIST1 - Modified 03/05/2008 Generated: MAY-19-2016 08:05:23

HOLDING TIMES EQUIVALENT TO AFCEE FORM 9

Analytical Method: 6010C

Login Number: L16050013

AAB#: WG567345

	ID	Date	TCLP	Time	Max	Q	Extract	Time	Max	Q	Run	Time	Max	Q
Client ID		Collected	Date	Held	Hold		Date	Held	Hold		Date	Held	Hold	
35AWW13-042916	01	04/29/16					05/03/2016	3.9	180		05/13/16	14.1	180	
35AWW13-042916	01	04/29/16					05/03/2016	3.9	180		05/16/16	16.9	180	
35AWW13-042916	01	04/29/16					5/03/2016	3.9	180		05/17/16	17.9	180	
35AWW13FD-042916	02	04/29/16					5/03/2016	3.9	180		05/17/16	17.9	180	
35AWW13FD-042916	02	04/29/16					05/03/2016	3.9	180		05/16/16	16.9	180	
35AWW13FD-042916	02	04/29/16					5/03/2016	3.9	180		05/13/16	14.1	180	
35AWW13MS-042916	03	04/29/16					5/03/2016	3.9	180		05/13/16	14.1	180	
35AWW13MS-042916	03	04/29/16					5/03/2016	3.9	180		05/17/16	17.9	180	
35AWW13MS-042916	03	04/29/16					5/03/2016	3.9	180		05/16/16	16.9	180	
35AWW13MSD-042916	04	04/29/16					5/03/2016	3.9	180		05/13/16	14.1	180	
35AWW13MSD-042916	04	04/29/16					05/03/2016	3.9	180		05/16/16	16.9	180	
35AWW13MSD-042916	04	04/29/16					05/03/2016	3.9	180		05/17/16	17.9	180	
LHAAP02 EQUIPMENT RINSE-	05	04/29/16					05/03/2016	3.9	180		05/17/16	17.9	180	
HAAP02 EQUIPMENT RINSE-	05	04/29/16					05/03/2016	3.9	180		05/13/16	14.1	180	

* = SEE PROJECT QAPP REQUIREMENTS

HOLD_TIMES - Modified 03/06/2008 PDF File ID: 4763317 Report generated 05/17/2016 14:18

METHOD BLANK SUMMARY

Login Number: L16050013

Blank File ID: T3.051316.173603

Prep Date: 05/03/16 11:48

Analyzed Date: 05/13/16 17:36

Work Group: WG567345

Blank Sample ID: WG567310-02

Instrument ID: ICP-THERMO3

Method: 6010C

Analyst:JYH

This Method Blank Applies To The Following Samples:

Client ID	Lab Sample ID	Lab File ID	Time Analyzed	TAG
LCS	WG567310-03	T3.050316.144345	05/03/16 14:43	01
LCS	WG567310-03	T3.051316.174006	05/13/16 17:40	02
35AWW13-042916	L16050013-01	T3.051316.174353	05/13/16 17:43	01
35AWW13FD-042916	L16050013-02	T3.051316.174753	05/13/16 17:47	01
35AWW13MS-042916	L16050013-03	T3.051316.175153	05/13/16 17:51	01
35AWW13MSD-042916	L16050013-04	T3.051316.175540	05/13/16 17:55	01
LHAAP02 EQUIPMENT RINSE-042916	L16050013-05	T3.051316.175926	05/13/16 17:59	01
LCS	WG567310-03	T3.051616.120443	05/16/16 12:04	03
35AWW13-042916	L16050013-01	T3.051616.120826	05/16/16 12:08	DL01
35AWW13FD-042916	L16050013-02	T3.051616.121225	05/16/16 12:12	DL01
35AWW13MS-042916	L16050013-03	T3.051616.121623	05/16/16 12:16	DL01
35AWW13MSD-042916	L16050013-04	T3.051616.122020	05/16/16 12:20	DL01
LCS	WG567310-03	T3.051716.105435	05/17/16 10:54	04
35AWW13-042916	L16050013-01	T3.051716.105823	05/17/16 10:58	DL02
35AWW13FD-042916	L16050013-02	T3.051716.110228	05/17/16 11:02	DL02
35AWW13MS-042916	L16050013-03	T3.051716.110632	05/17/16 11:06	DL02
35AWW13MSD-042916	L16050013-04	T3.051716.111036	05/17/16 11:10	DL02
LHAAP02 EQUIPMENT RINSE-042916	L16050013-05	T3.051716.111439	05/17/16 11:14	03

Report Name: BLANK_SUMMARY
PDF File ID: 4763318
Report generated 05/17/2016 14:18

METHOD BLANK SUMMARY

Login Number:L16050013

Blank File ID:T3.051616.120042

Prep Date:05/03/16 11:48

Analyzed Date:05/16/16 12:00

Work Group: WG567345

Blank Sample ID: WG567310-02

Instrument ID: ICP-THERMO3

Method: 6010C

Analyst:JYH

This Method Blank Applies To The Following Samples:

Client ID	Lab Sample ID	Lab File ID	Time Analyzed	TAG
LCS	WG567310-03	T3.050316.144345	05/03/16 14:43	01
LCS	WG567310-03	T3.051316.174006	05/13/16 17:40	02
35AWW13-042916	L16050013-01	T3.051316.174353	05/13/16 17:43	01
35AWW13FD-042916	L16050013-02	T3.051316.174753	05/13/16 17:47	01
35AWW13MS-042916	L16050013-03	T3.051316.175153	05/13/16 17:51	01
35AWW13MSD-042916	L16050013-04	T3.051316.175540	05/13/16 17:55	01
LHAAP02 EQUIPMENT RINSE-042916	L16050013-05	T3.051316.175926	05/13/16 17:59	01
LCS	WG567310-03	T3.051616.120443	05/16/16 12:04	03
35AWW13-042916	L16050013-01	T3.051616.120826	05/16/16 12:08	DL01
35AWW13FD-042916	L16050013-02	T3.051616.121225	05/16/16 12:12	DL01
35AWW13MS-042916	L16050013-03	T3.051616.121623	05/16/16 12:16	DL01
35AWW13MSD-042916	L16050013-04	T3.051616.122020	05/16/16 12:20	DL01
LCS	WG567310-03	T3.051716.105435	05/17/16 10:54	04
35AWW13-042916	L16050013-01	T3.051716.105823	05/17/16 10:58	DL02
35AWW13FD-042916	L16050013-02	T3.051716.110228	05/17/16 11:02	DL02
35AWW13MS-042916	L16050013-03	T3.051716.110632	05/17/16 11:06	DL02
35AWW13MSD-042916	L16050013-04	T3.051716.111036	05/17/16 11:10	DL02
LHAAP02 EQUIPMENT RINSE-042916	L16050013-05	T3.051716.111439	05/17/16 11:14	03

Report Name: BLANK_SUMMARY
PDF File ID: 4763318
Report generated 05/17/2016 14:18

METHOD BLANK SUMMARY

Login Number:L16050013

Blank File ID:T3.051716.105029

Prep Date:05/03/16 11:48

Analyzed Date:05/17/16 10:50

Work Group: WG567345

Blank Sample ID: WG567310-02

Instrument ID: ICP-THERMO3

Method: 6010C

Analyst:JYH

This Method Blank Applies To The Following Samples:

Client ID	Lab Sample ID	Lab File ID	Time Analyzed	TAG
LCS	WG567310-03	T3.050316.144345	05/03/16 14:43	01
LCS	WG567310-03	T3.051316.174006	05/13/16 17:40	02
35AWW13-042916	L16050013-01	T3.051316.174353	05/13/16 17:43	01
35AWW13FD-042916	L16050013-02	T3.051316.174753	05/13/16 17:47	01
35AWW13MS-042916	L16050013-03	T3.051316.175153	05/13/16 17:51	01
35AWW13MSD-042916	L16050013-04	T3.051316.175540	05/13/16 17:55	01
LHAAP02 EQUIPMENT RINSE-042916	L16050013-05	T3.051316.175926	05/13/16 17:59	01
LCS	WG567310-03	T3.051616.120443	05/16/16 12:04	03
35AWW13-042916	L16050013-01	T3.051616.120826	05/16/16 12:08	DL01
35AWW13FD-042916	L16050013-02	T3.051616.121225	05/16/16 12:12	DL01
35AWW13MS-042916	L16050013-03	T3.051616.121623	05/16/16 12:16	DL01
35AWW13MSD-042916	L16050013-04	T3.051616.122020	05/16/16 12:20	DL01
LCS	WG567310-03	T3.051716.105435	05/17/16 10:54	04
35AWW13-042916	L16050013-01	T3.051716.105823	05/17/16 10:58	DL02
35AWW13FD-042916	L16050013-02	T3.051716.110228	05/17/16 11:02	DL02
35AWW13MS-042916	L16050013-03	T3.051716.110632	05/17/16 11:06	DL02
35AWW13MSD-042916	L16050013-04	T3.051716.111036	05/17/16 11:10	DL02
LHAAP02 EQUIPMENT RINSE-042916	L16050013-05	T3.051716.111439	05/17/16 11:14	03

Report Name: BLANK_SUMMARY
PDF File ID: 4763318
Report generated 05/17/2016 14:18

Login Number:L16050013	Prep Date: 05/03/16 11:48	Sample ID: WG567310-02
Instrument ID: ICP-THERMO3	Run Date: 05/03/16 14:39	Prep Method: 3015
File ID:T3.050316.143943	Analyst:KKB	Method: 6010C
Workgroup (AAB#):WG567345	Matrix:Water	Units:mg/L
Contract #:	Cal ID:ICP-	 ГН - 03-MAY-16

Analytes	DL	LOQ	Concentration	Dilution	Qualifier
Aluminum, Total	0.0500	0.200	0.0500	1	υ
Beryllium, Total	0.00500	0.0200	0.00500	1	υ
Iron, Total	0.0500	0.200	0.0500	1	υ
Potassium, Total	0.500	2.00	0.500	1	υ
Selenium, Total	0.00500	0.0200	0.00500	1	υ

DL Method Detection Limit

LOQ Reporting/Practical Quantitation Limit

ND Analyte Not detected at or above reporting limit

* |Analyte concentration| > 1/2 RL

Login Number: L16050013	Prep Date: 05/03/16 11:48	Sample ID: WG567310-02
Instrument ID: ICP-THERMO3	Run Date: 05/13/16 17:36	Prep Method: 3015
File ID:T3.051316.173603	Analyst:JYH	Method: 6010C
Workgroup (AAB#):WG567345	Matrix:Water	Units:mg/L
Contract #:	Cal ID:ICP-T	TH-13-MAY-16

Analytes	DL	LOQ	Concentration	Dilution	Qualifier
Aluminum, Total	0.0500	0.200	0.0500	1	υ
Beryllium, Total	0.00500	0.0200	0.00500	1	υ
Iron, Total	0.0500	0.200	0.0500	1	υ
Potassium, Total	0.500	2.00	0.500	1	υ
Selenium, Total	0.00500	0.0200	-0.00820	1	υ

DL Method Detection Limit

LOQ Reporting/Practical Quantitation Limit

ND Analyte Not detected at or above reporting limit

* |Analyte concentration| > 1/2 RL

Login Number:L16050013	Prep Date: 05/03/16 11:48	Sample ID: WG567310-02
Instrument ID: ICP-THERMO3	Run Date: 05/16/16 12:00	Prep Method: 3015
File ID:T3.051616.120042	Analyst:JYH	Method: 6010C
Workgroup (AAB#):WG567345	Matrix:Water	Units:mg/L
Contract #:	Cal ID:ICP-	ГН - 16-MAY-16

Analytes	DL	LOQ	Concentration	Dilution	Qualifier
Calcium, Total	0.125	0.500	0.125	1	υ
Sodium, Total	0.250	1.00	0.250	1	υ

DL Method Detection Limit

LOQ Reporting/Practical Quantitation Limit
ND Analyte Not detected at or above reporting limit

* |Analyte concentration| > 1/2 RL

Analytes	DL	LOQ	Concentration	Dilution	Qualifier
Magnesium, Total	0.250	1.00	0.250	1	υ

DL Method Detection Limit

LOQ Reporting/Practical Quantitation Limit

ND Analyte Not detected at or above reporting limit

* |Analyte concentration| > 1/2 RL

Microbac Laboratories Inc. LABORATORY CONTROL SAMPLE (LCS)

 Login Number: L16050013
 Run Date: 05/13/2016
 Sample ID: WG567310-03

 Instrument ID: ICP-THERMO3
 Run Time: 17:40
 Prep Method: 3015

 File ID:T3.051316.174006
 Analyst: JYH
 Method: 6010C

 Workgroup (AAB#): WG567345
 Matrix: Water
 Units: mg/L

QC Key:DOD4 Lot#:STD75837 Cal ID:ICP-TH-13-MAY-16

Analytes	Expected	Found	% Rec	LCS	Limi	ts	Q
Aluminum, Total	6.25	5.89	94.2	80	-	120	
Beryllium, Total	0.0313	0.0292	93.3	80	-	120	
Calcium, Total	6.25	6.08	97.3	80	-	120	
Iron, Total	2.50	2.39	95.5	80	-	120	
Magnesium, Total	6.25	5.83	93.2	80	-	120	
Potassium, Total	31.3	30.7	98.2	80	-	120	
Selenium, Total	0.250	0.237	94.6	80	-	120	
Sodium, Total	31.3	30.5	97.7	80	-	120	

LCS - Modified 03/06/2008 PDF File ID: 4763320 Report generated: 05/17/2016 14:18

 Login Number:
 L16050013
 Run Date:
 05/16/2016
 Sample ID:
 WG567310-03

 Instrument ID:
 ICP-THERMO3
 Run Time:
 12:04
 Prep Method:
 3015

 File ID:
 T3.051616.120443
 Analyst:
 JYH
 Method:
 6010C

 Workgroup (AAB#):
 WG567345
 Matrix:
 Water
 Units:
 mg/L

QC Key: DOD4 Lot#: STD75837 Cal ID: ICP-TH-16-MAY-16

Analytes	Expected	Found	% Rec	LCS	Limi	its	Q
Calcium, Total	6.25	6.03	96.5	80	-	120	
Sodium, Total	31.3	31.1	99.4	80	-	120	

LCS - Modified 03/06/2008 PDF File ID: 4763320 Report generated: 05/17/2016 14:18

Analytes	Expected	Found	% Rec	LCS Limits	Q
Magnesium, Total	6.25	6.27	100	80 - 120	

LCS - Modified 03/06/2008 PDF File ID: 4763320 Report generated: 05/17/2016 14:18

Loginnum: <u>L16050013</u>	Cal ID: ICP-THERMO3-13-MAY-16	Worknum: WG567345
Instrument ID: ICP-THERMO3	Contract #:	Prep Method:3015
Parent ID: <u>L16050013-01</u>	File ID: <u>T3.051316.174353</u> Dil	:1 Method:6010B
Sample ID: L16050013-03 MS	File ID: <u>T3.051316.175153</u> Dil	:1 Matrix:Water
Sample ID:L16050013-04 MSD	File ID:T3.051316.175540 Dil	:1 Units:mg/L

		MS	MS	MS	MSD	MSD	MSD		%Rec	RPD	
Analyte	Parent	Spiked	Found	%Rec	Spiked	Found	%Rec	%RPD	Limits	Limit	Q
Aluminum, Total	0.195	6.25	6.75	105	6.25	6.71	104	0.594	80 - 120	20	
Beryllium, Total	υ	0.0313	0.0322	103	0.0313	0.0326	104	1.04	80 - 120	20	
Iron, Total	0.465	2.50	3.02	102	2.50	2.94	99.1	2.48	80 - 120	20	
Potassium, Total	0.685	31.3	33.7	106	31.3	33.7	106	0.0668	80 - 120	20	
Selenium, Total	Ū	0.250	0.252	101	0.250	0.263	105	3.99	80 - 120	20	

^{*} FAILS %REC LIMIT

MS_MSD - Modified 03/06/2008 PDF File ID: 4763321 Report generated 05/17/2016 14:18

[#] FAILS RPD LIMIT

Loginnum: L16050013	Cal ID: ICP-THERMO3-16-MAY-16	Worknum: WG567345
Instrument ID: ICP-THERMO3	Contract #:	Prep Method:3015
Parent ID: <u>L16050013-01</u>	File ID: T3.051616.120826 Dil: 10	Method: 6010B
Sample ID: L16050013-03 MS	File ID: <u>T3.051616.121623</u> Dil: <u>10</u>	Matrix:Water
Sample ID:L16050013-04 MSD	File ID:T3.051616.122020 Dil:10	Units:mg/L

		MS	MS	MS	MSD	MSD	MSD		%Rec	RPD	
Analyte	Parent	Spiked	Found	%Rec	Spiked	Found	%Rec	%RPD	Limits	Limit	Q
Calcium, Total	38.4	6.25	47.1	140	6.25	45.9	121	2.61	80 - 120	20	*
Sodium, Total	199	31.3	244	145	31.3	237	121	3.09	80 - 120	20	*

^{*} FAILS %REC LIMIT

MS_MSD - Modified 03/06/2008 PDF File ID: 4763321 Report generated 05/17/2016 14:18

[#] FAILS RPD LIMIT

Loginnum: <u>L16050013</u>	Cal ID: ICP-THERMO3-17-MAY-16	Worknum: WG567345
Instrument ID: ICP-THERMO3	Contract #:	Prep Method:3015
Parent ID: <u>L16050013-01</u>	File ID: T3.051716.105823 Dil: 10	Method: 6010B
Sample ID: <u>L16050013-03 MS</u>	File ID:T3.051716.110632 Dil:10	Matrix:Water
Sample ID:L16050013-04 MSD	File ID:T3.051716.111036 Dil:10	Units:mq/L

		MS	MS	MS	MSD	MSD	MSD		%Rec	RPD	
Analyte	Parent	Spiked	Found	%Rec	Spiked	Found	%Rec	%RPD	Limits	Limit	Q
Magnesium, Total	29.3	6.25	34.6	84.9	6.25	34.6	84.6	0.0542	80 - 120	20	П

* FAILS %REC LIMIT

FAILS RPD LIMIT

MS_MSD - Modified 03/06/2008 PDF File ID: 4763321 Report generated 05/17/2016 14:18

Microbac Laboratories Inc. MATRIX SPIKE AND MATRIX SPIKE DUP (MS/MSD)

Analyte	Parent	MS Spiked	MS Found	MS %Rec	MSD Spiked	MSD Found	MSD %Rec	%RPD	%Rec Limits	RPD Limit	Q
Aluminum, Total	0.190	6.25	6.53	101	6.25	6.50	101	0.389	80 - 120	20	
Beryllium, Total	ND	0.0313	0.0314	100	0.0313	0.0318	102	1.35	80 - 120	20	
Calcium, Total	40.5	6.25	47.4	109	6.25	47.8	117	1.00	80 - 120	20	
Iron, Total	0.477	2.50	2.93	98.3	2.50	2.93	98.1	0.188	80 - 120	20	
Magnesium, Total	30.4	6.25	37.5	114	6.25	37.6	116	0.289	80 - 120	20	
Potassium, Total	0.623	31.3	32.3	101	31.3	32.8	103	1.58	80 - 120	20	
Selenium, Total	0.00721	0.250	0.250	96.9	0.250	0.240	93.0	3.98	80 - 120	20	
Sodium, Total	201	31.3	235	108	31.3	238	116	1.00	80 - 120	20	

^{*} FAILS %REC LIMIT

NOTE: This is an internal quality control sample.

WG_MS_MSD_DRYWT - Modified 05/26/2011 PDF File ID: 4763322 Report generated 05/16/2016 10:40

[#] FAILS RPD LIMIT

Microbac Laboratories Inc. MATRIX SPIKE AND MATRIX SPIKE DUP (MS/MSD)

Parent	MS Spiked	MS Found	MS %Rec	MSD Spiked	MSD Found	MSD %Rec	%RPD	%Rec Limits	RPD Limit	Q
0.195	6.25	6.75	105	6.25	6.71	104	0.594	80 - 120	20	
ND	0.0313	0.0322	103	0.0313	0.0326	104	1.04	80 - 120	20	
41.2	6.25	49.0	125	6.25	48.6	119	0.774	80 - 120	20	*
0.465	2.50	3.02	102	2.50	2.94	99.1	2.48	80 - 120	20	
30.6	6.25	38.9	133	6.25	38.5	126	1.20	80 - 120	20	*
0.685	31.3	33.7	106	31.3	33.7	106	0.0668	80 - 120	20	
ND	0.250	0.252	101	0.250	0.263	105	3.99	80 - 120	20	
204	31.3	243	126	31.3	241	118	0.992	80 - 120	20	*
	0.195 ND 41.2 0.465 30.6 0.685	Parent Spiked 0.195 6.25 ND 0.0313 41.2 6.25 0.465 2.50 30.6 6.25 0.685 31.3 ND 0.250	Parent Spiked Found 0.195 6.25 6.75 ND 0.0313 0.0322 41.2 6.25 49.0 0.465 2.50 3.02 30.6 6.25 38.9 0.685 31.3 33.7 ND 0.250 0.252	Parent Spiked Found %Rec 0.195 6.25 6.75 105 ND 0.0313 0.0322 103 41.2 6.25 49.0 125 0.465 2.50 3.02 102 30.6 6.25 38.9 133 0.685 31.3 33.7 106 ND 0.250 0.252 101	Parent Spiked Found %Rec Spiked 0.195 6.25 6.75 105 6.25 ND 0.0313 0.0322 103 0.0313 41.2 6.25 49.0 125 6.25 0.465 2.50 3.02 102 2.50 30.6 6.25 38.9 133 6.25 0.685 31.3 33.7 106 31.3 ND 0.250 0.252 101 0.250	Parent Spiked Found %Rec Spiked Found 0.195 6.25 6.75 105 6.25 6.71 ND 0.0313 0.0322 103 0.0313 0.0326 41.2 6.25 49.0 125 6.25 48.6 0.465 2.50 3.02 102 2.50 2.94 30.6 6.25 38.9 133 6.25 38.5 0.685 31.3 33.7 106 31.3 33.7 ND 0.250 0.252 101 0.250 0.263	Parent Spiked Found %Rec Spiked Found %Rec 0.195 6.25 6.75 105 6.25 6.71 104 ND 0.0313 0.0322 103 0.0313 0.0326 104 41.2 6.25 49.0 125 6.25 48.6 119 0.465 2.50 3.02 102 2.50 2.94 99.1 30.6 6.25 38.9 133 6.25 38.5 126 0.685 31.3 33.7 106 31.3 33.7 106 ND 0.250 0.252 101 0.250 0.263 105	Parent Spiked Found %Rec Spiked Found %Rec %RPD 0.195 6.25 6.75 105 6.25 6.71 104 0.594 ND 0.0313 0.0322 103 0.0313 0.0326 104 1.04 41.2 6.25 49.0 125 6.25 48.6 119 0.774 0.465 2.50 3.02 102 2.50 2.94 99.1 2.48 30.6 6.25 38.9 133 6.25 38.5 126 1.20 0.685 31.3 33.7 106 31.3 33.7 106 0.0668 ND 0.250 0.252 101 0.250 0.263 105 3.99	Parent Spiked Found %Rec Spiked Found %Rec %RPD Limits 0.195 6.25 6.75 105 6.25 6.71 104 0.594 80 - 120 ND 0.0313 0.0322 103 0.0313 0.0326 104 1.04 80 - 120 41.2 6.25 49.0 125 6.25 48.6 119 0.774 80 - 120 0.465 2.50 3.02 102 2.50 2.94 99.1 2.48 80 - 120 30.6 6.25 38.9 133 6.25 38.5 126 1.20 80 - 120 0.685 31.3 33.7 106 31.3 33.7 106 0.0668 80 - 120 ND 0.250 0.252 101 0.250 0.263 105 3.99 80 - 120	Parent Spiked Found %Rec Spiked Found %Rec %RPD Limits Limits 0.195 6.25 6.75 105 6.25 6.71 104 0.594 80 - 120 20 ND 0.0313 0.0322 103 0.0313 0.0326 104 1.04 80 - 120 20 41.2 6.25 49.0 125 6.25 48.6 119 0.774 80 - 120 20 0.465 2.50 3.02 102 2.50 2.94 99.1 2.48 80 - 120 20 30.6 6.25 38.9 133 6.25 38.5 126 1.20 80 - 120 20 0.685 31.3 33.7 106 31.3 33.7 106 0.0668 80 - 120 20 ND 0.250 0.252 101 0.250 0.263 105 3.99 80 - 120 20

^{*} FAILS %REC LIMIT

NOTE: This is an internal quality control sample.

WG_MS_MSD_DRYWT - Modified 05/26/2011 PDF File ID: 4763322 Report generated 05/16/2016 10:40

[#] FAILS RPD LIMIT

Serial Dilution Report

 Login: L16050013
 Worknum: WG567345

 Instrument: ICP-THERMO3
 Method: 6010C

 Serial Dil: WG567345-04
 File ID: T3.051616.123159 Dil: 5
 Units: ug/L

Sample:L16050013-05 File ID: T3.051616.122418 Dil: 1

Analyte	Sample	Qual	Serial Dil	Qual	% Diff	Q
Aluminum	ND	U	ND	U		
Beryllium	0.140		0.400		186.00	E
Calcium	ND	U	ND	Ū		
Iron	ND	U	19.2		214.00	
Magnesium	ND	U	198		1680.00	
Potassium	111		1050		845.00	E
Selenium	ND	U	10.8		2720.00	
Sodium	ND	U	ND	U		

- U = Result is below MDL.
- ${\tt F}$ = Result is greater than or equal to MDL and less than the RL.
- X = Result is greater than or equal to RL and less than 25 times the MDL.
- E = %D exceeds control limit of 10% and initial sample result is greater than or equal to 25 times the MDL.

SERIAL_DIL - Modified 09/22/2008

PDF File ID: 4763315 05/17/2016 14:18

Serial Dilution Report

 Login: L16050013
 Worknum: WG567345

 Instrument: ICP-THERMO3
 Method: 6010C

 Serial Dil: WG567345-04
 File ID: T3.051316.180718 Dil: 5
 Units: ug/L

Sample:L16050013-05 File ID: T3.051316.175926 Dil: 1

Analyte	Sample	Qual	Serial Dil	Qual	% Diff	Q
Aluminum	11.4		4.65		59.10	E
Beryllium	0.120		0.450		275.00	E
Calcium	0.520	Х	ND	Ū		
Iron	10.2		ND	U		
Magnesium	ND	U	ND	Ū		
Potassium	151		687		356.00	E
Selenium	0.430		3.00		598.00	E
Sodium	111		205		84.80	E

- U = Result is below MDL.
- ${\tt F}$ = Result is greater than or equal to MDL and less than the RL.
- X = Result is greater than or equal to RL and less than 25 times the MDL.
- E = %D exceeds control limit of 10% and initial sample result is greater than or equal to 25 times the MDL.

SERIAL_DIL - Modified 09/22/2008

PDF File ID: 4763315 05/17/2016 14:18

Microbac Laboratories Inc.

Serial Dilution Report

 Login:
 L16050013
 Worknum:
 WG567345

 Instrument:
 ICP-THERMO3
 Method:
 6010C

Serial Dil: WG567345-02 File ID: T3.051716.112639 Dil: 5 Units: ug/L

Sample: L16041607-01 File ID: T3.051716.111845 Dil: 1

Analyte	Sample	Qual	Serial Dil	Qual	% Diff	Q
Aluminum	6.40		ND	U		
Beryllium	ND	U	ND	U		
Calcium	169000		155000		8.39	
Iron	26.0		223		757.00	E
Magnesium	5840		5290		9.49	
Potassium	399		9.05	F	97.70	E
Selenium	0.400		ND	U		
Sodium	3170		2840		10.30	E

- U = Result is below MDL.
- ${\tt F}$ = Result is greater than or equal to MDL and less than the RL.
- X = Result is greater than or equal to RL and less than 25 times the MDL.
- E = %D exceeds control limit of 10% and initial sample result is greater than or equal to 25 times the MDL.

SERIAL_DIL - Modified 09/22/2008

PDF File ID: 4763315 05/17/2016 14:18

Microbac Laboratories Inc. POST SPIKE REPORT

 Sample Login ID:
 L16050013
 Worknum:
 WG567345

 Instrument
 ID: ICP-THERMO3
 Method: 6010C

 Post Spike
 ID: WG567345-03
 File ID:T3.051316.180330
 Dil:1
 Units: ug/L

 Sample
 ID: L16050013-05
 File ID:T3.051316.175926
 Dil:1
 Matrix: Water

Analyte	Post Spike Result	C	Sample Result	С	Spike Added(SA)	% R	Control Limit %R	Q
ALUMINUM	4970		0	U	5000	99.4	75 - 125	
BERYLLIUM	24.5		0	U	25	97.9	75 - 125	
CALCIUM	5190		0	U	5000	103.7	75 - 125	
IRON	2030		0	Ū	2000	101.3	75 - 125	
MAGNESIUM	5020		0	U	5000	100.5	75 - 125	
POTASSIUM	25900		0	Ū	25000	103.6	75 - 125	
SELENIUM	184		0	U	200	92.0	75 - 125	
SODIUM	25800		0	Ū	25000	103.3	75 - 125	

N = % Recovery exceeds control limits

F = Result is between MDL and RL

U = Sample result is below MDL. A value of zero is used in the calculation

Microbac Laboratories Inc. POST SPIKE REPORT

 Sample Login ID:
 L16050013
 Worknum:
 WG567345

 Instrument ID: ICP-THERMO3
 Method: 6010C

 Post Spike ID: WG567345-01
 File ID:T3.051716.112249
 Dil:1
 Units: ug/L

Sample ID: <u>L16041607-01</u> File ID:<u>T3.051716.111845</u> Dil:1 Matrix: Water

Analyte	Post Spike Result	С	Sample Result	С	Spike Added(SA)	% R	Control Limit %R	Q
ALUMINUM	5000		0	U	5000	100.0	75 - 125	
BERYLLIUM	25.0		0	U	25	99.8	75 - 125	
CALCIUM	158000		169000		5000	107.1	75 - 125	
IRON	2070		0	U	2000	103.7	75 - 125	
MAGNESIUM	10300		5840		5000	100.5	75 - 125	
POTASSIUM	26900		0	U	25000	107.6	75 - 125	
SELENIUM	198		0	U	200	99.2	75 - 125	
SODIUM	29100		3170		25000	104.9	75 - 125	

N = % Recovery exceeds control limits

F = Result is between MDL and RL

U = Sample result is below MDL. A value of zero is used in the calculation

Microbac Laboratories Inc. Initial Calibration Summary

Login: L16050013 Workgroup (AAB#): WG567345

Analytical Method: 6010C Instrument ID: ICP-THERMO3

ICAL Worknum: WG568892 Initial Calibration Date: 13-MAY-2016 15:26

	WG568	892-01	WG568	892-02	WG568	892-03	WG568	892-04	WG568	892-05]	
	Conc	INT	Conc	INT	Conc	INT	Conc	INT	Conc	INT	R	Q
ALUMINUM	0	0.000700	.1	0.00112	.2	0.00144	10	0.0440	20	0.0919	.999677	
BERYLLIUM	0	0.000200	.0005	0.000410	.001	0.000650	.05	0.0246	.1	0.0518	.999631	
CALCIUM	0	0.00189	.1	0.00350	.2	0.00655	10	0.292	20	0.591	.999844	
IRON	0	-0.000110	.04	0.000140	.08	0.000700	4	0.0500	8	0.101	.999791	
MAGNESIUM	0	-0.0000200	NA	NA	.2	0.0000200	10	0.0298	20	0.0609	.997725	
POTASSIUM	0	0.00888	.5	0.0225	1	0.0395	50	1.84	100	3.71	.999977	
SELENIUM	0	-0.000110	NA	NA	.008	-0.0000900	.4	0.00300	.8	0.00638	.998879	
SODIUM	0	-0.0224	.5	0.0231	1	0.0666	50	5.34	100	10.8	.999988	

INT = Instrument intensity
R = Coefficient of correlation
Q = Data Qualifier
* = Out of Compliance; R < 0.995</pre>

INT_CAL_ICP - Modified 03/06/2008 PDF File I D: 4763325
Report generated: 17-MAY-2016 14:19

Microbac Laboratories Inc. Initial Calibration Summary

Workgroup (AAB#): WG567345
Instrument ID: ICP-THERMO3
Initial Calibration Date: 16-MAY-2016 09:59 Login: **L16050013** Analytical Method: 6010C

ICAL Worknum: WG568963

	WG568	963-01	WG568	963-02	WG568	963-03	WG568	963-04	WG568	963-05]	
	Conc	INT	Conc	INT	Conc	INT	Conc	INT	Conc	INT	R	Q
ALUMINUM	0	0.000350	.1	0.000710	.2	0.00101	10	0.0432	20	0.0860	.999995	
BERYLLIUM	0	0.000150	.0005	0.000340	.001	0.000540	.05	0.0255	.1	0.0514	.999977	
CALCIUM	0	0.0000500	.1	0.00237	.2	0.00445	10	0.297	20	0.598	.99998	
IRON	0	-0.000240	.04	0.000260	.08	0.000520	4	0.0486	8	0.0975	.999893	
MAGNESIUM	0	-0.000490	NA	NA	.2	0.000120	10	0.0305	20	0.0605	.999791	
POTASSIUM	0	0.00382	.5	0.0218	1	0.0350	50	1.84	100	3.71	.999919	
SELENIUM	0	-0.000170	NA	NA	.008	-0.0000700	.4	0.00288	.8	0.00593	.997398	
SODIUM	0	-0.0161	.5	0.0270	1	0.0683	50	5.22	100	10.5	.999998	

INT = Instrument intensity
R = Coefficient of correlation
Q = Data Qualifier
* = Out of Compliance; R < 0.995</pre>

INT_CAL_ICP - Modified 03/06/2008 PDF File I D: 4763325
Report generated: 17-MAY-2016 14:19

Microbac Laboratories Inc. Initial Calibration Summary

Workgroup (AAB#): WG567345
Instrument ID: ICP-THERMO3
Initial Calibration Date: 17-MAY-2016 10:10 Login: **L16050013** Analytical Method: 6010C ICAL Worknum: WG569211

	WG569	211-01	WG569	211-02	WG569	211-03	WG569	211-04	WG569	211-05		
	Conc	INT	Conc	INT	Conc	INT	Conc	INT	Conc	INT	R	Q
ALUMINUM	0	0.000350	.1	0.000710	.2	0.00106	10	0.0434	20	0.0890	.999913	
IRON	0	-0.000460	.04	0.0000400	.08	0.000720	4	0.0494	8	0.100	.999349	
MAGNESIUM	0	-0.000440	NA	NA	.2	0.000130	10	0.0311	20	0.0621	.999938	
SELENIUM	0	-0.000180	NA	NA	.008	-0.000120	.4	0.00276	.8	0.00596	.999626	
SODIUM	0	-0.0208	.5	0.0224	1	0.0679	50	5.30	100	10.7	.999989	

INT = Instrument intensity
R = Coefficient of correlation
Q = Data Qualifier
* = Out of Compliance; R < 0.995</pre>

INT_CAL_ICP - Modified 03/06/2008 PDF File ID: 4763325

Report generated: 17-MAY-2016 14:19

Microbac Laboratories Inc. INITIAL CALIBRATION BLANK (ICB)

 Login Number:
 L16050013
 Run Date:
 05/13/2016
 Sample ID:
 WG568892-07

 Instrument ID:
 ICP-THERMO3
 Run Time:
 15:34
 Method:
 6010C

 File ID:
 T3.051316.153404
 Analyst:
 JYH
 Units:
 mg/L

Workgroup (AAB#):WG567345 Cal ID:ICP-THER: - 13-MAY-16
Matrix:WATER

Analytes	MDL	RDL	Concentration	Qualifier
ALUMINUM	.04	.16	.04	υ
BERYLLIUM	.004	.016	.004	υ
CALCIUM	.1	.4	.1	υ
IRON	.04	.16	.04	υ
MAGNESIUM	.2	.8	.2	υ
POTASSIUM	.4	1.6	.4	υ
SELENIUM	.004	.016	.004	υ
SODIUM	.2	.8	.2	υ

U = Result is less than 2 x MDL

F = Result is between MDL and 2 x MDL

* = Result is above 2 x MDL

Microbac Laboratories Inc. INITIAL CALIBRATION BLANK (ICB)

 Login Number:
 L16050013
 Run Date:
 05/16/2016
 Sample ID:
 WG568963-07

 Instrument ID:
 ICP-THERMO3
 Run Time:
 10:06
 Method:
 6010C

 File ID:
 Time:
 Time:
 Time:
 Time:
 Time:
 Time:
 Time:
 Time:
 Time:
 Time:
 Time:
 Time:
 Time:
 Time:
 Time:
 Time:
 Time:
 Time:
 Time:
 Time:
 Time:
 Time:
 Time:
 Time:
 Time:
 Time:
 Time:
 Time:
 Time:
 Time:
 Time:
 Time:
 Time:
 Time:
 Time:
 Time:
 Time:
 Time:
 Time:
 Time:
 Time:
 Time:
 Time:
 Time:
 Time:
 Time:
 Time:
 Time:
 Time:
 Time:
 Time:
 Time:
 Time:
 Time:
 Time:
 Time:
 Time:
 Time:
 Time:
 Time:
 Time:
 Time:
 Time:
 Time:
 Time:
 Time:
 Time:
 Time:
 Time:
 Time:
 Time:
 Time:
 Time:
 Time:
 Time:
 Time:
 Time:
 Time:
 Time:

Workgroup (AAB#):WG567345 Cal ID:ICP-THER - 16-MAY-16

Matrix:WATER

Analytes	MDL	RDL	Concentration	Qualifier
ALUMINUM	.04	.16	.04	υ
BERYLLIUM	.004	.016	.004	Ū
CALCIUM	.1	.4	.1	U
IRON	.04	.16	.04	υ
MAGNESIUM	.2	.8	.2	U
POTASSIUM	.4	1.6	.4	U
SELENIUM	.004	.016	.004	U
SODIUM	.2	.8	.2	υ

U = Result is less than 2 x MDL

F = Result is between MDL and 2 x MDL

* = Result is above 2 x MDL

Microbac Laboratories Inc. INITIAL CALIBRATION BLANK (ICB)

 Login Number:
 L16050013
 Run Date:
 05/17/2016
 Sample ID:
 WG569211-07

 Instrument ID:
 ICP-THERMO3
 Run Time:
 10:17
 Method:
 6010C

 File ID:
 T3.051716.101754
 Analyst:
 JYH
 Units:
 mg/L

Workgroup (AAB#): WG567345 Cal ID: ICP-THERI - 17-MAY-16

Matrix:WATER

Analytes	MDL	RDL	Concentration	Qualifier
ALUMINUM	.04	.16	.04	ΰ
BERYLLIUM	.004	.016	.004	υ
CALCIUM	.1	.4	.1	υ
IRON	.04	.16	.04	υ
MAGNESIUM	.2	.8	.2	υ
POTASSIUM	.4	1.6	.4	υ
SELENIUM	.004	.016	.004	υ
SODIUM	.2	.8	.2	υ

U = Result is less than 2 x MDL

F = Result is between MDL and 2 x MDL

* = Result is above 2 x MDL

Login Number:L16050013 Run Date:05/13/2016 Sample ID:WG568892-13

Instrument ID:ICP-THERMO3 Run Time:15:57 Method:6010C

File ID:T3.051316.155743 Analyst:JYH Units:mg/L

Workgroup (AAB#):WG567345 Cal ID:ICP-TH - 13-MAY-16

Workgroup (AAB#):WG567345 Cal ID:ICP-TH - 13-MAY-16

Matrix:WATER QAPP:DOD4

Analytes	MDL	RDL	Concentration	Qualifier
Aluminum	0.0400	0.160	0.0400	υ
Beryllium	0.00400	0.0160	0.00400	υ
Calcium	0.100	0.400	0.100	υ
Iron	0.0400	0.160	0.0400	υ
Magnesium	0.200	0.800	0.200	υ
Potassium	0.400	1.60	0.400	υ
Selenium	0.00400	0.0160	0.00609	F
Sodium	0.200	0.800	0.200	υ

U = Result is less than MDL.

F = Result is between MDL and RL.

^{* =} Result is above RL.

Login Number: <u>L16050013</u> Run Date: <u>05/13/2016</u> Sample ID: <u>WG568892-17</u>

Instrument ID: <u>ICP-THERMO3</u> Run Time: <u>17:23</u> Method: <u>6010C</u>

File ID: <u>T3.051316.172353</u> Analyst: <u>JYH</u> Units: <u>mg/L</u>

Workgroup (AAB#):WG567345 Cal ID:ICP-TH - 13-MAY-16

Matrix:WATER QAPP:DOD4

Analytes	MDL	RDL	Concentration	Qualifier
Aluminum	0.0400	0.160	0.0400	υ
Beryllium	0.00400	0.0160	0.00400	υ
Calcium	0.100	0.400	0.100	υ
Iron	0.0400	0.160	0.0400	υ
Magnesium	0.200	0.800	0.200	υ
Potassium	0.400	1.60	0.400	υ
Selenium	0.00400	0.0160	0.00589	F
Sodium	0.200	0.800	0.200	υ

U = Result is less than MDL.

F = Result is between MDL and RL.

^{* =} Result is above RL.

Login Number:L16050013 Run Date:05/13/2016 Sample ID:WG568892-21

Instrument ID:ICP-THERMO3 Run Time:18:19 Method:6010C

File ID:T3.051316.181909 Analyst:JYH Units:mg/L

Workgroup (AAB#):WG567345 Cal ID:ICP-TH - 13-MAY-16

Matrix:WATER QAPP:DOD4

Analytes	MDL	RDL	Concentration	Qualifier
Aluminum	0.0400	0.160	0.0400	υ
Beryllium	0.00400	0.0160	0.00400	Ū
Calcium	0.100	0.400	0.100	Ū
Iron	0.0400	0.160	0.0400	U
Magnesium	0.200	0.800	0.200	U
Potassium	0.400	1.60	0.400	Ū
Selenium	0.00400	0.0160	0.00400	Ū
Sodium	0.200	0.800	0.200	Ū

U = Result is less than MDL.

F = Result is between MDL and RL.

^{* =} Result is above RL.

 Login Number:
 L16050013
 Run Date:
 05/16/2016
 Sample ID:
 WG568963-13

 Instrument ID:
 ICP-THERMO3
 Run Time:
 10:29
 Method:
 6010C

 File ID:
 T3.051616.102941
 Analyst:
 Units:
 Units:
 WG567345

 Workgroup (AAB#):
 WG567345
 Cal ID:
 ICP-TH - 16-MAY-16

 Matrix:
 WATER
 QAPP:
 DOD4

Analytes	MDL RDL Concentration		Qualifier	
Aluminum	0.0400	0.160	0.0400	υ
Beryllium	0.00400	0.0160	0.00400	υ
Calcium	0.100	0.400	0.100	υ
Iron	0.0400	0.160	0.0400	υ
Magnesium	0.200	0.800	0.200	υ
Potassium	0.400	1.60	0.400	υ
Selenium	0.00400	0.0160	0.00400	υ
Sodium	0.200	0.800	0.200	υ

U = Result is less than MDL.

F = Result is between MDL and RL.

* = Result is above RL.

Login Number: L16050013 Run Date: 05/16/2016 Sample ID: WG568963-17

Instrument ID: ICP-THERMO3 Run Time: 11:48 Method: 6010C

File ID: T3.051616.114845 Analyst: JYH Units: mg/L

Workgroup (AAB#): WG567345 Cal ID: ICP-TH - 16-MAY-16

QAPP:DOD4

0.00400

0.200

0.0160

0.800

0.00400

0.200

U

U

Qualifier Analytes MDL RDL Concentration Aluminum 0.0400 0.160 0.0400 Ū Beryllium 0.00400 0.0160 0.00400 U Calcium 0.400 υ 0.100 0.100 Iron 0.0400 0.160 0.0400 U 0.800 0.200 Magnesium 0.200 υ Potassium 0.400 1.60 0.400 U

Matrix:WATER

Selenium

Sodium

U = Result is less than MDL.

F = Result is between MDL and RL.

^{* =} Result is above RL.

 Login Number:
 L16050013
 Run Date:
 05/16/2016
 Sample ID:
 WG568963-21

 Instrument ID:
 ICP-THERMO3
 Run Time:
 12:39
 Method:
 6010C

 File ID:
 T3.051616.123938
 Analyst:
 JYH
 Units:
 Units:
 Mg/L

 Workgroup (AAB#):
 WG567345
 Cal ID:
 ICP-TH - 16-MAY-16
 QAPP:
 DOD4

Analytes	MDL RDL Concentration		Qualifier	
Aluminum	0.0400	0.160	0.0400	υ
Beryllium	0.00400	0.0160	0.00400	υ
Calcium	0.100	0.400	0.100	υ
Iron	0.0400	0.160	0.0400	υ
Magnesium	0.200	0.800	0.200	υ
Potassium	0.400	1.60	0.400	υ
Selenium	0.00400	0.0160	0.00400	υ
Sodium	0.200	0.800	0.200	υ

U = Result is less than MDL.

F = Result is between MDL and RL.

^{* =} Result is above RL.

 Login Number:
 L16050013
 Run Date:
 05/16/2016
 Sample ID:
 WG568963-50

 Instrument ID:
 ICP-THERMO3
 Run Time:
 21:58
 Method:
 6010C

 File ID:
 T3.051616.215803
 Analyst:
 JYH
 Units:
 mg/L

 Workgroup (AAB#):
 WG567345
 Cal ID:
 ICP-TH - 16-MAY-16
 ICP-TH - 16-MAY-16

QAPP:DOD4

0.200

0.800

0.200

U

Analytes	MDL	RDL	Concentration	Qualifier
Aluminum	0.0400	0.160	0.0400	Ū
Beryllium	0.00400	0.0160	0.00400	Ū
Calcium	0.100	0.400	0.100	Ū
Iron	0.0400	0.160	0.0400	Ū
Magnesium	0.200	0.800	0.200	Ū
Potassium	0.400	1.60	0.400	υ
Selenium	0.00400	0.0160	0.00400	Ū

U = Result is less than MDL.

Matrix:WATER

Sodium

F = Result is between MDL and RL.

^{* =} Result is above RL.

 Login Number:
 L16050013
 Run Date:
 05/16/2016
 Sample ID:
 WG568963-54

 Instrument ID:
 ICP-THERMO3
 Run Time:
 22:13
 Method:
 6010C

 File ID:
 T3.051616.221321
 Analyst:
 JYH
 Units:
 Units:
 Mg/L

 Workgroup (AAB#):
 WG567345
 Cal ID:
 ICP-TH - 16-MAY-16
 QAPP:
 DOD4

Analytes	MDL RDL Concentration		Qualifier	
Aluminum	0.0400	0.160	0.0400	υ
Beryllium	0.00400	0.0160	0.00400	υ
Calcium	0.100	0.400	0.100	υ
Iron	0.0400	0.160	0.0400	υ
Magnesium	0.200	0.800	0.200	υ
Potassium	0.400	1.60	0.400	υ
Selenium	0.00400	0.0160	0.00400	υ
Sodium	0.200	0.800	0.200	υ

U = Result is less than MDL.

F = Result is between MDL and RL.

^{* =} Result is above RL.

Login Number: L16050013 Run Date: 05/17/2016 Sample ID: WG569211-13

Instrument ID: ICP-THERMO3 Run Time: 10:46 Method: 6010C

File ID: T3.051716.104621 Analyst: JYH Units: mg/L

Workgroup (AAB#): WG567345 Cal ID: ICP-TH - 17-MAY-16

Workgroup (AAB#):WG567345 Cal ID:ICP-TH - 17-MAY-16

Matrix:WATER QAPP:DOD4

Analytes	MDL	RDL Concentration		Qualifier
Aluminum	0.0400	0.160	0.0400	υ
Beryllium	0.00400	0.0160	0.00400	υ
Calcium	0.100	0.400	0.100	υ
Iron	0.0400	0.160	0.0400	υ
Magnesium	0.200	0.800	0.200	υ
Potassium	0.400	1.60	0.400	υ
Selenium	0.00400	0.0160	0.00400	υ
Sodium	0.200	0.800	0.200	υ

U = Result is less than MDL.

F = Result is between MDL and RL.

^{* =} Result is above RL.

 Login Number:
 L16050013
 Run Date:
 05/17/2016
 Sample ID:
 WG569211-15

 Instrument ID:
 ICP-THERMO3
 Run Time:
 11:34
 Method:
 6010C

 File ID:
 T3.051716.113428
 Analyst:
 Units:
 Units:
 WG567345

 Workgroup (AAB#):
 WG567345
 Cal ID:
 ICP-TH - 17-MAY-16

 Matrix:
 WATER
 QAPP:
 DOD4

Analytes	MDL	RDL	Concentration	Qualifier
Aluminum	0.0400	0.160	0.0400	υ
Beryllium	0.00400	0.0160	0.00400	υ
Calcium	0.100	0.400	0.100	υ
Iron	0.0400	0.160	0.0400	υ
Magnesium	0.200	0.800	0.200	υ
Potassium	0.400	1.60	0.400	υ
Selenium	0.00400	0.0160	0.00400	υ
Sodium	0.200	0.800	0.200	υ

U = Result is less than MDL.

F = Result is between MDL and RL.

* = Result is above RL.

Login Number: L16050013 Run Date: 05/17/2016 Sample ID: WG569211-18 Instrument ID: ICP-THERMO3 Run Time: 12:26

Analyst: JYH Method: 6010C Units:mg/L

Workgroup (AAB#):WG567345 Cal ID:ICP-TH - 17-MAY-16

Matrix:WATER QAPP:DOD4

Analytes	MDL	RDL	RDL Concentration	
Aluminum	0.0400	0.160	0.0400	υ
Beryllium	0.00400	0.0160	0.00400	υ
Calcium	0.100	0.400	0.100	υ
Iron	0.0400	0.160	0.0400	υ
Magnesium	0.200	0.800	0.200	υ
Potassium	0.400	1.60	0.400	υ
Selenium	0.00400	0.0160	0.00400	υ
Sodium	0.200	0.800	0.200	υ

U = Result is less than MDL.

F = Result is between MDL and RL.

* = Result is above RL.

CCB - Modified 03/05/2008 PDF File ID: 4763330 Report generated 05/17/2016 14:19

Login Number: <u>L16050013</u> Run Date: <u>05/17/2016</u> Sample ID: <u>WG569211-22</u>

Instrument ID: <u>ICP-THERMO3</u> Run Time: <u>12:42</u> Method: <u>6010C</u>

File ID: <u>T3.051716.124243</u> Analyst: <u>JYH</u> Units: <u>mg/L</u>

Workgroup (AAB#):WG567345 Cal ID:ICP-TH - 17-MAY-16

Matrix:WATER QAPP:DOD4

Analytes	MDL RDL Concentration		Qualifier	
Aluminum	0.0400	0.160	0.0400	υ
Beryllium	0.00400	0.0160	0.00400	υ
Calcium	0.100	0.400	0.100	υ
Iron	0.0400	0.160	0.0400	υ
Magnesium	0.200	0.800	0.200	υ
Potassium	0.400	1.60	0.400	υ
Selenium	0.00400	0.0160	0.00400	υ
Sodium	0.200	0.800	0.200	υ

U = Result is less than MDL.

F = Result is between MDL and RL.

^{* =} Result is above RL.

Login Number: L16050013 Run Date: 05/17/2016 Sample ID: WG569211-24

Instrument ID: ICP-THERMO3 Run Time: 13:06 Method: 6010C

File ID: T3.051716.130652 Analyst: JYH Units: mg/L

Workgroup (AAB#):WG567345 Cal ID:ICP-TH - 17-MAY-16

Matrix:WATER QAPP:DOD4

Analytes	MDL RDL Concentration		Qualifier	
Aluminum	0.0400	0.160	0.0400	υ
Beryllium	0.00400	0.0160	0.00400	υ
Calcium	0.100	0.400	0.100	υ
Iron	0.0400	0.160	0.0400	υ
Magnesium	0.200	0.800	0.200	υ
Potassium	0.400	1.60	0.400	υ
Selenium	0.00400	0.0160	0.00400	υ
Sodium	0.200	0.800	0.200	υ

U = Result is less than MDL.

CCB - Modified 03/05/2008 PDF File ID: 4763330 Report generated 05/17/2016 14:19

F = Result is between MDL and RL.

^{* =} Result is above RL.

 Login Number: L16050013
 Run Date: 05/17/2016
 Sample ID: WG569211-30

 Instrument ID: ICP-THERMO3
 Run Time: 13:31
 Method: 6010C

 File ID: T3.051716.133159
 Analyst: JYH
 Units:mg/L

Workgroup (AAB#):WG567345 Cal ID:ICP-TH - 17-MAY-16

Matrix:WATER QAPP:DOD4

Analytes	MDL RDL Concentration		Qualifier	
Aluminum	0.0400	0.160	0.0400	υ
Beryllium	0.00400	0.0160	0.00400	υ
Calcium	0.100	0.400	0.100	υ
Iron	0.0400	0.160	0.0400	υ
Magnesium	0.200	0.800	0.200	υ
Potassium	0.400	1.60	0.400	υ
Selenium	0.00400	0.0160	0.00400	υ
Sodium	0.200	0.800	0.200	υ

U = Result is less than MDL.

F = Result is between MDL and RL.

* = Result is above RL.

Microbac Laboratories Inc. INITIAL CALIBRATION VERIFICATION (ICV) (Alternate Source)

Login Number: L16050013 Run Date: 05/13/2016 Sample ID: WG568892-06

Instrument ID: ICP-THERMO3 Run Time: 15:30 Method: 6010C

File ID: T3.051316.153021 Analyst: JYH Units: mg/L

Workgroup (AAB#):WG567345 Cal ID:ICP-TH - 13-MAY-16

QC Key: DOD4

Analyte		Expected	Found	%REC	LIMITS	Q
Aluminum		10	10.3	103	90 - 110	
Beryllium		.05	0.0512	102	90 - 110	
Calcium		10	10.2	102	90 - 110	
Iron		4	4.04	101	90 - 110	
Magnesium		10	10.3	103	90 - 110	
Potassium		50	50.4	101	90 - 110	
Selenium		.4	0.403	101	90 - 110	
Sodium		50	50.7	101	90 - 110	

^{*} Exceeds LIMITS Limit

Microbac Laboratories Inc. INITIAL CALIBRATION VERIFICATION (ICV) (Alternate Source)

 Login Number:
 L16050013
 Run Date:
 05/16/2016
 Sample ID:
 WG568963-06

 Instrument ID:
 ICP-THERMO3
 Run Time:
 10:02
 Method:
 6010C

 File ID:
 T3.051616.100259
 Analyst:
 JYH
 Units:
 Units:
 mg/L

Workgroup (AAB#):WG567345 Cal ID:ICP-TH - 16-MAY-16

QC Key: DOD4

Analyte	Expected	Found	%REC	LIMITS	Q
Aluminum	10	9.93	99.3	90 - 110	
Beryllium	.05	0.0492	98.3	90 - 110	
Calcium	10	9.92	99.2	90 - 110	
Iron	4	3.96	99.0	90 - 110	
Magnesium	10	9.99	99.9	90 - 110	
Potassium	50	49.8	99.7	90 - 110	
Selenium	.4	0.398	99.5	90 - 110	
Sodium	50	49.9	99.7	90 - 110	

^{*} Exceeds LIMITS Limit

Microbac Laboratories Inc. INITIAL CALIBRATION VERIFICATION (ICV) (Alternate Source)

Login Number: <u>L16050013</u> Run Date: <u>05/17/2016</u> Sample ID: <u>WG569211-06</u>

Instrument ID: <u>ICP-THERMO3</u> Run Time: <u>10:14</u> Method: <u>6010C</u>

File ID: <u>T3.051716.101408</u> Analyst: <u>JYH</u> Units: <u>mg/L</u>

Workgroup (AAB#):WG567345 Cal ID:ICP-TH - 17-MAY-16

QC Key: DOD4

Analyte	Expected	Found	%REC	LIMITS	Q
Aluminum	10	10.2	102	90 - 110	
Beryllium	.05	0.0512	102	90 - 110	
Calcium	10	10.1	101	90 - 110	
Iron	4	4.00	100	90 - 110	
Magnesium	10	10.1	101	90 - 110	
Potassium	50	50.2	100	90 - 110	
Selenium	.4	0.410	103	90 - 110	
Sodium	50	50.2	100	90 - 110	

^{*} Exceeds LIMITS Limit

Analyte	Expected	Found	UNITS	%REC	LIMITS	Q
Aluminum	10.0	9.40	mg/L	94.0	90 - 110	
Beryllium	0.0500	0.0471	mg/L	94.2	90 - 110	
Calcium	10.0	9.61	mg/L	96.1	90 - 110	
Iron	4.00	3.79	mg/L	94.9	90 - 110	
Magnesium	10.0	9.51	mg/L	95.1	90 - 110	
Potassium	50.0	47.8	mg/L	95.6	90 - 110	
Selenium	0.400	0.382	mg/L	95.4	90 - 110	
Sodium	50.0	47.8	mg/L	95.6	90 - 110	

^{*} Exceeds LIMITS Criteria

Login Number:L16050013 Run Date:05/13/2016 Sample ID:WG568892-16

Instrument ID:ICP-THERMO3 Run Time:17:20 Method:6010C

File ID:T3.051316.172011 Analyst:JYH QC Key:DOD4

Workgroup (AAB#):WG567345 Cal ID:ICP-TH - 13-MAY-16

Matrix:WATER

Analyte	Expected	Found	UNITS	%REC	LIMITS	Q
Aluminum	10.0	9.43	mg/L	94.3	90 - 110	
Beryllium	0.0500	0.0470	mg/L	94.0	90 - 110	
Calcium	10.0	9.50	mg/L	95.0	90 - 110	
Iron	4.00	3.79	mg/L	94.7	90 - 110	
Magnesium	10.0	9.44	mg/L	94.4	90 - 110	
Potassium	50.0	47.6	mg/L	95.3	90 - 110	
Selenium	0.400	0.384	mg/L	96.0	90 - 110	
Sodium	50.0	48.0	mg/L	96.0	90 - 110	

^{*} Exceeds LIMITS Criteria

Login Number: L16050013 Run Date: 05/13/2016 Sample ID: WG568892-20

Instrument ID: ICP-THERMO3 Run Time: 18:15 Method: 6010C

File ID: T3.051316.181526 Analyst: JYH QC Key: DOD4

Workgroup (AAB#): WG567345 Cal ID: ICP-TH - 13-MAY-16

Analyte	Expected	Found	UNITS	%REC	LIMITS	Q
Aluminum	10.0	10.2	mg/L	102	90 - 110	
Beryllium	0.0500	0.0503	mg/L	101	90 - 110	
Calcium	10.0	10.3	mg/L	103	90 - 110	
Iron	4.00	4.12	mg/L	103	90 - 110	
Magnesium	10.0	10.2	mg/L	102	90 - 110	
Potassium	50.0	50.9	mg/L	102	90 - 110	
Selenium	0.400	0.399	mg/L	99.6	90 - 110	

50.0

51.2 mg/L

Sodium

Matrix:WATER

CCV - Modified 03/05/2008 PDF File ID: 4763329 Report generated 05/17/2016 14:19

102 90 - 110

^{*} Exceeds LIMITS Criteria

Login Number: L16050013 Run Date: 05/16/2016 Sample ID: WG568963-12

Instrument ID: ICP-THERMO3 Run Time: 10:26 Method: 6010C

File ID: T3.051616.102603 Analyst: JYH QC Key: DOD4

Workgroup (AAB#): WG567345 Cal ID: ICP-TH - 16-MAY-16

Matrix: WATER

Analyte	Expected	Found	UNITS	%REC	LIMITS	Q
Aluminum	10.0	10.0	mg/L	100	90 - 110	
Beryllium	0.0500	0.0501	mg/L	100	90 - 110	
Calcium	10.0	10.1	mg/L	101	90 - 110	
Iron	4.00	4.04	mg/L	101	90 - 110	
Magnesium	10.0	10.2	mg/L	102	90 - 110	
Potassium	50.0	50.3	mg/L	101	90 - 110	
Selenium	0.400	0.401	mg/L	100	90 - 110	
Sodium	50.0	50.6	mg/L	101	90 - 110	

^{*} Exceeds LIMITS Criteria

Analyte	Expected	Found	UNITS	%REC	LIMITS	Q
Aluminum	10.0	9.81	mg/L	98.1	90 - 110	
Beryllium	0.0500	0.0489	mg/L	97.7	90 - 110	
Calcium	10.0	9.76	mg/L	97.6	90 - 110	
Iron	4.00	3.99	mg/L	99.7	90 - 110	
Magnesium	10.0	9.82	mg/L	98.2	90 - 110	
Potassium	50.0	49.4	mg/L	98.8	90 - 110	
Selenium	0.400	0.391	mg/L	97.9	90 - 110	
Sodium	50.0	49.9	mg/L	99.7	90 - 110	

^{*} Exceeds LIMITS Criteria

Analyte	Expected	Found	UNITS	%REC	LIMITS	-	Q
Aluminum	10.0	10.6	mg/L	106	90 - 110		
Beryllium	0.0500	0.0524	mg/L	105	90 - 110		
Calcium	10.0	10.3	mg/L	103	90 - 110		
Iron	4.00	4.30	mg/L	108	90 - 110		
Magnesium	10.0	10.7	mg/L	107	90 - 110		
Potassium	50.0	52.4	mg/L	105	90 - 110		
Selenium	0.400	0.406	mg/L	102	90 - 110		
Sodium	50.0	53.1	mg/L	106	90 - 110		

^{*} Exceeds LIMITS Criteria

Analyte	Expected	Found	UNITS	%REC	LIMITS	Q
Aluminum	10.0	9.46	mg/L	94.6	90 - 110	
Beryllium	0.0500	0.0465	mg/L	93.1	90 - 110	
Calcium	10.0	9.37	mg/L	93.7	90 - 110	
Iron	4.00	3.81	mg/L	95.2	90 - 110	
Magnesium	10.0	9.51	mg/L	95.1	90 - 110	
Potassium	50.0	46.5	mg/L	93.0	90 - 110	
Selenium	0.400	0.365	mg/L	91.2	90 - 110	
Sodium	50.0	46.8	mg/L	93.5	90 - 110	

^{*} Exceeds LIMITS Criteria

Analyte	Expected	Found	UNITS	%REC	LIMITS	Q
Aluminum	10.0	9.41	mg/L	94.1	90 - 110	
Beryllium	0.0500	0.0463	mg/L	92.6	90 - 110	
Calcium	10.0	9.12	mg/L	91.2	90 - 110	
Iron	4.00	3.77	mg/L	94.3	90 - 110	
Magnesium	10.0	9.49	mg/L	94.9	90 - 110	
Potassium	50.0	46.6	mg/L	93.2	90 - 110	
Selenium	0.400	0.364	mg/L	90.9	90 - 110	
Sodium	50.0	47.0	mg/L	93.9	90 - 110	

^{*} Exceeds LIMITS Criteria

Login Number:L16050013 Run Date:05/17/2016 Sample ID:WG569211-12

Instrument ID:ICP-THERMO3 Run Time:10:42 Method:6010C

File ID:T3.051716.104236 Analyst:JYH QC Key:DOD4

Workgroup (AAB#):WG567345 Cal ID:ICP-TH - 17-MAY-16

Matrix:WATER

Analyte	Expected	Found	UNITS	%REC	LIMITS	Q
Aluminum	10.0	9.10	mg/L	91.0	90 - 110	
Beryllium	0.0500	0.0458	mg/L	91.6	90 - 110	
Calcium	10.0	9.16	mg/L	91.6	90 - 110	
Iron	4.00	3.67	mg/L	91.8	90 - 110	
Magnesium	10.0	9.17	mg/L	91.7	90 - 110	
Potassium	50.0	46.5	mg/L	93.0	90 - 110	
Selenium	0.400	0.360	mg/L	89.9	90 - 110	*
Sodium	50.0	46.6	mg/L	93.2	90 - 110	

^{*} Exceeds LIMITS Criteria

Login Number:L16050013 Run Date:05/17/2016 Sample ID:WG569211-14

Instrument ID:ICP-THERMO3 Run Time:11:30 Method:6010C

File ID:T3.051716.113044 Analyst:JYH QC Key:DOD4

Workgroup (AAB#):WG567345 Cal ID:ICP-TH - 17-MAY-16

Matrix:WATER

Analyte	Expected	Found	UNITS	%REC	LIMITS	Q
Aluminum	10.0	9.15	mg/L	91.5	90 - 110	
Beryllium	0.0500	0.0465	mg/L	92.9	90 - 110	
Calcium	10.0	9.25	mg/L	92.5	90 - 110	
Iron	4.00	3.68	mg/L	92.1	90 - 110	
Magnesium	10.0	9.25	mg/L	92.5	90 - 110	
Potassium	50.0	47.3	mg/L	94.6	90 - 110	
Selenium	0.400	0.373	mg/L	93.2	90 - 110	
Sodium	50.0	47.2	mg/L	94.4	90 - 110	

^{*} Exceeds LIMITS Criteria

Login Number:L16050013 Run Date:05/17/2016 Sample ID:WG569211-17

Instrument ID:ICP-THERMO3 Run Time:12:23 Method:6010C

File ID:T3.051716.122310 Analyst:JYH QC Key:DOD4

Workgroup (AAB#):WG567345 Cal ID:ICP-TH - 17-MAY-16

Matrix:WATER

Analyte	Expected	Found	UNITS	%REC	LIMITS	Q
Aluminum	10.0	9.14	mg/L	91.4	90 - 110	
Beryllium	0.0500	0.0462	mg/L	92.4	90 - 110	
Calcium	10.0	9.13	mg/L	91.3	90 - 110	
Iron	4.00	3.67	mg/L	91.8	90 - 110	
Magnesium	10.0	9.14	mg/L	91.4	90 - 110	
Potassium	50.0	46.9	mg/L	93.7	90 - 110	
Selenium	0.400	0.363	mg/L	90.7	90 - 110	
Sodium	50.0	46.9	mg/L	93.9	90 - 110	

^{*} Exceeds LIMITS Criteria

Login Number:L16050013 Run Date:05/17/2016 Sample ID:WG569211-21

Instrument ID:ICP-THERMO3 Run Time:12:38 Method:6010C

File ID:T3.051716.123857 Analyst:JYH QC Key:DOD4

Workgroup (AAB#):WG567345 Cal ID:ICP-TH - 17-MAY-16

Matrix:WATER

Analyte	Expected	Found	UNITS	%REC	LIMITS	Q
Aluminum	10.0	9.46	mg/L	94.6	90 - 110	
Beryllium	0.0500	0.0476	mg/L	95.1	90 - 110	
Calcium	10.0	9.47	mg/L	94.7	90 - 110	
Iron	4.00	3.87	mg/L	96.8	90 - 110	
Magnesium	10.0	9.50	mg/L	95.0	90 - 110	
Potassium	50.0	48.4	mg/L	96.9	90 - 110	
Selenium	0.400	0.380	mg/L	95.0	90 - 110	
Sodium	50.0	48.7	mg/L	97.3	90 - 110	

^{*} Exceeds LIMITS Criteria

Login Number:L16050013 Run Date:05/17/2016 Sample ID:WG569211-23

Instrument ID:ICP-THERMO3 Run Time:13:03 Method:6010C

File ID:T3.051716.130308 Analyst:JYH QC Key:DOD4

Workgroup (AAB#):WG567345 Cal ID:ICP-TH - 17-MAY-16

Matrix:WATER

Analyte	Expected	Found	UNITS	%REC	LIMITS	Q
Aluminum	10.0	9.54	mg/L	95.4	90 - 110	
Beryllium	0.0500	0.0481	mg/L	96.1	90 - 110	
Calcium	10.0	9.50	mg/L	95.0	90 - 110	
Iron	4.00	3.89	mg/L	97.2	90 - 110	
Magnesium	10.0	9.63	mg/L	96.3	90 - 110	
Potassium	50.0	48.6	mg/L	97.3	90 - 110	
Selenium	0.400	0.379	mg/L	94.6	90 - 110	
Sodium	50.0	48.8	mg/L	97.6	90 - 110	

^{*} Exceeds LIMITS Criteria

Login Number: L16050013 Run Date: 05/17/2016 Sample ID: WG569211-29

Instrument ID: ICP-THERMO3 Run Time: 13:28 Method: 6010C

File ID: T3.051716.132814 Analyst: JYH QC Key: DOD4

Workgroup (AAB#): WG567345 Cal ID: ICP-TH - 17-MAY-16

Analyte	Expected	Found	UNITS	%REC	LIMITS	Q
Aluminum	10.0	9.34	mg/L	93.4	90 - 110	
Beryllium	0.0500	0.0469	mg/L	93.8	90 - 110	
Calcium	10.0	9.26	mg/L	92.6	90 - 110	
Iron	4.00	3.79	mg/L	94.9	90 - 110	
Magnesium	10.0	9.54	mg/L	95.4	90 - 110	
Potassium	50.0	47.6	mg/L	95.1	90 - 110	
Selenium	0.400	0.378	mg/L	94.4	90 - 110	
Sodium	50.0	47.7	mg/L	95.3	90 - 110	

^{*} Exceeds LIMITS Criteria

Matrix:WATER

Microbac Laboratories Inc. LOW LEVEL CALIBRATION VERIFICATION

 Login Number:
 L16050013
 Run Date:
 05/13/2016
 Sample ID:
 WG568892-08

 Instrument ID:
 ICP-THERMO3
 Run Time:
 15:38
 Method:
 6010C

 File ID:
 T3.051316.153808
 Analyst:
 JYH
 QC Key:
 DOD4

Workgroup (AAB#):WG567345 Cal ID:ICP-TH - 13-MAY-16
Matrix:WATER

Analyte	Expected	Found	UNITS	%REC	LIMITS	Q
Aluminum	0.160	0.176	mg/L	110	70 - 130	
Beryllium	0.00160	0.00165	mg/L	103	70 - 130	
Calcium	0.400	0.408	mg/L	102	70 - 130	
Iron	0.0800	0.0790	mg/L	98.7	70 - 130	
Potassium	0.800	0.876	mg/L	110	70 - 130	
Selenium	0.0160	0.0173	mg/L	108	70 - 130	
Sodium	0.400	0.419	mg/L	105	70 - 130	

^{*} Exceeds LIMITS Criteria

 Login Number:
 L16050013
 Run Date:
 05/13/2016
 Sample ID:
 WG568892-18

 Instrument ID:
 ICP-THERMO3
 Run Time:
 Method:
 6010C

 File ID:
 T3.051316.172800
 Analyst:
 QC Key:
 DOD4

 Workgroup (AAB#):
 WG567345
 Cal ID:
 ICP-TH - 13-MAY-16

 Matrix:
 WATER

Analyte	Expected	Found	UNITS	%REC	LIMITS	Q
Aluminum	0.160	0.166	mg/L	104	70 - 130	
Beryllium	0.00160	0.00164	mg/L	103	70 - 130	
Calcium	0.400	0.387	mg/L	96.9	70 - 130	
Iron	0.0800	0.0690	mg/L	86.2	70 - 130	
Potassium	0.800	0.799	mg/L	99.9	70 - 130	
Selenium	0.0160	0.0179	mg/L	112	70 - 130	
Sodium	0.400	0.437	mg/L	109	70 - 130	

^{*} Exceeds LIMITS Criteria

 Login Number:
 L16050013
 Run Date:
 05/13/2016
 Sample ID:
 WG568892-22

 Instrument ID:
 ICP-THERMO3
 Run Time:
 18:23
 Method:
 6010C

 File ID:
 T3.051316.182316
 Analyst:
 JYH
 QC Key:
 DOD4

 Workgroup (AAB#):
 WG567345
 Cal ID:
 ICP-TH - 13-MAY-16
 Cal ID:
 ICP-TH - 13-MAY-16

Analyte	Expected	Found	UNITS	%REC	LIMITS	Q
Aluminum	0.160	0.183	mg/L	114	70 - 130	
Beryllium	0.00160	0.00172	mg/L	108	70 - 130	
Calcium	0.400	0.408	mg/L	102	70 - 130	
Iron	0.0800	0.0703	mg/L	87.9	70 - 130	
Potassium	0.800	0.960	mg/L	120	70 - 130	
Selenium	0.0160	0.0173	mg/L	108	70 - 130	
Sodium	0.400	0.411	mg/L	103	70 - 130	

^{*} Exceeds LIMITS Criteria

Analyte	Expected	Found	UNITS	%REC	LIMITS	Q
Calcium	0.400	0.380	mg/L	95.1	70 - 130	
Sodium	0.400	0.404	mg/L	101	70 - 130	

^{*} Exceeds LIMITS Criteria

Analyte	Expected	Found	UNITS	%REC	LIMITS	Q
Iron	0.100	0.0990	mg/L	99.0	70 - 130	

^{*} Exceeds LIMITS Criteria

Analyte	Expected	Found	UNITS	%REC	LIMITS	Q
Calcium	0.400	0.372	mg/L	93.1	70 - 130	
Sodium	0.400	0.450	mg/L	113	70 - 130	

^{*} Exceeds LIMITS Criteria

 Login Number:
 L16050013
 Run Date:
 05/16/2016
 Sample ID:
 WG568963-19

 Instrument ID:
 ICP-THERMO3
 Run Time:
 Method:
 6010C

 File ID:
 T3.051616.115644
 Analyst:
 QC Key:
 DOD4

 Workgroup (AAB#):
 WG567345
 Cal ID:
 ICP-TH - 16-MAY-16

 Matrix:
 WATER

Analyte	Expected	Found	UNITS	%REC	LIMITS	Q
Iron	0.100	0.107	mg/L	107	70 - 130	

^{*} Exceeds LIMITS Criteria

Analyte	Expected	Found	UNITS	%REC	LIMITS	Q
Calcium	0.400	0.381	mg/L	95.4	70 - 130	
Iron	0.0800	0.0996	mg/L	125	70 - 130	
Sodium	0.400	0.393	mg/L	98.3	70 - 130	

^{*} Exceeds LIMITS Criteria

Login Number:L16050013 Run Date:05/17/2016 Sample ID:WG569211-09

Instrument ID:ICP-THERMO3 Run Time:10:30 Method:6010C

File ID:T3.051716.103037 Analyst:JYH QC Key:DOD4

Workgroup (AAB#):WG567345 Cal ID:ICP-TH - 17-MAY-16

Matrix:WATER

Analyte		Expected	Found	UNITS	%REC	LIMITS	Q
Magnesium		0.500	0.434	mg/L	86.8	70 - 130	

* Exceeds LIMITS Criteria

Login Number:L16050013 Run Date:05/17/2016 Sample ID:WG569211-16

Instrument ID:ICP-THERMO3 Run Time:11:38 Method:6010C

File ID:T3.051716.113835 Analyst:JYH QC Key:DOD4

Workgroup (AAB#):WG567345 Cal ID:ICP-TH - 17-MAY-16

Matrix:WATER

Analyte		Expected	Found	UNITS	%REC	LIMITS	Q
Magnesium		0.500	0.363	mg/L	72.7	70 - 130	

^{*} Exceeds LIMITS Criteria

Method: 6010C

Login number: L16050013 Workgroup (AAB#): WG567345

Instrument ID: ICP-THERMO3

 Sol. A: WG568892-10
 File ID: T3.051316.154612
 Units: mg/L

 Sol. AB: WG568892-11
 File ID: T3.051316.155010
 Matrix: Water

		Sol. A			Sol. AB		
ANALYTE	True	Found	%Recovery	True	Found	%Recovery	Q
Aluminum	250	264	106	250	262	105	
Beryllium	NS	0.0000500	NS	0.250	0.250	100	
Calcium	250	246	98.4	250	242	96.8	
Iron	100	97.2	97.2	100	94.5	94.5	
Magnesium	250	252	101	250	246	98.4	
Potassium	NS	0.176	NS	5.00	5.23	105	
Selenium	NS	0.00329	NS	0.250	0.245	98.0	
Sodium	NS	0.0290	NS	5.00	5.16	103	

NS = Not spiked

- * = Recovery of spiked element is outside acceptance limit of 80% 120% of true value.
- # = Result for unspiked element is outside the acceptance limits of (+/-) the project
 reporting limit (RL).
- + = Result for unspiked element is outside the acceptance limits of (+/-) 2 times the project method detection limit (MDL). This criteria is only applicable to specific QAPPs.

Login number: L16050013 Workgroup (AAB#): WG567345

Instrument ID: ICP-THERMO3

Method: 6010C File ID: T3.051616.101822 **Sol. A:** WG568963-10 Units:mg/L File ID: T3.051616.102217 **Sol. AB**: WG568963-11 Matrix: Water

		Sol. A			Sol. AB		
ANALYTE	True	Found	%Recovery	True	Found	%Recovery	Q
Aluminum	250	268	107	250	269	108	
Beryllium	NS	-0.0000500	NS	0.250	0.254	102	
Calcium	250	246	98.4	250	243	97.2	
Iron	100	97.9	97.9	100	96.5	96.5	
Magnesium	250	250	100	250	246	98.4	
Potassium	NS	0.115	NS	5.00	5.30	106	
Selenium	NS	-0.00535	NS	0.250	0.244	97.6	
Sodium	NS	0.0195	NS	5.00	5.23	105	

- * = Recovery of spiked element is outside acceptance limit of 80% 120% of true value.
- # = Result for unspiked element is outside the acceptance limits of (+/-) the project reporting limit (RL).
- + = Result for unspiked element is outside the acceptance limits of (+/-) 2 times the project method detection limit (MDL). This criteria is only applicable to specific QAPPs.

Login number: L16050013 Workgroup (AAB#): WG567345

Instrument ID: ICP-THERMO3

Method: 6010C File ID: T3.051616.220203 **Sol. A:** WG568963-51 Units:mg/L File ID: T3.051616.220559 **Sol. AB**: <u>WG568963-52</u> Matrix: Water

		Sol. A			Sol. AB		
ANALYTE	True	Found	%Recovery	True	Found	%Recovery	Q
Aluminum	250	272	109	250	272	109	
Beryllium	NS	0.0000100	NS	0.250	0.257	103	
Calcium	250	245	98.0	250	244	97.6	
Iron	100	100	100	100	97.8	97.8	
Magnesium	250	254	102	250	249	99.6	
Potassium	NS	0.157	NS	5.00	5.38	108	
Selenium	NS	0.00260	NS	0.250	0.244	97.6	
Sodium	NS	0.00649	NS	5.00	5.34	107	

- * = Recovery of spiked element is outside acceptance limit of 80% 120% of true value.
- # = Result for unspiked element is outside the acceptance limits of (+/-) the project reporting limit (RL).
- + = Result for unspiked element is outside the acceptance limits of (+/-) 2 times the project method detection limit (MDL). This criteria is only applicable to specific QAPPs.

Login number: L16050013 Workgroup (AAB#): WG567345

Instrument ID: ICP-THERMO3

 Sol. A: WG569211-10
 File ID:T3.051716.103442

 Sol. AB: WG569211-11
 File ID:T3.051716.103844

Method: 6010C Units: mg/L

Matrix: Water

		Sol. A			Sol. AB		
ANALYTE	True	Found	%Recovery	True	Found	%Recovery	Q
Aluminum	250	256	102	250	253	101	
Beryllium	NS	-0.000150	NS	0.250	0.245	98.0	
Calcium	250	236	94.4	250	233	93.2	
Iron	100	93.6	93.6	100	91.6	91.6	
Magnesium	250	239	95.6	250	233	93.2	
Potassium	NS	-0.160	NS	5.00	4.97	99.4	
Selenium	NS	0.0103	NS	0.250	0.242	96.8	
Sodium	NS	0.0203	NS	5.00	5.11	102	

NS = Not spiked

- * = Recovery of spiked element is outside acceptance limit of 80% 120% of true value.
- # = Result for unspiked element is outside the acceptance limits of (+/-) the project
 reporting limit (RL).
- + = Result for unspiked element is outside the acceptance limits of (+/-) 2 times the project method detection limit (MDL). This criteria is only applicable to specific QAPPs.

Login number: L16050013 Workgroup (AAB#): WG567345

Instrument ID: ICP-THERMO3

Method: 6010C File ID: T3.051716.123103 **Sol. A:** WG569211-19 Units:mg/L File ID: T3.051716.123505 Sol. AB: WG569211-20 Matrix: Water

		Sol. A			Sol. AB		
ANALYTE	True	Found	%Recovery	True	Found	%Recovery	Q
Aluminum	250	260	104	250	269	108	
Beryllium	NS	-0.0000800	NS	0.250	0.259	104	
Calcium	250	240	96.0	250	248	99.2	
Iron	100	96.1	96.1	100	98.1	98.1	
Magnesium	250	244	97.6	250	249	99.6	
Potassium	NS	-0.111	NS	5.00	5.22	104	
Selenium	NS	-0.0109	NS	0.250	0.242	96.8	
Sodium	NS	0.0826	NS	5.00	5.45	109	

- * = Recovery of spiked element is outside acceptance limit of 80% 120% of true value.
- # = Result for unspiked element is outside the acceptance limits of (+/-) the project reporting limit (RL).
- + = Result for unspiked element is outside the acceptance limits of (+/-) 2 times the project method detection limit (MDL). This criteria is only applicable to specific QAPPs.

Login number: L16050013 Workgroup (AAB#): WG567345

Instrument ID: ICP-THERMO3

Method: 6010C File ID: T3.051716.132020 **Sol. A:** WG569211-27 Units:mg/L Sol. AB: WG569211-28 File ID: T3.051716.132422 Matrix: Water

		Sol. A			Sol. AB		
ANALYTE	True	Found	%Recovery	True	Found	%Recovery	Q
Aluminum	250	269	108	250	269	108	
Beryllium	NS	-0.000110	NS	0.250	0.257	103	
Calcium	250	247	98.8	250	245	98.0	
Iron	100	99.0	99.0	100	97.1	97.1	
Magnesium	250	252	101	250	247	98.8	
Potassium	NS	-0.0892	NS	5.00	5.24	105	
Selenium	NS	0.00285	NS	0.250	0.257	103	
Sodium	NS	0.00939	NS	5.00	5.34	107	

- * = Recovery of spiked element is outside acceptance limit of 80% 120% of true value.
- # = Result for unspiked element is outside the acceptance limits of (+/-) the project reporting limit (RL).
- + = Result for unspiked element is outside the acceptance limits of (+/-) 2 times the project method detection limit (MDL). This criteria is only applicable to specific QAPPs.

 Login Number: L16050013
 Date: 01/04/2016

 Insturment ID: ICP-THERMO3
 Method: 6010C

Analyte	Wave Length	AG	AL	AS	В	ВА
ALUMINUM	308.20	0	0	0	0	0
ANTIMONY	206.80	0	0.0000410	0	0	0
ARSENIC	189.00	0	0	0	0	0
BARIUM	455.40	0	0	0	0	0
BERYLLIUM	313.10	0	0	0	0	0
BORON	249.60	0	0	0	0	0
CADMIUM	228.80	0	0	0.0115	0	-0.0000800
CALCIUM	422.60	0	0	0	0	0
CHROMIUM	267.70	0	0	0	0	0
COBALT	228.60	0	0	0	0	0
COPPER	224.70	0	0	0	0	0
IRON	261.10	0	0	0	0	0
LEAD	220.30	0	0.000260	0	0	0
LITHIUM	670.70	0	0	0	0	0
MAGNESIUM	279.00	0	0	0	0	0
MANGANESE	257.60	0	0	0	0	0
MOLYBDENUM	202.00	0	0	0	0	0
NICKEL	231.60	0	0	0	0	0
PHOSPHORUS	214.90	0	-0.000289	0	0	0
POTASSIUM	766.40	0	0	0	0	0
SELENIUM	196.00	0	-0.0000490	0	0	0
SILICON	212.40	0	0	0	0	0
SILVER	328.00	0	0	0	0	0
SODIUM	589.50	0	0	0	0	0
STRONTIUM	407.70	0	0	0	0	0
THALLIUM	190.80	0	-0.0000120	0	0	0
TIN	189.90	0	0	0	0	0
TITANIUM	337.20	0	0	0	0	0
VANADIUM	292.40	0	0	0	0	0
ZINC	206.20	0	0.0000300	0	0	0
ZIRCONIUM	339.10	0	0	0	0	0

CORR_FACTORS - Modified 03/05/2008 PDF File ID: 4763324 Report generated: 05/17/2016 14:19

 Login Number: L16050013
 Date: 01/04/2016

 Insturment ID: ICP-THERMO3
 Method: 6010C

	Wave					
Analyte	Length	BE	CA	CD	CO	CR
ALUMINUM	308.20	0	0	0	-0.000820	0
ANTIMONY	206.80	0	0	0	0	0.0200
ARSENIC	189.00	0	0	0	0	-0.00190
BARIUM	455.40	0	0	0	0	0
BERYLLIUM	313.10	0	0	0	0	0
BORON	249.60	0	0	0	0.00343	0
CADMIUM	228.80	0	0	0	-0.00390	0
CALCIUM	422.60	0	0	0	0	0
CHROMIUM	267.70	0	0	0	0	0
COBALT	228.60	0	0	0	0	-0.000200
COPPER	224.70	0	0	0	0.0000770	-0.00100
IRON	261.10	0	0	0	0	-0.00100
LEAD	220.30	0	0	0	-0.0000130	-0.000132
LITHIUM	670.70	0	0	0	0	0
MAGNESIUM	279.00	0	0	0	0	0
MANGANESE	257.60	0	0	0	0	0.0000500
MOLYBDENUM	202.00	0	0	0	0	0
NICKEL	231.60	0	0	0	-0.000860	0
PHOSPHORUS	214.90	0	0	0	0	0
POTASSIUM	766.40	0	0	0	0	0
SELENIUM	196.00	0	0	0	0	0
SILICON	212.40	0	0	0	0	0
SILVER	328.00	0	0	0	0	0
SODIUM	589.50	0	0	0	0	0
STRONTIUM	407.70	0	0.00000500	0	0	0
THALLIUM	190.80	0	0	0	0.00240	0.000276
TIN	189.90	0	0	0	0	0
TITANIUM	337.20	0	0	0	0	0
VANADIUM	292.40	0	0	0	0	-0.00480
ZINC	206.20	0	0	0	0	-0.00180
ZIRCONIUM	339.10	0	0	0	0	0

CORR_FACTORS - Modified 03/05/2008 PDF File ID: 4763324 Report generated: 05/17/2016 14:19

 Login Number: L16050013
 Date: 01/04/2016

 Insturment ID: ICP-THERMO3
 Method: 6010C

Analyte	Wave Length	CU	FE	ĸ	LI	MG
ALUMINUM	308.20	0	0	0	0	0
ANTIMONY	206.80	0	0.0000560	0	0	0
ARSENIC	189.00	0	-0.0000500	0	0	0
BARIUM	455.40	0	0	0	0	0
BERYLLIUM	313.10	0	0	0	0	0
BORON	249.60	0	0.000300	0	0	0
CADMIUM	228.80	0	-0.0000190	0	0	0
CALCIUM	422.60	0	0	0	0	0
CHROMIUM	267.70	0	0.0000500	0	0	0
COBALT	228.60	0	0	0	0	0
COPPER	224.70	0	0.00160	0	0	0
IRON	261.10	0	0	0	0	0
LEAD	220.30	0.000609	0	0	0	0
LITHIUM	670.70	0	0	0	0	0
MAGNESIUM	279.00	0	0	0	0	0
MANGANESE	257.60	0	0	0	0	0.0000300
MOLYBDENUM	202.00	0	0	0	0	0
NICKEL	231.60	0	0.0000420	0	0	0
PHOSPHORUS	214.90	-0.323	0.000900	0	0	0
POTASSIUM	766.40	0	0	0	0	0
SELENIUM	196.00	0	0	0	0	0
SILICON	212.40	0	0	0	0	0
SILVER	328.00	0	-0.000270	0	0	0
SODIUM	589.50	0	0	0	0	0
STRONTIUM	407.70	0	0	0	0	0
THALLIUM	190.80	0	0	0	0	0
TIN	189.90	0	0	0	0	0
TITANIUM	337.20	0	-0.000400	0	0	0
VANADIUM	292.40	0	0.00000700	0	0	0
ZINC	206.20	0	0	0	0	0
ZIRCONIUM	339.10	0	-0.0000300	0	0	0

CORR_FACTORS - Modified 03/05/2008 PDF File ID: 4763324 Report generated: 05/17/2016 14:19

 Login Number: L16050013
 Date: 01/04/2016

 Insturment ID: ICP-THERMO3
 Method: 6010C

Analyte	Wave Length	MN	MO	NA	NI	P
ALUMINUM	308.20	0	0.0163	0	0	0
ANTIMONY	206.80	0	-0.00310	0	-0.00350	0
ARSENIC	189.00	0	0.00120	0	0	0
BARIUM	455.40	0	0	0	0	0
BERYLLIUM	313.10	0	0	0	0	0
BORON	249.60	0	-0.00190	0	0	0
CADMIUM	228.80	0	0.0000320	0	-0.000770	0
CALCIUM	422.60	0	0	0	0	0
CHROMIUM	267.70	0.000360	0	0	0	0
COBALT	228.60	0	-0.00200	0	0.000100	0
COPPER	224.70	0	0.00160	0	-0.0123	0
IRON	261.10	0	0	0	0	0
LEAD	220.30	0	-0.00210	0	0.000110	0
LITHIUM	670.70	0	0	0	0	0
MAGNESIUM	279.00	-0.00290	-0.0230	0	0	0
MANGANESE	257.60	0	0.0000300	0	0	0
MOLYBDENUM	202.00	0	0	0	0	0
NICKEL	231.60	0	0	0	0	0
PHOSPHORUS	214.90	0	0.00710	0	0	0
POTASSIUM	766.40	0	0	0	0	0
SELENIUM	196.00	0.000600	0.000580	0	0	0
SILICON	212.40	0	0.0187	0	0	0
SILVER	328.00	0	-0.0000430	0	0	0
SODIUM	589.50	0	0	0	0	0
STRONTIUM	407.70	0	0	0	0	0
THALLIUM	190.80	0.00100	0	0	0	0
TIN	189.90	0	0	l ĭ	0	0
TITANIUM	337.20	0	-0.000153	0	0	0
VANADIUM	292.40	-0.000200	-0.00830	0	0	0
ZINC	206.20	0	0	0	0	0
ZIRCONIUM	339.10	0	0	0	0	0

CORR_FACTORS - Modified 03/05/2008 PDF File ID: 4763324 Report generated: 05/17/2016 14:19

 Login Number: L16050013
 Date: 01/04/2016

 Insturment ID: ICP-THERMO3
 Method: 6010C

31	Wave					
Analyte	Length	PB	SB	SE	SI	SN
ALUMINUM	308.20	0	0	0	0	0
ANTIMONY	206.80	0	0	0	0	-0.0220
ARSENIC	189.00	0	0	0	0	0
BARIUM	455.40	0	0	0	0	0
BERYLLIUM	313.10	0	0	0	0	0
BORON	249.60	0	0	0	0	0
CADMIUM	228.80	0	0	0	0	0
CALCIUM	422.60	0	0	0	0	0
CHROMIUM	267.70	0	0	0	0	0
COBALT	228.60	0	0	0	0	0
COPPER	224.70	0.00440	0	0	0	0
IRON	261.10	0	0	0	0	0
LEAD	220.30	0	0	0	0	0
LITHIUM	670.70	0	0	0	0	0
MAGNESIUM	279.00	0	0	0	0	0
MANGANESE	257.60	0	0	0	0	0
MOLYBDENUM	202.00	0	0	0	0	0
NICKEL	231.60	0	0	0	0	0
PHOSPHORUS	214.90	0	0	0	0	0
POTASSIUM	766.40	0	0	0	0	0
SELENIUM	196.00	0	0	0	0	0
SILICON	212.40	0	0	0	0	0
SILVER	328.00	0	0	0	0	0
SODIUM	589.50	0	0	0	0	0
STRONTIUM	407.70	0	0	0	0	0
THALLIUM	190.80	0	0	0	0	0
TIN	189.90	0	0	0	0	0
TITANIUM	337.20	0	0	0	0	0
VANADIUM	292.40	0	0	0	0	0
ZINC	206.20	0	0	0	0	0
ZIRCONIUM	339.10	0	0	0	0	0

CORR_FACTORS - Modified 03/05/2008 PDF File ID: 4763324 Report generated: 05/17/2016 14:19

 Login Number: L16050013
 Date: 01/04/2016

 Insturment ID: ICP-THERMO3
 Method: 6010C

3	Wave					
Analyte	Length	SR	TI	TL	v	ZN
ALUMINUM	308.20	0	0	0	0.0950	0
ANTIMONY	206.80	0	0.00110	0	-0.00360	0
ARSENIC	189.00	0	0	0	0.000107	0
BARIUM	455.40	0	0	0	0	0
BERYLLIUM	313.10	0	-0.00000700	0	0.000990	0
BORON	249.60	0	0	0	0	0
CADMIUM	228.80	0	0	0	0.000102	0
CALCIUM	422.60	0	0	0	0	0
CHROMIUM	267.70	0	0.0000550	0	0	0
COBALT	228.60	0	0.00210	0	0.0000200	0
COPPER	224.70	0	0.000269	0	0	0
IRON	261.10	0	0	0	0	0
LEAD	220.30	0	0	0	-0.000126	0
LITHIUM	670.70	0	0	0	0	0
MAGNESIUM	279.00	0	-0.00290	0	0	0
MANGANESE	257.60	0	0	0	0	0
MOLYBDENUM	202.00	0	0	0	-0.000110	0
NICKEL	231.60	0	0	0	0	0
PHOSPHORUS	214.90	0	0	0	-0.00100	0
POTASSIUM	766.40	0	0	0	0	0
SELENIUM	196.00	0	0	0	0	0
SILICON	212.40	0	0	0	0	0
SILVER	328.00	0	-0.000720	0	-0.000260	0
SODIUM	589.50	0	0	0	0	0
STRONTIUM	407.70	0	0	0	0	0
THALLIUM	190.80	0	-0.000800	0	-0.00490	0
TIN	189.90	0	-0.00190	0	0	0
TITANIUM	337.20	0	0	0	0	0
VANADIUM	292.40	0	0.000820	0	0	0
ZINC	206.20	0	0	0	0	0
ZIRCONIUM	339.10	0	0	0	0	0

CORR_FACTORS - Modified 03/05/2008 PDF File ID: 4763324 Report generated: 05/17/2016 14:19

 Login Number: L16050013
 Date: 01/04/2016

 Insturment ID: ICP-THERMO3
 Method: 6010C

Sturment ID: ICP-THERMO3 Method: 6010C

Wave
Analyte Length ZR

	Wave	
Analyte	Length	ZR
ALUMINUM	308.20	0
ANTIMONY	206.80	0
ARSENIC	189.00	0
BARIUM	455.40	0
BERYLLIUM	313.10	0
BORON	249.60	0
CADMIUM	228.80	0
CALCIUM	422.60	0
CHROMIUM	267.70	0
COBALT	228.60	0
COPPER	224.70	0
IRON	261.10	0
LEAD	220.30	0
LITHIUM	670.70	0
MAGNESIUM	279.00	0
MANGANESE	257.60	0
MOLYBDENUM	202.00	0
NICKEL	231.60	0
PHOSPHORUS	214.90	0
POTASSIUM	766.40	0
SELENIUM	196.00	0
SILICON	212.40	0
SILVER	328.00	0
SODIUM	589.50	0
STRONTIUM	407.70	0
THALLIUM	190.80	0
TIN	189.90	0
TITANIUM	337.20	0
VANADIUM	292.40	0
ZINC	206.20	0
ZIRCONIUM	339.10	0

CORR_FACTORS - Modified 03/05/2008 PDF File ID: 4763324 Report generated: 05/17/2016 14:19

Microbac Laboratories Inc. LINEAR RANGE (QUARTERLY)

 Login Number: L16050013
 Date: 04/29/2016

 Insturment ID: ICP-THERMO3
 Method: 6010C

	Integration Time	Concentration
Analyte	(Sec.)	(mg/L)
Aluminum	10.00	900.0
Antimony	20.00	45.0
Arsenic	10.00	45.0
Barium	10.00	45.0
Beryllium	10.00	1.8
Boron	20.00	45.0
Cadmium	20.00	4.5
Calcium	5.00	270.0
Chromium	20.00	36.0
Cobalt	20.00	45.0
Copper	20.00	180.0
Iron	5.00	720.0
Lead	20.00	225.0
Lithium	5.00	36.0
Magnesium	5.00	900.0
Manganese	10.00	36.0
Molybdenum	20.00	27.0
Nickel	20.00	90.0
Phosphorus	20.00	180.0
Potassium	5.00	450.0
Selenium	20.00	90.0
Silicon	20.00	36.0
Silver	10.00	9.0
Sodium	5.00	270.0
Strontium	5.00	9.0
Thallium	20.00	18.0
Tin	20.00	45.0
Titanium	5.00	36.0
Vanadium	20.00	27.0
Zinc	20.00	45.0
Zirconium	10.00	45.0

Comments:

All analytes passed acceptance criteria at the specified concentration.

LINEAR_RANGE - Modified 03/06/2008 PDF File ID: 4763323 Report generated: 05/17/2016 14:18

2.1.1.3 Raw Data

Element, Wavelength and Order	Date of Fit	Date of Cal.	Type of Fit	Weighting	A0	A1	A2	n (Exponent)
 Ag 328.068 {103}	5/13/2016 15:30:16	5/13/2016 15:30:16	Linear	1/Conc	-0.000116	0.027644	0.000000	1.000000
 Al 308.215 {109}	5/13/2016 15:30:16	5/13/2016 15:30:16	Linear	1/Conc	0.000698	0.004445	0.000000	1.000000
As 189.042 {478}	5/13/2016 15:30:16	5/13/2016 15:30:16	Linear	1/Conc	-0.000028	0.012676	0.000000	1.000000
B 249.678 {135}	5/13/2016 15:30:16	5/13/2016 15:30:16	Linear	1/Conc	0.000058	0.011826	0.000000	1.000000
 Ba 455.403 { 74}	5/13/2016 15:30:16	5/13/2016 15:30:16	Linear	1/Conc	0.011678	1.395291	0.000000	1.000000
 Be 313.107 {108}	5/13/2016 15:30:16	5/13/2016 15:30:16	Linear	1/Conc	0.000204	0.497200	0.000000	1.000000
 Ca 422.673 { 80}	5/13/2016 15:30:16	5/13/2016 15:30:16	Linear	1/Conc	0.001892	0.029297	0.000000	1.000000
 Cd 228.802 {447}	5/13/2016 15:30:16	5/13/2016 15:30:16	Linear	1/Conc	0.000024	0.276981	0.000000	1.000000
 Co 228.616 {447}	5/13/2016 15:30:16	5/13/2016 15:30:16	Linear	1/Conc	-0.000142	0.210445	0.000000	1.000000
 Cr 267.716 {126}	5/13/2016 15:30:16	5/13/2016 15:30:16	Linear	1/Conc	0.000139	0.029321	0.000000	1.000000
 Cu 224.700 {450}	5/13/2016 15:30:16	5/13/2016 15:30:16	Linear	1/Conc	-0.000073	0.071649	0.000000	1.000000
 Fe 261.187 {129}	5/13/2016 15:30:16	5/13/2016 15:30:16	Linear	1/Conc	-0.000115	0.012628	0.000000	1.000000
 K 766.490 { 44}	5/13/2016 15:30:16	5/13/2016 15:30:16	Linear	1/Conc	0.008877	0.036923	0.000000	1.000000
 Li 670.784 { 50}	5/13/2016 15:30:16	5/13/2016 15:30:16	Linear	1/Conc	0.009068	0.762455	0.000000	1.000000
 Mg 279.079 {121}	5/13/2016 15:30:16	5/13/2016 15:30:16	Linear	1/Conc	-0.000022	0.003020	0.000000	1.000000
 Mn 257.610 {131}	5/13/2016 15:30:16	5/13/2016 15:30:16	Linear	1/Conc	0.000521	0.157649	0.000000	1.000000
 Mo 202.030 {467}	5/13/2016 15:30:16	5/13/2016 15:30:16	Linear	1/Conc	0.000003	0.098620	0.000000	1.000000
 Na 589.592 { 57}	5/13/2016 15:30:16	5/13/2016 15:30:16	Linear	1/Conc	-0.022435	0.107736	0.000000	1.000000
 Ni 231.604 {446}	5/13/2016 15:30:16	5/13/2016 15:30:16	Linear	1/Conc	-0.000437	0.079748	0.000000	1.000000
 P 214.914 {457}	5/13/2016 15:30:16	5/13/2016 15:30:16	Linear	1/Conc	-0.000124	0.007038	0.000000	1.000000
 Pb 220.353 {453}	5/13/2016 15:30:16	5/13/2016 15:30:16	Linear	1/Conc	-0.000253	0.035386	0.000000	1.000000
 Sb 206.833 {463}	5/13/2016 15:30:16	5/13/2016 15:30:16	Linear	1/Conc	-0.000007	0.017962	0.000000	1.000000
 Se 196.090 (472)	5/13/2016 15:30:16	5/13/2016 15:30:16	Linear	1/Conc	-0.000112	0.007967	0.000000	1.000000
 Si 212.412 {459}	5/13/2016 15:30:16	5/13/2016 15:30:16	Linear	1/Conc	0.000785	0.022813	0.000000	1.000000
 Sn 189.989 {477}	5/13/2016 15:30:16	5/13/2016 15:30:16	Linear	1/Conc	0.000006	0.036878	0.000000	1.000000
 Sr 407.771 { 83}	5/13/2016 15:30:16	5/13/2016 15:30:16	Linear	1/Conc	0.001516	2.347713	0.000000	1.000000
 Ti 337.280 {100}	5/13/2016 15:30:16	5/13/2016 15:30:16	Linear	1/Conc	-0.001589	0.075569	0.000000	1.000000
 TI 190.856 (477)	5/13/2016 15:30:16	5/13/2016 15:30:16	Linear	1/Conc	-0.000199	0.015102	0.000000	1.000000
 V 292.402 (115)	5/13/2016 15:30:16	5/13/2016 15:30:16	Linear	1/Conc	0.000036	0.027076	0.000000	1.000000
 Y 224.306 (450)*	<not fit=""></not>	<never calibrated=""></never>	Linear	1/Conc	0.000000	0.000000	0.000000	1.000000
 Y 360.073 { 94}*	<not fit=""></not>	<never calibrated=""></never>	Linear	1/Conc	0.000000	0.000000	0.000000	1.000000
 Y 377.433 { 89}*	<not fit=""></not>	<never calibrated=""></never>	Linear	1/Conc	0.000000	0.000000	0.000000	1.000000
 Zn 206.200 {463}	5/13/2016 15:30:16	5/13/2016 15:30:16	Linear	1/Conc	0.000049	0.214710	0.000000	1.000000
 Zr 339.198 { 99}	5/13/2016 15:30:16	5/13/2016 15:30:16	Linear	1/Conc	-0.005412	0.001383	0.000000	1.000000

	Element,	Oud E of		Burgara Burgara		Reslope		QC Norm		
Wavelength and Order	Correlation	Std Error of Est	Predicted MDL	Predicted MQL	Status	Slope	Y-int	Slope factor	Offset	
	Ag 328.068 {103}	0.999397	0.000002	0.002327	0.007756	OK.	1.000000	0.000000	1	0
	Al 308.215 {109}	0.999677	0.000007	0.009748	0.032492	OK.	1.000000	0.000000	1	0
	As 189.042 {478}	0.999450	0.000002	0.004003	0.013344	OK.	1.000000	0.000000	1	0
	B 249.678 {135}	0.999603	0.000002	0.003142	0.010474	OK.	1.000000	0.000000	1	0
	Ba 455.403 { 74}	0.999965	0.000074	0.001069	0.003564	OK.	1.000000	0.000000	1	0
	Be 313.107 {108}	0.999631	0.000004	0.000087	0.000291	OK.	1.000000	0.000000	1	0
	Ca 422.673 { 80}	0.999844	0.000033	0.038290	0.127635	OK.	1.000000	0.000000	1	0
	Cd 228.802 {447}	0.999374	0.000003	0.000311	0.001038	OK.	1.000000	0.000000	1	0
	Co 228.616 {447}	0.999780	0.000006	0.000470	0.001567	OK.	1.000000	0.000000	1	0
	Cr 267.716 {126}	0.999693	0.000002	0.001337	0.004456	OK.	1.000000	0.000000	1	0
	Cu 224.700 {450}	0.999660	0.000006	0.001585	0.005285	OK.	1.000000	0.000000	1	0
	Fe 261.187 {129}	0.999791	0.000007	0.028492	0.094973	OK.	1.000000	0.000000	1	0
•	K 766.490 { 44}	0.999977	0.000079	0.113397	0.377991	OK.	1.000000	0.000000	1	0
	Li 670.784 { 50}	0.999968	0.000060	0.005333	0.017775	OK.	1.000000	0.000000	1	0
	Mg 279.079 {121}	0.997725	0.000020	0.129639	0.432131	OK.	1.000000	0.000000	1	0
	Mn 257.610 (131)	0.999493	0.000016	0.003159	0.010530	OK.	1.000000	0.000000	1	0
	Mo 202.030 {467}	0.999765	0.000014	0.000522	0.001739	OK.	1.000000	0.000000	1	0
	Na 589.592 { 57}	0.999988	0.000170	0.034908	0.116361	OK.	1.000000	0.000000	1	0
	Ni 231.604 {446}	0.999602	0.000007	0.001323	0.004409	OK.	1.000000	0.000000	1	0
	P 214.914 {457}	0.999586	0.000013	0.009193	0.030643	OK.	1.000000	0.000000	1	0
	Pb 220.353 {453}	0.997669	0.000008	0.004255	0.014184	OK.	1.000000	0.000000	1	0
	Sb 206.833 {463}	0.999490	0.000004	0.004960	0.016532	OK.	1.000000	0.000000	1	0
•••••	Se 196.090 (472)	0.998879	0.000001	0.009004	0.030013	OK.	1.000000	0.000000	1	0
	Si 212.412 {459}	0.999961	0.000006	0.002689	0.008965	OK.	1.000000	0.000000	1	0
	Sn 189.989 {477}	0.999828	0.000004	0.001128	0.003760	OK.	1.000000	0.000000	1	0
••••	Sr 407.771 { 83}	0.999977	0.000102	0.000477	0.001589	OK.	1.000000	0.000000	1	0
	Ti 337.280 {100}	0.999659	0.000013	0.008016	0.026720	OK.	1.000000	0.000000	1	0
	TI 190.856 {477}	0.999952	0.000001	0.003949	0.013164	OK.	1.000000	0.000000	1	0
	V 292.402 {115}	0.999702	0.000004	0.001327	0.004424	OK.	1.000000	0.000000	1	0
•	Y 224.306 {450}*	0.000000	0.000000	-1.000000	-1.000000	Warnin	1.000000	0.000000	1	0
•	Y 360.073 { 94}*	0.000000	0.000000	-1.000000	-1.000000	Warnin	1.000000	0.000000	1	0
	Y 377.433 { 89}*	0.000000	0.000000	-1.000000	-1.000000	Warnin		0.000000	1	0
	Zn 206.200 {463}	0.999870	0.000022	0.000261	0.000869	OK.	1.000000	0.000000	1	0
••••	Zr 339.198 { 99}	0.451844	0.000017	0.746542	2.488474	OK.		0.000000	1	0

Sample Name: S0 Acquired: 5/13/2016 15:10:43 Type: Cal

Method: ICP-THERMO3_6010_200.7WATER_3YLINES(v872) Mode: IR Corr. Factor: 1.000000

User: JYH Custom ID1: Custom ID2: Custom ID3:

Comment:

Elem	Ag3280	Al3082	As1890	B_2496	Ba4554	Be3131	Ca4226	
Units	Cts/S	Cts/S	Cts/S	Cts/S	Cts/S	Cts/S	Cts/S	
Avg	00012	.00070	00003	.00006	.01168	. 00020	.00189	
Stddev	.00004	.00001	.00006	.00002	.00058	.00002	.00048	
%RSD	31.284	1.1823	210.76	40.017	5.0017	10.772	25.596	
#1	00016	.00070	.00003	.00005	.01156	.00019	.00171	
#2	00008	.00071	00008	.00008	.01116	.00020	.00152	
#3	00011	.00069	00003	.00004	.01231	.00023	.00244	
Elem	Cd2288	Co2286	Cr2677	Cu2247	Fe2611	K_7664	Li6707	
Units	Cts/S	Cts/S	Cts/S	Cts/S	Cts/S	Cts/S	Cts/S	
Avg	.00002	00014	.00014	00007	00011	.00888	. 00907	
Stddev	.00004	.00004	.00002	.00008	.00025	.00088	.00282	
%RSD	156.64	31.380	15.789	105.32	214.31	9.8844	31.107	
#1	.00002	00012	.00016	00002	.00006	.00957	.01042	
#2	.00006	00011	.00013	00004	00001	.00789	.00583	
#3	00001	00019	.00012	00016	00040	.00917	.01096	
Elem	Mg2790	Mn2576	Mo2020	Na5895	Ni2316	P_2149	Pb2203	
Units	Cts/S	Cts/S	Cts/S	Cts/S	Cts/S	Cts/S	Cts/S	
Avg	00002	. 00052	. 00000	02244	00044	00012	00025	
Stddev	.00082	.00018	.00002	.00190	.00007	.00002	.00001	
%RSD	3790.1	34.283	796.61	8.4859	16.061	13.902	4.4115	
#1	00028	.00072	00001	02451	00041	00014	00025	
#2	00068	.00046	00001	02076	00038	00012	00027	
#3	.00090	.00038	.00003	02205	00052	00011	00025	
Elem	Sb2068	Se1960	Si2124	Sn1899	Sr4077	Ti3372	TI1908	
Units	Cts/S	Cts/S	Cts/S	Cts/S	Cts/S	Cts/S	Cts/S	
Avg	00001	00011	.00078	.00001	. 00152	00159	00020	
Stddev	.00005	.00005	.00008	.00002	.00028	.00048	.00005	
%RSD	768.84	46.072	10.387	300.68	18.576	30.060	25.675	
#1	.00002	00014	.00074	.00002	.00156	00165	00026	
#2	00007	00014	.00074	00001	.00122	00203	00016	
#3	.00003	00005	.00088	.00001	.00177	00108	00018	

Sample Name: S0 Acquired: 5/13/2016 15:10:43 Type: Cal Method: ICP-THERMO3_6010_200.7WATER_3YLINES(v872) Mode: IR Corr. Factor: 1.000000 User: JYH Custom ID1: Custom ID2: Custom ID3: Comment: Elem V_2924 Zn2062 Zr3391 Units Cts/S Cts/S Cts/S Avg .00004 .00005 -.00541 Stddev .00005 .00004 .00047 %RSD 127.25 73.762 8.6069 #1 .00006 .00005 -.00590 #2 .00007 .00001 -.00497 #3 -.00002 .00009 -.00537 Y_3600 Y_2243 Y_3774 Int. Std. Cts/S Cts/S Units Cts/S 3975.8 12487. 88616. Avg Stddev 276. 29. 51.8 %RSD 2.2139 .03246 1.3026

4009.3

4002.0

3916.1

Approved: May 16, 2016

#1

#2

#3

12475.

12770.

12217.

88645. 88614.

88588.

Sample Name: S1 Acquired: 5/13/2016 15:14:46 Type: Cal Method: ICP-THERMO3_6010_200.7WATER_3YLINES(v872) Mode: IR Corr. Factor: 1.000000 User: JYH Custom ID1: Custom ID2: Custom ID3: Comment: Ag3280 AI3082 Ba4554 Be3131 Ca4226 Cd2288 Co2286 Elem Units Cts/S Cts/S Cts/S Cts/S Cts/S Cts/S Cts/S -.00006 .00112 .02290 .00041 .00350 .00018 .00024 Avg Stddev .00006 .00005 .00152 .00002 .00080 .00004 .00005 22.943 25.110 %RSD 95.751 4.2660 6.6586 5.9498 19.869 #1 -.00013 .00117 .00040 .00382 .00017 .00025 .02131 #2 -.00004 .00109 .02434 .00040 .00258 .00013 .00019 #3 -.00002 .00109 .02305 .00044 .00409 .00022 .00029 Cr2677 Cu2247 K 7664 Mn2576 Mo2020 Elem Fe2611 Na5895 Units Cts/S Cts/S Cts/S Cts/S Cts/S Cts/S Cts/S .00028 .00013 .00014 .02246 .00078 .00079 .02308 Avg Stddev .00003 .00009 .00016 .00178 .00023 .00002 .00247 %RSD 10.325 69.651 115.74 7.9046 30.134 2.4586 10.702 #1 .00026 .00011 -.00005 .02148 .00053 .00081 .02267 #2 .00032 .00005 .00021 .02139 .00100 .00077 .02573 #3 .00027 .00022 .00024 .02451 .00080 .00079 .02084

P_2149

Cts/S

.00038

.00006

15.828

.00041

.00031

.00043

V_2924

Cts/S

.00024

.00002

9.7605

.00026

.00025

.00022

Pb2203

-.00029

.00013

45.085

-.00037

-.00036

-.00014

Zn2062

Cts/S

.00182

.00001

.57511

.00181

.00183

.00183

Cts/S

Sb2068

Cts/S

.00015

.00003

19.975

.00012

.00015

.00018

Zr3391

-.00506

.00094

18.542

-.00588

-.00404

-.00527

Cts/S

Si2124

Cts/S

.00170

.00005

2.8326

.00175

.00167

.00166

Sn1899

Cts/S

.00033

.00002

5.7364

.00032

.00031

.00035

Sr4077

Cts/S

.02000

.00104

5.1788

.02114

.01977

.01911

Ni2316

.00001

.00005

791.99

-.00005

.00003

.00004

Ti3372

-.00079

.00054

68.972

-.00102

-.00017

-.00118

Cts/S

Cts/S

Approved: May 16, 2016

Elem

Units

Avg

#1

#2

#3

Elem

Units

Stddev

%RSD

Avg

#1

#2

#3

Stddev

%RSD

Sample Name Method: ICP-T	Corr. Factor: 1.000000					
User: JYH	Custom ID)1: C	Custom ID2:	Custon	n ID3:	
Comment:						
Int. Std.	Y_2243	Y_3600	Y_3774			
Units	Cts/S	Cts/S	Cts/S			
Avg	12248.	87064.	4015.0			
Stddev	82.	404.	44.8			
%RSD	.67251	.46355	1.1155			
#1	12216.	86659.	4054.3			
#2	12186.	87068.	4024.4			
#3	12342.	87466.	3966.2			

Sample Name: S2 Acquired: 5/13/2016 15:18:50 Type: Cal

Method: ICP-THERMO3_6010_200.7WATER_3YLINES(v872) Mode: IR Corr. Factor: 1.000000

User: JYH Custom ID1: Custom ID2: Custom ID3:

Comment:

Elem	Ag3280	Al3082	As1890	B_2496	Ba4554	Be3131	Ca4226	
Units	Cts/S	Cts/S	Cts/S	Cts/S	Cts/S	Cts/S	Cts/S	
Avg	.00005	. 00144	.00003	. 00014	.03559	.00065	.00655	
Stddev	.00004	.00001	.00005	.00001	.00087	.00003	.00049	
%RSD	72.399	.35173	144.85	5.0284	2.4489	4.2514	7.4452	
#1	.00004	.00144	.00008	.00015	.03583	.00067	.00600	
#2	.00009	.00143	.00001	.00013	.03462	.00065	.00690	
#3	.00002	.00144	00000	.00015	.03631	.00062	.00676	
Elem	Cd2288	Co2286	Cr2677	Cu2247	Fe2611	K_7664	Li6707	
Units	Cts/S	Cts/S	Cts/S	Cts/S	Cts/S	Cts/S	Cts/S	
Avg	.00020	.00059	.00039	.00043	.00070	.03945	. 02014	
Stddev	.00007	.00010	.00001	.00003	.00021	.00206	.00142	
%RSD	32.924	16.863	3.4412	7.5329	30.622	5.2267	7.0534	
#1	.00027	.00058	.00038	.00043	.00087	.03718	.01984	
#2	.00015	.00069	.00040	.00046	.00046	.03996	.02168	
#3	.00018	.00049	.00039	.00040	.00077	.04121	.01888	
Elem	Mg2790	Mn2576	Mo2020	Na5895	Ni2316	P_2149	Pb2203	
Units	Cts/S	Cts/S	Cts/S	Cts/S	Cts/S	Cts/S	Cts/S	
Avg	. 00002	. 00175	. 00160	. 06657	.00031	. 00093	00003	
Stddev	.00047	.00056	.00003	.00587	.00005	.00007	.00013	
%RSD	2469.2	31.773	2.0292	8.8134	16.519	7.9686	427.88	
#1	.00051	.00199	.00163	.06452	.00025	.00102	.00006	
#2	00002	.00112	.00160	.07319	.00035	.00088	00018	
#3	00043	.00215	.00157	.06201	.00034	.00090	.00003	
Elem	Sb2068	Se1960	Si2124	Sn1899	Sr4077	Ti3372	TI1908	
Units	Cts/S	Cts/S	Cts/S	Cts/S	Cts/S	Cts/S	Cts/S	
Avg	.00036	00009	. 00268	.00062	.03955	00008	00008	
Stddev	.00007	.00003	.00003	.00001	.00080	.00023	.00006	
%RSD	20.122	32.453	.94196	1.6363	2.0300	280.04	69.079	
#1	.00030	00009	.00267	.00062	.04001	.00016	00009	
#2	.00034	00012	.00265	.00062	.04002	00012	00014	
#3	.00044	00007	.00270	.00060	.03863	00029	00002	

Approved: May 16, 2016

J'ye 1hu

Sample Name: S2 Acquired: 5/13/2016 15:18:50 Type: Cal

Method: ICP-THERMO3_6010_200.7WATER_3YLINES(v872) Mode: IR Corr. Factor: 1.000000

User: JYH Custom ID1: Custom ID2: Custom ID3:

Comment:

Elem	V_2924	Zn2062	Zr3391	
Units	Cts/S	Cts/S	Cts/S	
Avg	.00048	.00352	00574	
Stddev	.00001	.00004	.00013	
%RSD	3.1137	1.2035	2.3507	
#1	.00050	.00354	00562	
#2	.00047	.00354	00570	
#3	.00047	.00347	00589	
Int. Std.	Y_2243	Y_3600	Y_3774	
Units	Cts/S	Cts/S	Cts/S	
Avg	12086.	87387 .	3931.3	
Stddev	24.	409.	21.9	
%RSD	.20222	.46749	.55619	
#1	12087.	87087.	3946.8	
#2	12062.	87852.	3940.9	
#3	12111	87221	3906.3	

Sample Name: S3 Acquired: 5/13/2016 15:22:55 Type: Cal

Method: ICP-THERMO3_6010_200.7WATER_3YLINES(v872) Mode: IR Corr. Factor: 1.000000

User: JYH Custom ID1: Custom ID2: Custom ID3:

Comment:

Elem	Ag3280	Al3082	As1890	B_2496	Ba4554	Be3131	Ca4226	
Units Avg	Cts/S . 01051	Cts/S . 04400	Cts/S . 00482	Cts/S . 00573	Cts/S 1.3934	Cts/S . 02459	Cts/S . 29219	
Stddev %RSD	.00009 .89447	.00028 .63642	.00002 .36113	.00004 .75726	.0081 .57942	.00007 .28699	.00215 .73467	
#1 #2	.01043 .01050	.04431 .04376	.00483 .00484	.00571 .00571	1.3895 1.4027	.02462 .02465	.29047 .29460	
#3	.01061	.04394	.00480	.00578	1.3880	.02451	.29152	
Elem	Cd2288	Co2286	Cr2677	Cu2247	Fe2611	K_7664	Li6707	
Units Ava	Cts/S . 01468	Cts/S . 04074	Cts/S . 01435	Cts/S . 03497	Cts/S . 05000	Cts/S 1.8429	Cts/S . 76738	
Stddev	.00011	.00026	.00003	.00008	.00047	.0087	.00714	
%RSD	.74827	.63746	.18962	.22797	.93135	.47258	.93062	
#1	.01470	.04067	.01438	.03505	.04970	1.8354	.76305	
#2 #3	.01478 .01457	.04103 .04053	.01433 .01435	.03499 .03489	.05053 .04976	1.8525 1.8409	.77562 .76345	
Elem Units	Mg2790 Cts/S	Mn2576 Cts/S	Mo2020 Cts/S	Na5895 Cts/S	Ni2316 Cts/S	P_2149 Cts/S	Pb2203 Cts/S	
Avg	.02981	.07849	.09557	5.3377	.03851	.06643	.01724	
Stddev	.00020	.00040	.00069	.0290	.00023	.00039	.00015	
%RSD	.68341	.50965	.72158	.54288	.60180	.59189	.87079	
#1	.03004	.07808	.09584	5.3168	.03840	.06615	.01710	
#2	.02972	.07888	.09610	5.3708	.03877	.06688	.01740	
#3	.02966	.07851	.09479	5.3257	.03835	.06625	.01721	
Elem	Sb2068	Se1960	Si2124	Sn1899	Sr4077	Ti3372	TI1908	
Units Ava	Cts/S . 02022	Cts/S .00300	Cts/S . 11389	Cts/S . 03587	Cts/S 2.3268	Cts/S . 07279	Cts/S . 00662	
Stddev	.00015	.00004	.00070	.00027	.0147	.00050	.00002	
%RSD	.71726	1.3919	.61455	.75793	.63181	.69025	.79439	
#1	.02025	.00301	.11344	.03569	2.3209	.07285	.00659	
#2	.02035	.00304	.11469	.03618	2.3435	.07326	.00668	
#3	.02007	.00295	.11352	.03574	2.3160	.07226	.00660	

Approved: May 16, 2016

J'ye 1hu

Acquired: 5/13/2016 15:22:55 Sample Name: S3 Type: Cal Method: ICP-THERMO3_6010_200.7WATER_3YLINES(v872) Mode: IR Corr. Factor: 1.000000 User: JYH Custom ID1: Custom ID2: Custom ID3: Comment: Elem V_2924 Zn2062 Zr3391 Units Cts/S Cts/S Cts/S Avg .02612 .20965 -.00327 Stddev .00013 .00143 .00097 %RSD .48185 .68365 29.668 #1 .02600 .20880 -.00439 #2 .02625 .21131 -.00278 #3 .02610 .20885 -.00265 Y_2243 Y_3600 Y_3774 Int. Std. Cts/S Cts/S Cts/S Units 12405. 88243. 4013.1 Avg Stddev 53. 513. 16.4 %RSD .42960 .58147 .40898

4031.3

3999.4

4008.7

Approved: May 16, 2016

#1

#2

#3

12453.

12348.

12414.

87653.

88583.

88493.

Method: ICP-THERMO3_6010_200.7WATER_3YLINES(v872) Mode: IR Corr. Factor: 1.000000

User: JYH Custom ID1: Custom ID2: Custom ID3:

Comment:

Elem	Ag3280	Al3082	As1890	B_2496	Ba4554	Be3131	Ca4226
Units	Cts/S	Cts/S	Cts/S	Cts/S	Cts/S	Cts/S	Cts/S
Avg	.02238	.09185	. 01026	. 01209	2.8141	. 05182	. 59125
Stddev	.00010	.00015	.00002	.00002	.0461	.00004	.00962
%RSD	.46770	.16822	.19015	.17724	1.6365	.06945	1.6273
#1	.02243	.09203	.01025	.01206	2.7610	.05186	.58026
#2	.02246	.09175	.01028	.01209	2.8394	.05180	.59533
#3	.02226	.09177	.01024	.01211	2.8420	.05179	.59816
Elem	Cd2288	Co2286	Cr2677	Cu2247	Fe2611	K_7664	Li6707
Units	Cts/S	Cts/S	Cts/S	Cts/S	Cts/S	Cts/S	Cts/S
Avg	.03079	. 08492	. 02990	. 07283	.10144	3.7135	1.5393
Stddev	.00002	.00018	.00007	.00015	.00186	.0569	.0113
%RSD	.07698	.21604	.23337	.20280	1.8365	1.5324	.73165
#1	.03082	.08513	.02983	.07299	.09948	3.6488	1.5263
#2	.03078	.08478	.02997	.07269	.10165	3.7559	1.5469
#3	.03078	.08487	.02990	.07282	.10319	3.7357	1.5445
Elem	Mg2790	Mn2576	Mo2020	Na5895	Ni2316	P_2149	Pb2203
Units	Cts/S	Cts/S	Cts/S	Cts/S	Cts/S	Cts/S	Cts/S
Avg	. 06094	. 15946	. 20024	10.773	.08000	. 14131	. 03583
Stddev	.00041	.00323	.00094	.148	.00023	.00031	.00010
%RSD	.67817	2.0229	.46935	1.3758	.28591	.22290	.28695
#1	.06050	.15577	.20123	10.602	.08026	.14167	.03589
#2	.06101	.16087	.20013	10.869	.07982	.14115	.03571
#3	.06132	.16175	.19936	10.847	.07993	.14110	.03589
Elem	Sb2068	Se1960	Si2124	Sn1899	Sr4077	Ti3372	TI1908
Units	Cts/S	Cts/S	Cts/S	Cts/S	Cts/S	Cts/S	Cts/S
Avg	. 04325	. 00638	.23110	. 07452	4.7195	. 14984	. 01372
Stddev	.00023	.00005	.00032	.00018	.0733	.00247	.00006
%RSD	.52940	.79498	.13891	.24797	1.5524	1.6504	.47294
#1	.04350	.00642	.23144	.07473	4.6350	.14699	.01379
#2	.04319	.00639	.23108	.07439	4.7638	.15120	.01371
#3	.04306	.00632	.23080	.07444	4.7598	.15134	.01367

Acquired: 5/13/2016 15:26:38 Sample Name: S4 Type: Cal Method: ICP-THERMO3_6010_200.7WATER_3YLINES(v872) Mode: IR Corr. Factor: 1.000000 User: JYH Custom ID1: Custom ID2: Custom ID3: Comment: Elem V_2924 Zn2062 Zr3391 Units Cts/S Cts/S Cts/S Avg .05499 .43388 -.00339 Stddev .00005 .00087 .00096 %RSD .08186 .20018 28.439 #1 .05502 .43478 -.00450 #2 .05501 .43380 -.00289 #3 .05494 .43305 -.00278 Y_2243 Y_3600 Y_3774 Int. Std. Cts/S Cts/S Cts/S Units 11770. 84022. 3985.3 Avg Stddev 30. 128. 18.7

.46955

4004.5

3967.1

3984.3

Approved: May 16, 2016

%RSD

#1

#2

#3

.25696

11736.

11791.

11785.

.15259

83969.

84169.

83930.

Sample Nam Method: ICP User: JYH Comment:		_		LINES(v872	e: QC) Mode: tom ID3:	CONC (Corr. Factor:	1.00000(
Elem	Ag3280	Al3082	As1890	B_2496	Ba4554	Be3131	Ca4226	
Units	ppm	ppm	ppm	ppm	ppm	ppm	ppm	
Avg	. 40663	10.300	. 41261	. 50661	1.0270	. 05120	10.155	
Stddev	.00204	.016	.00438	.00275	.0023	.00010	.072	
%RSD	.50050	.15839	1.0612	.54217	.22699	.18822	.70967	
#1	.40803	10.281	.41448	.50397	1.0290	.05109	10.157	
#2	.40756	10.312	.41575	.50641	1.0244	.05127	10.226	
#3	.40429	10.306	.40761	.50946	1.0275	.05124	10.082	
Check ? Value Range	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	
Elem	Cd2288	Co2286	Cr2677	Cu2247	Fe2611	K_7664	Li6707	
Units	ppm	ppm	ppm	ppm	ppm	ppm	ppm	
Avg	. 05091	. 20429	. 50702	. 50945	4.0397	50.434	1.0221	
Stddev	.00016	.00027	.00175	.00177	.0340	.186	.0027	
%RSD	.31035	.12997	.34456	.34761	.84188	.36955	.26458	
#1	.05077	.20459	.50501	.51037	4.0603	50.603	1.0250	
#2	.05108	.20407	.50781	.51057	4.0584	50.463	1.0198	
#3	.05088	.20422	.50822	.50741	4.0004	50.234	1.0213	
Check ? Value Range	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	
Elem	Mg2790	Mn2576	Mo2020	Na5895	Ni2316	P_2149	Pb2203	
Units	ppm	ppm	ppm	ppm	ppm	ppm	ppm	
Avg	10.340	. 50728	. 98119	50.682	. 50832	10.184	. 50987	
Stddev	.074	.00355	.00156	.150	.00145	.008	.00237	
%RSD	.71652	.69945	.15909	.29615	.28607	.07521	.46402	
#1	10.411	.50885	.97941	50.850	.50778	10.184	.51258	
#2	10.345	.50978	.98233	50.560	.50996	10.192	.50883	
#3	10.263	.50322	.98184	50.636	.50721	10.177	.50821	
Check ? Value Range	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	

Sample Nam Method: ICP User: JYH Comment:				_INES(v872	e: QC) Mode: tom ID3:	CONC (Corr. Factor:	1.00000(
Elem Units Avg Stddev %RSD	Sb2068 ppm 1.2478 .0041 .32766	Se1960 ppm . 40329 .00200 .49571	Si2124 ppm F 5.3730 .0016 .02928	Sn1899 ppm F 1.0550 .0019 .18397	Sr4077 ppm . 99731 .00136 .13624	Ti3372 ppm 1.0223 .0091 .88665	TI1908 ppm . 51164 .00445 .87025	
#1 #2 #3	1.2434 1.2488 1.2514	.40124 .40339 .40524	5.3717 5.3747 5.3726	1.0541 1.0572 1.0537	.99878 .99610 .99706	1.0321 1.0142 1.0205	.51593 .50704 .51196	
Check ? Value Range	Chk Pass	Chk Pass	Chk Fail 5.0000 5.0000%	Chk Fail 1.0000 5.0000%	Chk Pass	Chk Pass	Chk Pass	
Elem Units Avg Stddev %RSD	V_2924 ppm 1.0087 .0036 .35255	Zn2062 ppm 1.0165 .0011 .11174	Zr3391 ppm F .14787 .57753 390.56					
#1 #2 #3	1.0063 1.0069 1.0127	1.0155 1.0178 1.0164	.48412 .47850 51900					
Check ? Value Range	Chk Pass	Chk Pass	Chk Fail 1.0000 -5.0000%					
Int. Std. Units Avg Stddev %RSD	Y_2243 Cts/S 11932. 21. .17454	Y_3600 Cts/S 84531. 559. .66090	Y_3774 Cts/S 3922.7 66.6 1.6973					
#1 #2 #3	11948. 11908. 11941.	85101. 84507. 83985.	3911.2 3862.7 3994.4					

Sample Name Method: ICP-1 User: JYH Comment:				71	Mode: CONG	C Corr. F	Factor: 1.000000
Elem	Ag3280	Al3082	As1890	B_2496	Ba4554	Be3131	Ca4226
Units	ppm	ppm	ppm	ppm	ppm	ppm	ppm
Avg	00210	.01336	.00243	.00586	. 00081	. 00007	01574
Stddev	.00087	.00210	.00175	.00209	.00132	.00003	.06300
%RSD	41.481	15.704	72.005	35.686	163.16	37.611	400.21
#1	00307	.01097	.00318	.00672	.00232	.00007	08425
#2	00137	.01427	.00368	.00348	00007	.00011	.03969
#3	00188	.01486	.00043	.00738	.00017	.00005	00267
Check ? High Limit Low Limit	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass
Elem	Cd2288	Co2286	Cr2677	Cu2247	Fe2611	K_7664	Li6707
Units	ppm	ppm	ppm	ppm	ppm	ppm	ppm
Avg	00026	.00028	.00159	.00049	01434	. 06814	. 00100
Stddev	.00016	.00016	.00128	.00031	.02704	.04625	.00514
%RSD	60.107	57.544	80.267	64.630	188.57	67.867	515.02
#1	00029	.00010	.00204	.00026	02484	.01833	00491
#2	00040	.00040	.00258	.00036	03456	.07639	.00448
#3	00009	.00034	.00015	.00085	.01638	.10971	.00343
Check ? High Limit Low Limit	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass
Elem	Mg2790	Mn2576	Mo2020	Na5895	Ni2316	P_2149	Pb2203
Units	ppm	ppm	ppm	ppm	ppm	ppm	ppm
Avg	14732	00085	. 00310	. 01195	. 00129	. 00166	00057
Stddev	.03998	.00208	.00017	.03520	.00106	.00356	.00252
%RSD	27.135	243.76	5.5068	294.60	81.616	214.63	443.61
#1	10921	.00017	.00301	00977	.00038	00075	00321
#2	14383	00325	.00330	00694	.00245	.00575	00030
#3	18893	.00052	.00299	.05256	.00105	00002	.00181
Check ? High Limit Low Limit	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass

Sample Name Method: ICP-1 User: JYH Comment:)10_200.7W <i>A</i>	016 15:34:04 ATER_3YLINI stom ID2:	• •	Mode: CON	C Corr. F	Factor: 1.000000
Elem Units Avg Stddev %RSD	Sb2068 ppm . 00101 .00278 276.61	Se1960 ppm .00017 .00606 3614.0	Si2124 ppm .01293 .00258 19.953	Sn1899 ppm 00041 .00069 168.77	Sr4077 ppm . 00036 .00022 60.681	Ti3372 ppm . 00102 .00279 272.58	TI1908 ppm . 00018 .00334 1876.6
#1 #2 #3	.00274 00220 .00249	00678 .00291 .00437	.01575 .01068 .01237	.00038 00070 00090	.00020 .00060 .00026	00198 .00354 .00152	.00030 00322 .00346
Check ? High Limit Low Limit	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass
Elem Units Avg Stddev %RSD	V_2924 ppm . 00113 .00054 47.617	Zn2062 ppm .00101 .00023 22.627	Zr3391 ppm F23475 .23699 100.95				
#1 #2 #3	.00170 .00104 .00064	.00094 .00083 .00127	22090 00499 47836				
Check ? High Limit Low Limit	Chk Pass	Chk Pass	Chk Fail .04000 04000				
Int. Std. Units Avg Stddev %RSD	Y_2243 Cts/S 11999. 27. .22794	Y_3600 Cts/S 86618. 142. .16399	Y_3774 Cts/S 3915.3 77.6 1.9808				
#1 #2 #3	12021. 12007. 11968.	86462. 86651. 86740.	3831.0 3931.1 3983.7				

Sample Nam Method: ICP User: JYH Comment:	ne: LLICV -THERMO3_ Custom I	6010_200.7	5/13/2016 15 WATER_3Y Custom ID2:	LINES(v872	ype: Unk) Mode: tom ID3:	CONC (Corr. Factor:	1.000000
Elem	Ag3280	Al3082	As1890	B_2496	Ba4554	Be3131	Ca4226	
Units	ppm	ppm	ppm	ppm	ppm	ppm	ppm	
Avg	. 00724	. 17585	.00528	.08151	.00948	.00165	. 40796	
Stddev	.00199	.00109	.00184	.00054	.00089	.00003	.01228	
%RSD	27.442	.62236	34.894	.65877	9.3907	1.8441	3.0101	
#1	.00605	.17711	.00449	.08203	.00845	.00168	.39839	
#2	.00954	.17529	.00738	.08154	.00989	.00162	.42180	
#3	.00614	.17515	.00396	.08095	.01008	.00165	.40367	
Check ? High Limit Low Limit	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	
Elem	Cd2288	Co2286	Cr2677	Cu2247	Fe2611	K_7664	Li6707	
Units	ppm	ppm	ppm	ppm	ppm	ppm	ppm	
Avg	. 00077	.00435	. 00484	.00388	.07898	. 87648	. 08183	
Stddev	.00040	.00056	.00002	.00055	.00815	.08170	.00225	
%RSD	52.646	12.971	.45176	14.069	10.319	9.3216	2.7484	
#1	.00030	.00387	.00485	.00430	.08203	.93365	.08054	
#2	.00100	.00497	.00485	.00326	.08516	.78290	.08053	
#3	.00100	.00419	.00481	.00409	.06974	.91288	.08443	
Check ? High Limit Low Limit	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	
Elem	Mg2790	Mn2576	Mo2020	Na5895	Ni2316	P_2149	Pb2203	
Units	ppm	ppm	ppm	ppm	ppm	ppm	ppm	
Avg	. 39120	. 00566	. 00874	. 41947	.01709	. 79127	. 00577	
Stddev	.05671	.00103	.00028	.01660	.00090	.00562	.00541	
%RSD	14.498	18.228	3.1666	3.9575	5.2560	.70963	93.783	
#1	.43211	.00471	.00869	.43764	.01805	.78781	00048	
#2	.32646	.00551	.00904	.40511	.01627	.79775	.00897	
#3	.41504	.00676	.00850	.41565	.01695	.78826	.00881	
Check ? High Limit Low Limit	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	

Sample Nam Method: ICP User: JYH Comment:	ne: LLICV -THERMO3_ Custom I	6010_200.7	5/13/2016 15 WATER_3Y Custom ID2:	LINES(v872	ype: Unk) Mode: tom ID3:	CONC (Corr. Factor: 1.0000)0(
Elem Units Avg Stddev %RSD	Sb2068 ppm . 08491 .00126 1.4864	Se1960 ppm . 01730 .00278 16.057	Si2124 ppm . 87991 .00125 .14222	Sn1899 ppm . 41340 .00233 .56445	Sr4077 ppm . 04104 .00018 .44738	Ti3372 ppm . 02627 .00049 1.8632	TI1908 ppm . 16140 .00519 3.2142	
#1 #2 #3	.08634 .08445 .08395	.01616 .02047 .01528	.88125 .87972 .87877	.41465 .41484 .41071	.04124 .04101 .04087	.02671 .02575 .02636	.15571 .16586 .16263	
Check ? High Limit Low Limit	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	
Elem Units Avg Stddev %RSD	V_2924 ppm . 00830 .00123 14.870	Zn2062 ppm .01698 .00026 1.5045	Zr3391 ppm F 59.616 1.248 2.0940					
#1 #2 #3	.00963 .00719 .00808	.01689 .01727 .01679	61.044 59.077 58.728					
Check ? High Limit Low Limit	Chk Pass	Chk Pass	Chk Fail 36.000 04000					
Int. Std. Units Avg Stddev %RSD	Y_2243 Cts/S 12165. 49. .40353	Y_3600 Cts/S 87647. 865. .98710	Y_3774 Cts/S 3947.5 38.0 .96335					
#1 #2 #3	12130. 12144. 12221.	87193. 88644. 87102.	3980.7 3955.8 3906.0					

Sample Nam Method: ICP User: JYH Comment:	ne: LLICV -THERMO3_ Custom I	6010_200.7	5/13/2016 15 WATER_3Y Custom ID2:	LINES(v872	ype: Unk) Mode: tom ID3:	CONC (Corr. Factor:	1.000000
Elem	Ag3280	Al3082	As1890	B_2496	Ba4554	Be3131	Ca4226	
Units	ppm	ppm	ppm	ppm	ppm	ppm	ppm	
Avg	. 01783	. 41044	.01908	. 19453	.01973	. 00397	. 97376	
Stddev	.00124	.00997	.00392	.00089	.00093	.00003	.05285	
%RSD	6.9466	2.4280	20.561	.45560	4.7277	.83769	5.4274	
#1	.01925	.41918	.02125	.19429	.02073	.00394	.91979	
#2	.01700	.41257	.01455	.19551	.01889	.00401	.97607	
#3	.01723	.39959	.02144	.19378	.01956	.00397	1.0254	
Check ? High Limit Low Limit	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	
Elem	Cd2288	Co2286	Cr2677	Cu2247	Fe2611	K_7664	Li6707	
Units	ppm	ppm	ppm	ppm	ppm	ppm	ppm	
Avg	. 00202	.01039	. 01030	. 00877	.19339	2.1906	. 19901	
Stddev	.00010	.00039	.00067	.00020	.00921	.0413	.00545	
%RSD	5.1414	3.7673	6.4687	2.2941	4.7614	1.8843	2.7405	
#1	.00208	.01018	.01034	.00898	.19145	2.1591	.20404	
#2	.00190	.01015	.01095	.00875	.20342	2.1754	.19321	
#3	.00207	.01084	.00962	.00858	.18531	2.2373	.19977	
Check ? High Limit Low Limit	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	
Elem	Mg2790	Mn2576	Mo2020	Na5895	Ni2316	P_2149	Pb2203	
Units	ppm	ppm	ppm	ppm	ppm	ppm	ppm	
Avg	1.0314	. 01760	. 01985	1.0034	.04141	1.9264	. 02198	
Stddev	.1470	.00396	.00018	.0123	.00100	.0074	.00217	
%RSD	14.249	22.511	.90597	1.2259	2.4183	.38458	9.8584	
#1	1.0247	.02026	.02005	1.0165	.04193	1.9192	.02448	
#2	.88786	.01949	.01976	.99207	.04026	1.9340	.02064	
#3	1.1816	.01305	.01973	1.0016	.04205	1.9259	.02083	
Check ? High Limit Low Limit	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	

Sample Nam Method: ICP- User: JYH Comment:		6010_200.7	5/13/2016 15 WATER_3YI Custom ID2:	LINES(v872)	ype: Unk) Mode: tom ID3:	CONC (Corr. Factor: 1	.000000
Elem Units Avg Stddev %RSD	Sb2068 ppm . 20677 .00342 1.6559	Se1960 ppm .03998 .00655 16.381	Si2124 ppm 2.1347 .0034 .15837	Sn1899 ppm 1.0054 .0017 .16893	Sr4077 ppm . 10011 .00042 .41504	Ti3372 ppm . 06473 .00430 6.6414	TI1908 ppm . 38768 .00085 .21892	
#1 #2 #3	.20342 .20661 .21027	.04501 .04234 .03257	2.1313 2.1381 2.1346	1.0045 1.0074 1.0044	.10057 .09975 .10001	.06853 .06558 .06007	.38699 .38863 .38744	
Check ? High Limit Low Limit	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	
Elem Units Avg Stddev %RSD	V_2924 ppm . 02065 .00120 5.7920	Zn2062 ppm . 04012 .00021 .51524	Zr3391 ppm F 153.15 .71 .46112					
#1 #2 #3	.01944 .02183 .02067	.04035 .04006 .03995	153.84 153.17 152.43					
Check ? High Limit Low Limit	Chk Pass	Chk Pass	Chk Fail 36.000 04000					
Int. Std. Units Avg Stddev %RSD	Y_2243 Cts/S 12175. 29. .24202	Y_3600 Cts/S 87827. 149. .16978	Y_3774 Cts/S 4001.3 30.0 .75074					
#1 #2 #3	12141. 12197. 12185.	87848. 87669. 87965.	3973.6 3997.0 4033.2					

Sample Name Method: ICP- User: JYH Comment:					Mode: CON	C Corr. F	Factor: 1.000000
Elem	Ag3280	Al3082	As1890	B_2496	Ba4554	Be3131	Ca4226
Units	ppm	ppm	ppm	ppm	ppm	ppm	ppm
Avg	00263	264.24	. 00335	. 01888	00027	.00005	245.84
Stddev	.00163	.28	.00434	.00192	.00043	.00001	1.07
%RSD	61.838	.10783	129.61	10.180	157.96	16.200	.43556
#1	00076	264.57	.00806	.01677	00030	.00006	246.76
#2	00372	264.11	.00246	.02053	00068	.00005	246.11
#3	00342	264.05	00048	.01933	.00017	.00004	244.66
Check ? High Limit Low Limit	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass
Elem	Cd2288	Co2286	Cr2677	Cu2247	Fe2611	K_7664	Li6707
Units	ppm	ppm	ppm	ppm	ppm	ppm	ppm
Avg	00049	00084	00186	F 02303	97.246	. 17617	. 01084
Stddev	.00018	.00033	.00073	.00056	.265	.03152	.00347
%RSD	36.031	39.373	39.041	2.4348	.27260	17.894	31.982
#1	00064	00099	00174	02247	97.410	.18816	.00978
#2	00054	00046	00264	02359	97.387	.19995	.00803
#3	00029	00106	00120	02301	96.940	.14041	.01472
Check ? High Limit Low Limit	Chk Pass	Chk Pass	Chk Pass	Chk Fail .00400 00400	Chk Pass	Chk Pass	Chk Pass
Elem	Mg2790	Mn2576	Mo2020	Na5895	Ni2316	P_2149	Pb2203
Units	ppm	ppm	ppm	ppm	ppm	ppm	ppm
Avg	252.33	. 00020	00044	. 02902	00084	. 04096	00079
Stddev	1.17	.00319	.00004	.01153	.00134	.00293	.00312
%RSD	.46435	1590.2	9.3359	39.714	159.26	7.1554	392.59
#1	253.62	.00377	00039	.01884	00084	.04419	.00233
#2	252.05	00080	00047	.04153	.00050	.03848	00391
#3	251.33	00237	00045	.02670	00219	.04021	00080
Check ? High Limit Low Limit	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass

•										
Elem Units Avg Stddev %RSD	Sb2068 ppm 00750 .00373 49.752	Se1960 ppm .00329 .00842 255.88	Si2124 ppm .18164 .00370 2.0364	Sn1899 ppm 00001 .00093 18307.	Sr4077 ppm . 00008 .00028 346.34	Ti3372 ppm . 00993 .00108 10.847	TI1908 ppm 00050 .00439 878.36			
#1 #2 #3	00339 01068 00844	00325 .01279 .00034	.18184 .18523 .17784	.00078 00103 .00023	.00040 00007 00009	.01114 .00908 .00956	00289 00318 .00456			
Check ? High Limit Low Limit	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass			
Elem Units Avg Stddev %RSD	V_2924 ppm 00623 .00083 13.264	Zn2062 ppm . 00459 .00005 1.1380	Zr3391 ppm F -6.0308 .0853 1.4151							
#1 #2 #3	00567 00718 00584	.00465 .00457 .00455	-6.1162 -5.9455 -6.0306							
Check ? High Limit Low Limit	Chk Pass	Chk Pass	Chk Fail .02000 02000							
Int. Std. Units Avg Stddev %RSD	Y_2243 Cts/S 11631. 20. .17474	Y_3600 Cts/S 82439. 241. .29267	Y_3774 Cts/S 3915.5 41.0 1.0462							
#1 #2 #3	11614. 11654. 11626.	82424. 82687. 82205.	3871.0 3923.7 3951.7							

Sample Name: ICSAB Acquired: 5/13/2016 15:50:10 Type: QC Method: ICP-THERMO3_6010_200.7WATER_3YLINES(v872) Mode: CONC Corr. Factor: 1.000000 User: JYH Custom ID1: Custom ID2: Custom ID3: Comment:									
Elem	Ag3280	Al3082	As1890	B_2496	Ba4554	Be3131	Ca4226		
Units	ppm	ppm	ppm	ppm	ppm	ppm	ppm		
Avg	. 51475	261.71	. 24888	. 00282	. 24637	.25016	242.02		
Stddev	.00479	.24	.00460	.00162	.00019	.00039	.37		
%RSD	.93018	.09352	1.8500	57.460	.07600	.15745	.15455		
#1	.51986	261.97	.25375	.00204	.24658	.25057	242.45		
#2	.51037	261.68	.24460	.00174	.24626	.25014	241.87		
#3	.51402	261.48	.24829	.00468	.24625	.24978	241.74		
Check ? High Limit Low Limit	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass		
Elem	Cd2288	Co2286	Cr2677	Cu2247	Fe2611	K_7664	Li6707		
Units	ppm	ppm	ppm	ppm	ppm	ppm	ppm		
Avg	. 46466	.23338	. 24413	. 22063	94.549	5.2260	. 01201		
Stddev	.00112	.00089	.00029	.00105	.147	.0307	.00317		
%RSD	.24079	.38301	.12073	.47641	.15580	.58657	26.389		
#1	.46595	.23432	.24388	.21949	94.652	5.2176	.01097		
#2	.46399	.23328	.24445	.22157	94.380	5.2599	.01556		
#3	.46404	.23255	.24405	.22081	94.615	5.2004	.00948		
Check ? High Limit Low Limit	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass		
Elem	Mg2790	Mn2576	Mo2020	Na5895	Ni2316	P_2149	Pb2203		
Units	ppm	ppm	ppm	ppm	ppm	ppm	ppm		
Avg	245.86	. 24405	00015	5.1551	. 46626	. 06288	. 47993		
Stddev	.20	.00398	.00073	.0315	.00091	.00864	.00620		
%RSD	.08230	1.6314	492.74	.61140	.19583	13.739	1.2908		
#1	246.03	.24791	00066	5.1702	.46725	.06628	.48090		
#2	245.64	.23995	.00069	5.1762	.46546	.05306	.48559		
#3	245.91	.24429	00047	5.1189	.46606	.06931	.47331		
Check ? High Limit Low Limit	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass		

Sample Name Method: ICP-T User: JYH Comment:)10_200.7W <i>A</i>	3/2016 15:50 ATER_3YLIN stom ID2:		Mode: CON	C Corr. F	Factor: 1.000000
Elem Units Avg Stddev %RSD	Sb2068 ppm . 49394 .00466 .94247	Se1960 ppm .24492 .00631 2.5754	Si2124 ppm 01902 .00371 19.522	Sn1899 ppm .00083 .00076 92.625	Sr4077 ppm . 00004 .00031 713.51	Ti3372 ppm .01054 .00247 23.476	TI1908 ppm . 44564 .00471 1.0570
#1 #2 #3	.48978 .49308 .49897	.23772 .24947 .24758	01482 02037 02187	.00001 .00153 .00094	.00033 00029 .00009	.01320 .00831 .01010	.44058 .44643 .44990
Check ? High Limit Low Limit	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass
Elem Units Avg Stddev %RSD	V_2924 ppm . 24281 .00199 .81993	Zn2062 ppm . 47608 .00159 .33340	Zr3391 ppm F -6.3534 .3534 5.5625				
#1 #2 #3	.24051 .24385 .24405	.47791 .47524 .47509	-6.5793 -5.9461 -6.5349				
Check ? High Limit Low Limit	Chk Pass	Chk Pass	Chk Fail .02500 02500				
Int. Std. Units Avg Stddev %RSD	Y_2243 Cts/S 11683. 4. .03393	Y_3600 Cts/S 82136. 189. .23052	Y_3774 Cts/S 3974.5 18.2 .45760				
#1 #2 #3	11679. 11687. 11683.	82345. 81976. 82086.	3973.0 3957.1 3993.4				

Sample Nam Method: ICP User: JYH Comment:		_		LINES(v872	pe: QC) Mode: tom ID3:	CONC (Corr. Factor:	1.000000
Elem	Ag3280	Al3082	As1890	B_2496	Ba4554	Be3131	Ca4226	
Units	ppm	ppm	ppm	ppm	ppm	ppm	ppm	
Avg	. 37777	9.3972	. 37876	. 47225	. 95384	. 04712	9.6051	
Stddev	.00284	.0583	.00358	.00123	.07623	.00045	.6787	
%RSD	.75195	.62009	.94585	.25990	7.9920	.95988	7.0663	
#1	.37546	9.3581	.37479	.47158	1.0396	.04666	10.356	
#2	.37691	9.3692	.37973	.47150	.89376	.04712	9.0354	
#3	.38094	9.4641	.38176	.47366	.92815	.04757	9.4240	
Check ? Value Range	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	
Elem	Cd2288	Co2286	Cr2677	Cu2247	Fe2611	K_7664	Li6707	
Units	ppm	ppm	ppm	ppm	ppm	ppm	ppm	
Avg	. 04734	.19132	. 47651	.47736	3.7948	47.784	. 96262	
Stddev	.00023	.00117	.00087	.00269	.2609	3.577	.07389	
%RSD	.47956	.61331	.18213	.56350	6.8756	7.4865	7.6755	
#1	.04710	.19013	.47558	.47427	4.0846	51.795	1.0461	
#2	.04755	.19248	.47666	.47921	3.5785	44.922	.90572	
#3	.04737	.19135	.47730	.47858	3.7214	46.636	.93601	
Check ? Value Range	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	
Elem	Mg2790	Mn2576	Mo2020	Na5895	Ni2316	P_2149	Pb2203	
Units	ppm	ppm	ppm	ppm	ppm	ppm	ppm	
Avg	9.5139	. 47502	. 95278	47.813	. 47996	9.4064	. 48294	
Stddev	.7087	.03854	.00265	3.612	.00291	.0251	.00785	
%RSD	7.4489	8.1125	.27774	7.5547	.60543	.26686	1.6246	
#1	10.321	.51680	.95093	51.855	.47682	9.3826	.47445	
#2	8.9942	.44088	.95581	44.902	.48051	9.4042	.48445	
#3	9.2263	.46737	.95160	46.681	.48256	9.4326	.48993	
Check ? Value Range	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	

Sample Nam Method: ICP User: JYH Comment:		6010_200.7	13/2016 15:5 WATER_3Y Custom ID2:	LINES(v872	pe: QC) Mode: tom ID3:	CONC (Corr. Factor: 1	.000000
Elem Units Avg Stddev %RSD	Sb2068 ppm 1.1262 .0032 .28400	Se1960 ppm . 38173 .00501 1.3111	Si2124 ppm 4.8323 .0132 .27305	Sn1899 ppm . 95630 .00341 .35704	Sr4077 ppm . 95632 .06885 7.1997	Ti3372 ppm . 95030 .07873 8.2846	TI1908 ppm . 48394 .00595 1.2299	
#1 #2 #3	1.1243 1.1244 1.1299	.37745 .38051 .38724	4.8191 4.8324 4.8454	.95249 .95733 .95909	1.0350 .90693 .92707	1.0384 .88689 .92558	.48755 .47707 .48720	
Check ? Value Range	Chk Pass							
Elem Units Avg Stddev %RSD	V_2924 ppm . 94905 .00375 .39525	Zn2062 ppm . 95768 .00422 .44085	Zr3391 ppm F 1.7832 .3334 18.698					
#1 #2 #3	.94904 .95281 .94531	.95281 .96020 .96004	1.3982 1.9735 1.9778					
Check ? Value Range	Chk Pass	Chk Pass	Chk Fail 1.0000 10.000%					
Int. Std. Units Avg Stddev %RSD	Y_2243 Cts/S 12475. 54. .43357	Y_3600 Cts/S 90478. 699. .77251	Y_3774 Cts/S 4218.7 242.9 5.7580					
#1 #2 #3	12536. 12434. 12455.	91138. 90549. 89746.	3970.1 4455.4 4230.7					

•									
Elem	Ag3280	Al3082	As1890	B_2496	Ba4554	Be3131	Ca4226		
Units	ppm	ppm	ppm	ppm	ppm	ppm	ppm		
Avg	.00040	.00256	00055	. 00450	.00080	. 00004	.00060		
Stddev	.00128	.00132	.00478	.00064	.00009	.00007	.02316		
%RSD	321.45	51.504	870.70	14.229	11.584	178.15	3883.1		
#1	.00130	.00116	.00069	.00486	.00070	.00004	.00898		
#2	00107	.00274	.00349	.00376	.00083	.00011	02559		
#3	.00096	.00379	00583	.00487	.00088	00003	.01839		
Check ? High Limit Low Limit	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass		
Elem	Cd2288	Co2286	Cr2677	Cu2247	Fe2611	K_7664	Li6707		
Units	ppm	ppm	ppm	ppm	ppm	ppm	ppm		
Avg	00017	.00043	00039	00093	03289	. 05204	00026		
Stddev	.00029	.00009	.00104	.00075	.03823	.09231	.00500		
%RSD	167.99	21.016	269.67	80.602	116.25	177.39	1934.6		
#1	00039	.00051	00130	00173	06453	05140	00075		
#2	00029	.00033	00062	00024	.00959	.08146	00499		
#3	.00016	.00043	.00075	00082	04372	.12605	.00497		
Check ? High Limit Low Limit	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass		
Elem	Mg2790	Mn2576	Mo2020	Na5895	Ni2316	P_2149	Pb2203		
Units	ppm	ppm	ppm	ppm	ppm	ppm	ppm		
Avg	18028	00187	. 00360	. 00216	.00077	. 00212	00095		
Stddev	.04429	.00197	.00069	.01537	.00030	.01458	.00328		
%RSD	24.567	105.38	19.121	712.72	39.587	686.31	346.61		
#1	23126	00042	.00296	00177	.00111	00895	00261		
#2	15836	00411	.00350	.01910	.00052	.01864	.00283		
#3	15123	00107	.00433	01087	.00067	00332	00306		
Check ? High Limit Low Limit	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass		

Sample Nam Method: ICP User: JYH Comment:		6010_200.7	13/2016 15:5 WATER_3YI Custom ID2:	LINES(v872)	pe: Blank) Mode: tom ID3:	CONC (Corr. Factor:	1.000000
Elem Units Avg Stddev %RSD	Sb2068 ppm . 00731 .00284 38.864	Se1960 ppm . 00609 .00290 47.584	Si2124 ppm .00607 .00150 24.690	Sn1899 ppm . 00004 .00039 920.98	Sr4077 ppm . 00013 .00025 195.27	Ti3372 ppm . 00624 .00419 67.080	TI1908 ppm 00108 .00116 108.01	
#1 #2 #3	.00878 .00404 .00912	.00748 .00803 .00276	.00774 .00561 .00485	00035 .00005 .00043	.00005 .00041 00008	.00978 .00162 .00733	.00025 00191 00157	
Check ? High Limit Low Limit	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	
Elem Units Avg Stddev %RSD	V_2924 ppm .00066 .00029 43.380	Zn2062 ppm .00024 .00020 83.640	Zr3391 ppm F .04415 .56987 1290.7					
#1 #2 #3	.00094 .00037 .00067	.00007 .00046 .00018	.26168 60245 .47323					
Check ? High Limit Low Limit	Chk Pass	Chk Pass	Chk Fail .04000 04000					
Int. Std. Units Avg Stddev %RSD	Y_2243 Cts/S 12267. 68. .55734	Y_3600 Cts/S 88415. 867. .98011	Y_3774 Cts/S 3929.7 41.9 1.0654					
#1 #2 #3	12191. 12289. 12322.	88364. 87576. 89307.	3890.2 3925.2 3973.6					

Sample Name: PBW 13 Acquired: 5/13/2016 16:04:32 Type: Unk Method: ICP-THERMO3_6010_200.7WATER_3YLINES(v872) Mode:

Mode: CONC Corr. Factor: 1.000000

User: JYH Custom ID1: Custom ID2: Custom ID3:

Comment: WG568333-02

Elem	Ag3280	Al3082	As1890	B_2496	Ba4554	Be3131	Ca4226
Units	ppm	ppm	ppm	ppm	ppm	ppm	ppm
Avg	00297	. 00584	00154	00093	.00082	.00008	00884
Stddev	.00277	.00242	.00220	.00151	.00047	.00004	.03039
%RSD	93.168	41.391	143.45	161.82	57.125	54.773	343.61
#1	.00022	.00365	00301	00214	.00134	.00006	03888
#2	00447	.00543	.00100	00142	.00073	.00013	.02188
#3	00468	.00844	00259	.00076	.00041	.00005	00953
Check ? High Limit Low Limit	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass
Elem	Cd2288	Co2286	Cr2677	Cu2247	Fe2611	K_7664	Li6707
Units	ppm	ppm	ppm	ppm	ppm	ppm	ppm
Avg	. 00002	.00024	00025	.00052	.00168	. 04276	00187
Stddev	.00017	.00030	.00163	.00148	.01030	.07947	.00343
%RSD	678.37	126.61	657.14	285.75	611.93	185.86	183.53
#1	00015	.00033	.00016	00088	00713	.12422	00260
#2	.00005	00010	00204	.00037	00084	03456	00488
#3	.00018	.00048	.00113	.00207	.01301	.03862	.00187
Check ? High Limit Low Limit	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass
Elem	Mg2790	Mn2576	Mo2020	Na5895	Ni2316	P_2149	Pb2203
Units	ppm	ppm	ppm	ppm	ppm	ppm	ppm
Avg	08283	00133	. 00077	. 00190	. 00197	00157	. 00209
Stddev	.08706	.00158	.00017	.01810	.00018	.00732	.00202
%RSD	105.11	118.92	22.557	954.64	8.9773	465.50	96.405
#1	06229	.00016	.00057	.02031	.00217	.00080	.00020
#2	00787	00299	.00083	.00125	.00183	00979	.00187
#3	17832	00116	.00090	01587	.00191	.00427	.00421
Check ? High Limit Low Limit	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass

Sample Name: PBW 13 Acquired: 5/13/2016 16:04:32 Type: Unk Method: ICP-THERMO3_6010_200.7WATER_3YLINES(v872) Mode: CONC Corr. Factor: 1.000000 User: JYH Custom ID1: Custom ID2: Custom ID3: Comment: WG568333-02									
Elem Units Avg Stddev %RSD	Sb2068 ppm 00029 .00368 1246.2	Se1960 ppm . 00460 .00358 77.803	Si2124 ppm 00959 .00081 8.4289	Sn1899 ppm . 00042 .00064 150.87	Sr4077 ppm 00005 .00028 536.89	Ti3372 ppm . 00923 .00336 36.396	TI1908 ppm . 00393 .00054 13.647		
#1 #2 #3	00364 00089 .00364	.00862 .00346 .00173	00870 00979 01028	00020 .00108 .00039	.00020 00036 .00000	.00567 .00966 .01234	.00455 .00355 .00370		
Check ? High Limit Low Limit	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass		
Elem Units Avg Stddev %RSD	V_2924 ppm . 00128 .00066 51.569	Zn2062 ppm .00113 .00016 13.845	Zr3391 ppm F37230 .69184 185.83						
#1 #2 #3	.00066 .00121 .00198	.00098 .00114 .00129	-1.1702 00726 .06057						
Check ? High Limit Low Limit	Chk Pass	Chk Pass	Chk Fail 36.000 04000						
Int. Std. Units Avg Stddev %RSD	Y_2243 Cts/S 12598. 42. .33376	Y_3600 Cts/S 91239. 358. .39228	Y_3774 Cts/S 4040.7 14.2 .35143						
#1 #2 #3	12558. 12596. 12642.	90856. 91565. 91297.	4029.4 4056.7 4036.1						

Sample Name: LCSW 13 Acquired: 5/13/2016 16:08:35 Type: Unk

Method: ICP-THERMO3_6010_200.7WATER_3YLINES(v872) Mode: CONC Corr. Factor: 1.000000

User: JYH Custom ID1: Custom ID2: Custom ID3:

Comment: WG568333-03

Elem	Ag3280	Al3082	As1890	B_2496	Ba4554	Be3131	Ca4226	Cd2288
Units	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm
Avg	.19623	4.8637	.19617	.96010	.50068	.02423	5.0445	.02496
Stddev	.00148	.0070	.00165	.00193	.00191	.00004	.0385	.00021
%RSD	.75510	.14381	.84145	.20092	.38186	.15738	.76361	.85730
#1	.19597	4.8577	.19524	.95853	.50154	.02425	5.0401	.02494
#2	.19489	4.8619	.19808	.95951	.50200	.02425	5.0084	.02518
#3	.19782	4.8714	.19520	.96225	.49848	.02418	5.0850	.02475

Chk Pass Chk Pass Chk Pass Chk Pass Chk Pass Chk Pass Chk Pass Check? High Limit Low Limit

Elem	Co2286	Cr2677	Cu2247	Fe2611	K_7664	Li6707	Mg2790	Mn2576
Units	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm
Avg	.10145	. 24701	. 25451	1.9963	25.436	. 49816	4.9800	. 25079
Stddev	.00057	.00204	.00131	.0269	.028	.00525	.1235	.00252
%RSD	.56478	.82616	.51475	1.3482	.10817	1.0534	2.4801	1.0046
#1	.10185	.24502	.25369	2.0100	25.448	.50044	5.1158	.24847
#2	.10079	.24910	.25602	1.9653	25.455	.49216	4.9500	.25347
#3	.10170	.24691	.25382	2.0136	25.404	.50189	4.8743	.25042

Check? Chk Pass Chk Pass Chk Pass Chk Pass Chk Pass Chk Pass Chk Pass Chk Pass High Limit Low Limit

Elem Units Avg Stddev %RSD	Mo2020 ppm . 50863 .00028 .05476	Na5895 ppm 25.299 .025 .10070	Ni2316 ppm . 25273 .00169 .66799	P_2149 ppm 4.8504 .0077 .15985	Pb2203 ppm . 25524 .00337 1.3199	Sb2068 ppm . 59561 .00516 .86677	Se1960 ppm . 18947 .00969 5.1162	Si2124 ppm 2.6017 .0050 .19022
#1	.50867	25.321	.25081	4.8538	.25505	.59569	.19936	2.5980
#2	.50889	25.271	.25398	4.8558	.25870	.59040	.18906	2.5997
#3	.50834	25.305	.25341	4.8415	.25197	.60073	.17998	2.6073

Check? Chk Pass Chk Pass Chk Pass Chk Pass Chk Pass Chk Pass Chk Pass Chk Pass High Limit Low Limit

Sample Name: LCSW 13 Acquired: 5/13/2016 16:08:35 Type: Unk

Method: ICP-THERMO3_6010_200.7WATER_3YLINES(v872) Mode: CONC Corr. Factor: 1.000000

User: JYH Custom ID1: Custom ID2: Custom ID3:

Comment: WG568333-03

Elem	Sn1899	Sr4077	Ti3372	TI1908	V_2924	Zn2062	Zr3391
Units	ppm	ppm	ppm	ppm	ppm	ppm	ppm
Avg	.50431	.50277	.49561	.25453	.49319	.49801	.43907
Stddev	.00077	.00129	.00824	.00295	.00154	.00070	.29399
%RSD	.15276	.25629	1.6626	1.1575	.31270	.14123	66.958
#1	.50417	.50426	.49323	.25303	.49141	.49770	.24422
#2	.50363	.50196	.48883	.25263	.49403	.49882	.77723
#3	.50515	.50211	.50478	.25792	.49413	.49753	.29575

Check? Chk Pass Chk P

Low Limit

Int. Std.	Y_2243	Y_3600	Y_3774
Units	Cts/S	Cts/S	Cts/S
Avg	12301.	88748.	4040.1
Stddev	16.	692.	24.8
%RSD	.12762	.78017	.61427
#1	12308.	87949.	4016.0
#2	12283.	89139.	4038.7
#3	12312.	89157.	4065.6

Sample Name: F BLANK Acquired: 5/13/2016 16:12:23 Type: Unk Method: ICP-THERMO3_6010_200.7WATER_3YLINES(v872) Mode: CONC Corr. Factor: 1.000000 User: JYH Custom ID1: Custom ID2: Custom ID3: Comment: WG568186-01									
Elem	Ag3280	Al3082	As1890	B_2496	Ba4554	Be3131	Ca4226		
Units	ppm	ppm	ppm	ppm	ppm	ppm	ppm		
Avg	00070	.01938	.00193	. 00335	00063	.00011	01493		
Stddev	.00167	.00200	.00071	.00177	.00032	.00002	.01445		
%RSD	237.98	10.333	36.713	52.890	50.547	22.521	96.806		
#1	00022	.01818	.00274	.00363	00063	.00012	02568		
#2	.00067	.01826	.00155	.00496	00030	.00012	02060		
#3	00255	.02169	.00149	.00145	00094	.00008	.00150		
Check ? High Limit Low Limit	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass		
Elem	Cd2288	Co2286	Cr2677	Cu2247	Fe2611	K_7664	Li6707		
Units	ppm	ppm	ppm	ppm	ppm	ppm	ppm		
Avg	00012	.00022	.00035	00142	00151	.11307	00464		
Stddev	.00028	.00036	.00052	.00116	.00952	.10237	.00146		
%RSD	223.30	162.93	148.59	81.352	631.99	90.534	31.419		
#2 #3 Check ? High Limit Low Limit	.00014 00010 Chk Pass	.00034 .00051 Chk Pass	00009 .00022 Chk Pass	00152 00022 Chk Pass	.00006 01172 Chk Pass	.04201 .06680 Chk Pass	00543 00296 Chk Pass		
Elem	Mg2790	Mn2576	Mo2020	Na5895	Ni2316	P_2149	Pb2203		
Units	ppm	ppm	ppm	ppm	ppm	ppm	ppm		
Avg	F16443	00152	.00070	124.92	.00099	00530	00346		
Stddev	.10465	.00102	.00022	.67	.00050	.00304	.00349		
%RSD	63.646	67.535	32.025	.53839	50.749	57.289	100.97		
#1	18249	00038	.00046	124.19	.00141	00880	00405		
#2	25887	00238	.00091	125.52	.00043	00340	.00029		
#3	05192	00179	.00072	125.03	.00113	00369	00662		
Check ? High Limit Low Limit	Chk Fail 900.00 10000	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass		

Sample Name: F BLANK Acquired: 5/13/2016 16:12:23 Type: Unk Method: ICP-THERMO3_6010_200.7WATER_3YLINES(v872) Mode: CONC Corr. Factor: 1.000000 User: JYH Custom ID1: Custom ID2: Custom ID3: Comment: WG568186-01								
Elem Units Avg Stddev %RSD	Sb2068 ppm . 00046 .00431 945.76	Se1960 ppm .00287 .00225 78.466	Si2124 ppm 00727 .00169 23.284	Sn1899 ppm . 00035 .00016 45.743	Sr4077 ppm 00006 .00002 35.761	Ti3372 ppm . 01445 .00809 55.997	TI1908 ppm 00100 .00100 99.499	
#1 #2 #3	.00475 00386 .00047	.00542 .00208 .00112	00602 00660 00920	.00029 .00053 .00023	00004 00008 00008	.00630 .01456 .02249	00210 00075 00015	
Check ? High Limit Low Limit	Chk Pass s	Chk Pass						
Elem Units Avg Stddev %RSD	V_2924 ppm .00028 .00080 284.79	Zn2062 ppm . 00295 .00017 5.9116	Zr3391 ppm . 34482 .47363 137.36					
#1 #2 #3	.00067 00064 .00082	.00276 .00297 .00311	.13952 .88646 .00848					
Check ? High Limit Low Limit	Chk Pass	Chk Pass	Chk Pass					
Int. Std. Units Avg Stddev %RSD	Y_2243 Cts/S 12358. 27. .22237	Y_3600 Cts/S 88919. 151. .17014	Y_3774 Cts/S 4059.2 16.8 .41484					
#1 #2 #3	12332. 12354. 12387.	88772. 89074. 88912.	4047.5 4078.5 4051.5					

Sample Name: F BLANK Acquired: 5/13/2016 16:16:26 Type: Unk Method: ICP-THERMO3 6010 200.7WATER 3YLINES(v872) Mode: CONC Corr. Factor: 1.000000 User: JYH Custom ID1: Custom ID2: Custom ID3: Comment: WG568186-02 Al3082 As1890 B 2496 Ba4554 Ca4226 Cd2288 Elem Ag3280 Be3131 Units ppm ppm ppm ppm ppm ppm ppm ppm Avg -.00136 .00262 .00032 .00180 .09150 .00005 .40009 .00004 Stddev .00203 .00448 .00383 .00146 .00028 .00010 .01617 .00009 %RSD 149.49 170.61 1200.0 80.928 .30966 195.44 4.0426 264.10 #1 .00099 .00288 -.00377 .00295 .09183 .00014 .00011 .41012 #2 -.00252 -.00197 .00091 .00229 .09137 -.00007 .38143 -.00004 #3 -.00255 .00697 .00382 .00016 .09131 .00011 .40872 .00000 Chk Pass Chk Pass Chk Pass Chk Pass Check? Chk Pass Chk Pass Chk Pass **High Limit** Low Limit Elem Co2286 Cr2677 Cu2247 Fe2611 K_7664 Li6707 Mg2790 Mn2576 Units ppm ppm ppm ppm ppm ppm ppm ppm .00033 .00000 .00070 -.00516 .00074 -.00061 Avg .04708 .04970 .00035 .00059 .01100 .00141 .09314 Stddev .00030 .04479 .00147 %RSD 91.299 9134.7 83.962 213.21 95.141 191.24 187.39 240.27 #1 .00029 -.00007 .00084 -.00352 .07339 .00197 .10537 -.00025 #2 .00005 .00039 .00005 -.01688 -.00464 .00104 .10156 -.00223-.00030 .07249 -.00080 #3 .00064 .00120 .00493 -.05782 .00064 Check? Chk Pass Chk Pass Chk Pass Chk Pass Chk Pass Chk Pass Chk Pass High Limit Low Limit Elem Mo2020 Na5895 Ni2316 P_2149 Pb2203 Sb2068 Se1960 Si2124 Units ppm ppm ppm ppm ppm ppm ppm ppm -.00004 1.7283 .00034 -.00321 .00271 .00259 -.00023 -.00482 Avg .00013 .00039 .00262 .00253 .00425 Stddev .0101 .00137 .00174 114.11 52.918 %RSD 331.28 .58166 81.724 93.315 1850.9 36.063 #1 -.00003 -.00193 1.7306 .00078 .00354 .00378 -.00500 -.00675 .00019 .00008 -.00623 .00290 #2 1.7173 -.00013 .00317 -.00431 #3 -.00017 1.7370 .00005 -.00147 .00473 .00109 .00114 -.00339 Check? Chk Pass Chk Pass Chk Pass Chk Pass Chk Pass Chk Pass **Chk Pass** High Limit

Approved: May 16, 2016

Low Limit

Sample Name: F BLANK Acquired: 5/13/2016 16:16:26 Type: Unk								
Method: ICP-THERMO3_6010_200.7WATER_3YLINES(v872) Mode: CONC Corr. Factor: 1.000000								
User: JYH	Custom	ID1:	Custom ID)2: (Custom ID3	:		
Comment: \	VG568186-0)2						
Elem	Sn1899	Sr4077	Ti3372	TI1908	V_2924	Zn2062	Zr3391	
Units	ppm	ppm	ppm	ppm	ppm	ppm	ppm	
Avg Stddev	00001 .00044	. 08056 .00042	. 00522 .00040	. 00242 .00475	00022 .00039	. 00348 .00024	. 29297 .88809	
%RSD	4355.0	.52279	7.7151	196.16	175.43	7.0358	303.13	
#1	00049	.08044	.00485	00306	00029	.00326	01915	
#2	.00037	.08103	.00516	.00531	.00020	.00344	1.2950	
#3	.00009	.08021	.00565	.00501	00057	.00374	39693	
Check ? High Limit Low Limit	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	
Int. Std.	Y 2243	Y 3600	Y 3774					
Units	_Cts/S	_Cts/S	_Cts/S					
Avg	12762.	92528.	4107.6					
Stddev %RSD	33. .25838	298. .32193	20.9 .50914					
%K3D	.23030	.32 193	.50914					
#1	12800.	92287.	4083.7					
#2	12737.	92436.	4116.1					
#3	12750.	92861.	4122.8					

Sample Name: L1605043505 Acquired: 5/13/2016 16:20:29 Type: Unk

Method: ICP-THERMO3_6010_200.7WATER_3YLINES(v872) Mode: CONC Corr. Factor: 1.000000

User: JYH Custom ID1: Custom ID2: Custom ID3:

Comment: WG568333-01

Elem	Ag3280	Al3082	As1890	B_2496	Ba4554	Be3131	Ca4226
Units	ppm	ppm	ppm	ppm	ppm	ppm	ppm
Avg	00232	. 02633	.00082	. 25550	.02996	.00004	4.0822
Stddev	.00111	.00044	.00260	.00196	.00128	.00010	.0623
%RSD	47.863	1.6538	316.33	.76892	4.2703	253.43	1.5257
#1	00131	.02679	.00205	.25498	.02922	.00016	4.0142
#2	00213	.02630	.00257	.25767	.03143	00003	4.1365
#3	00350	.02592	00216	.25384	.02922	00001	4.0958
Check ? High Limit Low Limit	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass
Elem	Cd2288	Co2286	Cr2677	Cu2247	Fe2611	K_7664	Li6707
Units	ppm	ppm	ppm	ppm	ppm	ppm	ppm
Avg	00010	.00192	. 00204	. 00014	. 09274	2.0015	. 01753
Stddev	.00019	.00012	.00051	.00091	.04439	.0909	.00238
%RSD	186.56	6.2343	24.909	631.06	47.866	4.5409	13.557
#1	.00008	.00200	.00252	.00086	.06335	1.8970	.01556
#2	00030	.00197	.00209	00088	.14380	2.0618	.01685
#3	00008	.00178	.00151	.00045	.07106	2.0458	.02017
Check ? High Limit Low Limit	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass
Elem	Mg2790	Mn2576	Mo2020	Na5895	Ni2316	P_2149	Pb2203
Units	ppm	ppm	ppm	ppm	ppm	ppm	ppm
Avg	. 76082	. 01987	. 03924	F 442.57	. 07986	. 00457	. 00144
Stddev	.09864	.00156	.00040	.58	.00170	.00619	.00269
%RSD	12.965	7.8404	1.0240	.13097	2.1311	135.65	187.39
#1	.87069	.01932	.03966	442.35	.07861	00133	.00385
#2	.73190	.01867	.03919	443.22	.07916	.01102	00147
#3	.67987	.02163	.03886	442.12	.08180	.00400	.00193
Check ? High Limit Low Limit	Chk Pass	Chk Pass	Chk Pass	Chk Fail 270.00 50000	Chk Pass	Chk Pass	Chk Pass

Approved: May 16, 2016

J'ye 1hu

Sample Name: L1605043505 Acquired: 5/13/2016 16:20:29 Type: Unk Method: ICP-THERMO3_6010_200.7WATER_3YLINES(v872) Mode: CONC Corr. Factor: 1.000000 User: JYH Custom ID1: Custom ID2: Custom ID3: Comment: WG568333-01 Sb2068 Se1960 Si2124 Sn1899 Sr4077 Ti3372 TI1908 Elem Units ppm ppm ppm ppm ppm ppm ppm -.00009 1.9195 -.00059 .26429 -.00067 Avg -.00114 .00297 Stddev .00152 .00383 .0041 .00096 .00074 .00195 .00218 324.19 %RSD 133.52 4075.4 .21334 163.24 .28131 65.647 #1 -.00180 .00110 1.9215 -.00038 .26356 .00425 .00178 #2 .00060 -.00438 1.9222 -.00164 .26504 .00394 -.00240 #3 -.00222 .00300 1.9148 .00025 .26428 .00073 -.00140 **Chk Pass** Check? Chk Pass Chk Pass Chk Pass Chk Pass Chk Pass **Chk Pass** High Limit Low Limit Elem V_2924 Zn2062 Zr3391 Units ppm ppm ppm -.00048 .00211 .45071 Avg .00132 80000. .35467 Stddev %RSD 272.65 3.8707 78.692 #1 .00082 .00216 .17172 #2 -.00183 .00216 .84985 #3 -.00044 .00202 .33056 Check? Chk Pass Chk Pass **Chk Pass** High Limit Low Limit Int. Std. Y_2243 Y_3600 Y_3774 Units Cts/S Cts/S Cts/S 12093. 85195. 4046.6 Avg Stddev 30. 25.6 91. .25143 %RSD .10650 .63203 #1 12088. 85128. 4059.2 12126. 85159. 4017.2 #2

85298.

12066.

4063.5

Approved: May 16, 2016

#3

Sample Name: L1605043507S Acquired: 5/13/2016 16:24:30 Type: Unk

Method: ICP-THERMO3_6010_200.7WATER_3YLINES(v872) Mode: CONC Corr. Factor: 1.000000

User: JYH Custom ID1: Custom ID2: Custom ID3:

Comment: WG568333-04

Elem	Ag3280	Al3082	As1890	B_2496	Ba4554	Be3131	Ca4226
Units	ppm	ppm	ppm	ppm	ppm	ppm	ppm
Avg	.19236	4.8212	. 20117	1.2141	. 51456	.02427	9.0122
Stddev	.00406	.1115	.00210	.0301	.00243	.00054	.0709
%RSD	2.1085	2.3130	1.0428	2.4780	.47196	2.2355	.78632
#1	.18768	4.7080	.20242	1.1843	.51709	.02367	8.9319
#2	.19477	4.8248	.20234	1.2137	.51225	.02440	9.0660
#3	.19464	4.9309	.19874	1.2444	.51435	.02474	9.0386
Check ? High Limit Low Limit	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass
Elem	Cd2288	Co2286	Cr2677	Cu2247	Fe2611	K_7664	Li6707
Units	ppm	ppm	ppm	ppm	ppm	ppm	ppm
Avg	. 02478	.09817	.23982	. 24556	2.0258	26.839	. 50214
Stddev	.00038	.00019	.00656	.00062	.0312	.033	.00666
%RSD	1.5196	.19529	2.7341	.25203	1.5423	.12175	1.3270
#1	.02494	.09803	.23279	.24563	2.0619	26.858	.50718
#2	.02434	.09810	.24091	.24614	2.0081	26.801	.49458
#3	.02504	.09839	.24577	.24491	2.0074	26.857	.50465
Check ? High Limit Low Limit	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass
Elem	Mg2790	Mn2576	Mo2020	Na5895	Ni2316	P_2149	Pb2203
Units	ppm	ppm	ppm	ppm	ppm	ppm	ppm
Avg	5.7298	. 26414	. 54247	F 466.99	. 32243	4.9624	. 24423
Stddev	.1041	.00151	.00166	2.65	.00102	.0055	.00603
%RSD	1.8164	.57074	.30607	.56696	.31716	.10985	2.4708
#1	5.7218	.26516	.54355	469.94	.32361	4.9685	.23831
#2	5.6299	.26241	.54331	466.23	.32187	4.9604	.25037
#3	5.8376	.26485	.54056	464.81	.32181	4.9582	.24402
Check ? High Limit Low Limit	Chk Pass	Chk Pass	Chk Pass	Chk Fail 270.00 50000	Chk Pass	Chk Pass	Chk Pass

Sample Name: L1605043507S Acquired: 5/13/2016 16:24:30 Type: Unk Method: ICP-THERMO3_6010_200.7WATER_3YLINES(v872) Mode: CONC Corr. Factor: 1.000000 User: JYH Custom ID1: Custom ID2: Custom ID3: Comment: WG568333-04 Sb2068 Se1960 Si2124 Sn1899 Sr4077 Ti3372 TI1908 Elem Units ppm ppm ppm ppm ppm ppm ppm .75795 .59547 .19414 .49832 .22993 Avg 4.5721 .49331 Stddev .00217 .01268 .0067 .00080 .00259 .01076 .00181 .34139 %RSD .36506 6.5313 .14717 .16259 2.1596 .78907 #1 .59612 .20259 .49321 .76089 .50594 4.5775 .23114 #2 .59723 .20026 4.5744 .49416 .75692 .50301 .22784 #3 .59304 .17956 4.5646 .49257 .75603 .48601 .23080 **Chk Pass** Check? Chk Pass Chk Pass Chk Pass Chk Pass Chk Pass **Chk Pass** High Limit Low Limit Elem V_2924 Zn2062 Zr3391 Units ppm ppm ppm .48809 .49940 .35265 Avg .01299 .00078 Stddev .28008 %RSD .15686 79.422 2.6621 #1 .47344 .49939 .67018 #2 .49264 .50018 .24701 #3 .49862 .14075 .49820 Chk Pass Check? Chk Pass **Chk Pass** High Limit Low Limit Int. Std. Y_2243 Y_3600 Y_3774 Units Cts/S Cts/S Cts/S 11791. 84580. 4051.9 Avg Stddev 1447. 35.9 41. .34563 %RSD 1.7111 .88653 #1 11836. 86122. 4064.1 11757. 84366. 4011.5 #2

Approved: May 16, 2016

#3

11781.

83251.

4080.1

Sample Name: L1605043509SD Acquired: 5/13/2016 16:28:18 Type: Unk

Method: ICP-THERMO3_6010_200.7WATER_3YLINES(v872) Mode: CONC Corr. Factor: 1.000000

User: JYH Custom ID1: Custom ID2: Custom ID3:

Comment: WG568333-05

Elem	Ag3280	Al3082	As1890	B_2496	Ba4554	Be3131	Ca4226
Units	ppm	ppm	ppm	ppm	ppm	ppm	ppm
Avg	. 19790	4.9457	.20075	1.2596	. 52021	. 02488	9.2296
Stddev	.00615	.1080	.00101	.0295	.00024	.00050	.0181
%RSD	3.1054	2.1831	.50162	2.3391	.04654	1.9897	.19608
#1	.19482	4.8923	.19974	1.2462	.52048	.02464	9.2314
#2	.19391	4.8748	.20176	1.2392	.52014	.02455	9.2107
#3	.20498	5.0699	.20075	1.2934	.52002	.02545	9.2467
Check ? High Limit Low Limit	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass
Elem	Cd2288	Co2286	Cr2677	Cu2247	Fe2611	K_7664	Li6707
Units	ppm	ppm	ppm	ppm	ppm	ppm	ppm
Avg	. 02438	.09854	. 24602	. 24405	2.0463	27.041	. 50400
Stddev	.00044	.00029	.00644	.00137	.0272	.050	.00514
%RSD	1.7904	.29728	2.6193	.56279	1.3309	.18304	1.0193
#1	.02473	.09856	.24360	.24316	2.0161	27.037	.50609
#2	.02389	.09824	.24113	.24336	2.0542	26.994	.49815
#3	.02454	.09883	.25332	.24563	2.0688	27.093	.50777
Check ? High Limit Low Limit	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass
Elem	Mg2790	Mn2576	Mo2020	Na5895	Ni2316	P_2149	Pb2203
Units	ppm	ppm	ppm	ppm	ppm	ppm	ppm
Avg	5.7745	. 26551	. 54228	F 485.66	. 32614	4.9381	. 24176
Stddev	.1984	.00398	.00253	13.64	.00052	.0118	.00206
%RSD	3.4367	1.4991	.46647	2.8083	.16075	.23974	.85238
#1	5.6532	.26372	.54446	494.38	.32571	4.9418	.24008
#2	6.0035	.26275	.53951	492.64	.32599	4.9248	.24114
#3	5.6668	.27008	.54286	469.94	.32673	4.9476	.24406
Check ? High Limit Low Limit	Chk Pass	Chk Pass	Chk Pass	Chk Fail 270.00 50000	Chk Pass	Chk Pass	Chk Pass

Sample Name: L1605043509SD Acquired: 5/13/2016 16:28:18 Type: Unk Method: ICP-THERMO3_6010_200.7WATER_3YLINES(v872) Mode: CONC Corr. Factor: 1.000000 User: JYH Custom ID1: Custom ID2: Custom ID3: Comment: WG568333-05 Sb2068 Se1960 Si2124 Sn1899 Sr4077 Ti3372 TI1908 Elem Units ppm ppm ppm ppm ppm ppm ppm .59155 .19569 4.6669 .49203 .23068 Avg .77663 .49792 Stddev .00503 .00887 .0131 .00311 .00349 .00399 .00515 .44894 %RSD .85094 4.5319 .28074 .63174 .80150 2.2334 #1 .59149 .20588 4.6751 .49560 .49541 .23343 .77315 #2 .58654 .18975 4.6518 .48993 .77662 .49583 .22474 #3 .59661 .19143 4.6738 .49057 .78012 .50252 .23388 **Chk Pass** Check? Chk Pass Chk Pass Chk Pass Chk Pass Chk Pass **Chk Pass** High Limit Low Limit Elem V_2924 Zn2062 Zr3391 Units ppm ppm ppm .49889 .50102 Avg .48150 .01030 .32843 Stddev .00153 %RSD 2.0656 .30492 68.209 #1 .49349 .50098 .10303 #2 .49241 .49952 .64995 #3 .50257 .51077 .69153 Check? Chk Pass Chk Pass **Chk Pass** High Limit Low Limit Int. Std. Y_2243 Y_3600 Y_3774 Units Cts/S Cts/S Cts/S 11747. 82630. 3993.1 Avg Stddev 57. 1134. 43.1 .48826 1.3727 %RSD 1.0798 #1 83321. 11737. 3982.3 83248. 3956.4 #2 11808. 81321.

4040.5

Approved: May 16, 2016

#3

11695.

Sample Name Method: ICP-7 User: JYH Comment:		Type: Unk Mode: CON ID3:	C Corr. F	Factor: 1.00000(
Elem	Ag3280	Al3082	As1890	B_2496	Ba4554	Be3131	Ca4226
Units	ppm	ppm	ppm	ppm	ppm	ppm	ppm
Avg	00047	. 03741	. 00228	. 03452	. 00151	.00006	. 19638
Stddev	.00265	.00635	.00309	.00044	.00065	.00008	.02287
%RSD	563.29	16.970	135.69	1.2673	42.935	144.62	11.646
#1	00287	.03688	.00111	.03455	.00226	.00013	.20363
#2	.00237	.04401	.00579	.03407	.00113	00003	.17077
#3	00090	.03135	00006	.03495	.00114	.00006	.21475
Check ? High Limit Low Limit	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass
Elem	Cd2288	Co2286	Cr2677	Cu2247	Fe2611	K_7664	Li6707
Units	ppm	ppm	ppm	ppm	ppm	ppm	ppm
Avg	.00014	.00046	.00149	. 09329	. 15961	. 10678	00124
Stddev	.00026	.00051	.00053	.00113	.01499	.05242	.00159
%RSD	187.35	110.79	35.448	1.2096	9.3912	49.094	128.68
#1	.00003	00013	.00142	.09228	.16394	.16401	00017
#2	.00043	.00075	.00100	.09307	.17196	.09524	00307
#3	00005	.00075	.00205	.09451	.14293	.06108	00047
Check ? High Limit Low Limit	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass
Elem	Mg2790	Mn2576	Mo2020	Na5895	Ni2316	P_2149	Pb2203
Units	ppm	ppm	ppm	ppm	ppm	ppm	ppm
Avg	F13499	. 00473	. 00065	114.49	.00106	. 03913	. 00482
Stddev	.07061	.00230	.00037	.32	.00069	.00268	.00237
%RSD	52.305	48.649	57.377	.28272	64.663	6.8413	49.231
#1	15098	.00725	.00032	114.86	.00097	.03604	.00682
#2	05776	.00419	.00057	114.28	.00042	.04051	.00220
#3	19623	.00275	.00105	114.33	.00179	.04083	.00544
Check ? High Limit Low Limit	Chk Fail 900.00 10000	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass

Sample Name: L1605056503 Acquired: 5/13/2016 16:32:0 Method: ICP-THERMO3_6010_200.7WATER_3YLINES(v872) User: JYH Custom ID1: Custom ID2: C					Type: Unk Mode: CONO ID3:	C Corr. F	Factor: 1.00000(
Elem Units Avg Stddev %RSD	Sb2068 ppm . 00313 .00335 106.96	Se1960 ppm .00315 .00572 181.55	Si2124 ppm 5.8227 .0075 .12852	Sn1899 ppm 00003 .00102 3063.2	Sr4077 ppm . 00131 .00034 26.213	Ti3372 ppm . 00307 .00405 131.98	TI1908 ppm 00143 .00054 37.806
#1 #2 #3	.00173 .00071 .00696	00125 .00109 .00962	5.8186 5.8314 5.8182	.00104 00099 00015	.00099 .00167 .00127	.00709 00101 .00314	00149 00194 00086
Check ? High Limit Low Limit	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass
Elem Units Avg Stddev %RSD	V_2924 ppm .00168 .00066 39.330	Zn2062 ppm . 41084 .00138 .33604	Zr3391 ppm . 08010 .49164 613.76				
#1 #2 #3	.00244 .00135 .00125	.40925 .41171 .41156	.38126 48723 .34628				
Check ? High Limit Low Limit	Chk Pass	Chk Pass	Chk Pass				
Int. Std. Units Avg Stddev %RSD	Y_2243 Cts/S 12071. 67. .55889	Y_3600 Cts/S 86467. 253. .29283	Y_3774 Cts/S 4006.2 35.7 .89065				
#1 #2 #3	12105. 11993. 12115.	86182. 86553. 86666.	3972.7 4043.7 4002.3				

Sample Name: L1605056503PS Acquired: 5/13/2016 16:36:08 Type: Unk Method: ICP-THERMO3_6010_200.7WATER_3YLINES(v872) Mode: CONC Corr. Factor: 1.000000 User: JYH Custom ID1: Custom ID2: Custom ID3: Comment: WG568672-03 Ag3280 Al3082 B_2496 Ba4554 Ca4226 Cd2288 Elem As1890 Be3131 Units ppm ppm ppm ppm ppm ppm ppm ppm 1.0028 Avg .19513 4.9282 .19854 .49886 .02459 5.2140 .02466 Stddev .00225 .0247 .00162 .0072 .00209 .00010 .0208 .00026 %RSD 1.1538 .50078 .81357 .71508 .41924 .40521 .39836 1.0431 #1 4.9387 1.0052 5.2194 .19770 .19787 .50127 .02469 .02470 #2 .19349 4.9458 .19737 1.0084 .49781 .02457 5.1911 .02438 #3 .19421 4.9000 .20038 .99467 .49751 .02450 5.2316 .02489 Chk Pass Chk Pass Chk Pass Chk Pass Chk Pass Chk Pass Chk Pass Check? **High Limit** Low Limit Mg2790 Elem Co2286 Cr2677 Cu2247 Fe2611 K_7664 Li6707 Mn2576 Units ppm ppm ppm ppm ppm ppm ppm ppm .24923 .32959 2.1114 25.314 .25074 Avg .10020 .50287 4.9190 .00089 .00147 .0269 Stddev .00017 .069 .00592 .1249 .00077 %RSD .17259 .35702 .44479 1.2744 .27253 1.1767 2.5397 .30634 #1 .10000 .24925 .32962 2.0808 25.238 .50199 4.9451 .25055 #2 .10026 .25011 .32810 2.1316 25.373 .49745 4.7831 .25158 5.0288 .24833 2.1217 25.331 #3 .10033 .33104 .50918 .25008 Check? Chk Pass Chk Pass Chk Pass Chk Pass Chk Pass Chk Pass Chk Pass High Limit Low Limit

Elem	Mo2020	Na5895	Ni2316	P_2149	Pb2203	Sb2068	Se1960	Si2124
Units	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm
Avg	. 50313	127.53	. 25055	4.9017	. 25650	. 59230	.19156	7.8206
Stddev	.00040	.26	.00174	.0122	.00120	.00759	.00194	.0668
%RSD	.07912	.20406	.69267	.24868	.46870	1.2817	1.0106	.85440
#1	.50281	127.79	.24875	4.8931	.25788	.59005	.19377	7.7694
#2	.50300	127.27	.25067	4.8964	.25583	.58608	.19016	7.7963
#3	.50357	127.52	.25222	4.9157	.25577	.60076	.19075	7.8962

Check? Chk Pass Chk P

Sample Name: L1605056503PS Acquired: 5/13/2016 16:36:08 Type: Unk

Method: ICP-THERMO3_6010_200.7WATER_3YLINES(v872) Mode: CONC Corr. Factor: 1.000000

User: JYH Custom ID1: Custom ID2: Custom ID3:

Comment: WG568672-03

Elem	Sn1899	Sr4077	Ti3372	TI1908	V_2924	Zn2062	Zr3391
Units	ppm	ppm	ppm	ppm	ppm	ppm	ppm
Avg	.50227	.49957	.50404	.24752	.49735	.85897	.85440
Stddev	.00295	.00272	.00250	.00387	.00303	.00258	.70290
%RSD	.58636	.54497	.49545	1.5632	.60958	.30078	82.268
#1	.50230	.49706	.50627	.24316	.49681	.85618	.10841
#2	.49932	.49919	.50134	.25056	.50061	.85947	1.5043
#3	.50521	.50246	.50451	.24884	.49461	.86127	.95045

Check? Chk Pass Chk P

Low Limit

Int. Std. Units Avg Stddev %RSD	Y_2243 Cts/S 11964. 12. .10041	Y_3600 Cts/S 85377. 286. .33510	Y_3774 Cts/S 3985.9 14.3
#1	11970.	85707.	3969.8
#2	11972.	85228.	3990.8
#3	11950.	85196.	3997.0

Sample Name: L1605056503SDL Acquired: 5/13/2016 16:39:55 Type: Unk Method: ICP-THERMO3_6010_200.7WATER_3YLINES(v872) Mode: CONC Corr. Factor: 1.000000 User: JYH Custom ID1: 5 Custom ID2: Custom ID3: Comment: WG568672-04								
Elem	Ag3280	Al3082	As1890	B_2496	Ba4554	Be3131	Ca4226	Cd2288
Units	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm
Avg	00234	.00788	00206	. 01036	.00091	.00008	.03983	. 00003
Stddev	.00299	.00477	.00348	.00131	.00054	.00005	.01789	.00041
%RSD	127.92	60.542	169.19	12.601	59.165	57.547	44.916	1517.0
#1	.00111	.01305	00067	.01150	.00086	.00003	.04378	00018
#2	00409	.00367	.00051	.00893	.00040	.00010	.05541	00024
#3	00403	.00690	00602	.01064	.00148	.00011	.02029	.00050
Check ? High Limit Low Limit	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass
Elem	Co2286	Cr2677	Cu2247	Fe2611	K_7664	Li6707	Mg2790	Mn2576
Units	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm
Avg	.00036	00005	.01820	. 02087	. 04806	00250	06880	00088
Stddev	.00008	.00037	.00129	.01604	.05867	.00709	.12278	.00131
%RSD	21.122	799.59	7.0987	76.818	122.08	283.61	178.45	150.00
#1	.00028	00033	.01929	.01106	.11011	01060	.06855	00041
#2	.00037	00019	.01853	.03938	.04059	.00051	10705	00236
#3	.00043	.00038	.01677	.01219	00652	.00259	16791	.00014
Check ? High Limit Low Limit	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass
Elem	Mo2020	Na5895	Ni2316	P_2149	Pb2203	Sb2068	Se1960	Si2124
Units	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm
Avg	. 00117	22.551	.00101	. 01105	.00005	. 00071	00468	1.1608
Stddev	.00030	.134	.00037	.00573	.00087	.00218	.00541	.0095
%RSD	25.410	.59400	36.276	51.828	1738.0	305.34	115.56	.82263
#1	.00083	22.448	.00143	.00453	00074	00126	00842	1.1520
#2	.00129	22.504	.00078	.01335	00010	.00305	00713	1.1595
#3	.00139	22.703	.00082	.01527	.00098	.00035	.00152	1.1709
Check ? High Limit Low Limit	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass

Sample Nar	ne: L160505	6503SDL	Acquired	I: 5/13/2016	16:39:55	Type: Un	ık	
Method: ICF	P-THERMO3	3_6010_200	.7WATER_	3YLINES(v8	372) Mc	de: CONC	Corr. Fac	tor: 1.00000(
User: JYH	Custom	ID1: 5	Custom I	D2:	Custom ID3	3:		
Comment: \	VG568672-0)4						
Elem Units Avg Stddev %RSD	Sn1899 ppm 00027 .00063 230.14	Sr4077 ppm 00011 .00019 164.46	Ti3372 ppm . 00319 .00040 12.631	TI1908 ppm . 00168 .00606 359.79	V_2924 ppm 00056 .00105 187.77	Zn2062 ppm .08416 .00068 .80596	Zr3391 ppm . 09696 .63742 657.41	
#1 #2 #3	00075 .00044 00050	.00007 00010 00031	.00340 .00345 .00273	00474 .00730 .00249	00083 .00060 00146	.08368 .08387 .08494	.32404 .58974 62290	
Check ? High Limit Low Limit	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	
Int. Std. Units Avg Stddev %RSD	Y_2243 Cts/S 12518. 61. .48975	Y_3600 Cts/S 89863. 582. .64775	Y_3774 Cts/S 4019.8 14.3 .35564					
#1 #2 #3	12499. 12587. 12468.	89720. 89365. 90503.	4004.5 4022.2 4032.7					

Sample Name Method: ICP-T User: JYH Comment:		010_200.7W <i>A</i>	2016 16:43:5 ATER_3YLIN stom ID2:		Mode: CON	C Corr. F	Factor: 1.00000(
Elem	Ag3280	Al3082	As1890	B_2496	Ba4554	Be3131	Ca4226
Units	ppm	ppm	ppm	ppm	ppm	ppm	ppm
Avg	. 39855	10.102	. 40122	. 50195	1.0106	. 04985	10.124
Stddev	.00158	.099	.00516	.00487	.0029	.00048	.041
%RSD	.39649	.97529	1.2866	.96988	.28524	.95900	.40974
#1	.39765	10.193	.39956	.50476	1.0135	.05018	10.167
#2	.39762	9.9976	.39710	.49633	1.0106	.04930	10.122
#3	.40037	10.115	.40701	.50477	1.0077	.05006	10.084
Check ? Value Range	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass
Elem	Cd2288	Co2286	Cr2677	Cu2247	Fe2611	K_7664	Li6707
Units	ppm	ppm	ppm	ppm	ppm	ppm	ppm
Avg	. 05037	. 20321	. 50408	. 50798	4.0539	50.667	1.0183
Stddev	.00060	.00025	.00656	.00237	.0503	.331	.0037
%RSD	1.1871	.12252	1.3011	.46720	1.2414	.65419	.36336
#1	.05009	.20345	.50910	.50617	4.0578	50.697	1.0224
#2	.05105	.20322	.49666	.51067	4.1023	50.982	1.0171
#3	.04996	.20295	.50649	.50711	4.0018	50.321	1.0153
Check ? Value Range	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass
Elem	Mg2790	Mn2576	Mo2020	Na5895	Ni2316	P_2149	Pb2203
Units	ppm	ppm	ppm	ppm	ppm	ppm	ppm
Avg	10.205	. 50785	1.0061	50.870	. 50803	10.007	. 51269
Stddev	.022	.00115	.0068	.226	.00270	.043	.00475
%RSD	.21171	.22603	.67787	.44411	.53180	.42807	.92717
#1	10.229	.50816	1.0118	51.086	.50835	10.007	.50843
#2	10.194	.50881	1.0081	50.889	.51056	10.051	.51782
#3	10.191	.50658	.99854	50.635	.50518	9.9650	.51183
Check ? Value Range	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass

Sample Name: CCV Acquired: 5/13/2016 16:43:58 Type: QC Method: ICP-THERMO3_6010_200.7WATER_3YLINES(v872) Mode: CONC Corr. Factor: 1.000000 User: JYH Custom ID1: Custom ID2: Custom ID3: Comment:									
Elem Units Avg Stddev %RSD	Sb2068 ppm 1.1981 .0054 .45408	Se1960 ppm . 40665 .00952 2.3420	Si2124 ppm 5.1158 .0126 .24588	Sn1899 ppm 1.0153 .0048 .47017	Sr4077 ppm 1.0080 .0062 .61601	Ti3372 ppm 1.0105 .0042 .41142	TI1908 ppm . 50888 .00287 .56341		
#1 #2 #3	1.1926 1.2035 1.1982	.41062 .39578 .41354	5.1118 5.1299 5.1058	1.0189 1.0171 1.0099	1.0146 1.0070 1.0023	1.0148 1.0104 1.0065	.50862 .50615 .51187		
Check ? Value Range	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass		
Elem Units Avg Stddev %RSD	V_2924 ppm 1.0078 .0075 .74238	Zn2062 ppm 1.0179 .0030 .29512	Zr3391 ppm F20375 .65352 320.75						
#1 #2 #3	1.0140 .99952 1.0100	1.0184 1.0206 1.0147	.22519 95590 .11946						
Check ? Value Range	Chk Pass	Chk Pass	Chk Fail 1.0000 -10.000%						
Int. Std. Units Avg Stddev %RSD	Y_2243 Cts/S 11941 . 28. .23462	Y_3600 Cts/S 85557. 684. .79968	Y_3774 Cts/S 3894.0 31.6 .81237						
#1 #2 #3	11946. 11911. 11967.	85098. 86343. 85229.	3857.5 3911.2 3913.3						

•										
Elem	Ag3280	Al3082	As1890	B_2496	Ba4554	Be3131	Ca4226			
Units	ppm	ppm	ppm	ppm	ppm	ppm	ppm			
Avg	00176	. 01517	. 00110	. 00490	. 00170	.00006	.00255			
Stddev	.00131	.00113	.00217	.00156	.00020	.00003	.03111			
%RSD	74.225	7.4597	197.97	31.721	11.709	46.557	1218.8			
#1	00125	.01465	00087	.00509	.00156	.00008	.00395			
#2	00325	.01647	.00073	.00326	.00193	.00003	02923			
#3	00079	.01439	.00343	.00636	.00160	.00006	.03293			
Check ? High Limit Low Limit	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass			
Elem	Cd2288	Co2286	Cr2677	Cu2247	Fe2611	K_7664	Li6707			
Units	ppm	ppm	ppm	ppm	ppm	ppm	ppm			
Avg	00037	0006	.00062	.00048	03069	. 12806	00385			
Stddev	.00005	.00028	.00120	.00193	.00871	.05292	.00313			
%RSD	13.429	505.57	193.38	402.74	28.365	41.323	81.235			
#1	00043	00016	00015	.00133	03633	.18249	00450			
#2	00034	00027	.00001	.00185	03508	.07680	00659			
#3	00034	.00027	.00201	00173	02067	.12488	00045			
Check ? High Limit Low Limit	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass			
Elem	Mg2790	Mn2576	Mo2020	Na5895	Ni2316	P_2149	Pb2203			
Units	ppm	ppm	ppm	ppm	ppm	ppm	ppm			
Avg	08770	00196	. 00413	. 03217	00009	00259	00209			
Stddev	.08384	.00259	.00068	.00569	.00032	.00413	.00277			
%RSD	95.599	131.98	16.359	17.704	339.55	159.55	132.63			
#1	10276	00271	.00335	.03787	00046	00377	.00054			
#2	16298	.00092	.00450	.02649	.00008	00600	00182			
#3	.00265	00409	.00453	.03214	.00010	.00200	00498			
Check ? High Limit Low Limit	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass			

Sample Name Method: ICP-1 User: JYH Comment:		010_200.7W <i>A</i>	2016 16:47:4 ATER_3YLINI stom ID2:	• •	Mode: CON	C Corr. F	Factor: 1.000000
Elem Units Avg Stddev %RSD	Sb2068 ppm . 00867 .00187 21.613	Se1960 ppm 00304 .00856 281.78	Si2124 ppm .00697 .00208 29.826	Sn1899 ppm . 00047 .00017 35.946	Sr4077 ppm . 00009 .00017 190.29	Ti3372 ppm . 00230 .00499 217.23	TI1908 ppm .00038 .00061 160.52
#1 #2 #3	.00812 .01076 .00714	01291 .00157 .00223	.00936 .00564 .00590	.00066 .00040 .00035	00005 .00004 .00028	.00342 00316 .00662	.00000 .00005 .00108
Check ? High Limit Low Limit	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass
Elem Units Avg Stddev %RSD	V_2924 ppm . 00090 .00106 116.97	Zn2062 ppm .00018 .00025 141.02	Zr3391 ppm F81851 .54970 67.159				
#1 #2 #3	.00120 .00179 00027	00010 .00038 .00026	33599 70263 -1.4169				
Check ? High Limit Low Limit	Chk Pass	Chk Pass	Chk Fail .04000 04000				
Int. Std. Units Avg Stddev %RSD	Y_2243 Cts/S 12094. 44. .36453	Y_3600 Cts/S 86724. 571. .65887	Y_3774 Cts/S 3846.9 51.1 1.3296				
#1 #2 #3	12082. 12057. 12143.	87207. 86093. 86870.	3893.7 3854.8 3792.3				

Sample Name: L1605042705 Acquired: 5/13/2016 16:51:46 Type: Unk Method: ICP-THERMO3_6010_200.7WATER_3YLINES(v872) Mode: CONC Corr. Fac User: JYH Custom ID1: 5 Custom ID2: Custom ID3: Comment:							
Elem Units Avg Stddev %RSD	Ag3280 ppm 00237 .00126 53.049	Al3082 ppm .03742 .00319 8.5248	As1890 ppm . 00279 .00152 54.548	B_2496 ppm . 01216 .00124 10.168	Ba4554 ppm . 00189 .00099 52.480	Be3131 ppm .00001 .00005 662.57	Ca4226 ppm . 25828 .02635 10.204
#1 #2 #3	00380 00184 00146	.03374 .03934 .03918	.00454 .00200 .00183	.01250 .01078 .01318	.00299 .00106 .00163	.00001 00005 .00006	.28791 .23744 .24949
Check ? High Limit Low Limit	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass
Elem Units Avg Stddev %RSD	Cd2288 ppm F00123 .00031 25.043	Co2286 ppm .00105 .00008 7.5032	Cr2677 ppm .01789 .00056 3.1427	Cu2247 ppm F 231.88 6.33 2.7313	Fe2611 ppm 3.2022 .0454 1.4173	K_7664 ppm . 31997 .09821 30.692	Li6707 ppm 00184 .00380 206.71
#1 #2 #3	00087 00144 00136	.00096 .00111 .00107	.01804 .01837 .01727	224.76 233.97 236.90	3.2344 3.1503 3.2220	.24108 .28887 .42997	.00106 00044 00614
Check ? High Limit Low Limit	Chk Fail 4.5000 00050	Chk Pass	Chk Pass	Chk Fail 180.00 00500	Chk Pass	Chk Pass	Chk Pass
Elem Units Avg Stddev %RSD	Mg2790 ppm 01559 .06013 385.70	Mn2576 ppm .03278 .00309 9.4205	Mo2020 ppm . 00161 .00022 13.384	Na5895 ppm 1.7315 .0249 1.4357	Ni2316 ppm . 01656 .00100 6.0154	P_2149 ppm ^ ***** 	Pb2203 ppm . 03870 .00299 7.7257
#1 #2 #3	00558 08009 .03891	.03629 .03050 .03154	.00185 .00143 .00156	1.7593 1.7115 1.7237	.01578 .01623 .01768	^ ^	.03565 .04163 .03882
Check ? High Limit Low Limit	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass

Sample Name Method: ICP-T User: JYH Comment:)10_200.7W <i>A</i>	ed: 5/13/2016 ATER_3YLINI Istom ID2:		Type: Unk Mode: CONO ID3:	C Corr. F	Factor: 1.00000(
Elem Units Avg Stddev %RSD	Sb2068 ppm 00285 .00184 64.356	Se1960 ppm 00286 .00078 27.294	Si2124 ppm .14935 .00502 3.3582	Sn1899 ppm . 00077 .00090 116.85	Sr4077 ppm . 00121 .00056 46.327	Ti3372 ppm . 01330 .00516 38.822	TI1908 ppm . 00097 .00293 302.00
#1 #2 #3	00371 00411 00075	00268 00372 00219	.14356 .15194 .15253	.00092 00020 .00158	.00078 .00184 .00101	.00814 .01846 .01328	.00086 .00395 00190
Check ? High Limit Low Limit	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass
Elem Units Avg Stddev %RSD	V_2924 ppm . 00173 .00011 6.3817	Zn2062 ppm .03004 .00076 2.5263	Zr3391 ppm . 04469 .29812 667.06				
#1 #2 #3	.00185 .00164 .00170	.02916 .03047 .03048	.07527 26754 .32635				
Check ? High Limit Low Limit	Chk Pass	Chk Pass	Chk Pass				
Int. Std. Units Avg Stddev %RSD	Y_2243 Cts/S 12304. 271. 2.2059	Y_3600 Cts/S 89285. 353. .39538	Y_3774 Cts/S 4007 .1 88.7 2.2141				
#1 #2 #3	12611. 12201. 12098.	89431. 89542. 88883.	3919.5 4096.9 4005.0				

Sample Name Method: ICP-7 User: JYH Comment:)10_200.7W <i>F</i>	red: 5/13/201 ATER_3YLIN ustom ID2:				Factor: 1.00000(
Elem Units Avg Stddev %RSD	Ag3280 ppm 00188 .00146 77.783	Al3082 ppm . 01706 .00678 39.714	As1890 ppm . 00528 .00078 14.691	B_2496 ppm . 00534 .00299 56.035	Ba4554 ppm .00156 .00032 20.720	Be3131 ppm . 00005 .00008 155.67	Ca4226 ppm . 11934 .00948 7.9431
#1 #2 #3	00255 00289 00020	.02136 .02058 .00925	.00543 .00597 .00444	.00260 .00489 .00854	.00118 .00177 .00172	.00013 00003 .00005	.12560 .12398 .10843
Check ? High Limit Low Limit	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass
Elem Units Avg Stddev %RSD	Cd2288 ppm F00071 .00021 29.642	Co2286 ppm .00075 .00036 47.683	Cr2677 ppm .00880 .00060 6.8470	Cu2247 ppm 115.54 .78 .67100	Fe2611 ppm 1.5707 .0268 1.7038	K_7664 ppm .12404 .06091 49.105	Li6707 ppm 00485 .00294 60.542
#2 #3	00059 00058	.00040	.00887	115.47 116.35	1.5427 1.5960	.05835	00783 00772 00498
Check ? High Limit Low Limit	Chk Fail 4.5000 00050	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass
Elem Units Avg Stddev %RSD	Mg2790 ppm 04929 .04268 86.593	Mn2576 ppm . 01561 .00242 15.528	Mo2020 ppm . 00067 .00031 46.521	Na5895 ppm . 84180 .01983 2.3552	Ni2316 ppm . 00867 .00060 6.8721	P_2149 ppm ^ ***** 	Pb2203 ppm . 01536 .00338 22.015
#1 #2 #3	06301 00143 08342	.01400 .01443 .01840	.00083 .00031 .00087	.85325 .81890 .85323	.00818 .00850 .00933	^ ^	.01164 .01621 .01825
Check ? High Limit Low Limit	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass

Sample Name Method: ICP-1 User: JYH Comment:)10_200.7W <i>A</i>	red: 5/13/2010 ATER_3YLIN ustom ID2:		Type: Unk Mode: CONO n ID3:	C Corr. F	Factor: 1.00000(
Elem Units Avg Stddev %RSD	Sb2068 ppm . 00087 .00329 379.11	Se1960 ppm .00368 .00285 77.500	Si2124 ppm . 05973 .00091 1.5167	Sn1899 ppm . 00025 .00083 337.00	Sr4077 ppm . 00047 .00031 66.370	Ti3372 ppm . 01072 .00254 23.671	TI1908 ppm . 00082 .00274 333.13
#1 #2 #3	00291 .00307 .00245	.00066 .00632 .00406	.05868 .06028 .06022	00048 .00006 .00116	.00083 .00036 .00023	.00965 .00889 .01361	00007 00136 .00390
Check ? High Limit Low Limit	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass
Elem Units Avg Stddev %RSD	V_2924 ppm .00051 .00021 40.815	Zn2062 ppm .01533 .00028 1.8560	Zr3391 ppm . 35969 .57976 161.18				
#1 #2 #3	.00044 .00035 .00075	.01510 .01565 .01523	.74161 30742 .64489				
Check ? High Limit Low Limit	Chk Pass	Chk Pass	Chk Pass				
Int. Std. Units Avg Stddev %RSD	Y_2243 Cts/S 12627. 85. .67017	Y_3600 Cts/S 91066. 127. .13934	Y_3774 Cts/S 4073.0 64.6 1.5851				
#1 #2 #3	12724. 12589. 12568.	90923. 91164. 91112.	4141.6 4064.2 4013.4				

•										
Elem	Ag3280	Al3082	As1890	B_2496	Ba4554	Be3131	Ca4226	Cd2288		
Units	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm		
Avg	00155	. 12468	. 00067	. 06332	. 06629	.00021	. 93265	. 00047		
Stddev	.00199	.00767	.00433	.00293	.00103	.00009	.01359	.00022		
%RSD	128.42	6.1494	649.91	4.6276	1.5552	42.572	1.4571	47.210		
#1	.00055	.13305	00174	.06588	.06687	.00016	.91729	.00056		
#2	00179	.11799	00193	.06012	.06510	.00016	.94313	.00063		
#3	00341	.12301	.00567	.06396	.06689	.00031	.93752	.00022		
Check ? High Limit Low Limit	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass		
Elem	Co2286	Cr2677	Cu2247	Fe2611	K_7664	Li6707	Mg2790	Mn2576		
Units	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm		
Avg	. 00120	.00308	.00567	. 04524	. 12257	. 00615	05947	. 03328		
Stddev	.00048	.00014	.00150	.00720	.09245	.00275	.12433	.00272		
%RSD	39.726	4.5391	26.505	15.920	75.421	44.770	209.07	8.1790		
#1	.00165	.00313	.00518	.03842	.18260	.00480	09610	.03492		
#2	.00123	.00319	.00447	.05277	.16901	.00432	.07907	.03478		
#3	.00071	.00292	.00735	.04453	.01611	.00931	16136	.03013		
Check ? High Limit Low Limit	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass		
Elem	Mo2020	Na5895	Ni2316	P_2149	Pb2203	Sb2068	Se1960	Si2124		
Units	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm		
Avg	.00017	133.06	. 00400	. 00016	00068	. 00113	.00408	. 15339		
Stddev	.00066	.07	.00071	.00376	.00213	.00300	.00245	.00186		
%RSD	399.32	.05338	17.770	2351.2	312.73	265.35	60.089	1.2152		
#1	00050	133.05	.00434	.00042	00130	.00302	.00430	.15146		
#2	.00083	132.99	.00448	00372	.00169	.00270	.00640	.15354		
#3	.00016	133.13	.00318	.00379	00244	00233	.00152	.15518		
Check ? High Limit Low Limit	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass		

Sample Name: L1605042701								
			_	•	•		Corr. Factor:	1.000000
User: JYH	Custom	וטו:	Custom ID)2: (Custom ID3	:		
Comment:								
Elem	Sn1899	Sr4077	Ti3372	TI1908	V_2924	Zn2062	Zr3391	
Units	ppm	ppm	ppm	ppm	ppm	ppm	ppm	
Avg	00024	.12215	.00636	.00020	.00104	.09582	2.4780	
Stddev	.00035	.00070	.00397	.00128	.00133	.00073	.2967	
%RSD	144.43	.57459	62.432	649.78	127.98	.76685	11.974	
#1	00058	.12233	.00404	.00077	.00086	.09544	2.8200	
#2	.00012	.12138	.01094	.00109	00019	.09534	2.3255	
#3	00026	.12275	.00409	00127	.00244	.09666	2.2885	
Check ? High Limit Low Limit	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	
Int. Std. Units Avg	Y_2243 Cts/S 12073 .	Y_3600 Cts/S 86799 .	Y_3774 Cts/S 4023.5					
Stddev	25.	302.	26.0					
%RSD	.20752	.34815	.64736					
#1	12077.	86940.	4023.1					
#1 #2	12077.	87005.	3997.6					
#3	12096.	86452.	4049.7					

Sample Name Method: ICP-1 User: JYH Comment:)10_200.7W <i>A</i>	ed: 5/13/2010 ATER_3YLIN Stom ID2:		Type: Unk Mode: CONC Corr. Factor: 1.0000 ID3:		
Elem	Ag3280	Al3082	As1890	B_2496	Ba4554	Be3131	Ca4226
Units	ppm	ppm	ppm	ppm	ppm	ppm	ppm
Avg	00181	.06660	00107	. 08952	.00959	.00003	. 61200
Stddev	.00082	.00374	.00393	.00275	.00059	.00008	.01419
%RSD	44.986	5.6226	367.58	3.0674	6.1334	259.88	2.3189
#1	00275	.07081	.00000	.09257	.00907	00005	.59646
#2	00129	.06535	00543	.08724	.01023	.00011	.61527
#3	00139	.06365	.00222	.08874	.00948	.00003	.62428
Check ? High Limit Low Limit	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass
Elem	Cd2288	Co2286	Cr2677	Cu2247	Fe2611	K_7664	Li6707
Units	ppm	ppm	ppm	ppm	ppm	ppm	ppm
Avg	. 00006	.00293	.03190	.01589	.01891	9.0686	00422
Stddev	.00016	.00036	.00068	.00158	.01810	.0353	.00381
%RSD	279.44	12.186	2.1322	9.9659	95.712	.38892	90.217
#1	.00010	.00300	.03182	.01732	.00597	9.0382	00162
#2	.00019	.00254	.03126	.01419	.01117	9.0604	00245
#3	00012	.00325	.03261	.01616	.03959	9.1073	00859
Check ? High Limit Low Limit	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass
Elem	Mg2790	Mn2576	Mo2020	Na5895	Ni2316	P_2149	Pb2203
Units	ppm	ppm	ppm	ppm	ppm	ppm	ppm
Avg	F17440	. 00674	. 00538	F 2338.7	00041	. 88064	. 00267
Stddev	.09461	.00137	.00047	47.5	.00061	.00624	.00215
%RSD	54.249	20.268	8.8046	2.0295	149.11	.70842	80.794
#1	06699	.00820	.00593	2393.4	.00022	.87610	.00515
#2	24539	.00653	.00515	2308.5	00099	.87807	.00157
#3	21081	.00549	.00506	2314.2	00045	.88776	.00128
Check ? High Limit Low Limit	Chk Fail 900.00 10000	Chk Pass	Chk Pass	Chk Fail 270.00 50000	Chk Pass	Chk Pass	Chk Pass

Sample Name Method: ICP-T User: JYH Comment:)10_200.7W <i>A</i>	10_200.7WATER_3YLINES(v872)			Type: Unk Mode: CONC Corr. Factor: 1.00000 ID3:		
Elem Units Avg Stddev %RSD	Sb2068 ppm . 00891 .00221 24.807	Se1960 ppm .00468 .00416 89.028	Si2124 ppm F 76.100 .389 .51074	Sn1899 ppm . 01912 .00046 2.4149	Sr4077 ppm . 00023 .00036 155.15	Ti3372 ppm . 61792 .00738 1.1936	TI1908 ppm 00488 .00157 32.264	
#1 #2 #3	.00852 .01129 .00692	.00679 00012 .00736	76.491 76.097 75.714	.01965 .01888 .01882	00009 .00017 .00062	.61949 .62438 .60988	00612 00542 00311	
Check ? High Limit Low Limit	Chk Pass	Chk Pass	Chk Fail 36.000 -1.0000	Chk Pass	Chk Pass	Chk Pass	Chk Pass	
Elem Units Avg Stddev %RSD	V_2924 ppm . 10766 .00180 1.6703	Zn2062 ppm . 00646 .00031 4.8376	Zr3391 ppm 1.3413 .6466 48.202					
#1 #2 #3	.10562 .10835 .10901	.00640 .00619 .00680	.61397 1.5593 1.8508					
Check ? High Limit Low Limit	Chk Pass	Chk Pass	Chk Pass					
Int. Std. Units Avg Stddev %RSD	Y_2243 Cts/S 11398. 8. .06742	Y_3600 Cts/S 78485. 354. .45128	Y_3774 Cts/S 4187.3 6.1 .14619					
#1 #2 #3	11402. 11402. 11389.	78151. 78856. 78448.	4189.0 4192.4 4180.5					

Sample Name Method: ICP-T User: JYH Comment:		010_200.7W	red: 5/13/201 ATER_3YLIN stom ID2:		Type: Unk Mode: CONC Corr. Factor: 1.0000 ID3:		
Elem	Ag3280	Al3082	As1890	B_2496	Ba4554	Be3131	Ca4226
Units	ppm	ppm	ppm	ppm	ppm	ppm	ppm
Avg	00221	. 04050	00103	. 08727	. 03058	.00010	2.0502
Stddev	.00217	.00623	.00178	.00146	.00044	.00007	.0343
%RSD	98.139	15.374	173.40	1.6730	1.4451	68.541	1.6744
#1	00416	.04054	00191	.08709	.03022	.00003	2.0120
#2	.00013	.04671	00220	.08590	.03045	.00016	2.0600
#3	00261	.03426	.00102	.08881	.03108	.00009	2.0785
Check ? High Limit Low Limit	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass
Elem	Cd2288	Co2286	Cr2677	Cu2247	Fe2611	K_7664	Li6707
Units	ppm	ppm	ppm	ppm	ppm	ppm	ppm
Avg	. 00011	.00161	. 01320	. 17496	2.6556	. 22263	00265
Stddev	.00010	.00019	.00204	.00280	.0237	.03809	.00219
%RSD	94.602	11.786	15.439	1.5989	.89056	17.109	82.580
#1	.00021	.00153	.01539	.17502	2.6758	.26130	00105
#2	.00001	.00183	.01135	.17774	2.6296	.22143	00175
#3	.00010	.00148	.01286	.17214	2.6613	.18515	00514
Check ? High Limit Low Limit	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass
Elem	Mg2790	Mn2576	Mo2020	Na5895	Ni2316	P_2149	Pb2203
Units	ppm	ppm	ppm	ppm	ppm	ppm	ppm
Avg	. 20937	. 03980	. 00046	127.89	. 02612	. 01078	. 00245
Stddev	.16608	.00168	.00066	.18	.00052	.00407	.00168
%RSD	79.324	4.2157	144.24	.14226	1.9916	37.791	68.606
#1	.04499	.03996	.00038	128.08	.02672	.01547	.00297
#2	.20602	.03804	.00115	127.85	.02579	.00865	.00381
#3	.37711	.04138	00016	127.72	.02585	.00820	.00057
Check ? High Limit Low Limit	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass

Sample Name Method: ICP-T User: JYH Comment:)10_200.7W <i>A</i>	red: 5/13/2010 ATER_3YLIN stom ID2:		Type: Unk Mode: CONO ID3:	C Corr. F	Corr. Factor: 1.00000(
Elem Units Avg Stddev %RSD	Sb2068 ppm . 00348 .00345 99.315	Se1960 ppm 00334 .00425 127.26	Si2124 ppm . 21757 .00425 1.9520	Sn1899 ppm . 00016 .00023 148.01	Sr4077 ppm . 00472 .00017 3.6698	Ti3372 ppm . 00422 .00145 34.397	TI1908 ppm 00266 .00574 216.16		
#1 #2 #3	.00000 .00352 .00691	00143 00039 00822	.22232 .21625 .21415	00010 .00034 .00023	.00454 .00489 .00474	.00494 .00255 .00516	00916 00053 .00172		
Check ? High Limit Low Limit	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass		
Elem Units Avg Stddev %RSD	V_2924 ppm 00051 .00070 137.66	Zn2062 ppm .13862 .00059 .42811	Zr3391 ppm F36270 .46832 129.12						
#1 #2 #3	00128 00036 .00010	.13922 .13860 .13804	83230 .10432 36011						
Check ? High Limit Low Limit	Chk Pass	Chk Pass	Chk Fail 36.000 04000						
Int. Std. Units Avg Stddev %RSD	Y_2243 Cts/S 12022. 35. .29217	Y_3600 Cts/S 86272. 397. .46061	Y_3774 Cts/S 4062.4 16.2 .39870						
#1 #2 #3	11984. 12029. 12054.	86249. 86681. 85887.	4051.7 4054.5 4081.1						

•										
Elem	Ag3280	Al3082	As1890	B_2496	Ba4554	Be3131	Ca4226	Cd2288		
Units	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm		
Avg	00093	.00975	. 00438	. 00493	.01177	00001	. 22523	. 00522		
Stddev	.00089	.00556	.00202	.00071	.00030	.00007	.01232	.00020		
%RSD	95.948	56.969	46.189	14.332	2.5329	1098.8	5.4716	3.7426		
#1	00048	.01486	.00332	.00524	.01189	.00006	.23797	.00542		
#2	00035	.00384	.00311	.00412	.01200	00009	.21337	.00521		
#3	00196	.01056	.00672	.00543	.01144	.00001	.22434	.00503		
Check ? High Limit Low Limit	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass		
Elem	Co2286	Cr2677	Cu2247	Fe2611	K_7664	Li6707	Mg2790	Mn2576		
Units	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm		
Avg	. 00057	.00308	. 01504	.03066	.01459	00790	00429	00099		
Stddev	.00034	.00024	.00128	.01174	.06690	.00183	.02803	.00070		
%RSD	59.739	7.7977	8.5389	38.300	458.57	23.220	653.10	71.024		
#1	.00043	.00294	.01389	.01760	01725	00761	.01957	00168		
#2	.00032	.00335	.01643	.03406	03045	00986	03516	00100		
#3	.00095	.00294	.01482	.04034	.09147	00623	.00272	00028		
Check ? High Limit Low Limit	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass		
Elem	Mo2020	Na5895	Ni2316	P_2149	Pb2203	Sb2068	Se1960	Si2124		
Units	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm		
Avg	. 00082	9.2169	.00412	21.232	. 39578	. 01813	. 01165	6.5683		
Stddev	.00025	.0058	.00092	.063	.00118	.00245	.00892	.0105		
%RSD	30.307	.06273	22.282	.29465	.29732	13.535	76.567	.15925		
#1	.00111	9.2213	.00307	21.264	.39705	.01572	.00544	6.5655		
#2	.00063	9.2191	.00453	21.272	.39555	.01804	.00765	6.5798		
#3	.00074	9.2104	.00477	21.160	.39473	.02063	.02188	6.5595		
Check ? High Limit Low Limit	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass		

Sample Nar Method: ICF User: JYH Comment:		3_6010_200	.cquired: 5/1 .7WATER_: Custom IE	3YLINES(v8		ype: Unk ode: CONC :	Corr. Factor: 1	.000000
Elem Units Avg Stddev %RSD	Sn1899 ppm 2.0904 .0072 .34238	Sr4077 ppm . 00049 .00018 37.313	Ti3372 ppm .00859 .00352 41.013	TI1908 ppm 00314 .00207 65.952	V_2924 ppm .00013 .00032 235.45	Zn2062 ppm . 06180 .00022 .35562	Zr3391 ppm 2.5978 .2623 10.095	
#1 #2 #3	2.0982 2.0888 2.0842	.00064 .00054 .00029	.00487 .01187 .00902	00184 00552 00205	.00005 00013 .00048	.06205 .06173 .06163	2.6920 2.3015 2.8000	
Check ? High Limit Low Limit	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	
Int. Std. Units Avg Stddev %RSD	Y_2243 Cts/S 14718. 29. .19762	Y_3600 Cts/S 108980. 403. .36959	Y_3774 Cts/S 5222.9 21.4 .41036					
#1 #2 #3	14712. 14693. 14750.	108520. 109270. 109160.	5198.3 5232.6 5237.7					

Sample Nam Method: ICP User: JYH Comment:	ne: L1605047 -THERMO3_ Custom I	6010_200.7		• •			Corr. Factor:	1.00000(
Elem	Ag3280	Al3082	As1890	B_2496	Ba4554	Be3131	Ca4226	
Units	ppm	ppm	ppm	ppm	ppm	ppm	ppm	
Avg	00140	.08260	.00146	. 02627	.11863	. 00007	13.872	
Stddev	.00076	.00581	.00113	.00010	.00037	.00004	.086	
%RSD	54.077	7.0330	77.486	.36188	.30980	57.666	.62252	
#1	00072	.07747	.00019	.02617	.11820	.00007	13.820	
#2	00127	.08143	.00237	.02636	.11884	.00003	13.823	
#3	00222	.08891	.00182	.02627	.11884	.00011	13.971	
Check ? High Limit Low Limit	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	
Elem	Cd2288	Co2286	Cr2677	Cu2247	Fe2611	K_7664	Li6707	
Units	ppm	ppm	ppm	ppm	ppm	ppm	ppm	
Avg	00005	.00191	.00076	.00418	. 14940	1.1392	. 01759	
Stddev	.00025	.00054	.00084	.00138	.02895	.0667	.00121	
%RSD	475.69	28.148	110.52	32.975	19.380	5.8533	6.8630	
#1	00019	.00135	.00091	.00278	.14772	1.0912	.01644	
#2	.00024	.00242	00014	.00422	.17916	1.1110	.01750	
#3	00021	.00196	.00152	.00554	.12133	1.2153	.01885	
Check ? High Limit Low Limit	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	
Elem	Mg2790	Mn2576	Mo2020	Na5895	Ni2316	P_2149	Pb2203	
Units	ppm	ppm	ppm	ppm	ppm	ppm	ppm	
Avg	27.492	. 02747	.00048	F 293.72	.00313	. 83179	00037	
Stddev	.256	.00150	.00008	1.21	.00040	.00328	.00177	
%RSD	.93130	5.4442	16.241	.41154	12.864	.39446	476.24	
#1	27.368	.02799	.00056	295.09	.00359	.83505	00230	
#2	27.321	.02579	.00047	292.79	.00297	.82849	.00001	
#3	27.786	.02864	.00041	293.28	.00284	.83184	.00117	
Check ? High Limit Low Limit	Chk Pass	Chk Pass	Chk Pass	Chk Fail 270.00 50000	Chk Pass	Chk Pass	Chk Pass	

Sample Nam Method: ICP- User: JYH Comment:		6010_200.7		` ,	• •		Corr. Factor:	1.00000(
Elem Units Avg Stddev %RSD	Sb2068 ppm . 00447 .00494 110.57	Se1960 ppm .00084 .00253 300.65	Si2124 ppm 13.747 .023 .16875	Sn1899 ppm . 00103 .00112 108.25	Sr4077 ppm . 22431 .00092 .40927	Ti3372 ppm . 00730 .00618 84.599	TI1908 ppm 00016 .00134 828.93	
#1 #2 #3	.01013 .00226 .00102	00155 .00348 .00059	13.763 13.757 13.720	00018 .00125 .00203	.22518 .22335 .22438	.01087 .00017 .01087	00128 .00133 00054	
Check ? High Limit Low Limit	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	
Elem Units Avg Stddev %RSD	V_2924 ppm 00010 .00145 1395.1	Zn2062 ppm .00818 .00028 3.3632	Zr3391 ppm . 70322 .27180 38.651					
#1 #2 #3	.00155 00070 00116	.00843 .00789 .00821	.90889 .80571 .39508					
Check ? High Limit Low Limit	Chk Pass	Chk Pass	Chk Pass					
Int. Std. Units Avg Stddev %RSD	Y_2243 Cts/S 13041. 26. .20119	Y_3600 Cts/S 93265. 266. .28573	Y_3774 Cts/S 4535.4 8.6 .18852					
#1 #2 #3	13014. 13044. 13066.	93088. 93136. 93572.	4527.9 4544.7 4533.5					

Sample Nam Method: ICP User: JYH Comment:		_		LINES(v872	pe: QC) Mode: tom ID3:	CONC (Corr. Factor:	1.00000(
Elem Units Avg Stddev %RSD	Ag3280 ppm . 37833 .00170 .44882	Al3082 ppm 9.4345 .0398 .42187	As1890 ppm . 38431 .00403 1.0478	B_2496 ppm . 47472 .00091 .19254	Ba4554 ppm . 95395 .00862 .90338	Be3131 ppm . 04698 .00011 .22474	Ca4226 ppm 9.5038 .1487 1.5646	
#1 #2 #3	.37780 .38023 .37697	9.4387 9.4719 9.3927	.38710 .37969 .38615	.47548 .47371 .47496	.94560 .95345 .96281	.04705 .04703 .04685	9.3350 9.5612 9.6153	
Check ? Value Range	Chk Pass	Chk Pass	Chk Pass					
Elem Units Avg Stddev %RSD	Cd2288 ppm . 04761 .00017 .35041	Co2286 ppm .19147 .00091 .47318	Cr2677 ppm . 47155 .00129 .27365	Cu2247 ppm .48205 .00203 .42173	Fe2611 ppm 3.7861 .0447 1.1817 3.7360	K_7664 ppm 47.643 .317 .66460	Li6707 ppm . 94895 .00557 .58661	
#1 #2 #3	.04749 .04755 .04780	.19201	.47299 .47049 .47117	.47985 .48245	3.8001 3.8222	47.277 47.815 47.836	.95385 .95012	
Check ? Value Range	Chk Pass	Chk Pass	Chk Pass					
Elem Units Avg Stddev %RSD	Mg2790 ppm 9.4448 .0132 .13946	Mn2576 ppm . 47729 .00066 .13916	Mo2020 ppm . 95034 .00660 .69426	Na5895 ppm 48.006 .345 .71791	Ni2316 ppm .48029 .00134 .27933	P_2149 ppm 9.4959 .0374 .39380	Pb2203 ppm . 48441 .00328 .67789	
#1 #2 #3	9.4564 9.4474 9.4305	.47754 .47653 .47779	.95660 .94345 .95098	47.612 48.154 48.252	.48146 .47882 .48059	9.5218 9.4530 9.5129	.48409 .48129 .48784	
Check ? Value Range	Chk Pass	Chk Pass	Chk Pass					

Sample Nam Method: ICP- User: JYH Comment:		6010_200.7	13/2016 17:2 WATER_3YI Custom ID2:	LINES(v872)	pe: QC) Mode: tom ID3:	CONC (Corr. Factor: 1	1.000000
Elem Units Avg Stddev %RSD	Sb2068 ppm 1.1380 .0039 .34077	Se1960 ppm .38405 .01225 3.1904	Si2124 ppm 4.9014 .0167 .34046	Sn1899 ppm . 95516 .00380 .39817	Sr4077 ppm . 95411 .00559 .58615	Ti3372 ppm . 95670 .00807 .84379	TI1908 ppm . 48044 .00288 .60020	
#1 #2 #3	1.1381 1.1340 1.1418	.38454 .37155 .39604	4.9088 4.8822 4.9130	.95870 .95114 .95564	.94766 .95705 .95762	.94862 .95674 .96476	.48201 .47712 .48220	
Check ? Value Range	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	
Elem Units Avg Stddev %RSD	V_2924 ppm . 94706 .00460 .48575	Zn2062 ppm . 94981 .00252 .26540	Zr3391 ppm F 1.1221 .3723 33.181					
#1 #2 #3	.94849 .95078 .94192	.95169 .94694 .95080	1.5167 .77704 1.0725					
Check ? Value Range	Chk Pass	Chk Pass	Chk Fail 1.0000 10.000%					
Int. Std. Units Avg Stddev %RSD	Y_2243 Cts/S 13904. 67. .48355	Y_3600 Cts/S 100380. 263. .26206	Y_3774 Cts/S 4738.9 19.4 .40964					
#1 #2 #3	13957. 13926. 13828.	100680. 100200. 100250.	4756.2 4742.6 4717.9					

Sample Name: CCB Acquired: 5/13/2016 17:23:53 Type: Blank Method: ICP-THERMO3_6010_200.7WATER_3YLINES(v872) Mode: CONC Corr. Factor: 1.000000 User: JYH Custom ID1: Custom ID2: Custom ID3: Comment:									
Elem	Ag3280	Al3082	As1890	B_2496	Ba4554	Be3131	Ca4226		
Units	ppm	ppm	ppm	ppm	ppm	ppm	ppm		
Avg	00151	00214	. 00271	. 00233	00017	.00011	02319		
Stddev	.00169	.00697	.00174	.00263	.00110	.00003	.01834		
%RSD	112.12	325.94	64.145	112.84	667.36	30.642	79.104		
#1	.00001	00365	.00073	00061	.00091	.00013	00497		
#2	00333	.00546	.00401	.00446	00130	.00013	04166		
#3	00120	00822	.00339	.00314	00010	.00007	02295		
Check ? High Limit Low Limit	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass		
Elem	Cd2288	Co2286	Cr2677	Cu2247	Fe2611	K_7664	Li6707		
Units	ppm	ppm	ppm	ppm	ppm	ppm	ppm		
Avg	00011	.00002	. 00027	00015	01140	02561	. 00090		
Stddev	.00005	.00056	.00046	.00029	.01518	.12224	.00317		
%RSD	44.473	2440.0	167.90	195.48	133.16	477.31	351.73		
#1	00006	00001	.00026	00004	02649	.03888	.00405		
#2	00015	00052	00018	.00007	.00387	16659	.00093		
#3	00012	.00061	.00073	00048	01157	.05088	00228		
Check ? High Limit Low Limit	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass		
Elem	Mg2790	Mn2576	Mo2020	Na5895	Ni2316	P_2149	Pb2203		
Units	ppm	ppm	ppm	ppm	ppm	ppm	ppm		
Avg	10900	00089	. 00418	.09770	. 00101	. 00606	F00508		
Stddev	.06167	.00428	.00014	.02522	.00091	.00113	.00261		
%RSD	56.577	480.73	3.3077	25.818	89.979	18.573	51.404		
#1	17697	00470	.00407	.10101	.00195	.00646	00774		
#2	05662	.00374	.00412	.07098	.00014	.00479	00499		
#3	09340	00171	.00433	.12110	.00094	.00693	00251		
Check ? High Limit Low Limit	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Fail .00500 00500		

•									
Elem Units Avg Stddev %RSD	Sb2068 ppm . 00875 .00462 52.767	Se1960 ppm .00589 .01010 171.38	Si2124 ppm .00529 .00283 53.516	Sn1899 ppm . 00042 .00159 375.36	Sr4077 ppm 00017 .00036 212.58	Ti3372 ppm .00458 .00280 61.165	TI1908 ppm 00176 .00289 164.66		
#1 #2 #3	.00375 .01286 .00964	.01564 00453 .00658	.00785 .00225 .00578	.00224 00025 00072	00051 00020 .00020	.00165 .00722 .00486	00505 .00037 00058		
Check ? High Limit Low Limit	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass		
Elem Units Avg Stddev %RSD	V_2924 ppm .00080 .00050 63.137	Zn2062 ppm .00010 .00012 119.68	Zr3391 ppm F .20697 .45985 222.18						
#1 #2 #3	.00024 .00094 .00121	.00024 .00001 .00005	20510 .12301 .70302						
Check ? High Limit Low Limit	Chk Pass	Chk Pass	Chk Fail .04000 04000						
Int. Std. Units Avg Stddev %RSD	Y_2243 Cts/S 12376. 84. .67907	Y_3600 Cts/S 90722. 77. .08538	Y_3774 Cts/S 4179.2 63.9 1.5290						
#1 #2 #3	12470. 12346. 12310.	90715. 90803. 90649.	4247.2 4170.1 4120.4						

Sample Nam Method: ICP User: JYH Comment:		6010_200.7	5/13/2016 1 WATER_3Y Custom ID2:	LINES(v872	Type: Unk) Mode: tom ID3:	CONC (Corr. Factor:	1.00000(
Elem	Ag3280	Al3082	As1890	B_2496	Ba4554	Be3131	Ca4226	
Units	ppm	ppm	ppm	ppm	ppm	ppm	ppm	
Avg	. 00550	.16575	.01083	. 07905	.00867	.00164	. 38746	
Stddev	.00123	.00513	.00137	.00482	.00014	.00007	.01126	
%RSD	22.307	3.0932	12.612	6.0929	1.6077	4.1468	2.9072	
#1	.00669	.16784	.01028	.07786	.00881	.00172	.40033	
#2	.00555	.15991	.01239	.08436	.00853	.00159	.37943	
#3	.00424	.16950	.00983	.07495	.00867	.00162	.38260	
Check ? High Limit Low Limit	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	
Elem	Cd2288	Co2286	Cr2677	Cu2247	Fe2611	K_7664	Li6707	
Units	ppm	ppm	ppm	ppm	ppm	ppm	ppm	
Avg	. 00078	. 00426	.00476	.00359	.06895	. 79914	. 07480	
Stddev	.00015	.00052	.00062	.00052	.01702	.07914	.00199	
%RSD	19.070	12.174	13.115	14.500	24.680	9.9028	2.6595	
#1	.00062	.00445	.00408	.00396	.08580	.75772	.07650	
#2	.00090	.00367	.00531	.00299	.05176	.74931	.07528	
#3	.00083	.00464	.00490	.00381	.06930	.89039	.07261	
Check ? High Limit Low Limit	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	
Elem	Mg2790	Mn2576	Mo2020	Na5895	Ni2316	P_2149	Pb2203	
Units	ppm	ppm	ppm	ppm	ppm	ppm	ppm	
Avg	. 25992	.00711	. 00837	. 43746	.01650	. 77689	. 00989	
Stddev	.09081	.00186	.00075	.00732	.00093	.00768	.00206	
%RSD	34.939	26.160	8.9354	1.6739	5.6467	.98826	20.866	
#1	.33218	.00602	.00914	.43999	.01660	.77175	.01073	
#2	.15798	.00606	.00765	.44318	.01738	.78571	.01141	
#3	.28959	.00926	.00832	.42921	.01552	.77320	.00754	
Check ? High Limit Low Limit	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	

Sample Nam Method: ICP User: JYH Comment:	ne: LLCCV -THERMO3_ Custom I	6010_200.7	5/13/2016 1 WATER_3Y Custom ID2:	LINES(v872	Type: Unk) Mode: tom ID3:	CONC (Corr. Factor: 1	.000000
Elem Units Avg Stddev %RSD	Sb2068 ppm . 08650 .00439 5.0777	Se1960 ppm . 01792 .00247 13.790	Si2124 ppm . 85707 .00734 .85584	Sn1899 ppm . 40368 .00348 .86129	Sr4077 ppm . 04049 .00037 .90743	Ti3372 ppm . 03039 .00537 17.661	TI1908 ppm . 15810 .00327 2.0672	
#1 #2 #3	.08516 .09141 .08294	.01974 .01511 .01890	.84988 .86454 .85680	.40417 .40689 .39998	.04006 .04069 .04071	.02862 .03642 .02613	.15987 .16010 .15433	
Check ? High Limit Low Limit	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	
Elem Units Avg Stddev %RSD	V_2924 ppm . 00748 .00081 10.862	Zn2062 ppm .01664 .00026 1.5763	Zr3391 ppm F 60.704 .226 .37257					
#1 #2 #3	.00726 .00680 .00838	.01645 .01694 .01652	60.486 60.688 60.937					
Check ? High Limit Low Limit	Chk Pass	Chk Pass	Chk Fail 36.000 04000					
Int. Std. Units Avg Stddev %RSD	Y_2243 Cts/S 12214. 99. .81105	Y_3600 Cts/S 88027. 603. .68503	Y_3774 Cts/S 3891.2 28.4 .72976					
#1 #2 #3	12289. 12102. 12251.	87897. 87499. 88684.	3923.1 3881.6 3868.8					

•								
Elem Units Avg Stddev %RSD	Ag3280 ppm . 01935 .00284 14.655	Al3082 ppm . 40742 .00916 2.2495	As1890 ppm .01810 .00060 3.2905	B_2496 ppm . 19464 .00106 .54411	Ba4554 ppm .02105 .00063 3.0119	Be3131 ppm .00401 .00006 1.5373	Ca4226 ppm . 96612 .03081 3.1892	
#1 #2 #3	.02220 .01933 .01653	.39941 .40543 .41741	.01838 .01742 .01851	.19446 .19368 .19577	.02139 .02032 .02145	.00402 .00406 .00394	.99026 .93141 .97668	
Check ? High Limit Low Limit	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	
Elem Units Avg Stddev %RSD	Cd2288 ppm .00200 .00007 3.7020	Co2286 ppm .01037 .00044 4.2169	Cr2677 ppm .01012 .00104 10.325	Cu2247 ppm .00983 .00058 5.8964	Fe2611 ppm .18229 .03179 17.441	K_7664 ppm 2.0376 .0390 1.9140 2.0585	Li6707 ppm . 19820 .00881 4.4446	
#2 #3	.00204	.01021 .01004 .01086	.01036	.01020	.21367	1.9926 2.0617	.19308	
Check ? High Limit Low Limit	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	
Elem Units Avg Stddev %RSD	Mg2790 ppm . 99944 .08268 8.2727	Mn2576 ppm .01887 .00243 12.876	Mo2020 ppm . 01938 .00026 1.3198	Na5895 ppm 1.0313 .0158 1.5317	Ni2316 ppm .04084 .00086 2.1111	P_2149 ppm 1.9140 .0050 .26287	Pb2203 ppm . 02097 .00201 9.5669	
#1 #2 #3	.90514 1.0595 1.0337	.01802 .01698 .02161	.01916 .01966 .01932	1.0308 1.0473 1.0157	.04000 .04172 .04079	1.9165 1.9082 1.9173	.01932 .02038 .02320	
Check ? High Limit Low Limit	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	

Sample Nam Method: ICP User: JYH Comment:	ne: LLCCV -THERMO3_ Custom I	6010_200.7	5/13/2016 1 WATER_3Y Custom ID2:	LINES(v872	Type: Unk) Mode: stom ID3:	CONC (Corr. Factor: 1	.000000
Elem Units Avg Stddev %RSD	Sb2068 ppm . 20617 .00324 1.5705	Se1960 ppm .03310 .00388 11.734	Si2124 ppm 2.1256 .0149 .70028	Sn1899 ppm 1.0008 .0054 .53884	Sr4077 ppm . 09981 .00071 .71356	Ti3372 ppm . 06317 .00369 5.8438	TI1908 ppm . 38582 .00251 .65169	
#1 #2 #3	.20531 .20976 .20346	.02884 .03644 .03403	2.1095 2.1285 2.1389	.99480 1.0053 1.0022	.09913 .09976 .10055	.06296 .06697 .05959	.38291 .38736 .38717	
Check ? High Limit Low Limit	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	
Elem Units Avg Stddev %RSD	V_2924 ppm . 01992 .00016 .81931	Zn2062 ppm . 04060 .00044 1.0934	Zr3391 ppm F 155.23 1.20 .77594					
#1 #2 #3	.01990 .01976 .02009	.04055 .04019 .04107	155.31 153.98 156.39					
Check ? High Limit Low Limit	Chk Pass	Chk Pass	Chk Fail 36.000 04000					
Int. Std. Units Avg Stddev %RSD	Y_2243 Cts/S 12192. 33. .26704	Y_3600 Cts/S 87652. 476. .54268	Y_3774 Cts/S 3926.7 30.0 .76326					
#1 #2 #3	12227. 12188. 12162.	87167. 87671. 88118.	3906.6 3961.2 3912.5					

Sample Name: PBW XT Acquired: 5/13/2016 17:36:03 Type: Unk Method: ICP-THERMO3_6010_200.7WATER_3YLINES(v872) Mode: CONC Corr. Factor: 1.000000 User: JYH Custom ID1: Custom ID2: Custom ID3: Comment: WG567310-02 Al3082 As1890 B_2496 Ba4554 Be3131 Ca4226 Elem Ag3280 Units ppm ppm ppm ppm ppm ppm ppm -.01847 .00689 Avg -.00165 .00201 .00185 .00035 .00011 Stddev .00084 .00768 .00340 .00053 .00041 80000. .00615 %RSD 51.307 111.43 168.97 28.605 116.40 72.167 33.289 #1 -.00141 -.00178 .00423 .00044 .00020 -.01158 .00124 #2 -.00095 .00964 -.00190 .00215 .00071 .00008 -.02043 #3 -.00258 .01282 .00371 .00216 -.00009 .00005 -.02340 Check? Chk Pass Chk Pass **Chk Pass Chk Pass Chk Pass Chk Pass Chk Pass High Limit** Low Limit Elem Cd2288 Co2286 Cr2677 Cu2247 Fe2611 K_7664 Li6707 Units ppm ppm ppm ppm ppm ppm ppm -.00012 .00040 .00112 F-.02980 -.00097 Avg .00016 .04022 .00015 .00016 .00081 .00058 .00269 Stddev .02977 .06662 %RSD 125.33 40.457 71.949 356.50 99.905 165.66 277.74 #1 -.00025 .00025 .00023 .00080 -.01419 .02757 -.00161

.00181

.00133

Chk Pass

Mo2020

ppm

.00019

.00042

222.97

-.00029

.00036

.00049

Chk Pass

.00005

-.00035

Chk Pass

Na5895

ppm

.04569

.02387

52.255

.01819

.05775

.06113

Chk Pass

-.06413

-.01108

Chk Fail

720.00

-.02000

Ni2316

.00200

.00070

34.775

.00126

.00265

.00209

Chk Pass

ppm

.11226

-.01917

Chk Pass

P_2149

-.00469

.00356

75.949

-.00688

-.00058

-.00661

Chk Pass

ppm

.00198

-.00327

Chk Pass

Pb2203

-.00165

.00223

135.75

.00029

-.00409

-.00114

Chk Pass

ppm

Approved: May 16, 2016

#2

#3

Check?

High Limit

Low Limit

Elem

Units

Stddev

%RSD

Check?

High Limit Low Limit

Avg

#1

#2 #3 .00004

-.00014

Chk Pass

Mg2790

-.08648

.15623

180.66

-.22017

.08526

-.12452

Chk Pass

ppm

.00038

.00057

Chk Pass

Mn2576

-.00289

.00069

23.690

-.00255

-.00368

-.00245

Chk Pass

ppm

Method: ICP- User: JYH	Sample Name: PBW XT Acquired: 5/13/2016 17:36:03 Type: Unk Method: ICP-THERMO3_6010_200.7WATER_3YLINES(v872) Mode: CONC Corr. Factor: 1.000000 User: JYH Custom ID1: Custom ID2: Custom ID3: Comment: WG567310-02								
Elem Units Avg Stddev %RSD	Sb2068 ppm 00023 .00240 1049.2	Se1960 ppm 00656 .00115 17.488	Si2124 ppm .00597 .00308 51.589	Sn1899 ppm 00004 .00043 986.13	Sr4077 ppm . 00007 .00058 796.79	Ti3372 ppm .00541 .00646 119.28	TI1908 ppm . 00212 .00241 113.70		
#1 #2 #3	00201 00118 .00250	00787 00607 00573	.00818 .00245 .00726	00043 .00042 00011	00020 .00074 00033	.00005 .00361 .01258	00063 .00316 .00383		
Check ? High Limit Low Limit	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass		
Elem Units Avg Stddev %RSD	V_2924 ppm . 00043 .00061 141.74	Zn2062 ppm 00002 .00018 1181.1	Zr3391 ppm . 07322 .68618 937.15						
#1 #2 #3	.00086 00027 .00070	00020 .00015 .00001	.37707 71243 .55502						
Check ? High Limit Low Limit	Chk Pass	Chk Pass	Chk Pass						
Int. Std. Units Avg Stddev %RSD	Y_2243 Cts/S 12259. 58. .46911	Y_3600 Cts/S 88122. 428. .48537	Y_3774 Cts/S 3927.4 26.5 .67597						
#1 #2 #3	12224. 12228. 12326.	88572. 88072. 87721.	3912.8 3911.4 3958.1						

Sample Name: LCSW XT Acquired: 5/13/2016 17:40:06 Type: Unk

Method: ICP-THERMO3_6010_200.7WATER_3YLINES(v872) Mode: CONC Corr. Factor: 1.000000

User: JYH Custom ID1: Custom ID2: Custom ID3:

Comment: WG567310-03

Elem	Ag3280	Al3082	As1890	B_2496	Ba4554	Be3131	Ca4226	Cd2288
Units	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm
Avg	.18924	4.7110	.18888	.93114	.48071	.02332	4.8662	.02375
Stddev	.00158	.0069	.00339	.00510	.00202	.00009	.0611	.00025
%RSD	.83458	.14680	1.7945	.54780	.42094	.39573	1.2553	1.0604
#1	.18783	4.7170	.18520	.92655	.48294	.02334	4.9150	.02379
#2	.18893	4.7034	.19188	.93024	.48020	.02322	4.7977	.02399
#3	.19095	4.7127	.18954	.93663	.47900	.02340	4.8860	.02349

Check? Chk Pass Chk P

Elem	Co2286	Cr2677	Cu2247	Fe2611	K_7664	Li6707	Mg2790	Mn2576
Units	ppm	mqq	ppm	ppm	ppm	ppm	ppm	ppm
Avg	.09725	.23938	.24499	1.9091	24.544	.48542	4.6604	.23670
Stddev	.00052	.00049	.00059	.0118	.061	.00235	.0809	.00211
%RSD	.52983	.20458	.24277	.61630	.24843	.48507	1.7355	.89191
#1	.09669	.23989	.24461	1.8957	24.501	.48316	4.5720	.23481
#2	.09770	.23892	.24567	1.9139	24.517	.48786	4.7306	.23898
#3	.09735	.23934	.24468	1.9177	24.614	.48525	4.6787	.23630

Check? Chk Pass Chk P

Elem	Mo2020	Na5895	Ni2316	P_2149	Pb2203	Sb2068	Se1960	Si2124
Units	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm
Avg	. 48994	24.420	. 24647	4.6646	. 24629	. 57844	. 18923	2.4545
Stddev	.00088	.052	.00066	.0178	.00514	.00365	.00542	.0034
%RSD	.17955	.21131	.26841	.38138	2.0853	.63132	2.8660	.13815
#1	.49078	24.471	.24610	4.6704	.24644	.57561	.18527	2.4583
#2	.49001	24.368	.24607	4.6787	.25134	.57715	.19541	2.4519
#3	.48902	24.423	.24723	4.6446	.24108	.58256	.18700	2.4532

Check? Chk Pass Chk P

Sample Name: LCSW XT Acquired: 5/13/2016 17:40:06 Type: Unk

Method: ICP-THERMO3_6010_200.7WATER_3YLINES(v872) Mode: CONC Corr. Factor: 1.000000

User: JYH Custom ID1: Custom ID2: Custom ID3:

Comment: WG567310-03

Elem	Sn1899	Sr4077	Ti3372	TI1908	V_2924	Zn2062	Zr3391
Units	ppm	ppm	ppm	ppm	ppm	ppm	ppm
Avg	.48768	.48434	.47968	.24401	.47620	.48088	2.0210
Stddev	.00067	.00051	.00879	.00439	.00257	.00099	1.0370
%RSD	.13799	.10602	1.8318	1.7993	.53906	.20494	51.312
#1	.48694	.48465	.48565	.24626	.47420	.47977	.86953
#2	.48785	.48462	.46959	.24682	.47910	.48167	2.8813
#3	.48825	.48374	.48381	.23895	.47531	.48118	2.3122

Check? Chk Pass Chk P

Low Limit

Int. Std.	Y_2243	Y_3600	Y_3774
Units	Cts/S	Cts/S	Cts/S
Avg	12077 .	86933.	3967.7
Stddev	65.	228.	24.4
%RSD	.54182	.26201	.61466
#1	12137.	86723.	3942.6
#2	12087.	86902.	3991.4
#3	12008.	87175.	3969.2

Sample Name: L1605001301 Acquired: 5/13/2016 17:43:53 Type: Unk Method: ICP-THERMO3 6010 200.7WATER 3YLINES(v872) Mode: CONC Corr. Factor: 1.000000 User: JYH Custom ID1: Custom ID2: Custom ID3: Comment: WG567310-01 Al3082 As1890 B 2496 Ba4554 Be3131 Ca4226 Cd2288 Elem Ag3280 Units ppm ppm ppm ppm ppm ppm ppm ppm .01598 Avg -.00252 .15583 -.00079 .02691 .00009 32.924 .00012 Stddev .00159 .01700 .00423 .00105 .00044 .00005 .00037 .112 %RSD 63.156 10.911 537.62 6.5541 1.6193 58.505 .34010 309.42 #1 -.00068 .00406 .01505 .00005 -.00029 .15701 .02723 32.810 #2 -.00348 -.00272 .01711 .02708 .00014 33.033 .00043 .17221 32.928 #3 -.00339 .13827 -.00370 .01578 .02641 .00006 .00022 Check? Chk Pass Chk Pass Chk Pass Chk Pass Chk Pass Chk Pass Chk Pass **High Limit** Low Limit Mg2790 Elem Co2286 Cr2677 Cu2247 Fe2611 K_7664 Li6707 Mn2576 Units ppm ppm ppm ppm ppm ppm ppm ppm .00366 -.00046 .08254 24.470 Avg .00272 .37212 .54777 .24849 .00045 .00087 .05984 .00370 Stddev .00051 .01897 .148 .00163 %RSD 13.867 189.84 5.0984 10.924 4.4851 .60446 16.714 .65737 #1 .00346 .00284 -.00060 .35237 .55171 .08402 24.303 .24708 #2 .00423 .00310 .00048 .39020 .48606 .08528 24.523 .25028 .00222 -.00126 24.584 #3 .00328 .37380 .60554 .07833 .24810 Check? Chk Pass Chk Pass Chk Pass Chk Pass Chk Pass Chk Pass Chk Pass High Limit Low Limit Elem Mo2020 Na5895 Ni2316 P_2149 Pb2203 Sb2068 Se1960 Si2124 Units ppm ppm ppm ppm ppm ppm ppm ppm .00098 163.09 .00655 .12413 -.00006 .00386 .00123 25.538 Avg .00016 .00091 .00784 .00144 .00097 .00584 Stddev .43 .189 %RSD 15.853 .26499 13.899 6.3125 2528.7 25.238 474.80 .73917 #1 .00097 .00283 162.64 .00759 .11706 .00007 .00444 25.545 .00083 .12279 -.00156 .00477 .00477 25.345 #2 163.15 .00619 .00397 #3 .00114 163.50 .00588 .13255 .00132 -.00551 25.722 Check? Chk Pass Chk Pass Chk Pass Chk Pass Chk Pass Chk Pass Chk Pass High Limit

Approved: May 16, 2016

Low Limit

Sample Name: L1605001301 Acquired: 5/13/2016 17:43:53 Type: Unk Method: ICP-THERMO3_6010_200.7WATER_3YLINES(v872) Mode: CONC Corr. Factor: 1.000000 User: JYH Custom ID1: Custom ID2: Custom ID3: Comment: WG567310-01 Elem Sn1899 Sr4077 Ti3372 TI1908 V_2924 Zn2062 Zr3391 Units ppm ppm ppm ppm ppm ppm ppm .10040 -.00038 .79897 .00927 -.00133 .00133 .00499 Avg Stddev .00108 .00133 .00300 .00157 .00066 .00028 .62305 283.18 32.365 %RSD .16670 117.97 49.528 5.5201 620.56 #1 -.00145 .79788 .01273 -.00036 .00171 .00529 .36152 #2 .00071 .79858 .00752 -.00313 .00057 .00476 -.61072 #3 -.00040 .80046 .00755 -.00049 .00172 .00492 .55041 Check? Chk Pass Chk Pass Chk Pass Chk Pass Chk Pass Chk Pass High Limit Low Limit Y_3774 Int. Std. Y_2243 Y_3600 Units Cts/S Cts/S Cts/S 11838. 84397. 3881.8 Avg Stddev 93. 1303. 11.2 %RSD .78782 1.5439 .28855 #1 11805. 85095. 3877.3 #2 11943. 82893. 3873.5 #3 11766. 85201. 3894.5

Sample Name: L1605001302 Acquired: 5/13/2016 17:47:53 Type: Unk Method: ICP-THERMO3_6010_200.7WATER_3YLINES(v872) Mode: CONC Corr. Factor: 1.000000 User: JYH Custom ID1: Custom ID2: Custom ID3: Comment:									
Elem	Ag3280	Al3082	As1890	B_2496	Ba4554	Be3131	Ca4226	Cd2288	
Units	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	
Avg	00222	.12448	00235	. 01937	. 02424	.00005	32.442	. 00007	
Stddev	.00082	.00302	.00474	.00144	.00142	.00003	1.351	.00029	
%RSD	36.975	2.4296	201.57	7.4300	5.8681	69.920	4.1657	433.63	
#1	00235	.12745	00442	.02087	.02471	.00007	33.136	00004	
#2	00135	.12457	00572	.01800	.02264	.00007	30.885	.00040	
#3	00298	.12141	.00307	.01923	.02536	.00001	33.307	00016	
Check ? High Limit Low Limit	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	
Elem	Co2286	Cr2677	Cu2247	Fe2611	K_7664	Li6707	Mg2790	Mn2576	
Units	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	
Avg	. 00364	.00188	00084	.30235	. 46459	.08326	24.351	. 24663	
Stddev	.00047	.00140	.00018	.01874	.05701	.00484	.932	.01347	
%RSD	13.017	74.360	21.429	6.1992	12.271	5.8122	3.8265	5.4602	
#1	.00314	.00028	00063	.32385	.52878	.08384	24.572	.25418	
#2	.00408	.00248	00093	.29375	.41985	.07815	23.329	.23109	
#3	.00371	.00287	00095	.28944	.44513	.08778	25.152	.25463	
Check ? High Limit Low Limit	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	
Elem	Mo2020	Na5895	Ni2316	P_2149	Pb2203	Sb2068	Se1960	Si2124	
Units	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	
Avg	. 00020	159.53	.00573	. 12244	00229	. 00233	00612	26.119	
Stddev	.00039	6.44	.00081	.00229	.00145	.00111	.00571	.052	
%RSD	199.13	4.0358	14.179	1.8676	63.487	47.438	93.310	.20073	
#1	.00063	162.24	.00491	.12043	00369	.00265	00639	26.161	
#2	.00009	152.18	.00574	.12195	00079	.00110	01168	26.135	
#3	00013	164.17	.00654	.12493	00239	.00324	00028	26.060	
Check ? High Limit Low Limit	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	

Sample Name: L1605001302 Acquired: 5/13/2016 17:47:53 Type: Unk Method: ICP-THERMO3_6010_200.7WATER_3YLINES(v872) Mode: CONC Corr. Factor: 1.000000 User: JYH Custom ID1: Custom ID2: Custom ID3: Comment:									
Elem Units Avg Stddev %RSD	Sn1899 ppm 00022 .00051 225.36	Sr4077 ppm . 78106 .03270 4.1867	Ti3372 ppm .00083 .00580 695.40	TI1908 ppm 00042 .00111 265.37	V_2924 ppm . 00129 .00095 73.567	Zn2062 ppm . 00478 .00011 2.2896	Zr3391 ppm .29781 .60135 201.92		
#1 #2 #3	.00031 00070 00028	.79715 .74344 .80261	00569 .00275 .00543	00108 00104 .00086	.00046 .00108 .00232	.00477 .00489 .00467	.13396 .96410 20463		
Check ? High Limit Low Limit	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass		
Int. Std. Units Avg Stddev %RSD	Y_2243 Cts/S 11807. 34. .28956	Y_3600 Cts/S 84402. 701. .83084	Y_3774 Cts/S 4071.6 150.0 3.6840						
#1 #2 #3	11846. 11782. 11792.	85200. 84127. 83881.	3964.8 4243.1 4006.9						

Sample Name: L1605001303S Acquired: 5/13/2016 17:51:53 Type: Unk Mode: CONC Method: ICP-THERMO3 6010 200.7WATER 3YLINES(v872) Corr. Factor: 1.000000 User: JYH Custom ID1: Custom ID2: Custom ID3: Comment: WG567310-04 Al3082 B_2496 Ba4554 Ca4226 Cd2288 Elem Ag3280 As1890 Be3131 Units ppm ppm ppm ppm ppm ppm ppm ppm Avg .20462 5.4038 .20165 1.0470 .54540 .02577 39.173 .02583 Stddev .00253 .0273 .00095 .0038 .00690 .00021 .537 .00014 %RSD 1.2372 .50587 .47126 .35890 1.2648 .81484 1.3709 .54549 #1 .20688 1.0432 .02566 .02578 5.4114 .20206 .53842 38.599 #2 .20188 5.3735 .20056 1.0507 .54557 .02564 39.256 .02599 .20510 #3 5.4265 .20232 1.0470 .55221 .02602 39.663 .02573 Check? Chk Pass Chk Pass Chk Pass Chk Pass Chk Pass Chk Pass Chk Pass Chk Pass **High Limit** Low Limit Elem Co2286 Cr2677 Cu2247 Fe2611 K_7664 Mg2790 Mn2576 Li6707 Units ppm ppm ppm ppm ppm ppm ppm ppm .25948 .25843 2.4132 26.941 .51743 Avg .10557 .60300 31.144 .00290 .00032 .0523 Stddev .00056 .163 .00881 .272 .00829 .53474 %RSD 1.1170 .12494 2.1679 .60389 1.4607 .87313 1.6014 #1 .10602 .25709 .25866 2.3563 26.757 .59459 30.851 .50811 #2 .10493 .25864 .25857 2.4240 27.003 .60224 31.192 .52023.26270 .25806 27.064 #3 .10574 2.4592 .61216 31.389 .52396 Check? Chk Pass Chk Pass Chk Pass Chk Pass Chk Pass Chk Pass Chk Pass High Limit Low Limit Elem Mo2020 Na5895 Ni2316 P_2149 Pb2203 Sb2068 Se1960 Si2124 Units ppm ppm ppm ppm ppm ppm ppm ppm Avg .52411 194.50 .26181 5.2514 .25323 .62371 .20186 29.285 .00154 .00415 Stddev .00112 2.01 .00167 .0147 .00082 .073 .13170 .24996 %RSD .21450 1.0357 .63957 .28056 .60618 2.0549 #1 .52504 192.39 5.2492 .25351 .26229 .62329 .19747 29.278 5.2379 .52442 194.72 .20571 #2 .26319 .25158 .62319 29.362 #3 .52286 196.40 .25994 5.2671 .25461 .62466 .20239 29.216 Check? Chk Pass Chk Pass Chk Pass Chk Pass Chk Pass Chk Pass Chk Pass

Approved: May 16, 2016

High Limit Low Limit Sample Name: L1605001303S Acquired: 5/13/2016 17:51:53 Type: Unk

Method: ICP-THERMO3_6010_200.7WATER_3YLINES(v872) Mode: CONC Corr. Factor: 1.000000

User: JYH Custom ID1: Custom ID2: Custom ID3:

Comment: WG567310-04

Elem	Sn1899	Sr4077	Ti3372	TI1908	V_2924	Zn2062	Zr3391
Units	ppm	ppm	ppm	ppm	ppm	ppm	ppm
Avg	.51998	1.3269	.52317	.24828	.52227	.51844	1.1222
Stddev	.00151	.0147	.00484	.00220	.00178	.00081	.3960
%RSD	.29039	1.1059	.92419	.88698	.34041	.15540	35.287
#1	.51881	1.3114	.51760	.25005	.52022	.51791	.77189
#2	.52169	1.3286	.52565	.24898	.52321	.51936	1.5519
#3	.51945	1.3407	.52626	.24581	.52337	.51804	1.0429

Check? Chk Pass Chk P

Low Limit

Int. Std.	Y_2243	Y_3600	Y_3774
Units	Cts/S	Cts/S	Cts/S
Avg	11688.	83566.	3891.6
Stddev	16.	89.	34.1
%RSD	.13553	.10622	.87669
#1	11671.	83557.	3894.7
#2	11691.	83482.	3924.0
#3	11702.	83659.	3856.0

Method: ICP-THERMO3_6010_200.7WATER_3YLINES(v872) Mode: CONC Corr. Factor: 1.000000

User: JYH Custom ID1: Custom ID2: Custom ID3:

Comment: WG567310-05

Elem	Ag3280	Al3082	As1890	B_2496	Ba4554	Be3131	Ca4226	Cd2288
Units	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm
Avg	.20531	5.3718	.20762	1.0520	.54380	.02604	38.871	.02632
Stddev	.00108	.0058	.00497	.0057	.00321	.00005	.357	.00045
%RSD	.52814	.10805	2.3938	.54171	.58997	.19107	.91800	1.7160
#1	.20515	5.3755	.20260	1.0541	.54704	.02608	39.223	.02613
#2	.20432	5.3651	.20771	1.0456	.54373	.02598	38.881	.02599
#3	.20647	5.3748	.21254	1.0563	.54063	.02605	38.509	.02683

Check? Chk Pass Chk P

Elem	Co2286	Cr2677	Cu2247	Fe2611	K_7664	Li6707	Mg2790	Mn2576
Units	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm
Avg	. 10727	. 26022	. 26522	2.3540	26.923	. 60016	30.774	. 51348
Stddev	.00156	.00128	.00472	.0088	.137	.00498	.219	.00308
%RSD	1.4499	.49252	1.7814	.37297	.50901	.82985	.71072	.60019
#1	.10672	.26059	.26132	2.3641	26.951	.60541	30.902	.51321
#2	.10606	.25879	.26387	2.3488	27.044	.59957	30.899	.51669
#3	.10902	.26128	.27048	2.3490	26.774	.59551	30.522	.51054

Check? Chk Pass Chk P

Elem	Mo2020	Na5895	Ni2316	P_2149	Pb2203	Sb2068	Se1960	Si2124
Units	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm
Avg	. 53454	192.58	. 26668	5.3327	. 26429	. 63461	.21008	29.219
Stddev	.00872	1.33	.00444	.0623	.00296	.00637	.00671	.375
%RSD	1.6306	.68813	1.6634	1.1688	1.1198	1.0036	3.1929	1.2849
#1	.53040	193.60	.26512	5.3011	.26261	.63336	.20992	29.078
#2	.52866	193.07	.26323	5.2924	.26254	.62895	.20345	28.935
#3	.54455	191.09	.27168	5.4045	.26770	.64150	.21686	29.645

Check? Chk Pass Chk P

Method: ICP-THERMO3_6010_200.7WATER_3YLINES(v872) Mode: CONC Corr. Factor: 1.000000

User: JYH Custom ID1: Custom ID2: Custom ID3:

Comment: WG567310-05

Elem	Sn1899	Sr4077	Ti3372	TI1908	V_2924	Zn2062	Zr3391
Units	ppm	ppm	ppm	ppm	ppm	ppm	ppm
Avg	.52909	1.3135	.52455	.25325	.52764	.52661	.43356
Stddev	.00868	.0072	.00253	.00170	.00114	.00828	.66529
%RSD	1.6408	.54831	.48320	.67040	.21634	1.5714	153.45
#1	.52670	1.3193	.52620	.25135	.52869	.52300	20130
#2	.52186	1.3158	.52583	.25377	.52642	.52075	.37638
#3	.53872	1.3054	.52163	.25462	.52780	.53608	1.1256

Check? Chk Pass Chk P

Low Limit

Int. Std.	Y_2243	Y_3600	Y_3774
Units	Cts/S	Cts/S	Cts/S
Avg	11635.	83506.	3923.5
Stddev	135.	356.	24.2
%RSD	1.1599	.42643	.61617
#1	11679.	83506.	3897.4
#2	11742.	83150.	3945.2
#3	11483.	83862.	3927.8

Sample Name Method: ICP-1 User: JYH Comment:)10_200.7W <i>A</i>	ed: 5/13/2010 ATER_3YLIN Stom ID2:		Type: Unk Mode: CONO ID3:	C Corr. F	Factor: 1.000000
Elem	Ag3280	Al3082	As1890	B_2496	Ba4554	Be3131	Ca4226
Units	ppm	ppm	ppm	ppm	ppm	ppm	ppm
Avg	00276	.01136	00100	. 00423	. 00213	.00012	. 00052
Stddev	.00105	.00523	.00081	.00230	.00017	.00008	.07104
%RSD	38.098	46.091	80.362	54.321	7.9059	68.015	13734.
#1	00369	.01586	00179	.00685	.00194	.00016	.04747
#2	00298	.01260	00106	.00255	.00217	.00003	.03530
#3	00162	.00561	00017	.00329	.00227	.00017	08121
Check ? High Limit Low Limit	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass
Elem	Cd2288	Co2286	Cr2677	Cu2247	Fe2611	K_7664	Li6707
Units	ppm	ppm	ppm	ppm	ppm	ppm	ppm
Avg	. 00003	.00023	. 00120	00028	.01021	. 15073	. 00255
Stddev	.00015	.00035	.00050	.00091	.02236	.09754	.00249
%RSD	548.33	148.30	41.779	324.50	218.98	64.713	97.954
#1	00003	00017	.00113	.00068	.03319	.26104	00021
#2	.00019	.00046	.00074	00040	01148	.07586	.00465
#3	00008	.00040	.00173	00112	.00892	.11530	.00319
Check ? High Limit Low Limit	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass
Elem	Mg2790	Mn2576	Mo2020	Na5895	Ni2316	P_2149	Pb2203
Units	ppm	ppm	ppm	ppm	ppm	ppm	ppm
Avg	F13264	F00315	. 00101	.11104	. 00164	01172	00036
Stddev	.06749	.00255	.00040	.00649	.00068	.00173	.00260
%RSD	50.878	80.940	39.955	5.8485	41.150	14.740	716.27
#1	14279	00104	.00055	.10392	.00160	01089	.00175
#2	06066	00243	.00130	.11258	.00099	01056	.00043
#3	19448	00598	.00118	.11663	.00234	01371	00327
Check ? High Limit Low Limit	Chk Fail 900.00 10000	Chk Fail 36.000 00300	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass

Sample Name: L1605001305 Acquired: 5/13/2016 17:59:26 Method: ICP-THERMO3_6010_200.7WATER_3YLINES(v872) User: JYH Custom ID1: Custom ID2: Custom Comment:			Type: Unk Mode: CONO ID3:	C Corr. F	Factor: 1.00000(
Elem Units Avg Stddev %RSD	Sb2068 ppm . 00245 .00440 179.65	Se1960 ppm .00043 .00522 1206.1	Si2124 ppm 01580 .00199 12.577	Sn1899 ppm . 00059 .00067 113.37	Sr4077 ppm 00009 .00030 349.20	Ti3372 ppm . 00243 .00563 231.89	TI1908 ppm 00369 .00187 50.827
#1 #2 #3	.00552 .00442 00259	00362 00141 .00632	01372 01767 01601	.00100 00018 .00095	.00014 00043 .00003	.00484 .00645 00401	00176 00379 00551
Check ? High Limit Low Limit	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass
Elem Units Avg Stddev %RSD	V_2924 ppm .00067 .00041 60.360	Zn2062 ppm .00176 .00009 4.8418	Zr3391 ppm F08963 .50937 568.32				
#1 #2 #3	.00020 .00090 .00091	.00167 .00183 .00179	39790 .49831 36929				
Check ? High Limit Low Limit	Chk Pass	Chk Pass	Chk Fail 36.000 04000				
Int. Std. Units Avg Stddev %RSD	Y_2243 Cts/S 11919. 20. .17109	Y_3600 Cts/S 86565. 481. .55595	Y_3774 Cts/S 3882.0 32.1 .82691				
#1 #2 #3	11927. 11934. 11895.	86203. 87111. 86381.	3914.8 3850.6 3880.4				

Sample Name: L1605001305PS Acquired: 5/13/2016 18:03:30 Type: Unk Method: ICP-THERMO3_6010_200.7WATER_3YLINES(v872) Mode: CONC Corr. Factor: 1.000000 User: JYH Custom ID1: Custom ID2: Custom ID3: Comment: WG567345-03 Ag3280 Al3082 As1890 B_2496 Ba4554 Be3131 Ca4226 Elem Units ppm ppm ppm ppm ppm ppm ppm .19752 4.9702 .19637 .97649 .50866 5.1856 Avg .02447 Stddev .00047 .0354 .00431 .00269 .00310 .00003 .0275 %RSD .23872 .71232 2.1950 .27565 .60888 .11769 .52956 #1 .19775 5.0111 .19547 .97840 .50628 .02448 5.1575 #2 .19784 4.9515 .19258 .97765 .51216 .02444 5.1870

.97341

.50753

.02450

5.2124

Check ? High Limit Low Limit	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass
Elem Units Avg Stddev %RSD	Cd2288 ppm . 02483 .00012 .50190	Co2286 ppm .10180 .00030 .29488	Cr2677 ppm . 25262 .00119 .47156	Cu2247 ppm . 25589 .00229 .89301	Fe2611 ppm 2.0254 .0163 .80298	K_7664 ppm 25.898 .103 .39765	Li6707 ppm . 51350 .00163 .31764
#1 #2 #3	.02485 .02469 .02493	.10214 .10157 .10169	.25355 .25304 .25128	.25382 .25551 .25834	2.0167 2.0153 2.0442	25.789 25.993 25.912	.51233 .51280 .51536
Check ? High Limit Low Limit	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass
	14 0700	NA 0570		N. 5005	N:0040	D 0440	DI 0000

.20106

Elem Mg2790 Mn2576 Mo2020 Na5895 Ni2316 P_2149 Pb2203 Units ppm ppm ppm ppm ppm ppm ppm 5.0243 .25142 .50948 25.818 .25741 4.8814 .25794 Avg Stddev .0766 .00579 .00051 .081 .00047 .0172 .00107 .18141 .35180 %RSD 1.5257 2.3016 .09980 .31213 .41526 #1 4.9607 .24476 4.8948 .25670 .50997 25.750 .25687 #2 5.1094 .25431 .50952 25.907 .25768 4.8621 .25856 #3 .25519 25.798 5.0028 .50896 .25769 4.8874 .25855 Check? **Chk Pass Chk Pass Chk Pass Chk Pass Chk Pass Chk Pass Chk Pass**

High Limit Low Limit

#3

.19698

4.9482

Sample Name Method: ICP- User: JYH Comment: WO	THERMO3_60 Custom ID) Type: U Mode: CON ID3:		Factor: 1.00000(
Elem Units Avg Stddev %RSD	Sb2068 ppm . 60060 .00591 .98403	Se1960 ppm .18404 .00147 .79986	Si2124 ppm 2.5331 .0085 .33607	Sn1899 ppm . 50791 .00275 .54191	Sr4077 ppm . 51066 .00118 .23031	Ti3372 ppm . 51182 .00402 .78542	TI1908 ppm . 25622 .00057 .22423
#1 #2 #3	.60679 .59502 .59998	.18570 .18348 .18292	2.5318 2.5253 2.5422	.51029 .50489 .50853	.50944 .51179 .51074	.51527 .50740 .51278	.25587 .25689 .25592
Check ? High Limit Low Limit	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass
Elem Units Avg Stddev %RSD	V_2924 ppm . 50426 .00285 .56590	Zn2062 ppm . 50674 .00185 .36562	Zr3391 ppm F50191 .28372 56.528				
#1 #2 #3	.50498 .50668 .50111	.50833 .50470 .50717	27611 40924 82037				
Check ? High Limit Low Limit	Chk Pass	Chk Pass	Chk Fail 36.000 04000				
Int. Std. Units Avg Stddev %RSD	Y_2243 Cts/S 11971. 40. .33355	Y_3600 Cts/S 86136. 276. .32025	Y_3774 Cts/S 3886.5 31.1 .80030				
#1 #2 #3	11959. 12015. 11938.	86429. 85882. 86097.	3879.8 3859.3 3920.4				

Sample Name: L1605001305SDL Acquired: 5/13/2016 18:07:18 Type: Unk Method: ICP-THERMO3_6010_200.7WATER_3YLINES(v872) Mode: CONC Corr. Factor: 1.000000 User: JYH Custom ID1: 5 Custom ID2: Custom ID3: Comment: WG567345-04 AI3082 As1890 B_2496 Ba4554 Be3131 Ca4226 Elem Ag3280 Units ppm ppm ppm ppm ppm ppm ppm .00294 .00093 -.00913 Avg -.00163 .00378 .00121 .00009 Stddev .00054 .00530 .00609 .00123 .00045 .00005 .05133 %RSD 33.107 571.35 207.27 32.523 37.163 53.613 562.56 -.00402 #1 -.00218 .00686 .00152 .00015 -.02296 .00467 #2 -.00162 -.00334 .00553 .00430 .00142 .00006 -.05212 #3 -.00110 -.00074 .00730 .00238 .00069 .00006 .04771 **Chk Pass** Check? Chk Pass **Chk Pass** Chk Pass **Chk Pass Chk Pass Chk Pass High Limit** Low Limit Elem Cd2288 Co2286 Cr2677 Cu2247 Fe2611 K_7664 Li6707 Units ppm ppm ppm ppm ppm ppm ppm -.00016 -.00912 -.00021 .00045 .00039 Avg .13732 -.00216 .00016 .00006 .00042 .00073 .00368 Stddev .01751 .18722 %RSD 76.503 12.529 108.37 468.04 191.91 136.34 170.63 .32823 #1 -.00003 .00041 .00000 -.00049 .00688 .00047 #2 -.00027 .00052 .00084 -.00066 -.02783.12969 -.00636 .00043 #3 -.00033 .00032 .00068 -.00642-.04597 -.00057 Check? **Chk Pass Chk Pass Chk Pass Chk Pass Chk Pass Chk Pass Chk Pass** High Limit Low Limit Elem Mg2790 Mn2576 Mo2020 Na5895 Ni2316 P_2149 Pb2203 Units ppm ppm ppm ppm ppm ppm ppm -.06408 -.00203 .00059 .04105 .00033 .00354 -.00024 Avg .11430 .00162 .00048 .03932 .00166 .00515 .00388 Stddev %RSD 95.784 178.36 79.501 81.390 496.76 145.50 1611.2 #1 -.00026 .00419 -.18165 .00039 .04989 -.00144 .00539 .04664 -.00243 .00024 -.00194 .00058 .00752 -.00301 #2 #3 -.05724 -.00341 .00114 .07520 .00186 -.00228 -.00190 Check? **Chk Pass** Chk Pass **Chk Pass Chk Pass Chk Pass Chk Pass Chk Pass** High Limit

Approved: May 16, 2016

Low Limit

Sample Name: L1605001305SDL Acquired: 5/13/2016 18:07:18 Type: Unk Method: ICP-THERMO3_6010_200.7WATER_3YLINES(v872) Mode: CONC Corr. Factor: 1.000000 User: JYH Custom ID1: 5 Custom ID2: Custom ID3: Comment: WG567345-04									
Elem Units Avg Stddev %RSD	Sb2068 ppm 00247 .00672 271.82	Se1960 ppm .00060 .00458 759.98	Si2124 ppm 02511 .00245 9.7529	Sn1899 ppm 00004 .00060 1472.2	Sr4077 ppm . 00004 .00033 793.31	Ti3372 ppm . 00240 .00666 277.82	TI1908 ppm 00214 .00221 103.19		
#1 #2 #3	00828 .00489 00402	00357 .00550 00013	02236 02706 02590	.00026 .00035 00073	00034 .00021 .00025	00473 .00845 .00347	00426 .00015 00231		
Check ? High Limit Low Limit	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass		
Elem Units Avg Stddev %RSD	V_2924 ppm . 00048 .00117 246.49	Zn2062 ppm .00158 .00011 6.9159	Zr3391 ppm F54446 .67746 124.43						
#1 #2 #3	.00100 .00130 00087	.00159 .00147 .00169	09235 21766 -1.3234						
Check ? High Limit Low Limit	Chk Pass	Chk Pass	Chk Fail 36.000 04000						
Int. Std. Units Avg Stddev %RSD	Y_2243 Cts/S 12231. 11. .09303	Y_3600 Cts/S 88447. 886. 1.0014	Y_3774 Cts/S 3885.9 26.5 .68236						
#1 #2 #3	12219. 12241. 12234.	88995. 87425. 88921.	3882.4 3861.3 3914.0						

Sample Name: L1605001305SDL Acquired: 5/13/2016 18:11:21 Type: Unk Method: ICP-THERMO3 6010 200.7WATER 3YLINES(v872) Mode: CONC Corr. Factor: 1.000000 User: JYH Custom ID1: 25 Custom ID2: Custom ID3: Comment: WG567345-04 AI3082 As1890 B_2496 Ba4554 Be3131 Ca4226 Elem Ag3280 Units ppm ppm ppm ppm ppm ppm ppm Avg -.00148 -.00108 -.00043.00337 .00150 .00010 -.02113 Stddev .00130 .00536 .00077 .00213 .00042 .00002 .02574 %RSD 87.899 497.52 179.29 63.313 27.884 18.742 121.79 #1 -.00251 -.00527 -.00118 .00242 .00179 .00010 -.02788 #2 -.00002 -.00293 -.00047 .00188 .00102 .00008 .00731 #3 -.00191 .00496 .00036 .00581 .00169 .00012 -.04283 Check? Chk Pass Chk Pass **Chk Pass** Chk Pass **Chk Pass Chk Pass Chk Pass High Limit** Low Limit Elem Cd2288 Co2286 Cr2677 Cu2247 Fe2611 K_7664 Li6707 Units ppm ppm ppm ppm ppm ppm ppm -.00147 -.00212 .00006 .00029 .00122 -.01065 Avg .05811 .00062 .00090 .00118 .00647 Stddev .00036 .01974 .10154 %RSD 555.81 209.02 73.773 80.295 185.47 174.74 304.64 -.00284 #1 .00032 -.00028 .00159 .00641 .03333 -.00897 #2 .00022 .00094 .00020 -.00084 -.03227.16975 -.00128 .00022 #3 -.00035 .00188 -.00074 -.00608 -.02875 .00388 Check? **Chk Pass** Chk Pass **Chk Pass Chk Pass Chk Pass Chk Pass** Chk Pass High Limit Low Limit Elem Mg2790 Mn2576 Mo2020 Na5895 Ni2316 P_2149 Pb2203 Units ppm ppm ppm ppm ppm ppm ppm F-.10828 -.00228 -.00024 .00020 .00071 -.00135 -.00278 Avg .11920 .00040 .00060 .02402 .00088 .00502 .00158 Stddev %RSD 110.08 17.472 251.39 12040. 124.02 373.01 56.678 #1 -.00097 -.24368 -.00272 -.00086 .00206 .00078 -.00686 -.00220 .00035 -.02469 .00154 .00297 -.00380 #2 -.01913 #3 -.06204 -.00193 -.00021 .02323 -.00020 -.00015 -.00358 Check? Chk Fail Chk Pass **Chk Pass Chk Pass Chk Pass Chk Pass Chk Pass** High Limit 900.00

Approved: May 16, 2016

Low Limit

-.10000

Sample Name: L1605001305SDL Acquired: 5/13/2016 18:11:21 Type: Unk Method: ICP-THERMO3_6010_200.7WATER_3YLINES(v872) Mode: CONC Corr. Factor: 1.000000 User: JYH Custom ID1: 25 Custom ID2: Custom ID3: Comment: WG567345-04									
Elem Units Avg Stddev %RSD	Sb2068 ppm 00024 .00598 2531.0	Se1960 ppm 00401 .00986 246.14	Si2124 ppm 02454 .00261 10.641	Sn1899 ppm 00011 .00102 957.67	Sr4077 ppm 00002 .00016 768.71	Ti3372 ppm . 00711 .00493 69.346	TI1908 ppm . 00209 .00147 70.149		
#1 #2 #3	.00089 00670 .00510	.00586 00402 01386	02392 02741 02230	.00041 00128 .00055	00010 00013 .00016	.00787 .00185 .01163	.00369 .00180 .00080		
Check ? High Limit Low Limit	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass		
Elem Units Avg Stddev %RSD	V_2924 ppm .00010 .00060 624.40	Zn2062 ppm . 00100 .00004 4.0845	Zr3391 ppm .29028 .08912 30.702						
#1 #2 #3	.00079 00020 00030	.00096 .00098 .00104	.27101 .21237 .38746						
Check ? High Limit Low Limit	Chk Pass	Chk Pass	Chk Pass						
Int. Std. Units Avg Stddev %RSD	Y_2243 Cts/S 12407. 41. .32773	Y_3600 Cts/S 90023. 412. .45782	Y_3774 Cts/S 3984.5 33.4 .83934						
#1 #2 #3	12361. 12422. 12438.	90198. 89552. 90318.	3945.9 4004.7 4002.8						

Sample Name Method: ICP- User: JYH Comment:				• •	Mode: CON	C Corr. F	Factor: 1.00000(
Elem	Ag3280	Al3082	As1890	B_2496	Ba4554	Be3131	Ca4226
Units	ppm	ppm	ppm	ppm	ppm	ppm	ppm
Avg	. 40146	10.150	. 40252	. 50672	1.0171	. 05027	10.257
Stddev	.00396	.044	.00230	.00443	.0106	.00030	.119
%RSD	.98680	.43042	.57147	.87497	1.0407	.59845	1.1624
#1	.40227	10.140	.40025	.50614	1.0277	.05017	10.385
#2	.39715	10.112	.40485	.50261	1.0172	.05003	10.238
#3	.40495	10.198	.40245	.51142	1.0065	.05061	10.149
Check ? Value Range	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass
Elem	Cd2288	Co2286	Cr2677	Cu2247	Fe2611	K_7664	Li6707
Units	ppm	ppm	ppm	ppm	ppm	ppm	ppm
Avg	. 05095	.20515	. 51520	. 51370	4.1230	50.885	1.0202
Stddev	.00028	.00074	.00353	.00130	.0430	.624	.0131
%RSD	.55621	.35833	.68487	.25347	1.0435	1.2259	1.2841
#1	.05069	.20448	.51283	.51275	4.1328	51.421	1.0320
#2	.05092	.20503	.51351	.51519	4.1602	51.034	1.0225
#3	.05125	.20593	.51925	.51317	4.0759	50.200	1.0061
Check ? Value Range	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass
Elem	Mg2790	Mn2576	Mo2020	Na5895	Ni2316	P_2149	Pb2203
Units	ppm	ppm	ppm	ppm	ppm	ppm	ppm
Avg	10.242	. 50508	1.0135	51.228	. 51541	10.094	. 51712
Stddev	.056	.00883	.0039	.650	.00321	.036	.00220
%RSD	.54952	1.7479	.38809	1.2680	.62377	.35337	.42586
#1	10.296	.51265	1.0099	51.858	.51251	10.054	.51556
#2	10.184	.50720	1.0177	51.265	.51485	10.109	.51615
#3	10.246	.49538	1.0128	50.561	.51887	10.120	.51964
Check ? Value Range	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass

Sample Name Method: ICP-T User: JYH Comment:)10_200.7W <i>A</i>	2016 18:15:2 ATER_3YLINI stom ID2:	• •	Mode: CON	C Corr. F	Factor: 1.000000
Elem Units Avg Stddev %RSD	Sb2068 ppm 1.2069 .0045 .37311	Se1960 ppm . 39859 .00160 .40089	Si2124 ppm 5.1678 .0228 .44120	Sn1899 ppm 1.0248 .0040 .38826	Sr4077 ppm 1.0128 .0138 1.3596	Ti3372 ppm 1.0198 .0180 1.7628	TI1908 ppm . 51036 .00176 .34390
#1 #2 #3	1.2037 1.2121 1.2050	.39836 .39711 .40028	5.1426 5.1870 5.1736	1.0202 1.0265 1.0276	1.0265 1.0131 .99896	1.0404 1.0116 1.0073	.51101 .51169 .50837
Check ? Value Range	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass
Elem Units Avg Stddev %RSD	V_2924 ppm 1.0156 .0051 .50337	Zn2062 ppm 1.0280 .0045 .44075	Zr3391 ppm F17763 1.0704 602.61				
#1 #2 #3	1.0147 1.0110 1.0211	1.0229 1.0316 1.0296	83338 1.0576 75709				
Check ? Value Range	Chk Pass	Chk Pass	Chk Fail 1.0000 -10.000%				
Int. Std. Units Avg Stddev %RSD	Y_2243 Cts/S 11727. 39. .33421	Y_3600 Cts/S 83838. 728. .86812	Y_3774 Cts/S 3822.8 5.5 .14261				
#1 #2 #3	11772. 11703. 11706.	84672. 83509. 83333.	3818.0 3821.7 3828.8				

Sample Name: CCB Acquired: 5/13/2016 18:19:09 Type: Blank Method: ICP-THERMO3_6010_200.7WATER_3YLINES(v872) Mode: CONC Corr. Factor: 1.000000 User: JYH Custom ID1: Custom ID2: Custom ID3: Comment:									
Elem	Ag3280	Al3082	As1890	B_2496	Ba4554	Be3131	Ca4226		
Units	ppm	ppm	ppm	ppm	ppm	ppm	ppm		
Avg	00181	.01618	.00486	. 00377	. 00210	. 00014	00819		
Stddev	.00217	.00962	.00116	.00049	.00092	.00005	.04862		
%RSD	119.89	59.442	23.947	12.935	44.062	35.115	593.57		
#1	00336	.02041	.00405	.00326	.00194	.00012	.04332		
#2	.00067	.02296	.00620	.00423	.00126	.00020	01461		
#3	00274	.00517	.00434	.00383	.00309	.00011	05328		
Check ? High Limit Low Limit	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass		
Elem	Cd2288	Co2286	Cr2677	Cu2247	Fe2611	K_7664	Li6707		
Units	ppm	ppm	ppm	ppm	ppm	ppm	ppm		
Avg	00042	.00046	00049	00085	02303	. 07749	00107		
Stddev	.00011	.00046	.00112	.00069	.01278	.07770	.00386		
%RSD	24.893	99.305	230.00	81.772	55.511	100.27	361.86		
#1	00036	00001	00165	00013	00884	.06706	.00312		
#2	00036	.00091	.00059	00089	02659	.15987	00183		
#3	00054	.00049	00040	00152	03366	.00553	00449		
Check ? High Limit Low Limit	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass		
Elem	Mg2790	Mn2576	Mo2020	Na5895	Ni2316	P_2149	Pb2203		
Units	ppm	ppm	ppm	ppm	ppm	ppm	ppm		
Avg	07755	00334	. 00462	01364	00001	. 00002	00154		
Stddev	.08119	.00309	.00024	.03974	.00058	.00629	.00332		
%RSD	104.69	92.486	5.2662	291.36	9860.8	27935.	215.25		
#1	00209	00670	.00485	.01337	00038	.00575	.00228		
#2	16346	00274	.00437	.00498	.00066	00671	00368		
#3	06710	00060	.00463	05927	00030	.00103	00323		
Check ? High Limit Low Limit	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass		

Sample Name: CCB Acquired: 5/13/2016 18:19:09 Type: Blank Method: ICP-THERMO3_6010_200.7WATER_3YLINES(v872) Mode: CONC Corr. Factor: 1.000000 User: JYH Custom ID1: Custom ID2: Custom ID3: Comment:									
Elem Units Avg Stddev %RSD	Sb2068 ppm . 01188 .00599 50.399	Se1960 ppm 00310 .00958 309.16	Si2124 ppm .00664 .00136 20.541	Sn1899 ppm . 00095 .00102 107.88	Sr4077 ppm 00000 .00042 9428.0	Ti3372 ppm .00182 .00706 388.95	TI1908 ppm 00125 .00452 360.76		
#1 #2 #3	.00733 .01866 .00965	00834 .00796 00891	.00821 .00597 .00574	.00186 .00114 00016	.00016 00048 .00031	00441 .00037 .00949	00538 .00357 00195		
Check ? High Limit Low Limit	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass		
Elem Units Avg Stddev %RSD	V_2924 ppm .00084 .00180 213.33	Zn2062 ppm .00021 .00019 89.353	Zr3391 ppm F28074 .70579 251.41						
#1 #2 #3	00123 .00201 .00174	.00035 00000 .00029	-1.0954 .10776 .14545						
Check ? High Limit Low Limit	Chk Pass	Chk Pass	Chk Fail .04000 04000						
Int. Std. Units Avg Stddev %RSD	Y_2243 Cts/S 11657. 38. .32578	Y_3600 Cts/S 84021. 438. .52169	Y_3774 Cts/S 3716.5 35.5 .95531						
#1 #2 #3	11637. 11701. 11633.	84144. 84384. 83534.	3680.4 3717.9 3751.4						

•									
Elem	Ag3280	Al3082	As1890	B_2496	Ba4554	Be3131	Ca4226		
Units	ppm	ppm	ppm	ppm	ppm	ppm	ppm		
Avg	.00757	.18308	.00902	.08099	.01105	.00172	. 40794		
Stddev	.00218	.00572	.00273	.00249	.00040	.00008	.03388		
%RSD	28.849	3.1271	30.221	3.0763	3.6303	4.5372	8.3054		
#1	.00959	.17672	.01178	.08166	.01100	.00180	.43785		
#2	.00786	.18470	.00895	.07824	.01147	.00164	.41484		
#3	.00526	.18782	.00633	.08308	.01067	.00173	.37114		
Check ? High Limit Low Limit	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass		
Elem	Cd2288	Co2286	Cr2677	Cu2247	Fe2611	K_7664	Li6707		
Units	ppm	ppm	ppm	ppm	ppm	ppm	ppm		
Avg	.00076	.00436	. 00517	. 00403	.07028	. 96042	. 08425		
Stddev	.00029	.00016	.00095	.00247	.00573	.06426	.00315		
%RSD	38.729	3.6679	18.336	61.300	8.1507	6.6912	3.7363		
#1	.00109	.00419	.00408	.00584	.07042	.90359	.08193		
#2	.00056	.00449	.00563	.00121	.07593	1.0302	.08784		
#3	.00062	.00441	.00580	.00502	.06448	.94752	.08299		
Check ? High Limit Low Limit	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass		
Elem	Mg2790	Mn2576	Mo2020	Na5895	Ni2316	P_2149	Pb2203		
Units	ppm	ppm	ppm	ppm	ppm	ppm	ppm		
Avg	. 33356	.00811	.00896	. 41136	.01782	. 80623	. 00571		
Stddev	.03919	.00039	.00023	.01868	.00058	.00278	.00145		
%RSD	11.750	4.8275	2.5332	4.5402	3.2804	.34451	25.303		
#1	.35057	.00791	.00876	.38996	.01841	.80716	.00672		
#2	.36138	.00786	.00921	.42437	.01781	.80310	.00406		
#3	.28874	.00856	.00892	.41976	.01724	.80842	.00637		
Check ? High Limit Low Limit	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass		

Sample Nam Method: ICP User: JYH Comment:	ne: LLCCV -THERMO3_ Custom I	6010_200.7	5/13/2016 1 WATER_3Y Custom ID2:	LINES(v872	Type: Unk) Mode: tom ID3:	CONC (Corr. Factor:	1.000000
Elem Units Avg Stddev %RSD	Sb2068 ppm . 08502 .00300 3.5339	Se1960 ppm .01729 .00611 35.368	Si2124 ppm . 88728 .00217 .24502	Sn1899 ppm . 41828 .00281 .67072	Sr4077 ppm . 04153 .00046 1.1123	Ti3372 ppm . 03047 .00068 2.2425	TI1908 ppm . 16191 .00215 1.3255	
#1 #2 #3	.08822 .08456 .08226	.01082 .02297 .01807	.88638 .88569 .88975	.41522 .41889 .42073	.04133 .04205 .04120	.03119 .02983 .03039	.16293 .15944 .16335	
Check ? High Limit Low Limit	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	
Elem Units Avg Stddev %RSD	V_2924 ppm .00872 .00113 12.983	Zn2062 ppm . 01746 .00026 1.4849	Zr3391 ppm F 62.909 1.093 1.7368					
#1 #2 #3	.00936 .00939 .00741	.01728 .01776 .01735	63.924 63.049 61.753					
Check ? High Limit Low Limit	Chk Pass	Chk Pass	Chk Fail 36.000 04000					
Int. Std. Units Avg Stddev %RSD	Y_2243 Cts/S 11763. 77. .65530	Y_3600 Cts/S 85132. 528. .61999	Y_3774 Cts/S 3751.6 89.2 2.3776					
#1 #2 #3	11849. 11742. 11700.	84603. 85658. 85135.	3733.8 3672.7 3848.4					

Sample Name: PBW 81 Acquired: 5/13/2016 18:27:18 Type: Unk Method: ICP-THERMO3_6010_200.7WATER_3YLINES(v872) Mode: CONC Corr. Factor: 1.000000 User: JYH Custom ID1: Custom ID2: Custom ID3: Comment: WG567819-02 AI3082 B_2496 Ba4554 Be3131 Ca4226 Elem Ag3280 As1890 Units ppm ppm ppm ppm ppm ppm ppm -.00383 .00954 .00489 .00028 Avg -.00318 .00153 .00008 Stddev .00095 .00589 .00518 .00134 .00031 .00002 .03339 %RSD 29.812 61.716 105.94 480.00 20.413 31.495 872.58 #1 -.00376 .00690 .00296 -.00035 .00182 .00005 -.00820 #2 -.00369 .01629 .01075 .00182 .00120 .00010 -.03481 #3 -.00208 .00544 .00095 -.00063 .00157 .00008 .03154 **Chk Pass** Check? Chk Pass **Chk Pass Chk Pass Chk Pass Chk Pass Chk Pass High Limit** Low Limit Elem Cd2288 Co2286 Cr2677 Cu2247 Fe2611 K_7664 Li6707 Units ppm ppm ppm ppm ppm ppm ppm -.00018 .00010 .00058 -.00026 -.00517 .12544 Avg -.00275 .00033 .00014 .00048 .01135 .18976 .00193 Stddev .00117 %RSD 179.63 140.47 200.88 185.04 219.32 151.27 70.385 -.00331 #1 -.00006 -.00006 .00015 -.00069 .00539 -.05307 #2 -.00055 .00014 -.00031 .00026 -.00374.32475 -.00434 .00022 #3 .00007 .00190 -.00034 -.01717 .10465 -.00060 Check? **Chk Pass** Chk Pass **Chk Pass Chk Pass Chk Pass Chk Pass Chk Pass** High Limit Low Limit Elem Mg2790 Mn2576 Mo2020 Na5895 Ni2316 P_2149 Pb2203 Units ppm ppm ppm ppm ppm ppm ppm F -.15312 -.00214 -.00011 -.02859 .00078 -.00263 -.00079 Avg .00431 .00021 .02147 .00012 .01340 Stddev .15218 .00363 %RSD 99.389 458.19 201.85 185.13 75.077 14.952 509.98 #1 -.32603 -.00308 .00011 -.05132 .00090 -.00660 .00338 -.03955 -.00589 -.00015 -.02581 .00067 .01231 -.00259 #2

Approved: May 16, 2016

-.00316

Chk Pass

#3

Check?

High Limit

Low Limit

-.09377

Chk Fail

900.00

.00257

Chk Pass

-.00031

Chk Pass

-.00865

Chk Pass

.00077

Chk Pass

-.01360

Chk Pass

Sample Name: PBW 81 Acquired: 5/13/2016 18:27:18 Type: Unk Method: ICP-THERMO3_6010_200.7WATER_3YLINES(v872) Mode: CONC Corr. Factor: 1.000000 User: JYH Custom ID1: Custom ID2: Custom ID3: Comment: WG567819-02									
Elem Units Avg Stddev %RSD	Sb2068 ppm . 00023 .00343 1496.3	Se1960 ppm 00899 .00552 61.372	Si2124 ppm . 00467 .00218 46.780	Sn1899 ppm . 00033 .00086 256.99	Sr4077 ppm . 00019 .00047 247.45	Ti3372 ppm . 00304 .00287 94.571	TI1908 ppm 00220 .00285 129.66		
#1 #2 #3	.00395 00282 00044	00262 01240 01195	.00540 .00221 .00640	00065 .00076 .00089	.00032 00033 .00058	00006 .00356 .00561	00521 .00047 00186		
Check ? High Limit Low Limit	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass		
Elem Units Avg Stddev %RSD	V_2924 ppm 00078 .00088 112.59	Zn2062 ppm .00080 .00022 28.016	Zr3391 ppm F20770 .26230 126.28						
#1 #2 #3	00120 00136 .00023	.00101 .00083 .00056	49141 15768 .02598						
Check ? High Limit Low Limit	Chk Pass	Chk Pass	Chk Fail 36.000 04000						
Int. Std. Units Avg Stddev %RSD	Y_2243 Cts/S 11720. 51. .43240	Y_3600 Cts/S 84220. 664. .78890	Y_3774 Cts/S 3748. 1 7.0 .18807						
#1 #2 #3	11695. 11778. 11686.	83841. 84987. 83832.	3744.1 3756.2 3743.9						

Sample Name: LCSW 81 Acquired: 5/13/2016 18:31:21 Type: Unk

Method: ICP-THERMO3_6010_200.7WATER_3YLINES(v872) Mode: CONC Corr. Factor: 1.000000

User: JYH Custom ID1: Custom ID2: Custom ID3:

Comment: WG567819-03

Elem	Ag3280	Al3082	As1890	B_2496	Ba4554	Be3131	Ca4226	Cd2288
Units	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm
Avg	.19086	4.7442	.18900	.93861	.48494	.02339	4.9173	.02365
Stddev	.00178	.0075	.00414	.00393	.00385	.00014	.0313	.00038
%RSD	.93155	.15788	2.1913	.41824	.79482	.59201	.63579	1.6129
#1	.19103	4.7379	.18422	.94206	.48776	.02323	4.9341	.02366
#2	.18901	4.7525	.19145	.93434	.48055	.02350	4.8812	.02403
#3	.19256	4.7424	.19133	.93944	.48650	.02343	4.9365	.02327

Check? Chk Pass Chk P

Elem	Co2286	Cr2677	Cu2247	Fe2611	K_7664	Li6707	Mg2790	Mn2576
Units	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm
Avg	.09728	. 24207	. 24382	1.9522	24.746	. 48131	4.7613	. 24093
Stddev	.00052	.00165	.00176	.0440	.348	.00207	.0337	.00337
%RSD	.53535	.68226	.71997	2.2530	1.4045	.43061	.70810	1.3983
#1	.09789	.24099	.24433	1.9645	25.028	.48175	4.7849	.24430
#2	.09701	.24124	.24526	1.9034	24.358	.47905	4.7227	.23756
#3	.09696	.24397	.24186	1.9888	24.853	.48313	4.7763	.24094

Check? Chk Pass Chk P

Elem Units Avg Stddev %RSD	Mo2020 ppm . 48759 .00200 .41102	Na5895 ppm 24.608 .198 .80403	Ni2316 ppm . 24717 .00096 .38941	P_2149 ppm 4.6691 .0137 .29388	Pb2203 ppm . 24689 .00574 2.3240	Sb2068 ppm . 57348 .00622 1.0852	Se1960 ppm . 18744 .00647 3.4514	Si2124 ppm 2.4623 .0012 .04969
#1	.48845	24.738	.24611	4.6818	.24502	.57915	.19488	2.4612
#2	.48902	24.380	.24741	4.6709	.24231	.57448	.18433	2.4621
#3	.48530	24.706	.24799	4.6545	.25333	.56682	.18311	2.4636

Check? Chk Pass Chk P

Sample Name: LCSW 81 Acquired: 5/13/2016 18:31:21 Type: Unk

Method: ICP-THERMO3_6010_200.7WATER_3YLINES(v872) Mode: CONC Corr. Factor: 1.000000

User: JYH Custom ID1: Custom ID2: Custom ID3:

Comment: WG567819-03

Elem	Sn1899	Sr4077	Ti3372	TI1908	V_2924	Zn2062	Zr3391
Units	ppm	ppm	ppm	ppm	ppm	ppm	ppm
Avg	.48755	.48698	.48344	.24235	.47962	.48309	2.1285
Stddev	.00193	.00406	.00659	.00268	.00243	.00078	.7743
%RSD	.39549	.83458	1.3625	1.1066	.50576	.16064	36.379
#1	.48918	.48900	.49103	.24251	.47710	.48367	1.2466
#2	.48805	.48230	.47919	.24495	.47982	.48339	2.6969
#3	.48542	.48963	.48011	.23959	.48194	.48221	2.4421

Check? Chk Pass Chk P

Low Limit

Int. Std.	Y_2243	Y_3600	Y_3774
Units	Cts/S	Cts/S	Cts/S
Avg	12111.	87282 .	3920.2
Stddev	41.	235.	54.2
%RSD	.34156	.26940	1.3829
#1	12066.	87024.	3862.4
#2	12148.	87340.	3928.3
#3	12119.	87483.	3970.0

Sample Name: L1605015401 Acquired: 5/13/2016 18:35:08 Type: Unk Method: ICP-THERMO3_6010_200.7WATER_3YLINES(v872) Mode: CONC Corr. Factor: 1.000000 User: JYH Custom ID1: Custom ID2: Custom ID3: Comment: WG567819-01 Al3082 As1890 B_2496 Ba4554 Be3131 Ca4226 Elem Ag3280 Units ppm ppm ppm ppm ppm ppm ppm .00295 -.00047 Avg .02648 .01413 .02000 .00012 31.851 Stddev .00152 .00433 .00244 .00072 .00036 80000. .141 %RSD 323.60 16.345 82.950 5.1006 1.7894 71.217 .44234#1 -.00168 .03085 .00452 .01986 .00018 .01451 31.694 #2 .00123 .02219 .00013 .01458 .02040 .00015 31.967 #3 -.00096 .02640 .00418 .01330 .01973 .00002 31.891 **Chk Pass** Check? Chk Pass **Chk Pass Chk Pass Chk Pass Chk Pass Chk Pass High Limit** Low Limit Elem Cd2288 Co2286 Cr2677 Cu2247 Fe2611 K_7664 Li6707 Units ppm ppm ppm ppm ppm ppm ppm -.00071 -.00012 .00013 .00113 .53719 2.3733 .00358 Avg .00011 .00033 .00093 .00054 .00280 Stddev .01702 .0541 %RSD 89.922 255.51 81.779 76.408 3.1678 2.2792 78.127 #1 .00000 .00037 .00021 -.00084 .51995 2.4046 .00523 #2 -.00017 -.00025 .00113 -.00011 .53764 2.4044 .00516 #3 -.00020 .00027 .00206 -.00117 .55398 2.3108 .00035 Check? **Chk Pass** Chk Pass **Chk Pass Chk Pass Chk Pass Chk Pass Chk Pass** High Limit Low Limit Elem Mg2790 Mn2576 Mo2020 Na5895 Ni2316 P_2149 Pb2203 Units ppm ppm ppm ppm ppm ppm ppm 4.4519 .09373 .00103 5.5135 .00050 .00507 -.00222 Avg .00135 .00035 .0107 .00072 .00526 .00322 Stddev .1527 %RSD 3.4310 1.4361 34.131 .19471 144.39 103.83 144.95 #1 -.00043 4.3438 .09516 .00091 5.5029 -.00005 .00654 4.6266 .09248 .00143 5.5131 .00023 -.00077 -.00029 #2 -.00595 #3 4.3852 .09356 .00076 5.5244 .00131 .00944 Check? **Chk Pass** Chk Pass **Chk Pass Chk Pass Chk Pass Chk Pass Chk Pass** High Limit

Approved: May 16, 2016

Low Limit

Sample Name Method: ICP- User: JYH Comment: W0	THERMO3_60 Custom ID)10_200.7W <i>A</i>	0_200.7WATER_3YLINES(v872)			Type: Unk Mode: CONC Corr. Factor: 1.00 ID3:		
Elem Units Avg Stddev %RSD	Sb2068 ppm . 00335 .00145 43.189	Se1960 ppm .00364 .00772 211.97	Si2124 ppm 2.0231 .0019 .09542	Sn1899 ppm 00010 .00065 678.11	Sr4077 ppm . 11691 .00154 1.3182	Ti3372 ppm 00186 .00886 475.89	TI1908 ppm 00275 .00460 167.10	
#1 #2 #3	.00170 .00399 .00438	.01148 .00338 00395	2.0251 2.0232 2.0212	.00051 00079 00001	.11598 .11869 .11606	00623 .00833 00768	.00193 00727 00293	
Check ? High Limit Low Limit	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	
Elem Units Avg Stddev %RSD	V_2924 ppm . 00106 .00040 38.224	Zn2062 ppm .00458 .00018 3.9723	Zr3391 ppm F50315 .96390 191.57					
#1 #2 #3	.00138 .00060 .00118	.00479 .00450 .00445	-1.5318 35702 .37934					
Check ? High Limit Low Limit	Chk Pass	Chk Pass	Chk Fail 36.000 04000					
Int. Std. Units Avg Stddev %RSD	Y_2243 Cts/S 12117. 25. .20663	Y_3600 Cts/S 87843. 622. .70789	Y_3774 Cts/S 3957.4 22.5 .56823					
#1 #2 #3	12093. 12117. 12143.	87571. 88554. 87403.	3942.3 3946.5 3983.2					

Sample Name: L1605015402S Acquired: 5/13/2016 18:39:09 Type: Unk Mode: CONC Method: ICP-THERMO3 6010 200.7WATER 3YLINES(v872) Corr. Factor: 1.000000 User: JYH Custom ID1: Custom ID2: Custom ID3: Comment: WG567819-04 Al3082 B_2496 Ba4554 Ca4226 Cd2288 Elem Ag3280 As1890 Be3131 Units ppm ppm ppm ppm ppm ppm ppm ppm Avg .19113 4.8510 .19218 .96574 .50523 .02396 36.003 .02412 Stddev .00043 .0407 .00392 .00594 .00223 .00005 .113 .00040 %RSD .22642 .83990 2.0405 .61491 .44063 .21835 .31277 1.6401 #1 .96310 .19163 4.8188 .19452 .50428 .02401 35.875 .02407 #2 .19092 4.8968 .19437 .97254 50364 .02391 36.047 .02375 .19084 #3 4.8374 .18766 .96158 .50777 .02395 36.087 .02453 Check? Chk Pass Chk Pass Chk Pass Chk Pass Chk Pass Chk Pass Chk Pass Chk Pass **High Limit** Low Limit Elem Co2286 Cr2677 Cu2247 Fe2611 K_7664 Mg2790 Mn2576 Li6707 Units ppm ppm ppm ppm ppm ppm ppm ppm .09809 .24563 27.186 9.1413 Avg .24452 2.4841 .48813 .33279 .00105 .0128 .00538 .0687 .00299 Stddev .00019 .00176 .092 %RSD .18959 .71547 .42795 .51521 .33782 .75173 .89860 1.1022 #1 .09807 .24399 .24528 2.4720 27.104 .48979 9.1353 .33083 #2 .09828 .24749 .24332 2.4830 27.285 .48211 9.2128 .33130 .24542 27.169 #3 .09791 .24495 2.4975 .49248 9.0758 .33623 Check? Chk Pass Chk Pass Chk Pass Chk Pass Chk Pass Chk Pass Chk Pass High Limit Low Limit P_2149 Elem Mo2020 Na5895 Ni2316 Pb2203 Sb2068 Se1960 Si2124 Units ppm ppm ppm ppm ppm ppm ppm ppm Avg .49495 30.097 .24615 4.8344 .24755 .58941 .18992 4.5637 .0130 .00127 .00398 Stddev .00157 .028 .00260 .00056 .0126 .31713 1.0560 .21511 %RSD .09385 .26955 .22678 2.0968 .27553 #1 30.065 4.8217 .49316 .24834 .24722 .59000 .19204 4.5503 .24820 .19240 #2 .49607 30.106 .24682 4.8338 .59027 4.5657 #3 .49562 30.119 .24328 4.8477 .24723 .58795 .18533 4.5752

Chk Pass Chk Pass Chk Pass Chk Pass Chk Pass Chk Pass Chk Pass

Approved: May 16, 2016

Check?

High Limit Low Limit Sample Name: L1605015402S Acquired: 5/13/2016 18:39:09 Type: Unk

Method: ICP-THERMO3_6010_200.7WATER_3YLINES(v872) Mode: CONC Corr. Factor: 1.000000

User: JYH Custom ID1: Custom ID2: Custom ID3:

Comment: WG567819-04

Elem	Sn1899	Sr4077	Ti3372	TI1908	V_2924	Zn2062	Zr3391
Units	ppm	ppm	ppm	ppm	ppm	ppm	ppm
Avg	.49532	.60265	.48431	.24521	.49181	.49058	.73716
Stddev	.00142	.00244	.00407	.00816	.00327	.00208	.46378
%RSD	.28654	.40427	.83957	3.3268	.66576	.42489	62.915
#1	.49628	.60020	.48115	.23801	.48961	.48832	1.2116
#2	.49369	.60266	.48890	.24356	.49557	.49100	.71508
#3	.49599	.60507	.48287	.25407	.49025	.49243	.28481

Check? Chk Pass Chk P

Low Limit

Int. Std.	Y_2243	Y_3600	Y_3774
Units	Cts/S	Cts/S	Cts/S
Avg	11988.	85827.	3925.7
Stddev	19.	301.	26.8
%RSD	.15719	.35083	.68239
#1	11986.	86173.	3931.0
#2	11970.	85687.	3896.7
#3	12007.	85622.	3949.4

Method: ICP-THERMO3_6010_200.7WATER_3YLINES(v872) Mode: CONC Corr. Factor: 1.000000

User: JYH Custom ID1: Custom ID2: Custom ID3:

Comment: WG567819-05

Elem	Ag3280	Al3082	As1890	B_2496	Ba4554	Be3131	Ca4226	Cd2288
Units	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm
Avg	.19296	4.8104	.19315	.96170	.51203	.02380	36.246	.02419
Stddev	.00136	.0355	.00109	.00426	.00432	.00011	.336	.00045
%RSD	.70705	.73804	.56287	.44254	.84419	.47399	.92783	1.8401
#1	.19316	4.8480	.19190	.96595	.50868	.02392	35.999	.02384
#2	.19151	4.7774	.19373	.95744	.51050	.02379	36.111	.02469
#3	.19422	4.8057	.19382	.96171	.51691	.02369	36.629	.02403

Check? Chk Pass Chk P

Elem	Co2286	Cr2677	Cu2247	Fe2611	K_7664	Li6707	Mg2790	Mn2576
Units	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm
Avg	.09853	. 24205	. 24647	2.5240	27.390	. 48761	9.3812	.33754
Stddev	.00110	.00145	.00290	.0211	.230	.00373	.0864	.00248
%RSD	1.1188	.59760	1.1784	.83802	.84027	.76430	.92070	.73443
#1	.09844	.24363	.24508	2.5186	27.143	.48781	9.3326	.33624
#2	.09967	.24079	.24981	2.5061	27.429	.48378	9.3302	.33598
#3	.09747	.24171	.24451	2.5473	27.598	.49123	9.4809	.34040

Check? Chk Pass Chk P

Elem Units Avg Stddev %RSD	Mo2020 ppm . 49778 .00654 1.3147	Na5895 ppm 30.366 .269 .88446	Ni2316 ppm . 24723 .00278 1.1245	P_2149 ppm 4.8623 .0482 .99181	Pb2203 ppm . 25096 .00476 1.8967	Sb2068 ppm . 59056 .01253 2.1223	Se1960 ppm .19736 .00250 1.2669	Si2124 ppm 4.5788 .0432 .94285
#1	.49408	30.182	.24700	4.8452	.24706	.58661	.19848	4.5712
#2	.50533	30.242	.25012	4.9167	.25627	.60459	.19910	4.6252
#3	.49392	30.674	.24457	4.8249	.24957	.58047	.19449	4.5399

Check? Chk Pass Chk P

Method: ICP-THERMO3_6010_200.7WATER_3YLINES(v872) Mode: CONC Corr. Factor: 1.000000

User: JYH Custom ID1: Custom ID2: Custom ID3:

Comment: WG567819-05

Elem	Sn1899	Sr4077	Ti3372	TI1908	V_2924	Zn2062	Zr3391
Units	ppm	ppm	ppm	ppm	ppm	ppm	ppm
Avg	.49751	.61082	.49681	.24653	.48454	.49324	.10755
Stddev	.00601	.00606	.00456	.00077	.00372	.00639	.21627
%RSD	1.2070	.99266	.91840	.31289	.76822	1.2961	201.09
#1	.49519	.60692	.49463	.24738	.48878	.49065	.16070
#2	.50433	.60775	.49376	.24637	.48306	.50052	13034
#3	.49301	.61781	.50206	.24586	.48179	.48854	.29228

Check? Chk Pass Chk P

Low Limit

Int. Std.	Y_2243	Y_3600	Y_3774
Units	Cts/S	Cts/S	Cts/S
Avg	11991.	86877.	3939.3
Stddev	129.	601.	26.9
%RSD	1.0773	.69172	.68387
#1	12061.	86418.	3968.8
#2	11842.	87558.	3933.1
#3	12070.	86656.	3915.9

Corr. Factor: 1.000000

Sample Name: L1605015401PS Acquired: 5/13/2016 18:46:42 Type: Unk Method: ICP-THERMO3_6010_200.7WATER_3YLINES(v872) Mode: CONC

User: JYH Custom ID1: Custom ID2: Custom ID3:

Comment: WG568110-03

Elem	Ag3280	Al3082	As1890	B_2496	Ba4554	Be3131	Ca4226	Cd2288
Units	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm
Avg	.19372	4.8671	.19526	.97103	.51100	.02405	33.055	.02406
Stddev	.00313	.0114	.00254	.00270	.00462	.00013	.073	.00027
%RSD	1.6140	.23503	1.3034	.27791	.90453	.54440	.22217	1.1368
#1	.19549	4.8752	.19238	.96919	.51329	.02397	33.041	.02437
#2	.19556	4.8721	.19719	.97413	.51402	.02398	33.134	.02385
#3	.19011	4.8540	.19621	.96977	.50568	.02420	32.989	.02396

Check? Chk Pass Chk P

Elem	Co2286	Cr2677	Cu2247	Fe2611	K_7664	Li6707	Mg2790	Mn2576
Units	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm
Avg	.09804	. 24439	. 24559	2.4515	27.412	. 48746	8.8474	. 32842
Stddev	.00016	.00066	.00257	.0239	.090	.00664	.0513	.00487
%RSD	.16672	.26921	1.0460	.97300	.32914	1.3612	.57978	1.4815
#1	.09823	.24498	.24801	2.4771	27.485	.49274	8.8675	.32564
#2	.09796	.24451	.24290	2.4299	27.441	.48964	8.8856	.33404
#3	.09794	.24368	.24586	2.4475	27.311	.48002	8.7891	.32558

Check? Chk Pass Chk P

Elem	Mo2020	Na5895	Ni2316	P_2149	Pb2203	Sb2068	Se1960	Si2124
Units	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm
Avg	. 49733	29.954	. 24626	4.8362	. 24628	. 58724	.19032	4.3448
Stddev	.00068	.175	.00073	.0174	.00288	.00659	.00710	.0098
%RSD	.13724	.58385	.29646	.35934	1.1704	1.1222	3.7327	.22563
#1	.49685	30.027	.24637	4.8267	.24502	.58740	.18544	4.3388
#2	.49701	30.080	.24694	4.8256	.24958	.58057	.19847	4.3395
#3	.49811	29.754	.24549	4.8562	.24425	.59375	.18705	4.3561

Check? Chk Pass Chk P

Sample Name: L1605015401PS Acquired: 5/13/2016 18:46:42 Type: Unk

Method: ICP-THERMO3_6010_200.7WATER_3YLINES(v872) Mode: CONC Corr. Factor: 1.000000

User: JYH Custom ID1: Custom ID2: Custom ID3:

Comment: WG568110-03

Elem	Sn1899	Sr4077	Ti3372	TI1908	V_2924	Zn2062	Zr3391
Units	ppm	ppm	ppm	ppm	ppm	ppm	ppm
Avg	.49708	.60006	.49420	.24490	.48943	.49528	.17030
Stddev	.00117	.00285	.00319	.00057	.00258	.00111	.19592
%RSD	.23602	.47484	.64529	.23384	.52636	.22317	115.05
#1	.49615	.60063	.49243	.24447	.48798	.49584	.38981
#2	.49670	.60258	.49788	.24467	.49240	.49401	.01316
#3	.49840	.59697	.49229	.24555	.48790	.49599	.10793

Check? Chk Pass Chk P

Low Limit

Int. Std.	Y_2243	Y_3600	Y_3774
Units	Cts/S	Cts/S	Cts/S
Avg	12065.	87084 .	3892.0
Stddev	52.	248.	30.3
%RSD	.43071	.28433	.77961
#1	12082.	87348.	3857.9
#2	12107.	87046.	3916.1
#3	12007.	86857.	3902.0

Sample Name: L1605015401SDL Acquired: 5/13/2016 18:50:29 Type: Unk Method: ICP-THERMO3_6010_200.7WATER_3YLINES(v872) Mode: CONC Corr. Factor: 1.000000 User: JYH Custom ID1: 5 Custom ID2: Custom ID3: Comment: WG568110-04 Al3082 As1890 B_2496 Ba4554 Be3131 Ca4226 Elem Ag3280 Units ppm ppm ppm ppm ppm ppm ppm .01482 .00844 6.3948 Avg -.00170 -.00157 .00523 .00003 Stddev .00234 .00556 .00238 .00194 .00057 .00005 .0620 %RSD 137.43 37.483 151.19 22.941 10.886 186.16 .96973 #1 -.00251 -.00373 .00467 .00001 6.4089 .01275 .00627 #2 -.00353 .02112 -.00198 .00906 .00523 .00009 6.4485 #3 .00093 .01060 .00098 .01000 .00581 -.00001 6.3269 **Chk Pass** Check? Chk Pass **Chk Pass Chk Pass Chk Pass Chk Pass Chk Pass High Limit** Low Limit Elem Cd2288 Co2286 Cr2677 Cu2247 Fe2611 K_7664 Li6707 Units ppm ppm ppm ppm ppm ppm ppm .00029 -.00061 -.00021 .00068 .08158 .59290 Avg .00031 .00010 .00041 .00056 .00062 .03544 .00576 Stddev .00443 %RSD 48.300 143.25 82.853 102.72 5.4261 5.9781 1836.1 #1 -.00010 -.00018 .00003 -.00132 .08507 .57254 -.00159 #2 -.00030 .00047 .00101 -.00034 .07660 .63383 -.00425 .00059 -.00016 #3 -.00024 .00100 .08307 .57234 .00679 Check? **Chk Pass** Chk Pass **Chk Pass Chk Pass Chk Pass Chk Pass** Chk Pass High Limit Low Limit Mo2020 Elem Mg2790 Mn2576 Na5895 Ni2316 P_2149 Pb2203 Units ppm ppm ppm ppm ppm ppm ppm .73199 .01923 .00098 1.0845 .00037 .00110 -.00102 Avg .00343 .00062 .0213 .00151 .00329 Stddev .07753 .00214 %RSD 10.592 17.842 63.626 1.9629 406.21 299.09 209.19 #1 .71179 .02071 .00075 1.1057 .00125 -.00219 .00068 .01530 1.0847 .00439 -.00033 #2 .81763 .00168 -.00137 #3 .66656 .02167 .00050 1.0632 .00123 .00109 -.00343 Check? **Chk Pass** Chk Pass **Chk Pass Chk Pass Chk Pass Chk Pass Chk Pass** High Limit

Approved: May 16, 2016

Low Limit

Sample Name: L1605015401SDL Acquired: 5/13/2016 18:50:29 Type: Unk Method: ICP-THERMO3_6010_200.7WATER_3YLINES(v872) Mode: CONC Corr. Factor: 1.000000 User: JYH Custom ID1: 5 Custom ID2: Custom ID3: Comment: WG568110-04							
Elem Units Avg Stddev %RSD	Sb2068 ppm . 00049 .00167 342.03	Se1960 ppm 00208 .00427 205.10	Si2124 ppm . 39345 .00576 1.4645	Sn1899 ppm 00031 .00049 156.58	Sr4077 ppm . 02372 .00048 2.0133	Ti3372 ppm . 00221 .00543 246.06	TI1908 ppm . 00052 .00085 162.41
#1 #2 #3	00088 00001 .00236	00648 .00206 00183	.38682 .39627 .39726	00087 00007 .00001	.02323 .02419 .02375	.00791 00291 .00162	.00043 00028 .00141
Check ? High Limit Low Limit	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass
Elem Units Avg Stddev %RSD	V_2924 ppm 00047 .00080 168.64	Zn2062 ppm .00162 .00004 2.7021	Zr3391 ppm F47053 .25669 54.554				
#1 #2 #3	.00018 00024 00136	.00157 .00163 .00165	37584 27463 76112				
Check ? High Limit Low Limit	Chk Pass	Chk Pass	Chk Fail 36.000 04000				
Int. Std. Units Avg Stddev %RSD	Y_2243 Cts/S 12136. 102. .83752	Y_3600 Cts/S 87703. 955. 1.0891	Y_3774 Cts/S 3856.3 23.8 .61737				
#1 #2 #3	12253. 12084. 12071.	87458. 86894. 88757.	3882.2 3851.2 3835.4				

Sample Name: CCV Acquired: 5/13/2016 18:54:34 Type: QC Method: ICP-THERMO3_6010_200.7WATER_3YLINES(v872) Mode: CONC Corr. Factor: 1.000000 User: JYH Custom ID1: Custom ID2: Custom ID3: Comment:							
Elem	Ag3280	Al3082	As1890	B_2496	Ba4554	Be3131	Ca4226
Units	ppm	ppm	ppm	ppm	ppm	ppm	ppm
Avg	. 40367	10.188	. 40627	. 50790	1.0234	. 05055	10.310
Stddev	.00668	.114	.00391	.00846	.0037	.00080	.047
%RSD	1.6550	1.1144	.96191	1.6659	.36168	1.5915	.45535
#1	.39598	10.057	.40448	.49820	1.0275	.04962	10.316
#2	.40795	10.239	.40358	.51377	1.0203	.05102	10.353
#3	.40710	10.266	.41075	.51174	1.0225	.05100	10.260
Check ? Value Range	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass
Elem	Cd2288	Co2286	Cr2677	Cu2247	Fe2611	K_7664	Li6707
Units	ppm	ppm	ppm	ppm	ppm	ppm	ppm
Avg	. 05111	. 20633	. 51519	. 51639	4.1493	51.184	1.0317
Stddev	.00018	.00015	.00922	.00131	.0272	.113	.0054
%RSD	.35794	.07360	1.7893	.25368	.65542	.21986	.52283
#1	.05132	.20648	.50464	.51700	4.1337	51.285	1.0379
#2	.05098	.20634	.52167	.51489	4.1335	51.063	1.0292
#3	.05104	.20617	.51926	.51728	4.1807	51.203	1.0280
Check ? Value Range	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass
Elem	Mg2790	Mn2576	Mo2020	Na5895	Ni2316	P_2149	Pb2203
Units	ppm	ppm	ppm	ppm	ppm	ppm	ppm
Avg	10.188	. 51089	1.0185	51.711	. 51935	10.122	. 51819
Stddev	.124	.00385	.0042	.239	.00155	.032	.00467
%RSD	1.2165	.75281	.41292	.46143	.29920	.31492	.90113
#1	10.281	.51377	1.0230	51.971	.52013	10.132	.51962
#2	10.235	.51238	1.0147	51.661	.51756	10.087	.51297
#3	10.047	.50652	1.0177	51.501	.52035	10.148	.52198
Check ? Value Range	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass

Sample Name Method: ICP-T User: JYH Comment:		010_200.7W <i>A</i>	2016 18:54:3 ATER_3YLINI stom ID2:		Mode: CON	C Corr. F	Factor: 1.00000(
Elem Units Avg Stddev %RSD	Sb2068 ppm 1.2143 .0045 .37098	Se1960 ppm . 41012 .00231 .56267	Si2124 ppm 5.1874 .0154 .29635	Sn1899 ppm 1.0317 .0018 .17045	Sr4077 ppm 1.0190 .0015 .14496	Ti3372 ppm 1.0250 .0014 .13371	TI1908 ppm . 51568 .00293 .56819
#1 #2 #3	1.2178 1.2092 1.2159	.41276 .40914 .40847	5.1822 5.1752 5.2047	1.0320 1.0299 1.0334	1.0205 1.0190 1.0175	1.0266 1.0240 1.0245	.51231 .51708 .51765
Check ? Value Range	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass
Elem Units Avg Stddev %RSD	V_2924 ppm 1.0229 .0184 1.7938	Zn2062 ppm 1.0369 .0021 .19731	Zr3391 ppm F11557 .25815 223.38				
#1 #2 #3	1.0023 1.0375 1.0288	1.0383 1.0346 1.0380	.11624 39378 06916				
Check ? Value Range	Chk Pass	Chk Pass	Chk Fail 1.0000 -10.000%				
Int. Std. Units Avg Stddev %RSD	Y_2243 Cts/S 11627. 2. .01567	Y_3600 Cts/S 83461. 728. .87207	Y_3774 Cts/S 3745.3 49.0 1.3082				
#1 #2 #3	11627. 11629. 11626.	84181. 83477. 82726.	3688.8 3771.0 3776.1				

Sample Name Method: ICP- User: JYH Comment:		-		• •	Mode: CON	C Corr. F	Factor: 1.00000(
Elem	Ag3280	Al3082	As1890	B_2496	Ba4554	Be3131	Ca4226
Units	ppm	ppm	ppm	ppm	ppm	ppm	ppm
Avg	00037	.01508	. 00329	. 00419	.00184	.00017	05119
Stddev	.00178	.00426	.00156	.00053	.00032	.00003	.01021
%RSD	484.31	28.270	47.384	12.588	17.550	18.403	19.956
#1	00004	.01047	.00369	.00461	.00222	.00020	04050
#2	.00122	.01589	.00157	.00435	.00164	.00017	05221
#3	00228	.01889	.00461	.00360	.00168	.00014	06085
Check ? High Limit Low Limit	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass
Elem	Cd2288	Co2286	Cr2677	Cu2247	Fe2611	K_7664	Li6707
Units	ppm	ppm	ppm	ppm	ppm	ppm	ppm
Avg	00022	.00038	. 00167	00102	01224	. 15292	. 00121
Stddev	.00024	.00035	.00058	.00135	.02653	.10886	.00298
%RSD	111.59	91.943	35.039	132.21	216.65	71.184	246.17
#1	00049	.00042	.00207	.00034	.01645	.27580	.00035
#2	00011	.00001	.00194	00237	01732	.06857	.00453
#3	00005	.00070	.00100	00104	03587	.11440	00125
Check ? High Limit Low Limit	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass
Elem	Mg2790	Mn2576	Mo2020	Na5895	Ni2316	P_2149	Pb2203
Units	ppm	ppm	ppm	ppm	ppm	ppm	ppm
Avg	04632	00413	. 00420	00641	.00109	00436	. 00089
Stddev	.08074	.00217	.00009	.01430	.00103	.00260	.00382
%RSD	174.31	52.572	2.1571	223.02	94.031	59.475	426.45
#1	04886	00302	.00412	01516	.00059	00493	.00529
#2	.03566	00275	.00430	01417	.00228	00153	00151
#3	12576	00664	.00419	.01009	.00041	00663	00110
Check ? High Limit Low Limit	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass

Sample Name Method: ICP-T User: JYH Comment:		010_200.7W <i>A</i>	2016 18:58:1 ATER_3YLIN stom ID2:		Mode: CON	C Corr. F	Factor: 1.00000(
Elem Units Avg Stddev %RSD	Sb2068 ppm . 00569 .00496 87.201	Se1960 ppm 00360 .00435 120.72	Si2124 ppm . 00498 .00258 51.831	Sn1899 ppm . 00070 .00102 146.11	Sr4077 ppm .00033 .00016 48.540	Ti3372 ppm .00198 .00750 379.08	TI1908 ppm 00023 .00189 805.99	
#1 #2 #3	.00863 00004 .00846	00631 00590 .00141	.00796 .00357 .00341	.00175 00028 .00061	.00026 .00051 .00021	00019 00420 .01032	00043 .00174 00202	
Check ? High Limit Low Limit	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	
Elem Units Avg Stddev %RSD	V_2924 ppm .00095 .00098 103.23	Zn2062 ppm .00028 .00020 71.160	Zr3391 ppm F41510 .23705 57.108					
#1 #2 #3	00002 .00091 .00194	.00033 .00006 .00045	52584 57651 14294					
Check ? High Limit Low Limit	Chk Pass	Chk Pass	Chk Fail .04000 04000					
Int. Std. Units Avg Stddev %RSD	Y_2243 Cts/S 11661. 54. .46509	Y_3600 Cts/S 84157. 512. .60865	Y_3774 Cts/S 3730.2 50.8 1.3613					
#1 #2 #3	11711. 11604. 11668.	84707. 83693. 84070.	3674.3 3773.5 3742.8					

Sample Name: PBW 8P Acquired: 5/13/2016 19:02:21 Type: Unk

Method: ICP-THERMO3_6010_200.7WATER_3YLINES(v872) Mode: CONC Corr. Factor: 1.000000

User: JYH Custom ID1: Custom ID2: Custom ID3:

Comment: WG568184-02

Elem	Ag3280	Al3082	As1890	B_2496	Ba4554	Be3131	Ca4226
Units	ppm	ppm	ppm	ppm	ppm	ppm	ppm
Avg	00341	. 00656	.00053	. 00607	. 00116	.00004	02964
Stddev	.00053	.00422	.00186	.00123	.00035	.00009	.02304
%RSD	15.563	64.308	348.65	20.328	30.159	227.06	77.745
#1	00319	.01063	00101	.00511	.00149	00005	05625
#2	00402	.00220	.00260	.00746	.00118	.00014	01601
#3	00303	.00686	.00001	.00565	.00080	.00004	01666
Check ? High Limit Low Limit	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass
Elem	Cd2288	Co2286	Cr2677	Cu2247	Fe2611	K_7664	Li6707
Units	ppm	ppm	ppm	ppm	ppm	ppm	ppm
Avg	00004	.00036	. 00038	00018	.00925	. 04599	. 00016
Stddev	.00016	.00014	.00073	.00177	.00873	.02017	.00418
%RSD	428.90	40.072	191.24	968.59	94.412	43.864	2673.6
#1	.00003	.00046	.00034	00169	.01483	.06223	00090
#2	00022	.00019	00033	00062	.01372	.05234	.00476
#3	.00008	.00041	.00112	.00176	00081	.02341	00339
Check ? High Limit Low Limit	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass
Elem	Mg2790	Mn2576	Mo2020	Na5895	Ni2316	P_2149	Pb2203
Units	ppm	ppm	ppm	ppm	ppm	ppm	ppm
Avg	08819	F00401	. 00107	00452	.00159	00522	. 00110
Stddev	.02805	.00424	.00014	.01903	.00080	.00202	.00092
%RSD	31.809	105.53	12.782	421.19	50.213	38.744	83.659
#1	06475	.00088	.00120	02377	.00104	00366	.00075
#2	11927	00650	.00109	00406	.00250	00751	.00215
#3	08055	00642	.00092	.01428	.00123	00449	.00041
Check ? High Limit Low Limit	Chk Pass	Chk Fail 36.000 00300	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass

Method: ICP- User: JYH	Sample Name: PBW 8P Acquired: 5/13/2016 19:02:21 Type: Unk Method: ICP-THERMO3_6010_200.7WATER_3YLINES(v872) Mode: CONC Corr. Factor: 1.000000 User: JYH Custom ID1: Custom ID2: Custom ID3: Comment: WG568184-02										
Elem Units Avg Stddev %RSD	Sb2068 ppm . 00424 .00436 102.79	Se1960 ppm . 00288 .00533 185.37	Si2124 ppm .01082 .00066 6.1425	Sn1899 ppm 00001 .00066 6419.7	Sr4077 ppm 00022 .00028 122.66	Ti3372 ppm . 00586 .00359 61.313	TI1908 ppm . 00062 .00471 762.74				
#1 #2 #3	.00250 .00919 .00102	.00046 00082 .00899	.01156 .01030 .01059	.00067 00006 00064	00023 .00005 00050	.00850 .00731 .00177	00416 .00525 .00076				
Check ? High Limit Low Limit	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass				
Elem Units Avg Stddev %RSD	V_2924 ppm . 00080 .00134 166.88	Zn2062 ppm . 00222 .00013 5.7527	Zr3391 ppm F79385 .30357 38.240								
#1 #2 #3	.00203 00062 .00099	.00207 .00230 .00228	91801 -1.0156 44788								
Check ? High Limit Low Limit	Chk Pass	Chk Pass	Chk Fail 36.000 04000								
Int. Std. Units Avg Stddev %RSD	Y_2243 Cts/S 11975. 55. .46137	Y_3600 Cts/S 87463. 822. .93970	Y_3774 Cts/S 3832.9 37.8 .98530								
#1 #2 #3	11913. 12018. 11994.	88306. 87419. 86664.	3791.3 3842.3 3865.0								

Sample Name: LCSW 8P Acquired: 5/13/2016 19:06:25 Type: Unk

Method: ICP-THERMO3_6010_200.7WATER_3YLINES(v872) Mode: CONC Corr. Factor: 1.000000

User: JYH Custom ID1: Custom ID2: Custom ID3:

Comment: WG568184-03

Elem	Ag3280	Al3082	As1890	B_2496	Ba4554	Be3131	Ca4226	Cd2288
Units	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm
Avg	.19781	4.9975	.19615	.98917	.51411	.02460	5.1892	.02527
Stddev	.00453	.0091	.00541	.00378	.00219	.00009	.0401	.00002
%RSD	2.2897	.18212	2.7585	.38245	.42585	.37410	.77327	.08778
#1	.19591	5.0079	.20089	.98935	.51158	.02453	5.1564	.02528
#2	.19454	4.9908	.19025	.98530	.51549	.02471	5.2339	.02529
#3	.20298	4.9939	.19731	.99286	.51525	.02457	5.1772	.02525

Check? Chk Pass Chk P

Elem	Co2286	Cr2677	Cu2247	Fe2611	K_7664	Li6707	Mg2790	Mn2576
Units	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm
Avg	. 10297	. 25418	. 25713	2.0490	26.202	. 51260	5.0449	. 25526
Stddev	.00056	.00122	.00156	.0553	.109	.00363	.1349	.00257
%RSD	.54617	.48076	.60586	2.7000	.41469	.70808	2.6741	1.0074
#1	.10239	.25299	.25756	2.0462	26.081	.50845	4.9301	.25234
#2	.10351	.25543	.25843	2.1057	26.231	.51414	5.1935	.25716
#3	.10302	.25410	.25540	1.9952	26.292	.51520	5.0112	.25630

Check? Chk Pass Chk P

Elem Units Avg Stddev %RSD	Mo2020 ppm . 51553 .00093 .18108	Na5895 ppm 26.082 .188 .71892	Ni2316 ppm .26140 .00138 .52928	P_2149 ppm 4.9179 .0056 .11491	Pb2203 ppm . 25999 .00325 1.2482	Sb2068 ppm . 61059 .00254 .41560	Se1960 ppm .19600 .00922 4.7041	Si2124 ppm 2.7501 .0043 .15576
#1	.51633	25.876	.26267	4.9160	.25857	.60788	.20650	2.7487
#2	.51451	26.242	.26160	4.9135	.25770	.61291	.19228	2.7466
#3	.51574	26.129	.25993	4.9243	.26370	.61098	.18922	2.7549

Check? Chk Pass Chk P

Sample Name: LCSW 8P Acquired: 5/13/2016 19:06:25 Type: Unk

Method: ICP-THERMO3_6010_200.7WATER_3YLINES(v872) Mode: CONC Corr. Factor: 1.000000

User: JYH Custom ID1: Custom ID2: Custom ID3:

Comment: WG568184-03

Elem	Sn1899	Sr4077	Ti3372	TI1908	V_2924	Zn2062	Zr3391
Units	ppm	ppm	ppm	ppm	ppm	ppm	ppm
Avg	. 51468	. 51557	. 51021	. 25586	. 50422	. 51078	. 34849
Stddev	.00166	.00240	.01134	.00102	.00241	.00019	.31297
%RSD	.32286	.46540	2.2228	.39804	.47895	.03687	89.806
#1	.51628	.51310	.51030	.25704	.50636	.51056	.25433
#2	.51479	.51789	.52150	.25533	.50471	.51084	.09342
#3	.51297	.51571	.49882	.25523	.50160	.51093	.69773

Check? Chk Pass Chk P

Int. Std.	Y_2243	Y_3600	Y_3774
Units	Cts/S	Cts/S	Cts/S
Avg	11917 .	86129.	3844.2
Stddev	17.	149.	35.5
%RSD	.14120	.17333	.92390
#1	11919.	85979.	3885.2
#2	11932.	86131.	3822.4
#3	11899.	86277.	3825.0

Sample Name: F BLANK Acquired: 5/13/2016 19:10:13 Type: Unk Method: ICP-THERMO3 6010 200.7WATER 3YLINES(v872) Mode: CONC Corr. Factor: 1.000000 User: JYH Custom ID1: Custom ID2: Custom ID3: Comment: WG568088-01 Al3082 As1890 B 2496 Ba4554 Be3131 Ca4226 Cd2288 Elem Ag3280 Units ppm ppm ppm ppm ppm ppm ppm ppm -.00258 .00456 Avg -.00178 .01478 .00080 .00010 -.01041 -.00014 Stddev .00149 .00475 .00429 .00231 .00069 .00004 .01827 .00019 %RSD 83.207 32.160 166.08 50.582 86.994 39.812 175.39 128.56 #1 -.00059 .00155 .00708 .00091 .00005 -.00016 .01251 -.03131 #2 -.00131 .02025 -.00701 .00256 .00005 .00012 -.00241 -.00032 #3 -.00345 .01159 -.00229 .00403 .00142 .00013 .00249 .00005 Check? Chk Pass Chk Pass Chk Pass Chk Pass Chk Pass Chk Pass Chk Pass High Limit Low Limit Elem Co2286 Cr2677 Cu2247 Fe2611 K_7664 Li6707 Mg2790 Mn2576 Units ppm ppm ppm ppm ppm ppm ppm ppm -.07127 .00032 -.00084 -.00449 .00126 -.00051 Avg .00048 .03117 .00004 .00030 .02741 .00373 .19460 Stddev .00021 .01958 .00146 %RSD 65.957 9.1850 35.251 610.97 62.831 296.36 273.06 287.15 #1 .00008 .00043 -.00071 .00142 .04275 -.00049.09862 -.00112 #2 .00041 .00052 -.00118 .01948 .04220 -.00128-.02883 .00115 .00050 -.00063 .00554 #3 .00046 -.03436.00856 -.28358 -.00156 Check? Chk Pass Chk Pass Chk Pass Chk Pass Chk Pass Chk Pass Chk Pass High Limit Low Limit Elem Mo2020 Na5895 Ni2316 P_2149 Pb2203 Sb2068 Se1960 Si2124 Units ppm ppm ppm ppm ppm ppm ppm ppm .00060 129.18 .00040 .00142 -.00008 .00323 .00111 .01174 Avg Stddev .00007 .00035 .00377 .00034 .00234 .00182 .00017 .57 419.07 %RSD 11.576 .44128 88.608 265.59 72.416 163.32 1.4454 #1 .00564 .00068 129.39 .00055 -.00043 .00542 .00305 .01166 .00066 .00056 128.53 .00077 .00085 #2 .00024 .00025 .01163 .00349 #3 .00056 129.61 -.00000 -.00162 -.00006 -.00056 .01194 Check? Chk Pass Chk Pass Chk Pass Chk Pass Chk Pass Chk Pass Chk Pass High Limit

Approved: May 16, 2016

Low Limit

Sample Name: F BLANK Acquired: 5/13/2016 19:10:13 Type: Unk Method: ICP-THERMO3_6010_200.7WATER_3YLINES(v872) Mode: CONC Corr. Factor: 1.000000								
User: JYH	Custom		Custom ID	02:	Custom ID3	:		
Comment: \	NG568088-0)1						
Elem Units Avg Stddev %RSD	Sn1899 ppm .00041 .00061 147.68	Sr4077 ppm . 00023 .00017 76.336	Ti3372 ppm .00536 .00500 93.226	TI1908 ppm 00205 .00313 152.64	V_2924 ppm .00066 .00142 215.55	Zn2062 ppm . 00329 .00027 8.0913	Zr3391 ppm .03145 .19196 610.40	
#1 #2 #3	00016 .00035 .00104	.00033 .00003 .00033	00017 .00669 .00957	00088 00560 .00033	00091 .00102 .00187	.00357 .00327 .00304	.08955 .18764 18285	
Check ? High Limit Low Limit	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	
Int. Std. Units Avg Stddev %RSD	Y_2243 Cts/S 12121. 15. .12347	Y_3600 Cts/S 86259. 271. .31458	Y_3774 Cts/S 3913.4 43.3 1.1064					
#1 #2 #3	12122. 12106. 12136.	86070. 86137. 86570.	3947.9 3927.6 3864.8					

Sample Name: L1605041002 Acquired: 5/13/2016 19:14:16 Type: Unk Method: ICP-THERMO3 6010 200.7WATER 3YLINES(v872) Mode: CONC Corr. Factor: 1.000000 User: JYH Custom ID1: Custom ID2: Custom ID3: Comment: WG568184-01 Al3082 As1890 B 2496 Ba4554 Ca4226 Cd2288 Elem Ag3280 Be3131 Units ppm ppm ppm ppm ppm ppm ppm ppm Avg -.00149 .02204 .00076 .02160 .10587 .00009 65.466 .01694 Stddev .00155 .00395 .00149 .00058 .00061 .00001 .242 .00026 %RSD 103.88 17.929 196.28 2.6798 .57169 16.353 .36946 1.5561 #1 -.00176 -.00096 .02120 .10518 80000. .01758 65.712 .01724 #2 -.00288 .02346 .00150 .02226 .10632 .00010 65.229 .01678 #3 .00018 .02509 .00174 .02134 .10610 .00007 65.455 .01679 Check? Chk Pass Chk Pass Chk Pass Chk Pass Chk Pass Chk Pass Chk Pass **High Limit** Low Limit Elem Co2286 Cr2677 Cu2247 Fe2611 K_7664 Li6707 Mg2790 Mn2576 Units ppm ppm ppm ppm ppm ppm ppm ppm .00090 .00176 -.01352 -.00588 Avg .00244 .53838 1.4766 .08497 .00071 .00082 .00472 Stddev .00045 .00613 .02279 .0776 .00354 %RSD 49.818 28.941 46.834 45.336 4.2331 80.274 5.2544 4.1703 #1 .00072 .00290 .00109 -.02026.54825 -.007521.4961 .08645 #2 .00057 .00163 .00150 -.01203 .51232 -.000561.3912 .08754 .00268 .00280 -.00957#3 .00141 -.00827 .55457 1.5426 .08093 Check? Chk Pass Chk Pass Chk Pass Chk Pass Chk Pass Chk Pass Chk Pass High Limit Low Limit Elem Mo2020 Na5895 Ni2316 P_2149 Pb2203 Sb2068 Se1960 Si2124 Units ppm ppm ppm ppm ppm ppm ppm ppm .00060 128.74 .00274 .01076 .00767 .00289 .00125 .46692 Avg .00021 .00026 .00753 .00190 .00263 .00298 .00152 Stddev .48 %RSD 69.988 35.222 .37542 9.5442 24.711 91.161 237.99 .32584 #1 .00465 .00072 129.28 .00282 .00896 .00016 .00376 .46776 .00036 128.36 .00245 .00845 .00857 .00542 .00204 #2 .46784 #3 .00072 128.56 .00296 .01918 .00550 .00309 -.00204 .46516 Check? Chk Pass Chk Pass Chk Pass Chk Pass Chk Pass Chk Pass Chk Pass High Limit Low Limit

Sample Name: L1605041002										
Method: ICF	P-THERMO3	3_6010_200	.7WATER_	3YLINES(v8	372) Mo	de: CONC	Corr. Fac	tor: 1.00000(
User: JYH	User: JYH Custom ID1: Custom ID2: Custom ID3:									
Comment: \	VG568184-0)1								
Elem	Sn1899	Sr4077	Ti3372	TI1908	V_2924	Zn2062	Zr3391			
Units	ppm	ppm	ppm	ppm	ppm	ppm	ppm			
Avg	.00028	.19306	00262	00139	.00031	1.3065	.79724			
Stddev %RSD	.00151 529.95	.00031 .16143	.00439 167.85	.00308 221.26	.00080 257.41	.0017 .12601	.38825 48.699			
/0N3D	329.93	.10143	107.03	221.20	237.41	.12001	40.033			
#1	00137	.19341	00717	.00173	00022	1.3051	1.1517			
#2	.00065	.19293	00228	00444	.00123	1.3083	.85765			
#3	.00158	.19283	.00160	00147	00008	1.3061	.38233			
Check ? High Limit Low Limit	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass			
Int. Std.	Y_2243	Y_3600	Y_3774							
Units	Cts/S	Cts/S	Cts/S							
Avg	12047.	86441.	3992.0							
Stddev %RSD	77. .63757	114. .13169	7.6 .19062							
701\GD	.03737	.13103	.13002							
#1	12081.	86346.	4000.8							
#2	11959.	86410.	3987.4							
#3	12101.	86567.	3987.8							

Sample Name: L1605041002S Acquired: 5/13/2016 19:18:16 Type: Unk Mode: CONC Method: ICP-THERMO3 6010 200.7WATER 3YLINES(v872) Corr. Factor: 1.000000 User: JYH Custom ID1: Custom ID2: Custom ID3: Comment: WG568184-04 Al3082 B_2496 Ba4554 Ca4226 Cd2288 Elem Ag3280 As1890 Be3131 Units ppm ppm ppm ppm ppm ppm ppm ppm 5.0492 1.0260 Avg .20190 .20334 .62005 .02535 71.933 .04246 Stddev .00361 .0156 .00600 .0018 .00279 .00017 .379 .00010 %RSD 1.7901 .30851 2.9505 .17218 .45051 .66685 .52626 .24084 #1 1.0255 .02518 .04252 .20607 5.0317 .20961 .62321 72.368 #2 .19965 5.0617 .19766 1.0280 .61793 .02552 71.756 .04251 #3 .19997 5.0541 .20273 1.0246 .61900 .02536 71.676 .04234 Check? Chk Pass Chk Pass Chk Pass Chk Pass Chk Pass Chk Pass Chk Pass Chk Pass **High Limit** Low Limit Elem Co2286 Cr2677 Cu2247 Fe2611 K_7664 Mg2790 Mn2576 Li6707 Units ppm ppm ppm ppm ppm ppm ppm ppm .25257 .25519 2.0537 26.808 Avg .10051 .50915 6.7096 .34554 .0065 .00426 Stddev .00013 .00019 .00174 .017 .00369 .0346 1.2316 %RSD .07678 .68073 .31657 .06216 .72536 .51542 .12731 #1 .10042 .25242 .25637 2.0612 26.815 .51306 6.7024 .34955 #2 .10066 .25250 .25601 2.0504 26.820 .50572 6.7472 .34600 .25279 .25320 .50867 #3 .10046 2.0495 26.789 6.6791 .34108 Check? Chk Pass Chk Pass Chk Pass Chk Pass Chk Pass Chk Pass Chk Pass High Limit Low Limit P_2149 Elem Mo2020 Na5895 Ni2316 Pb2203 Sb2068 Se1960 Si2124 Units ppm ppm ppm ppm ppm ppm ppm ppm .51834 157.01 .25465 5.1305 .25894 .61450 .20334 3.2342 Avg .00040 .0233 .00077 .01426 .0062 Stddev .00133 .95 .00162 .25646 .15723 .29917 %RSD .60603 .45465 .26432 7.0137 .19029 #1 .51941 158.09 .25432 5.1542 .25970 .61324 .21928 3.2403 3.2280 156.65 #2 .51877 .25510 5.1297 .25896 .61392 .19180 #3 .51685 156.29 .25453 5.1076 .25815 .61633 .19894 3.2342 Check? Chk Pass Chk Pass Chk Pass Chk Pass Chk Pass Chk Pass Chk Pass High Limit

Approved: May 16, 2016

Low Limit

Sample Name: L1605041002S Acquired: 5/13/2016 19:18:16 Type: Unk

Method: ICP-THERMO3_6010_200.7WATER_3YLINES(v872) Mode: CONC Corr. Factor: 1.000000

User: JYH Custom ID1: Custom ID2: Custom ID3:

Comment: WG568184-04

Elem	Sn1899	Sr4077	Ti3372	TI1908	V_2924	Zn2062	Zr3391
Units	ppm	ppm	ppm	ppm	ppm	ppm	ppm
Avg	.51245	.71324	.51633	.24929	.51355	1.8164	.18688
Stddev	.00099	.00246	.00165	.00034	.00126	.0009	.79957
%RSD	.19316	.34450	.31943	.13801	.24494	.05081	427.85
#1	.51185	.71607	.51765	.24968	.51494	1.8172	1.0285
#2	.51192	.71193	.51685	.24906	.51249	1.8167	56271
#3	.51360	.71171	.51448	.24912	.51323	1.8154	.09487

Check? Chk Pass Chk P

Int. Std.	Y_2243	Y_3600	Y_3774
Units	Cts/S	Cts/S	Cts/S
Avg	11872 .	84384 .	3907.8
Stddev	45.	330.	41.7
%RSD	.37563	.39147	1.0681
#1	11891.	84574.	3862.0
#2	11821.	84002.	3943.6
#3	11904.	84575.	3917.7

Sample Name: L1605041002SD Acquired: 5/13/2016 19:22:01 Type: Unk Method: ICP-THERMO3_6010_200.7WATER_3YLINES(v872) Mode: CONC Corr. Factor: 1.000000 User: JYH Custom ID1: Custom ID2: Custom ID3: Comment: WG568184-05 Ag3280 Al3082 B_2496 Ba4554 Ca4226 Cd2288 Elem As1890 Be3131 Units ppm ppm ppm ppm ppm ppm ppm ppm 4.9558 1.0075 Avg .19805 .20331 .60834 .02489 69.510 .04142 Stddev .00264 .0174 .00082 .0059 .00170 .00006 .183 .00018 %RSD 1.3309 .35031 .40116 .58106 .27959 .23040 .26325 .42570 #1 .19584 .20335 1.0062 .61005 4.9414 .02489 69.665 .04122 #2 .20097 4.9750 .20411 1.0139 .60831 .02495 69.308 .04156 1.0025 #3 .19733 4.9509 .20248 .60665 .02484 69.557 .04147 Chk Pass Chk Pass Chk Pass Chk Pass Chk Pass Chk Pass Chk Pass Check? **High Limit** Low Limit Mg2790 Elem Co2286 Cr2677 Cu2247 Fe2611 K_7664 Li6707 Mn2576 Units ppm ppm ppm ppm ppm ppm ppm ppm .09985 .25042 .25078 26.259 .33343 Avg 1.9832 .50510 6.4491 .00062 .0272 .00337 Stddev .00021 .00145 .0181 .180 .00744 %RSD .20876 .24576 .57894 .91415 .68611 1.4733 .42178 1.0114 #1 .09998 .24975 .25232 2.0024 26.454 .51239 6.4507 .33022 #2 .09997 .25053 .25059 1.9807 26.098 .50540 6.4754 .33311 6.4211 .09961 .25097 .24944 1.9664 26.225 #3 .49751 .33695 Check? Chk Pass Chk Pass Chk Pass Chk Pass Chk Pass Chk Pass Chk Pass High Limit

Low Limit

Elem	Mo2020	Na5895	Ni2316	P_2149	Pb2203	Sb2068	Se1960	Si2124
Units	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm
Avg	. 51274	151.83	. 24973	5.0637	. 25460	. 60516	.19973	3.1786
Stddev	.00043	.64	.00199	.0164	.00120	.00429	.00510	.0054
%RSD	.08407	.42104	.79718	.32293	.47172	.70833	2.5555	.17095
#1	.51323	152.56	.25110	5.0813	.25518	.60104	.20070	3.1724
#2	.51243	151.38	.25064	5.0490	.25322	.60484	.19422	3.1823
#3	.51255	151.54	.24744	5.0608	.25541	.60959	.20429	3.1812

Check? Chk Pass Chk Pass Chk Pass Chk Pass Chk Pass Chk Pass Chk Pass High Limit Low Limit

Method: ICP-THERMO3_6010_200.7WATER_3YLINES(v872) Mode: CONC Corr. Factor: 1.000000

User: JYH Custom ID1: Custom ID2: Custom ID3:

Comment: WG568184-05

Elem	Sn1899	Sr4077	Ti3372	TI1908	V_2924	Zn2062	Zr3391
Units	ppm	ppm	ppm	ppm	ppm	ppm	ppm
Avg	.50472	.69610	.49520	.24673	.50357	1.7656	.16463
Stddev	.00077	.00267	.00838	.00532	.00153	.0021	.62393
%RSD	.15301	.38396	1.6923	2.1553	.30336	.11879	378.99
#1	.50472	.69914	.48990	.24072	.50342	1.7669	02851
#2	.50548	.69499	.49084	.25084	.50517	1.7667	33989
#3	.50394	.69415	.50486	.24862	.50212	1.7632	.86228

Check? Chk Pass Chk P

Low Limit

Int. Std.	Y_2243	Y_3600	Y_3774
Units	Cts/S	Cts/S	Cts/S
Avg	11863.	85315.	3939.4
Stddev	21.	104.	5.9
%RSD	.17627	.12204	.14995
#1	11886.	85295.	3946.1
#2	11845.	85223.	3937.2
#3	11859.	85428.	3934.8

Sample Name: L1605012101 Acquired: 5/13/2016 19:25:46 Type: Unk Method: ICP-THERMO3_6010_200.7WATER_3YLINES(v872) Mode: CONC Corr. Factor: 1.00000 User: JYH Custom ID1: Custom ID2: Custom ID3: Comment:							
Elem	Ag3280	Al3082	As1890	B_2496	Ba4554	Be3131	Ca4226
Units	ppm	ppm	ppm	ppm	ppm	ppm	ppm
Avg	00191	53.297	. 00800	. 41261	. 24388	.00004	79.848
Stddev	.00263	.058	.00110	.00035	.00208	.00002	.484
%RSD	137.91	.10956	13.777	.08468	.85284	57.298	.60582
#1	.00086	53.319	.00851	.41300	.24517	.00007	80.361
#2	00437	53.342	.00875	.41234	.24498	.00004	79.783
#3	00221	53.231	.00674	.41247	.24148	.00002	79.400
Check ? High Limit Low Limit	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass
Elem Units Avg Stddev %RSD #1 #2	Cd2288 ppm .00608 .00016 2.6635 .00590 .00621	Co2286 ppm 3.6254 .0065 .17874 3.6323 3.6243	Cr2677 ppm . 05435 .00145 2.6696 .05268	Cu2247 ppm .33455 .00217 .64798 .33645 .33502	Fe2611 ppm 2.8633 .0375 1.3100 2.8233 2.8688	K_7664 ppm 11.417 .027 .23887 11.444 11.416	Li6707 ppm 4.4153 .0254 .57612 4. 4398 4. 4171
#3 Check ? High Limit Low Limit	.00612	3.6195	.05510	.33219	2.8977	11.390	4.3890
	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass
Elem	Mg2790	Mn2576	Mo2020	Na5895	Ni2316	P_2149	Pb2203
Units	ppm	ppm	ppm	ppm	ppm	ppm	ppm
Avg	24.601	. 24099	. 08206	F 568.98	19.688	49.501	. 01138
Stddev	.119	.00127	.00042	8.48	.049	.102	.00371
%RSD	.48214	.52810	.51165	1.4905	.24708	.20607	32.594
#1	24.508	.24240	.08223	577.65	19.739	49.610	.01420
#2	24.734	.23992	.08237	568.58	19.683	49.486	.00718
#3	24.560	.24064	.08158	560.71	19.643	49.407	.01278
Check ? High Limit Low Limit	Chk Pass	Chk Pass	Chk Pass	Chk Fail 270.00 50000	Chk Pass	Chk Pass	Chk Pass

Sample Name: L1605012101 Acquired: 5/13/2016 19:25:46 T Method: ICP-THERMO3_6010_200.7WATER_3YLINES(v872) Method: JYH Custom ID1: Custom ID2: Custom ID3: Comment:						C Corr. F	Factor: 1.000000
Elem Units Avg Stddev %RSD	Sb2068 ppm F02368 .00605 25.554	Se1960 ppm 00094 .00572 611.34	Si2124 ppm 4.1590 .0116 .27860	Sn1899 ppm 00052 .00073 140.71	Sr4077 ppm . 51692 .00184 .35648	Ti3372 ppm . 00017 .00609 3520.1	TI1908 ppm . 00820 .00181 22.126
#1 #2 #3	01733 02937 02433	00502 .00560 00338	4.1702 4.1598 4.1471	00018 00137 00002	.51905 .51594 .51578	00169 .00697 00476	.00923 .00927 .00611
Check ? High Limit Low Limit	Chk Fail 45.000 02000	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass
Elem Units Avg Stddev %RSD	V_2924 ppm . 00316 .00067 21.166	Zn2062 ppm 1.0209 .0024 .23921	Zr3391 ppm . 62866 .70347 111.90				
#1 #2 #3	.00252 .00312 .00386	1.0236 1.0200 1.0190	1.3294 .63410 07751				
Check ? High Limit Low Limit	Chk Pass	Chk Pass	Chk Pass				
Int. Std. Units Avg Stddev %RSD	Y_2243 Cts/S 12640. 10. .08183	Y_3600 Cts/S 89634. 77. .08622	Y_3774 Cts/S 4299.8 106.3 2.4729				
#1 #2 #3	12628. 12645. 12647.	89570. 89720. 89611.	4219.3 4259.7 4420.3				

Sample Name Method: ICP- User: JYH Comment:		010_200.7W <i>A</i>	red: 5/13/201 ATER_3YLIN stom ID2:		Type: Unk Mode: CON0 ID3:	C Corr. F	Factor: 1.00000(
Elem	Ag3280	Al3082	As1890	B_2496	Ba4554	Be3131	Ca4226
Units	ppm	ppm	ppm	ppm	ppm	ppm	ppm
Avg	00302	59.828	. 00937	. 38523	. 39612	.00009	68.193
Stddev	.00056	.086	.00291	.00083	.00091	.00002	.163
%RSD	18.454	.14398	31.060	.21636	.22904	27.711	.23925
#1	00365	59.918	.00601	.38553	.39603	.00006	68.345
#2	00281	59.746	.01100	.38429	.39525	.00010	68.021
#3	00260	59.820	.01111	.38587	.39706	.00010	68.213
Check ? High Limit Low Limit	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass
Elem	Cd2288	Co2286	Cr2677	Cu2247	Fe2611	K_7664	Li6707
Units	ppm	ppm	ppm	ppm	ppm	ppm	ppm
Avg	. 00597	3.5565	. 06408	. 34781	7.6774	10.618	4.2424
Stddev	.00007	.0069	.00125	.00174	.0561	.027	.0032
%RSD	1.2489	.19407	1.9490	.50059	.73059	.25472	.07537
#1	.00604	3.5526	.06476	.34719	7.6716	10.587	4.2438
#2	.00589	3.5645	.06264	.34978	7.6244	10.631	4.2387
#3	.00598	3.5524	.06485	.34646	7.7362	10.637	4.2446
Check ? High Limit Low Limit	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass
Elem	Mg2790	Mn2576	Mo2020	Na5895	Ni2316	P_2149	Pb2203
Units	ppm	ppm	ppm	ppm	ppm	ppm	ppm
Avg	19.652	. 23028	. 20217	F 476.96	20.334	57.931	. 01890
Stddev	.028	.00283	.00048	4.60	.043	.098	.00286
%RSD	.14179	1.2284	.23670	.96518	.20980	.16948	15.131
#1	19.639	.22822	.20164	478.80	20.317	57.874	.01702
#2	19.633	.23350	.20256	471.72	20.382	58.045	.01749
#3	19.684	.22911	.20232	480.36	20.302	57.876	.02219
Check ? High Limit Low Limit	Chk Pass	Chk Pass	Chk Pass	Chk Fail 270.00 50000	Chk Pass	Chk Pass	Chk Pass

Sample Name: L1605012102 Acquired: 5/13/2016 19:29:4 Method: ICP-THERMO3_6010_200.7WATER_3YLINES(v872) User: JYH Custom ID1: Custom ID2: C					Type: Unk Mode: CONO ID3:	C Corr. F	Factor: 1.00000(
Elem Units Avg Stddev %RSD	Sb2068 ppm F02281 .00437 19.157	Se1960 ppm . 00726 .01345 185.28	Si2124 ppm 4.3035 .0053 .12238	Sn1899 ppm . 00069 .00033 48.225	Sr4077 ppm . 50148 .00132 .26312	Ti3372 ppm .01838 .00090 4.8982	TI1908 ppm . 00934 .00058 6.1861
#1 #2 #3	02262 01854 02727	.01054 00753 .01878	4.3029 4.3091 4.2986	.00090 .00086 .00031	.50167 .50269 .50007	.01923 .01848 .01744	.00870 .00982 .00950
Check ? High Limit Low Limit	Chk Fail 45.000 02000	Chk Pass ss					
Elem Units Avg Stddev %RSD	V_2924 ppm .00325 .00065 19.890	Zn2062 ppm 1.0787 .0028 .26116	Zr3391 ppm . 59501 .27182 45.683				
#1 #2 #3	.00258 .00388 .00329	1.0761 1.0817 1.0784	.46428 .90749 .41326				
Check ? High Limit Low Limit	Chk Pass	Chk Pass	Chk Pass				
Int. Std. Units Avg Stddev %RSD	Y_2243 Cts/S 12744. 17. .13684	Y_3600 Cts/S 90550. 206. .22723	Y_3774 Cts/S 4478.2 24.4 .54391				
#1 #2 #3	12764. 12737. 12731.	90321. 90718. 90613.	4484.0 4499.1 4451.4				

Sample Name Method: ICP-1 User: JYH Comment:		010_200.7W	Acquired: 5/13/2016 19:33:48 0_200.7WATER_3YLINES(v872) Custom ID2: Custom I			Type: Unk Mode: CONC Corr. Factor: 1.0000 ID3:		
Elem	Ag3280	Al3082	As1890	B_2496	Ba4554	Be3131	Ca4226	
Units	ppm	ppm	ppm	ppm	ppm	ppm	ppm	
Avg	00290	. 29421	.00324	. 08322	. 01085	.00012	27.623	
Stddev	.00066	.00420	.00279	.00198	.00113	.00004	.217	
%RSD	22.848	1.4287	85.973	2.3809	10.434	36.938	.78420	
#1	00356	.29021	.00543	.08124	.01163	.00016	27.463	
#2	00290	.29859	.00420	.08520	.01137	.00012	27.538	
#3	00224	.29383	.00010	.08321	.00955	.00007	27.870	
Check ? High Limit Low Limit	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	
Elem	Cd2288	Co2286	Cr2677	Cu2247	Fe2611	K_7664	Li6707	
Units	ppm	ppm	ppm	ppm	ppm	ppm	ppm	
Avg	00011	.01683	. 00211	00012	.01291	3.3001	4.0432	
Stddev	.00024	.00040	.00058	.00133	.00911	.0513	.0256	
%RSD	216.22	2.3855	27.613	1096.6	70.588	1.5538	.63229	
#1	00038	.01713	.00164	00066	.00358	3.2841	4.0433	
#2	.00006	.01637	.00192	.00139	.01335	3.3575	4.0176	
#3	00001	.01699	.00276	00109	.02179	3.2588	4.0687	
Check ? High Limit Low Limit	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	
Elem	Mg2790	Mn2576	Mo2020	Na5895	Ni2316	P_2149	Pb2203	
Units	ppm	ppm	ppm	ppm	ppm	ppm	ppm	
Avg	7.2120	. 00035	. 19166	F 641.81	.01995	3.1288	00192	
Stddev	.1407	.00332	.00031	7.54	.00082	.0126	.00167	
%RSD	1.9502	952.58	.16271	1.1743	4.1250	.40292	87.065	
#1	7.1473	.00235	.19201	645.63	.02076	3.1224	00002	
#2	7.1153	.00218	.19142	646.67	.01998	3.1207	00260	
#3	7.3733	00349	.19154	633.13	.01911	3.1434	00315	
Check ? High Limit Low Limit	Chk Pass	Chk Pass	Chk Pass	Chk Fail 270.00 50000	Chk Pass	Chk Pass	Chk Pass	

Sample Name: L1605012103 Acquired: 5/13/2016 19:33:48 Method: ICP-THERMO3_6010_200.7WATER_3YLINES(v872) User: JYH Custom ID1: Custom ID2: Custom Comment:			Type: Unk Mode: CONO ID3:	C Corr. F	Factor: 1.00000(
Elem Units Avg Stddev %RSD	Sb2068 ppm 00012 .00280 2339.5	Se1960 ppm 00473 .00729 154.08	Si2124 ppm 1.7863 .0048 .26975	Sn1899 ppm 00044 .00023 53.520	Sr4077 ppm . 13530 .00010 .07507	Ti3372 ppm 00432 .00436 101.07	TI1908 ppm 00118 .00382 323.69
#1 #2 #3	00324 .00070 .00217	00129 01310 .00020	1.7810 1.7905 1.7873	00063 00051 00018	.13533 .13519 .13539	00010 00881 00403	00553 .00042 .00158
Check ? High Limit Low Limit	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass
Elem Units Avg Stddev %RSD	V_2924 ppm 00112 .00053 47.402	Zn2062 ppm .00587 .00038 6.4237	Zr3391 ppm F 51098 .44357 86.807				
#1 #2 #3	00122 00159 00054	.00544 .00610 .00608	63571 01841 87883				
Check ? High Limit Low Limit	Chk Pass	Chk Pass	Chk Fail 36.000 04000				
Int. Std. Units Avg Stddev %RSD	Y_2243 Cts/S 11609. 33. .28686	Y_3600 Cts/S 81252. 324. .39855	Y_3774 Cts/S 3862.0 31.0 .80280				
#1 #2 #3	11572. 11637. 11617.	80936. 81237. 81583.	3828.3 3868.4 3889.3				

Sample Name: CCV Acquired: 5/13/2016 19:37:58 Type: QC Method: ICP-THERMO3_6010_200.7WATER_3YLINES(v872) Mode: CONC Corr. Factor: 1.000000 User: JYH Custom ID1: Custom ID2: Custom ID3: Comment:								
Elem	Ag3280	Al3082	As1890	B_2496	Ba4554	Be3131	Ca4226	
Units	ppm	ppm	ppm	ppm	ppm	ppm	ppm	
Avg	. 38666	9.7483	. 38921	. 49038	. 98521	. 04909	9.8742	
Stddev	.00316	.0144	.00278	.00273	.00290	.00045	.0203	
%RSD	.81623	.14808	.71343	.55572	.29473	.91683	.20510	
#1	.38900	9.7508	.38647	.48743	.98191	.04877	9.8515	
#2	.38790	9.7328	.38914	.49280	.98633	.04961	9.8805	
#3	.38307	9.7614	.39202	.49092	.98739	.04891	9.8905	
Check ? Value Range	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	
Elem	Cd2288	Co2286	Cr2677	Cu2247	Fe2611	K_7664	Li6707	
Units	ppm	ppm	ppm	ppm	ppm	ppm	ppm	
Avg	. 04886	.19671	.49001	. 49083	3.9515	49.678	. 97879	
Stddev	.00007	.00045	.00478	.00149	.0379	.188	.00335	
%RSD	.13766	.22721	.97502	.30395	.96017	.37780	.34201	
#2	.04891	.19649	.49463	.49119	3.9913	49.756	.98260	
#3	.04887		.48509	.48919	3.9474	49.814	.97750	
Check ? Value Range	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	
Elem	Mg2790	Mn2576	Mo2020	Na5895	Ni2316	P_2149	Pb2203	
Units	ppm	ppm	ppm	ppm	ppm	ppm	ppm	
Avg	9.9393	. 49364	. 97209	49.515	. 49381	9.7168	. 49800	
Stddev	.1456	.00302	.00535	.062	.00101	.0314	.00524	
%RSD	1.4646	.61115	.55031	.12604	.20486	.32302	1.0514	
#1	9.9115	.49489	.97694	49.449	.49412	9.7511	.49394	
#2	10.097	.49020	.97297	49.573	.49268	9.7098	.50391	
#3	9.8096	.49583	.96635	49.524	.49463	9.6895	.49614	
Check ? Value Range	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	

Sample Name Method: ICP-1 User: JYH Comment:)10_200.7W <i>A</i>	2016 19:37:5 ATER_3YLIN stom ID2:	• •	Mode: CON	C Corr. F	Factor: 1.000000
Elem Units Avg Stddev %RSD	Sb2068 ppm 1.1623 .0078 .66887	Se1960 ppm .39042 .00361 .92364	Si2124 ppm 4.9582 .0065 .13123	Sn1899 ppm . 98616 .00322 .32629	Sr4077 ppm . 98063 .00309 .31462	Ti3372 ppm . 99361 .01124 1.1308	TI1908 ppm . 49299 .00099 .20135
#1 #2 #3	1.1689 1.1643 1.1537	.39448 .38921 .38758	4.9624 4.9614 4.9507	.98961 .98564 .98323	.97837 .98415 .97939	.98467 .98995 1.0062	.49414 .49248 .49236
Check ? Value Range	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass
Elem Units Avg Stddev %RSD	V_2924 ppm . 97516 .00597 .61256	Zn2062 ppm . 99371 .00187 .18808	Zr3391 ppm F56934 .12018 21.108				
#1 #2 #3	.97503 .98121 .96926	.99570 .99343 .99200	64733 43094 62974				
Check ? Value Range	Chk Pass	Chk Pass	Chk Fail 1.0000 -10.000%				
Int. Std. Units Avg Stddev %RSD	Y_2243 Cts/S 12175. 22. .18455	Y_3600 Cts/S 86298. 163. .18874	Y_3774 Cts/S 3901.5 8.9 .22723				
#1 #2 #3	12195. 12151. 12180.	86327. 86445. 86123.	3894.2 3911.4 3899.0				

Sample Name: CCB Acquired: 5/13/2016 19:41:39 Type: Blank Method: ICP-THERMO3_6010_200.7WATER_3YLINES(v872) Mode: CONC Corr. Factor: 1.000000 User: JYH Custom ID1: Custom ID2: Custom ID3: Comment:									
Elem	Ag3280	Al3082	As1890	B_2496	Ba4554	Be3131	Ca4226		
Units	ppm	ppm	ppm	ppm	ppm	ppm	ppm		
Avg	00298	. 00747	. 00130	.00231	. 00155	.00014	01363		
Stddev	.00094	.00429	.00073	.00065	.00026	.00007	.03268		
%RSD	31.612	57.458	56.489	28.236	16.668	46.513	239.86		
#1	00399	.00991	.00083	.00301	.00164	.00007	.02350		
#2	00280	.00251	.00092	.00172	.00176	.00018	02630		
#3	00214	.00999	.00215	.00221	.00126	.00019	03808		
Check ? High Limit Low Limit	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass		
Elem	Cd2288	Co2286	Cr2677	Cu2247	Fe2611	K_7664	Li6707		
Units	ppm	ppm	ppm	ppm	ppm	ppm	ppm		
Avg	00026	.00022	. 00129	00029	00815	. 16080	00242		
Stddev	.00030	.00022	.00199	.00119	.01413	.06513	.00078		
%RSD	115.64	97.989	154.16	416.79	173.31	40.505	32.053		
#1	00051	.00038	.00214	00026	01475	.09625	00326		
#2	00033	.00030	.00271	00149	01777	.22650	00174		
#3	.00007	00003	00098	.00089	.00807	.15965	00226		
Check ? High Limit Low Limit	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass		
Elem	Mg2790	Mn2576	Mo2020	Na5895	Ni2316	P_2149	Pb2203		
Units	ppm	ppm	ppm	ppm	ppm	ppm	ppm		
Avg	19745	00321	. 00446	. 04180	. 00118	00028	00185		
Stddev	.04029	.00382	.00051	.01467	.00124	.00192	.00056		
%RSD	20.407	119.10	11.463	35.094	105.48	688.55	29.970		
#1	20519	00158	.00395	.05598	.00260	00058	00122		
#2	23331	00758	.00447	.02668	.00030	.00177	00227		
#3	15384	00048	.00497	.04274	.00063	00203	00206		
Check ? High Limit Low Limit	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass		

Sample Name: CCB Acquired: 5/13/2016 19:41:39 Type: Blank Method: ICP-THERMO3_6010_200.7WATER_3YLINES(v872) Mode: CONC Corr. Factor: 1.00000 User: JYH Custom ID1: Custom ID2: Custom ID3: Comment:									
Elem Units Avg Stddev %RSD	Sb2068 ppm . 00678 .00418 61.611	Se1960 ppm . 00483 .00319 66.109	Si2124 ppm . 00471 .00236 49.998	Sn1899 ppm . 00047 .00063 133.31	Sr4077 ppm 00006 .00022 340.00	Ti3372 ppm 00129 .00310 241.21	TI1908 ppm . 00149 .00256 172.24		
#1 #2 #3	.00320 .00577 .01137	.00290 .00307 .00851	.00243 .00714 .00458	00025 .00075 .00091	00024 00014 .00018	.00110 00016 00479	.00303 .00289 00147		
Check ? High Limit Low Limit	Chk Pass s	Chk Pass							
Elem Units Avg Stddev %RSD	V_2924 ppm . 00110 .00082 74.521	Zn2062 ppm .00019 .00009 47.759	Zr3391 ppm F23160 .60083 259.43						
#1 #2 #3	.00205 .00055 .00072	.00024 .00025 .00009	.40172 30294 79358						
Check ? High Limit Low Limit	Chk Pass	Chk Pass	Chk Fail .04000 04000						
Int. Std. Units Avg Stddev %RSD	Y_2243 Cts/S 12245. 10. .07925	Y_3600 Cts/S 88152. 590. .66975	Y_3774 Cts/S 3844.9 48.3 1.2549						
#1 #2 #3	12243. 12255. 12236.	87477. 88570. 88410.	3791.7 3857.3 3885.8						

Sample Name Method: ICP-T User: JYH Comment:)10_200.7W	red: 5/13/2010 ATER_3YLINI stom ID2:		Type: Unk Mode: CONC Corr. Factor: 1.00 ID3:		
Elem	Ag3280	Al3082	As1890	B_2496	Ba4554	Be3131	Ca4226
Units	ppm	ppm	ppm	ppm	ppm	ppm	ppm
Avg	. 12679	74.566	00095	26.676	. 00341	.00093	. 54982
Stddev	.00117	.022	.00250	.024	.00057	.00006	.01332
%RSD	.92494	.02949	261.55	.09119	16.699	6.5802	2.4229
#1	.12564	74.579	00365	26.652	.00371	.00096	.54880
#2	.12674	74.541	00048	26.676	.00275	.00086	.53704
#3	.12799	74.579	.00127	26.700	.00377	.00096	.56362
Check ? High Limit Low Limit	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass
Elem	Cd2288	Co2286	Cr2677	Cu2247	Fe2611	K_7664	Li6707
Units	ppm	ppm	ppm	ppm	ppm	ppm	ppm
Avg	00013	.00141	. 00662	.00582	. 07577	36.227	00092
Stddev	.00032	.00019	.00218	.00164	.02445	.250	.00355
%RSD	246.51	13.804	32.976	28.119	32.270	.69024	384.36
#1	00023	.00135	.00612	.00403	.07501	36.163	00493
#2	.00023	.00125	.00473	.00724	.05170	36.503	.00030
#3	00039	.00163	.00901	.00617	.10059	36.015	.00185
Check ? High Limit Low Limit	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass
Elem	Mg2790	Mn2576	Mo2020	Na5895	Ni2316	P_2149	Pb2203
Units	ppm	ppm	ppm	ppm	ppm	ppm	ppm
Avg	. 00953	00047	. 00145	F 338.31	. 00627	. 04748	00197
Stddev	.07148	.00330	.00021	1.42	.00083	.00352	.00208
%RSD	749.96	699.29	14.743	.41845	13.268	7.4060	105.33
#1	.05227	.00003	.00124	339.52	.00618	.05046	00398
#2	.04931	.00255	.00146	338.66	.00548	.04838	.00017
#3	07299	00400	.00166	336.76	.00714	.04360	00210
Check ? High Limit Low Limit	Chk Pass	Chk Pass	Chk Pass	Chk Fail 270.00 50000	Chk Pass	Chk Pass	Chk Pass

Sample Name Method: ICP-1 User: JYH Comment:	red: 5/13/2010 ATER_3YLIN stom ID2:		Type: Unk Mode: CONO ID3:	C Corr. F	Factor: 1.00000(
Elem Units Avg Stddev %RSD	Sb2068 ppm . 00164 .00682 414.58	Se1960 ppm 00153 .00133 87.244	Si2124 ppm .29718 .00424 1.4280	Sn1899 ppm 00153 .00143 93.391	Sr4077 ppm . 00346 .00041 11.776	Ti3372 ppm . 00407 .00780 191.53	TI1908 ppm . 00096 .00251 261.40
#1 #2 #3	00611 .00437 .00668	00307 00079 00073	.29656 .30170 .29328	00014 00145 00300	.00311 .00391 .00338	.00481 00407 .01148	00187 .00292 .00184
Check ? High Limit Low Limit	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass
Elem Units Avg Stddev %RSD	V_2924 ppm .00036 .00082 230.92	Zn2062 ppm . 02535 .00027 1.0781	Zr3391 ppm F37745 .39914 105.75				
#1 #2 #3	00037 .00020 .00124	.02564 .02530 .02510	81384 03086 28764				
Check ? High Limit Low Limit	Chk Pass	Chk Pass	Chk Fail 36.000 04000				
Int. Std. Units Avg Stddev %RSD	Y_2243 Cts/S 12082. 63. .52524	Y_3600 Cts/S 84505. 520. .61556	Y_3774 Cts/S 3928.2 42.4 1.0797				
#1 #2 #3	12028. 12067. 12152.	84519. 85018. 83978.	3910.1 3897.9 3976.7				

Sample Name: +0.5 PPM AG Acquired: 5/13/2016 19:49:46 Type: Unk Method: ICP-THERMO3_6010_200.7WATER_3YLINES(v872) Mode: CONC Corr. Factor: 1.000000 User: JYH Custom ID1: 2 Custom ID2: Custom ID3: Comment:										
Elem	Ag3280	Al3082	As1890	B_2496	Ba4554	Be3131	Ca4226			
Units	ppm	ppm	ppm	ppm	ppm	ppm	ppm			
Avg	. 61614	75.115	.00275	26.926	. 00196	.00084	. 53308			
Stddev	.00482	.077	.00171	.040	.00173	.00002	.01748			
%RSD	.78286	.10288	62.239	.14776	88.631	2.3116	3.2785			
#1	.61407	75.027	.00413	26.882	.00176	.00084	.51616			
#2	.62165	75.142	.00084	26.958	.00378	.00081	.55107			
#3	.61269	75.174	.00329	26.939	.00033	.00085	.53200			
Check ? High Limit Low Limit	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass			
Elem	Cd2288	Co2286	Cr2677	Cu2247	Fe2611	K_7664	Li6707			
Units	ppm	ppm	ppm	ppm	ppm	ppm	ppm			
Avg	00009	.00120	.00723	.00635	.07209	36.194	. 00268			
Stddev	.00023	.00018	.00143	.00058	.03965	.235	.00224			
%RSD	267.49	15.113	19.840	9.0630	55.004	.65044	83.532			
#1	00015	.00101	.00818	.00574	.11101	35.961	.00494			
#2	00028	.00137	.00558	.00689	.07351	36.432	.00046			
#3	.00017	.00122	.00793	.00642	.03175	36.189	.00265			
Check ? High Limit Low Limit	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass			
Elem	Mg2790	Mn2576	Mo2020	Na5895	Ni2316	P_2149	Pb2203			
Units	ppm	ppm	ppm	ppm	ppm	ppm	ppm			
Avg	. 10076	. 00226	. 00092	F 337.00	. 00630	. 04208	00136			
Stddev	.10984	.00376	.00065	1.51	.00161	.00189	.00332			
%RSD	109.01	166.00	71.130	.44801	25.508	4.5019	244.17			
#1	.06234	.00402	.00019	335.87	.00673	.04402	00502			
#2	.22465	00205	.00145	338.71	.00452	.04198	.00145			
#3	.01530	.00482	.00111	336.41	.00765	.04023	00051			
Check ? High Limit Low Limit	Chk Pass	Chk Pass	Chk Pass	Chk Fail 270.00 50000	Chk Pass	Chk Pass	Chk Pass			

Sample Nam Method: ICP- User: JYH Comment:	THERMO3_	6010_200.7	juired: 5/13/2 WATER_3YI Custom ID2:	LINES(v872)			Corr. Factor: 1.00000(
Elem Units Avg Stddev %RSD	Sb2068 ppm 00222 .00306 138.34	Se1960 ppm .00070 .00043 61.821	Si2124 ppm .29683 .00223 .75263	Sn1899 ppm 00026 .00124 478.67	Sr4077 ppm . 00363 .00023 6.2919	Ti3372 ppm . 01040 .00355 34.129	TI1908 ppm . 00096 .00210 217.43
#1 #2 #3	00157 00555 .00047	.00075 .00024 .00110	.29520 .29938 .29592	00115 00078 .00116	.00368 .00382 .00337	.00764 .00915 .01440	.00289 .00127 00127
Check ? High Limit Low Limit	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass
Elem Units Avg Stddev %RSD	V_2924 ppm .00083 .00060 73.122	Zn2062 ppm . 02529 .00026 1.0412	Zr3391 ppm . 14990 .89984 600.29				
#1 #2 #3	.00113 .00013 .00122	.02518 .02559 .02511	85500 .42356 .88115				
Check ? High Limit Low Limit	Chk Pass	Chk Pass	Chk Pass				
Int. Std. Units Avg Stddev %RSD	Y_2243 Cts/S 11954. 23. .19424	Y_3600 Cts/S 84405 . 718. .85059	Y_3774 Cts/S 3911.6 51.2 1.3086				
#1 #2 #3	11973. 11928. 11962.	85201. 83806. 84207.	3967.8 3867.7 3899.4				

Sample Name: +1 PPM AG Acquired: 5/13/2016 19:53:47 Type: Unk Method: ICP-THERMO3_6010_200.7WATER_3YLINES(v872) Mode: CONC User: JYH Custom ID1: Custom ID2: Custom ID3: Comment:							Factor: 1.00000(
Elem	Ag3280	Al3082	As1890	B_2496	Ba4554	Be3131	Ca4226
Units	ppm	ppm	ppm	ppm	ppm	ppm	ppm
Avg	. 82889	75.059	.00353	26.920	. 00240	.00086	. 54631
Stddev	.00503	.023	.00245	.049	.00013	.00001	.00405
%RSD	.60649	.03062	69.300	.18307	5.5745	1.7395	.74213
#1	.83065	75.035	.00499	26.942	.00225	.00086	.54693
#2	.82321	75.060	.00071	26.863	.00245	.00085	.55002
#3	.83279	75.081	.00491	26.953	.00251	.00087	.54199
Check ? High Limit Low Limit	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass
Elem	Cd2288	Co2286	Cr2677	Cu2247	Fe2611	K_7664	Li6707
Units	ppm	ppm	ppm	ppm	ppm	ppm	ppm
Avg	00015	.00151	. 00710	. 00602	. 07342	36.241	. 00412
Stddev	.00043	.00050	.00111	.00100	.00778	.130	.00078
%RSD	292.51	32.890	15.637	16.656	10.600	.35850	18.931
#1	00043	.00178	.00701	.00593	.07043	36.379	.00371
#2	.00035	.00182	.00604	.00507	.06758	36.223	.00502
#3	00036	.00094	.00825	.00707	.08225	36.121	.00364
Check ? High Limit Low Limit	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass
Elem	Mg2790	Mn2576	Mo2020	Na5895	Ni2316	P_2149	Pb2203
Units	ppm	ppm	ppm	ppm	ppm	ppm	ppm
Avg	. 07062	. 00380	. 00041	F 337.24	. 00551	. 04656	00157
Stddev	.10162	.00184	.00046	.92	.00056	.00535	.00404
%RSD	143.90	48.391	113.07	.27392	10.109	11.483	258.03
#1	.13532	.00461	.00046	338.28	.00568	.05029	.00104
#2	04651	.00170	0008	336.51	.00596	.04043	00622
#3	.12304	.00511	.00084	336.94	.00488	.04895	.00048
Check ? High Limit Low Limit	Chk Pass	Chk Pass	Chk Pass	Chk Fail 270.00 50000	Chk Pass	Chk Pass	Chk Pass

Sample Name: +1 PPM AG Acquired: 5/13/2016 19:53:47 Method: ICP-THERMO3_6010_200.7WATER_3YLINES(v872) User: JYH Custom ID12 Custom ID2: Custom Comment:					Type: Unk Mode: CON0 ID3:	C Corr. F	Factor: 1.00000(
Elem Units Avg Stddev %RSD	Sb2068 ppm . 00097 .00422 435.67	Se1960 ppm 00481 .00335 69.754	Si2124 ppm . 29649 .00222 .75024	Sn1899 ppm 00000 .00069 14238.	Sr4077 ppm . 00385 .00040 10.445	Ti3372 ppm . 00396 .00482 121.60	TI1908 ppm 00077 .00297 384.41
#1 #2 #3	00385 .00276 .00400	00818 00147 00477	.29615 .29445 .29886	.00065 .00005 00072	.00388 .00424 .00344	00060 .00900 .00348	.00156 00412 .00024
Check ? High Limit Low Limit	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass
Elem Units Avg Stddev %RSD	V_2924 ppm .00075 .00099 132.39	Zn2062 ppm . 02564 .00031 1.1977	Zr3391 ppm F24066 .67211 279.28				
#1 #2 #3	.00161 00033 .00097	.02572 .02590 .02530	46586 .51513 77125				
Check ? High Limit Low Limit	Chk Pass	Chk Pass	Chk Fail 36.000 04000				
Int. Std. Units Avg Stddev %RSD	Y_2243 Cts/S 11945. 28. .23697	Y_3600 Cts/S 84097. 657. .78079	Y_3774 Cts/S 3951.7 35.8 .90606				
#1 #2 #3	11954. 11913. 11968.	84852. 83779. 83660.	3912.8 3959.2 3983.2				

Sample Name: +1.5 PPM AG Acquired: 5/13/2016 19:57:48 Type: Unk Method: ICP-THERMO3_6010_200.7WATER_3YLINES(v872) Mode: CONC Corr. Factor: 1. User: JYH Custom ID1: 2 Custom ID2: Custom ID3: Comment:							Factor: 1.00000(
Elem	Ag3280	Al3082	As1890	B_2496	Ba4554	Be3131	Ca4226
Units	ppm	ppm	ppm	ppm	ppm	ppm	ppm
Avg	1.0420	75.471	.00366	27.265	. 00194	.00086	. 54849
Stddev	.0133	.117	.00188	.041	.00030	.00008	.02933
%RSD	1.2724	.15487	51.254	.15212	15.214	9.1711	5.3476
#1	1.0295	75.518	.00184	27.220	.00210	.00081	.51826
#2	1.0559	75.558	.00560	27.303	.00213	.00095	.57684
#3	1.0407	75.338	.00355	27.271	.00160	.00081	.55036
Check ? High Limit Low Limit	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass
Elem	Cd2288	Co2286	Cr2677	Cu2247	Fe2611	K_7664	Li6707
Units	ppm	ppm	ppm	ppm	ppm	ppm	ppm
Avg	00023	.00127	. 00707	.00575	. 06671	36.441	. 00267
Stddev	.00039	.00013	.00077	.00180	.01984	.155	.00393
%RSD	168.73	10.023	10.883	31.289	29.744	.42637	147.23
#1	00011	.00138	.00644	.00514	.04380	36.556	.00675
#2	.00008	.00129	.00793	.00434	.07775	36.504	.00234
#3	00067	.00113	.00685	.00778	.07858	36.265	00108
Check ? High Limit Low Limit	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass
Elem	Mg2790	Mn2576	Mo2020	Na5895	Ni2316	P_2149	Pb2203
Units	ppm	ppm	ppm	ppm	ppm	ppm	ppm
Avg	. 08836	.00004	. 00091	F 339.40	. 00566	. 05226	00237
Stddev	.05434	.00310	.00015	1.60	.00100	.00662	.00027
%RSD	61.499	8110.0	16.259	.47178	17.654	12.663	11.572
#1	.03891	00074	.00075	341.14	.00677	.04971	00213
#2	.07962	00260	.00095	339.05	.00538	.04730	00267
#3	.14653	.00346	.00104	338.00	.00483	.05977	00230
Check ? High Limit Low Limit	Chk Pass	Chk Pass	Chk Pass	Chk Fail 270.00 50000	Chk Pass	Chk Pass	Chk Pass

Sample Name: +1.5 PPM AG Acquired: 5/13/2016 19:57:48 Method: ICP-THERMO3_6010_200.7WATER_3YLINES(v872) User: JYH Custom ID1: 2 Custom ID2: Custom I Comment:					Type: Unk Mode: CONO ID3:	C Corr. F	Factor: 1.00000(
Elem Units Avg Stddev %RSD	Sb2068 ppm . 00109 .00391 357.72	Se1960 ppm 00150 .01376 918.50	Si2124 ppm . 30066 .00267 .88702	Sn1899 ppm . 00008 .00065 791.08	Sr4077 ppm .00384 .00014 3.5391	Ti3372 ppm . 00315 .00352 111.72	TI1908 ppm 00020 .00043 215.73
#1 #2 #3	00172 00056 .00556	.01035 01660 .00176	.30374 .29923 .29902	.00056 .00033 00065	.00368 .00391 .00392	00034 .00670 .00309	.00011 00002 00069
Check ? High Limit Low Limit	Chk Pass ss	Chk Pass					
Elem Units Avg Stddev %RSD	V_2924 ppm . 00027 .00005 17.027	Zn2062 ppm . 02640 .00013 .50885	Zr3391 ppm F04139 .57919 1399.4				
#1 #2 #3	.00032 .00024 .00024	.02628 .02638 .02654	41307 .62596 33706				
Check ? High Limit Low Limit	Chk Pass	Chk Pass	Chk Fail 36.000 04000				
Int. Std. Units Avg Stddev %RSD	Y_2243 Cts/S 11975. 137. 1.1428	Y_3600 Cts/S 84005. 735. .87543	Y_3774 Cts/S 3905.9 51.4 1.3152				
#1 #2 #3	12115. 11968. 11841.	83445. 83731. 84838.	3872.2 3880.4 3965.0				

Sample Name: L1605012104 Acquired: 5/13/2016 20:01:49 Type: Unk Method: ICP-THERMO3_6010_200.7WATER_3YLINES(v872) Mode: CONC Corr. Factor: 1.000000 User: JYH Custom ID1: Custom ID2: Custom ID3: Comment:										
Elem	Ag3280	Al3082	As1890	B_2496	Ba4554	Be3131	Ca4226			
Units	ppm	ppm	ppm	ppm	ppm	ppm	ppm			
Avg	. 04475	. 10144	.00483	. 23716	. 00851	. 00009	25.913			
Stddev	.00261	.00618	.00098	.00941	.00099	.00011	.086			
%RSD	5.8325	6.0922	20.345	3.9686	11.680	127.35	.33125			
#1	.04178	.09672	.00377	.24696	.00926	.00020	25.898			
#2	.04579	.10843	.00500	.23634	.00738	.00009	26.006			
#3	.04668	.09916	.00571	.22819	.00889	00003	25.836			
Check ? High Limit Low Limit	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass			
Elem	Cd2288	Co2286	Cr2677	Cu2247	Fe2611	K_7664	Li6707			
Units	ppm	ppm	ppm	ppm	ppm	ppm	ppm			
Avg	. 00004	. 02800	.00131	.00180	.01741	2.9931	3.6581			
Stddev	.00017	.00037	.00079	.00094	.01455	.0779	.0115			
%RSD	414.47	1.3335	60.740	51.877	83.553	2.6025	.31547			
#1	00011	.02813	.00138	.00073	.01993	3.0240	3.6610			
#2	.00001	.02758	.00206	.00240	.03054	3.0508	3.6679			
#3	.00022	.02828	.00048	.00228	.00177	2.9045	3.6454			
Check ? High Limit Low Limit	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass			
Elem	Mg2790	Mn2576	Mo2020	Na5895	Ni2316	P_2149	Pb2203			
Units	ppm	ppm	ppm	ppm	ppm	ppm	ppm			
Avg	6.8345	00214	. 19827	F 504.92	. 04176	2.9825	. 00014			
Stddev	.0746	.00085	.00087	12.57	.00072	.0171	.00283			
%RSD	1.0921	39.702	.43831	2.4896	1.7245	.57405	2040.1			
#1	6.7748	00137	.19868	510.97	.04259	3.0012	.00068			
#2	6.8106	00305	.19886	513.31	.04142	2.9676	.00266			
#3	6.9182	00199	.19727	490.46	.04128	2.9786	00292			
Check ? High Limit Low Limit	Chk Pass	Chk Pass	Chk Pass	Chk Fail 270.00 50000	Chk Pass	Chk Pass	Chk Pass			

Sample Nam Method: ICP- User: JYH Comment:		6010_200.7	juired: 5/13/2 WATER_3Y Custom ID2:	LINES(v872)			Corr. Factor: 1.00000(
Elem Units Avg Stddev %RSD	Sb2068 ppm . 00112 .00289 257.73	Se1960 ppm 00201 .00561 278.92	Si2124 ppm 1.7408 .0048 .27508	Sn1899 ppm 00010 .00079 797.27	Sr4077 ppm . 12517 .00066 .52866	Ti3372 ppm 00431 .00391 90.606	TI1908 ppm 00129 .00059 46.017	
#1 #2 #3	00048 00062 .00446	00713 00290 .00399	1.7374 1.7463 1.7388	00091 .00068 00007	.12522 .12581 .12449	00670 .00020 00643	00065 00139 00182	
Check ? High Limit Low Limit	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	
Elem Units Avg Stddev %RSD	V_2924 ppm 00024 .00052 219.52	Zn2062 ppm .00881 .00020 2.2766	Zr3391 ppm . 26919 .34986 129.97					
#1 #2 #3	.00032 00033 00071	.00865 .00903 .00873	00529 .66313 .14972					
Check ? High Limit Low Limit	Chk Pass	Chk Pass	Chk Pass					
Int. Std. Units Avg Stddev %RSD	Y_2243 Cts/S 11569. 71. .61733	Y_3600 Cts/S 81307. 308. .37868	Y_3774 Cts/S 3892.2 57.4 1.4755					
#1 #2 #3	11492. 11580. 11633.	80955. 81529. 81436.	3885.2 3838.6 3952.8					

Sample Name: L1605012104PS Acquired: 5/13/2016 20:05:54 Type: Unk

Method: ICP-THERMO3_6010_200.7WATER_3YLINES(v872) Mode: CONC Corr. Factor: 1.000000

User: JYH Custom ID1: Custom ID2: Custom ID3:

Comment: WG568231-01

						- 0.00		
Elem Units	Ag3280 ppm	Al3082 ppm	As1890 ppm	B_2496 ppm	Ba4554 ppm	Be3131 ppm	Ca4226 ppm	
Avg	.19726	4.9664	.19835	1.1315	.49554	.02482	27.940	
Stddev	.00305	.0125	.00330	.0069	.00190	.00008	.202	
%RSD	1.5477	.25084	1.6625	.60943	.38339	.33594	.72423	
#1	.20036	4.9785	.19849	1.1358	.49445	.02492	27.922	
#2	.19425	4.9671	.20158	1.1352	.49443	.02478	27.748	
#3	.19716	4.9536	.19499	1.1235	.49773	.02476	28.151	
Check ? High Limit	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	
Low Limit								
Elem	Cd2288	Co2286	Cr2677	Cu2247	Fe2611	K 7664	Li6707	
Units	ppm	ppm	ppm	ppm	ppm	_ ppm	ppm	
Avg Stddev	. 02434 .00020	. 12204 .00034	. 24503 .00120	. 24341 .00075	1.9576 .0267	28.029 .071	3.7843 .0193	
%RSD	.83128	.27725	.49078	.30884	1.3663	.25350	.50932	
701.02								
#1 #2	.02442	.12225	.24373	.24379	1.9401	28.061	3.7732	
#2 #3	.02411 .02450	.12222 .12165	.24526 .24610	.24391 .24255	1.9884 1.9443	27.948 28.079	3.7732 3.8066	
	.02.100		.21010	.21200	1.0110	20.070	0.0000	
Check ? High Limit Low Limit	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	
Elem	Mg2790	Mn2576	Mo2020	Na5895	Ni2316	P_2149	Pb2203	
Units	ppm	ppm	ppm	ppm	ppm	_ ppm	ppm	
Avg	11.186	.24165	. 67861	F 480.54	. 28051 .00015	7.6539 .0166	.23891	
Stddev %RSD	.179 1.6047	.00611 2.5298	.00095 .14017	1.04 .21684	.05360	.21711	.00263 1.1027	
701.102							1.1027	
#1	11.129	.24690	.67761	480.75	.28052	7.6360	.23782	
#2 #3	11.041 11.387	.24311 .23494	.67950 .67872	479.41 481.47	.28035 .28065	7.6688 7.6569	.23699 .24191	
#0	11.007	.20404	.07072	401.47	.20000	7.0003	.24101	
Check ? High Limit Low Limit	Chk Pass	Chk Pass	Chk Pass	Chk Fail 270.00 50000	Chk Pass	Chk Pass	Chk Pass	

Sample Name: L1605012104PS Acquired: 5/13/2016 20:05:54 Type: Unk Method: ICP-THERMO3_6010_200.7WATER_3YLINES(v872) Mode: CONC Corr. Factor: 1.000000 User: JYH Custom ID1: Custom ID2: Custom ID3: Comment: WG568231-01 Sb2068 Se1960 Si2124 Sn1899 Sr4077 Ti3372 TI1908 Elem Units ppm ppm ppm ppm ppm ppm ppm .19014 .49371 .49591 .22833 Avg .59284 4.1013 .60361 Stddev .00339 .01010 .0062 .00123 .00226 .00498 .00439 %RSD .57129 5.3097 .15178 .24970 .37431 1.0042 1.9209 #1 .58907 .19798 4.0947 .49268 .60126 .49065 .23002 #2 .59381 .19371 4.1023 .49508 .60382 .50055 .22335 #3 .59563 .17875 4.1070 .49337 .60576 .49653 .23162 **Chk Pass** Check? Chk Pass Chk Pass Chk Pass Chk Pass Chk Pass **Chk Pass** High Limit Low Limit Elem V_2924 Zn2062 Zr3391 Units ppm ppm ppm .49687 .50797 .69628 Avg .00142 .00048 .98653 Stddev %RSD .28531 .09419 141.69 #1 .49535 .50788 -.05162 #2 .49709 .50848 .32610 #3 1.8144 .49816 .50754 Check? Chk Pass Chk Pass Chk Pass High Limit Low Limit Int. Std. Y_2243 Y_3600 Y_3774 Units Cts/S Cts/S Cts/S 11546. 81287. 3853.9 Avg Stddev 315. 44.0 13. .38695 %RSD .10836 1.1414 #1 11553. 80985. 3893.3 3861.8 #2 11531. 81263.

3806.4

Approved: May 16, 2016

#3

11553.

81613.

Sample Name: L1605012104SDL Acquired: 5/13/2016 20:09:40 Type: Unk Method: ICP-THERMO3_6010_200.7WATER_3YLINES(v872) Mode: CONC Corr. Factor: 1.000000 User: JYH Custom ID1: 5 Custom ID2: Custom ID3: Comment: WG568231-02 Al3082 As1890 B_2496 Ba4554 Be3131 Ca4226 Elem Ag3280 Units ppm ppm ppm ppm ppm ppm ppm .02679 .00323 Avg -.00148 .00138 .06205 .00011 4.7775 Stddev .00078 .00602 .00313 .00350 .00055 .00014 .0188 %RSD 52.656 22.485 227.56 5.6422 16.997 124.06 .39396 .03154 #1 -.00128 .00067 .06344 -.00001 .00271 4.7797 #2 -.00233 .02883 -.00134 .06464 .00380 .00026 4.7576 #3 -.00082 .02002 .00480 .05806 .00317 .00008 4.7950 **Chk Pass** Check? Chk Pass **Chk Pass** Chk Pass **Chk Pass Chk Pass Chk Pass High Limit** Low Limit Elem Cd2288 Co2286 Cr2677 Cu2247 Fe2611 K_7664 Li6707 Units ppm ppm ppm ppm ppm ppm ppm -.00020 .00575 .00077 -.00109 F -.03301 Avg .66511 .69669 .00031 .00011 .00059 Stddev .00041 .03127 .11032 .00171 %RSD 154.71 1.8736 52.895 53.674 94.743 16.587 .24582 #1 -.00046 .00579 .00108 -.00045 -.05802 .78200 .69479 #2 .00014 .00584 .00091 -.00124 .00205 .56282 .69717 .00563 .00031 #3 -.00028 -.00159 -.04305 .65050 .69812 Check? **Chk Pass** Chk Pass **Chk Pass Chk Pass** Chk Fail **Chk Pass Chk Pass** High Limit 720.00 Low Limit -.02000 Mo2020 Elem Mg2790 Mn2576 Na5895 Ni2316 P_2149 Pb2203 Units ppm ppm ppm ppm ppm ppm ppm 1.2838 -.00107 .03636 95.625 .00760 .54656 -.00141 Avg .00235 .00036 .00016 .00109 .00351 Stddev .1218 .086 %RSD 2.1360 9.4841 220.90 .99348 .09001 .19889 248.61 #1 1.1995 .00122 .03624 95.665 .00766 .54534 .00264 1.4234 -.00094 .00741 .54743 #2 .03677 95.526 -.00331 #3 1.2284 -.00348 .03607 95.684 .00772 .54692 -.00357 Check? **Chk Pass Chk Pass Chk Pass Chk Pass Chk Pass Chk Pass Chk Pass** High Limit

Approved: May 16, 2016

Low Limit

Method: ICP- User: JYH	Sample Name: L1605012104SDL Acquired: 5/13/2016 20:09:40 Type: Unk Method: ICP-THERMO3_6010_200.7WATER_3YLINES(v872) Mode: CONC Corr. Factor: 1.000000 User: JYH Custom ID1: 5 Custom ID2: Custom ID3: Comment: WG568231-02								
Elem Units Avg Stddev %RSD	Sb2068 ppm . 00318 .00258 81.273	Se1960 ppm .00066 .00715 1075.5	Si2124 ppm . 29437 .00303 1.0291	Sn1899 ppm 00041 .00047 115.75	Sr4077 ppm . 02291 .00022 .95004	Ti3372 ppm 00314 .01097 348.73	TI1908 ppm . 00015 .00245 1616.3		
#1 #2 #3	.00044 .00557 .00353	.00850 00552 00099	.29773 .29353 .29185	00060 00076 .00013	.02313 .02269 .02291	00923 00972 .00952	00199 .00283 00039		
Check ? High Limit Low Limit	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass		
Elem Units Avg Stddev %RSD	V_2924 ppm . 00020 .00084 419.78	Zn2062 ppm . 00230 .00017 7.4974	Zr3391 ppm F13032 .48053 368.72						
#1 #2 #3	00072 .00040 .00093	.00250 .00221 .00219	15096 60020 .36019						
Check ? High Limit Low Limit	Chk Pass	Chk Pass	Chk Fail 36.000 04000						
Int. Std. Units Avg Stddev %RSD	Y_2243 Cts/S 11810. 37. .31303	Y_3600 Cts/S 84536. 733. .86702	Y_3774 Cts/S 3772.2 34.8 .92293						
#1 #2 #3	11851. 11801. 11779.	85200. 84659. 83749.	3812.1 3748.1 3756.3						

•										
Elem	Ag3280	Al3082	As1890	B_2496	Ba4554	Be3131	Ca4226			
Units	ppm	ppm	ppm	ppm	ppm	ppm	ppm			
Avg	. 39465	9.8911	.39114	. 52544	. 98502	. 04901	9.8993			
Stddev	.00096	.0118	.00113	.00360	.00245	.00034	.1018			
%RSD	.24354	.11926	.28998	.68484	.24881	.69543	1.0281			
#1	.39560	9.9041	.39053	.52296	.98680	.04881	9.9939			
#2	.39368	9.8812	.39044	.52957	.98605	.04940	9.9124			
#3	.39468	9.8878	.39245	.52380	.98223	.04880	9.7916			
Check ? Value Range	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass			
Elem	Cd2288	Co2286	Cr2677	Cu2247	Fe2611	K_7664	Li6707			
Units	ppm	ppm	ppm	ppm	ppm	ppm	ppm			
Avg	. 04974	.20021	. 49718	. 49916	3.9863	49.626	. 99649			
Stddev	.00032	.00090	.00304	.00176	.0554	.210	.00517			
%RSD	.64874	.45114	.61177	.35162	1.3892	.42295	.51910			
#1	.04939	.19923	.49476	.50111	3.9224	49.630	.99081			
#2	.04981	.20039	.50059	.49866	4.0193	49.833	1.0009			
#3	.05002	.20101	.49617	.49771	4.0173	49.414	.99772			
Check ? Value Range	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass			
Elem	Mg2790	Mn2576	Mo2020	Na5895	Ni2316	P_2149	Pb2203			
Units	ppm	ppm	ppm	ppm	ppm	ppm	ppm			
Avg	10.035	. 49499	. 99334	49.788	. 50180	9.7965	. 50802			
Stddev	.096	.00052	.00018	.185	.00091	.0452	.00400			
%RSD	.95323	.10519	.01790	.37237	.18194	.46139	.78752			
#1	10.082	.49465	.99338	49.875	.50078	9.7446	.50603			
#2	10.098	.49559	.99314	49.913	.50210	9.8180	.50542			
#3	9.9247	.49472	.99349	49.575	.50253	9.8270	.51263			
Check ? Value Range	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass			

•										
Elem Units Avg Stddev %RSD	Sb2068 ppm 1.1728 .0055 .46851	Se1960 ppm .39144 .01004 2.5647	Si2124 ppm 5.0203 .0191 .38032	Sn1899 ppm 1.0022 .0027 .27130	Sr4077 ppm . 98171 .00257 .26180	Ti3372 ppm . 98731 .00634 .64251	TI1908 ppm . 50180 .00364 .72614			
#1 #2 #3	1.1665 1.1752 1.1767	.39163 .38130 .40138	4.9993 5.0247 5.0367	.99907 1.0040 1.0035	.98236 .98390 .97888	.99371 .98718 .98103	.49843 .50131 .50567			
Check ? Value Range	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass			
Elem Units Avg Stddev %RSD	V_2924 ppm . 99011 .00473 .47771	Zn2062 ppm 1.0061 .0038 .38085	Zr3391 ppm F 24627 .57524 233.58							
#1 #2 #3	.98950 .99512 .98572	1.0019 1.0072 1.0093	.06915 91022 .10227							
Check ? Value Range	Chk Pass	Chk Pass	Chk Fail 1.0000 -10.000%							
Int. Std. Units Avg Stddev %RSD	Y_2243 Cts/S 11649. 33. .28191	Y_3600 Cts/S 82773. 75. .09076	Y_3774 Cts/S 3730.7 47.0 1.2588							
#1 #2 #3	11612. 11674. 11663.	82858. 82713. 82749.	3684.8 3778.6 3728.7							

•											
Elem	Ag3280	Al3082	As1890	B_2496	Ba4554	Be3131	Ca4226				
Units	ppm	ppm	ppm	ppm	ppm	ppm	ppm				
Avg	00227	. 00651	. 00129	. 04185	. 00210	.00007	02355				
Stddev	.00168	.00587	.00275	.00079	.00073	.00004	.00915				
%RSD	73.982	90.128	213.66	1.8912	34.493	57.539	38.868				
#1	00369	.01180	.00390	.04237	.00294	.00011	01783				
#2	00042	.00754	.00155	.04225	.00178	.00006	01870				
#3	00270	.00020	00159	.04094	.00160	.00003	03410				
Check ? High Limit Low Limit	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass				
Elem	Cd2288	Co2286	Cr2677	Cu2247	Fe2611	K_7664	Li6707				
Units	ppm	ppm	ppm	ppm	ppm	ppm	ppm				
Avg	00020	.00030	.00093	00093	02427	.06077	00035				
Stddev	.00008	.00015	.00124	.00070	.02844	.07262	.00396				
%RSD	40.406	49.819	133.17	75.680	117.18	119.49	1131.2				
#1	00029	.00044	.00236	00074	00605	01982	00441				
#2	00014	.00032	.00031	00170	00972	.08101	.00349				
#3	00016	.00014	.00012	00033	05705	.12112	00013				
Check ? High Limit Low Limit	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass				
Elem	Mg2790	Mn2576	Mo2020	Na5895	Ni2316	P_2149	Pb2203				
Units	ppm	ppm	ppm	ppm	ppm	ppm	ppm				
Avg	07918	00294	. 00420	. 01652	.00005	. 00092	00301				
Stddev	.12724	.00183	.00043	.02098	.00038	.00315	.00059				
%RSD	160.69	62.298	10.246	127.00	696.54	340.77	19.620				
#1	03174	00161	.00372	.03314	00037	.00447	00246				
#2	22333	00504	.00436	00705	.00036	00155	00295				
#3	.01752	00218	.00454	.02347	.00017	00014	00364				
Check ? High Limit Low Limit	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass				

Sample Name: Method: ICP-T User: JYH Comment:	factor: 1.00000(
Elem Units Avg Stddev %RSD	Sb2068 ppm . 01107 .00380 34.345	Se1960 ppm .00207 .00433 209.61	Si2124 ppm .00529 .00030 5.5825	Sn1899 ppm . 00016 .00059 370.86	Sr4077 ppm . 00009 .00035 373.17	Ti3372 ppm . 00141 .00226 160.38	TI1908 ppm 00278 .00141 50.846
#1 #2 #3	.00704 .01459 .01158	.00305 .00582 00267	.00560 .00501 .00525	.00060 00051 .00039	.00043 .00011 00026	.00229 .00309 00116	00206 00441 00187
Check ? High Limit Low Limit	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass
Elem Units Avg Stddev %RSD	V_2924 ppm 00024 .00084 356.09	Zn2062 ppm . 00012 .00014 116.27	Zr3391 ppm F29142 .20170 69.212				
#1 #2 #3	00030 .00063 00104	.00020 00004 .00020	06374 44772 36279				
Check ? High Limit Low Limit	Chk Pass	Chk Pass	Chk Fail .04000 04000				
Int. Std. Units Avg Stddev %RSD	Y_2243 Cts/S 11882 . 68. .57540	Y_3600 Cts/S 85086. 941. 1.1058	Y_3774 Cts/S 3766.5 20.5 .54487				
#1 #2 #3	11890. 11810. 11946.	84537. 86173. 84549.	3748.6 3788.9 3761.8				

Sample Name: TRITON Acquired: 5/13/2016 20:21:33 Type: Unk Method: ICP-THERMO3_6010_200.7WATER_3YLINES(v872) Mode: CONC User: JYH Custom ID1: Custom ID2: Custom ID3: Comment:						Corr. Fa	actor: 1.00000(
Elem	Ag3280	Al3082	As1890	B_2496	Ba4554	Be3131	Ca4226	Cd2288 ppm00002 .00014 858.03
Units	ppm	ppm	ppm	ppm	ppm	ppm	ppm	
Avg	00109	00634	.00070	. 02258	00044	.00001	03125	
Stddev	.00125	.00345	.00063	.00016	.00042	.00001	.04323	
%RSD	113.87	54.363	90.119	.71184	95.893	69.157	138.32	
#1	00023	00621	.00141	.02251	00027	.00003	.01854	.00011
#2	00053	00986	.00024	.02277	00092	.00001	05306	.00002
#3	00252	00296	.00044	.02247	00013	.00001	05923	00017
Check ? High Limit Low Limit	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass
Elem	Co2286	Cr2677	Cu2247	Fe2611	K_7664	Li6707	Mg2790	Mn2576
Units	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm
Avg	.00035	00038	00052	01001	00314	00197	09891	00125
Stddev	.00013	.00013	.00044	.01837	.04868	.00317	.09360	.00240
%RSD	35.444	33.209	84.609	183.43	1552.6	160.76	94.630	191.38
#1	.00028	00052	00002	00191	.01455	.00143	00757	00154
#2	.00050	00034	00072	.00291	05819	00484	09455	00349
#3	.00028	00028	00083	03103	.03423	00250	19460	.00128
Check ? High Limit Low Limit	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass
Elem	Mo2020	Na5895	Ni2316	P_2149	Pb2203	Sb2068	Se1960	Si2124
Units	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm
Avg	. 00139	. 22011	.00151	. 01118	.00184	. 00179	.00568	01876
Stddev	.00051	.00831	.00039	.00518	.00158	.00096	.00149	.00148
%RSD	36.502	3.7751	25.894	46.381	85.758	53.617	26.249	7.8891
#1	.00091	.21089	.00135	.00712	.00347	.00272	.00429	02038
#2	.00134	.22241	.00195	.01702	.00175	.00186	.00725	01748
#3	.00192	.22702	.00122	.00939	.00031	.00080	.00550	01842
Check ? High Limit Low Limit	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass

Sample Nar Method: ICF User: JYH Comment:		3_6010_200	ed: 5/13/201 .7WATER_ Custom II	3YLINES(v8		de: CONC	Corr. Fac	ctor: 1.00000(
Elem Units Avg Stddev %RSD	Sn1899 ppm . 00019 .00017 87.882	Sr4077 ppm . 00009 .00010 121.08	Ti3372 ppm .00537 .00166 30.911	TI1908 ppm 00115 .00281 245.44	V_2924 ppm 00040 .00056 139.33	Zn2062 ppm .00021 .00007 33.162	Zr3391 ppm . 98656 .38216 38.737	
#1 #2 #3	.00001 .00023 .00034	00001 .00019 .00008	.00646 .00346 .00619	00313 .00207 00238	00061 .00023 00083	.00028 .00020 .00014	1.0302 1.3450 .58445	
Check ? High Limit Low Limit	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	
Int. Std. Units Avg Stddev %RSD	Y_2243 Cts/S 13570. 42. .31023	Y_3600 Cts/S 99139. 215. .21736	Y_3774 Cts/S 4558.9 36.1 .79096					
#1 #2 #3	13603. 13523. 13585.	99386. 98987. 99045.	4558.8 4595.0 4522.9					

-								
Elem	Ag3280	Al3082	As1890	B_2496	Ba4554	Be3131	Ca4226	Cd2288
Units	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm
Avg	00165	00177	00277	. 01789	00026	.00001	01693	00005
Stddev	.00057	.00226	.00205	.00035	.00009	.00002	.00850	.00003
%RSD	34.706	127.53	73.731	1.9713	35.204	267.39	50.206	61.042
#1	00231	00359	00060	.01759	00032	.00002	00894	00008
#2	00128	00248	00466	.01779	00016	00002	02585	00002
#3	00136	.00076	00307	.01828	00030	.00002	01599	00004
Check ? High Limit Low Limit	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass
Elem	Co2286	Cr2677	Cu2247	Fe2611	K_7664	Li6707	Mg2790	Mn2576
Units	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm
Avg	.00029	. 00029	. 00160	00239	. 01814	00384	. 03366	00030
Stddev	.00017	.00040	.00109	.03600	.05065	.00228	.06247	.00346
%RSD	58.972	136.36	68.173	1503.6	279.17	59.223	185.57	1142.6
#1	.00018	.00049	.00066	.01470	.05268	00630	01622	00054
#2	.00049	.00056	.00280	04376	04000	00342	.01348	.00327
#3	.00020	00017	.00134	.02188	.04176	00181	.10373	00364
Check ? High Limit Low Limit	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass
Elem	Mo2020	Na5895	Ni2316	P_2149	Pb2203	Sb2068	Se1960	Si2124
Units	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm
Avg	. 00039	. 17594	.00218	. 00070	00123	. 00024	. 00257	01728
Stddev	.00011	.03530	.00042	.00664	.00213	.00427	.00902	.00173
%RSD	28.746	20.066	19.189	949.63	173.58	1785.1	350.46	9.9854
#1	.00052	.20952	.00198	00114	00154	00374	00634	01545
#2	.00034	.13913	.00190	.00806	00318	.00474	.01169	01753
#3	.00031	.17917	.00266	00483	.00104	00028	.00237	01887
Check ? High Limit Low Limit	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass

						Corr. Fa	ctor: 1.00000(
User: JYH Comment:	Custom	ID1:	Custom IE	D2: (Custom ID3	:		
Elem Units Avg Stddev %RSD	Sn1899 ppm . 00047 .00049 103.51	Sr4077 ppm .00005 .00045 952.66	Ti3372 ppm .00912 .00258 28.262	TI1908 ppm 00122 .00223 183.36	V_2924 ppm . 00011 .00076 714.87	Zn2062 ppm .00022 .00010 43.943	Zr3391 ppm . 45914 .48052 104.66	
#1 #2 #3	00009 .00075 .00075	00003 .00053 00036	.00980 .00627 .01129	00064 00368 .00067	.00088 00064 .00007	.00027 .00027 .00011	.53968 05655 .89431	
Check ? High Limit Low Limit	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	
Int. Std. Units Avg Stddev %RSD	Y_2243 Cts/S 13551. 56. .41498	Y_3600 Cts/S 97680. 411. .42125	Y_3774 Cts/S 4398.7 44.1 1.0027					
#1 #2 #3	13489. 13599. 13564.	97247. 97727. 98066.	4350.8 4407.8 4437.6					

Element, Wavelength and Order	Date of Fit	Date of Cal.	Type of Fit	Weighting	A0	A1	A2	n (Exponent)
 Ag 328.068 {103}	5/16/2016 10:02:58	5/16/2016 10:02:58	Linear	1/Conc	-0.000070	0.026608	0.000000	1.000000
 Al 308.215 {109}	5/16/2016 10:02:58	5/16/2016 10:02:58	Linear	1/Conc	0.000354	0.004244	0.000000	1.000000
 As 189.042 {478}	5/16/2016 10:02:58	5/16/2016 10:02:58	Linear	1/Conc	-0.000019	0.012197	0.000000	1.000000
B 249.678 {135}	5/16/2016 10:02:58	5/16/2016 10:02:58	Linear	1/Conc	0.000088	0.011302	0.000000	1.000000
Ba 455.403 { 74}	5/16/2016 10:02:58	5/16/2016 10:02:58	Linear	1/Conc	0.008611	1.384462	0.000000	1.000000
Be 313.107 {108}	5/16/2016 10:02:58	5/16/2016 10:02:58	Linear	1/Conc	0.000147	0.500268	0.000000	1.000000
Ca 422.673 { 80}	5/16/2016 10:02:58	5/16/2016 10:02:58	Linear	1/Conc	0.000052	0.029807	0.000000	1.000000
Cd 228.802 {447}	5/16/2016 10:02:58	5/16/2016 10:02:58	Linear	1/Conc	0.000060	0.251187	0.000000	1.000000
Co 228.616 {447}	5/16/2016 10:02:58	5/16/2016 10:02:58	Linear	1/Conc	-0.000033	0.199737	0.000000	1.000000
 Cr 267.716 {126}	5/16/2016 10:02:58	5/16/2016 10:02:58	Linear	1/Conc	0.000135	0.027169	0.000000	1.000000
 Cu 224.700 {450}	5/16/2016 10:02:58	5/16/2016 10:02:58	Linear	1/Conc	-0.000097	0.067304	0.000000	1.000000
Fe 261.187 {129}	5/16/2016 10:02:58	5/16/2016 10:02:58	Linear	1/Conc	-0.000241	0.012217	0.000000	1.000000
 K 766.490 { 44}	5/16/2016 10:02:58	5/16/2016 10:02:58	Linear	1/Conc	0.003822	0.036983	0.000000	1.000000
 Li 670.784 { 50}	5/16/2016 10:02:58	5/16/2016 10:02:58	Linear	1/Conc	0.003498	0.764693	0.000000	1.000000
 Mg 279.079 {121}	5/16/2016 10:02:58	5/16/2016 10:02:58	Linear	1/Conc	-0.000494	0.003076	0.000000	1.000000
Mn 257.610 {131}	5/16/2016 10:02:58	5/16/2016 10:02:58	Linear	1/Conc	0.000276	0.158505	0.000000	1.000000
 Mo 202.030 {467}	5/16/2016 10:02:58	5/16/2016 10:02:58	Linear	1/Conc	0.000003	0.098157	0.000000	1.000000
 Na 589.592 { 57}	5/16/2016 10:02:58	5/16/2016 10:02:58	Linear	1/Conc	-0.016077	0.105062	0.000000	1.000000
 Ni 231.604 {446}	5/16/2016 10:02:58	5/16/2016 10:02:58	Linear	1/Conc	-0.000266	0.073355	0.000000	1.000000
 P 214.914 {457}	5/16/2016 10:02:58	5/16/2016 10:02:58	Linear	1/Conc	-0.000135	0.006671	0.000000	1.000000
 Pb 220.353 {453}	5/16/2016 10:02:58	5/16/2016 10:02:58	Linear	1/Conc	-0.000248	0.033099	0.000000	1.000000
 Sb 206.833 {463}	5/16/2016 10:02:58	5/16/2016 10:02:58	Linear	1/Conc	0.000040	0.017038	0.000000	1.000000
 Se 196.090 (472)	5/16/2016 10:02:58	5/16/2016 10:02:58	Linear	1/Conc	-0.000167	0.007654	0.000000	1.000000
 Si 212.412 {459}	5/16/2016 10:02:58	5/16/2016 10:02:58	Linear	1/Conc	0.000863	0.022158	0.000000	1.000000
 Sn 189.989 {477}	5/16/2016 10:02:58	5/16/2016 10:02:58	Linear	1/Conc	0.000029	0.035412	0.000000	1.000000
 Sr 407.771 { 83}	5/16/2016 10:02:58	5/16/2016 10:02:58	Linear	1/Conc	0.000734	2.358557	0.000000	1.000000
 Ti 337.280 {100}	5/16/2016 10:02:58	5/16/2016 10:02:58	Linear	1/Conc	-0.000981	0.075402	0.000000	1.000000
 TI 190.856 (477)	5/16/2016 10:02:58	5/16/2016 10:02:58	Linear	1/Conc	-0.000161	0.014511	0.000000	1.000000
 V 292.402 (115)	5/16/2016 10:02:58	5/16/2016 10:02:58	Linear	1/Conc	0.000034	0.025576	0.000000	1.000000
 Y 224.306 {450}*	<not fit=""></not>	<never calibrated=""></never>	Linear	1/Conc	0.000000	0.000000	0.000000	1.000000
 Y 360.073 { 94}*	<not fit=""></not>	<never calibrated=""></never>	Linear	1/Conc	0.000000	0.000000	0.000000	1.000000
 Y 377.433 { 89}*	<not fit=""></not>	<never calibrated=""></never>	Linear	1/Conc	0.000000	0.000000	0.000000	1.000000
 Zn 206.200 {463}	5/16/2016 10:02:58	5/16/2016 10:02:58	Linear	1/Conc	0.000052	0.201668	0.000000	1.000000
Zr 339.198 { 99}	5/16/2016 10:02:58	5/16/2016 10:02:58	Linear	1/Conc	-0.003141	0.002217	0.000000	1.000000

Element,		Std Error of	Duadiated	Predicted		Res	lope	QC	Norm
Wavelength and Order	Correlation	Sta Error or Est	MDL	MQL	Status	Slope	Y-int	Slope factor	Offset
 Ag 328.068 {103}	0.998986	0.000003	0.002088	0.006961	OK.	1.000000	0.000000	1	0
 Al 308.215 {109}	0.999995	0.000001	0.008979	0.029931	OK.	1.000000	0.000000	1	0
 As 189.042 {478}	0.999894	0.000001	0.003689	0.012295	OK.	1.000000	0.000000	1	0
 B 249.678 {135}	0.999965	0.000000	0.002841	0.009471	OK.	1.000000	0.000000	1	0
 Ba 455.403 { 74}	0.999993	0.000033	0.000921	0.003069	OK.	1.000000	0.000000	1	0
 Be 313.107 {108}	0.999977	0.000001	0.000076	0.000253	OK.	1.000000	0.000000	1	0
 Ca 422.673 { 80}	0.999980	0.000012	0.032294	0.107645	OK.	1.000000	0.000000	1	0
 Cd 228.802 {447}	0.999734	0.000002	0.000302	0.001008	OK.	1.000000	0.000000	1	0
 Co 228.616 {447}	0.999970	0.000002	0.000435	0.001451	OK.	1.000000	0.000000	1	Ī O
 Cr 267.716 {126}	0.999928	0.000001	0.001239	0.004131	OK.	1.000000	0.000000	1	0
 Cu 224.700 {450}	0.999973	0.000002	0.001484	0.004948	OK.	1.000000	0.000000	1	0
 Fe 261.187 {129}	0.999893	0.000005	0.025557	0.085189	OK.	1.000000	0.000000	1	0
 K 766.490 { 44}	0.999919	0.000149	0.097216	0.324055	OK.	1.000000	0.000000	1	0
 Li 670.784 { 50}	0.999824	0.000141	0.004583	0.015275	OK.	1.000000	0.000000	1	0
 Mg 279.079 {121}	0.999791	0.000006	0.110589	0.368629	OK.	1.000000	0.000000	1	0
 Mn 257.610 {131}	0.999835	0.000009	0.002758	0.009195	OK.	1.000000	0.000000	1	0
 Mo 202.030 {467}	0.999999	0.000001	0.000463	0.001542	OK.	1.000000	0.000000	1	0
 Na 589.592 { 57}	0.999998	0.000069	0.030548	0.101827	OK.	1.000000	0.000000	1	0
 Ni 231.604 {446}	0.999936	0.000003	0.001261	0.004203	OK.	1.000000	0.000000	1	0
 P 214.914 {457}	0.999969	0.000003	0.008549	0.028497	OK.	1.000000	0.000000	1	0
 Pb 220.353 {453}	0.999556	0.000003	0.003999	0.013330	OK.	1.000000	0.000000	1	0
 Sb 206.833 {463}	0.999319	0.000005	0.004611	0.015372	OK.	1.000000	0.000000	1	0
 Se 196.090 {472}	0.997398	0.000002	0.008307	0.027690	OK.	1.000000	0.000000	1	0
 Si 212.412 {459}	0.999992	0.000003	0.002443	0.008144	OK.	1.000000	0.000000	1	0
Sn 189.989 {477}	0.999959	0.000002	0.001041	0.003470	OK.	1.000000	0.000000	1	0
 Sr 407.771 { 83}	0.999993	0.000054	0.000407	0.001358	OK.	1.000000	0.000000	1	0
 Ti 337.280 {100}	0.999912	0.000006	0.006951	0.023169	OK.	1.000000	0.000000	1	0
 TI 190.856 (477)	0.999918	0.000001	0.003609	0.012031	OK.	1.000000	0.000000	1	0
 V 292.402 {115}	0.999979	0.000001	0.001208	0.004027	OK.	1.000000	0.000000	1	0
Y 224.306 {450}*	0.000000	0.000000	-1.000000	-1.000000	Warnin	1.000000	0.000000	1	0
 Y 360.073 { 94}*	0.000000	0.000000	-1.000000	-1.000000	Warnin	1.000000	0.000000	1	0
Y 377.433 { 89}*	0.000000	0.000000	-1.000000	-1.000000	Warnin	1.000000	0.000000	1	0
 Zn 206.200 {463}	0.999981	0.000008	0.000245	0.000816	OK.	1.000000	0.000000	1	0
Zr 339.198 { 99}	0.393956	0.000033	0.400035	1.333451	OK.	1.000000	0.000000	1	0

Sample Name: S0 Acquired: 5/16/2016 9:43:41 Type: Cal

Method: ICP-THERMO3_6010_200.7WATER_3YLINES(v873) Mode: IR Corr. Factor: 1.000000

User: JYH Custom ID1: Custom ID2: Custom ID3:

Comment:

Elem	Ag3280	Al3082	As1890	B_2496	Ba4554	Be3131	Ca4226	
Units	Cts/S	Cts/S	Cts/S	Cts/S	Cts/S	Cts/S	Cts/S	
Avg	00007	.00035	00002	.00009	.00861	.00015	.00005	
Stddev	.00002	.00003	.00002	.00001	.00055	.00002	.00063	
%RSD	33.102	8.3477	99.470	9.6194	6.3652	15.487	1210.4	
#1	00010	.00034	00003	.00010	.00832	.00016	.00077	
#2	00006	.00039	.00000	.00008	.00828	.00016	00044	
#3	00005	.00034	00003	.00009	.00924	.00012	00017	
Elem	Cd2288	Co2286	Cr2677	Cu2247	Fe2611	K_7664	Li6707	
Units	Cts/S	Cts/S	Cts/S	Cts/S	Cts/S	Cts/S	Cts/S	
Avg	.00006	00003	. 00013	00010	00024	. 00382	. 00349	
Stddev	.00003	.00005	.00002	.00008	.00024	.00213	.00271	
%RSD	44.228	146.87	16.428	83.465	100.39	55.890	77.517	
#1	.00008	.00001	.00015	00000	00028	.00628	.00515	
#2	.00007	00008	.00015	00015	00046	.00246	.00037	
#3	.00003	00002	.00011	00013	.00002	.00272	.00497	
Elem	Mg2790	Mn2576	Mo2020	Na5895	Ni2316	P_2149	Pb2203	
Units	Cts/S	Cts/S	Cts/S	Cts/S	Cts/S	Cts/S	Cts/S	
Avg	00049	. 00028	. 00000	01608	00027	00013	00025	
Stddev	.00002	.00065	.00001	.00321	.00004	.00002	.00009	
%RSD	3.7659	234.90	551.33	19.948	16.329	15.575	35.108	
#1	00048	.00078	.00001	01559	00028	00016	00034	
#2	00052	00045	00001	01315	00022	00012	00016	
#3	00049	.00050	.00001	01950	00030	00012	00024	
Elem	Sb2068	Se1960	Si2124	Sn1899	Sr4077	Ti3372	TI1908	
Units	Cts/S	Cts/S	Cts/S	Cts/S	Cts/S	Cts/S	Cts/S	
Avg	.00004	00017	.00086	. 00003	. 00073	00098	00016	
Stddev	.00003	.00003	.00001	.00002	.00065	.00043	.00001	
%RSD	80.596	15.390	.72800	75.770	88.817	44.351	6.1409	
#1	.00001	00018	.00087	.00001	.00114	00052	00017	
#2	.00007	00014	.00087	.00005	.00108	00104	00017	
#3	.00004	00018	.00086	.00002	00002	00138	00015	

Approved: May 17, 2016

J'ye 1hu

Sample Name: S0 Acquired: 5/16/2016 9:43:41 Type: Cal Method: ICP-THERMO3_6010_200.7WATER_3YLINES(v873) Mode: IR Corr. Factor: 1.000000 User: JYH Custom ID1: Custom ID2: Custom ID3: Comment: Elem V_2924 Zn2062 Zr3391 Units Cts/S Cts/S Cts/S Avg .00003 .00005 -.00314 Stddev .00004 .00002 .00070 %RSD 102.66 38.434 22.221 #1 .00003 80000. -.00385 #2 .00007 .00004 -.00245 #3 .00000 .00004 -.00312 Y_2243 Y_3600 Y_3774 Int. Std. Cts/S Cts/S Cts/S Units 14150. 101660. 4611.0 Avg Stddev 13. 176. 28.6 %RSD .09539 .17294 .62074 #1 4580.2 14159. 101510.

4616.1

4636.8

Approved: May 17, 2016

#2

#3

14135.

14157.

101620.

101860.

Sample Name: S1 Acquired: 5/16/2016 9:47:42 Type: Cal

Method: ICP-THERMO3_6010_200.7WATER_3YLINES(v873) Mode: IR Corr. Factor: 1.000000

User: JYH Custom ID1: Custom ID2: Custom ID3:

Comment:

Elem	Ag3280	Al3082	Ba4554	Be3131	Ca4226	Cd2288	Co2286	
Units	Cts/S	Cts/S	Cts/S	Cts/S	Cts/S	Cts/S	Cts/S	
Avg	00005	.00071	.01906	.00034	. 00237	.00019	.00025	
Stddev	.00002	.00002	.00146	.00003	.00112	.00003	.00005	
%RSD	37.701	2.6327	7.6592	8.3064	47.181	13.377	19.873	
#1	00007	.00071	.02055	.00037	.00302	.00017	.00022	
#2	00006	.00072	.01901	.00033	.00108	.00022	.00023	
#3	00003	.00069	.01763	.00032	.00301	.00018	.00031	
Elem	Cr2677	Cu2247	Fe2611	K_7664	Mn2576	Mo2020	Na5895	
Units	Cts/S	Cts/S	Cts/S	Cts/S	Cts/S	Cts/S	Cts/S	
Avg	. 00022	.00019	.00026	.02183	.00075	. 00076	. 02702	
Stddev	.00001	.00003	.00027	.00276	.00027	.00004	.00376	
%RSD	4.6989	17.661	104.40	12.644	35.602	4.6169	13.911	
#1	.00022	.00015	00003	.02502	.00091	.00080	.02394	
#2	.00024	.00021	.00051	.02026	.00044	.00076	.02592	
#3	.00022	.00020	.00029	.02022	.00089	.00073	.03121	
Elem	Ni2316	P_2149	Pb2203	Sb2068	Si2124	Sn1899	Sr4077	
Units	Cts/S	Cts/S	Cts/S	Cts/S	Cts/S	Cts/S	Cts/S	
Avg	00001	.00033	00006	. 00009	. 00172	. 00027	. 02033	
Stddev	.00005	.00001	.00005	.00004	.00004	.00001	.00088	
%RSD	922.59	3.5887	98.744	47.045	2.5939	2.4964	4.3413	
#1	00004	.00032	00011	.00010	.00173	.00027	.01949	
#2	00003	.00033	.00000	.00013	.00175	.00027	.02125	
#3	.00005	.00034	00006	.00004	.00167	.00026	.02026	
Elem Units Avg Stddev %RSD	Ti3372 Cts/S 00051 .00074 144.63	V_2924 Cts/S .00026 .00001 5.5459	Zn2062 Cts/S .00167 .00006 3.8484	Zr3391 Cts/S 00235 .00090 38.475				
#1 #2 #3	00064 .00028 00119	.00027 .00026 .00024	.00174 .00161 .00164	00131 00287 00287				

Approved: May 17, 2016

J'ye 1hu

Sample Name: S1 Acquired: 5/16/2016 9:47:42 Type: Cal Method: ICP-THERMO3_6010_200.7WATER_3YLINES(v873) Mode: IR User: JYH Custom ID1: Custom ID2: Custom ID3:

Corr. Factor: 1.000000

Comment:

Int. Std.	Y_2243	Y_3600	Y_3774
Units	Cts/S	Cts/S	Cts/S
Avg	14188.	102640.	4622.9
Stddev	20.	255.	6.1
%RSD	.13870	.24836	.13138
#1	14167.	102930.	4618.7
#2	14190.	102550.	4629.8
#3	14207.	102440.	4620.0

Sample Name: S2 Acquired: 5/16/2016 9:51:42 Type: Cal

Method: ICP-THERMO3_6010_200.7WATER_3YLINES(v873) Mode: IR Corr. Factor: 1.000000

User: JYH Custom ID1: Custom ID2: Custom ID3:

Comment:

Elem	Ag3280	Al3082	As1890	B_2496	Ba4554	Be3131	Ca4226	
Units	Cts/S	Cts/S	Cts/S	Cts/S	Cts/S	Cts/S	Cts/S	
Avg	.00006	.00101	.00005	.00018	.03028	.00054	.00445	
Stddev	.00004	.00002	.00003	.00002	.00118	.00002	.00045	
%RSD	63.723	1.9555	72.661	8.7569	3.9064	3.3289	10.039	
#1	.00003	.00100	.00001	.00018	.03147	.00055	.00394	
#2	.00004	.00104	.00005	.00016	.02911	.00052	.00467	
#3	.00010	.00100	.00008	.00019	.03027	.00055	.00475	
Elem	Cd2288	Co2286	Cr2677	Cu2247	Fe2611	K_7664	Li6707	
Units	Cts/S	Cts/S	Cts/S	Cts/S	Cts/S	Cts/S	Cts/S	
Avg	.00022	.00057	.00034	.00048	.00052	. 03501	. 01871	
Stddev	.00003	.00003	.00001	.00004	.00031	.00235	.00303	
%RSD	11.762	4.6927	2.7034	8.7387	60.010	6.7134	16.184	
#1	.00025	.00061	.00035	.00046	.00021	.03667	.01838	
#2	.00021	.00056	.00033	.00045	.00083	.03232	.02190	
#3	.00020	.00056	.00035	.00053	.00051	.03603	.01587	
Elem	Mg2790	Mn2576	Mo2020	Na5895	Ni2316	P_2149	Pb2203	
Units	Cts/S	Cts/S	Cts/S	Cts/S	Cts/S	Cts/S	Cts/S	
Avg	.00012	. 00175	. 00157	. 06828	.00026	.00091	.00008	
Stddev	.00039	.00039	.00003	.00061	.00006	.00003	.00000	
%RSD	317.83	22.372	1.7151	.88693	24.448	3.7047	3.3889	
#1	.00009	.00154	.00156	.06893	.00031	.00091	.00009	
#2	.00053	.00220	.00155	.06819	.00028	.00088	.00008	
#3	00025	.00151	.00160	.06773	.00019	.00095	.00008	
Elem	Sb2068	Se1960	Si2124	Sn1899	Sr4077	Ti3372	TI1908	
Units	Cts/S	Cts/S	Cts/S	Cts/S	Cts/S	Cts/S	Cts/S	
Avg	.00033	00007	. 00263	.00057	.03748	. 00015	00005	
Stddev	.00008	.00002	.00002	.00000	.00053	.00062	.00003	
%RSD	23.022	29.608	.57180	.56146	1.4086	412.27	62.422	
#1	.00041	00009	.00265	.00058	.03732	.00076	00005	
#2	.00032	00006	.00262	.00057	.03704	.00015	00007	
#3	.00026	00006	.00262	.00058	.03806	00047	00001	

Approved: May 17, 2016

J'ye 1hu

Sample Name: S2 Acquired: 5/16/2016 9:51:42 Type: Cal

Method: ICP-THERMO3_6010_200.7WATER_3YLINES(v873) Mode: IR Corr. Factor: 1.000000

User: JYH Custom ID1: Custom ID2: Custom ID3:

Comment:

Elem	V_2924	Zn2062	Zr3391
Units	Cts/S	Cts/S	Cts/S
Avg	.00046	.00323	00281
Stddev	.00002	.00001	.00007
%RSD	3.6000	.43130	2.5711
#1	.00045	.00321	00275
#2	.00045	.00323	00280
#3	.00048	.00324	00289
Int. Std.	Y_2243	Y_3600	Y_3774
Units	Cts/S	Cts/S	Cts/S
Avg	14155.	102090.	4659.4
Stddev	26.	305.	6.3
%RSD	.18228	.29866	.13486
#1	14125.	102130.	4664.1
#2	14174.	101760.	4652.3
#3	14165.	102360.	4661.9

Sample Name: S3 Acquired: 5/16/2016 9:55:41 Type: Cal

Method: ICP-THERMO3_6010_200.7WATER_3YLINES(v873) Mode: IR Corr. Factor: 1.000000

User: JYH Custom ID1: Custom ID2: Custom ID3:

Comment:

Elem	Ag3280	Al3082	As1890	B_2496	Ba4554	Be3131	Ca4226	
Units	Cts/S	Cts/S	Cts/S	Cts/S	Cts/S	Cts/S	Cts/S	
Avg	.01052	. 04321	. 00477	.00566	1.3901	. 02546	. 29725	
Stddev	.00007	.00024	.00005	.00003	.0054	.00009	.00273	
%RSD	.63563	.55300	1.0105	.61085	.38713	.36459	.91833	
#1	.01060	.04302	.00476	.00567	1.3845	.02555	.29411	
#2	.01050	.04348	.00473	.00568	1.3953	.02545	.29904	
#3	.01047	.04312	.00483	.00562	1.3904	.02537	.29862	
Elem	Cd2288	Co2286	Cr2677	Cu2247	Fe2611	K_7664	Li6707	
Units	Cts/S	Cts/S	Cts/S	Cts/S	Cts/S	Cts/S	Cts/S	
Avg	.01381	. 04007	.01388	.03392	.04857	1.8397	. 77355	
Stddev	.00006	.00013	.00009	.00011	.00010	.0031	.00496	
%RSD	.40668	.31347	.68112	.33802	.19919	.16742	.64098	
#1	.01386	.04021	.01391	.03405	.04863	1.8362	.77235	
#2	.01375	.04005	.01396	.03388	.04846	1.8419	.77899	
#3	.01381	.03996	.01377	.03383	.04862	1.8409	.76930	
Elem	Mg2790	Mn2576	Mo2020	Na5895	Ni2316	P_2149	Pb2203	
Units	Cts/S	Cts/S	Cts/S	Cts/S	Cts/S	Cts/S	Cts/S	
Avg	. 03047	. 07910	. 09805	5.2249	.03677	. 06509	. 01646	
Stddev	.00031	.00051	.00051	.0208	.00013	.00006	.00005	
%RSD	1.0154	.64702	.52214	.39837	.35790	.09694	.29747	
#1	.03082	.07873	.09863	5.2009	.03687	.06516	.01648	
#2	.03034	.07968	.09789	5.2363	.03662	.06509	.01641	
#3	.03024	.07888	.09765	5.2376	.03684	.06503	.01650	
Elem	Sb2068	Se1960	Si2124	Sn1899	Sr4077	Ti3372	TI1908	
Units	Cts/S	Cts/S	Cts/S	Cts/S	Cts/S	Cts/S	Cts/S	
Avg	.01998	.00288	.11264	.03558	2.3517	. 07389	. 00659	
Stddev	.00007	.00004	.00005	.00005	.0062	.00055	.00002	
%RSD	.37518	1.5393	.04628	.15035	.26355	.74913	.23167	
#1	.02004	.00286	.11266	.03557	2.3452	.07326	.00661	
#2	.01989	.00293	.11258	.03553	2.3575	.07432	.00658	
#3	.02000	.00285	.11267	.03564	2.3523	.07407	.00658	

Approved: May 17, 2016

J'ye 1hu

Acquired: 5/16/2016 9:55:41 Sample Name: S3 Type: Cal Method: ICP-THERMO3_6010_200.7WATER_3YLINES(v873) Mode: IR Corr. Factor: 1.000000 User: JYH Custom ID1: Custom ID2: Custom ID3: Comment: Elem V_2924 Zn2062 Zr3391 Units Cts/S Cts/S Cts/S Avg .02562 .20330 -.00097 .00004 Stddev .00028 .00034 %RSD .17212 .13958 35.507 #1 .02567 .20357 -.00076 #2 .02562 .20301 -.00078 #3 .02558 .20332 -.00136 Y_2243 Y_3600 Y_3774 Int. Std. Cts/S Cts/S Cts/S Units 4634.5 14007. 99850. Avg Stddev 42. 485. 32.4 %RSD .30265 .48577 .69852

4648.3

4597.6

4657.7

Approved: May 17, 2016

#1

#2

#3

13996.

14053.

13971.

100220.

100030.

99301.

Sample Name: S4 Acquired: 5/16/2016 9:59:20 Type: Cal

Method: ICP-THERMO3_6010_200.7WATER_3YLINES(v873) Mode: IR Corr. Factor: 1.000000

User: JYH Custom ID1: Custom ID2: Custom ID3:

Comment:

Elem	Ag3280	Al3082	As1890	B_2496	Ba4554	Be3131	Ca4226	Cd2288
Units	Cts/S	Cts/S	Cts/S	Cts/S	Cts/S	Cts/S	Cts/S	Cts/S
Avg	. 02128	.08597	.00975	.01143	2.7816	. 05138	. 59750	.02751
Stddev	.00012	.00020	.00003	.00002	.0177	.00004	.00451	.00009
%RSD	.54461	.23277	.35018	.17554	.63818	.08650	.75462	.32798
#1	.02123	.08606	.00974	.01144	2.7655	.05142	.59274	.02742
#2	.02141	.08612	.00978	.01141	2.7788	.05138	.59805	.02753
#3	.02120	.08575	.00972	.01143	2.8007	.05133	.60171	.02759
Elem	Co2286	Cr2677	Cu2247	Fe2611	K_7664	Li6707	Mg2790	Mn2576
Units	Cts/S	Cts/S	Cts/S	Cts/S	Cts/S	Cts/S	Cts/S	Cts/S
Avg	. 07957	. 02721	. 06724	.09745	3.7106	1.5245	. 06045	. 15921
Stddev	.00008	.00004	.00007	.00048	.0220	.0095	.00023	.00106
%RSD	.10329	.13827	.10672	.48888	.59273	.62450	.38054	.66707
#1	.07966	.02721	.06724	.09739	3.6896	1.5144	.06060	.15821
#2	.07957	.02724	.06732	.09796	3.7087	1.5260	.06056	.15909
#3	.07949	.02717	.06717	.09701	3.7334	1.5333	.06018	.16033
Elem	Mo2020	Na5895	Ni2316	P_2149	Pb2203	Sb2068	Se1960	Si2124
Units	Cts/S	Cts/S	Cts/S	Cts/S	Cts/S	Cts/S	Cts/S	Cts/S
Avg	. 19641	10.501	.07282	. 13175	. 03280	. 04048	. 00593	. 22276
Stddev	.00033	.058	.00009	.00018	.00008	.00004	.00006	.00006
%RSD	.16646	.55450	.11773	.13395	.25475	.09690	1.0469	.02651
#1	.19675	10.442	.07278	.13195	.03276	.04045	.00595	.22282
#2	.19639	10.503	.07276	.13167	.03290	.04052	.00598	.22274
#3	.19610	10.558	.07291	.13162	.03275	.04048	.00586	.22271
Elem	Sn1899	Sr4077	Ti3372	TI1908	V_2924	Zn2062	Zr3391	
Units	Cts/S	Cts/S	Cts/S	Cts/S	Cts/S	Cts/S	Cts/S	
Avg	. 07058	4.7261	. 15017	.01302	. 05095	. 40129	.00027	
Stddev	.00003	.0281	.00091	.00007	.00017	.00044	.00082	
%RSD	.04266	.59437	.60399	.52297	.33145	.11086	309.23	
#1	.07055	4.7011	.14950	.01309	.05093	.40179	00064	
#2	.07061	4.7206	.14981	.01300	.05113	.40114	.00048	
#3	.07058	4.7565	.15121	.01296	.05080	.40095	.00096	

Approved: May 17, 2016

J'ye 1hu

Sample Name: S4 Acquired: 5/16/2016 9:59:20 Type: Cal

Method: ICP-THERMO3_6010_200.7WATER_3YLINES(v873) Mode: IR Corr. Factor: 1.000000

User: JYH Custom ID1: Custom ID2: Custom ID3:

Comment:

Int. Std.	Y_2243	Y_3600	Y_3774
Units	Cts/S	Cts/S	Cts/S
Avg	13791 .	98209.	4580.2
Stddev	8.	362.	25.1
%RSD	.05611	.36876	.54753
#1	13797.	98413.	4574.3
#2	13783.	97791.	4558.7
#3	13795.	98423.	4607.8

Sample Name: ICV Acquired: 5/16/2016 10:02:59 Type: QC Mode: CONC Method: ICP-THERMO3 6010 200.7WATER 3YLINES(v873) Corr. Factor: 1.000000 User: JYH Custom ID1: Custom ID2: Custom ID3: Comment: Ag3280 Al3082 B_2496 Ba4554 Ca4226 Cd2288 Elem As1890 Be3131 Units ppm ppm ppm ppm ppm ppm ppm ppm .39840 .49045 Avg 9.9336 .39479 .99777 .04916 9.9174 .04983 Stddev .00162 .0174 .00380 .00134 .00388 .00015 .0245 .00020 .24751 %RSD .40607 .17514 .96329 .27416 .38875 .31282 .39623 #1 .39655 .39611 .48961 9.9078 9.9141 .99473 .04922 .04967 #2 .39953 9.9474 .39776 .48974 1.0021 .04928 9.9453 .05005 #3 .39913 9.9394 .39050 .49200 .99644 .04899 9.8990 .04977 Check? Chk Pass Chk Pass Chk Pass Chk Pass Chk Pass Chk Pass Chk Pass Chk Pass Value Range Elem Co2286 Cr2677 Cu2247 Fe2611 K_7664 Li6707 Mg2790 Mn2576 Units ppm ppm ppm ppm ppm ppm ppm ppm .49728 .20016 .49567 .49941 49.825 1.0056 9.9890 Avg 3.9597 .00062 .00093 .00040 .0388 .049 .0010 .0380 .00205 Stddev %RSD .31024 .18820 .08079 .97982 .09903 .10332 .38074 .41191 #1 .20080 .49501 .49985 3.9561 49.768 1.0052 9.9460 .49776 #2 .20013 .49526 .49931 3.9229 49.855 1.0048 10.002 .49905 .19956 .49907 49.851 1.0068 #3 .49673 4.0002 10.018 .49504 Check? Chk Pass Chk Pass Chk Pass Chk Pass Chk Pass Chk Pass Chk Pass Value Range Elem Mo2020 Na5895 Ni2316 P_2149 Pb2203 Sb2068 Se1960 Si2124 Units ppm ppm ppm ppm ppm ppm ppm ppm .98625 49.861 .50258 9.8603 .49989 1.1980 .39804 5.0530 Avg Stddev .00443 .0015 .00263 .0028 .00836 .0059 .079 .00034 %RSD 2.0991 .44892 .15809 .06844 .01530 .52525 .23659 .11627 #1 49.856 9.8620 .50033 .99129 .50231 1.1986 .40766 5.0593 9.8592 .98299 49.942 .50246 1.1949 .39388 5.0477 #2 .49707 #3 .98446 49.785 .50297 9.8598 .50226 1.2005 .39258 5.0520 Check? Chk Pass Chk Pass Chk Pass Chk Pass Chk Pass Chk Pass Chk Pass Value

Approved: May 17, 2016

Range

•		•	: 5/16/2016 :00.7WATE Custor	R_3YLINE	Type: (S(v873) Custom	Mode: C	ONC C	Corr. Factor: 1.000000
Elem Units Avg Stddev %RSD	Sn1899 ppm 1.0093 .0027 .27179	Sr4077 ppm . 99098 .00216 .21815	Ti3372 ppm . 99711 .01044 1.0473	TI1908 ppm . 50433 .00165 .32763	V_2924 ppm . 98542 .00386 .39143	Zn2062 ppm . 99722 .00098 .09832	ppm . 96990 .32651	
#1 #2 #3	1.0123 1.0068 1.0088	.98903 .99331 .99059	.98651 .99744 1.0074	.50476 .50250 .50571	.98341 .98986 .98298	.99770 .99609 .99786	.59288 1.1567 1.1601	
Check ? Value Range	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	
Int. Std. Units Avg Stddev %RSD	Y_2243 Cts/S 14012 . 15. .10957	Y_3600 Cts/S 100530 . 213. .21139	Y_3774 Cts/S 4603.9 31.7 .68782					
#1 #2 #3	14006. 14029. 14000.	100450. 100360. 100770.	4580.4 4639.9 4591.5					

Sample Name: ICB Acquired: 5/16/2016 10:06:26 Type: Blank Method: ICP-THERMO3_6010_200.7WATER_3YLINES(v873) Mode: CONC Corr. Factor: 1.000000 User: JYH Custom ID1: Custom ID2: Custom ID3: Comment:										
Elem	Ag3280	Al3082	As1890	B_2496	Ba4554	Be3131	Ca4226	Cd2288		
Units	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm		
Avg	00169	00772	00026	. 00298	00015	.00001	.00829	. 00013		
Stddev	.00022	.00678	.00093	.00170	.00042	.00004	.00533	.00012		
%RSD	12.796	87.813	362.14	57.012	273.22	423.85	64.374	91.911		
#1	00184	01522	.00077	.00494	00038	.00001	.00745	.00026		
#2	00144	00591	00105	.00195	.00033	00003	.00342	.00007		
#3	00179	00203	00049	.00204	00042	.00005	.01399	.00005		
Check ? High Limit Low Limit	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass		
Elem	Co2286	Cr2677	Cu2247	Fe2611	K_7664	Li6707	Mg2790	Mn2576		
Units	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm		
Avg	00030	. 00010	00096	. 00571	.11679	. 00343	. 05069	00090		
Stddev	.00013	.00020	.00157	.02937	.04356	.00286	.12054	.00433		
%RSD	44.486	192.12	163.11	514.45	37.300	83.585	237.81	481.43		
#1	00038	.00015	00276	.03698	.15244	.00018	.10819	.00353		
#2	00038	00011	.00010	02130	.06823	.00453	.13171	00512		
#3	00015	.00028	00022	.00145	.12970	.00558	08784	00110		
Check ? High Limit Low Limit	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass		
Elem	Mo2020	Na5895	Ni2316	P_2149	Pb2203	Sb2068	Se1960	Si2124		
Units	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm		
Avg	. 00392	. 00948	.00001	00046	.00060	00020	00097	. 00388		
Stddev	.00032	.01387	.00072	.00592	.00169	.00126	.00364	.00125		
%RSD	8.2865	146.39	12812.	1298.7	281.31	643.33	375.56	32.232		
#1	.00357	.00131	00029	.00636	.00250	.00068	.00084	.00270		
#2	.00422	.00163	00052	00339	.00000	.00038	.00141	.00519		
#3	.00395	.02550	.00083	00434	00071	00164	00515	.00376		
Check ? High Limit Low Limit	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass		

Sample Nar Method: ICF User: JYH Comment:				3YLINES(v8	Type: Blank 373) Mc Custom ID3	de: CONC	Corr. Fa	ctor: 1.00000(
Elem Units Avg Stddev %RSD	Sn1899 ppm 00038 .00025 67.429	Sr4077 ppm .00038 .00013 33.148	Ti3372 ppm 00094 .00383 407.40	TI1908 ppm 00125 .00372 297.89	V_2924 ppm .00110 .00116 105.80	Zn2062 ppm .00082 .00007 9.0451	Zr3391 ppm . 03454 .14179 410.54	
#1 #2 #3	00016 00065 00031	.00051 .00036 .00026	.00290 00095 00476	.00268 00470 00173	.00101 00002 .00230	.00077 .00090 .00078	.19745 06107 03276	
Check ? High Limit Low Limit	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	
Int. Std. Units Avg Stddev %RSD	Y_2243 Cts/S 14080. 45. .31634	Y_3600 Cts/S 101500. 408. .40194	Y_3774 Cts/S 4605.2 13.6 .29510					
#1 #2 #3	14119. 14032. 14090.	101280. 101240. 101970.	4593.4 4602.0 4620.0					

•		•			,,	e: Unk Mode: C 1 ID3:	ONC C	Corr. Factor	: 1.00000(
Elem Units Avg Stddev %RSD	Ag3280 ppm . 00776 .00145 18.644	ppm . 15484 .00217	ppm . 00805 .00048	ppm . 08137 .00310	Ba4554 ppm . 00793 .00063 7.9277	Be3131 ppm . 00159 .00004 2.6499	. 38047 .02044	.00100 .00021	
#1 #2 #3	.00925 .00636 .00767	.15694 .15497 .15261			.00819 .00839 .00722	.00163 .00156 .00156		.00124 .00095 .00083	
Check ? High Limit Low Limit	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	
Elem Units Avg Stddev %RSD	Co2286 ppm .00387 .00022 5.8020		ppm . 00408	ppm . 08841 .01026	K_7664 ppm . 90024 .07148 7.9400	Li6707 ppm . 08996 .00098 1.0855	ppm . 46668	Mn2576 ppm .00640 .00271 42.301	
#1 #2 #3	.00361 .00397 .00403		.00275	.08514	.81924 .95446 .92702	.08884 .09063 .09040		.00432 .00542 .00947	
Check ? High Limit Low Limit	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	
Elem Units Avg Stddev %RSD	Mo2020 ppm . 00858 .00017 1.9878	.40363	ppm . 01651 .00005	ppm . 78613 .00458	Pb2203 ppm . 01013 .00343 33.800	Sb2068 ppm . 08301 .00499 6.0142	ppm . 01569 .00609	Si2124 ppm . 84964 .00168 .19764	
#1 #2 #3	.00839 .00864 .00871	.41845 .39063 .40181		.78871	.01402 .00754 .00884	.08871 .07943 .08088	.01037 .02233 .01436	.84959 .85134 .84798	
Check ? High Limit Low Limit	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	

•	nme: LLICV :P-THERMC Custo	•		R_3YLINE		e: Unk Mode: C n ID3:	ONC C	Corr. Factor: 1.000000
Elem Units Avg Stddev %RSD	Sn1899 ppm . 40707 .00221 .54337	Sr4077 ppm . 04084 .00023 .55228	Ti3372 ppm . 02218 .00111 5.0081	TI1908 ppm . 15658 .00326 2.0845		ppm . 01658	ppm 35.461	
#1 #2 #3	.40766 .40893 .40462	.04072 .04070 .04110		.15337 .15990 .15648	.00908 .00845 .00828		35.802 35.395 35.187	
Check ? High Limit Low Limit	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	
Int. Std. Units Avg Stddev %RSD	Y_2243 Cts/S 14131. 27. .18812	Y_3600 Cts/S 101750. 642. .63061	Y_3774 Cts/S 4613.6 2.7 .05824					
#1 #2 #3	14104. 14131. 14157.	101020. 102190. 102060.	4612.8 4611.4 4616.6					

Sample Name: LLICV Acquired: 5/16/2016 10:14:23 Type: Unk Method: ICP-THERMO3_6010_200.7WATER_3YLINES(v873) Mode: CONC Corr. Factor: 1.000000 User: JYH Custom ID1: Custom ID2: Custom ID3: Comment:									
Elem	Ag3280	Al3082	As1890	B_2496	Ba4554	Be3131	Ca4226		
Units	ppm	ppm	ppm	ppm	ppm	ppm	ppm		
Avg	. 00678	. 20524	.01137	. 09969	.01000	.00202	. 47096		
Stddev	.00114	.00302	.00286	.00181	.00063	.00004	.00797		
%RSD	16.826	1.4715	25.173	1.8143	6.3148	1.8186	1.6925		
#1	.00557	.20356	.01157	.09769	.00993	.00198	.46593		
#2	.00695	.20344	.01413	.10120	.01067	.00205	.48015		
#3	.00783	.20873	.00841	.10019	.00941	.00202	.46679		
Check ? High Limit Low Limit	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass		
Elem	Cd2288	Co2286	Cr2677	Cu2247	Fe2611	K_7664	Li6707		
Units	ppm	ppm	ppm	ppm	ppm	ppm	ppm		
Avg	. 00114	.00507	. 00472	. 00511	.09896	1.0526	. 10318		
Stddev	.00014	.00015	.00093	.00062	.01635	.0241	.00257		
%RSD	12.086	2.9763	19.731	12.090	16.520	2.2932	2.4954		
#1	.00104	.00522	.00458	.00578	.08105	1.0652	.10123		
#2	.00130	.00506	.00387	.00501	.10275	1.0679	.10610		
#3	.00110	.00492	.00571	.00455	.11307	1.0248	.10221		
Check ? High Limit Low Limit	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass		
Elem	Mg2790	Mn2576	Mo2020	Na5895	Ni2316	P_2149	Pb2203		
Units	ppm	ppm	ppm	ppm	ppm	ppm	ppm		
Avg	. 60583	.00991	.01004	. 48914	. 02065	. 97481	. 01116		
Stddev	.07456	.00025	.00032	.02409	.00016	.01037	.00367		
%RSD	12.307	2.5420	3.2283	4.9246	.76121	1.0639	32.881		
#1	.68892	.01003	.01036	.49034	.02083	.98653	.00858		
#2	.58380	.00962	.00971	.51261	.02053	.97106	.00954		
#3	.54476	.01008	.01005	.46448	.02059	.96682	.01536		
Check ? High Limit Low Limit	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass		

Sample Nam Method: ICP User: JYH Comment:	ne: LLICV -THERMO3_ Custom I	6010_200.7	5/16/2016 10 WATER_3Y Custom ID2:	LINES(v873	ype: Unk) Mode: tom ID3:	CONC (Corr. Factor:	1.000000
Elem Units Avg Stddev %RSD	Sb2068 ppm . 10079 .00251 2.4864	Se1960 ppm .01822 .00753 41.320	Si2124 ppm 1.0572 .0050 .47013	Sn1899 ppm . 50616 .00084 .16586	Sr4077 ppm . 05082 .00023 .46161	Ti3372 ppm . 02952 .00573 19.392	TI1908 ppm . 19495 .00098 .50439	
#1 #2 #3	.10223 .09790 .10225	.02638 .01155 .01673	1.0626 1.0530 1.0558	.50712 .50580 .50555	.05060 .05107 .05078	.02451 .03576 .02830	.19388 .19518 .19580	
Check ? High Limit Low Limit	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	
Elem Units Avg Stddev %RSD	V_2924 ppm .00960 .00059 6.1825	Zn2062 ppm .02049 .00029 1.4283	Zr3391 ppm F 46.403 .557 1.2008					
#1 #2 #3	.00906 .00951 .01024	.02065 .02066 .02015	45.799 46.515 46.896					
Check ? High Limit Low Limit	Chk Pass	Chk Pass	Chk Fail 36.000 04000					
Int. Std. Units Avg Stddev %RSD	Y_2243 Cts/S 14124. 26. .18519	Y_3600 Cts/S 102080. 221. .21625	Y_3774 Cts/S 4614.9 55.7 1.2080					
#1 #2 #3	14115. 14104. 14154.	101830. 102190. 102230.	4663.4 4627.4 4554.0					

Sample Name: ICSA Acquired: 5/16/2016 10:18:22 Type: QC Method: ICP-THERMO3_6010_200.7WATER_3YLINES(v873) Mode: CONC Corr. Factor: 1.000000 User: JYH Custom ID1: Custom ID2: Custom ID3: Comment:								
Elem	Ag3280	Al3082	As1890	B_2496	Ba4554	Be3131	Ca4226	
Units	ppm	ppm	ppm	ppm	ppm	ppm	ppm	
Avg	. 00165	268.23	00077	. 02259	00058	00005	245.50	
Stddev	.00101	.41	.00336	.00111	.00013	.00004	1.12	
%RSD	61.344	.15155	439.64	4.9216	23.217	66.459	.45512	
#1	.00235	268.06	00344	.02171	00043	00009	244.22	
#2	.00049	268.69	00187	.02384	00061	00005	246.30	
#3	.00211	267.93	.00301	.02221	00070	00002	245.97	
Check ? High Limit Low Limit	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	
Elem	Cd2288	Co2286	Cr2677	Cu2247	Fe2611	K_7664	Li6707	
Units	ppm	ppm	ppm	ppm	ppm	ppm	ppm	
Avg	. 00073	00145	00105	00332	97.859	.11549	. 01861	
Stddev	.00016	.00064	.00069	.00091	.658	.04460	.00184	
%RSD	22.154	44.406	66.067	27.413	.67210	38.620	9.8936	
#1	.00078	00219	00162	00360	97.103	.16673	.01656	
#2	.00054	00103	00028	00231	98.301	.08532	.02012	
#3	.00085	00113	00125	00407	98.172	.09443	.01915	
Check ? High Limit Low Limit	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	
Elem	Mg2790	Mn2576	Mo2020	Na5895	Ni2316	P_2149	Pb2203	
Units	ppm	ppm	ppm	ppm	ppm	ppm	ppm	
Avg	249.80	.00010	00045	. 01946	00224	. 05581	00049	
Stddev	1.66	.00070	.00043	.03468	.00115	.00154	.00133	
%RSD	.66400	669.78	96.038	178.24	51.482	2.7585	270.98	
#1	247.89	.00056	00064	01980	00356	.05670	00168	
#2	250.61	.00045	00076	.03224	00143	.05403	.00095	
#3	250.90	00070	.00004	.04593	00173	.05670	00075	
Check ? High Limit Low Limit	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	

Sample Name Method: ICP-T User: JYH Comment:		010_200.7W	/2016 10:18:2 ATER_3YLIN stom ID2:		Mode: CON	C Corr. F	Factor: 1.00000(
Elem Units Avg Stddev %RSD	Sb2068 ppm 01098 .00397 36.120	Se1960 ppm 00535 .00919 171.61	Si2124 ppm .21854 .00066 .30034	Sn1899 ppm 00018 .00040 221.76	Sr4077 ppm . 00016 .00026 160.65	Ti3372 ppm . 00595 .00575 96.655	TI1908 ppm 00240 .00395 164.31
#1 #2 #3	01526 01024 00743	.00523 01132 00997	.21822 .21929 .21810	00040 .00028 00044	00005 .00045 .00008	.01031 00057 .00809	00155 .00105 00671
Check ? High Limit Low Limit	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass
Elem Units Avg Stddev %RSD	V_2924 ppm . 00073 .00057 77.232	Zn2062 ppm . 00487 .00021 4.3556	Zr3391 ppm F -2.6844 .1750 6.5184				
#1 #2 #3	.00091 .00118 .00010	.00465 .00507 .00488	-2.7073 -2.4991 -2.8468				
Check ? High Limit Low Limit	Chk Pass	Chk Pass	Chk Fail .02000 02000				
Int. Std. Units Avg Stddev %RSD	Y_2243 Cts/S 13244. 16. .11922	Y_3600 Cts/S 94674. 37. .03893	Y_3774 Cts/S 4528.2 43.2 .95506				
#1 #2 #3	13255. 13226. 13252.	94716. 94660. 94646.	4575.8 4517.7 4491.2				

Sample Name: ICSAB Acquired: 5/16/2016 10:22:17 Type: QC Method: ICP-THERMO3_6010_200.7WATER_3YLINES(v873) Mode: CONC Corr. Factor: 1.000000 User: JYH Custom ID1: Custom ID2: Custom ID3: Comment:								
Elem	Ag3280	Al3082	As1890	B_2496	Ba4554	Be3131	Ca4226	
Units	ppm	ppm	ppm	ppm	ppm	ppm	ppm	
Avg	. 53051	268.56	. 24912	00003	. 25003	.25387	242.68	
Stddev	.00180	.19	.00532	.00322	.00128	.00033	.46	
%RSD	.34022	.06898	2.1342	12839.	.51042	.12947	.18915	
#1	.53216	268.77	.25397	00363	.25148	.25425	243.18	
#2	.53080	268.43	.24997	.00099	.24907	.25369	242.28	
#3	.52858	268.48	.24343	.00257	.24953	.25367	242.59	
Check ? High Limit Low Limit	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	
Elem	Cd2288	Co2286	Cr2677	Cu2247	Fe2611	K_7664	Li6707	
Units	ppm	ppm	ppm	ppm	ppm	ppm	ppm	
Avg	. 51325	. 23955	. 24760	. 24831	96.453	5.2995	. 01420	
Stddev	.00107	.00061	.00159	.00055	.237	.1183	.00336	
%RSD	.20793	.25589	.64032	.22307	.24552	2.2331	23.687	
#1	.51393	.23989	.24890	.24817	96.624	5.3622	.01540	
#2	.51381	.23992	.24806	.24892	96.182	5.1630	.01040	
#3	.51202	.23884	.24583	.24784	96.551	5.3732	.01680	
Check ? High Limit Low Limit	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	
Elem	Mg2790	Mn2576	Mo2020	Na5895	Ni2316	P_2149	Pb2203	
Units	ppm	ppm	ppm	ppm	ppm	ppm	ppm	
Avg	246.38	. 24793	00084	5.2291	. 47979	. 04733	. 49534	
Stddev	.80	.00347	.00070	.0171	.00141	.00709	.00146	
%RSD	.32646	1.3979	83.476	.32664	.29451	14.972	.29559	
#1	246.99	.24540	00141	5.2244	.47985	.04445	.49515	
#2	245.47	.24650	00105	5.2150	.48117	.04214	.49689	
#3	246.69	.25188	00006	5.2481	.47835	.05541	.49398	
Check ? High Limit Low Limit	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	

Sample Name Method: ICP-T User: JYH Comment:)10_200.7W <i>A</i>	6/2016 10:22 ATER_3YLINI stom ID2:		Mode: CON	C Corr. F	Factor: 1.000000
Elem Units Avg Stddev %RSD	Sb2068 ppm . 49530 .00471 .95178	Se1960 ppm . 24351 .00443 1.8189	Si2124 ppm 02075 .00250 12.052	Sn1899 ppm 00054 .00061 112.58	Sr4077 ppm . 00051 .00013 25.451	Ti3372 ppm . 00210 .00149 70.697	TI1908 ppm . 45756 .00372 .81307
#1 #2 #3	.50075 .49268 .49249	.24468 .24723 .23861	02112 01809 02305	00046 00119 .00002	.00063 .00053 .00037	.00375 .00085 .00170	.45906 .46030 .45333
Check ? High Limit Low Limit	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass
Elem Units Avg Stddev %RSD	V_2924 ppm . 25677 .00128 .49896	Zn2062 ppm . 48794 .00116 .23778	Zr3391 ppm F -3.0469 .3892 12.775				
#1 #2 #3	.25679 .25548 .25804	.48774 .48919 .48690	-3.3196 -3.2201 -2.6011				
Check ? High Limit Low Limit	Chk Pass	Chk Pass	Chk Fail .02500 02500				
Int. Std. Units Avg Stddev %RSD	Y_2243 Cts/S 13171. 12. .09008	Y_3600 Cts/S 93862. 342. .36435	Y_3774 Cts/S 4564.6 30.9 .67710				
#1 #2 #3	13172. 13159. 13183.	93479. 94137. 93969.	4535.3 4561.6 4596.9				

Sample Name: CCV Acquired: 5/16/2016 10:26:03 Type: QC Method: ICP-THERMO3_6010_200.7WATER_3YLINES(v873) Mode: CONC Corr. Factor: 1.000000 User: JYH Custom ID1: Custom ID2: Custom ID3: Comment:									
Elem	Ag3280	Al3082	As1890	B_2496	Ba4554	Be3131	Ca4226		
Units	ppm	ppm	ppm	ppm	ppm	ppm	ppm		
Avg	. 39917	10.005	. 40022	. 49694	1.0040	. 05005	10.083		
Stddev	.00174	.020	.00278	.00243	.0035	.00030	.012		
%RSD	.43713	.20454	.69447	.48838	.34480	.59544	.12042		
#1	.40097	10.023	.39792	.49416	1.0071	.05000	10.073		
#2	.39906	10.010	.40331	.49800	1.0003	.05037	10.079		
#3	.39748	9.9831	.39942	.49865	1.0046	.04978	10.096		
Check ? Value Range	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass		
Elem	Cd2288	Co2286	Cr2677	Cu2247	Fe2611	K_7664	Li6707		
Units	ppm	ppm	ppm	ppm	ppm	ppm	ppm		
Avg	. 05023	. 20200	. 50110	. 50580	4.0440	50.302	1.0070		
Stddev	.00024	.00077	.00220	.00213	.0121	.090	.0032		
%RSD	.48284	.38185	.43963	.42106	.29821	.17976	.31375		
#1	.04995	.20254	.49871	.50391	4.0537	50.397	1.0100		
#2	.05035	.20112	.50305	.50539	4.0478	50.217	1.0037		
#3	.05038	.20235	.50154	.50811	4.0305	50.292	1.0074		
Check ? Value Range	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass		
Elem	Mg2790	Mn2576	Mo2020	Na5895	Ni2316	P_2149	Pb2203		
Units	ppm	ppm	ppm	ppm	ppm	ppm	ppm		
Avg	10.198	. 50392	1.0002	50.558	. 50668	9.9743	. 50880		
Stddev	.069	.00374	.0021	.091	.00148	.0275	.00638		
%RSD	.67587	.74179	.20568	.18011	.29172	.27579	1.2539		
#1	10.122	.50012	1.0022	50.652	.50519	9.9536	.50500		
#2	10.216	.50759	.99811	50.470	.50670	9.9638	.50523		
#3	10.256	.50405	1.0002	50.551	.50815	10.006	.51617		
Check ? Value Range	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass		

Sample Nam Method: ICP User: JYH Comment:		_		LINES(v873	pe: QC) Mode: stom ID3:	CONC (Corr. Factor: 1.	.000000
Elem Units Avg Stddev %RSD	Sb2068 ppm 1.1950 .0055 .46255	Se1960 ppm . 40108 .00458 1.1422	Si2124 ppm 5.0470 .0100 .19898	Sn1899 ppm 1.0128 .0023 .22319	Sr4077 ppm 1.0066 .0014 .13982	Ti3372 ppm 1.0090 .0058 .57076	TI1908 ppm . 50844 .00245 .48250	
#1 #2 #3	1.1899 1.2009 1.1944	.40507 .39608 .40210	5.0410 5.0413 5.0586	1.0135 1.0102 1.0145	1.0077 1.0071 1.0050	1.0037 1.0082 1.0152	.50891 .51063 .50579	
Check ? Value Range	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	
Elem Units Avg Stddev %RSD	V_2924 ppm . 99408 .00203 .20378	Zn2062 ppm 1.0125 .0015 .14474	Zr3391 ppm F 2.0790 .3002 14.437					
#1 #2 #3	.99276 .99641 .99307	1.0122 1.0112 1.0141	2.4246 1.9292 1.8833					
Check ? Value Range	Chk Pass	Chk Pass	Chk Fail 1.0000 10.000%					
Int. Std. Units Avg Stddev %RSD	Y_2243 Cts/S 13878. 12. .08578	Y_3600 Cts/S 99317. 338. .34067	Y_3774 Cts/S 4552.5 6.4 .14088					
#1 #2 #3	13892. 13871. 13871.	99595. 98941. 99416.	4545.5 4553.9 4558.1					

Sample Name: CCB Acquired: 5/16/2016 10:29:41 Type: Blank Method: ICP-THERMO3_6010_200.7WATER_3YLINES(v873) Mode: CONC Corr. Factor: 1.000000 User: JYH Custom ID1: Custom ID2: Custom ID3: Comment:								
Elem	Ag3280	Al3082	As1890	B_2496	Ba4554	Be3131	Ca4226	Cd2288
Units	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm
Avg	00170	. 00100	. 00284	. 00061	00046	.00002	00292	. 00005
Stddev	.00177	.00627	.00077	.00388	.00028	.00003	.01119	.00017
%RSD	103.54	628.60	27.258	635.37	60.323	125.53	383.52	361.28
#1	00097	.00165	.00340	.00506	00023	.00001	01517	00001
#2	00043	.00691	.00317	00117	00039	.00000	00031	00008
#3	00372	00557	.00196	00206	00077	.00006	.00674	.00024
Check ? High Limit Low Limit	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass
Elem	Co2286	Cr2677	Cu2247	Fe2611	K_7664	Li6707	Mg2790	Mn2576
Units	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm
Avg	00022	00018	.00006	. 00640	. 13314	. 00243	00140	00281
Stddev	.00027	.00076	.00111	.00929	.02356	.00286	.05362	.00171
%RSD	124.01	425.08	1961.7	145.12	17.698	117.51	3843.4	60.710
#1	.00004	.00068	.00107	00431	.10880	.00436	00818	00360
#2	00020	00049	00113	.01233	.13477	.00379	05130	00085
#3	00050	00073	.00022	.01118	.15584	00085	.05530	00397
Check ? High Limit Low Limit	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass
Elem	Mo2020	Na5895	Ni2316	P_2149	Pb2203	Sb2068	Se1960	Si2124
Units	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm
Avg	. 00348	02307	00002	. 00638	. 00136	. 00253	. 00208	. 00188
Stddev	.00046	.03493	.00084	.00222	.00396	.00206	.00399	.00077
%RSD	13.291	151.41	3879.4	34.798	290.55	81.465	192.31	41.039
#1	.00342	01871	00025	.00612	00262	.00338	.00617	.00104
#2	.00397	05999	00073	.00430	.00141	.00402	00181	.00203
#3	.00305	.00947	.00091	.00872	.00530	.00018	.00186	.00256
Check ? High Limit Low Limit	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass

Sample Name: CCB Acquired: 5/16/2016 10:29:41 Type: Blank Method: ICP-THERMO3_6010_200.7WATER_3YLINES(v873) Mode: CONC Corr. Factor: 1.000 User: JYH Custom ID1: Custom ID2: Custom ID3: Comment:)00000	
Elem Units Avg Stddev %RSD	Sn1899 ppm 00023 .00039 164.51	Sr4077 ppm 00011 .00043 400.04	Ti3372 ppm 00168 .00018 10.845	TI1908 ppm . 00058 .00575 992.60	V_2924 ppm . 00109 .00082 75.119	Zn2062 ppm .00015 .00006 36.748	Zr3391 ppm 02230 .31041 1391.7	
#1 #2 #3	.00003 00006 00068	00057 00002 .00027	00153 00161 00188	.00199 .00549 00574	.00131 .00178 .00018	.00021 .00013 .00011	.30404 05710 31385	
Check ? High Limit Low Limit	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	
Int. Std. Units Avg Stddev %RSD	Y_2243 Cts/S 13993. 45. .32060	Y_3600 Cts/S 100980. 185. .18350	Y_3774 Cts/S 4579.4 66.5 1.4517					
#1 #2 #3	13941. 14023. 14015.	101190. 100840. 100910.	4620.6 4502.7 4614.9					

Sample Name: PBW 13 Acquired: 5/16/2016 10:33:42 Type: Unk Method: ICP-THERMO3 6010 200.7WATER 3YLINES(v873) Mode: CONC Corr. Factor: 1.000000 User: JYH Custom ID1: Custom ID2: Custom ID3: Comment: WG568333-02 Al3082 As1890 B 2496 Ba4554 Be3131 Ca4226 Cd2288 Elem Ag3280 Units ppm ppm ppm ppm ppm ppm ppm ppm -.00009 -.01094 Avg -.00203 -.00754-.00013 -.00015 -.00009 .00002 Stddev .00083 .00424 .00492 .00349 .00020 .00003 .02529 .00047 56.278 2256.1 %RSD 41.025 3835.7 226.92 115.36 231.11 500.25 #1 -.00282 -.00277 -.00307 .00248 .00014 .00000 -.00002 -.01553 #2 -.00116 -.01089 .00556 .00117 -.00024 .00001 .01633 -.00059 #3 -.00210 -.00897 -.00287 -.00411 -.00016 .00005 -.03362 .00034 Check? Chk Pass Chk Pass Chk Pass Chk Pass Chk Pass Chk Pass Chk Pass Chk Pass **High Limit** Low Limit Elem Co2286 Cr2677 Cu2247 Fe2611 K_7664 Li6707 Mg2790 Mn2576 Units ppm ppm ppm ppm ppm ppm ppm ppm -.00038 .00025 -.00014 .01665 .00461 .01730 .00271 Avg .11401 .00008 .00051 .00075 .03536 .00079 Stddev .01701 .04798 .00049 %RSD 22.199 202.06 550.34 212.31 14.924 17.249 277.29 17.961 #1 -.00048 -.00033 .00073 -.02166 .10820 .00445 .05684 .00281 #2 -.00033 .00055 -.00056 .04803 .10066 .00547 .03113 .00314 .00053 -.00058 .00390 -.03607 #3 -.00033 .02358 .13317 .00218 Check? Chk Pass Chk Pass Chk Pass Chk Pass Chk Pass Chk Pass Chk Pass High Limit Low Limit Elem Mo2020 Na5895 Ni2316 P_2149 Pb2203 Sb2068 Se1960 Si2124 Units ppm ppm ppm ppm ppm ppm ppm ppm .00096 .00402 -.00058 -.00822 -.00035 -.00147 .00100 -.01247 Avg Stddev .00016 .00528 .00154 .00781 .00246 .00401 .00637 .00099 636.03 7.9638 %RSD 16.901 131.41 265.31 94.927 700.93 273.55 #1 -.01536 -.00231 .00107 .00395 -.00010 -.00381 .00824 -.01243

Approved: May 17, 2016

.00317

-.00376

Chk Pass

-.00147

-.00376

Chk Pass

-.01149

-.01348

Chk Pass

.00078

.00104

#2

#3

Check?

High Limit Low Limit .00934

-.00123

-.00230

.00066

Chk Pass Chk Pass Chk Pass Chk Pass

.00011

-.00942

.00242

-.00116

Sample Name: PBW 13 Acquired: 5/16/2016 10:33:42 Type: Unk Method: ICP-THERMO3_6010_200.7WATER_3YLINES(v873) Mode: CONC Corr. Factor: 1.000000 User: JYH Custom ID1: Custom ID2: Custom ID3: Comment: WG568333-02 Elem Sn1899 Sr4077 Ti3372 TI1908 V_2924 Zn2062 Zr3391 Units ppm ppm ppm ppm ppm ppm ppm -.00107 .00046 -.00338 -.00306 .00077 .00093 -.03417 Avg Stddev .00028 .00041 .00477 .00028 .00057 .00011 .11027 141.03 9.1707 322.66 %RSD 26.116 87.471 74.893 11.761 #1 -.00086 .00000 .00037 -.00282 .00109 .00099 .06949 #2 -.00096 .00076 -.00875 -.00298 .00111 .00080 -.02198 #3 -.00139 .00063 -.00177 -.00337 .00010 .00100 -.15003 Check? Chk Pass Chk Pass Chk Pass Chk Pass Chk Pass Chk Pass High Limit Low Limit Y_3774 Int. Std. Y_2243 Y_3600 Units Cts/S Cts/S Cts/S 13808. 100490. 4474.1 Avg Stddev 6. 444. 16.8

Approved: May 17, 2016

%RSD

#1

#2

#3

.04704

13811.

13813.

13801.

.44164

100250.

101000.

100210.

.37454

4480.2

4486.9

4455.1

Sample Name: LCSW 13 Acquired: 5/16/2016 10:37:43 Type: Unk

Method: ICP-THERMO3_6010_200.7WATER_3YLINES(v873) Mode: CONC Corr. Factor: 1.000000

User: JYH Custom ID1: Custom ID2: Custom ID3:

Comment: WG568333-03

Elem	Ag3280	Al3082	As1890	B_2496	Ba4554	Be3131	Ca4226	Cd2288
Units	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm
Avg	.20395	5.0541	.19942	.98997	.51715	.02504	5.1435	.02547
Stddev	.00304	.0201	.00251	.00180	.00132	.00015	.0522	.00027
%RSD	1.4884	.39759	1.2583	.18213	.25594	.59161	1.0158	1.0481
#1	.20732	5.0675	.19703	.98938	.51868	.02518	5.1446	.02548
#2	.20143	5.0638	.19920	.98853	.51635	.02505	5.1952	.02574
#3	.20309	5.0310	.20203	.99199	.51642	.02488	5.0908	.02520

Check? Chk Pass Chk P

Elem	Co2286	Cr2677	Cu2247	Fe2611	K_7664	Li6707	Mg2790	Mn2576
Units	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm
Avg	.10341	. 25700	. 25843	2.0829	26.031	. 52337	5.1544	. 25831
Stddev	.00058	.00149	.00053	.0198	.086	.00451	.1021	.00151
%RSD	.56395	.57856	.20490	.95213	.32898	.86201	1.9811	.58633
#1	.10409	.25856	.25881	2.0709	26.092	.52722	5.1334	.26002
#2	.10305	.25686	.25783	2.1058	26.067	.51840	5.0645	.25712
#3	.10311	.25559	.25866	2.0719	25.933	.52448	5.2654	.25780

Check? Chk Pass Chk P

Elem Units Avg Stddev %RSD	Mo2020 ppm . 52034 .00219 .42031	Na5895 ppm 26.048 .036 .13875	Ni2316 ppm . 26223 .00027 .10394	P_2149 ppm 4.9780 .0094 .18900	Pb2203 ppm . 26179 .00263 1.0032	Sb2068 ppm . 61310 .00482 .78667	Se1960 ppm .19562 .00504 2.5741	Si2124 ppm 2.6374 .0105 .39677
#1	.52193	26.029	.26224	4.9886	.26015	.61797	.19762	2.6448
#2	.51784	26.089	.26249	4.9745	.26482	.60833	.19935	2.6254
#3	.52124	26.024	.26195	4.9708	.26041	.61299	.18989	2.6420

Check? Chk Pass Chk P

Sample Name: LCSW 13 Acquired: 5/16/2016 10:37:43 Type: Unk

Method: ICP-THERMO3_6010_200.7WATER_3YLINES(v873) Mode: CONC Corr. Factor: 1.000000

User: JYH Custom ID1: Custom ID2: Custom ID3:

Comment: WG568333-03

Elem	Sn1899	Sr4077	Ti3372	TI1908	V_2924	Zn2062	Zr3391
Units	ppm	ppm	ppm	ppm	ppm	ppm	ppm
Avg	.51772	.51887	.51725	.25824	.51396	.51163	.56045
Stddev	.00128	.00097	.00968	.00180	.00085	.00067	.16050
%RSD	.24740	.18720	1.8705	.69877	.16632	.13146	28.637
#1	.51919	.51999	.50898	.25810	.51441	.51224	.72779
#2	.51710	.51837	.52789	.26011	.51450	.51091	.40780
#3	.51686	.51825	.51488	.25651	.51298	.51176	.54576

Check? Chk Pass Chk P

Low Limit

Int. Std.	Y_2243	Y_3600	Y_3774
Units	Cts/S	Cts/S	Cts/S
Avg	13798.	99072 .	4568.5
Stddev	67.	350.	17.2
%RSD	.48247	.35372	.37650
#1	13739.	99151.	4556.6
#2	13870.	98689.	4560.7
#3	13783.	99376.	4588.2

Sample Name: F BLANK Acquired: 5/16/2016 10:46:17 Type: Unk Method: ICP-THERMO3 6010 200.7WATER 3YLINES(v873) Mode: CONC Corr. Factor: 1.000000 User: JYH Custom ID1: Custom ID2: Custom ID3: Comment: WG568186-01 Al3082 As1890 B 2496 Ba4554 Ca4226 Cd2288 Elem Ag3280 Be3131 Units ppm ppm ppm ppm ppm ppm ppm ppm Avg -.00204 .00248 .00100 .00180 .00011 .00006 -.00576 .00029 Stddev .00097 .00487 .00279 .00009 .00075 .00001 .04116 .00022 280.47 %RSD 47.592 196.39 4.9044 679.71 9.8625 714.84 76.296 #1 -.00310 -.00307 .00095 .00178 -.00002 .00005 -.03776 .00041 #2 -.00182 .00605 -.00177 .00190 .00091 .00006 .04067 .00042 -.00120 #3 .00445 .00381 .00172 -.00056 .00006 -.02019 .00003 Check? Chk Pass Chk Pass Chk Pass Chk Pass Chk Pass Chk Pass Chk Pass **High Limit** Low Limit Elem Co2286 Cr2677 Cu2247 Fe2611 K_7664 Li6707 Mg2790 Mn2576 Units ppm ppm ppm ppm ppm ppm ppm ppm -.00013 .00017 .00380 -.00008 Avg .00126 .00875 .18724 .15340 .00032 .00117 .00190 .04732 .00074 Stddev .00038 .00823 .06481 %RSD 279.23 25.535 677.65 94.041 34.615 49.916 30.849 929.52 #1 .00011 .00105 .00095 -.00044 .20128 .00527 .09888 -.00076 #2 -.00057.00164 -.00118 .01543 .11656 .00448 .17742 -.00018.00075 .00166 #3 .00005 .00111 .01125 .24389 .18389 .00070 Check? Chk Pass Chk Pass Chk Pass Chk Pass Chk Pass Chk Pass Chk Pass High Limit Low Limit Elem Mo2020 Na5895 Ni2316 P_2149 Pb2203 Sb2068 Se1960 Si2124 Units ppm ppm ppm ppm ppm ppm ppm ppm .00044 130.09 -.00016 -.00957 -.00037 -.00207 .00221 -.01027 Avg Stddev .00040 .00027 .00626 .00170 .00156 .00358 .32 .00193 92.452 %RSD .24450 170.40 65.369 460.74 75.118 162.32 18.815 #1 .00087 130.14 .00013 -.01054 .00118 -.00032 -.00085 -.01240 .00038 130.38 -.00041 -.01529 -.00220 -.00262 .00133 -.00864 #2 #3 .00006 129.75 -.00020 -.00289 -.00009 -.00329 .00614 -.00976 Check? Chk Pass Chk Pass Chk Pass Chk Pass Chk Pass Chk Pass **Chk Pass** High Limit

Approved: May 17, 2016

Low Limit

Sample Name: F BLANK Acquired: 5/16/2016 10:46:17 Type: Unk Method: ICP-THERMO3_6010_200.7WATER_3YLINES(v873) Mode: CONC Corr. Factor: 1.000000 User: JYH Custom ID1: Custom ID2: Custom ID3: Comment: WG568186-01 Elem Sn1899 Sr4077 Ti3372 TI1908 V_2924 Zn2062 Zr3391 Units ppm ppm ppm ppm ppm ppm ppm -.00046 .00018 .00135 -.00136 .00058 .00335 -.00009 Avg Stddev .00082 .00020 .00429 .00048 .00015 .00020 .23823 316.70 35.734 5.9730 %RSD 179.20 107.48 25.952 260370. #1 -.00078 .00028 -.00062 -.00191 .00071 .00322 -.13513 #2 .00047 .00031 .00627 -.00113 .00042 .00326 -.14013 #3 -.00107 -.00004 -.00159 -.00103 .00062 .00359 .27498 Check? Chk Pass Chk Pass Chk Pass Chk Pass Chk Pass Chk Pass High Limit Low Limit Y_3774 Int. Std. Y_2243 Y_3600 Units Cts/S Cts/S Cts/S 13797. 99107. 4570.5 Avg Stddev 30. 181. 58.1 %RSD .21947 .18244 1.2703

Approved: May 17, 2016

#1

#2

#3

13763.

13820.

13808.

99065.

98950.

99305.

4521.0

4556.1

4634.4

Sample Name: F BLANK Acquired: 5/16/2016 10:50:16 Type: Unk Method: ICP-THERMO3 6010 200.7WATER 3YLINES(v873) Mode: CONC Corr. Factor: 1.000000 User: JYH Custom ID1: Custom ID2: Custom ID3: Comment: WG568186-02 Al3082 As1890 B 2496 Ba4554 Ca4226 Cd2288 Elem Ag3280 Be3131 Units ppm ppm ppm ppm ppm ppm ppm ppm .00425 .40990 Avg -.00319 -.00465 -.00171 .09279 -.00003.00020 Stddev .00186 .00774 .00173 .00186 .00105 .00002 .00966 .00010 %RSD 58.439 166.46 100.98 43.787 1.1316 73.854 2.3557 50.367 #1 -.00510 -.00277 -.00183 .00639 .40912 .00031 .09196 -.00001 #2 -.00138 -.01315 -.00337 .00307 .09397 -.00002 .40067 .00012 #3 -.00309 .00198 .00008 .00328 .09244 -.00005 .41993 .00017 Check? Chk Pass Chk Pass Chk Pass Chk Pass Chk Pass Chk Pass Chk Pass High Limit Low Limit Elem Co2286 Cr2677 Cu2247 Fe2611 K_7664 Li6707 Mg2790 Mn2576 Units ppm ppm ppm ppm ppm ppm ppm ppm -.00043 .00003 .01054 .00688 -.00201 Avg .00019 .13305 .16709 .00030 .00026 .00083 .00230 Stddev .02562 .07264 .07657 .00376 %RSD 70.092 135.37 2373.7 242.97 54.601 33.415 45.826 187.40 #1 -.00054 .00013 .00079 -.01875 .18234 .00601 .13036 -.00616 #2 -.00065.00048 .00016 .02873 .04962 .00949 .25510 .00116 -.00003 -.00085 .00515 #3 -.00009 .02165 .16718 .11581 -.00102 Check? Chk Pass Chk Pass Chk Pass Chk Pass Chk Pass Chk Pass Chk Pass High Limit Low Limit Elem Mo2020 Na5895 Ni2316 P_2149 Pb2203 Sb2068 Se1960 Si2124 Units ppm ppm ppm ppm ppm ppm ppm ppm .00002 1.7821 .00048 -.01121 -.00218 -.00220 .00297 -.00706 Avg Stddev .00048 .00007 .00244 .00200 .00571 .0030 .00175 .00111 .17051 14.255 %RSD 2127.7 21.753 80.396 91.190 192.39 15.680 #1 -.01254 .00031 1.7810 .00041 -.00021 -.00427 -.00283 -.00600 -.00053 1.7798 .00054 -.00840 -.00358 -.00204 .00859 #2 -.00821 1.7855 #3 .00029 .00051 -.01269 -.00275 -.00028 .00315 -.00697 Check? Chk Pass Chk Pass Chk Pass Chk Pass Chk Pass Chk Pass **Chk Pass** High Limit

Approved: May 17, 2016

Low Limit

Sample Name: F BLANK Acquired: 5/16/2016 10:50:16 Type: Unk Method: ICP-THERMO3_6010_200.7WATER_3YLINES(v873) Mode: CONC Corr. Factor: 1.000000								
			_	•	•	de: CONC	Corr. Factor: 1.000000	
User: JYH	Custom		Custom II)2: (Custom ID3			
Comment: \	/VG568186-U)2						
Elem	Sn1899	Sr4077	Ti3372	TI1908	V_2924	Zn2062	Zr3391	
Units Avg	ppm 00092	ppm . 08372	ppm 00019	ppm . 00004	ppm . 00099	ppm . 00324	ppm . 23621	
Stddev	.00064	.00100	.00043	.00314	.00040	.00324	.31679	
%RSD	69.668	1.1986	230.43	8626.7	40.713	3.0224	134.11	
#1	00145	.08256	.00000	00012	.00059	.00324	.36467	
#2	00111	.08423	.00012	00302	.00098	.00334		
#3	00021	.08436	00068	.00325	.00140	.00315	12464	
Check ? High Limit Low Limit	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	
Int. Std. Units	Y_2243 Cts/S	Y_3600 Cts/S	Y_3774 Cts/S					
Avg Stddev	14208 . 31.	103600. 223.	4683.1 26.5					
%RSD	.21851	.21528	.56596					
#1	14236.	103430.	4658.5					
#2	14175.	103510.	4711.1					
#3	14215.	103850.	4679.6					

Sample Name: L1605043405 Acquired: 5/16/2016 10:54:15 Type: Unk

Method: ICP-THERMO3_6010_200.7WATER_3YLINES(v873) Mode: CONC Corr. Factor: 1.000000

User: JYH Custom ID1: Custom ID2: Custom ID3:

Comment: WG568333-01

Elem	Ag3280	Al3082	As1890	B_2496	Ba4554	Be3131	Ca4226
Units	ppm	ppm	ppm	ppm	ppm	ppm	ppm
Avg	00269	.01249	.00164	. 26535	.03096	.00002	4.2344
Stddev	.00096	.00616	.00357	.00142	.00046	.00002	.0219
%RSD	35.761	49.286	217.44	.53339	1.5005	83.568	.51650
#1	00165	.00952	.00154	.26420	.03078	.00000	4.2538
#2	00355	.01956	00187	.26693	.03149	.00004	4.2107
#3	00286	.00838	.00526	.26492	.03062	.00002	4.2388
Check ? High Limit Low Limit	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass
Elem	Cd2288	Co2286	Cr2677	Cu2247	Fe2611	K_7664	Li6707
Units	ppm	ppm	ppm	ppm	ppm	ppm	ppm
Avg	. 00008	.00119	.00085	. 00177	. 10523	2.0745	. 02357
Stddev	.00017	.00032	.00116	.00038	.02658	.0416	.00284
%RSD	219.13	26.536	136.73	21.652	25.263	2.0058	12.030
#1	.00008	.00085	.00165	.00205	.10711	2.1004	.02044
#2	00009	.00126	.00138	.00193	.07775	2.0966	.02431
#3	.00025	.00148	00048	.00133	.13082	2.0265	.02596
Check ? High Limit Low Limit	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass
Elem	Mg2790	Mn2576	Mo2020	Na5895	Ni2316	P_2149	Pb2203
Units	ppm	ppm	ppm	ppm	ppm	ppm	ppm
Avg	1.1016	. 02268	. 04080	F 462.14	.08284	. 00556	. 00161
Stddev	.0590	.00185	.00022	1.92	.00039	.00251	.00248
%RSD	5.3564	8.1607	.54775	.41623	.47236	45.166	154.13
#1	1.1386	.02258	.04104	462.87	.08312	.00266	.00271
#2	1.0335	.02088	.04076	463.60	.08239	.00712	00123
#3	1.1326	.02457	.04060	459.96	.08301	.00690	.00335
Check ? High Limit Low Limit	Chk Pass	Chk Pass	Chk Pass	Chk Fail 270.00 50000	Chk Pass	Chk Pass	Chk Pass

Approved: May 17, 2016

J'ye 1hu

Sample Name: L1605043405 Acquired: 5/16/2016 10:54:15 Type: Unk Method: ICP-THERMO3_6010_200.7WATER_3YLINES(v873) Mode: CONC Corr. Factor: 1.000000 User: JYH Custom ID1: Custom ID2: Custom ID3: Comment: WG568333-01 Elem Sb2068 Se1960 Si2124 Sn1899 Sr4077 Ti3372 TI1908 Units ppm ppm ppm ppm ppm ppm ppm .27647 -.00168 1.9785 -.00076 -.00259 -.00179 Avg -.00219 Stddev .00205 .00576 .0021 .00100 .00100 .00391 .00265 150.63 %RSD 93.839 341.87 .10377 130.81 .36339 147.46 #1 .00018 -.00219 1.9808 -.00180 .27531 -.00707 -.00399 #2 -.00347 -.00717 1.9769 -.00068 .27702 -.00082 -.00254 #3 -.00327 .00431 1.9778 .00019 .27708 .00011 .00114 **Chk Pass** Check? Chk Pass Chk Pass Chk Pass Chk Pass Chk Pass **Chk Pass** High Limit Low Limit Elem V_2924 Zn2062 Zr3391 ppm Units ppm ppm .00033 .00212 .46790 Avg .00095 .00009 .26482 Stddev %RSD 289.99 4.0925 56.598 #1 .00077 .00206 .76564 #2 -.00076 .00222 .25865 #3 .00209 .37942 .00097 Check? Chk Pass Chk Pass **Chk Pass** High Limit Low Limit Int. Std. Y_2243 Y_3600 Y_3774 Units Cts/S Cts/S Cts/S 13410. 94619. 4527.2 Avg Stddev 28. 231. 24.7 .20899 .24455 .54502 %RSD #1 13381. 94361. 4513.4 94688. 13437. 4512.6 #2

4555.7

Approved: May 17, 2016

#3

13413.

94808.

Sample Name: L1605043407S Acquired: 5/16/2016 10:58:13 Type: Unk

Method: ICP-THERMO3_6010_200.7WATER_3YLINES(v873) Mode: CONC Corr. Factor: 1.000000

User: JYH Custom ID1: Custom ID2: Custom ID3:

Comment: WG568333-04

Elem	Ag3280	Al3082	As1890	B_2496	Ba4554	Be3131	Ca4226
Units	ppm	ppm	ppm	ppm	ppm	ppm	ppm
Avg	. 20246	5.0047	.20325	1.2622	. 53403	. 02517	9.2008
Stddev	.00343	.0111	.00488	.0022	.00198	.00002	.0263
%RSD	1.6920	.22143	2.4016	.17224	.37071	.08071	.28599
#1	.19920	4.9920	.20879	1.2617	.53175	.02518	9.1858
#2	.20603	5.0123	.20138	1.2603	.53524	.02517	9.1854
#3	.20215	5.0098	.19958	1.2646	.53511	.02515	9.2312
Check ? High Limit Low Limit	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass
Elem	Cd2288	Co2286	Cr2677	Cu2247	Fe2611	K_7664	Li6707
Units	ppm	ppm	ppm	ppm	ppm	ppm	ppm
Avg	. 02490	.10050	. 24938	. 24827	2.1040	27.625	. 52470
Stddev	.00026	.00007	.00032	.00068	.0453	.079	.00141
%RSD	1.0475	.06848	.12799	.27192	2.1548	.28525	.26842
#1	.02464	.10057	.24928	.24754	2.1464	27.561	.52342
#2	.02516	.10043	.24912	.24839	2.1094	27.713	.52621
#3	.02491	.10050	.24974	.24888	2.0562	27.602	.52448
Check ? High Limit Low Limit	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass
Elem	Mg2790	Mn2576	Mo2020	Na5895	Ni2316	P_2149	Pb2203
Units	ppm	ppm	ppm	ppm	ppm	ppm	ppm
Avg	5.9081	. 27155	. 54963	F 484.22	. 33067	5.0390	. 24535
Stddev	.0233	.00260	.00126	.76	.00037	.0149	.00213
%RSD	.39431	.95612	.22972	.15764	.11304	.29567	.86773
#1	5.9188	.27234	.55050	484.47	.33103	5.0435	.24757
#2	5.8814	.26865	.54818	483.36	.33070	5.0224	.24514
#3	5.9241	.27366	.55020	484.82	.33028	5.0511	.24333
Check ? High Limit Low Limit	Chk Pass	Chk Pass	Chk Pass	Chk Fail 270.00 50000	Chk Pass	Chk Pass	Chk Pass

Approved: May 17, 2016

J'ye 1hu

Sample Name: L1605043407S Acquired: 5/16/2016 10:58:13 Type: Unk Method: ICP-THERMO3_6010_200.7WATER_3YLINES(v873) Mode: CONC Corr. Factor: 1.000000 User: JYH Custom ID1: Custom ID2: Custom ID3: Comment: WG568333-04 Sb2068 Se1960 Si2124 Sn1899 Sr4077 Ti3372 TI1908 Elem Units ppm ppm ppm ppm ppm ppm ppm .60707 .19571 4.6101 .50064 .23786 Avg .77567 .51105 Stddev .00250 .01322 .0035 .00108 .00184 .00468 .00361 %RSD .41143 6.7550 .07610 .21571 .23740 .91502 1.5193 #1 .60904 4.6083 .50106 .77389 .50570 .24059 .19175 #2 .60426 .21046 4.6141 .49942 .77555 .51438 .23376 #3 .60792 .18492 4.6078 .50145 .77756 .51306 .23924 **Chk Pass** Check? Chk Pass Chk Pass Chk Pass Chk Pass Chk Pass **Chk Pass** High Limit Low Limit Elem V_2924 Zn2062 Zr3391 ppm Units ppm ppm .50642 .50653 .82055 Avg .00101 .00031 Stddev .22673 %RSD .19958 .06188 27.631 #1 .50693 .50688 1.0080 #2 .50525 .50629 .88507 #3 .50643 .50707 .56856 Check? Chk Pass Chk Pass **Chk Pass** High Limit Low Limit Int. Std. Y_2243 Y_3600 Y_3774 Units Cts/S Cts/S Cts/S 13327. 94401. 4520.6 Avg Stddev 193. 38.2 10. .07603 .20483 .84416 %RSD #1 94621. 13319. 4559.6 13323. 94257. 4519.0 #2

4483.3

94327.

Approved: May 17, 2016

#3

13338.

Sample Name: L1605043409SD Acquired: 5/16/2016 11:01:55 Type: Unk

Method: ICP-THERMO3_6010_200.7WATER_3YLINES(v873) Mode: CONC Corr. Factor: 1.000000

User: JYH Custom ID1: Custom ID2: Custom ID3:

Comment: WG568333-05

Elem	Ag3280	Al3082	As1890	B_2496	Ba4554	Be3131	Ca4226
Units	ppm	ppm	ppm	ppm	ppm	ppm	ppm
Avg	. 20083	4.9526	.20145	1.2680	. 52707	.02482	9.3036
Stddev	.00037	.0088	.00363	.0019	.00256	.00013	.0224
%RSD	.18262	.17796	1.8017	.14655	.48664	.51556	.24121
#1	.20105	4.9605	.20362	1.2682	.52757	.02492	9.2786
#2	.20041	4.9431	.19726	1.2660	.52936	.02488	9.3101
#3	.20104	4.9542	.20347	1.2697	.52430	.02468	9.3220
Check ? High Limit Low Limit	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass
Elem	Cd2288	Co2286	Cr2677	Cu2247	Fe2611	K_7664	Li6707
Units	ppm	ppm	ppm	ppm	ppm	ppm	ppm
Avg	. 02492	.09983	. 24822	. 24866	2.1112	27.422	. 52339
Stddev	.00006	.00044	.00035	.00092	.0213	.159	.00102
%RSD	.24039	.43717	.14259	.36839	1.0069	.57841	.19418
#1	.02485	.09934	.24863	.24761	2.0866	27.333	.52431
#2	.02496	.09995	.24800	.24911	2.1237	27.606	.52355
#3	.02495	.10019	.24802	.24927	2.1231	27.328	.52230
Check ? High Limit Low Limit	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass
Elem	Mg2790	Mn2576	Mo2020	Na5895	Ni2316	P_2149	Pb2203
Units	ppm	ppm	ppm	ppm	ppm	ppm	ppm
Avg	5.8343	. 26836	. 54781	F 495.11	. 33263	4.9841	. 24237
Stddev	.1169	.00108	.00005	6.27	.00143	.0152	.00174
%RSD	2.0043	.40285	.00986	1.2660	.42964	.30425	.71588
#1	5.9384	.26772	.54775	501.15	.33134	4.9694	.24185
#2	5.7077	.26775	.54783	495.56	.33240	4.9997	.24096
#3	5.8567	.26960	.54785	488.64	.33417	4.9833	.24431
Check ? High Limit Low Limit	Chk Pass	Chk Pass	Chk Pass	Chk Fail 270.00 50000	Chk Pass	Chk Pass	Chk Pass

Sample Name: L1605043409SD Acquired: 5/16/2016 11:01:55 Type: Unk Method: ICP-THERMO3_6010_200.7WATER_3YLINES(v873) Mode: CONC Corr. Factor: 1.000000 User: JYH Custom ID1: Custom ID2: Custom ID3: Comment: WG568333-05 Sb2068 Se1960 Si2124 Sn1899 Sr4077 Ti3372 TI1908 Elem Units ppm ppm ppm ppm ppm ppm ppm .59998 .19949 4.6707 .49598 .23696 Avg .78046 .49505 Stddev .00021 .00769 .0069 .00243 .00597 .00576 .00166 %RSD .03503 3.8523 .14662 .48896 .76470 1.1632 .70225 #1 .59981 .19649 .49333 .49510 .23592 4.6673 .78620 #2 .60021 .20822 4.6786 .49654 .78088 .50079 .23888 #3 .59991 .19376 4.6662 .49808 .77429 .48927 .23609 **Chk Pass** Check? Chk Pass Chk Pass Chk Pass Chk Pass Chk Pass **Chk Pass** High Limit Low Limit Elem V_2924 Zn2062 Zr3391 Units ppm ppm ppm .50397 .50375 Avg .77770 Stddev .00127 .00114 .09770 %RSD .25183 .22692 12.562 #1 .50321 .50251 .66579 #2 .50544 .50397 .82132 #3 .84598 .50327 .50476 Check? Chk Pass Chk Pass **Chk Pass** High Limit Low Limit Int. Std. Y_2243 Y_3600 Y_3774

Approved: May 17, 2016

Units

%RSD

Avg Stddev

#1

#2 #3 Cts/S

18.

13301.

.13502

13321.

13295.

13287.

Cts/S

286.

94464.

.30322

94194.

94435.

94764.

Cts/S

4574.5

.92282

4546.8

4553.5

4623.0

42.2

Sample Nan Method: ICF User: JYH Comment:		_6010_200	cquired: 5/1 .7WATER_: Custom IE	3YLINES(v8		ype: Unk de: CONC :	Corr. Fa	actor: 1.00000(
Elem	Ag3280	Al3082	As1890	B_2496	Ba4554	Be3131	Ca4226	Cd2288
Units	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm
Avg	00161	. 01892	.00143	. 03374	.00131	.00008	. 19457	. 00039
Stddev	.00147	.01059	.00496	.00274	.00084	.00008	.02901	.00016
%RSD	91.352	55.975	346.93	8.1356	64.178	95.952	14.911	40.024
#1	00047	.01982	00275	.03598	.00055	.00016	.20354	.00032
#2	00109	.00791	.00692	.03456	.00222	00000	.16213	.00028
#3	00328	.02902	.00013	.03068	.00116	.00009	.21803	.00057
Check ? High Limit Low Limit	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass
Elem Units Avg Stddev %RSD #1 #2	Co2286 ppm00002 .00012 492.960001400004	Cr2677 ppm 00035 .00015 42.396 00037 00019	Cu2247 ppm .09353 .00109 1.1631 .09407 .09228	Fe2611 ppm .17020 .00717 4.2154 .17833 .16750	K_7664 ppm . 25514 .02877 11.275 .28642 .24920	Li6707 ppm .00300 .00451 150.12 .00693 00192	Mg2790 ppm .09409 .04954 52.655 .06834 .15121	Mn2576 ppm . 00681 .00183 26.785 .00517
#3 Check? High Limit Low Limit	.00010	00049	.09425	.16477	.22981	.00401	.06273	.00649
	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass
Elem	Mo2020	Na5895	Ni2316	P_2149	Pb2203	Sb2068	Se1960	Si2124
Units	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm
Avg	. 00094	115.21	00017	. 02764	. 00648	00114	. 00258	5.7830
Stddev	.00035	.24	.00067	.00909	.00038	.00374	.00197	.0127
%RSD	37.332	.20518	399.08	32.897	5.8895	327.74	76.413	.21887
#1	.00109	114.94	00042	.02488	.00691	00218	.00033	5.7858
#2	.00054	115.36	.00059	.03779	.00633	00426	.00400	5.7939
#3	.00119	115.34	00068	.02024	.00619	.00301	.00342	5.7691
Check ? High Limit Low Limit	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass

L1605056503

Sample Nar	ne: L 150605	6503 A	cquired: 5/1	6/2016 11:0	05:44 T	ype: Unk		
Method: ICF	P-THERMO3	3_6010_200	.7WATER_	3YLINES(v8	373) Mc	de: CONC	Corr. Fac	ctor: 1.000000
User: JYH	Custom	ID1:	Custom ID)2: (Custom ID3	:		
Comment:								
Elem	Sn1899	Sr4077	Ti3372	TI1908	V 2924	Zn2062	Zr3391	
Units	ppm	ppm	ppm	ppm	ppm	ppm	ppm	
Avg	00030	.00127	.00194	00029	.00036	.41058	1.3001	
Stddev	.00059	.00044	.00373	.00113	.00059	.00091	.1368	
%RSD	195.72	34.537	191.69	386.87	160.95	.22167	10.522	
#1	.00017	.00140	00232	00063	00003	41100	1.4570	
#1 #2	00017	.00140	.00232	00063	.00093	.41122 .41098	1.4370	
#2 #3	00011	.0078	.00355	.00097	00040	.40954	1.2058	
0								
Check?	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	
High Limit								
Low Limit								
Int. Std.	Y 2243	Y 3600	Y_3774					
Units	Cts/S	Cts/S	Cts/S					
Avg	13842.	99155.	4583.9					
Stddev	6.	287.	47.8					
%RSD	.04578	.28926	1.0428					
	10010	0000=	4500 1					
#1 #2	13840.	98825.	4580.1					
#2 #3	13849. 13837.	99336. 99305.	4538.1 4633.5					
πJ	13037.	33303.	4000.0					

Sample Name: L1506056503PS Acquired: 5/16/2016 11:09:42 Type: Unk

Method: ICP-THERMO3_6010_200.7WATER_3YLINES(v873) Mode: CONC Corr. Factor: 1.000000

User: JYH Custom ID1: Custom ID2: Custom ID3:

Comment: WG568672-03

Elem	Ag3280	Al3082	As1890	B_2496	Ba4554	Be3131	Ca4226	Cd2288
Units	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm
Avg	.19658	4.9476	.20016	1.0152	.50895	.02507	5.2298	.02497
Stddev	.00064	.0216	.00264	.0012	.00200	.00005	.0210	.00027
%RSD	.32604	.43734	1.3185	.12236	.39375	.19879	.40094	1.0873
#1	.19716	4.9306	.20261	1.0145	.50672	.02508	5.2087	.02472
#2	.19589	4.9720	.20050	1.0144	.50950	.02510	5.2506	.02526
#3	.19669	4.9403	.19737	1.0166	.51061	.02501	5.2302	.02494

Check? Chk Pass Chk P

Elem	Co2286	Cr2677	Cu2247	Fe2611	K_7664	Li6707	Mg2790	Mn2576
Units	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm
Avg	.10061	. 24998	. 33681	2.1661	25.844	. 50671	5.0934	. 26119
Stddev	.00046	.00022	.00202	.0124	.188	.00073	.0681	.00337
%RSD	.45460	.08763	.60012	.57041	.72558	.14505	1.3370	1.2895
#1	.10077	.24984	.33573	2.1531	25.628	.50587	5.0254	.25957
#2	.10098	.24987	.33914	2.1673	25.955	.50719	5.0932	.26507
#3	.10010	.25023	.33556	2.1777	25.950	.50708	5.1616	.25894

Check? Chk Pass Chk P

Elem	Mo2020	Na5895	Ni2316	P_2149	Pb2203	Sb2068	Se1960	Si2124
Units	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm
Avg	. 50628	131.10	. 25383	4.9713	. 25705	. 60828	.19217	7.8705
Stddev	.00162	.46	.00071	.0136	.00457	.00188	.00621	.0147
%RSD	.31931	.34747	.28098	.27389	1.7772	.30855	3.2321	.18733
#1	.50620	130.62	.25460	4.9623	.25712	.60613	.18984	7.8687
#2	.50794	131.53	.25369	4.9648	.26159	.60917	.18746	7.8860
#3	.50471	131.14	.25319	4.9870	.25246	.60955	.19921	7.8567

Check? Chk Pass Chk P

Sample Name: L1506056503PS Acquired: 5/16/2016 11:09:42 Type: Unk

Method: ICP-THERMO3_6010_200.7WATER_3YLINES(v873) Mode: CONC Corr. Factor: 1.000000

User: JYH Custom ID1: Custom ID2: Custom ID3:

Comment: WG568672-03

Elem	Sn1899	Sr4077	Ti3372	TI1908	V_2924	Zn2062	Zr3391
Units	ppm	ppm	ppm	ppm	ppm	ppm	ppm
Avg	.50573	.51036	.51417	.24755	.49830	.87521	1.6730
Stddev	.00089	.00246	.00783	.00261	.00193	.00079	.3521
%RSD	.17685	.48224	1.5236	1.0557	.38826	.09029	21.048
#1	.50542	.50754	.51539	.25026	49819	.87586	2.0690
#2	.50674	.51149	.52132	.24504	.50028	.87544	1.3952
#3	.50504	.51206	.50580	.24734	.49642	.87433	1.5548

Check? Chk Pass Chk P

Low Limit

Int. Std.	Y_2243	Y_3600	Y_3774
Units	Cts/S	Cts/S	Cts/S
Avg	13753.	98240 .	4576.1
Stddev	28.	247.	47.5
%RSD	.20508	.25109	1.0376
#1	13741.	97960.	4599.2
#2	13785.	98423.	4521.5
#3	13733.	98339.	4607.6

L1605056503SDL

Sample Name: L1506056503SDL Acquired: 5/16/2016 11:13:25 Type: Unk Method: ICP-THERMO3 6010 200.7WATER 3YLINES(v873) Mode: CONC Corr. Factor: 1.000000 User: JYH Custom ID1: 5 Custom ID2: Custom ID3: Comment: WG568672-04 Al3082 As1890 B 2496 Ba4554 Be3131 Ca4226 Cd2288 Elem Ag3280 Units ppm ppm ppm ppm ppm ppm ppm ppm .00887 Avg -.00234 -.00552 .00032 -.00023 .00004 .01688 .00038 Stddev .00074 .00680 .00339 .00155 .00008 .00001 .02477 .00016 1049.9 %RSD 31.530 123.17 17.491 35.972 35.288 146.79 40.926 -.00842 .00775 #1 -.00175 -.00316 -.00033 .00002 .00038 .03658 #2 -.00317 .00225 .00051 .00822 -.00020 .00005 .02498 .00054 #3 -.00210 -.01039 .00362 .01064 -.00017 .00004 -.01093 .00022 Check? Chk Pass Chk Pass Chk Pass Chk Pass Chk Pass Chk Pass Chk Pass Chk Pass **High Limit** Low Limit Elem Co2286 Cr2677 Cu2247 Fe2611 K_7664 Li6707 Mg2790 Mn2576 Units ppm ppm ppm ppm ppm ppm ppm ppm -.00000 .08857 .00062 .01918 .00602 .00125 Avg .05545 .20165 .00094 .00118 .00310 Stddev .00066 .01336 .09820 .12766 .00287 %RSD 29394. 150.64 6.1348 24.101 48.695 51.540 144.13 229.70 #1 -.00028 .00066 .01959 .04427 .11882 .00248 -.04041 .00428 #2 -.00047-.00034.02010 .05184 .31012 .00732 .09126 .00088 .00826 .21486 #3 .00075 .00154 .01786 .07025 .17601 -.00142Check? Chk Pass Chk Pass Chk Pass Chk Pass Chk Pass Chk Pass Chk Pass High Limit Low Limit Elem Mo2020 Na5895 Ni2316 P_2149 Pb2203 Sb2068 Se1960 Si2124 Units ppm ppm ppm ppm ppm ppm ppm ppm .00054 23.123 -.00091 .01017 .00184 -.00297 .00168 1.1378 Avg .00010 .00061 .00502 .00158 .00204 .00328 .0080 Stddev .052 85.758 %RSD 18.358 .22590 67.325 49.388 68.771 195.59 .70783 #1 -.00040 .01240 .00059 23.066 .00133 -.00503 .00537 1.1290 .00059 -.00158 .01368 .00058 -.00295 -.00090 1.1395 #2 23.169 1.1448 #3 .00042 23.134 -.00074 .00442 .00362 -.00094 .00056 Check? Chk Pass Chk Pass Chk Pass Chk Pass Chk Pass Chk Pass Chk Pass High Limit

Approved: May 17, 2016

Low Limit

Sample Name: <u>L1506056503SDL</u> Acquired: 5/16/2016 11:13:25 Type: Unk

Method: ICP-THERMO3_6010_200.7WATER_3YLINES(v873) Mode: CONC Corr. Factor: 1.000000

User: JYH Custom ID1: 5 Custom ID2: Custom ID3:

Comment: WG568672-04

Elem Units Avg Stddev %RSD	Sn1899 ppm 00125 .00123 98.256	Sr4077 ppm . 00057 .00053 91.636	Ti3372 ppm 00455 .00296 65.088	TI1908 ppm . 00027 .00165 606.57	V_2924 ppm 00010 .00136 1350.7	Zn2062 ppm .08356 .00075 .89989	Zr3391 ppm . 32691 .13464 41.188
#1 #2 #3	00115 00253 00008	.00117 .00040 .00016	00604 00114 00645	.00172 00153 .00063	.00019 00158 .00109	.08286 .08345 .08436	.17459 .37604 .43009
Check ? High Limit Low Limit	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass
Int. Std. Units Avg Stddev %RSD	Y_2243 Cts/S 14224. 28. .19513	Y_3600 Cts/S 102260. 86. .08370	Y_3774 Cts/S 4587.1 41.6 .90787				
#1 #2 #3	14252. 14196. 14225.	102340. 102290. 102170.	4633.6 4553.1 4574.6				

•		•				Mode: C	ONC C	Corr. Factor	: 1.00000(
Elem Units Avg Stddev %RSD	Ag3280 ppm . 39282 .00187 .47573	Al3082 ppm 9.8621 .0345 .34995	ppm . 39222 .00438	_ppm . 49133 .00201	ppm . 98473 .00204	Be3131 ppm . 04870 .00007 .13563	ppm 9.7520 .0208	ppm . 04930 .00025	
#1 #2 #3	.39460 .39088 .39300	9.8608 9.8283 9.8972	.39725 .39005 .38935		.98306 .98701 .98412	.04863 .04872 .04876		.04921 .04912 .04959	
Check ? Value Range	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	
Elem Units Avg Stddev %RSD	Co2286 ppm . 19961 .00029 .14488	Cr2677 ppm . 50030 .00070 .14069	Cu2247 ppm . 50095 .00117 .23424	ppm 3.9690 .0407	49.341 .086	Li6707 ppm . 99890 .00764 .76468	ppm 9.9878 .0570	.49477 .00465	
#1 #2 #3	.19930 .19965 .19988	.49991 .49988 .50112	.50033 .50022 .50231		49.252 49.425 49.346	.99081 1.0060 .99989	10.024 9.9221 10.017		
Check ? Value Range	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	
Elem Units Avg Stddev %RSD	Mo2020 ppm . 98252 .00477 .48525	Na5895 ppm 49.824 .151 .30388	Ni2316 ppm . 50299 .00160 .31836	ppm 9.8050 .0068	ppm . 50123 .00851	Sb2068 ppm 1.1734 .0044 .37637	ppm . 38050 .00525	Si2124 ppm 4.9795 .0018 .03688	
#1 #2 #3	.98663 .98364 .97729	49.650 49.931 49.889	.50300 .50139 .50459	9.8031	.50059	1.1785 1.1714 1.1704	.37445		
Check ? Value Range	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	

Sample Name: CCV Acquired: 5/16/2016 11:17:24 Type: QC Method: ICP-THERMO3_6010_200.7WATER_3YLINES(v873) Mode: CONC Corr. Factor: 1.000000								
User: JYH Comment:		m ID1:	Custor	n ID2:	Custon	ı ID3:		
Elem Units Avg Stddev %RSD	Sn1899 ppm . 99502 .00141 .14130	Sr4077 ppm . 98670 .00245 .24833	Ti3372 ppm . 98648 .00946 .95910	TI1908 ppm . 50194 .00276 .55006	V_2924 ppm . 98649 .00107 .10831	Zn2062 ppm 1.0003 .0012 .11874	Zr3391 ppm . 92448 .37589 40.659	
#1 #2 #3	.99543 .99618 .99346	.98392 .98762 .98856	.97556 .99201 .99188	.50048 .50512 .50022	.98687 .98529 .98732	1.0006 1.0013 .99899	1.1797 .49283 1.1009	
Check ? Value Range	Chk Pass Chk Pass							
Int. Std. Units Avg Stddev %RSD	Y_2243 Cts/S 13984 . 18. .12786	Y_3600 Cts/S 99939 . 287. .28696	Y_3774 Cts/S 4587.2 60.2 1.3132					
#1 #2 #3	13978. 13970. 14004.	99871. 99693. 100250.	4639.4 4521.3 4600.8					

Sample Nam Method: ICP User: JYH Comment:		-		LINES(v873	pe: Blank) Mode: tom ID3:	CONC (Corr. Factor:	1.00000(
Elem	Ag3280	Al3082	As1890	B_2496	Ba4554	Be3131	Ca4226	
Units	ppm	ppm	ppm	ppm	ppm	ppm	ppm	
Avg	00148	01131	. 00218	. 00401	.00014	.00007	02541	
Stddev	.00097	.01151	.00152	.00064	.00074	.00001	.01703	
%RSD	65.472	101.72	69.605	15.926	539.83	14.040	67.022	
#1	00057	01785	.00065	.00462	00064	.00007	04311	
#2	00250	.00197	.00221	.00334	.00084	.00009	00915	
#3	00136	01806	.00368	.00408	.00021	.00006	02395	
Check ? High Limit Low Limit	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	
Elem	Cd2288	Co2286	Cr2677	Cu2247	Fe2611	K_7664	Li6707	
Units	ppm	ppm	ppm	ppm	ppm	ppm	ppm	
Avg	.00000	00001	00039	00073	.01717	. 10970	. 00442	
Stddev	.00027	.00033	.00096	.00017	.00702	.08546	.00348	
%RSD	6382.2	3337.9	249.50	23.001	40.878	77.906	78.676	
#1	.00031	.00021	.00048	00059	.00917	.20410	.00099	
#2	00009	.00015	00142	00091	.02229	.03760	.00795	
#3	00021	00038	00021	00068	.02005	.08739	.00433	
Check ? High Limit Low Limit	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	
Elem	Mg2790	Mn2576	Mo2020	Na5895	Ni2316	P_2149	Pb2203	
Units	ppm	ppm	ppm	ppm	ppm	ppm	ppm	
Avg	02342	. 00117	. 00362	. 01965	.00003	. 00516	00382	
Stddev	.12141	.00233	.00053	.01021	.00094	.00495	.00215	
%RSD	518.46	199.07	14.641	51.991	3052.0	95.997	56.224	
#1	12188	00059	.00344	.03118	.00059	.00452	00576	
#2	06060	.00029	.00422	.01173	.00056	.01040	00151	
#3	.11223	.00381	.00321	.01604	00106	.00056	00420	
Check ? High Limit Low Limit	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	

Sample Nam Method: ICP User: JYH Comment:	ne: CCB / -THERMO3_ Custom I	_		LINES(v873	pe: Blank) Mode: stom ID3:	CONC (Corr. Factor: 1.	000000
Elem Units Avg Stddev %RSD	Sb2068 ppm . 00129 .00478 371.31	Se1960 ppm .00063 .01037 1645.8	Si2124 ppm .00095 .00059 61.720	Sn1899 ppm 00010 .00028 285.44	Sr4077 ppm . 00029 .00017 59.554	Ti3372 ppm . 00308 .00608 197.38	TI1908 ppm 00118 .00210 178.47	
#1 #2 #3	.00089 00328 .00625	00858 .01186 00139	.00029 .00142 .00114	.00009 00042 .00004	.00037 .00041 .00009	.00610 .00706 00392	00352 00056 .00055	
Check ? High Limit Low Limit	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	
Elem Units Avg Stddev %RSD	V_2924 ppm 00014 .00004 28.962	Zn2062 ppm 00008 .00008 107.44	Zr3391 ppm F .36785 .12082 32.843					
#1 #2 #3	00016 00010 00017	00018 00004 00002	.50626 .31380 .28350					
Check ? High Limit Low Limit	Chk Pass	Chk Pass	Chk Fail .04000 04000					
Int. Std. Units Avg Stddev %RSD	Y_2243 Cts/S 14090. 20. .14128	Y_3600 Cts/S 101880. 199. .19579	Y_3774 Cts/S 4586.8 28.5 .62228					
#1 #2 #3	14069. 14091. 14109.	101660. 102020. 101970.	4574.9 4566.1 4619.4					

Sample Name Method: ICP- User: JYH Comment:	C Corr. F	Factor: 1.00000(
Elem Units Avg Stddev %RSD	Ag3280 ppm 00329 .00079 24.116	Al3082 ppm . 02509 .00463 18.463	As1890 ppm . 00101 .00117 115.59	B_2496 ppm . 01192 .00122 10.238	Ba4554 ppm .00131 .00087 66.161	Be3131 ppm 00008 .00006 75.001	Ca4226 ppm . 25520 .04261 16.697
#1 #2 #3	00291 00420 00275	.01998 .02901 .02628	.00124 .00204 00026	.01252 .01051 .01272	.00031 .00173 .00189	00005 00004 00014	.30354 .22310 .23896
Check ? High Limit Low Limit	Chk Pass						
Elem Units Avg Stddev %RSD	Cd2288 ppm F00091 .00021 22.797	Co2286 ppm .00052 .00033 63.919	Cr2677 ppm . 01797 .00111 6.1657	Cu2247 ppm F 232.39 1.39 .59866	Fe2611 ppm 3.2215 .0309 .95812	K_7664 ppm . 39632 .11453 28.899	Li6707 ppm 00028 .00325 1161.7
#1 #2 #3	00080 00078 00115	.00083 .00017 .00055	.01837 .01672 .01882	230.84 232.80 233.54	3.1880 3.2489 3.2276	.27141 .49641 .42115	00251 .00345 00178
Check ? High Limit Low Limit	Chk Fail 4.5000 00050	Chk Pass	Chk Pass	Chk Fail 180.00 00500	Chk Pass	Chk Pass	Chk Pass
Elem Units Avg Stddev %RSD	Mg2790 ppm .0 8679 .06986 80.500	Mn2576 ppm . 03311 .00299 9.0321	Mo2020 ppm . 00137 .00001 .38224	Na5895 ppm 1.7019 .0112 .65827	Ni2316 ppm . 01611 .00124 7.6774	P_2149 ppm ^ ***** 	Pb2203 ppm . 05542 .00793 14.310
#1 #2 #3	.08530 .01768 .15739	.03581 .03361 .02990	.00137 .00138 .00137	1.6916 1.7139 1.7002	.01482 .01623 .01728	^ ^	.06456 .05135 .05036
Check ? High Limit Low Limit	Chk Pass						

Sample Name Method: ICP-T User: JYH Comment:)10_200.7W <i>A</i>	red: 5/16/2010 ATER_3YLINI Istom ID2:		Type: Unk Mode: CONO ID3:	C Corr. F	Corr. Factor: 1.00000(
Elem Units Avg Stddev %RSD	Sb2068 ppm . 00022 .00310 1406.9	Se1960 ppm 00625 .00550 88.044	Si2124 ppm . 14991 .00272 1.8170	Sn1899 ppm 00003 .00027 943.95	Sr4077 ppm . 00140 .00024 16.803	Ti3372 ppm .00755 .00534 70.673	TI1908 ppm . 00198 .00431 217.26		
#1 #2 #3	00173 .00380 00140	00715 00036 01126	.15304 .14813 .14855	.00028 00023 00013	.00165 .00119 .00136	.01008 .01116 .00142	00294 .00386 .00503		
Check ? High Limit Low Limit	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass		
Elem Units Avg Stddev %RSD	V_2924 ppm . 00010 .00160 1559.5	Zn2062 ppm . 03030 .00030 .98955	Zr3391 ppm . 64004 .28875 45.114						
#1 #2 #3	.00191 00046 00114	.03023 .03004 .03063	.35810 .62687 .93514						
Check ? High Limit Low Limit	Chk Pass	Chk Pass	Chk Pass						
Int. Std. Units Avg Stddev %RSD	Y_2243 Cts/S 14003. 32. .22617	Y_3600 Cts/S 101790. 169. .16564	Y_3774 Cts/S 4524.9 40.4 .89356						
#1 #2 #3	14032. 14009. 13969.	101620. 101960. 101780.	4569.7 4491.3 4513.6						

Sample Name: L1605042701 Acquired: 5/16/2016 11:29:09 Type: Unk Method: ICP-THERMO3_6010_200.7WATER_3YLINES(v873) Mode: CONC Corr. Factor: 1.000000 User: JYH Custom ID1: Custom ID2: Custom ID3: Comment:									
Elem	Ag3280	Al3082	As1890	B_2496	Ba4554	Be3131	Ca4226	Cd2288	
Units	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	
Avg	00190	. 10065	.00036	. 06333	.06586	.00019	. 94651	. 00077	
Stddev	.00143	.00915	.00329	.00099	.00060	.00008	.01630	.00022	
%RSD	74.889	9.0951	909.59	1.5644	.91642	43.177	1.7223	28.036	
#1	00036	.09048	.00345	.06409	.06655	.00010	.92770	.00074	
#2	00217	.10822	00310	.06369	.06561	.00024	.95528	.00058	
#3	00318	.10326	.00073	.06221	.06542	.00024	.95656	.00101	
Check ? High Limit Low Limit	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	
Elem	Co2286	Cr2677	Cu2247	Fe2611	K_7664	Li6707	Mg2790	Mn2576	
Units	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	
Avg	.00070	.00135	.02111	.04785	.25187	.01136	. 19765	. 03612	
Stddev	.00035	.00056	.00445	.01304	.05389	.00334	.12531	.00287	
%RSD	50.687	41.909	21.089	27.244	21.395	29.409	63.400	7.9364	
#1	.00095	.00196	.02569	.03509	.28219	.00947	.25483	.03916	
#2	.00029	.00123	.01680	.04730	.28378	.01522	.05395	.03347	
#3	.00086	.00085	.02084	.06115	.18966	.00940	.28418	.03571	
Check ? High Limit Low Limit	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	
Elem	Mo2020	Na5895	Ni2316	P_2149	Pb2203	Sb2068	Se1960	Si2124	
Units	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	
Avg	. 00041	134.31	.00100	00349	00035	00261	. 00298	. 14698	
Stddev	.00007	.41	.00016	.00497	.00154	.00570	.00278	.00366	
%RSD	18.225	.30641	16.185	142.43	446.45	218.68	93.485	2.4884	
#1	.00049	133.83	.00117	00363	.00064	.00214	.00032	.14754	
#2	.00035	134.55	.00100	.00155	00212	00892	.00274	.15032	
#3	.00039	134.54	.00084	00839	.00045	00104	.00587	.14307	
Check ? High Limit Low Limit	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	

Sample Nar Method: ICF User: JYH Comment:		3_6010_200	.cquired: 5/1 .7WATER_ Custom II	3YLINES(v8		ype: Unk ode: CONC :	Corr. Fa	ctor: 1.00000(
Elem Units Avg Stddev %RSD	Sn1899 ppm 00015 .00019 124.19	Sr4077 ppm . 12330 .00053 .43166	Ti3372 ppm 00140 .00119 85.388	TI1908 ppm 00153 .00197 129.10	V_2924 ppm . 00085 .00036 42.248	Zn2062 ppm . 09527 .00120 1.2549	Zr3391 ppm 1.7966 .5924 32.971	
#1 #2 #3	00018 .00005 00033	.12279 .12385 .12325	00056 00087 00276	.00015 00370 00104	.00048 .00120 .00088	.09632 .09552 .09397	1.9409 2.3034 1.1454	
Check ? High Limit Low Limit	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	
Int. Std. Units Avg Stddev %RSD	Y_2243 Cts/S 13792. 13. .09587	Y_3600 Cts/S 98690. 257. .26083	Y_3774 Cts/S 4568.3 17.4 .38152					
#1 #2 #3	13801. 13798. 13777.	98491. 98981. 98597.	4576.6 4580.0 4548.2					

Sample Name: L1605042702 Acquired: 5/16/2016 11:33:07 Type: Unk Method: ICP-THERMO3_6010_200.7WATER_3YLINES(v873) Mode: CONC Corr. Factor: 1.000000 User: JYH Custom ID1: Custom ID2: Custom ID3: Comment:								
Elem	Ag3280	Al3082	As1890	B_2496	Ba4554	Be3131	Ca4226	
Units	ppm	ppm	ppm	ppm	ppm	ppm	ppm	
Avg	00117	.02893	00170	.08910	.00949	.00002	. 62040	
Stddev	.00058	.01322	.00473	.00102	.00081	.00006	.02985	
%RSD	49.756	45.705	278.82	1.1493	8.5286	326.98	4.8122	
#1	00146	.03953	.00350	.09024	.00909	.00008	.65464	
#2	00050	.03315	00285	.08825	.01042	00003	.59979	
#3	00154	.01411	00574	.08880	.00895	00000	.60678	
Check ? High Limit Low Limit	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	
Elem	Cd2288	Co2286	Cr2677	Cu2247	Fe2611	K_7664	Li6707	
Units	ppm	ppm	ppm	ppm	ppm	ppm	ppm	
Avg	. 00038	.00208	.03003	. 01524	.03376	9.0390	. 00130	
Stddev	.00005	.00045	.00059	.00050	.01237	.0458	.00483	
%RSD	14.386	21.690	1.9509	3.2897	36.635	.50668	370.92	
#1	.00043	.00181	.02954	.01466	.02169	9.0854	00295	
#2	.00032	.00261	.02988	.01557	.04640	8.9938	.00654	
#3	.00039	.00184	.03068	.01547	.03318	9.0378	.00031	
Check ? High Limit Low Limit	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	
Elem	Mg2790	Mn2576	Mo2020	Na5895	Ni2316	P_2149	Pb2203	
Units	ppm	ppm	ppm	ppm	ppm	ppm	ppm	
Avg	. 04509	.00823	.00589	F 2339.0	00311	. 86868	. 00253	
Stddev	.04456	.00183	.00033	92.6	.00095	.00527	.00412	
%RSD	98.832	22.266	5.5786	3.9600	30.536	.60724	162.83	
#1	.02259	.00761	.00566	2445.4	00303	.87075	00124	
#2	.01627	.00678	.00574	2295.0	00220	.87262	.00190	
#3	.09642	.01029	.00626	2276.5	00409	.86269	.00692	
Check ? High Limit Low Limit	Chk Pass	Chk Pass	Chk Pass	Chk Fail 270.00 50000	Chk Pass	Chk Pass	Chk Pass	

Sample Nam Method: ICP User: JYH Comment:	ne: L1605042 -THERMO3_ Custom I	6010_200.7		, ,	• •		Corr. Factor: 1.000000
Elem Units Avg Stddev %RSD	Sb2068 ppm 00015 .00419 2760.7	Se1960 ppm .00399 .00920 230.63	Si2124 ppm F 67.351 1.181 1.7540	Sn1899 ppm . 01772 .00034 1.9088	Sr4077 ppm .00087 .00017 19.503	Ti3372 ppm . 61602 .00216 .35063	ppm 00304 .00158
#1 #2 #3	.00402 00436 00012	.01431 .00099 00334	68.160 67.897 65.995	.01802 .01735 .01778	.00085 .00071 .00105	.61667 .61361 .61778	00124 00372 00417
Check ? High Limit Low Limit	Chk Pass	Chk Pass	Chk Fail 36.000 -1.0000	Chk Pass	Chk Pass	Chk Pass	Chk Pass
Elem Units Avg Stddev %RSD	V_2924 ppm . 10786 .00086 .79621	Zn2062 ppm .00709 .00017 2.3329	Zr3391 ppm 1.0561 .0492 4.6559				
#1 #2 #3	.10695 .10865 .10799	.00728 .00699 .00699	1.0905 .99976 1.0780				
Check ? High Limit Low Limit	Chk Pass	Chk Pass	Chk Pass				
Int. Std. Units Avg Stddev %RSD	Y_2243 Cts/S 12723. 13. .10161	Y_3600 Cts/S 88177. 111. .12606	Y_3774 Cts/S 4668.6 15.9 .34034				
#1 #2 #3	12737. 12711. 12722.	88050. 88227. 88254.	4655.5 4664.0 4686.2				

Sample Name Method: ICP- User: JYH Comment:		010_200.7W	red: 5/16/201 ATER_3YLIN stom ID2:		Type: Unk Mode: CONO ID3:	C Corr. F	Factor: 1.00000(
Elem	Ag3280	Al3082	As1890	B_2496	Ba4554	Be3131	Ca4226
Units	ppm	ppm	ppm	ppm	ppm	ppm	ppm
Avg	00160	. 02093	00106	. 08455	. 03086	.00004	2.1296
Stddev	.00137	.00473	.00243	.00229	.00027	.00006	.0486
%RSD	85.298	22.577	230.15	2.7042	.88598	159.16	2.2836
#1	00286	.02433	.00083	.08640	.03063	.00004	2.1854
#2	00181	.01554	00380	.08525	.03116	.00010	2.0964
#3	00014	.02293	00020	.08199	.03080	00002	2.1069
Check ? High Limit Low Limit	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass
Elem	Cd2288	Co2286	Cr2677	Cu2247	Fe2611	K_7664	Li6707
Units	ppm	ppm	ppm	ppm	ppm	ppm	ppm
Avg	.00018	.00035	. 01270	. 17369	2.8167	. 39542	. 00576
Stddev	.00003	.00062	.00069	.00117	.0413	.07572	.00170
%RSD	19.052	175.48	5.4226	.67442	1.4670	19.148	29.501
#1	.00020	.00050	.01325	.17242	2.7722	.41914	.00489
#2	.00014	00032	.01294	.17474	2.8539	.31069	.00468
#3	.00020	.00088	.01193	.17392	2.8242	.45644	.00772
Check ? High Limit Low Limit	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass
Elem	Mg2790	Mn2576	Mo2020	Na5895	Ni2316	P_2149	Pb2203
Units	ppm	ppm	ppm	ppm	ppm	ppm	ppm
Avg	. 30741	. 04138	00027	131.45	. 02502	01306	. 00317
Stddev	.02690	.00242	.00025	.16	.00120	.00256	.00159
%RSD	8.7488	5.8524	92.217	.12277	4.7815	19.579	50.000
#1	.27695	.04310	00000	131.32	.02638	01238	.00470
#2	.31742	.04242	00050	131.40	.02450	01091	.00329
#3	.32787	.03861	00031	131.63	.02417	01589	.00153
Check ? High Limit Low Limit	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass

Sample Name Method: ICP-T User: JYH Comment:)10_200.7W <i>A</i>	red: 5/16/2016 ATER_3YLINI stom ID2:		Type: Unk Mode: CONO ID3:	C Corr. F	Factor: 1.000000
Elem Units Avg Stddev %RSD	Sb2068 ppm . 00119 .00320 268.15	Se1960 ppm 00328 .00448 136.35	Si2124 ppm . 21790 .00525 2.4088	Sn1899 ppm 00127 .00099 77.882	Sr4077 ppm . 00521 .00046 8.9006	Ti3372 ppm .00388 .00260 66.972	TI1908 ppm 00149 .00231 154.66
#1 #2 #3	00026 00102 .00486	00754 .00138 00368	.21235 .21858 .22278	00067 00241 00073	.00480 .00571 .00512	.00607 .00454 .00101	00013 00416 00019
Check ? High Limit Low Limit	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass
Elem Units Avg Stddev %RSD	V_2924 ppm . 00067 .00169 251.79	Zn2062 ppm . 13907 .00059 .42566	Zr3391 ppm F05337 .47004 880.79				
#1 #2 #3	00067 .00257 .00012	.13910 .13965 .13847	.48500 38225 26284				
Check ? High Limit Low Limit	Chk Pass	Chk Pass	Chk Fail 36.000 04000				
Int. Std. Units Avg Stddev %RSD	Y_2243 Cts/S 13729. 3. .02327	Y_3600 Cts/S 98661. 482. .48858	Y_3774 Cts/S 4548.0 40.3 .88713				
#1 #2 #3	13732. 13726. 13731.	98323. 99213. 98447.	4507.1 4549.1 4587.8				

Sample Name: L1605042704 Acquired: 5/16/2016 11:41:11 Type: Unk Method: ICP-THERMO3_6010_200.7WATER_3YLINES(v873) Mode: CONC Corr. Factor: 1.000000 User: JYH Custom ID1: Custom ID2: Custom ID3: Comment:									
Elem	Ag3280	Al3082	As1890	B_2496	Ba4554	Be3131	Ca4226	Cd2288	
Units	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	
Avg	00078	. 00008	. 00243	. 00568	. 01246	00009	. 22042	. 00565	
Stddev	.00094	.00251	.00172	.00100	.00015	.00005	.01323	.00012	
%RSD	119.89	2975.6	70.809	17.592	1.1866	56.403	6.0017	2.0746	
#1	00165	00018	.00407	.00495	.01260	00009	.21160	.00577	
#2	.00021	.00272	.00258	.00527	.01230	00013	.21404	.00554	
#3	00091	00229	.00064	.00682	.01248	00004	.23563	.00565	
Check ? High Limit Low Limit	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	
Elem	Co2286	Cr2677	Cu2247	Fe2611	K_7664	Li6707	Mg2790	Mn2576	
Units	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	
Avg	00019	. 00228	.01516	. 04563	. 10605	00053	. 07985	00120	
Stddev	.00005	.00067	.00052	.00387	.06827	.00087	.03763	.00134	
%RSD	26.790	29.474	3.4465	8.4889	64.378	162.92	47.123	111.41	
#1	00019	.00167	.01507	.04387	.04058	00123	.03775	00185	
#2	00013	.00216	.01572	.04295	.17682	.00044	.09158	00210	
#3	00023	.00300	.01468	.05007	.10076	00080	.11021	.00034	
Check ? High Limit Low Limit	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	
Elem	Mo2020	Na5895	Ni2316	P_2149	Pb2203	Sb2068	Se1960	Si2124	
Units	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	
Avg	. 00053	9.1488	.00271	21.511	. 38954	. 02096	. 01642	6.4978	
Stddev	.00026	.0147	.00066	.095	.00262	.00222	.00331	.0247	
%RSD	49.297	.16066	24.553	.44074	.67192	10.575	20.133	.38072	
#1	.00075	9.1547	.00194	21.555	.39255	.01877	.02020	6.5121	
#2	.00060	9.1321	.00300	21.577	.38826	.02321	.01408	6.5120	
#3	.00024	9.1597	.00317	21.403	.38781	.02090	.01499	6.4692	
Check ? High Limit Low Limit	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	

Sample Nar Method: ICF User: JYH Comment:		3_6010_200	.cquired: 5/1 .7WATER_: Custom IE	3YLINES(v8		ype: Unk ode: CONC :	Corr. Factor: 1.00000	(
Elem Units Avg Stddev %RSD	Sn1899 ppm 2.0717 .0127 .61179	Sr4077 ppm .00058 .00022 37.565	Ti3372 ppm .00510 .00463 90.696	TI1908 ppm 00473 .00124 26.321	V_2924 ppm 00034 .00036 106.47	Zn2062 ppm .06151 .00023 .37446	Zr3391 ppm 1.4122 .0929 6.5793	
#1 #2 #3	2.0809 2.0771 2.0573	.00036 .00058 .00079	.00679 00013 .00865	00579 00336 00503	00075 00019 00008	.06148 .06176 .06130	1.3175 1.4159 1.5032	
Check ? High Limit Low Limit	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	
Int. Std. Units Avg Stddev %RSD	Y_2243 Cts/S 16396. 30. .18404	Y_3600 Cts/S 121830. 130. .10656	Y_3774 Cts/S 5864.6 12.4 .21125					
#1 #2 #3	16429. 16390. 16370.	121690. 121840. 121950.	5878.1 5853.8 5861.9					

Sample Nam Method: ICP User: JYH Comment:		_		LINES(v873	pe: QC) Mode: tom ID3:	CONC (Corr. Factor:	1.00000(
Elem	Ag3280	Al3082	As1890	B_2496	Ba4554	Be3131	Ca4226	
Units	ppm	ppm	ppm	ppm	ppm	ppm	ppm	
Avg	. 39479	9.8075	. 39675	. 49334	. 98761	.04885	9.7591	
Stddev	.00061	.0042	.00445	.00284	.00222	.00008	.0183	
%RSD	.15538	.04308	1.1207	.57576	.22432	.16264	.18708	
#1	.39534	9.8037	.39167	.49383	.99010	.04894	9.7383	
#2	.39413	9.8067	.39869	.49029	.98687	.04884	9.7665	
#3	.39491	9.8121	.39990	.49591	.98586	.04878	9.7724	
Check ? Value Range	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	
Elem	Cd2288	Co2286	Cr2677	Cu2247	Fe2611	K_7664	Li6707	
Units	ppm	ppm	ppm	ppm	ppm	ppm	ppm	
Avg	. 04912	. 20075	. 49708	. 51231	3.9885	49.393	. 98846	
Stddev	.00005	.00037	.00117	.00179	.0398	.047	.00243	
%RSD	.10304	.18429	.23487	.34880	.99913	.09580	.24617	
#1	.04917	.20101	.49843	.51420	4.0320	49.447	.98674	
#2	.04907	.20033	.49641	.51210	3.9795	49.364	.98739	
#3	.04911	.20092	.49640	.51064	3.9538	49.367	.99124	
Check ? Value Range	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	
Elem	Mg2790	Mn2576	Mo2020	Na5895	Ni2316	P_2149	Pb2203	
Units	ppm	ppm	ppm	ppm	ppm	ppm	ppm	
Avg	9.8153	. 49435	. 98363	49.874	. 50768	9.9674	. 50537	
Stddev	.0485	.00493	.00489	.034	.00070	.0168	.00267	
%RSD	.49357	.99724	.49677	.06831	.13738	.16885	.52787	
#1	9.8697	.48898	.98889	49.905	.50846	9.9780	.50684	
#2	9.7768	.49867	.98276	49.837	.50745	9.9763	.50697	
#3	9.7995	.49539	.97923	49.880	.50712	9.9480	.50229	
Check ? Value Range	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	

Sample Nam Method: ICP- User: JYH Comment:		6010_200.7	16/2016 11:4 WATER_3YI Custom ID2:	LINES(v873)	pe: QC) Mode: tom ID3:	CONC (Corr. Factor: 1	1.000000
Elem Units Avg Stddev %RSD	Sb2068 ppm 1.1933 .0041 .34593	Se1960 ppm .39149 .00464 1.1856	Si2124 ppm 5.0578 .0060 .11952	Sn1899 ppm . 99770 .00070 .07006	Sr4077 ppm . 99102 .00177 .17884	Ti3372 ppm . 99063 .00594 .59945	TI1908 ppm . 50125 .00317 .63221	
#1 #2 #3	1.1887 1.1968 1.1943	.38754 .39032 .39660	5.0619 5.0508 5.0606	.99768 .99701 .99840	.99267 .98914 .99124	.98709 .98732 .99749	.50477 .50037 .49862	
Check ? Value Range	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	
Elem Units Avg Stddev %RSD	V_2924 ppm . 98197 .00095 .09654	Zn2062 ppm 1.0001 .0008 .08431	Zr3391 ppm F 1.1151 .3160 28.337					
#1 #2 #3	.98283 .98212 .98095	.99914 1.0008 1.0003	1.3895 1.1863 .76961					
Check ? Value Range	Chk Pass	Chk Pass	Chk Fail 1.0000 10.000%					
Int. Std. Units Avg Stddev %RSD	Y_2243 Cts/S 15012. 31. .20727	Y_3600 Cts/S 107860. 54. .05019	Y_3774 Cts/S 5074.1 7.4 .14518					
#1 #2 #3	15041. 15016. 14979.	107830. 107920. 107830.	5082.0 5072.8 5067.5					

Sample Name: CCB Acquired: 5/16/2016 11:48:45 Type: Blank Method: ICP-THERMO3_6010_200.7WATER_3YLINES(v873) Mode: CONC Corr. Factor: 1.000000 User: JYH Custom ID1: Custom ID2: Custom ID3: Comment:									
Elem	Ag3280	Al3082	As1890	B_2496	Ba4554	Be3131	Ca4226		
Units	ppm	ppm	ppm	ppm	ppm	ppm	ppm		
Avg	00377	00695	.00046	. 00064	00038	. 00009	02261		
Stddev	.00128	.00060	.00209	.00071	.00029	.00001	.02166		
%RSD	34.047	8.7077	450.28	111.14	77.363	11.737	95.789		
#1	00462	00722	.00215	.00058	00043	.00010	.00229		
#2	00230	00625	00187	.00137	00007	.00008	03305		
#3	00440	00737	.00111	00004	00065	.00010	03707		
Check ? High Limit Low Limit	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass		
Elem	Cd2288	Co2286	Cr2677	Cu2247	Fe2611	K_7664	Li6707		
Units	ppm	ppm	ppm	ppm	ppm	ppm	ppm		
Avg	00004	00026	00037	. 00226	.01346	. 08768	. 00066		
Stddev	.00016	.00006	.00045	.00024	.01047	.10651	.00076		
%RSD	432.76	21.107	121.20	10.534	77.782	121.48	115.19		
#1	.00014	00032	.00004	.00208	.01101	.20019	.00121		
#2	00008	00024	00086	.00216	.02494	01160	00021		
#3	00017	00022	00031	.00253	.00443	.07446	.00098		
Check ? High Limit Low Limit	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass		
Elem	Mg2790	Mn2576	Mo2020	Na5895	Ni2316	P_2149	Pb2203		
Units	ppm	ppm	ppm	ppm	ppm	ppm	ppm		
Avg	. 05397	00067	. 00351	. 15460	00055	F .01164	. 00020		
Stddev	.08861	.00206	.00020	.01518	.00019	.01529	.00109		
%RSD	164.19	305.74	5.7529	9.8187	35.171	131.35	541.62		
#1	.06999	00292	.00328	.16281	00072	.01166	00010		
#2	04156	.00112	.00363	.16390	00059	.02692	00071		
#3	.13347	00022	.00363	.13708	00034	00366	.00141		
Check ? High Limit Low Limit	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Fail .01000 01000	Chk Pass		

•									
Elem Units Avg Stddev %RSD	Sb2068 ppm . 00274 .00263 96.107	Se1960 ppm . 00296 .00429 144.87	Si2124 ppm .00375 .00029 7.6781	Sn1899 ppm . 00012 .00052 448.03	Sr4077 ppm . 00051 .00030 59.189	Ti3372 ppm 0009 .00399 4401.5	TI1908 ppm . 00077 .00216 282.04		
#1 #2 #3	00030 .00424 .00427	.00769 00069 .00189	.00355 .00362 .00408	.00010 00040 .00065	.00050 .00021 .00081	.00389 00008 00408	.00030 00112 .00312		
Check ? High Limit Low Limit	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass		
Elem Units Avg Stddev %RSD	V_2924 ppm . 00069 .00041 59.782	Zn2062 ppm .00033 .00001 2.8505	Zr3391 ppm F23252 .40761 175.30						
#1 #2 #3	.00052 .00038 .00115	.00034 .00032 .00034	.07047 07211 69593						
Check ? High Limit Low Limit	Chk Pass	Chk Pass	Chk Fail .04000 04000						
Int. Std. Units Avg Stddev %RSD	Y_2243 Cts/S 15018. 55. .36474	Y_3600 Cts/S 109540. 155. .14186	Y_3774 Cts/S 4988.9 13.9 .27822						
#1 #2 #3	15080. 15002. 14974.	109430. 109720. 109470.	4991.7 5001.2 4973.8						

•											
Elem Units Avg Stddev %RSD	Ag3280 ppm . 00686 .00162 23.636	ppm . 14485 .00392	ppm . 00846 .00209	ppm . 07786 .00047	Ba4554 ppm . 00786 .00068 8.6621	Be3131 ppm . 00161 .00009 5.3940	Ca4226 ppm . 37232 .01390 3.7335	Cd2288 ppm . 00114 .00009 8.0998			
#1 #2 #3	.00552 .00866 .00638	.14930 .14334 .14191		.07736	.00722 .00777 .00858	.00160 .00170 .00153	.36232 .38820 .36646	.00108 .00110 .00125			
Check ? High Limit Low Limit	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass			
Elem Units Avg Stddev %RSD	Co2286 ppm .00393 .00042 10.604	. 00405 .00040	ppm . 00477 .00105	ppm . 10908	K_7664 ppm . 93626 .01839 1.9640	Li6707 ppm . 08149 .00297 3.6451	.51954	.00786			
#1 #2 #3	.00346 .00427 .00405		.00437	.11627	.93899 .91666 .95313	.07919 .08044 .08485	.50051 .57239 .48571	.00826 .00843 .00689			
Check ? High Limit Low Limit	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass			
Elem Units Avg Stddev %RSD	Mo2020 ppm . 00853 .00020 2.3619	. 45048 .01860	ppm . 01555 .00018	ppm . 78529 .00037	Pb2203 ppm . 00621 .00097 15.562	Sb2068 ppm . 08630 .00044 .50565	Se1960 ppm .01955 .00704 36.016	Si2124 ppm . 84089 .00049 .05854			
#1 #2 #3	.00833 .00874 .00852	.43647	.01534	.78500	.00731 .00550 .00581	.08596 .08614 .08679	.01467 .02762 .01635	.84033 .84106 .84127			
Check ? High Limit Low Limit	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass			

Method: IC	Sample Name: LLCCV Acquired: 5/16/2016 11:52:46 Type: Unk Method: ICP-THERMO3_6010_200.7WATER_3YLINES(v873) Mode: CONC Corr. Factor: 1.000000										
User: JYH Comment:	Custo	m ID1:	Custor	n ID2:	Custon	ı ID3:					
Elem Units Avg Stddev %RSD	Sn1899 ppm . 40310 .00129 .31909	Sr4077 ppm . 03956 .00053 1.3500	Ti3372 ppm . 02434 .00031 1.2891	TI1908 ppm . 15494 .00412 2.6601	V_2924 ppm . 00766 .00089 11.619	Zn2062 ppm . 01671 .00007 .41379	Zr3391 ppm 35.012 .179 .51262				
#1 #2 #3	.40303 .40442 .40185	.03894 .03985 .03988	.02449 .02455 .02398	.15788 .15023 .15672	.00843 .00787 .00669	.01668 .01679 .01667	35.207 34.974 34.854				
Check ? High Limit Low Limit	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass				
Int. Std. Units Avg Stddev %RSD	Y_2243 Cts/S 14387. 49. .34170	Y_3600 Cts/S 105060. 232. .22100	Y_3774 Cts/S 4791.6 12.1 .25332								
#1 #2 #3	14443. 14358. 14359.	105320. 104890. 104960.	4795.8 4777.9 4801.1								

Sample Name: LLCCV Acquired: 5/16/2016 11:56:44 Type: Unk Method: ICP-THERMO3_6010_200.7WATER_3YLINES(v873) Mode: CONC Corr. Factor: 1.000000 User: JYH Custom ID1: Custom ID2: Custom ID3: Comment:								
Elem	Ag3280	Al3082	As1890	B_2496	Ba4554	Be3131	Ca4226	
Units	ppm	ppm	ppm	ppm	ppm	ppm	ppm	
Avg	. 00751	. 19516	.01103	. 09909	.01058	.00203	. 48547	
Stddev	.00103	.00186	.00216	.00136	.00069	.00003	.00814	
%RSD	13.659	.95196	19.604	1.3772	6.5453	1.3550	1.6769	
#1	.00677	.19318	.01335	.09822	.01130	.00203	.47977	
#2	.00707	.19545	.01065	.09838	.00992	.00205	.48184	
#3	.00868	.19686	.00908	.10066	.01052	.00200	.49479	
Check ? High Limit Low Limit	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	
Elem	Cd2288	Co2286	Cr2677	Cu2247	Fe2611	K_7664	Li6707	
Units	ppm	ppm	ppm	ppm	ppm	ppm	ppm	
Avg	. 00114	.00514	.00530	.00514	. 10672	1.1169	. 10926	
Stddev	.00028	.00028	.00115	.00125	.01885	.0657	.00270	
%RSD	24.689	5.4387	21.668	24.343	17.658	5.8864	2.4718	
#1	.00132	.00509	.00589	.00410	.11514	1.1492	.10940	
#2	.00082	.00543	.00604	.00480	.11990	1.1602	.10649	
#3	.00130	.00488	.00398	.00653	.08514	1.0412	.11188	
Check ? High Limit Low Limit	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	
Elem	Mg2790	Mn2576	Mo2020	Na5895	Ni2316	P_2149	Pb2203	
Units	ppm	ppm	ppm	ppm	ppm	ppm	ppm	
Avg	. 59805	.00988	.00970	. 52164	. 02125	. 98402	. 01204	
Stddev	.07529	.00202	.00035	.02170	.00076	.00341	.00188	
%RSD	12.589	20.489	3.6000	4.1596	3.5875	.34668	15.605	
#1	.51894	.01085	.00955	.53074	.02048	.98016	.01085	
#2	.66882	.01123	.01010	.49687	.02126	.98528	.01421	
#3	.60641	.00755	.00945	.53730	.02201	.98662	.01107	
Check ? High Limit Low Limit	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	

Sample Nam Method: ICP- User: JYH Comment:		6010_200.7	5/16/2016 1 WATER_3YI Custom ID2:	LINES(v873)	Type: Unk) Mode: tom ID3:	CONC (Corr. Factor: 1.00000(
Elem Units Avg Stddev %RSD	Sb2068 ppm . 10599 .00229 2.1634	Se1960 ppm .02024 .00681 33.651	Si2124 ppm 1.0603 .0019 .17653	Sn1899 ppm . 50759 .00042 .08301	Sr4077 ppm . 05002 .00037 .73849	Ti3372 ppm .03005 .00491 16.341	TI1908 ppm . 19505 .00017 .08640
#1 #2 #3	.10833 .10375 .10589	.02652 .01300 .02119	1.0625 1.0592 1.0592	.50747 .50807 .50725	.04991 .04973 .05044	.02530 .02974 .03510	.19486 .19516 .19513
Check ? High Limit Low Limit	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass
Elem Units Avg Stddev %RSD	V_2924 ppm . 00980 .00145 14.829	Zn2062 ppm .02115 .00021 .96938	Zr3391 ppm F 46.799 .302 .64531				
#1 #2 #3	.00852 .00949 .01138	.02098 .02138 .02109	46.514 46.767 47.115				
Check ? High Limit Low Limit	Chk Pass	Chk Pass	Chk Fail 36.000 04000				
Int. Std. Units Avg Stddev %RSD	Y_2243 Cts/S 14056. 45. .32176	Y_3600 Cts/S 102320. 129. .12623	Y_3774 Cts/S 4565.5 14.7 .32306				
#1 #2 #3	14106. 14046. 14018.	102450. 102190. 102320.	4577.0 4570.7 4548.9				

Sample Name: PBW XT Acquired: 5/16/2016 12:00:42 Type: Unk Method: ICP-THERMO3_6010_200.7WATER_3YLINES(v873) Mode: CONC Corr. Factor: 1.000000 User: JYH Custom ID1: Custom ID2: Custom ID3: Comment: WG567310-02 AI3082 As1890 B_2496 Ba4554 Be3131 Ca4226 Elem Ag3280 Units ppm ppm ppm ppm ppm ppm ppm -.01895 -.00382 -.01553 -.00127 .00002 Avg .00008 .00007 Stddev .00116 .00180 .00126 .00133 .00098 .00008 .01814 99.207 %RSD 30.257 11.564 6164.3 1267.8 108.77 95.735 #1 -.00250 -.00044 .00036 .00035 -.00002 -.03391 -.01346 #2 -.00465 -.01663 -.00065 -.00145 -.00101 .00011 .00123 #3 -.00431 -.01651 -.00271 .00116 .00090 .00013 -.02419 Check? Chk Pass Chk Pass **Chk Pass Chk Pass Chk Pass Chk Pass Chk Pass** High Limit Low Limit Elem Cd2288 Co2286 Cr2677 Cu2247 Fe2611 K_7664 Li6707 Units ppm ppm ppm ppm ppm ppm ppm -.00006 -.00144 .00732 .00018 .00068 .01622 Avg .16426 .00029 .00029 .00060 .00077 .01795 .00200 Stddev .05668 %RSD 159.40 458.26 87.764 53.087 110.69 34.507 27.359 #1 .00004 -.00007 .00035 -.00057 .00760 .20297 .00963 #2 -.00001 -.00035 .00137 -.00198 .03685 .09920 .00635 #3 .00051 .00023 .00032 -.00179 .00420 .19062 .00599 Check? **Chk Pass** Chk Pass **Chk Pass Chk Pass Chk Pass Chk Pass Chk Pass** High Limit Low Limit Elem Mg2790 Mn2576 Mo2020 Na5895 Ni2316 P_2149 Pb2203 Units ppm ppm ppm ppm ppm ppm ppm .06555 -.00010 .00034 -.01887 -.00048 -.00765 -.00075 Avg Stddev .00181 .00013 .01589 .00114 .00657 .00066 .16043 1837.5 37.046 84.216 %RSD 244.75 236.90 85.879 87.702 #1 .00764 .00196 .00022 -.03331 -.00140 -.01295 -.00151 .24690 -.00146 .00033 -.02143 .00079 -.00972 -.00029 #2 #3 -.05789 -.00080 .00048 -.00185 -.00082 -.00030 -.00046

Approved: May 17, 2016

Chk Pass

Check?

High Limit Low Limit **Chk Pass**

Chk Pass

Chk Pass

Chk Pass

Chk Pass

Chk Pass

Method: ICP- User: JYH	Sample Name: PBW XT Acquired: 5/16/2016 12:00:42 Type: Unk Method: ICP-THERMO3_6010_200.7WATER_3YLINES(v873) Mode: CONC Corr. Factor: 1.000000 User: JYH Custom ID1: Custom ID2: Custom ID3: Comment: WG567310-02									
Elem Units Avg Stddev %RSD	Sb2068 ppm 00358 .00068 19.065	Se1960 ppm .00046 .01050 2276.5	Si2124 ppm 02017 .00139 6.9051	Sn1899 ppm . 00007 .00070 957.16	Sr4077 ppm . 00019 .00027 138.12	Ti3372 ppm 00304 .00686 225.98	TI1908 ppm 00062 .00288 464.54			
#1 #2 #3	00412 00281 00381	.01127 00969 00020	02177 01945 01928	.00082 00003 00057	00005 .00014 .00048	01072 .00249 00088	.00014 00381 .00181			
Check ? High Limit Low Limit	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass			
Elem Units Avg Stddev %RSD	V_2924 ppm .00005 .00161 3405.6	Zn2062 ppm .00100 .00031 31.307	Zr3391 ppm F04916 .13930 283.35							
#1 #2 #3	.00011 .00162 00159	.00136 .00080 .00083	.03934 .02291 20973							
Check ? High Limit Low Limit	Chk Pass	Chk Pass	Chk Fail 36.000 04000							
Int. Std. Units Avg Stddev %RSD	Y_2243 Cts/S 13689. 40. .29240	Y_3600 Cts/S 99706. 363. .36406	Y_3774 Cts/S 4471.7 38.6 .86384							
#1 #2 #3	13660. 13735. 13673.	99470. 100120. 99524.	4432.9 4510.2 4472.1							

Sample Name: CSW XT Acquired: 5/16/2016 12:04:43 Type: Unk

Method: ICP-THERMO3_6010_200.7WATER_3YLINES(v873) Mode: CONC Corr. Factor: 1.000000

User: JYH Custom ID1: Custom ID2: Custom ID3:

Comment: WG567310-03

Elem	Ag3280	Al3082	As1890	B_2496	Ba4554	Be3131	Ca4226	Cd2288
Units	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm
Avg	.19110	4.7918	.18947	.94453	.48850	.02357	4.8253	.02405
Stddev	.00206	.0071	.00409	.00421	.00235	.00001	.0305	.00013
%RSD	1.0762	.14854	2.1592	.44608	.48100	.03598	.63275	.52145
#1	.19240	4.7905	.19417	.94694	.49094	.02358	4.8582	.02408
#2	.19218	4.7995	.18750	.94698	.48625	.02356	4.7978	.02416
#3	.18873	4.7854	.18673	.93966	.48833	.02357	4.8199	.02391

Check? Chk Pass Chk P

Elem	Co2286	Cr2677	Cu2247	Fe2611	K_7664	Li6707	Mg2790	Mn2576
Units	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm
Avg	.09913	. 24694	. 24894	1.9747	24.814	. 49846	4.9362	. 24645
Stddev	.00014	.00205	.00066	.0046	.136	.00251	.0620	.00386
%RSD	.14009	.83124	.26578	.23344	.54969	.50368	1.2551	1.5674
#1	.09900	.24532	.24970	1.9697	24.954	.50129	5.0062	.24414
#2	.09928	.24925	.24866	1.9788	24.681	.49650	4.9139	.24431
#3	.09912	.24626	.24847	1.9756	24.808	.49760	4.8885	.25091

Check? Chk Pass Chk P

Elem	Mo2020	Na5895	Ni2316	P_2149	Pb2203	Sb2068	Se1960	Si2124
Units	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm
Avg	. 49389	24.849	. 25393	4.7613	. 25161	. 58531	.18629	2.4646
Stddev	.00123	.083	.00161	.0107	.00231	.00204	.00086	.0033
%RSD	.24933	.33448	.63413	.22447	.91680	.34837	.46100	.13299
#1	.49395	24.930	.25578	4.7711	.25118	.58750	.18612	2.4610
#2	.49509	24.763	.25311	4.7499	.25410	.58496	.18723	2.4657
#3	.49263	24.854	.25289	4.7629	.24955	.58347	.18554	2.4673

Check? Chk Pass Chk P

Sample Name: CSW XT Acquired: 5/16/2016 12:04:43 Type: Unk

Method: ICP-THERMO3_6010_200.7WATER_3YLINES(v873) Mode: CONC Corr. Factor: 1.000000

User: JYH Custom ID1: Custom ID2: Custom ID3:

Comment: WG567310-03

Elem	Sn1899	Sr4077	Ti3372	TI1908	V_2924	Zn2062	Zr3391
Units	ppm	ppm	ppm	ppm	ppm	ppm	ppm
Avg	.49527	.49017	.48662	.24573	.48929	.49168	1.8491
Stddev	.00152	.00056	.00430	.00120	.00090	.00083	.4053
%RSD	.30597	.11426	.88441	.48768	.18443	.16850	21.916
	10000			0.400.4			
#1	.49600	.48966	.49142	.24694	.48909	.49088	1.7479
#2	.49353	.49009	.48535	.24454	.49027	.49162	1.5041
#3	.49629	.49077	.48310	.24571	.48850	.49253	2.2954

Check? Chk Pass Chk P

Low Limit

Int. Std.	Y_2243	Y_3600	Y_3774
Units	Cts/S	Cts/S	Cts/S
Avg	13603.	98161.	4439.8
Stddev	14.	186.	37.2
%RSD	.10061	.18961	.83830
#1	13616.	98249.	4398.7
#2	13588.	98287.	4471.2
#3	13604.	97947.	4449.5

Sample Name: L1605001301 Acquired: 5/16/2016 12:08:26 Type: Unk Method: ICP-THERMO3_6010_200.7WATER_3YLINES(v873) Mode: CONC Corr. Factor: 1.000000 User: JYH Custom ID1: 10 Custom ID2: Custom ID3: Comment: WG567310-01									
Elem	Ag3280	Al3082	As1890	B_2496	Ba4554	Be3131	Ca4226	Cd2288 ppm00012 .00008 63.086	
Units	ppm	ppm	ppm	ppm	ppm	ppm	ppm		
Avg	00138	. 00225	00016	. 00268	. 00296	.00005	3.0685		
Stddev	.00270	.00178	.00177	.00221	.00110	.00005	.0421		
%RSD	195.33	79.017	1126.5	82.451	37.110	98.260	1.3721		
#1	.00110	.00031	00199	.00465	.00201	.00008	3.0359	00006	
#2	00100	.00266	00001	.00310	.00271	00001	3.0535	00021	
#3	00426	.00380	.00153	.00029	.00416	.00008	3.1160	00010	
Check ? High Limit Low Limit	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	
Elem	Co2286	Cr2677	Cu2247	Fe2611	K_7664	Li6707	Mg2790	Mn2576	
Units	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	
Avg	.00003	. 00007	.00026	.03961	. 15999	. 01305	2.5007	. 02495	
Stddev	.00026	.00077	.00200	.00627	.13960	.00108	.1520	.00173	
%RSD	892.66	1166.3	761.42	15.829	87.254	8.2399	6.0793	6.9502	
#1	.00018	.00051	00107	.03239	.16793	.01427	2.4118	.02691	
#2	00027	.00050	00071	.04369	.29546	.01261	2.4141	.02361	
#3	.00017	00082	.00256	.04275	.01659	.01226	2.6763	.02433	
Check ? High Limit Low Limit	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	
Elem	Mo2020	Na5895	Ni2316	P_2149	Pb2203	Sb2068	Se1960	Si2124	
Units	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	
Avg	.00058	15.918	00154	. 01757	00050	00177	00228	2.7739	
Stddev	.00027	.246	.00036	.01090	.00449	.00225	.00438	.0754	
%RSD	47.314	1.5450	23.668	62.027	906.41	127.04	192.53	2.7185	
#1	.00065	15.641	00113	.00873	.00361	00420	00527	2.6983	
#2	.00028	16.003	00182	.02975	00529	.00024	00431	2.7741	
#3	.00081	16.109	00168	.01424	.00020	00135	.00275	2.8491	
Check ? High Limit Low Limit	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	

Sample Nar Method: ICF User: JYH Comment: V	Corr. Fa	ctor: 1.00000(
Elem Units Avg Stddev %RSD	Sn1899 ppm 00118 .00135 114.28	Sr4077 ppm . 07635 .00177 2.3175	Ti3372 ppm 00149 .00610 409.83	TI1908 ppm . 00043 .00066 153.22	V_2924 ppm . 00137 .00047 34.725	Zn2062 ppm . 00142 .00007 5.2371	Zr3391 ppm . 24659 .62410 253.09	
#1 #2 #3	.00008 00102 00261	.07446 .07664 .07796	00056 00800 .00410	.00098 00030 .00061	.00191 .00117 .00102	.00136 .00150 .00139	.92216 30845 .12605	
Check ? High Limit Low Limit	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	
Int. Std. Units Avg Stddev %RSD	Y_2243 Cts/S 13834. 14. .10118	Y_3600 Cts/S 98880. 148. .14987	Y_3774 Cts/S 4403.6 16.8 .38078					
#1 #2 #3	13842. 13843. 13818.	98951. 98979. 98709.	4421.4 4388.0 4401.4					

Sample Name: L1605001302 Acquired: 5/16/2016 12:12:25 Type: Unk Method: ICP-THERMO3_6010_200.7WATER_3YLINES(v873) Mode: CONC Corr. Factor: 1.000000 User: JYH Custom ID1: 10 Custom ID2: Custom ID3: Comment:									
Elem	Ag3280	Al3082	As1890	B_2496	Ba4554	Be3131	Ca4226		
Units	ppm	ppm	ppm	ppm	ppm	ppm	ppm		
Avg	00318	00318	.00306	. 00207	.00331	.00006	3.3211		
Stddev	.00068	.00143	.00482	.00260	.00026	.00003	.0463		
%RSD	21.516	44.781	157.46	125.56	7.8937	56.224	1.3937		
#1	00394	00312	.00314	.00321	.00306	.00005	3.2717		
#2	00261	00464	00180	00090	.00329	.00009	3.3279		
#3	00299	00179	.00783	.00392	.00358	.00003	3.3635		
Check ? High Limit Low Limit	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass		
Elem	Cd2288	Co2286	Cr2677	Cu2247	Fe2611	K_7664	Li6707		
Units	ppm	ppm	ppm	ppm	ppm	ppm	ppm		
Avg	.00004	.00029	.00019	00004	.01899	. 13871	. 01399		
Stddev	.00009	.00033	.00054	.00037	.00582	.07075	.00222		
%RSD	250.38	114.15	282.14	880.00	30.647	51.008	15.899		
#1	.00010	00009	00039	.00034	.01296	.05712	.01183		
#2	00007	.00048	.00028	00039	.01945	.17578	.01627		
#3	.00008	.00046	.00068	00007	.02457	.18323	.01388		
Check ? High Limit Low Limit	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass		
Elem	Mg2790	Mn2576	Mo2020	Na5895	Ni2316	P_2149	Pb2203		
Units	ppm	ppm	ppm	ppm	ppm	ppm	ppm		
Avg	2.7050	. 02457	00002	17.212	00032	. 01350	.00053		
Stddev	.0311	.00364	.00013	.120	.00052	.00174	.00281		
%RSD	1.1503	14.824	827.04	.69560	164.46	12.851	535.77		
#1	2.6705	.02669	00003	17.098	00088	.01505	.00232		
#2	2.7136	.02037	00013	17.200	.00014	.01162	00272		
#3	2.7310	.02666	.00012	17.337	00021	.01384	.00198		
Check ? High Limit Low Limit	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass		

Sample Name Method: ICP-1 User: JYH Comment:	C Corr. F	Factor: 1.00000(
Elem Units Avg Stddev %RSD	Sb2068 ppm 00238 .00190 79.916	Se1960 ppm .00237 .00130 54.650	Si2124 ppm 2.7201 .0228 .83757	Sn1899 ppm 00109 .00060 54.726	Sr4077 ppm .08256 .00026 .30997	Ti3372 ppm 00456 .00194 42.562	TI1908 ppm 00036 .00077 213.98
#1 #2 #3	00152 00106 00456	.00354 .00259 .00098	2.6966 2.7215 2.7421	00146 00141 00040	.08244 .08239 .08286	00493 00246 00629	.00045 00045 00109
Check ? High Limit Low Limit	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass
Elem Units Avg Stddev %RSD	V_2924 ppm . 00029 .00073 252.82	Zn2062 ppm .00225 .00007 3.0953	Zr3391 ppm F13882 .24254 174.72				
#1 #2 #3	00021 .00112 00005	.00231 .00217 .00226	03686 .03610 41569				
Check ? High Limit Low Limit	Chk Pass	Chk Pass	Chk Fail 36.000 04000				
Int. Std. Units Avg Stddev %RSD	Y_2243 Cts/S 13807. 54. .38956	Y_3600 Cts/S 98322. 432. .43947	Y_3774 Cts/S 4402.6 21.0 .47777				
#1 #2 #3	13831. 13745. 13844.	98155. 98812. 97998.	4401.8 4424.1 4382.0				

Sample Name: L1605001303S Acquired: 5/16/2016 12:16:23 Type: Unk Mode: CONC Method: ICP-THERMO3 6010 200.7WATER 3YLINES(v873) Corr. Factor: 1.000000 User: JYH Custom ID1: 10 Custom ID2: Custom ID3: Comment: WG567310-04 Ag3280 Al3082 B_2496 Ba4554 Ca4226 Cd2288 Elem As1890 Be3131 Units ppm ppm ppm ppm ppm ppm ppm ppm Avg .01776 .54162 .02352 .10329 .05356 .00263 3.7704 .00279 Stddev .00135 .00998 .00143 .00055 .00032 .00012 .0326 .00020 %RSD 7.6051 1.8424 6.0639 .53722 .59662 4.4106 .86425 7.0059 #1 .10390 3.7550 .00296 .01925 .53386 .02340 .05352 .00268 #2 .01662 .55288 .02500 .10282 .05390 .00250 3.7484 .00258 #3 .01740 .53813 .02216 .10315 .05327.00271 3.8078 .00284 Check? Chk Pass Chk Pass Chk Pass Chk Pass Chk Pass Chk Pass Chk Pass Chk Pass **High Limit** Low Limit Elem Co2286 Cr2677 Cu2247 Fe2611 K_7664 Mg2790 Mn2576 Li6707 Units ppm ppm ppm ppm ppm ppm ppm ppm .01120 .02541 2.8016 .04812 Avg .02720 .22646 .06715 3.1651 .00029 .00076 Stddev .00038 .02182 .0725 .00310 .0887 .00344 %RSD 3.4314 1.1295 2.7850 9.6360 2.5885 2.8039 7.1401 4.6194 #1 .01082 .02547 .02769 .21569 2.8590 .06811 3.1101 .04482 #2 .01159 .02510 .02759 .21212 2.8256 .06368 3.2674 .05168 .02566 #3 .01121 .02633 .25158 2.7201 .06966 3.1176 .04786 Check? Chk Pass Chk Pass Chk Pass Chk Pass Chk Pass Chk Pass Chk Pass High Limit Low Limit Elem Mo2020 Na5895 Ni2316 P_2149 Pb2203 Sb2068 Se1960 Si2124 Units ppm ppm ppm ppm ppm ppm ppm ppm Avg .04982 19.531 .02752 .54691 .02647 .06312 2.9962 .02577 .00036 .00159 .00296 Stddev .105 .00063 .00275 .00320 .0436 .29033 %RSD .72531 .53593 2.2829 10.391 5.0760 11.472 1.4541 #1 19.430 .02841 2.9546 .04941 .02716 .54551 .02769 .05944 .05001 19.526 .54864 .02841 .06466 .02257 #2 .02716 2.9925 #3 .05006 19.639 .02825 .54657 .02333 .06527 .02632 3.0414 Check? Chk Pass Chk Pass Chk Pass Chk Pass Chk Pass Chk Pass Chk Pass High Limit

Approved: May 17, 2016

Low Limit

Corr. Factor: 1.000000

 Sample Name: L1605001303S
 Acquired: 5/16/2016 12:16:23
 Type: Unk

 Method: ICP-THERMO3_6010_200.7WATER_3YLINES(v873)
 Mode: CONC

User: JYH Custom ID1: 10 Custom ID2: Custom ID3:

Comment: WG567310-04

Elem Sn1899 Sr4077 Ti3372 TI1908 V_2924 Zn2062 Zr3391 Units ppm ppm ppm ppm ppm ppm ppm .05150 .13114 .04782 .02583 .05184 .05713 .04980 Avg Stddev .00110 .00106 .00722 .00100 .00112 .00066 .33263 %RSD 15.107 3.8659 2.1665 667.87 2.1381 .81177 1.1624 #1 .05136 .12997 .04510 .02505 .05218 .05673 .01077 #2 .05047 .13138 .04236 .02549 .05058 .05675 .40023 #3 .05266 .13206 .05601 .02695 .05274 .05789 -.26158

Check? Chk Pass Chk P

Int. Std.	Y_2243	Y_3600	Y_3774
Units	Cts/S	Cts/S	Cts/S
Avg	13807.	98662.	4402.2
Stddev	46.	378.	18.4
%RSD	.33036	.38335	.41870
#1	13757.	98496.	4420.9
#2	13846.	99095.	4401.8
#3	13817.	98395.	4384.0

Sample Name: L1605001304SD Acquired: 5/16/2016 12:20:20 Type: Unk Method: ICP-THERMO3_6010_200.7WATER_3YLINES(v873) Mode: CONC Corr. Factor: 1.00 User: JYH Custom ID1: 10 Custom ID2: Custom ID3: Comment: WG567310-05								actor: 1.00000(
Elem Units Avg Stddev %RSD	Ag3280 ppm . 01767 .00107 6.0412	Al3082 ppm . 53835 .00189 .35062	As1890 ppm . 02223 .00139 6.2492	B_2496 ppm . 10620 .00131 1.2292	Ba4554 ppm . 05289 .00070 1.3161	Be3131 ppm . 00268 .00007 2.6136	Ca4226 ppm 3.6734 .0386 1.0521	Cd2288 ppm . 00279 .00018 6.4226
#1 #2 #3	.01683 .01887 .01732	.53753 .53702 .54051	.02356 .02234 .02079	.10477 .10650 .10733	.05211 .05309 .05346	.00261 .00271 .00274	3.6301 3.7045 3.6855	.00272 .00265 .00299
Check ? High Limit Low Limit	Chk Pass	Chk Pass						
Elem Units Avg Stddev %RSD	Co2286 ppm .01143 .00025 2.1986	Cr2677 ppm .02707 .00083 3.0834	Cu2247 ppm .02859 .00183 6.4082	Fe2611 ppm .23964 .01996 8.3309	K_7664 ppm 2.6910 .0250 .93033	Li6707 ppm .06356 .00479 7.5374	Mg2790 ppm 3.1252 .0524 1.6765 3.0966	Mn2576 ppm . 05051 .00124 2.4470
#2 #3	.01162 .01154	.02695	.02664	.21671	2.7095 2.7010	.06626	3.0933 3.1856	.05025 .04942
Check ? High Limit Low Limit	Chk Pass	Chk Pass						
Elem Units Avg Stddev %RSD	Mo2020 ppm . 05236 .00097 1.8511	Na5895 ppm 18.937 .212 1.1185	Ni2316 ppm .02833 .00059 2.0865	P_2149 ppm . 56881 .01069 1.8790	Pb2203 ppm . 02516 .00229 9.1057	Sb2068 ppm . 06600 .00529 8.0114	Se1960 ppm . 01840 .00337 18.304	Si2124 ppm 3.0413 .0686 2.2563
#1 #2 #3	.05135 .05244 .05329	18.716 19.138 18.956	.02765 .02863 .02871	.55691 .57195 .57758	.02289 .02748 .02511	.06105 .07157 .06539	.02164 .01492 .01865	2.9712 3.0446 3.1083
Check ? High Limit Low Limit	Chk Pass	Chk Pass						

•	me: L160500 P-THERMO3		-	5/16/2016 · 3YLINES(v8		Type: Unk ode: CONC	Corr. Factor: 1.00000	(
User: JYH	ser: JYH Custom ID1: 10 Custom ID2: Custom ID3:							
Comment: \	NG567310-0)5						
Elem	Sn1899	Sr4077	Ti3372	TI1908	V_2924	Zn2062	Zr3391	
Units Avg	ppm . 05396	ppm . 12738	ppm . 04515	ppm . 02786	ppm . 05370	ppm . 05900	ppm 02539	
Stddev	.00167	.00200	.00749	.00322		.00107	.27004	
%RSD	3.0941	1.5663	16.591	11.572	3.1299	1.8144	1063.4	
#1	.05384	.12514	.03751	.02697	.05176	.05790	21719	
#2	.05235	.12897	.04544	.03143	.05470	.05907	.28342	
#3	.05568	.12802	.05248	.02517	.05465	.06004	14241	
Check ? High Limit Low Limit	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	
Int. Std.	Y_2243	Y_3600	Y_3774					
Units	Cts/S	Cts/S	Cts/S					
Avg Stddev	13802 . 30.	98491 . 548.	4400.7 30.9					
%RSD	.21535	.55639	.70155					
#1	13804.	99011.	4417.3					
#2	13830.	98543.	4365.1					
#3	13771.	97919.	4419.8					

Sample Name: L1605001305 Acquired: 5/16/2016 12:24:18 Type: Unk Method: ICP-THERMO3_6010_200.7WATER_3YLINES(v873) Mode: CONC Corr. Factor: 1.000000 User: JYH Custom ID1: Custom ID2: Custom ID3: Comment:										
Elem	Ag3280	Al3082	As1890	B_2496	Ba4554	Be3131	Ca4226	Cd2288		
Units	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm		
Avg	00385	01142	. 00067	.00010	.00084	.00014	03258	. 00033		
Stddev	.00031	.01009	.00361	.00128	.00059	.00006	.03342	.00022		
%RSD	8.0692	88.334	539.59	1238.3	70.049	46.579	102.59	67.379		
#1	00421	01924	00309	.00158	.00016	.00014	06949	.00055		
#2	00372	00004	.00098	00064	.00120	.00007	02387	.00010		
#3	00363	01498	.00411	00063	.00117	.00020	00437	.00034		
Check ? High Limit Low Limit	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass		
Elem	Co2286	Cr2677	Cu2247	Fe2611	K_7664	Li6707	Mg2790	Mn2576		
Units	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm		
Avg	00010	. 00018	00020	01680	.11065	. 00124	01252	. 00030		
Stddev	.00032	.00104	.00023	.00884	.05200	.00402	.02465	.00038		
%RSD	312.52	588.67	111.44	52.659	46.993	322.93	196.99	128.86		
#1	00047	.00135	00040	00895	.14268	00339	02031	.00065		
#2	.00004	00064	00025	01506	.05065	.00347	03233	.00035		
#3	.00012	00018	.00004	02638	.13861	.00366	.01509	00011		
Check ? High Limit Low Limit	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass		
Elem	Mo2020	Na5895	Ni2316	P_2149	Pb2203	Sb2068	Se1960	Si2124		
Units	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm		
Avg	.00038	00033	00224	.00163	.00043	00232	00041	02514		
Stddev	.00050	.03654	.00063	.00383	.00103	.00271	.00557	.00088		
%RSD	130.66	11048.	28.256	235.16	237.79	116.79	1363.3	3.4927		
#1	00019	.04186	00294	.00049	00048	00318	.00587	02413		
#2	.00062	02144	00169	00150	.00024	.00071	00234	02556		
#3	.00072	02141	00210	.00590	.00154	00451	00476	02572		
Check ? High Limit Low Limit	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass		

Sample Nar Method: ICF			cquired: 5/1			ype: Unk ode: CONC	Corr. Factor: 1.00000(
User: JYH	Custom		Custom IE	•	Custom ID3		COIT. Factor. 1.000000
Comment:	Custom	וטו.	Customil	72.	Sustoili iDS	•	
Comment.							
Elem Units Avg Stddev %RSD	Sn1899 ppm 00039 .00050 127.08	Sr4077 ppm . 00048 .00036 74.605	Ti3372 ppm 00327 .00248 75.906	TI1908 ppm 00341 .00127 37.145	V_2924 ppm .00038 .00145 384.39	Zn2062 ppm .00093 .00020 21.236	Zr3391 ppm . 07203 .05212 72.351
#1 #2 #3	00049 00083 .00015	.00037 .00019 .00088	00254 00123 00603	00478 00229 00315	.00187 .00028 00102	.00078 .00086 .00115	.07269 .01959 .12382
Check ? High Limit Low Limit	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass
Int. Std. Units Avg Stddev %RSD	Y_2243 Cts/S 13072 . 67. .51457	Y_3600 Cts/S 94567. 663. .70159	Y_3774 Cts/S 4239.8 15.8 .37155				
#1 #2 #3	13082. 13134. 13000.	93917. 94541. 95243.	4229.7 4231.8 4258.0				

Sample Name: L1605001305PS Acquired: 5/16/2016 12:28:17 Type: Unk
Method: ICP-THERMO3_6010_200.7WATER_3YLINES(v873) Mode: CONC Corr. Factor: 1.000000
User: JYH Custom ID1: Custom ID2: Custom ID3:
Comment: WG567345-03

Elem	Ag3280	Al3082	As1890	B_2496	Ba4554	Be3131	Ca4226	Cd2288
Units	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm
Avg	. 19991	4.9862	. 19723	. 98483	. 50435	. 02446	5.0423	. 02477
Stddev	.00317	.0093	.00282	.00382	.00265	.00012	.0159	.00038
%RSD	1.5859	.18577	1.4315	.38740	.52508	.48251	.31432	1.5426
#1	.20355	4.9960	.20000	.98688	.50533	.02458	5.0567	.02494
#2	.19840	4.9776	.19436	.98719	.50636	.02434	5.0449	.02504
#3	.19777	4.9851	.19734	.98043	.50135	.02447	5.0253	.02434

Check? Chk Pass Chk P

Elem	Co2286	Cr2677	Cu2247	Fe2611	K_7664	Li6707	Mg2790	Mn2576
Units	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm
Avg	.10297	. 25873	. 25906	2.0462	25.523	. 51216	4.9992	. 24978
Stddev	.00035	.00173	.00159	.0228	.056	.00770	.0691	.00070
%RSD	.34387	.66783	.61330	1.1140	.22070	1.5028	1.3829	.27994
#1	.10322	.25888	.25938	2.0315	25.484	.50723	5.0744	.25012
#2	.10313	.26038	.26046	2.0724	25.588	.52103	4.9847	.25024
#3	.10257	.25693	.25733	2.0346	25.497	.50822	4.9384	.24898

Check? Chk Pass Chk P

Elem	Mo2020	Na5895	Ni2316	P_2149	Pb2203	Sb2068	Se1960	Si2124
Units	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm
Avg	. 51045	25.696	. 26247	4.9544	. 26401	. 61173	. 19150	2.5398
Stddev	.00098	.092	.00121	.0085	.00305	.00086	.00162	.0072
%RSD	.19116	.35714	.45944	.17107	1.1565	.14070	.84344	.28449
#1	.51102	25.665	.26368	4.9454	.26059	.61244	.18971	2.5373
#2	.51101	25.800	.26247	4.9558	.26646	.61077	.19285	2.5480
#3	.50932	25.624	.26126	4.9622	.26498	.61199	.19194	2.5342

Check? Chk Pass Chk P

Sample Name: L1605001305PS Acquired: 5/16/2016 12:28:17 Type: Unk

Method: ICP-THERMO3_6010_200.7WATER_3YLINES(v873) Mode: CONC Corr. Factor: 1.000000

User: JYH Custom ID1: Custom ID2: Custom ID3:

Comment: WG567345-03

Elem	Sn1899	Sr4077	Ti3372	TI1908	V_2924	Zn2062	Zr3391
Units	ppm	ppm	ppm	ppm	ppm	ppm	ppm
Avg	.51599	.50497	.50133	.25832	.50983	.51547	.67385
Stddev	.00055	.00268	.00792	.00201	.00057	.00080	.15690
%RSD	.10658	.52991	1.5797	.77625	.11184	.15541	23.284
#1	.51574	.50269	.49223	.25892	.51042	.51584	.54586
#2	.51561	.50792	.50667	.25996	.50928	.51601	.62680
#3	.51662	.50430	.50509	.25609	.50980	.51455	.84889

Check? Chk Pass Chk P

Int. Std.	Y_2243	Y_3600	Y_3774
Units	Cts/S	Cts/S	Cts/S
Avg	13489 .	96987.	4421.9
Stddev	38.	373.	7.3
%RSD	.28451	.38454	.16538
#1	13450.	96565.	4423.7
#2	13488.	97124.	4413.8
#3	13527.	97273.	4428.1

Sample Name: L1605001305SDL Acquired: 5/16/2016 12:31:59 Type: Unk Method: ICP-THERMO3 6010 200.7WATER 3YLINES(v873) Mode: CONC Corr. Factor: 1.000000 User: JYH Custom ID1: 5 Custom ID2: Custom ID3: Comment: WG567345-04 Al3082 As1890 B 2496 Ba4554 Be3131 Ca4226 Cd2288 Elem Ag3280 Units ppm ppm ppm ppm ppm ppm ppm ppm -.01982 -.00006 .00325 Avg -.00234 .00133 .00008 -.02641 .00007 Stddev .00123 .00393 .00289 .00224 .00070 .00004 .01945 .00017 %RSD 52.464 19.825 4459.2 68.994 52.549 49.921 73.631 245.82 #1 -.00376 -.02010 .00128 .00314 .00183 -.03284 .00001 .00013 #2 -.00170 -.01575 .00191 .00107 .00164 .00005 -.04184 -.00006 -.00156 #3 -.02360 -.00338 .00554 .00053 .00007 -.00457 .00026 Check? Chk Pass Chk Pass Chk Pass Chk Pass Chk Pass Chk Pass Chk Pass Chk Pass **High Limit** Low Limit Elem Co2286 Cr2677 Cu2247 Fe2611 K_7664 Li6707 Mg2790 Mn2576 Units ppm ppm ppm ppm ppm ppm ppm ppm -.00007 .00026 .00006 .00384 .20910 .00554 .00094 Avg .03957 .00005 .00033 .00029 Stddev .00177 .01946 .01317 .11194 .00181 %RSD 64.724 124.30 2756.8 506.27 6.2981 5.1945 282.89 193.91 #1 -.00008 .00018 -.00153 .02240 .19450 .00528 .02012 .00234 #2 -.00011 -.00002 .00197 .00553 .21271 .00549 .15996 .00157 .00063 -.00024 .22009 .00585 #3 -.00002 -.01641 -.06137 -.00111 Check? Chk Pass Chk Pass Chk Pass Chk Pass Chk Pass Chk Pass Chk Pass High Limit Low Limit Elem Mo2020 Na5895 Ni2316 P_2149 Pb2203 Sb2068 Se1960 Si2124 Units ppm ppm ppm ppm ppm ppm ppm ppm .00067 -.04234 -.00101 -.00035 -.00379 -.00010 .00215 -.02762 Avg .00031 .02827 .00039 .00641 .00149 .00295 .00285 Stddev .00108 %RSD 39.311 46.480 66.765 39.049 1848.2 3023.8 132.42 3.9065 #1 -.00236 .00052 -.06818 -.00055 -.00690 -.00098 .00518 -.02766 .00047 -.00122 -.00007 -.00533 -.00251 -.02867 #2 -.01214 .00175 #3 .00103 -.04671 -.00126 .00592 -.00368 .00320 -.00047 -.02651 Check? Chk Pass Chk Pass Chk Pass Chk Pass Chk Pass Chk Pass Chk Pass **Chk Pass** High Limit Low Limit

Sample Name: L1605001305SDL Acq Method: ICP-THERMO3_6010_200.7WAT				l: 5/16/2016 3YLINES(v8		Type: Un ode: CONC	Type: Unk e: CONC Corr. Factor: 1.000000		
User: JYH	Custom		Custom I	•	Custom ID3		001111 0010		
	VG567345-0			·		•			
Elem	Sn1899	Sr4077	Ti3372	TI1908	V 2924	Zn2062	Zr3391		
Units	ppm	ppm	ppm	ppm	_ ppm	ppm	ppm		
Avg	00054	.00019	.00111	00118	.00134	.00095	.23123		
Stddev	.00015	.00018	.00246	.00217	.00143	.00021	.18534		
%RSD	28.207	97.649	221.56	183.96	106.11	21.677	80.153		
#1	00052	.00014	.00383	00360	.00285	.00097	.25314		
#2	00039	.00003	00097	00049	.00001	.00115	.03591		
#3	00069	.00039	.00047	.00057	.00118	.00074	.40465		
Check ? High Limit Low Limit	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass		
Int. Std. Units Avg	Y_2243 Cts/S 13662 .	Y_3600 Cts/S 98460 .	Y_3774 Cts/S 4350.8						
Stddev	33.	794.	31.8						
%RSD	.24517	.80658	.73145						
#1 #2	13698. 13631.	99346. 97812.	4379.0 4316.3						
#3	13657.	98223.	4357.2						

Sample Nam Method: ICP User: JYH Comment:		_		LINES(v873)	pe: QC) Mode: tom ID3:	CONC (Corr. Factor:	1.00000(
Elem	Ag3280	Al3082	As1890	B_2496	Ba4554	Be3131	Ca4226	
Units	ppm	ppm	ppm	ppm	ppm	ppm	ppm	
Avg	. 42188	10.644	. 42295	. 53169	1.0479	. 05238	10.320	
Stddev	.00209	.040	.00191	.00318	.0074	.00007	.067	
%RSD	.49485	.37569	.45154	.59723	.70508	.13808	.64582	
#1	.41950	10.598	.42310	.53257	1.0394	.05231	10.243	
#2	.42339	10.674	.42477	.53433	1.0529	.05245	10.365	
#3	.42275	10.658	.42096	.52817	1.0513	.05239	10.351	
Check ? Value Range	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	
Elem	Cd2288	Co2286	Cr2677	Cu2247	Fe2611	K_7664	Li6707	
Units	ppm	ppm	ppm	ppm	ppm	ppm	ppm	
Avg	. 05195	. 21458	. 54327	. 53696	4.3035	52.430	1.0479	
Stddev	.00038	.00050	.00280	.00221	.0603	.402	.0080	
%RSD	.72502	.23420	.51485	.41181	1.4016	.76702	.75843	
#1	.05206	.21415	.54079	.53903	4.2372	52.039	1.0397	
#2	.05153	.21513	.54273	.53463	4.3551	52.843	1.0556	
#3	.05226	.21445	.54630	.53722	4.3183	52.408	1.0482	
Check ? Value Range	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	
Elem	Mg2790	Mn2576	Mo2020	Na5895	Ni2316	P_2149	Pb2203	
Units	ppm	ppm	ppm	ppm	ppm	ppm	ppm	
Avg	10.678	. 52582	1.0407	53.107	. 54313	10.651	. 54503	
Stddev	.063	.00200	.0041	.365	.00162	.009	.00252	
%RSD	.58865	.38064	.39185	.68646	.29800	.08105	.46145	
#1	10.711	.52447	1.0454	52.707	.54277	10.661	.54610	
#2	10.717	.52812	1.0383	53.421	.54171	10.645	.54216	
#3	10.605	.52487	1.0385	53.194	.54489	10.648	.54683	
Check ? Value Range	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	

Sample Nam Method: ICP User: JYH Comment:		6010_200.7	16/2016 12:3 WATER_3Y Custom ID2:	LINES(v873	pe: QC) Mode: tom ID3:	CONC (Corr. Factor: 1	1.000000
Elem Units Avg Stddev %RSD	Sb2068 ppm 1.2657 .0030 .23450	Se1960 ppm . 40604 .00523 1.2872	Si2124 ppm 5.3211 .0103 .19296	Sn1899 ppm 1.0742 .0047 .43810	Sr4077 ppm 1.0442 .0097 .92783	Ti3372 ppm 1.0524 .0113 1.0733	TI1908 ppm . 53148 .00079 .14874	
#1 #2 #3	1.2653 1.2630 1.2689	.40202 .41195 .40416	5.3236 5.3098 5.3299	1.0794 1.0701 1.0733	1.0350 1.0543 1.0433	1.0419 1.0644 1.0511	.53200 .53057 .53187	
Check ? Value Range	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	
Elem Units Avg Stddev %RSD	V_2924 ppm 1.0671 .0011 .10223	Zn2062 ppm 1.0887 .0015 .14233	Zr3391 ppm F . 82347 .16375 19.886					
#1 #2 #3	1.0679 1.0674 1.0658	1.0899 1.0870 1.0894	1.0118 .74424 .71440					
Check ? Value Range	Chk Pass	Chk Pass	Chk Fail 1.0000 -10.000%					
Int. Std. Units Avg Stddev %RSD	Y_2243 Cts/S 13130. 48. .36937	Y_3600 Cts/S 92596. 59. .06327	Y_3774 Cts/S 4235.8 4.9 .11619					
#1 #2 #3	13074. 13164. 13151.	92660. 92583. 92545.	4233.9 4232.0 4241.3					

Sample Nam Method: ICP User: JYH Comment:		_		LINES(v873	pe: Blank) Mode: tom ID3:	CONC (Corr. Factor:	1.00000(
Elem	Ag3280	Al3082	As1890	B_2496	Ba4554	Be3131	Ca4226	
Units	ppm	ppm	ppm	ppm	ppm	ppm	ppm	
Avg	00230	00533	00125	. 00060	.00144	. 00011	03499	
Stddev	.00179	.00482	.00172	.00167	.00058	.00005	.00843	
%RSD	77.943	90.458	136.95	279.05	40.468	45.359	24.103	
#1	00390	00215	00315	.00014	.00132	.00010	04403	
#2	00036	01087	.00020	.00246	.00093	.00007	03361	
#3	00264	00296	00081	00080	.00207	.00017	02733	
Check ? High Limit Low Limit	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	
Elem	Cd2288	Co2286	Cr2677	Cu2247	Fe2611	K_7664	Li6707	
Units	ppm	ppm	ppm	ppm	ppm	ppm	ppm	
Avg	. 00012	00013	. 00014	00213	.01007	. 06917	. 00309	
Stddev	.00024	.00006	.00087	.00124	.00356	.15562	.00114	
%RSD	205.36	47.431	618.78	58.126	35.402	224.98	37.004	
#1	.00038	00014	00001	00329	.01394	04712	.00347	
#2	.00009	00018	.00108	00083	.00693	.24596	.00400	
#3	00011	00006	00065	00227	.00932	.00867	.00181	
Check ? High Limit Low Limit	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	
Elem	Mg2790	Mn2576	Mo2020	Na5895	Ni2316	P_2149	Pb2203	
Units	ppm	ppm	ppm	ppm	ppm	ppm	ppm	
Avg	. 09198	. 00098	. 00378	. 01596	00034	. 00016	. 00474	
Stddev	.10457	.00158	.00066	.00497	.00081	.00603	.00460	
%RSD	113.68	161.03	17.401	31.122	242.22	3796.9	96.942	
#1	.04591	00084	.00350	.02006	.00023	00675	.00581	
#2	.21168	.00181	.00331	.01738	.00003	.00434	.00871	
#3	.01836	.00198	.00453	.01044	00127	.00289	00029	
Check ? High Limit Low Limit	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	

Sample Nam Method: ICP User: JYH Comment:	ne: CCB / -THERMO3_ Custom I	6010_200.7	16/2016 12:3 WATER_3Y Custom ID2:	LINES(v873	pe: Blank) Mode: tom ID3:	CONC (Corr. Factor:	1.00000(
Elem Units Avg Stddev %RSD	Sb2068 ppm . 00626 .00303 48.356	Se1960 ppm .00055 .00590 1073.5	Si2124 ppm . 00551 .00151 27.333	Sn1899 ppm 00039 .00080 206.72	Sr4077 ppm . 00062 .00004 6.3044	Ti3372 ppm 00484 .00205 42.331	TI1908 ppm 00208 .00432 207.88	
#1 #2 #3	.00600 .00337 .00941	00404 .00721 00152	.00401 .00551 .00702	.00018 00003 00130	.00058 .00062 .00066	00271 00503 00680	00261 00612 .00248	
Check ? High Limit Low Limit	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	
Elem Units Avg Stddev %RSD	V_2924 ppm . 00107 .00120 112.88	Zn2062 ppm .00019 .00004 19.555	Zr3391 ppm F .08905 .23886 268.23					
#1 #2 #3	.00227 .00107 00014	.00022 .00015 .00018	.32823 14949 .08842					
Check ? High Limit Low Limit	Chk Pass	Chk Pass	Chk Fail .04000 04000					
Int. Std. Units Avg Stddev %RSD	Y_2243 Cts/S 13110. 46. .35294	Y_3600 Cts/S 94423. 122. .12972	Y_3774 Cts/S 4203.7 20.2 .48049					
#1 #2 #3	13113. 13155. 13063.	94329. 94379. 94561.	4224.6 4202.2 4184.3					

Sample Nam Method: ICP User: JYH Comment:		6010_200.7	5/16/2016 1 WATER_3Y Custom ID2:	LINES(v873	Type: Unk) Mode: tom ID3:	CONC (Corr. Factor:	1.000000
Elem	Ag3280	Al3082	As1890	B_2496	Ba4554	Be3131	Ca4226	
Units	ppm	ppm	ppm	ppm	ppm	ppm	ppm	
Avg	. 00569	. 15660	.00929	.08218	.00981	.00176	. 38147	
Stddev	.00111	.00690	.00217	.00149	.00029	.00003	.01924	
%RSD	19.461	4.4084	23.299	1.8151	2.9215	1.8342	5.0424	
#1	.00661	.16424	.00792	.08093	.01009	.00177	.36687	
#2	.00446	.15474	.01179	.08383	.00981	.00173	.37428	
#3	.00600	.15081	.00817	.08178	.00952	.00179	.40327	
Check ? High Limit Low Limit	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	
Elem	Cd2288	Co2286	Cr2677	Cu2247	Fe2611	K_7664	Li6707	
Units	ppm	ppm	ppm	ppm	ppm	ppm	ppm	
Avg	. 00075	.00391	.00530	.00269	.09960	. 97475	. 09077	
Stddev	.00027	.00017	.00107	.00137	.01498	.12472	.00299	
%RSD	35.865	4.3592	20.190	50.913	15.038	12.796	3.2894	
#1	.00062	.00390	.00647	.00200	.09250	.99940	.09418	
#2	.00057	.00408	.00437	.00426	.08948	.83955	.08859	
#3	.00106	.00374	.00507	.00180	.11680	1.0853	.08956	
Check ? High Limit Low Limit	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	
Elem	Mg2790	Mn2576	Mo2020	Na5895	Ni2316	P_2149	Pb2203	
Units	ppm	ppm	ppm	ppm	ppm	ppm	ppm	
Avg	. 54180	.00758	.00858	. 39319	.01684	. 82123	. 00671	
Stddev	.03394	.00179	.00046	.02876	.00047	.00201	.00448	
%RSD	6.2635	23.655	5.4112	7.3147	2.7736	.24426	66.767	
#1	.50442	.00637	.00815	.37230	.01632	.82182	.00428	
#2	.55030	.00672	.00907	.42599	.01696	.81899	.00397	
#3	.57068	.00964	.00851	.38128	.01723	.82287	.01189	
Check ? High Limit Low Limit	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	

Sample Nam Method: ICP User: JYH Comment:	ne: LLCCV -THERMO3_ Custom I	6010_200.7	5/16/2016 1: WATER_3Y Custom ID2:	LINES(v873	Type: Unk) Mode: tom ID3:	CONC (Corr. Factor:	1.000000
Elem Units Avg Stddev %RSD	Sb2068 ppm . 08496 .00346 4.0779	Se1960 ppm .02075 .00500 24.101	Si2124 ppm . 88679 .00169 .19081	Sn1899 ppm . 42920 .00139 .32375	Sr4077 ppm . 04242 .00054 1.2621	Ti3372 ppm . 02230 .00299 13.419	TI1908 ppm . 16271 .00383 2.3534	
#1 #2 #3	.08785 .08590 .08112	.01624 .02613 .01988	.88488 .88811 .88739	.42939 .43049 .42773	.04212 .04210 .04304	.02184 .02549 .01956	.16391 .15843 .16580	
Check ? High Limit Low Limit	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	
Elem Units Avg Stddev %RSD	V_2924 ppm . 00905 .00107 11.809	Zn2062 ppm .01812 .00026 1.4298	Zr3391 ppm F 37.851 .520 1.3749					
#1 #2 #3	.00973 .00961 .00782	.01783 .01834 .01817	38.379 37.834 37.339					
Check ? High Limit Low Limit	Chk Pass	Chk Pass	Chk Fail 36.000 04000					
Int. Std. Units Avg Stddev %RSD	Y_2243 Cts/S 13178. 54. .41288	Y_3600 Cts/S 94531 . 710. .75158	Y_3774 Cts/S 4198.5 26.6 .63462					
#1 #2 #3	13176. 13233. 13124.	94341. 93935. 95317.	4173.0 4226.1 4196.3					

Sample Name: PBW 50 Acquired: 5/16/2016 12:47:36 Type: Unk Method: ICP-THERMO3 6010 200.7WATER 3YLINES(v873) Mode: CONC Corr. Factor: 1.000000 User: JYH Custom ID1: Custom ID2: Custom ID3: Comment: WG568531-02 Al3082 As1890 B 2496 Ba4554 Be3131 Ca4226 Cd2288 Elem Ag3280 Units ppm ppm ppm ppm ppm ppm ppm ppm -.01425 -.00002 -.01076 Avg -.00216 -.00145 .00069 .00008 .00026 Stddev .00164 .01232 .00090 .00306 .00051 .00002 .03379 .00008 %RSD 75.990 86.475 61.789 18846. 74.655 19.937 314.01 29.056 #1 -.00350 -.00605 -.00059 -.00272 .00088 .00007 -.02946 .00034 #2 -.00033 -.00828 -.00238 .00330 .00107 .00007 -.03106 .00025 -.00266 #3 -.02842 -.00138 -.00062 .00011 .00010 .02824 .00019 Check? Chk Pass Chk Pass Chk Pass Chk Pass Chk Pass Chk Pass Chk Pass Chk Pass High Limit Low Limit Elem Co2286 Cr2677 Cu2247 Fe2611 K_7664 Li6707 Mg2790 Mn2576 Units ppm ppm ppm ppm ppm ppm ppm ppm -.00051 -.00002 -.00027 -.00830 .00650 .11430 -.00068 Avg .10163 .00034 .00047 .00093 .06449 Stddev .02053 .11101 .00312 .00140 %RSD 1714.1 174.61 182.36 247.22 109.23 48.027 56.422 204.79 #1 -.00040 .00015 .00015 -.01531 .14201 .00526 .18213 .00090 #2 .00008 -.00018 -.00158 .01481 -.02392 .01005 .05377 -.00174-.00010 -.02442.00419 #3 .00026 -.00078 .18679 .10699 -.00121 Check? Chk Pass Chk Pass Chk Pass Chk Pass Chk Pass Chk Pass Chk Pass High Limit Low Limit Elem Mo2020 Na5895 Ni2316 P_2149 Pb2203 Sb2068 Se1960 Si2124 Units ppm ppm ppm ppm ppm ppm ppm ppm .00035 -.02322 -.00003 -.00061 -.00241 .00033 .00084 -.02285 Avg .00044 .03091 .00026 .00461 .00097 .00211 .00543 .00274 Stddev 127.18 762.34 40.230 646.29 %RSD 133.13 758.31 640.01 11.988 #1 -.00001 -.00015 -.04210 .00120 -.00322 .00174 .00541 -.02179 .00049 .00021 -.00585 -.00210 .00228 -.02080 #2 .01246 -.00134 #3 .00070 -.04002 -.00030 .00283 -.00266 .00135 -.00517 -.02597 Check? Chk Pass Chk Pass Chk Pass Chk Pass Chk Pass Chk Pass **Chk Pass** High Limit

Approved: May 17, 2016

Low Limit

Sample Name: PBW 50 Acquired: 5/16/2016 12:47:36 Type: Unk Method: ICP-THERMO3_6010_200.7WATER_3YLINES(v873) Mode: CONC Corr. Factor: 1.000000									
User: JYH Custom ID1:			Custom ID2:		Custom ID3		COII. Fa	C.O. 1.000000	
Comment: WG568531-02									
Elem	Sn1899	Sr4077	Ti3372	TI1908	V_2924	Zn2062	Zr3391		
Units Avg	ppm 00066	ppm . 00031	ppm . 00176	ppm 00235	ppm . 00070	ppm . 00213	ppm . 31435		
Stddev	.00075	.00031	.00506	.00233	.00165	.00215	.42082		
%RSD	113.85	89.442	287.18	116.69	235.73	7.2160	133.87		
#1	00054	.00060	.00245	00543	.00257	.00198	.65960		
#2	00145	.00028	00361	00142	00055	.00229	15440		
#3	.00003	.00005	.00644	00020	.00008	.00213	.43787		
Check?	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass		
High Limit Low Limit									
LOW LITTIL									
Int. Std.	Y_2243	Y_3600	Y_3774						
Units Avg	Cts/S 13561 .	Cts/S 98606 .	Cts/S 4397.6						
Stddev	17.	157.	19.0						
%RSD	.12317	.15887	.43242						
#1	13554.	98599.	4377.2						
#2	13581.	98453.	4414.9						
#3	13550.	98766.	4400.6						

Sample Name: LCSW 50 Acquired: 5/16/2016 12:51:36 Type: Unk

Method: ICP-THERMO3_6010_200.7WATER_3YLINES(v873) Mode: CONC Corr. Factor: 1.000000

User: JYH Custom ID1: Custom ID2: Custom ID3:

Comment: WG568531-03

Elem	Ag3280	Al3082	As1890	B_2496	Ba4554	Be3131	Ca4226	Cd2288
Units	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm
Avg	.20371	5.0704	.19916	.99991	.51153	.02481	5.0574	.02534
Stddev	.00088	.0064	.00204	.00205	.00096	.00003	.0446	.00006
%RSD	.43020	.12701	1.0226	.20547	.18815	.10311	.88250	.25429
#1	.20276	5.0721	.19700	1.0004	.51062	.02481	5.0913	.02528
#2	.20387	5.0633	.20104	.99766	.51143	.02484	5.0068	.02532
#3	.20449	5.0758	.19945	1.0017	.51254	.02478	5.0740	.02541

Check? Chk Pass Chk P

Elem	Co2286	Cr2677	Cu2247	Fe2611	K_7664	Li6707	Mg2790	Mn2576
Units	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm
Avg	.10544	. 26333	. 26590	2.1046	25.988	. 52196	5.1275	. 25621
Stddev	.00056	.00205	.00071	.0184	.079	.00241	.1299	.00055
%RSD	.53323	.77789	.26722	.87488	.30408	.46159	2.5337	.21540
#1	.10481	.26100	.26509	2.1178	25.931	.51925	4.9876	.25675
#2	.10588	.26418	.26617	2.0835	25.956	.52280	5.1506	.25565
#3	.10564	.26482	.26643	2.1124	26.078	.52385	5.2444	.25624

Check? Chk Pass Chk P

Elem	Mo2020	Na5895	Ni2316	P_2149	Pb2203	Sb2068	Se1960	Si2124
Units	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm
Avg	. 52164	26.078	. 26929	5.0758	. 26382	. 62082	.19486	2.6116
Stddev	.00228	.057	.00190	.0095	.00232	.00291	.00219	.0193
%RSD	.43760	.21909	.70545	.18792	.87757	.46925	1.1225	.73786
#1	.51905	26.116	.26711	5.0705	.26463	.62414	.19717	2.5895
#2	.52335	26.012	.27063	5.0868	.26563	.61871	.19459	2.6246
#3	.52253	26.106	.27012	5.0701	.26121	.61961	.19282	2.6207

Check? Chk Pass Chk P

Sample Name: LCSW 50 Acquired: 5/16/2016 12:51:36 Type: Unk

Method: ICP-THERMO3_6010_200.7WATER_3YLINES(v873) Mode: CONC Corr. Factor: 1.000000

User: JYH Custom ID1: Custom ID2: Custom ID3:

Comment: WG568531-03

Elem	Sn1899	Sr4077	Ti3372	TI1908	V_2924	Zn2062	Zr3391
Units	ppm	ppm	ppm	ppm	ppm	ppm	ppm
Avg	.52761	.51369	.51247	.25997	.51824	.52714	1.6793
Stddev	.00128	.00069	.00530	.00211	.00155	.00223	.5847
%RSD	.24213	.13443	1.0334	.81197	.29872	.42305	34.822
#1	.52623	.51376	.50700	.25939	.51810	.52457	1.1677
#2	.52875	.51297	.51284	.25822	.51677	.52856	1.5534
#3	.52785	.51435	.51757	.26232	.51986	.52828	2.3167

Check? Chk Pass Chk P

Low Limit

Int. Std.	Y_2243	Y_3600	Y_3774
Units	Cts/S	Cts/S	Cts/S
Avg	13473 .	97261.	4426.2
Stddev	60.	113.	32.3
%RSD	.44627	.11640	.72916
#1	13533.	97159.	4461.9
#2	13473.	97382.	4417.5
#3	13413.	97241.	4399.1

F BLANK

Sample Name: LCSW 50 Acquired: 5/16/2016 12:55:21 Type: Unk

Method: ICP-THERMO3_6010_200.7WATER_3YLINES(v873) Mode: CONC Corr. Factor: 1.000000

User: JYH Custom ID1: Custom ID2: Custom ID3:

Comment: WG568371-01

Elem	Ag3280	Al3082	As1890	B_2496	Ba4554	Be3131	Ca4226	Cd2288
Units	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm
Avg	00225	00916	.00019	. 00210	.00148	.00010	00825	. 00045
Stddev	.00058	.00329	.00427	.00270	.00078	.00008	.02151	.00011
%RSD	25.845	35.953	2307.9	128.96	52.901	84.127	260.72	23.499
#1	00224	01291	.00388	00045	.00058	.00001	03225	.00034
#2	00283	00672	00449	.00493	.00188	.00011	.00930	.00045
#3	00167	00787	.00117	.00181	.00198	.00017	00181	.00055
Check ? High Limit Low Limit	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass
Elem	Co2286	Cr2677	Cu2247	Fe2611	K_7664	Li6707	Mg2790	Mn2576
Units	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm
Avg	.00006	.00001	00007	00992	. 24030	. 00574	. 02300	. 00023
Stddev	.00015	.00032	.00207	.01049	.06565	.00259	.05089	.00103
%RSD	258.43	2312.7	2802.9	105.74	27.320	45.053	221.29	448.45
#1	.00023	.00039	.00213	02019	.28200	.00871	.02051	00054
#2	00001	00019	00039	01036	.27426	.00401	02660	00018
#3	00005	00016	00197	.00078	.16462	.00449	.07509	.00140
Check ? High Limit Low Limit	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass
Elem	Mo2020	Na5895	Ni2316	P_2149	Pb2203	Sb2068	Se1960	Si2124
Units	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm
Avg	. 00098	133.95	00065	00195	00477	00151	.00305	01984
Stddev	.00040	2.18	.00065	.00442	.00289	.00380	.00314	.00238
%RSD	40.838	1.6273	100.54	226.80	60.577	251.04	102.97	11.993
#1	.00086	134.41	00086	00268	00152	00584	.00630	01844
#2	.00066	135.86	00116	00595	00706	.00126	.00004	01850
#3	.00143	131.58	.00008	.00279	00572	.00004	.00280	02259
Check ? High Limit Low Limit	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass

Sample Name: LCSW 50 Acquired: 5/16/2016 12:55:21 Type: Unk

Method: ICP-THERMO3_6010_200.7WATER_3YLINES(v873) Mode: CONC Corr. Factor: 1.000000

User: JYH Custom ID1: Custom ID2: Custom ID3:

Comment: WG568371-01

Elem Units Avg Stddev %RSD	Sn1899 ppm 00052 .00049 95.463	Sr4077 ppm . 00012 .00034 290.38	Ti3372 ppm 00171 .00590 344.37	TI1908 ppm 00143 .00069 48.354	V_2924 ppm 00016 .00064 398.46	Zn2062 ppm .00331 .00016 4.7870	Zr3391 ppm 01489 .05910 396.91
#1 #2 #3	00086 .00005 00073	.00019 00026 .00041	00282 00697 .00466	00064 00195 00169	00023 00077 .00051	.00321 .00323 .00350	01088 07589 .04210
Check ? High Limit Low Limit	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass
Int. Std. Units Avg Stddev %RSD	Y_2243 Cts/S 13257. 52. .39383	Y_3600 Cts/S 94748. 33. .03493	Y_3774 Cts/S 4358.3 50.7 1.1632				
#1 #2 #3	13202. 13305. 13264.	94776. 94712. 94756.	4367.3 4303.7 4403.9				

Sample Name: L1605057901 Acquired: 5/16/2016 12:59:20 Type: Unk Method: ICP-THERMO3_6010_200.7WATER_3YLINES(v873) Mode: CONC Corr. Factor: 1.000000 User: JYH Custom ID1: Custom ID2: Custom ID3: Comment: WG568531-01 Al3082 As1890 B_2496 Ba4554 Be3131 Ca4226 Elem Ag3280 Units ppm ppm ppm ppm ppm ppm ppm -.00370 .00403 .00035 .07006 Avg .02408 .00011 67.910 Stddev .00186 .00226 .00130 .00059 .00077 .00006 .499 %RSD 50.170 56.089 374.27 2.4474 1.1013 52.129 .73506 #1 -.00179 .00164 -.00105 .02341 .07065 .00011 67.988 #2 -.00382 .00614 .00151 .02431 .06919 .00017 67.377 #3 -.00550 .00431 .00059 .02451 .07035 .00005 68.366 **Chk Pass** Check? Chk Pass **Chk Pass** Chk Pass **Chk Pass Chk Pass Chk Pass High Limit** Low Limit Elem Cd2288 Co2286 Cr2677 Cu2247 Fe2611 K_7664 Li6707 Units ppm ppm ppm ppm ppm ppm ppm .00246 .00032 .00160 .07317 .01000 Avg -.01243 1.9600 .00010 .00026 .00079 .00090 .01362 Stddev .0249 .00175 %RSD 4.1528 81.988 49.460 1.2283 109.60 1.2687 17.542 #1 .00235 .00040 .00210 .07418 -.00192 1.9326 .01169 #2 .00255 .00054 .00069 .07288 -.007551.9663 .00819 .00003 #3 .00248 .00202 .07246 -.02783 1.9811 .01011 Check? **Chk Pass Chk Pass Chk Pass Chk Pass Chk Pass Chk Pass Chk Pass** High Limit Low Limit Elem Mg2790 Mn2576 Mo2020 Na5895 Ni2316 P_2149 Pb2203 Units ppm ppm ppm ppm ppm ppm ppm 1.5951 .02445 .00044 131.69 -.00095 .03077 .00116 Avg .00332 .00036 .00082 .00935 .00093 Stddev .1331 .41 %RSD 8.3459 .31283 86.401 13.564 81.344 30.403 79.965 #1 .00055 .02387 1.7451 .02170 131.25 -.00076 .00038 1.4909 .02351 .00004 131.75 -.00184 .04141 #2 .00091 1.5492 #3 .02813 .00073 132.07 -.00024 .02702 .00219 Check? **Chk Pass** Chk Pass **Chk Pass Chk Pass Chk Pass Chk Pass Chk Pass** High Limit

Approved: May 17, 2016

Low Limit

Sample Name: L1605057901 Acquired: 5/16/2016 12: Method: ICP-THERMO3_6010_200.7WATER_3YLINES(v. User: JYH Custom ID1: Custom ID2: Comment: WG568531-01							
Elem Units Avg Stddev %RSD	Sb2068 ppm 00168 .00197 117.17	Se1960 ppm .00215 .00589 273.59	Si2124 ppm . 58653 .00207 .35215	Sn1899 ppm 00037 .00085 226.04	Sr4077 ppm .26820 .00082 .30478	Ti3372 ppm 00647 .00417 64.509	TI1908 ppm 00214 .00160 74.494
#1 #2 #3	00088 00024 00393	00362 .00815 .00193	.58886 .58581 .58492	.00054 00113 00054	.26815 .26740 .26904	01078 00618 00245	00386 00187 00070
Check ? High Limit Low Limit	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass
Elem Units Avg Stddev %RSD	V_2924 ppm . 00177 .00112 63.333	Zn2062 ppm . 01527 .00014 .93350	Zr3391 ppm F25115 .57881 230.46				
#1 #2 #3	.00263 .00050 .00219	.01510 .01533 .01536	.39363 72589 42120				
Check ? High Limit Low Limit	Chk Pass	Chk Pass	Chk Fail 36.000 04000				
Int. Std. Units Avg Stddev %RSD	Y_2243 Cts/S 13246. 19. .14608	Y_3600 Cts/S 94314. 111. .11732	Y_3774 Cts/S 4362.8 26.0 .59607				
#1 #2 #3	13227. 13265. 13247.	94438. 94282. 94224.	4391.5 4356.0 4340.9				

Sample Name: L1605057901S Acquired: 5/16/2016 13:03:18 Type: Unk Mode: CONC Method: ICP-THERMO3 6010 200.7WATER 3YLINES(v873) Corr. Factor: 1.000000 User: JYH Custom ID1: Custom ID2: Custom ID3: Comment: WG568531-04 Al3082 B_2496 Ba4554 Ca4226 Cd2288 Elem Ag3280 As1890 Be3131 Units ppm ppm ppm ppm ppm ppm ppm ppm Avg .20493 5.1126 .20624 1.0428 .58261 .02559 73.076 .02734 Stddev .00202 .0136 .00410 .0004 .00184 .00003 .403 .00027 %RSD .98662 .26663 1.9857 .03954 .31602 .12070 .55170 .97382 #1 .21069 1.0425 .02559 .20661 5.1001 .58431 73.324 .02711 #2 .20549 5.1272 .20541 1.0427 .58066 .02562 72.611 .02728 #3 .20269 5.1106 .20262 1.0433 .58286 .02556 73.294 .02763 Check? Chk Pass Chk Pass Chk Pass Chk Pass Chk Pass Chk Pass Chk Pass Chk Pass **High Limit** Low Limit Elem Co2286 Cr2677 Cu2247 Fe2611 K_7664 Mg2790 Mn2576 Li6707 Units ppm ppm ppm ppm ppm ppm ppm ppm .26225 .33179 2.0852 28.029 .28029 Avg .10349 .51841 6.6295 .00052 .00019 .0094 .0508 Stddev .00041 .039 .00474 .00102 %RSD .39227 .19932 .05869 .44833 .14053 .91408 .76591 .36327 #1 .10394 .26285 .33191 2.0747 28.041 .52208 6.6490 .28125 #2 .10337 .26203 .33189 2.0881 27.985 .52009 6.5719 .27922 #3 .10315 .26188 .33156 2.0927 28.061 .51306 6.6677 .28040 Check? Chk Pass Chk Pass Chk Pass Chk Pass Chk Pass Chk Pass Chk Pass High Limit Low Limit P_2149 Elem Mo2020 Na5895 Ni2316 Pb2203 Sb2068 Se1960 Si2124 Units ppm ppm ppm ppm ppm ppm ppm ppm Avg .52326 158.82 .26202 5.2826 .26269 .62632 .20264 3.2869 .00167 .0087 .00292 .00398 .00566 Stddev .00017 .62 .0062 .39050 %RSD .03334 .63564 .16484 1.1115 .63507 2.7954 .18881 #1 .52338 5.2748 3.2806 159.36 .26328 .26584 .62349 .20687 .52334 158.14 5.2809 .62460 #2 .26263 .26217 .19620 3.2870 #3 .52306 158.95 .26013 5.2920 .26007 .63087 .20485 3.2930

Chk Pass Chk Pass Chk Pass Chk Pass Chk Pass Chk Pass Chk Pass

Approved: May 17, 2016

Check?

High Limit Low Limit Sample Name: L1605057901S Acquired: 5/16/2016 13:03:18 Type: Unk

Method: ICP-THERMO3_6010_200.7WATER_3YLINES(v873) Mode: CONC Corr. Factor: 1.000000

User: JYH Custom ID1: Custom ID2: Custom ID3:

Comment: WG568531-04

Elem	Sn1899	Sr4077	Ti3372	TI1908	V_2924	Zn2062	Zr3391
Units	ppm	ppm	ppm	ppm	ppm	ppm	ppm
Avg	.52200	.78763	.50592	.24821	.52347	.53855	.56137
Stddev	.00129	.00219	.00530	.00089	.00223	.00058	.03601
%RSD	.24757	.27766	1.0467	.35832	.42683	.10753	6.4152
#1	.52347	.78799	.50105	.24910	.52124	.53790	.57306
#2	.52152	.78528	.50516	.24732	.52570	.53902	.59009
#3	.52102	.78961	.51156	.24821	.52348	.53872	.52097

Check? Chk Pass Chk P

Low Limit

Int. Std.	Y_2243	Y_3600	Y_3774
Units	Cts/S	Cts/S	Cts/S
Avg	13094.	93479.	4343.4
Stddev	24.	203.	9.6
%RSD	.18459	.21739	.22138
#1	13068.	93252.	4332.5
#2	13098.	93541.	4350.5
#3	13116.	93644.	4347.3

Sample Name: L1605057901SD Acquired: 5/16/2016 13:07:01 Type: Unk

Method: ICP-THERMO3_6010_200.7WATER_3YLINES(v873) Mode: CONC Corr. Factor: 1.000000

User: JYH Custom ID1: Custom ID2: Custom ID3:

Comment: WG568531-05

Elem Ag3280 Al3082 As1890 B_2496 Ba4554 Be3131 Ca4226 Cd2288 Units ppm ppm ppm ppm ppm ppm ppm ppm .20306 5.1275 .20730 1.0426 .57914 .02544 73.584 .02714 Avg Stddev .00137 .0078 .00339 .0018 .00055 .00004 .330 .00065 1.6354 .17277 .09520 .14639 .44809 2.3932 %RSD .67658 .15303 #1 .20160 5.1319 .20575 1.0419 .57974 .02546 73.920 .02704 #2 .20433 5.1322 .20496 1.0447 .57865 .02546 73.261 .02784 1.0413 #3 .20324 5.1185 .21119 .57905 .02539 73.570 .02655

Check? Chk Pass Chk P

Elem	Co2286	Cr2677	Cu2247	Fe2611	K_7664	Li6707	Mg2790	Mn2576
Units	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm
Avg	.10316	.26366	. 33283	2.0710	27.835	. 51489	6.6356	. 27538
Stddev	.00010	.00344	.00038	.0168	.075	.00267	.0876	.00182
%RSD	.09591	1.3036	.11496	.81149	.26887	.51795	1.3205	.65975
#1	.10308	.26443	.33301	2.0521	27.905	.51303	6.6726	.27428
#2	.10313	.26665	.33310	2.0843	27.844	.51370	6.6987	.27748
#3	.10327	.25991	.33240	2.0767	27.756	.51795	6.5356	.27439

Check? Chk Pass Chk P

Elem	Mo2020	Na5895	Ni2316	P_2149	Pb2203	Sb2068	Se1960	Si2124
Units	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm
Avg	. 52274	159.76	. 26155	5.2586	. 26239	. 62807	.19808	3.2921
Stddev	.00131	.42	.00117	.0097	.00177	.00366	.00499	.0015
%RSD	.25029	.26153	.44587	.18449	.67271	.58279	2.5192	.04561
#1	.52420	160.22	.26035	5.2560	.26426	.63114	.19935	3.2934
#2	.52235	159.40	.26164	5.2694	.26215	.62402	.19258	3.2924
#3	.52168	159.67	.26267	5.2505	.26076	.62904	.20231	3.2904

Check? Chk Pass Chk P

Method: ICP-THERMO3_6010_200.7WATER_3YLINES(v873) Mode: CONC Corr. Factor: 1.000000

User: JYH Custom ID1: Custom ID2: Custom ID3:

Comment: WG568531-05

Elem	Sn1899	Sr4077	Ti3372	TI1908	V_2924	Zn2062	Zr3391
Units	ppm	ppm	ppm	ppm	ppm	ppm	ppm
Avg	.52094	.78333	.50599	.25038	.52580	.53695	1.0983
Stddev	.00169	.00402	.00731	.00386	.00156	.00045	.1354
%RSD	.32536	.51344	1.4437	1.5408	.29718	.08444	12.324
#1	.52263	.78629	.51419	25424	.52420	.53748	.96975
#2	.51924	.78497	.50019	.25035	.52733	.53671	1.2396
#3	.52094	.77875	.50359	.24653	.52587	.53667	1.0856

Check? Chk Pass Chk P

Low Limit

Int. Std.	Y_2243	Y_3600	Y_3774
Units	Cts/S	Cts/S	Cts/S
Avg	13122.	93370 .	4366.9
Stddev	18.	513.	46.1
%RSD	.13639	.54906	1.0553
#1	13107.	92861.	4313.9
#2	13142.	93364.	4397.4
#3	13118.	93886.	4389.3

Method: ICP-THERMO3_6010_200.7WATER_3YLINES(v873) Mode: CONC Corr. Factor: 1.000000

User: JYH Custom ID1: Custom ID2: Custom ID3:

Comment: WG568830-01

Elem	Ag3280	Al3082	As1890	B_2496	Ba4554	Be3131	Ca4226	Cd2288
Units	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm
Avg	.20596	5.1928	.20993	1.0617	.57890	.02570	65.707	.02744
Stddev	.00109	.0109	.00079	.0049	.00179	.00006	.213	.00030
%RSD	.52750	.21064	.37794	.46558	.30896	.23653	.32344	1.0997
#1	.20693	5.1808	.20929	1.0570	.57824	.02570	65.732	.02750
#2	.20616	5.2021	.21082	1.0669	.57755	.02576	65.483	.02711
#3	.20478	5.1955	.20968	1.0612	.58093	.02564	65.906	.02770

Check? Chk Pass Chk P

Elem	Co2286	Cr2677	Cu2247	Fe2611	K_7664	Li6707	Mg2790	Mn2576
Units	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm
Avg	.10462	. 26692	. 32883	2.0990	27.840	. 52218	6.4844	.27714
Stddev	.00020	.00081	.00175	.0525	.055	.00520	.0262	.00360
%RSD	.19530	.30242	.53360	2.5015	.19896	.99643	.40446	1.2987
#1	.10439	.26702	.33054	2.1200	27.829	.52319	6.5050	.27391
#2	.10468	.26768	.32891	2.0392	27.791	.51654	6.4549	.27651
#3	.10479	.26607	.32703	2.1377	27.900	.52680	6.4934	.28102

Check? Chk Pass Chk P

Elem	Mo2020	Na5895	Ni2316	P_2149	Pb2203	Sb2068	Se1960	Si2124
Units	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm
Avg	. 52958	144.10	. 26498	5.3489	. 26749	. 63452	.19565	3.2245
Stddev	.00064	.51	.00190	.0073	.00221	.00214	.00857	.0031
%RSD	.12130	.35235	.71633	.13653	.82637	.33795	4.3810	.09662
#1	.53023	144.35	.26606	5.3564	.26921	.63219	.18629	3.2214
#2	.52958	143.52	.26279	5.3486	.26828	.63640	.19755	3.2243
#3	.52894	144.44	.26609	5.3418	.26500	.63499	.20311	3.2277

Check? Chk Pass Chk P

Sample Name: L1605057901PS Acquired: 5/16/2016 13:10:44 Type: Unk

Method: ICP-THERMO3_6010_200.7WATER_3YLINES(v873) Mode: CONC Corr. Factor: 1.000000

User: JYH Custom ID1: Custom ID2: Custom ID3:

Comment: WG568830-01

Elem	Sn1899	Sr4077	Ti3372	TI1908	V_2924	Zn2062	Zr3391
Units	ppm	ppm	ppm	ppm	ppm	ppm	ppm
Avg	.52809	.75604	.51202	.25576	.53367	.54354	.27302
Stddev	.00072	.00643	.00403	.00475	.00168	.00079	.29875
%RSD	.13666	.85046	.78745	1.8556	.31499	.14536	109.42
#1	.52792	.76111	.50770	.25314	.53404	.54386	06872
#2	.52746	.75820	.51267	.25289	.53513	.54412	.48466
#3	.52888	.74881	.51568	.26123	.53183	.54264	.40312

Check? Chk Pass Chk P

Low Limit

Int. Std.	Y_2243	Y_3600	Y_3774
Units	Cts/S	Cts/S	Cts/S
Avg	13121.	93724.	4374.9
Stddev	24.	138.	11.5
%RSD	.18084	.14690	.26398
#1	13128.	93565.	4386.0
#2	13094.	93798.	4375.9
#3	13140.	93809.	4363.0

Sample Name: L1605057901SDL Acquired: 5/16/2016 13:14:26 Type: Unk Method: ICP-THERMO3 6010 200.7WATER 3YLINES(v873) Mode: CONC Corr. Factor: 1.000000 User: JYH Custom ID1: 5 Custom ID2: Custom ID3: Comment: WG568830-02 Al3082 As1890 B 2496 Ba4554 Be3131 Ca4226 Cd2288 Elem Ag3280 Units ppm ppm ppm ppm ppm ppm ppm ppm .00525 Avg -.00322 -.01157 -.00166 .01355 .00007 12.612 .00048 Stddev .00038 .00243 .00226 .00195 .00079 .00004 .091 .00025 %RSD 11.938 20.969 135.59 37.195 5.8541 53.899 .71865 52.720 #1 -.00351 -.00424 .00337 .00005 .00046 -.01379 .01280 12.539 #2 -.00336 -.00898 -.00073 .00512 .01347 .00012 12.584 .00024 12.714 #3 -.00278 -.01194 -.00003 .00727 .01438 .00005 .00074 Check? Chk Pass Chk Pass Chk Pass Chk Pass Chk Pass Chk Pass Chk Pass Chk Pass **High Limit** Low Limit Elem Co2286 Cr2677 Cu2247 Fe2611 K_7664 Li6707 Mg2790 Mn2576 Units ppm ppm ppm ppm ppm ppm ppm ppm -.00010 .01403 .01988 .00668 .00368 Avg -.00062 .50244 .35167 .00062 .00121 .00452 .00349 Stddev .00039 .07220 .09735 .00293 %RSD 379.46 98.750 8.6189 22.730 52.299 27.683 79.514 14.371 #1 -.00025 -.00073 .01322 .02507 .43731 .01071 .42415 .00054 #2 -.00040 -.00118 .01542 .01680 .58008 .00456 .38983 .00418 #3 .00034 .00004 .01345 .01778 .48993 .00477 .24101 .00633 Check? Chk Pass Chk Pass Chk Pass Chk Pass Chk Pass Chk Pass Chk Pass High Limit Low Limit Mo2020 Elem Na5895 Ni2316 P_2149 Pb2203 Sb2068 Se1960 Si2124 Units ppm ppm ppm ppm ppm ppm ppm ppm .00062 24.733 -.00103 .00134 -.00258 -.00201 .00233 .08681 Avg .00044 .00119 .00750 .00203 .00563 .00226 Stddev .186 .00178 %RSD 115.73 70.491 .75126 560.07 78.745 88.781 241.52 2.6061 #1 .00007 -.00255 .00023 24.705 -.00724 -.00023 -.00011 .08502 24.562 -.00229 .00461 -.00002 -.00167 #2 .00110 -.00374 .08935 .00053 -.00346 #3 24.931 -.00087 .00665 -.00377 .00877 .08605 Check? Chk Pass Chk Pass Chk Pass Chk Pass Chk Pass Chk Pass Chk Pass High Limit

Approved: May 17, 2016

Low Limit

Sample Nar	Acquired	I: 5/16/2016	13:14:26	Type: Un	k			
Method: ICF	P-THERMO3	3_6010_200	.7WATER_	3YLINES(v8	373) Mc	de: CONC	Corr. Fac	tor: 1.00000(
User: JYH	Custom	ID1: 5	Custom I	D2:	Custom ID3	3:		
Comment: \	WG568830-0)2						
Elem Units Avg Stddev %RSD	Sn1899 ppm 00176 .00026 14.630	Sr4077 ppm . 04968 .00017 .33721	Ti3372 ppm 00865 .00656 75.774	TI1908 ppm . 00135 .00125 92.635	V_2924 ppm .00102 .00058 56.927	Zn2062 ppm .00359 .00028 7.8816	Zr3391 ppm . 07247 .35211 485.88	
#1 #2 #3	00191 00146 00191	.04981 .04974 .04949	01616 00576 00404	.00280 .00064 .00061	.00133 .00138 .00035	.00350 .00390 .00336	.03604 .44138 26001	
Check ? High Limit Low Limit	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	
Int. Std. Units Avg Stddev %RSD	Y_2243 Cts/S 14175. 69. .48549	Y_3600 Cts/S 101950. 216. .21147	Y_3774 Cts/S 4570.7 76.4 1.6717					
#1 #2 #3	14252. 14153. 14120.	102000. 102140. 101710.	4615.8 4613.7 4482.4					

Sample Nam Method: ICP User: JYH Comment:		-		LINES(v873	pe: QC) Mode: tom ID3:	CONC (Corr. Factor:	1.00000(
Elem	Ag3280	Al3082	As1890	B_2496	Ba4554	Be3131	Ca4226	
Units	ppm	ppm	ppm	ppm	ppm	ppm	ppm	
Avg	.38940	9.7022	.38919	. 48878	. 95264	. 04758	9.3727	
Stddev	.00267	.0166	.00105	.00353	.00415	.00025	.0328	
%RSD	.68511	.17112	.27065	.72129	.43610	.52300	.35011	
#1	.38663	9.6947	.38892	.49278	.94893	.04755	9.3932	
#2	.38963	9.6907	.39035	.48615	.95186	.04784	9.3349	
#3	.39195	9.7213	.38830	.48740	.95713	.04734	9.3900	
Check ? Value Range	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	
Elem	Cd2288	Co2286	Cr2677	Cu2247	Fe2611	K_7664	Li6707	
Units	ppm	ppm	ppm	ppm	ppm	ppm	ppm	
Avg	. 04822	.19805	. 50017	. 49631	3.8812	47.922	. 96972	
Stddev	.00017	.00026	.00169	.00153	.0613	.361	.00246	
%RSD	.34487	.13259	.33880	.30894	1.5785	.75420	.25349	
#1	.04804	.19779	.49948	.49457	3.8163	47.848	.97252	
#2	.04837	.19804	.50210	.49747	3.8892	47.603	.96791	
#3	.04824	.19831	.49893	.49689	3.9380	48.314	.96874	
Check ? Value Range	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	
Elem	Mg2790	Mn2576	Mo2020	Na5895	Ni2316	P_2149	Pb2203	
Units	ppm	ppm	ppm	ppm	ppm	ppm	ppm	
Avg	9.7079	. 47795	. 96263	48.464	. 50553	9.7846	. 50367	
Stddev	.0643	.00758	.00365	.128	.00044	.0131	.00307	
%RSD	.66198	1.5857	.37935	.26493	.08643	.13366	.60862	
#1	9.6366	.47787	.96650	48.346	.50506	9.7700	.50092	
#2	9.7256	.47040	.96215	48.445	.50593	9.7886	.50312	
#3	9.7615	.48556	.95924	48.601	.50560	9.7951	.50698	
Check ? Value Range	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	

Sample Nam Method: ICP User: JYH Comment:		6010_200.7	16/2016 13:1 WATER_3Y Custom ID2:	LINES(v873	pe: QC) Mode: tom ID3:	CONC (Corr. Factor: 1	.000000
Elem Units Avg Stddev %RSD	Sb2068 ppm 1.1739 .0015 .12784	Se1960 ppm .36995 .00768 2.0762	Si2124 ppm 4.9218 .0078 .15925	Sn1899 ppm . 98713 .00332 .33610	Sr4077 ppm . 95025 .00505 .53147	Ti3372 ppm . 94485 .01007 1.0658	TI1908 ppm . 49281 .00401 .81311	
#1 #2 #3	1.1739 1.1754 1.1724	.36177 .37701 .37107	4.9140 4.9217 4.9296	.98369 .98740 .99031	.94601 .94891 .95584	.93584 .94299 .95572	.49566 .48823 .49455	
Check ? Value Range	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	
Elem Units Avg Stddev %RSD	V_2924 ppm . 98226 .00253 .25793	Zn2062 ppm 1.0032 .0021 .20524	Zr3391 ppm F . 43713 .51427 117.65					
#1 #2 #3	.98002 .98501 .98175	1.0014 1.0027 1.0055	.25786 .03649 1.0171					
Check ? Value Range	Chk Pass	Chk Pass	Chk Fail 1.0000 -10.000%					
Int. Std. Units Avg Stddev %RSD	Y_2243 Cts/S 13866. 43. .31101	Y_3600 Cts/S 98928. 244. .24627	Y_3774 Cts/S 4539.1 30.2 .66437					
#1 #2 #3	13905. 13873. 13820.	99027. 98651. 99107.	4545.1 4565.8 4506.4					

Sample Name: CCB Acquired: 5/16/2016 13:22:05 Type: Blank Method: ICP-THERMO3_6010_200.7WATER_3YLINES(v873) Mode: CONC Corr. Factor: 1.000000 User: JYH Custom ID1: Custom ID2: Custom ID3: Comment:								
Elem	Ag3280	Al3082	As1890	B_2496	Ba4554	Be3131	Ca4226	Cd2288
Units	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm
Avg	00266	00668	.00126	. 00277	.00128	.00008	00576	. 00027
Stddev	.00139	.00725	.00096	.00185	.00038	.00002	.01378	.00006
%RSD	52.273	108.66	76.774	66.648	29.832	27.615	239.34	22.096
#1	00427	01045	.00018	.00334	.00085	.00006	.00208	.00034
#2	00181	.00169	.00155	.00071	.00143	.00008	02167	.00023
#3	00191	01126	.00204	.00428	.00157	.00011	.00231	.00024
Check ? High Limit Low Limit	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass
Elem	Co2286	Cr2677	Cu2247	Fe2611	K_7664	Li6707	Mg2790	Mn2576
Units	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm
Avg	00021	.00029	00025	.01817	. 19016	. 00553	. 08722	. 00116
Stddev	.00014	.00126	.00164	.00995	.05094	.00113	.04343	.00146
%RSD	65.379	439.30	656.74	54.729	26.786	20.421	49.794	125.31
#1	00023	00069	.00053	.01425	.14434	.00513	.12234	00042
#2	00034	.00171	.00086	.02948	.24501	.00681	.10067	.00245
#3	00006	00016	00214	.01079	.18114	.00466	.03866	.00145
Check ? High Limit Low Limit	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass
Elem	Mo2020	Na5895	Ni2316	P_2149	Pb2203	Sb2068	Se1960	Si2124
Units	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm
Avg	. 00377	. 00432	00112	. 00309	. 00051	. 00353	. 00301	02545
Stddev	.00012	.03438	.00049	.00293	.00349	.00195	.00275	.00046
%RSD	3.2645	796.53	43.873	94.681	678.42	55.378	91.434	1.8089
#1	.00372	.01107	00169	.00150	.00321	.00143	.00064	02572
#2	.00368	.03482	00081	.00130	.00176	.00529	.00602	02571
#3	.00391	03294	00087	.00647	00343	.00387	.00235	02492
Check ? High Limit Low Limit	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass

Sample Nar Method: ICF User: JYH Comment:		3_6010_200	5/16/2016 1 .7WATER_ Custom IE	3YLINES(v8	Type: Blan 373) Mc Custom ID3	de: CONC	Corr. Fa	ctor: 1.00000(
Elem Units Avg Stddev %RSD	Sn1899 ppm 00013 .00078 607.22	Sr4077 ppm .00080 .00055 69.038	Ti3372 ppm .00380 .00394 103.75	TI1908 ppm 00163 .00257 157.87	V_2924 ppm .00058 .00081 139.26	Zn2062 ppm .00029 .00015 53.010	Zr3391 ppm . 00864 .24689 2858.9	
#1 #2 #3	00103 .00024 .00040	.00072 .00139 .00029	.00550 00071 .00660	.00124 00241 00373	.00003 .00150 .00020	.00041 .00012 .00033	24250 .01735 .25105	
Check ? High Limit Low Limit	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	
Int. Std. Units Avg Stddev %RSD	Y_2243 Cts/S 13760. 25. .18271	Y_3600 Cts/S 98263. 389. .39572	Y_3774 Cts/S 4429.7 24.7 .55653					
#1 #2 #3	13764. 13783. 13733.	97930. 98170. 98690.	4457.9 4419.3 4412.0					

Sample Name Method: ICP- User: JYH Comment:		010_200.7W	Acquired: 5/16/2016 13:26:06 0_200.7WATER_3YLINES(v873) Custom ID2: Custom I			Type: Unk Mode: CONC Corr. Factor: 1.0000 ID3:		
Elem	Ag3280	Al3082	As1890	B_2496	Ba4554	Be3131	Ca4226	
Units	ppm	ppm	ppm	ppm	ppm	ppm	ppm	
Avg	00269	1.7329	00145	. 01633	.00320	.00017	. 37433	
Stddev	.00134	.0089	.00369	.00120	.00043	.00007	.03992	
%RSD	49.838	.51173	255.31	7.3566	13.421	41.502	10.664	
#1	00201	1.7314	.00081	.01548	.00270	.00022	.38253	
#2	00423	1.7425	00571	.01580	.00343	.00009	.40952	
#3	00182	1.7249	.00056	.01770	.00345	.00019	.33095	
Check ? High Limit Low Limit	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	
Elem	Cd2288	Co2286	Cr2677	Cu2247	Fe2611	K_7664	Li6707	
Units	ppm	ppm	ppm	ppm	ppm	ppm	ppm	
Avg	. 00052	00006	.00069	. 00029	. 24035	. 19707	. 00369	
Stddev	.00007	.00021	.00064	.00096	.02026	.04270	.00511	
%RSD	13.456	387.37	92.802	331.13	8.4299	21.666	138.62	
#1	.00060	00023	.00057	00075	.25946	.24103	.00484	
#2	.00051	.00018	.00139	.00048	.24249	.15576	.00812	
#3	.00046	00011	.00012	.00115	.21911	.19441	00190	
Check ? High Limit Low Limit	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	
Elem	Mg2790	Mn2576	Mo2020	Na5895	Ni2316	P_2149	Pb2203	
Units	ppm	ppm	ppm	ppm	ppm	ppm	ppm	
Avg	. 18823	. 02481	.00055	126.01	00099	00200	00416	
Stddev	.09616	.00137	.00023	.47	.00139	.00500	.00165	
%RSD	51.089	5.5062	42.240	.37474	140.78	249.63	39.568	
#1	.13159	.02334	.00077	125.66	00256	.00194	00242	
#2	.13383	.02603	.00031	125.83	.00007	00032	00436	
#3	.29926	.02507	.00057	126.55	00047	00763	00570	
Check ? High Limit Low Limit	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	

Sample Name: L1605051201 Acquired: 5/16/201 Method: ICP-THERMO3_6010_200.7WATER_3YLIN User: JYH Custom ID1: Custom ID2: Comment:				Type: Unk Mode: CONO ID3:	C Corr. F	Factor: 1.00000(
Elem Units Avg Stddev %RSD	Sb2068 ppm 00541 .00091 16.909	Se1960 ppm .00130 .00446 344.18	Si2124 ppm .13561 .00148 1.0900	Sn1899 ppm 00096 .00085 87.895	Sr4077 ppm . 00159 .00012 7.4660	Ti3372 ppm . 00329 .00274 83.144	TI1908 ppm . 00085 .00040 46.989
#1 #2 #3	00467 00643 00512	00338 .00176 .00550	.13703 .13408 .13572	00028 00070 00191	.00173 .00151 .00153	.00033 .00573 .00381	.00090 .00123 .00043
Check ? High Limit Low Limit	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass
Elem Units Avg Stddev %RSD	V_2924 ppm .00105 .00088 84.289	Zn2062 ppm .00531 .00025 4.6707	Zr3391 ppm F09119 .61760 677.27				
#1 #2 #3	.00204 .00076 .00034	.00518 .00560 .00515	21705 .57965 63617				
Check ? High Limit Low Limit	Chk Pass	Chk Pass	Chk Fail 36.000 04000				
Int. Std. Units Avg Stddev %RSD	Y_2243 Cts/S 13242. 28. .21094	Y_3600 Cts/S 94621. 358. .37850	Y_3774 Cts/S 4404.0 65.7 1.4927				
#1 #2 #3	13261. 13210. 13255.	94798. 94209. 94857.	4440.0 4443.8 4328.1				

Sample Name: L1605056401 Acquired: 5/16/2016 13:30:05 Type: Unk Method: ICP-THERMO3_6010_200.7WATER_3YLINES(v873) Mode: CONC Corr. Factor: 1.000000 User: JYH Custom ID1: Custom ID2: Custom ID3: Comment:									
Elem	Ag3280	Al3082	As1890	B_2496	Ba4554	Be3131	Ca4226	Cd2288	
Units	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	
Avg	00281	. 13741	. 00140	.08181	. 37768	.00009	57.517	. 00017	
Stddev	.00046	.00741	.00427	.00237	.00155	.00011	.217	.00001	
%RSD	16.340	5.3908	305.14	2.8919	.41140	124.18	.37733	3.8161	
#1	00286	.14158	.00266	.08296	.37711	.00011	57.610	.00018	
#2	00324	.14179	.00490	.08337	.37944	00003	57.672	.00017	
#3	00233	.12886	00336	.07909	.37649	.00018	57.269	.00017	
Check ? High Limit Low Limit	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	
Elem	Co2286	Cr2677	Cu2247	Fe2611	K_7664	Li6707	Mg2790	Mn2576	
Units	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	
Avg	. 00299	. 00159	. 00927	1.1417	2.2376	. 01941	10.067	. 23644	
Stddev	.00019	.00154	.00054	.0256	.0384	.00168	.226	.00069	
%RSD	6.3363	97.068	5.7749	2.2430	1.7163	8.6719	2.2471	.29379	
#1	.00297	.00059	.00950	1.1225	2.1956	.01881	10.116	.23596	
#2	.00318	.00337	.00865	1.1708	2.2709	.02132	10.265	.23724	
#3	.00281	.00081	.00965	1.1318	2.2464	.01812	9.8204	.23613	
Check ? High Limit Low Limit	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	
Elem	Mo2020	Na5895	Ni2316	P_2149	Pb2203	Sb2068	Se1960	Si2124	
Units	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	
Avg	. 00124	31.944	. 00549	. 03043	00218	. 00075	00444	6.2169	
Stddev	.00021	.108	.00078	.00346	.00392	.00181	.00831	.0060	
%RSD	16.889	.33762	14.265	11.382	180.03	239.87	187.20	.09602	
#1	.00115	31.996	.00520	.02651	00584	.00259	.00073	6.2234	
#2	.00148	32.016	.00638	.03171	00265	00103	01402	6.2116	
#3	.00109	31.820	.00489	.03307	.00196	.00070	00002	6.2158	
Check ? High Limit Low Limit	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	

Sample Nar Method: ICF User: JYH Comment:		3_6010_200	•	•	•	ype: Unk ode: CONC :	Corr. Fa	ctor: 1.00000(
Elem Units Avg Stddev %RSD	Sn1899 ppm 00029 .00156 548.14	Sr4077 ppm 1.4251 .0046 .31917	Ti3372 ppm 00819 .00211 25.821	TI1908 ppm 00490 .00229 46.781	V_2924 ppm . 00089 .00104 117.57	Zn2062 ppm . 01961 .00017 .87443	Zr3391 ppm . 12948 .46121 356.19	
#1 #2 #3	00198 .00111 .00002	1.4289 1.4262 1.4201	00913 00577 00967	00226 00638 00607	00029 .00127 .00169	.01946 .01980 .01957	.52668 37634 .23811	
Check ? High Limit Low Limit	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	
Int. Std. Units Avg Stddev %RSD	Y_2243 Cts/S 13274. 64. .48367	Y_3600 Cts/S 94828. 90. .09452	Y_3774 Cts/S 4344.2 25.2 .57946					
#1 #2 #3	13321. 13300. 13200.	94774. 94778. 94931.	4320.5 4341.5 4370.7					

Sample Name: L1605056701 Acquired: 5/16/2016 13:34:03 Type: Unk Method: ICP-THERMO3_6010_200.7WATER_3YLINES(v873) Mode: CONC Corr. Factor: 1.000000 User: JYH Custom ID1: Custom ID2: Custom ID3: Comment:								
Elem	Ag3280	Al3082	As1890	B_2496	Ba4554	Be3131	Ca4226	Cd2288
Units	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm
Avg	00249	00707	00343	. 02641	.02845	.00003	56.023	. 00042
Stddev	.00044	.00101	.00191	.00305	.00116	.00006	.194	.00009
%RSD	17.593	14.237	55.548	11.541	4.0674	209.59	.34669	22.355
#1	00298	00775	00562	.02960	.02978	00003	56.001	.00039
#2	00215	00754	00212	.02354	.02766	.00003	56.227	.00035
#3	00233	00591	00255	.02608	.02792	.00009	55.840	.00053
Check ? High Limit Low Limit	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass
Elem	Co2286	Cr2677	Cu2247	Fe2611	K_7664	Li6707	Mg2790	Mn2576
Units	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm
Avg	00037	. 00180	.01088	. 02539	12.559	. 01719	10.787	. 00148
Stddev	.00042	.00076	.00084	.02608	.013	.00684	.151	.00202
%RSD	113.07	42.063	7.7107	102.74	.10682	39.798	1.3964	137.05
#1	00081	.00202	.01174	.00321	12.544	.01115	10.643	.00021
#2	.00003	.00242	.01006	.01882	12.560	.01580	10.944	.00381
#3	00033	.00096	.01084	.05412	12.571	.02461	10.775	.00041
Check ? High Limit Low Limit	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass
Elem	Mo2020	Na5895	Ni2316	P_2149	Pb2203	Sb2068	Se1960	Si2124
Units	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm
Avg	. 00268	16.560	00045	. 00659	00235	00209	00067	5.2419
Stddev	.00013	.073	.00050	.00435	.00109	.00416	.00249	.0058
%RSD	4.7158	.44071	111.54	66.041	46.314	199.06	371.49	.11011
#1	.00260	16.543	00045	.00717	00312	00664	00175	5.2365
#2	.00283	16.640	.00005	.00198	00282	00115	.00217	5.2410
#3	.00261	16.498	00096	.01062	00111	.00152	00244	5.2480
Check ? High Limit Low Limit	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass

Sample Nar Method: ICF User: JYH Comment:		3_6010_200	.cquired: 5/1 .7WATER_ Custom II	3YLINES(v8		ype: Unk ode: CONC :	Corr. Fa	ctor: 1.00000(
Elem Units Avg Stddev %RSD	Sn1899 ppm . 00016 .00106 676.79	Sr4077 ppm . 34869 .00173 .49525	Ti3372 ppm 01269 .00323 25.488	TI1908 ppm 00077 .00394 513.21	V_2924 ppm .00161 .00068 42.234	Zn2062 ppm . 10241 .00025 .24745	Zr3391 ppm . 09985 .15320 153.42	
#1 #2 #3	.00132 00011 00075	.34774 .35068 .34765	01524 00905 01377	00339 .00376 00267	.00104 .00237 .00144	.10247 .10213 .10263	.26648 .06799 03490	
Check ? High Limit Low Limit	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	
Int. Std. Units Avg Stddev %RSD	Y_2243 Cts/S 13298. 24. .18136	Y_3600 Cts/S 95560. 583. .60991	Y_3774 Cts/S 4361.2 10.9 .24908					
#1 #2 #3	13286. 13281. 13325.	94933. 96085. 95663.	4355.2 4373.8 4354.6					

Sample Name: L1605056702 Acquired: 5/16/2016 13:37:58 Type: Unk Method: ICP-THERMO3_6010_200.7WATER_3YLINES(v873) Mode: CONC Corr. Factor: 1.000000 User: JYH Custom ID1: Custom ID2: Custom ID3: Comment:								
Elem	Ag3280	Al3082	As1890	B_2496	Ba4554	Be3131	Ca4226	
Units	ppm	ppm	ppm	ppm	ppm	ppm	ppm	
Avg	00156	00723	00085	. 02415	.03606	.00006	54.428	
Stddev	.00044	.00456	.00051	.00202	.00142	.00004	.048	
%RSD	28.303	63.117	60.356	8.3489	3.9330	66.366	.08780	
#1	00173	01101	00095	.02580	.03618	.00003	54.389	
#2	00106	00216	00029	.02475	.03741	.00004	54.481	
#3	00189	00851	00130	.02190	.03459	.00010	54.414	
Check ? High Limit Low Limit	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	
Elem	Cd2288	Co2286	Cr2677	Cu2247	Fe2611	K_7664	Li6707	
Units	ppm	ppm	ppm	ppm	ppm	ppm	ppm	
Avg	. 00063	00016	.00158	.01291	.01004	12.119	. 01415	
Stddev	.00029	.00023	.00124	.00040	.00925	.055	.00169	
%RSD	45.506	143.62	78.852	3.1305	92.161	.45087	11.916	
#1	.00095	.00010	.00302	.01336	.00213	12.175	.01365	
#2	.00051	00035	.00086	.01278	.00777	12.116	.01602	
#3	.00042	00024	.00086	.01258	.02022	12.066	.01276	
Check ? High Limit Low Limit	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	
Elem	Mg2790	Mn2576	Mo2020	Na5895	Ni2316	P_2149	Pb2203	
Units	ppm	ppm	ppm	ppm	ppm	ppm	ppm	
Avg	10.417	. 00395	. 00197	16.087	.00087	00169	. 00166	
Stddev	.119	.00135	.00066	.081	.00022	.00843	.00232	
%RSD	1.1390	34.158	33.504	.50138	24.916	498.02	140.00	
#1	10.283	.00547	.00156	16.151	.00068	00692	.00007	
#2	10.456	.00347	.00162	16.112	.00111	00619	.00058	
#3	10.511	.00290	.00274	15.996	.00083	.00804	.00431	
Check ? High Limit Low Limit	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	

Sample Name: Method: ICP-T User: JYH Comment:	•	6 13:37:58 ES(v873) Custom	Type: Unk Mode: CON0 ID3:	C Corr. F	Factor: 1.000000		
Elem Units Avg Stddev %RSD	Sb2068 ppm 00384 .00138 35.980	Se1960 ppm . 00527 .00838 158.93	Si2124 ppm 5.1058 .0039 .07572	Sn1899 ppm 00049 .00073 147.96	Sr4077 ppm . 33960 .00037 .10885	Ti3372 ppm 00648 .00297 45.798	TI1908 ppm 00149 .00292 196.32
#1 #2 #3	00526 00251 00374	.00931 00436 .01087	5.1100 5.1052 5.1023	00121 .00024 00050	.34000 .33953 .33928	00810 00305 00828	00418 .00161 00189
Check ? High Limit Low Limit	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass
Elem Units Avg Stddev %RSD	V_2924 ppm . 00114 .00035 30.654	Zn2062 ppm .09992 .00017 .17509	Zr3391 ppm F32664 .33114 101.38				
#1 #2 #3	.00074 .00129 .00138	.09972 .10005 .09998	36408 .02164 63746				
Check ? High Limit Low Limit	Chk Pass	Chk Pass	Chk Fail 36.000 04000				
Int. Std. Units Avg Stddev %RSD	Y_2243 Cts/S 13323. 45. .33548	Y_3600 Cts/S 95532. 391. .40886	Y_3774 Cts/S 4369.0 48.8 1.1171				
#1 #2 #3	13277. 13367. 13326.	95969. 95217. 95409.	4319.9 4369.5 4417.5				

Sample Name: L1605058601 Acquired: 5/16/2016 13:41:53 Type: Unk Method: ICP-THERMO3_6010_200.7WATER_3YLINES(v873) Mode: CONC Corr. Factor: 1.000000 User: JYH Custom ID1: Custom ID2: Custom ID3: Comment:								
Elem	Ag3280	Al3082	As1890	B_2496	Ba4554	Be3131	Ca4226	Cd2288
Units	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm
Avg	00162	1.5028	00023	. 02059	. 02009	.00013	16.252	. 00040
Stddev	.00230	.0078	.00026	.00098	.00015	.00001	.124	.00028
%RSD	142.21	.52211	112.26	4.7655	.73971	6.2089	.76450	69.436
#1	.00071	1.5050	00019	.02113	.01994	.00014	16.316	.00072
#2	00166	1.4941	00050	.01946	.02024	.00014	16.331	.00018
#3	00389	1.5093	.00001	.02119	.02011	.00012	16.109	.00031
Check ? High Limit Low Limit	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass
Elem	Co2286	Cr2677	Cu2247	Fe2611	K_7664	Li6707	Mg2790	Mn2576
Units	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm
Avg	.00059	.00184	. 00426	1.8086	2.2362	. 00610	6.7966	. 01439
Stddev	.00029	.00064	.00051	.0309	.0654	.00487	.0714	.00187
%RSD	48.788	34.712	12.076	1.7061	2.9239	79.837	1.0502	13.019
#1	.00090	.00226	.00467	1.7915	2.1628	.01066	6.8790	.01654
#2	.00053	.00215	.00369	1.8442	2.2881	.00097	6.7590	.01342
#3	.00033	.00111	.00443	1.7901	2.2578	.00668	6.7520	.01319
Check ? High Limit Low Limit	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass
Elem	Mo2020	Na5895	Ni2316	P_2149	Pb2203	Sb2068	Se1960	Si2124
Units	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm
Avg	. 00154	2.7473	.00122	. 11524	. 00155	00438	.00254	5.4351
Stddev	.00036	.0373	.00101	.00952	.00150	.00081	.00436	.0121
%RSD	23.547	1.3571	82.401	8.2611	96.394	18.490	171.72	.22264
#1	.00112	2.7748	.00105	.10586	.00072	00526	.00757	5.4359
#2	.00176	2.7623	.00031	.12489	.00066	00367	.00026	5.4468
#3	.00173	2.7049	.00231	.11497	.00328	00421	00021	5.4226
Check ? High Limit Low Limit	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass

Sample Nar Method: ICF User: JYH Comment:		3_6010_200	cquired: 5/1 .7WATER_: Custom IE	3YLINES(v8		ype: Unk ode: CONC :	Corr. Fa	ctor: 1.00000(
Elem Units Avg Stddev %RSD	Sn1899 ppm . 00050 .00120 239.14	Sr4077 ppm . 02647 .00014 .53199	Ti3372 ppm .02502 .00616 24.618	TI1908 ppm .00004 .00184 4477.4	V_2924 ppm . 00411 .00070 16.894	Zn2062 ppm . 00978 .00011 1.1200	Zr3391 ppm 1.0357 .2198 21.224	
#1 #2 #3	00013 00025 .00189	.02637 .02664 .02641	.02099 .02195 .03210	00175 00005 .00192	.00477 .00418 .00339	.00984 .00965 .00984	1.2094 1.1092 .78855	
Check ? High Limit Low Limit	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	
Int. Std. Units Avg Stddev %RSD	Y_2243 Cts/S 13532. 24. .17410	Y_3600 Cts/S 97550. 319. .32670	Y_3774 Cts/S 4411.1 28.5 .64653					
#1 #2 #3	13520. 13516. 13559.	97615. 97203. 97830.	4379.3 4434.4 4419.6					

Sample Name: L1605058602 Acquired: 5/16/2016 13:45:49 Type: Unk Method: ICP-THERMO3_6010_200.7WATER_3YLINES(v873) Mode: CONC Corr. Factor: 1.000000 User: JYH Custom ID1: Custom ID2: Custom ID3: Comment:								
Elem	Ag3280	Al3082	As1890	B_2496	Ba4554	Be3131	Ca4226	
Units	ppm	ppm	ppm	ppm	ppm	ppm	ppm	
Avg	F00409	1.7623	00012	. 02199	. 02159	.00013	19.513	
Stddev	.00175	.0075	.00394	.00165	.00017	.00008	.059	
%RSD	42.786	.42347	3236.7	7.4819	.77380	61.775	.30351	
#1	00241	1.7537	.00380	.02206	.02155	.00016	19.579	
#2	00395	1.7671	00008	.02031	.02178	.00018	19.494	
#3	00590	1.7661	00409	.02359	.02145	.00004	19.465	
Check ? High Limit Low Limit	Chk Fail 9.0000 00400	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	
Elem	Cd2288	Co2286	Cr2677	Cu2247	Fe2611	K_7664	Li6707	
Units	ppm	ppm	ppm	ppm	ppm	ppm	ppm	
Avg	. 00050	.00039	. 00196	. 00347	1.7538	2.5754	. 00891	
Stddev	.00027	.00037	.00140	.00073	.0088	.0142	.00100	
%RSD	54.558	94.910	71.409	21.099	.50104	.55175	11.179	
#1	.00044	.00072	.00153	.00412	1.7588	2.5697	.00990	
#2	.00026	00001	.00083	.00360	1.7588	2.5916	.00791	
#3	.00080	.00047	.00352	.00268	1.7436	2.5650	.00891	
Check ? High Limit Low Limit	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	
Elem	Mg2790	Mn2576	Mo2020	Na5895	Ni2316	P_2149	Pb2203	
Units	ppm	ppm	ppm	ppm	ppm	ppm	ppm	
Avg	6.5828	. 02558	. 00146	3.2205	. 00207	. 16161	00115	
Stddev	.0711	.00145	.00013	.0096	.00035	.00873	.00165	
%RSD	1.0806	5.6795	8.9478	.29925	17.151	5.4048	143.82	
#1	6.6413	.02407	.00131	3.2155	.00242	.17116	.00004	
#2	6.6035	.02571	.00155	3.2144	.00171	.15404	00304	
#3	6.5036	.02697	.00152	3.2316	.00207	.15962	00045	
Check ? High Limit Low Limit	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	

Sample Name Method: ICP-T User: JYH Comment:)10_200.7W <i>A</i>	ed: 5/16/2010 ATER_3YLINI stom ID2:		Type: Unk Mode: CONO ID3:	C Corr. F	Factor: 1.000000
Elem Units Avg Stddev %RSD	Sb2068 ppm 00160 .00191 119.55	Se1960 ppm .00362 .00170 47.006	Si2124 ppm 5.9653 .0095 .15851	Sn1899 ppm 00036 .00066 183.49	Sr4077 ppm . 03023 .00011 .34867	Ti3372 ppm . 02572 .00198 7.6882	TI1908 ppm 00221 .00253 114.46
#1 #2 #3	00094 00010 00375	.00173 .00412 .00502	5.9762 5.9599 5.9598	.00020 00109 00019	.03012 .03033 .03024	.02409 .02792 .02515	00285 .00058 00436
Check ? High Limit Low Limit	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass
Elem Units Avg Stddev %RSD	V_2924 ppm . 00484 .00005 1.0534	Zn2062 ppm . 01010 .00017 1.7185	Zr3391 ppm . 84063 .19325 22.988				
#1 #2 #3	.00488 .00478 .00486	.01023 .01016 .00990	.89665 .99967 .62556				
Check ? High Limit Low Limit	Chk Pass	Chk Pass	Chk Pass				
Int. Std. Units Avg Stddev %RSD	Y_2243 Cts/S 13514. 12. .09089	Y_3600 Cts/S 97272. 371. .38110	Y_3774 Cts/S 4412.0 42.8 .96944				
#1 #2 #3	13528. 13510. 13505.	97531. 97438. 96847.	4365.0 4448.6 4422.5				

Sample Name: L1605058902 Acquired: 5/16/2016 13:49:46 Type: Unk Method: ICP-THERMO3_6010_200.7WATER_3YLINES(v873) Mode: CONC Corr. Factor: 1.000000 User: JYH Custom ID1: Custom ID2: Custom ID3: Comment:								
Elem	Ag3280	Al3082	As1890	B_2496	Ba4554	Be3131	Ca4226	Cd2288
Units	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm
Avg	00324	00850	00027	. 00623	.00092	.00009	2.1453	. 00042
Stddev	.00064	.00515	.00191	.00125	.00092	.00004	.0141	.00006
%RSD	19.737	60.583	718.02	20.123	99.863	41.429	.65849	14.276
#1	00383	00389	00144	.00510	.00143	.00005	2.1595	.00047
#2	00334	01406	.00194	.00758	00014	.00013	2.1312	.00035
#3	00256	00755	00130	.00602	.00146	.00010	2.1451	.00044
Check ? High Limit Low Limit	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass
Elem	Co2286	Cr2677	Cu2247	Fe2611	K_7664	Li6707	Mg2790	Mn2576
Units	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm
Avg	.00003	00002	.00330	. 04548	15.283	. 00470	. 54603	. 01362
Stddev	.00016	.00037	.00160	.02752	.099	.00376	.09818	.00082
%RSD	501.91	1500.9	48.373	60.513	.64554	79.993	17.980	5.9923
#1	.00016	00045	.00320	.01744	15.245	.00544	.65937	.01443
#2	.00008	.00016	.00495	.04655	15.395	.00063	.48745	.01280
#3	00015	.00021	.00176	.07246	15.208	.00804	.49125	.01361
Check ? High Limit Low Limit	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass
Elem	Mo2020	Na5895	Ni2316	P_2149	Pb2203	Sb2068	Se1960	Si2124
Units	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm
Avg	.00092	41.706	. 00193	2.2232	.00070	00189	00667	. 18583
Stddev	.00030	.037	.00170	.0050	.00251	.00176	.00248	.00152
%RSD	32.320	.08856	87.866	.22294	358.13	93.437	37.118	.81664
#1	.00080	41.678	.00055	2.2210	00219	00230	00570	.18616
#2	.00070	41.747	.00142	2.2289	.00199	.00005	00483	.18715
#3	.00126	41.691	.00383	2.2197	.00230	00340	00948	.18417
Check ? High Limit Low Limit	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass

Sample Nar Method: ICF User: JYH Comment:		3_6010_200	.cquired: 5/1 .7WATER_: Custom IE	3YLINES(v8	•	ype: Unk ode: CONC :	Corr. Fac	etor: 1.00000(
Elem Units Avg Stddev %RSD	Sn1899 ppm 00115 .00052 45.225	Sr4077 ppm . 00229 .00037 16.142	Ti3372 ppm 00516 .00776 150.32	TI1908 ppm 00178 .00198 111.34	V_2924 ppm .00050 .00039 76.760	Zn2062 ppm . 02002 .00015 .74615	Zr3391 ppm . 15407 .13716 89.025	
#1 #2 #3	00167 00114 00063	.00271 .00214 .00202	01011 00915 .00378	.00050 00276 00309	.00094 .00037 .00020	.01991 .02019 .01996	.29095 .15462 .01663	
Check ? High Limit Low Limit	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	
Int. Std. Units Avg Stddev %RSD	Y_2243 Cts/S 13580. 16. .11710	Y_3600 Cts/S 97244. 170. .17481	Y_3774 Cts/S 4432.3 23.4 .52735					
#1 #2 #3	13591. 13562. 13587.	97048. 97350. 97334.	4406.0 4450.8 4439.9					

Sample Name: L1605058904 Acquired: 5/16/2016 13:53:45 Type: Unk Method: ICP-THERMO3_6010_200.7WATER_3YLINES(v873) Mode: CONC Corr. Factor: 1.000000 User: JYH Custom ID1: Custom ID2: Custom ID3: Comment:								
Elem	Ag3280	Al3082	As1890	B_2496	Ba4554	Be3131	Ca4226	Cd2288
Units	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm
Avg	00263	. 07857	00096	. 00823	.01512	.00004	76.570	. 00035
Stddev	.00061	.00178	.00121	.00094	.00084	.00007	.870	.00008
%RSD	23.056	2.2698	126.29	11.407	5.5633	165.80	1.1359	22.862
#1	00321	.07660	00044	.00716	.01443	.00012	77.574	.00037
#2	00268	.08007	00234	.00859	.01606	.00002	76.095	.00026
#3	00200	.07905	00009	.00893	.01486	00001	76.042	.00042
Check ? High Limit Low Limit	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass
Elem	Co2286	Cr2677	Cu2247	Fe2611	K_7664	Li6707	Mg2790	Mn2576
Units	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm
Avg	00000	.00338	.01567	. 34997	15.222	.00511	3.9300	. 15830
Stddev	.00027	.00010	.00056	.02547	.104	.00136	.0865	.00288
%RSD	17209.	3.0174	3.5811	7.2783	.68176	26.566	2.2021	1.8184
#1	.00029	.00333	.01611	.34942	15.332	.00370	4.0061	.16084
#2	00005	.00349	.01586	.37571	15.208	.00641	3.8359	.15517
#3	00024	.00330	.01504	.32477	15.126	.00522	3.9479	.15888
Check ? High Limit Low Limit	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass
Elem	Mo2020	Na5895	Ni2316	P_2149	Pb2203	Sb2068	Se1960	Si2124
Units	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm
Avg	. 00218	41.772	. 00274	46.026	.00158	00136	.00242	. 27191
Stddev	.00032	.483	.00011	.079	.00059	.00256	.00936	.00156
%RSD	14.867	1.1556	4.1327	.17251	37.482	188.32	386.59	.57478
#1	.00252	42.320	.00286	46.115	.00208	00429	.00542	.27132
#2	.00216	41.585	.00263	45.965	.00093	.00042	00807	.27368
#3	.00187	41.411	.00273	45.996	.00172	00020	.00992	.27072
Check ? High Limit Low Limit	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass

Sample Name: L1605058904 Acquired: 5/16/2016 13:53:45 Type: Unk Method: ICP-THERMO3_6010_200.7WATER_3YLINES(v873) Mode: CONC Corr. Factor: 1.000000 User: JYH Custom ID1: Custom ID2: Custom ID3: Comment:								
Elem Units Avg Stddev %RSD	Sn1899 ppm 00110 .00031 27.838	Sr4077 ppm . 05329 .00112 2.0941	Ti3372 ppm 01021 .00417 40.897	TI1908 ppm 00124 .00096 77.653	V_2924 ppm . 00221 .00081 36.478	Zn2062 ppm .13835 .00065 .46674	Zr3391 ppm . 07649 .17753 232.11	
#1 #2 #3	00108 00081 00142	.05443 .05322 .05220	00546 01330 01187	00230 00043 00098	.00294 .00135 .00234	.13908 .13785 .13811	11116 .09884 .24178	
Check ? High Limit Low Limit	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	
Int. Std. Units Avg Stddev %RSD	Y_2243 Cts/S 14376. 20. .13942	Y_3600 Cts/S 103350. 102. .09890	Y_3774 Cts/S 4825.3 47.6 .98561					
#1 #2 #3	14358. 14398. 14372.	103390. 103230. 103420.	4771.6 4842.3 4862.1					

Sample Name Method: ICP-1 User: JYH Comment:		010_200.7W	6 13:57:41 ES(v873) Custom	Type: Unk Mode: CONC Corr. Factor: 1.000000			
Elem	Ag3280	Al3082	As1890	B_2496	Ba4554	Be3131	Ca4226
Units	ppm	ppm	ppm	ppm	ppm	ppm	ppm
Avg	00268	01037	00012	.00085	.00209	.00011	5.9281
Stddev	.00122	.00922	.00370	.00168	.00058	.00004	.0341
%RSD	45.674	88.908	3011.1	198.03	27.853	34.719	.57517
#1	00130	00990	00201	.00046	.00261	.00015	5.9637
#2	00365	01981	.00414	00060	.00220	.00008	5.9250
#3	00309	00139	00250	.00269	.00146	.00009	5.8957
Check ? High Limit Low Limit	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass
Elem	Cd2288	Co2286	Cr2677	Cu2247	Fe2611	K_7664	Li6707
Units	ppm	ppm	ppm	ppm	ppm	ppm	ppm
Avg	. 00010	00001	00029	00032	.01024	2.0012	. 00215
Stddev	.00015	.00029	.00088	.00091	.01251	.0682	.00080
%RSD	146.82	2205.2	301.86	284.34	122.13	3.4096	37.092
#1	.00027	.00026	00112	00107	00341	2.0629	.00144
#2	00003	.00002	.00064	.00069	.02115	1.9279	.00201
#3	.00007	00032	00040	00057	.01299	2.0126	.00301
Check ? High Limit Low Limit	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass
Elem	Mg2790	Mn2576	Mo2020	Na5895	Ni2316	P_2149	Pb2203
Units	ppm	ppm	ppm	ppm	ppm	ppm	ppm
Avg	. 35898	.03195	. 00023	. 73524	00047	. 13581	00220
Stddev	.06921	.00100	.00021	.02953	.00065	.00628	.00197
%RSD	19.281	3.1301	90.721	4.0168	138.50	4.6244	89.204
#1	.38704	.03095	.00016	.72121	.00006	.13349	00076
#2	.40975	.03197	.00007	.71534	00027	.14292	00141
#3	.28014	.03295	.00047	.76917	00119	.13102	00444
Check ? High Limit Low Limit	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass

•						Type: Unk Mode: CONC Corr. Factor: 1.000000 ID3:			
Elem Units Avg Stddev %RSD	Sb2068 ppm 00173 .00342 197.51	Se1960 ppm 00163 .00599 367.95	Si2124 ppm .06668 .00013 .19930	Sn1899 ppm 00036 .00042 114.80	Sr4077 ppm . 01040 .00039 3.7443	Ti3372 ppm 00240 .00263 109.74	TI1908 ppm 00261 .00382 146.50		
#1 #2 #3	00506 00189 .00177	.00413 00120 00782	.06655 .06682 .06668	.00012 00055 00065	.01060 .01065 .00995	00541 00119 00058	00685 00155 .00057		
Check ? High Limit Low Limit	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass		
Elem Units Avg Stddev %RSD	V_2924 ppm . 00114 .00107 93.822	Zn2062 ppm . 00446 .00004 .81973	Zr3391 ppm F16195 .42074 259.80						
#1 #2 #3	.00021 .00091 .00230	.00443 .00450 .00445	64322 .02119 .13619						
Check ? High Limit Low Limit	Chk Pass	Chk Pass	Chk Fail 36.000 04000						
Int. Std. Units Avg Stddev %RSD	Y_2243 Cts/S 13656. 20. .14879	Y_3600 Cts/S 99063. 115. .11597	Y_3774 Cts/S 4433.6 14.8 .33406						
#1 #2 #3	13678. 13638. 13650.	99164. 98938. 99088.	4445.7 4417.1 4437.9						

Sample Name: L1605061103 Acquired: 5/16/2016 14:01:41 Type: Unk Method: ICP-THERMO3_6010_200.7WATER_3YLINES(v873) Mode: CONC Corr. Factor: 1.000000 User: JYH Custom ID1: Custom ID2: Custom ID3: Comment:									
Elem	Ag3280	Al3082	As1890	B_2496	Ba4554	Be3131	Ca4226	Cd2288	
Units	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	
Avg	00185	00957	. 00143	. 04286	.03893	.00001	114.56	. 00052	
Stddev	.00119	.00347	.00265	.00179	.00064	.00001	.33	.00017	
%RSD	64.411	36.302	185.15	4.1780	1.6534	186.89	.28842	32.302	
#1	00113	01357	00058	.04272	.03857	.00000	114.74	.00072	
#2	00322	00778	.00443	.04115	.03967	00000	114.75	.00045	
#3	00119	00735	.00044	.04472	.03854	.00002	114.18	.00040	
Check ? High Limit Low Limit	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	
Elem	Co2286	Cr2677	Cu2247	Fe2611	K_7664	Li6707	Mg2790	Mn2576	
Units	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	
Avg	. 00079	.00100	. 00334	.25303	. 83526	. 02007	33.641	. 53600	
Stddev	.00026	.00034	.00065	.00262	.06550	.00747	.135	.00101	
%RSD	33.252	33.567	19.603	1.0349	7.8420	37.219	.40043	.18757	
#1	.00095	.00071	.00393	.25115	.80879	.01220	33.681	.53526	
#2	.00049	.00094	.00345	.25191	.78713	.02706	33.490	.53560	
#3	.00094	.00137	.00264	.25602	.90985	.02097	33.751	.53714	
Check ? High Limit Low Limit	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	
Elem	Mo2020	Na5895	Ni2316	P_2149	Pb2203	Sb2068	Se1960	Si2124	
Units	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	
Avg	. 00066	69.616	.00119	. 01278	00356	00027	.00018	5.4538	
Stddev	.00018	.200	.00070	.00272	.00351	.00251	.00452	.0224	
%RSD	27.198	.28674	59.169	21.277	98.486	932.32	2476.5	.41152	
#1	.00048	69.823	.00070	.01104	.00048	.00248	.00273	5.4691	
#2	.00066	69.600	.00087	.01591	00584	00242	00504	5.4643	
#3	.00084	69.425	.00199	.01138	00533	00086	.00285	5.4281	
Check ? High Limit Low Limit	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	

Sample Nar Method: ICF User: JYH Comment:		3_6010_200	.cquired: 5/1 .7WATER_ Custom II	3YLINES(v8		ype: Unk ode: CONC :	Corr. Fa	ctor: 1.00000(
Elem Units Avg Stddev %RSD	Sn1899 ppm 00040 .00037 94.334	Sr4077 ppm . 24527 .00068 .27552	Ti3372 ppm 02039 .00373 18.298	TI1908 ppm 00276 .00119 42.999	V_2924 ppm .00032 .00122 378.08	Zn2062 ppm . 05149 .00032 .61567	Zr3391 ppm . 17630 .16895 95.830	
#1 #2 #3	00047 .00001 00073	.24574 .24558 .24450	01618 02168 02330	00381 00148 00298	.00115 00108 .00089	.05178 .05154 .05115	.28260 01852 .26483	
Check ? High Limit Low Limit	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	
Int. Std. Units Avg Stddev %RSD	Y_2243 Cts/S 13052. 51. .39319	Y_3600 Cts/S 93249. 236. .25302	Y_3774 Cts/S 4329.4 42.5 .98142					
#1 #2 #3	13005. 13043. 13107.	92980. 93347. 93421.	4281.0 4346.6 4360.5					

Method: IC User: JYH	Sample Name: CCV Acquired: 5/16/2016 14:05:39 Type: QC Method: ICP-THERMO3_6010_200.7WATER_3YLINES(v873) Mode: CONC Corr. Factor: 1.000000 User: JYH Custom ID1: Custom ID2: Custom ID3: Comment:									
Elem Units Avg Stddev %RSD	Ag3280 ppm . 38613 .00052 .13573	9.6207 .0170	As1890 ppm . 38649 .00430 1.1138	_ppm . 48284 .00453	.95429	Be3131 ppm . 04711 .00012 .25068	9.3555 .0316	Cd2288 ppm . 04723 .00009 .19637		
#1 #2 #3	.38624 .38659 .38556	9.6019 9.6252 9.6351	.39012 .38762 .38173		.95396 .95148 .95744	.04723 .04699 .04712		.04726 .04729 .04712		
Check ? Value Range	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass		
Elem Units Avg Stddev %RSD	Co2286 ppm . 19664 .00038 .19149	Cr2677 ppm . 49436 .00212 .42965	Cu2247 ppm . 49355 .00124 .25086	ppm 3.8995 .0197	.236	Li6707 ppm . 96392 .00374 .38827	ppm 9.7300 .0438	. 48050 .00123		
#1 #2 #3	.19668 .19624 .19700	.49326 .49301 .49680	.49446 .49214 .49404		48.223 48.124 48.573	.96096 .96268 .96813		.47921 .48062 .48167		
Check ? Value Range	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass		
Elem Units Avg Stddev %RSD	Mo2020 ppm . 94896 .00320 .33755	Na5895 ppm 48.730 .106 .21710	Ni2316 ppm . 50084 .00106 .21245	_ ppm	ppm . 49964 .00287	Sb2068 ppm 1.1593 .0026 .22039	ppm . 36910 .00776			
#1 #2 #3	.95251 .94811 .94628	48.741 48.619 48.830	.50179 .49969 .50103	9.7005	.50207 .49647 .50037	1.1622 1.1582 1.1575	.37783			
Check ? Value Range	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass		

•	ame: CCV CP-THERMO	•	d: 5/16/201 00.7WATE Custor	R_3YLINE	, ,	Mode: C	ONC C	orr. Factor: 1.000000
Comment:		וו טוו.	Gustoi	11 102.	Ouston	1100.		
Elem Units Avg Stddev %RSD	Sn1899 ppm . 97709 .00082 .08373	Sr4077 ppm . 95108 .00254 .26730	Ti3372 ppm . 94890 .00571 .60172	TI1908 ppm . 48636 .00213 .43892	V_2924 ppm . 97043 .00135 .13910	Zn2062 ppm . 99511 .00080 .08047	ppm 1.0892	
#1 #2 #3	.97694 .97797 .97636	.95152 .94834 .95337	.95355 .94253 .95062	.48864 .48604 .48441	.97199 .96957 .96973	.99556 .99418 .99558	.73146 1.2941 1.2420	
Check ? Value Range	Chk Pass	Chk Pass						
Int. Std. Units Avg Stddev %RSD	Y_2243 Cts/S 13937 . 17. .12233	Y_3600 Cts/S 99903. 269.	Y_3774 Cts/S 4510.9 8.6 .18973					
#1 #2 #3	13945. 13918. 13949.	100160. 99925. 99623.	4516.1 4501.1 4515.7					

•										
Elem	Ag3280	Al3082	As1890	B_2496	Ba4554	Be3131	Ca4226			
Units	ppm	ppm	ppm	ppm	ppm	ppm	ppm			
Avg	00256	01476	00253	. 00077	.00158	.00015	03926			
Stddev	.00016	.00435	.00217	.00074	.00053	.00007	.02926			
%RSD	6.2047	29.508	85.977	96.216	33.493	49.683	74.540			
#1	00273	01096	00447	.00140	.00117	.00016	00641			
#2	00241	01380	00293	.00097	.00218	.00007	04882			
#3	00255	01951	00018	00005	.00138	.00022	06254			
Check ? High Limit Low Limit	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass			
Elem	Cd2288	Co2286	Cr2677	Cu2247	Fe2611	K_7664	Li6707			
Units	ppm	ppm	ppm	ppm	ppm	ppm	ppm			
Avg	. 00030	00027	.00050	. 00011	. 01190	. 17651	. 00480			
Stddev	.00034	.00006	.00017	.00047	.01256	.12861	.00152			
%RSD	114.15	23.872	33.382	422.60	105.54	72.864	31.769			
#1	.00043	00020	.00067	.00012	.00129	.27759	.00656			
#2	.00056	00031	.00034	00036	.00864	.22020	.00393			
#3	00009	00030	.00048	.00058	.02577	.03175	.00390			
Check ? High Limit Low Limit	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass			
Elem	Mg2790	Mn2576	Mo2020	Na5895	Ni2316	P_2149	Pb2203			
Units	ppm	ppm	ppm	ppm	ppm	ppm	ppm			
Avg	. 09003	. 00039	. 00387	. 01539	00025	. 00219	00101			
Stddev	.07545	.00219	.00038	.01293	.00090	.00576	.00279			
%RSD	83.807	567.16	9.8864	83.989	368.26	262.78	275.96			
#1	.00317	00183	.00426	.03024	.00028	00379	.00041			
#2	.13936	.00254	.00350	.00934	.00027	.00771	.00078			
#3	.12757	.00045	.00385	.00661	00129	.00265	00423			
Check ? High Limit Low Limit	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass			

Sample Nam Method: ICP User: JYH Comment:	ne: CCB / -THERMO3_ Custom I			LINES(v873	pe: Blank) Mode: tom ID3:	CONC (Corr. Factor:	1.000000
Elem Units Avg Stddev %RSD	Sb2068 ppm . 00179 .00161 89.989	Se1960 ppm .00070 .00434 622.70	Si2124 ppm 02827 .00132 4.6550	Sn1899 ppm 00049 .00125 254.65	Sr4077 ppm . 00091 .00047 51.835	Ti3372 ppm 00169 .00226 134.31	TI1908 ppm 00205 .00190 93.003	
#1 #2 #3	.00084 .00088 .00365	.00108 .00483 00382	02692 02834 02955	.00003 00191 .00042	.00128 .00108 .00038	00409 00137 .00040	.00013 00341 00286	
Check ? High Limit Low Limit	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	
Elem Units Avg Stddev %RSD	V_2924 ppm .00088 .00015 17.112	Zn2062 ppm .00013 .00016 116.31	Zr3391 ppm F .17901 .24341 135.98					
#1 #2 #3	.00088 .00104 .00074	.00004 .00032 .00004	.45758 .00737 .07207					
Check ? High Limit Low Limit	Chk Pass	Chk Pass	Chk Fail .04000 04000					
Int. Std. Units Avg Stddev %RSD	Y_2243 Cts/S 13804. 14. .09998	Y_3600 Cts/S 99441. 505. .50743	Y_3774 Cts/S 4425.0 7.4 .16638					
#1 #2 #3	13807. 13816. 13789.	99961. 98953. 99408.	4432.9 4418.3 4423.8					

Sample Name: L1605061105 Acquired: 5/16/2016 14:13:16 Type: Unk Method: ICP-THERMO3_6010_200.7WATER_3YLINES(v873) Mode: CONC Corr. Factor: 1.000000 User: JYH Custom ID1: Custom ID2: Custom ID3: Comment:								
Elem	Ag3280	Al3082	As1890	B_2496	Ba4554	Be3131	Ca4226	Cd2288
Units	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm
Avg	00263	00404	. 00078	. 04814	. 05508	.00005	131.64	. 00035
Stddev	.00194	.00967	.00379	.00146	.00025	.00002	.21	.00037
%RSD	73.765	239.61	485.87	3.0348	.46258	39.251	.15906	105.40
#1	00228	.00262	00322	.04833	.05523	.00003	131.61	.00042
#2	00472	01513	.00123	.04660	.05524	.00007	131.86	.00067
#3	00089	.00040	.00433	.04950	.05479	.00005	131.45	00005
Check ? High Limit Low Limit	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass
Elem	Co2286	Cr2677	Cu2247	Fe2611	K_7664	Li6707	Mg2790	Mn2576
Units	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm
Avg	. 00297	. 00234	.00040	. 12234	. 99675	. 01710	54.944	1.1242
Stddev	.00040	.00131	.00170	.01305	.08571	.00121	.119	.0051
%RSD	13.367	56.045	429.83	10.666	8.5993	7.1020	.21712	.45573
#1	.00258	.00199	00156	.13710	.93078	.01755	54.887	1.1185
#2	.00337	.00123	.00152	.11232	.96584	.01803	54.863	1.1283
#3	.00296	.00378	.00123	.11760	1.0936	.01573	55.081	1.1259
Check ? High Limit Low Limit	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass
Elem	Mo2020	Na5895	Ni2316	P_2149	Pb2203	Sb2068	Se1960	Si2124
Units	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm
Avg	. 00130	128.93	.00389	. 01612	00267	00124	.00273	4.6853
Stddev	.00010	.18	.00035	.00553	.00443	.00621	.00660	.0319
%RSD	7.8354	.13722	9.0169	34.326	165.90	500.66	241.63	.68158
#1	.00127	129.06	.00383	.01669	00693	.00195	00469	4.7036
#2	.00122	129.00	.00357	.02135	00300	.00272	.00795	4.7039
#3	.00141	128.73	.00426	.01033	.00191	00839	.00494	4.6485
Check ? High Limit Low Limit	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass

Sample Nar Method: ICF User: JYH Comment:		3_6010_200	cquired: 5/1 .7WATER_: Custom IE	3YLINES(v8	•	ype: Unk ode: CONC :	Corr. Fac	tor: 1.00000(
Elem Units Avg Stddev %RSD	Sn1899 ppm 00026 .00072 274.95	Sr4077 ppm . 20060 .00029 .14519	Ti3372 ppm 02466 .00475 19.276	TI1908 ppm 00430 .00087 20.184	V_2924 ppm .00035 .00133 380.59	Zn2062 ppm . 00483 .00008 1.6369	Zr3391 ppm . 18961 .05527 29.146	
#1 #2 #3	.00057 00062 00073	.20028 .20085 .20067	01977 02497 02926	00330 00482 00478	.00120 .00103 00118	.00480 .00478 .00492	.14604 .25178 .17103	
Check ? High Limit Low Limit	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	
Int. Std. Units Avg Stddev %RSD	Y_2243 Cts/S 12887. 36. .28119	Y_3600 Cts/S 92119. 622. .67557	Y_3774 Cts/S 4310.9 23.8 .55147					
#1 #2 #3	12867. 12865. 12929.	91646. 92824. 91887.	4314.0 4285.7 4332.9					

Sample Name Method: ICP-T User: JYH Comment:)10_200.7W <i>A</i>	Acquired: 5/16/2016 14:17:13 0_200.7WATER_3YLINES(v873) Custom ID2: Custom			Type: Unk Mode: CONC Corr. Factor: 1.000 ID3:		
Elem	Ag3280	Al3082	As1890	B_2496	Ba4554	Be3131	Ca4226	
Units	ppm	ppm	ppm	ppm	ppm	ppm	ppm	
Avg	00207	. 00343	. 04245	. 07265	. 03180	.00007	F 309.18	
Stddev	.00347	.00456	.00213	.00124	.00040	.00004	1.61	
%RSD	167.40	133.09	5.0198	1.7075	1.2482	55.393	.52225	
#1	00437	.00864	.04050	.07124	.03216	.00006	311.02	
#2	00378	.00150	.04473	.07312	.03137	.00004	308.51	
#3	.00192	.00015	.04214	.07358	.03186	.00012	308.01	
Check ? High Limit Low Limit	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Fail 270.00 10000	
Elem	Cd2288	Co2286	Cr2677	Cu2247	Fe2611	K_7664	Li6707	
Units	ppm	ppm	ppm	ppm	ppm	ppm	ppm	
Avg	.00080	.00187	.00194	. 00245	11.597	3.2678	. 04684	
Stddev	.00024	.00033	.00094	.00120	.079	.0958	.00179	
%RSD	29.993	17.553	48.318	48.996	.68460	2.9314	3.8164	
#1	.00085	.00188	.00096	.00160	11.642	3.1613	.04878	
#2	.00102	.00220	.00282	.00382	11.506	3.2949	.04648	
#3	.00054	.00154	.00203	.00193	11.645	3.3471	.04526	
Check ? High Limit Low Limit	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	
Elem	Mg2790	Mn2576	Mo2020	Na5895	Ni2316	P_2149	Pb2203	
Units	ppm	ppm	ppm	ppm	ppm	ppm	ppm	
Avg	84.241	1.4144	. 00145	F 325.88	. 01128	. 18449	00037	
Stddev	.160	.0058	.00026	2.44	.00103	.00541	.00343	
%RSD	.18971	.41196	17.706	.74833	9.1693	2.9315	920.73	
#1	84.421	1.4167	.00122	328.62	.01202	.18621	00432	
#2	84.115	1.4188	.00142	325.08	.01173	.18883	.00187	
#3	84.186	1.4078	.00173	323.94	.01010	.17843	.00133	
Check ? High Limit Low Limit	Chk Pass	Chk Pass	Chk Pass	Chk Fail 270.00 50000	Chk Pass	Chk Pass	Chk Pass	

Sample Name: L1605061106 Acquired: 5/16/2016 14:17:13 Type: Unk Method: ICP-THERMO3_6010_200.7WATER_3YLINES(v873) Mode: CONC User: JYH Custom ID1: Custom ID2: Custom ID3: Comment:							Factor: 1.00000(
Elem Units Avg Stddev %RSD	Sb2068 ppm 00041 .00243 597.59	Se1960 ppm 00026 .00554 2109.5	Si2124 ppm 7.0733 .0103 .14514	Sn1899 ppm 00178 .00107 59.926	Sr4077 ppm 3.3343 .0170 .50874	Ti3372 ppm F03945 .00337 8.5332	TI1908 ppm 00247 .00308 125.13
#1 #2 #3	.00226 00099 00249	.00609 00275 00412	7.0657 7.0850 7.0692	00296 00151 00087	3.3539 3.3256 3.3236	04165 04113 03558	00469 00376 .00106
Check ? High Limit Low Limit	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Fail 36.000 03000	Chk Pass
Elem Units Avg Stddev %RSD	V_2924 ppm . 00179 .00069 38.327	Zn2062 ppm . 00210 .00014 6.5722	Zr3391 ppm . 08531 .59762 700.55				
#1 #2 #3	.00235 .00102 .00200	.00212 .00223 .00195	.14774 54108 .64927				
Check ? High Limit Low Limit	Chk Pass	Chk Pass	Chk Pass				
Int. Std. Units Avg Stddev %RSD	Y_2243 Cts/S 12486. 29. .22934	Y_3600 Cts/S 88966. 170. .19061	Y_3774 Cts/S 4232.6 34.3 .81112				
#1 #2 #3	12518. 12462. 12478.	89104. 88777. 89017.	4193.0 4251.7 4253.1				

Sample Name Method: ICP-T User: JYH Comment:		Type: Unk Mode: CONO ID3:	C Corr. F	Factor: 1.00000(
Elem	Ag3280	Al3082	As1890	B_2496	Ba4554	Be3131	Ca4226
Units	ppm	ppm	ppm	ppm	ppm	ppm	ppm
Avg	00137	00164	. 04157	. 07266	. 03105	.00009	F 296.24
Stddev	.00137	.00626	.00275	.00257	.00059	.00007	1.45
%RSD	99.931	380.64	6.6220	3.5378	1.8927	78.475	.48984
#1	00025	00599	.04181	.06969	.03052	.00006	296.94
#2	00097	.00553	.03870	.07405	.03096	.00017	297.22
#3	00291	00447	.04419	.07423	.03169	.00004	294.58
Check ? High Limit Low Limit	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Fail 270.00 10000
Elem	Cd2288	Co2286	Cr2677	Cu2247	Fe2611	K_7664	Li6707
Units	ppm	ppm	ppm	ppm	ppm	ppm	ppm
Avg	. 00067	. 00177	. 00216	. 00322	11.151	3.1074	. 04161
Stddev	.00012	.00020	.00058	.00096	.104	.0285	.00239
%RSD	18.430	11.381	26.764	29.891	.93195	.91888	5.7519
#1	.00054	.00161	.00201	.00213	11.149	3.1174	.04124
#2	.00078	.00171	.00280	.00393	11.257	3.0752	.03942
#3	.00070	.00200	.00168	.00360	11.049	3.1297	.04417
Check ? High Limit Low Limit	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass
Elem	Mg2790	Mn2576	Mo2020	Na5895	Ni2316	P_2149	Pb2203
Units	ppm	ppm	ppm	ppm	ppm	ppm	ppm
Avg	81.066	1.3557	. 00160	F 311.46	.01103	. 18672	. 00110
Stddev	.321	.0093	.00024	2.12	.00030	.00289	.00130
%RSD	.39603	.68801	15.336	.68044	2.7384	1.5486	117.90
#1	80.933	1.3581	.00170	312.44	.01078	.18456	.00234
#2	81.433	1.3636	.00132	312.91	.01095	.18559	.00122
#3	80.834	1.3454	.00177	309.03	.01137	.19000	00025
Check ? High Limit Low Limit	Chk Pass	Chk Pass	Chk Pass	Chk Fail 270.00 50000	Chk Pass	Chk Pass	Chk Pass

Sample Name Method: ICP-1 User: JYH Comment:		010_200.7WA	red: 5/16/2010 ATER_3YLIN stom ID2:		Type: Unk Mode: CON ID3:	C Corr. F	Factor: 1.00000(
Elem Units Avg Stddev %RSD	Sb2068 ppm . 00263 .00349 132.53	Se1960 ppm 00324 .00541 167.23	Si2124 ppm 6.7906 .0104 .15250	Sn1899 ppm 00150 .00047 31.597	Sr4077 ppm 3.1935 .0210 .65617	Ti3372 ppm F03274 .00705 21.540	TI1908 ppm 00241 .00088 36.566
#1 #2 #3	.00263 .00612 00086	.00282 00492 00760	6.7898 6.8014 6.7807	00165 00189 00097	3.1987 3.2113 3.1704	04044 03117 02660	00232 00158 00333
Check ? High Limit Low Limit	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Fail 36.000 03000	Chk Pass
Elem Units Avg Stddev %RSD	V_2924 ppm .00088 .00112 126.91	Zn2062 ppm . 00211 .00016 7.6419	Zr3391 ppm . 15884 .50655 318.91				
#1 #2 #3	.00040 .00009 .00217	.00209 .00196 .00228	.69702 .08817 30867				
Check ? High Limit Low Limit	Chk Pass	Chk Pass	Chk Pass				
Int. Std. Units Avg Stddev %RSD	Y_2243 Cts/S 12555. 17. .13405	Y_3600 Cts/S 88817. 283. .31862	Y_3774 Cts/S 4275 .1 23.5 .54939				
#1 #2 #3	12537. 12557. 12571.	88861. 88515. 89076.	4249.5 4280.3 4295.6				

Sample Name: L1605061109 Acquired: 5/16/2016 14:26:46 Type: Unk Method: ICP-THERMO3_6010_200.7WATER_3YLINES(v873) Mode: CONC Corr. Factor: 1.000000 User: JYH Custom ID1: Custom ID2: Custom ID3: Comment:								
Elem	Ag3280	Al3082	As1890	B_2496	Ba4554	Be3131	Ca4226	Cd2288
Units	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm
Avg	00300	00526	00186	. 10041	. 02986	.00006	95.220	. 00039
Stddev	.00058	.00283	.00238	.00341	.00081	.00005	.065	.00028
%RSD	19.225	53.679	128.34	3.4006	2.7197	84.065	.06829	70.931
#1	00265	00678	00119	.10432	.02922	.00001	95.283	.00008
#2	00366	00700	00450	.09894	.03077	.00006	95.224	.00050
#3	00269	00200	.00012	.09798	.02958	.00011	95.153	.00060
Check ? High Limit Low Limit	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass
Elem	Co2286	Cr2677	Cu2247	Fe2611	K_7664	Li6707	Mg2790	Mn2576
Units	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm
Avg	.00034	.00113	.00143	.24160	1.1115	. 01284	29.570	1.0804
Stddev	.00024	.00087	.00087	.01917	.0250	.00543	.245	.0053
%RSD	68.296	76.583	60.906	7.9328	2.2497	42.314	.82793	.49435
#1	.00041	.00087	.00237	.24184	1.1351	.00737	29.792	1.0752
#2	.00054	.00210	.00125	.22232	1.0853	.01292	29.610	1.0859
#3	.00008	.00043	.00066	.26064	1.1142	.01823	29.307	1.0801
Check ? High Limit Low Limit	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass
Elem	Mo2020	Na5895	Ni2316	P_2149	Pb2203	Sb2068	Se1960	Si2124
Units	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm
Avg	.00003	50.173	.00042	. 00644	00118	00388	.00212	2.7755
Stddev	.00016	.102	.00067	.00328	.00083	.00243	.00116	.0032
%RSD	559.33	.20383	160.22	50.869	70.241	62.722	54.502	.11395
#1	.00016	50.290	.00118	.00323	00148	00581	.00101	2.7773
#2	00015	50.128	.00015	.00631	00024	00468	.00204	2.7718
#3	.00007	50.101	00008	.00978	00182	00115	.00332	2.7773
Check ? High Limit Low Limit	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass

Sample Nar Method: ICF User: JYH Comment:		_6010_200	•	-	•	ype: Unk ode: CONC :	Corr. Fa	ctor: 1.00000(
Elem Units Avg Stddev %RSD	Sn1899 ppm 00078 .00042 54.027	Sr4077 ppm . 47047 .00124 .26448	Ti3372 ppm 01262 .00156 12.384	TI1908 ppm .00053 .00115 217.43	V_2924 ppm .00071 .00165 232.47	Zn2062 ppm .00276 .00009 3.1888	Zr3391 ppm . 00793 .41154 5188.5	
#1 #2 #3	00098 00106 00029	.47086 .47148 .46908	01240 01118 01428	.00113 .00125 00080	.00078 00097 .00233	.00266 .00283 .00279	.48236 25271 20586	
Check ? High Limit Low Limit	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	
Int. Std. Units Avg Stddev %RSD	Y_2243 Cts/S 13140. 23. .17843	Y_3600 Cts/S 93839. 191. .20334	Y_3774 Cts/S 4350.9 37.0 .85029					
#1 #2 #3	13113. 13157. 13151.	93628. 94000. 93889.	4309.0 4379.1 4364.5					

Sample Name: L1605061111 Acquired: 5/16/2016 14:30:47 Type: Unk Method: ICP-THERMO3_6010_200.7WATER_3YLINES(v873) Mode: CONC Corr. Factor: 1.000000 User: JYH Custom ID1: Custom ID2: Custom ID3: Comment:									
Elem	Ag3280	Al3082	As1890	B_2496	Ba4554	Be3131	Ca4226	Cd2288	
Units	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	
Avg	00330	00140	.00390	. 10362	. 10452	.00015	159.58	. 00052	
Stddev	.00116	.00181	.00099	.00094	.00062	.00002	.68	.00028	
%RSD	35.321	129.54	25.482	.90398	.59638	11.907	.42816	53.201	
#1	00307	.00007	.00423	.10469	.10508	.00013	159.21	.00063	
#2	00226	00084	.00278	.10319	.10462	.00016	160.37	.00020	
#3	00456	00342	.00468	.10297	.10385	.00015	159.16	.00072	
Check ? High Limit Low Limit	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	
Elem	Co2286	Cr2677	Cu2247	Fe2611	K_7664	Li6707	Mg2790	Mn2576	
Units	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	
Avg	.00009	.00179	.00058	1.0255	3.0948	. 04639	44.214	. 36374	
Stddev	.00018	.00016	.00073	.0116	.0537	.00108	.137	.00315	
%RSD	200.33	9.0289	125.30	1.1350	1.7362	2.3263	.30946	.86480	
#1	.00005	.00187	.00140	1.0146	3.0355	.04754	44.194	.36363	
#2	00007	.00160	00000	1.0242	3.1403	.04624	44.360	.36695	
#3	.00029	.00189	.00035	1.0377	3.1086	.04540	44.088	.36066	
Check ? High Limit Low Limit	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	
Elem	Mo2020	Na5895	Ni2316	P_2149	Pb2203	Sb2068	Se1960	Si2124	
Units	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	
Avg	. 00069	203.30	. 00243	. 01444	00135	00419	00344	3.8993	
Stddev	.00031	.50	.00117	.00101	.00292	.00408	.00161	.0183	
%RSD	44.969	.24576	48.071	7.0120	216.53	97.555	46.658	.46944	
#1	.00080	203.18	.00284	.01433	00339	00525	00432	3.9155	
#2	.00034	203.85	.00334	.01348	00266	.00032	00442	3.9030	
#3	.00094	202.88	.00111	.01550	.00200	00763	00159	3.8795	
Check ? High Limit Low Limit	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	

Sample Nar Method: ICF User: JYH Comment:		3_6010_200	.cquired: 5/1 .7WATER_ Custom IE	3YLINES(v8		ype: Unk ode: CONC :	Corr. Fa	ctor: 1.00000(
Elem Units Avg Stddev %RSD	Sn1899 ppm 00107 .00076 70.421	Sr4077 ppm 4.2027 .0119 .28417	Ti3372 ppm 02396 .00676 28.222	TI1908 ppm 00428 .00135 31.530	V_2924 ppm . 00113 .00057 50.507	Zn2062 ppm . 00438 .00007 1.6805	Zr3391 ppm . 21302 .21933 102.96	
#1 #2 #3	00073 00194 00055	4.1957 4.2165 4.1959	02689 02876 01623	00402 00575 00308	.00104 .00173 .00060	.00429 .00440 .00444	.05607 .11937 .46363	
Check ? High Limit Low Limit	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	
Int. Std. Units Avg Stddev %RSD	Y_2243 Cts/S 12870. 52. .40588	Y_3600 Cts/S 91160. 424. .46493	Y_3774 Cts/S 4295.0 33.3 .77588					
#1 #2 #3	12888. 12910. 12811.	90672. 91366. 91441.	4285.3 4267.6 4332.1					

Sample Name Method: ICP-T User: JYH Comment:)10_200.7W <i>A</i>	ed: 5/16/2010 ATER_3YLINI stom ID2:		Type: Unk Mode: CONO ID3:	C Corr. F	Factor: 1.00000(
Elem	Ag3280	Al3082	As1890	B_2496	Ba4554	Be3131	Ca4226
Units	ppm	ppm	ppm	ppm	ppm	ppm	ppm
Avg	00196	.00305	.00097	. 06195	. 06939	.00006	106.90
Stddev	.00083	.00705	.00063	.00353	.00134	.00004	.44
%RSD	42.423	231.18	64.528	5.6924	1.9250	65.675	.41229
#1	00232	.00914	.00055	.06380	.06959	.00002	106.59
#2	00255	.00469	.00170	.05788	.07062	.00006	107.40
#3	00101	00468	.00068	.06416	.06797	.00010	106.69
Check ? High Limit Low Limit	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass
Elem	Cd2288	Co2286	Cr2677	Cu2247	Fe2611	K_7664	Li6707
Units	ppm	ppm	ppm	ppm	ppm	ppm	ppm
Avg	. 00080	.00215	.00189	. 00119	3.4384	1.1266	. 01293
Stddev	.00024	.00045	.00066	.00174	.0244	.0723	.00132
%RSD	30.351	21.056	34.694	146.80	.70839	6.4137	10.181
#1	.00107	.00226	.00129	.00282	3.4646	1.1224	.01429
#2	.00069	.00255	.00259	00065	3.4165	1.0565	.01284
#3	.00062	.00166	.00179	.00139	3.4342	1.2009	.01166
Check ? High Limit Low Limit	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass
Elem	Mg2790	Mn2576	Mo2020	Na5895	Ni2316	P_2149	Pb2203
Units	ppm	ppm	ppm	ppm	ppm	ppm	ppm
Avg	34.703	4.1422	.00013	22.419	. 00660	. 03916	. 00200
Stddev	.147	.0097	.00018	.031	.00062	.00785	.00189
%RSD	.42496	.23522	140.56	.13976	9.4665	20.049	94.068
#1	34.559	4.1533	.00024	22.401	.00611	.03010	.00020
#2	34.695	4.1355	00008	22.400	.00730	.04394	.00396
#3	34.854	4.1376	.00023	22.455	.00639	.04344	.00185
Check ? High Limit Low Limit	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass

Sample Name: L1605061113 Acquired: 5/16/2016 14:34:32 Method: ICP-THERMO3_6010_200.7WATER_3YLINES(v873) User: JYH Custom ID1: Custom ID2: Custo Comment:					Type: Unk Mode: CONO ID3:	C Corr. F	Factor: 1.00000(
Elem Units Avg Stddev %RSD	Sb2068 ppm . 00076 .00184 242.06	Se1960 ppm .00159 .00536 337.97	Si2124 ppm 3.7361 .0026 .06843	Sn1899 ppm 00057 .00081 141.00	Sr4077 ppm . 23848 .00104 .43656	Ti3372 ppm 01897 .00320 16.839	TI1908 ppm . 00037 .00216 579.88
#1 #2 #3	.00108 00122 .00242	.00773 00211 00086	3.7389 3.7354 3.7339	00084 00121 .00033	.23732 .23881 .23932	01874 02228 01590	.00073 00195 .00233
Check ? High Limit Low Limit	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass
Elem Units Avg Stddev %RSD	V_2924 ppm . 00149 .00157 105.41	Zn2062 ppm . 00252 .00015 5.8281	Zr3391 ppm F09249 .49574 535.99				
#1 #2 #3	.00030 .00327 .00089	.00254 .00265 .00236	.35801 01189 62359				
Check ? High Limit Low Limit	Chk Pass	Chk Pass	Chk Fail 36.000 04000				
Int. Std. Units Avg Stddev %RSD	Y_2243 Cts/S 13171 . 8. .06225	Y_3600 Cts/S 94353. 346. .36690	Y_3774 Cts/S 4332. 1 14.9 .34386				
#1 #2 #3	13168. 13180. 13165.	94322. 94713. 94023.	4318.2 4330.3 4347.8				

•	:: L1605061115 THERMO3_601 Custom ID1:	0_200.7WAT	d: 5/16/2016 ER_3YLINE: om ID2:		Гуре: Unk ode: CONC 3:	Corr. Factor: 1.000000
Elem	Ag3280	Al3082	As1890	B_2496	Ba4554	Be3131
Units	ppm	ppm	ppm	ppm	ppm	ppm
Avg	sF00436	s01625	s00554	s .00073	F -1.4054	s .00028
Stddev	.00596	.05387	.00773	.00554	2.5089	.00034
%RSD	136.53	331.44	139.55	756.33	178.52	124.01
#1	s00393	s03060	s .00034	s.00025	-4.3021	s .00029
#2	s .00136	s06150	s01429	s00455	.08102	s00007
#3	s01053	s .04334	s00266	s.00649	.00493	s .00061
Check ? High Limit Low Limit	Chk Fail 9.0000 00400	Chk Pass	Chk Pass	Chk Pass	Chk Fail 45.000 00500	Chk Pass
Elem	Ca4226	Cd2288	Co2286	Cr2677	Cu2247	Fe2611
Units	ppm	ppm	ppm	ppm	ppm	ppm
Avg	F87216	s .00016	s00016	s .00213	s00155	k 1.4594
Stddev	.89569	.00014	.00035	.00554	.00163	2.6389
%RSD	102.70	86.102	214.97	259.59	104.67	180.82
#1	-1.8401	s.00002	s .00011	s.00124	s00093	k 4.5050
#2	70368	s.00016	s00056	s00290	s00033	k14636
#3	07267	s.00029	s00004	s.00806	s00340	k .01953
Check ? High Limit Low Limit	Chk Fail 270.00 10000	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass
Elem	K_7664	Li6707	Mg2790	Mn2576	Mo2020	Na5895
Units	ppm	ppm	ppm	ppm	ppm	ppm
Avg	F -41.100	F -2.1476	k 7.4325	kF70136	s .00018	36.357
Stddev	72.997	3.7465	13.603	1.2318	.00041	64.848
%RSD	177.61	174.45	183.02	175.63	229.39	178.37
#1	-125.38	-6.4736	k 23.129	k -2.1237	s.00003	111.23
#2	1.971	.03127	k93229	k .01780	s00014	-2.0201
#3	.111	00050	k .10094	k .00180	s.00064	1393
Check ? High Limit Low Limit	Chk Fail 450.00 50000	Chk Fail 36.000 10000	Chk Pass	Chk Fail 36.000 00300	Chk Pass	Chk Pass

Sample Name: Method: ICP-T User: JYH Comment:		0_200.7WAT	d: 5/16/2016 1 ER_3YLINES om ID2:		Type: Unk Mode: CONC 13:	Corr. Factor: 1.00000(
Elem Units Avg Stddev %RSD	Ni2316 ppm s00142 .00186 131.26	P_2149 ppm s01558 .02264 145.37	Pb2203 ppm s00249 .00282 113.30	Sb2068 ppm s00451 .00432 95.889	Se1960 ppm sF01226 .00804 65.590	Si2124 ppm s00051 .00664 1315.2
#1 #2 #3	s .00019 s00346 s00098	s .00433 s04021 s01085	s .00052 s00291 s00508	s00509 s .00008 s00851	s00861 s00669 s02148	s00767 s .00544 s .00072
Check ? High Limit Low Limit	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Fail 90.000 01000	Chk Pass
Elem Units Avg Stddev %RSD	Sn1899 ppm s .00066 .00049 74.044	Sr4077 ppm .00883 .00968 109.56	Ti3372 ppm k 2.3586 4.2634 180.75	TI1908 ppm s 00591 .00640 108.35	V_2924 ppm s .00098 .00098 99.361	Zn2062 ppm s .00022 .00027 125.38
#1 #2 #3	s .00041 s .00035 s .00123	.01973 .00553 .00124	k 7.2803 k20010 k00422	s00088 s01311 s00373	s.00177 s00011 s.00129	s00006 s .00023 s .00049
Check ? High Limit Low Limit	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass
Elem Units Avg Stddev %RSD	Zr3391 ppm kF 222.86 399.22 179.13					
#1 #2 #3	k 683.79 k -13.432 k -1.7750					
Check ? High Limit Low Limit	Chk Fail 36.000 04000					

•	e: L1605061115 THERMO3_6010	•	: 5/16/2016 1 ER_3YLINES		Type: Unk Mode: CONC	Corr. Factor: 1.00000(
User: JYH	Custom ID1:	Custo	m ID2:	Custom	n ID3:	
Comment:						
Int. Std.	Y_2243	Y_3600	Y_3774			
Units	Cts/S	Cts/S	Cts/S			
Avg	^ ****	^ ****	1138.9			
Stddev			1648.0			
%RSD			144.70			
#1	^	^	-8.820			
#2	^	^	398.29			
#3	^	^	3027.2			

Sample Name Method: ICP- User: JYH Comment:)10_200.7W <i>F</i>	red: 5/16/201 ATER_3YLIN stom ID2:		Type: Unk Mode: CONO ID3:	C Corr. F	Factor: 1.00000(
Elem	Ag3280	Al3082	As1890	B_2496	Ba4554	Be3131	Ca4226
Units	ppm	ppm	ppm	ppm	ppm	ppm	ppm
Avg	F00457	00608	00077	. 01489	. 12528	.00008	109.33
Stddev	.00199	.00279	.00266	.00166	.00100	.00003	.15
%RSD	43.548	45.967	347.19	11.159	.79736	32.466	.14133
#1	00480	00649	00247	.01300	.12414	.00009	109.19
#2	00643	00310	00213	.01555	.12601	.00005	109.29
#3	00247	00865	.00230	.01611	.12569	.00011	109.50
Check ? High Limit Low Limit	Chk Fail 9.0000 00400	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass
Elem	Cd2288	Co2286	Cr2677	Cu2247	Fe2611	K_7664	Li6707
Units	ppm	ppm	ppm	ppm	ppm	ppm	ppm
Avg	. 00062	.00016	.00083	. 00102	1.8333	. 88165	. 01553
Stddev	.00023	.00053	.00116	.00086	.0186	.02862	.00377
%RSD	36.580	333.59	140.29	84.618	1.0154	3.2456	24.308
#1	.00078	.00076	.00149	.00053	1.8541	.85135	.01118
#2	.00072	00023	.00151	.00052	1.8277	.90821	.01799
#3	.00036	00005	00051	.00201	1.8182	.88540	.01742
Check ? High Limit Low Limit	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass
Elem	Mg2790	Mn2576	Mo2020	Na5895	Ni2316	P_2149	Pb2203
Units	ppm	ppm	ppm	ppm	ppm	ppm	ppm
Avg	34.201	1.0161	.00048	26.767	.00009	. 00548	. 00086
Stddev	.111	.0052	.00058	.061	.00080	.00385	.00347
%RSD	.32574	.50991	121.09	.22764	922.19	70.177	402.65
#1	34.157	1.0121	.00014	26.836	.00101	.00370	.00486
#2	34.118	1.0220	.00115	26.721	00041	.00285	00138
#3	34.327	1.0143	.00015	26.744	00033	.00990	00089
Check ? High Limit Low Limit	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass

Sample Name: L1605061115 Acquired: 5/16/2016 14:46:2 Method: ICP-THERMO3_6010_200.7WATER_3YLINES(v873) User: JYH Custom ID1: Custom ID2: Custom ID2: Custom ID2: Custom ID2: Custom ID3: Custom ID3: Custom ID3: Custom ID3: Custom ID4: C					Type: Unk Mode: CONO ID3:	C Corr. F	Factor: 1.00000(
Elem Units Avg Stddev %RSD	Sb2068 ppm 00191 .00276 144.20	Se1960 ppm 00266 .00186 69.895	Si2124 ppm 3.7245 .0072 .19434	Sn1899 ppm . 00009 .00047 536.71	Sr4077 ppm . 43206 .00072 .16745	Ti3372 ppm 01931 .00586 30.363	TI1908 ppm . 00082 .00139 170.19
#1 #2 #3	.00118 00412 00279	00479 00139 00180	3.7207 3.7199 3.7328	00045 .00027 .00044	.43126 .43225 .43267	02486 01990 01317	.00181 .00143 00078
Check ? High Limit Low Limit	Chk Pass s						
Elem Units Avg Stddev %RSD	V_2924 ppm . 00126 .00119 94.425	Zn2062 ppm . 00202 .00018 8.8724	Zr3391 ppm F11638 .08764 75.306				
#1 #2 #3	.00230 .00151 00004	.00205 .00218 .00183	01965 13897 19051				
Check ? High Limit Low Limit	Chk Pass	Chk Pass	Chk Fail 36.000 04000				
Int. Std. Units Avg Stddev %RSD	Y_2243 Cts/S 13137. 60. .45390	Y_3600 Cts/S 94296. 664. .70380	Y_3774 Cts/S 4345 .1 22.4 .51568				
#1 #2 #3	13173. 13068. 13171.	93813. 94022. 95053.	4346.8 4321.9 4366.6				

Sample Name: L1605061117 Acquired: 5/16/2016 14:50:21 Type: Unk Method: ICP-THERMO3_6010_200.7WATER_3YLINES(v873) Mode: CONC Corr. Factor: 1.0 User: JYH Custom ID1: Custom ID2: Custom ID3: Comment:							Factor: 1.00000(
Elem	Ag3280	Al3082	As1890	B_2496	Ba4554	Be3131	Ca4226
Units	ppm	ppm	ppm	ppm	ppm	ppm	ppm
Avg	F00503	. 00790	.00037	. 06114	. 49589	.00009	163.82
Stddev	.00168	.00421	.00028	.00150	.00076	.00001	.38
%RSD	33.307	53.316	75.463	2.4509	.15357	14.667	.23277
#1	00319	.00611	.00014	.06191	.49502	.00009	163.59
#2	00647	.00488	.00029	.06209	.49622	.00009	164.26
#3	00543	.01271	.00067	.05941	.49643	.00007	163.60
Check ? High Limit Low Limit	Chk Fail 9.0000 00400	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass
Elem	Cd2288	Co2286	Cr2677	Cu2247	Fe2611	K_7664	Li6707
Units	ppm	ppm	ppm	ppm	ppm	ppm	ppm
Avg	.00038	.00078	. 00323	. 00160	.00305	7.0190	. 05829
Stddev	.00019	.00017	.00088	.00124	.02999	.1166	.00091
%RSD	48.598	21.377	27.211	77.781	982.09	1.6616	1.5623
#1	.00019	.00061	.00289	.00263	02469	6.9058	.05779
#2	.00041	.00094	.00423	.00195	.03487	7.0124	.05934
#3	.00055	.00080	.00258	.00022	00102	7.1388	.05773
Check ? High Limit Low Limit	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass
Elem	Mg2790	Mn2576	Mo2020	Na5895	Ni2316	P_2149	Pb2203
Units	ppm	ppm	ppm	ppm	ppm	ppm	ppm
Avg	. 12845	. 00052	. 01836	F 406.53	00063	. 00297	. 00029
Stddev	.06737	.00044	.00030	.65	.00130	.00839	.00298
%RSD	52.447	85.213	1.6591	.15945	205.25	282.13	1044.1
#1	.16942	.00046	.01818	407.17	.00074	.00743	.00365
#2	.16522	.00098	.01871	406.56	00078	00670	00077
#3	.05070	.00010	.01819	405.87	00185	.00819	00202
Check ? High Limit Low Limit	Chk Pass	Chk Pass	Chk Pass	Chk Fail 270.00 50000	Chk Pass	Chk Pass	Chk Pass

Sample Name: L1605061117 Acquired: 5/16/2016 14 Method: ICP-THERMO3_6010_200.7WATER_3YLINES(User: JYH Custom ID1: Custom ID2: Comment:					Type: Unk Mode: CONO ID3:	C Corr. F	Factor: 1.00000(
Elem Units Avg Stddev %RSD	Sb2068 ppm 00151 .00167 110.23	Se1960 ppm .00007 .00446 5966.2	Si2124 ppm 1.2893 .0026 .19775	Sn1899 ppm 00059 .00026 43.640	Sr4077 ppm . 81041 .00302 .37326	Ti3372 ppm 01814 .00494 27.243	TI1908 ppm 00374 .00108 28.931
#1 #2 #3	00343 00073 00038	00300 .00519 00197	1.2902 1.2912 1.2864	00071 00029 00077	.80713 .81101 .81309	01298 01862 02282	00394 00258 00471
Check ? High Limit Low Limit	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass
Elem Units Avg Stddev %RSD	V_2924 ppm . 00112 .00031 27.270	Zn2062 ppm .00159 .00013 8.1163	Zr3391 ppm . 15946 .43309 271.60				
#1 #2 #3	.00081 .00112 .00142	.00158 .00172 .00146	.60547 25944 .13234				
Check ? High Limit Low Limit	Chk Pass	Chk Pass	Chk Pass				
Int. Std. Units Avg Stddev %RSD	Y_2243 Cts/S 12772. 15. .11422	Y_3600 Cts/S 89877. 380. .42305	Y_3774 Cts/S 4316.2 20.8 .48251				
#1 #2 #3	12789. 12769. 12760.	89849. 89511. 90270.	4292.6 4323.8 4332.1				

Sample Nam Method: ICP User: JYH Comment:				LINES(v873	pe: QC) Mode: tom ID3:	CONC (Corr. Factor:	1.000000
Elem	Ag3280	Al3082	As1890	B_2496	Ba4554	Be3131	Ca4226	
Units	ppm	ppm	ppm	ppm	ppm	ppm	ppm	
Avg	. 40758	10.270	. 41083	. 51242	1.0115	. 05032	9.9021	
Stddev	.00232	.016	.00282	.00496	.0032	.00033	.0379	
%RSD	.56847	.15900	.68598	.96820	.31781	.64831	.38288	
#1	.40942	10.266	.41389	.51648	1.0129	.05009	9.9274	
#2	.40497	10.287	.40834	.51390	1.0138	.05069	9.9203	
#3	.40834	10.255	.41026	.50689	1.0078	.05017	9.8585	
Check ? Value Range	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	
Elem	Cd2288	Co2286	Cr2677	Cu2247	Fe2611	K_7664	Li6707	
Units	ppm	ppm	ppm	ppm	ppm	ppm	ppm	
Avg	. 05020	.20882	. 52928	. 52607	4.1615	50.725	1.0170	
Stddev	.00005	.00010	.00095	.00103	.0153	.234	.0072	
%RSD	.10771	.04788	.17960	.19623	.36870	.46047	.70552	
#1	.05024	.20873	.52924	.52525	4.1584	50.847	1.0093	
#2	.05014	.20893	.53026	.52574	4.1479	50.873	1.0184	
#3	.05023	.20881	.52836	.52723	4.1782	50.456	1.0234	
Check ? Value Range	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	
Elem	Mg2790	Mn2576	Mo2020	Na5895	Ni2316	P_2149	Pb2203	
Units	ppm	ppm	ppm	ppm	ppm	ppm	ppm	
Avg	10.235	. 50756	1.0080	51.270	. 53204	10.276	. 53275	
Stddev	.057	.00353	.0065	.115	.00213	.007	.00325	
%RSD	.55629	.69624	.64486	.22440	.40014	.06902	.61043	
#1	10.172	.50351	1.0146	51.349	.52992	10.279	.53372	
#2	10.282	.50915	1.0078	51.323	.53417	10.281	.53541	
#3	10.252	.51002	1.0016	51.138	.53202	10.268	.52912	
Check ? Value Range	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	

Sample Nam Method: ICP User: JYH Comment:		_		LINES(v873)	pe: QC) Mode: tom ID3:	CONC (Corr. Factor:	1.000000
Elem Units Avg Stddev %RSD	Sb2068 ppm 1.2329 .0065 .53074	Se1960 ppm .38486 .00187 .48579	Si2124 ppm 5.1540 .0054 .10504	Sn1899 ppm 1.0400 .0034 .32239	Sr4077 ppm 1.0034 .0039 .39214	Ti3372 ppm 1.0047 .0133 1.3213	TI1908 ppm . 51964 .00123 .23723	
#1 #2 #3	1.2377 1.2355 1.2255	.38385 .38702 .38371	5.1584 5.1557 5.1480	1.0424 1.0414 1.0362	1.0068 1.0043 .99912	.98947 1.0140 1.0105	.51901 .51885 .52106	
Check ? Value Range	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	
Elem Units Avg Stddev %RSD	V_2924 ppm 1.0358 .0046 .44683	Zn2062 ppm 1.0576 .0009 .08745	Zr3391 ppm F . 71205 .30345 42.616					
#1 #2 #3	1.0408 1.0316 1.0351	1.0571 1.0586 1.0570	1.0545 .47659 .60506					
Check ? Value Range	Chk Pass	Chk Pass	Chk Fail 1.0000 -10.000%					
Int. Std. Units Avg Stddev %RSD	Y_2243 Cts/S 13196. 4. .03333	Y_3600 Cts/S 93667. 582. .62118	Y_3774 Cts/S 4266.8 29.7 .69515					
#1 #2 #3	13194. 13192. 13201.	93460. 93218. 94325.	4233.4 4276.9 4290.1					

Sample Name: CCB Acquired: 5/16/2016 14:57:56 Type: Blank Method: ICP-THERMO3_6010_200.7WATER_3YLINES(v873) Mode: CONC Corr. Factor: 1.000000 User: JYH Custom ID1: Custom ID2: Custom ID3: Comment:										
Elem	Ag3280	Al3082	As1890	B_2496	Ba4554	Be3131	Ca4226			
Units	ppm	ppm	ppm	ppm	ppm	ppm	ppm			
Avg	00176	01199	.00058	.00056	. 00094	. 00010	02120			
Stddev	.00059	.01029	.00170	.00124	.00056	.00006	.01306			
%RSD	33.376	85.863	291.66	221.45	59.867	62.744	61.626			
#1	00243	02248	.00230	00037	.00034	.00017	03116			
#2	00133	00191	00111	.00197	.00103	.00005	00641			
#3	00151	01158	.00057	.00009	.00144	.00007	02602			
Check ? High Limit Low Limit	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass			
Elem	Cd2288	Co2286	Cr2677	Cu2247	Fe2611	K_7664	Li6707			
Units	ppm	ppm	ppm	ppm	ppm	ppm	ppm			
Avg	. 00010	00019	. 00020	00025	00578	. 16534	. 00535			
Stddev	.00005	.00022	.00094	.00057	.01815	.04346	.00311			
%RSD	46.318	116.51	474.34	228.04	314.14	26.288	58.086			
#1	.00009	00006	.00064	00050	.01485	.11596	.00387			
#2	.00015	00007	.00084	00067	01927	.18227	.00325			
#3	.00006	00044	00088	.00040	01290	.19780	.00892			
Check ? High Limit Low Limit	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass			
Elem	Mg2790	Mn2576	Mo2020	Na5895	Ni2316	P_2149	Pb2203			
Units	ppm	ppm	ppm	ppm	ppm	ppm	ppm			
Avg	. 04364	00029	. 00386	02483	. 00023	00588	00046			
Stddev	.04115	.00325	.00030	.00891	.00045	.00260	.00223			
%RSD	94.281	1130.4	7.6541	35.904	197.45	44.306	484.69			
#1	.08953	.00023	.00394	01612	.00007	00364	.00029			
#2	.01003	.00267	.00411	03394	.00074	00874	00296			
#3	.03136	00376	.00353	02443	00013	00526	.00130			
Check ? High Limit Low Limit	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass			

Sample Name: CCB Acquired: 5/16/2016 14:57:56 Type: Blank Method: ICP-THERMO3_6010_200.7WATER_3YLINES(v873) Mode: CONC Corr. Factor: 1.000000 User: JYH Custom ID1: Custom ID2: Custom ID3: Comment:									
Elem Units Avg Stddev %RSD	Sb2068 ppm . 00404 .00227 56.128	Se1960 ppm 00595 .00497 83.623	Si2124 ppm 02596 .00058 2.2289	Sn1899 ppm . 00022 .00074 343.40	Sr4077 ppm . 00041 .00039 94.218	Ti3372 ppm 00835 .00496 59.401	TI1908 ppm 00356 .00097 27.279		
#1 #2 #3	.00214 .00656 .00343	00610 01085 00090	02540 02593 02656	00064 .00075 .00054	.00086 .00017 .00021	00285 00971 01249	00346 00457 00264		
Check ? High Limit Low Limit	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass		
Elem Units Avg Stddev %RSD	V_2924 ppm . 00109 .00044 40.641	Zn2062 ppm .00007 .00024 323.87	Zr3391 ppm F05109 .40577 794.22						
#1 #2 #3	.00092 .00160 .00077	00002 .00035 00011	08671 .37132 43788						
Check ? High Limit Low Limit	Chk Pass	Chk Pass	Chk Fail .04000 04000						
Int. Std. Units Avg Stddev %RSD	Y_2243 Cts/S 13233 . 39. .29197	Y_3600 Cts/S 94838. 443. .46664	Y_3774 Cts/S 4208.8 46.3 1.0989						
#1 #2 #3	13188. 13258. 13253.	95047. 95138. 94330.	4171.7 4194.1 4260.6						

Sample Name: PBW ZB Acquired: 5/16/2016 15:01:55 Type: Unk Method: ICP-THERMO3_6010_200.7WATER_3YLINES(v873) Mode: CONC Corr. Factor: 1.000000 User: JYH Custom ID1: Custom ID2: Custom ID3: Comment: WG568346-02 AI3082 As1890 B 2496 Ba4554 Be3131 Ca4226 Elem Ag3280 Units ppm ppm ppm ppm ppm ppm ppm -.01362 -.02938 Avg -.00343 .00076 -.00018 .00114 .00010 Stddev .00008 .00212 .00105 .00199 .00095 .00006 .03217 109.48 %RSD 2.3804 15.557 139.31 1104.3 82.879 61.988 #1 -.00351 -.00001 -.00213 .00168 .00010 .00652 -.01136 #2 -.00342 -.01394 .00196 -.00026 .00170 .00015 -.03909 #3 -.00335 -.01557 .00031 .00185 .00005 .00003 -.05558 **Chk Pass** Check? Chk Pass **Chk Pass Chk Pass Chk Pass Chk Pass Chk Pass** High Limit Low Limit Elem Cd2288 Co2286 Cr2677 Cu2247 Fe2611 K_7664 Li6707 Units ppm ppm ppm ppm ppm ppm ppm -.00028 .00852 .00046 .00113 .00063 .01333 .20902 Avg .00020 .00041 .00065 .00097 .01026 .00234 Stddev .16916 %RSD 43.264 145.61 57.606 154.78 76.926 80.931 27.463

.00187

.00067

.00084

Chk Pass

Mo2020

ppm

.00056

.00035

63.462

.00015

.00072

.00080

Chk Pass

.00174

.00023

-.00008

Chk Pass

Na5895

-.02430

.00926

38.117

-.01803

-.03494

-.01994

Chk Pass

ppm

.01606

.02194

.00199

Ni2316

-.00057

.00071

125.17

-.00138

-.00014

-.00018

Chk Pass

ppm

Chk Pass

.17634

.39213

.05858

Chk Pass

P_2149

-.00502

.00766

152.42

-.01000

-.00886

.00379

Chk Pass

ppm

.01005

.00583

.00969

Chk Pass

Pb2203

-.00209

.00100

47.616

-.00147

-.00157

-.00324

Chk Pass

ppm

Approved: May 17, 2016

#1

#2

#3

Check?

Elem

Units

%RSD

Check?

High Limit Low Limit

Avg Stddev

#1

#2 #3

High Limit Low Limit .00065

.00025

.00047

Chk Pass

Mg2790

ppm

.10276

.05483

53.358

.15602

.04649

.10576

Chk Pass

-.00072

-.00023

.00010

Chk Pass

Mn2576

ppm

.00264

.00231

87.329

.00353

.00438

.00002

Chk Pass

Sample Name: PBW ZB Acquired: 5/16/2016 15:01:55 Type: Unk Method: ICP-THERMO3_6010_200.7WATER_3YLINES(v873) Mode: CONC Corr. Factor: 1.000000 User: JYH Custom ID1: Custom ID2: Custom ID3: Comment: WG568346-02 Elem Sb2068 Se1960 Si2124 Sn1899 Sr4077 Ti3372 TI1908 Units ppm ppm ppm ppm ppm ppm ppm -.00037 -.00089 -.00133 -.02207 .00005 -.00640 -.00258 Avg Stddev .00323 .00281 .00210 .00025 .00011 .00450 .00236 70.342 %RSD 363.43 210.68 9.5333 67.054 206.38 91.202 #1 -.00461 -.00457 -.02025 -.00010 -.00006 -.00711 -.00009 #2 .00065 .00051 -.02159 -.00059 .00006 -.01051 -.00477 #3 .00129 .00005 -.02437 -.00044 .00016 -.00159 -.00290 **Chk Pass Chk Pass Chk Pass** Check? **Chk Pass Chk Pass Chk Pass Chk Pass** High Limit Low Limit Elem V_2924 Zn2062 Zr3391 ppm Units ppm ppm -.00053 .00169 F-.09132 Avg .00050 .00021 Stddev .18627 %RSD 93.765 12.573 203.98 #1 -.00001 .00148 .03959 #2 -.00058 .00168 -.00898 #3 .00190 -.00101 -.30457 Check? Chk Pass Chk Pass Chk Fail 36.000 High Limit Low Limit -.04000 Int. Std. Y_2243 Y_3600 Y_3774 Units Cts/S Cts/S Cts/S 13641. 98425. 4403.3 Avg Stddev 38. 346. 34.9 .27592 .35197 %RSD .79248 #1 4431.2 13597. 98587. 98660. #2 13660. 4364.2

4414.4

Approved: May 17, 2016

#3

13665.

98027.

Sample Name: LCSW ZB Acquired: 5/16/2016 15:05:55 Type: Unk

Method: ICP-THERMO3_6010_200.7WATER_3YLINES(v873) Mode: CONC Corr. Factor: 1.000000

User: JYH Custom ID1: Custom ID2: Custom ID3:

Comment: WG568346-03

Elem Units Avg Stddev %RSD	Ag3280 ppm . 19418 .00304 1.5675	Al3082 ppm 4.8420 .0137 .28385	As1890 ppm .19488 .00233 1.1951	B_2496 ppm . 96385 .00096 .09917	ppm . 48698 .00249 .51031	Be3131 ppm . 02359 .00007 .30220	Ca4226 ppm 4.7744 .0101 .21175	Cd2288 ppm . 02415 .00035 1.4608
#1	.19071	4.8269	.19535	.96301	.48826	.02351	4.7816	.02403
#2	.19639	4.8538	.19694	.96364	.48856	.02363	4.7786	.02387
#3	.19544	4.8452	.19236	.96489	.48411	.02363	4.7628	.02455

Check? Chk Pass Chk P

Elem	Co2286	Cr2677	Cu2247	Fe2611	K_7664	Li6707	Mg2790	Mn2576
Units	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm
Avg	.10059	. 25253	. 25242	1.9803	24.890	. 49243	4.8678	. 24345
Stddev	.00044	.00148	.00129	.0224	.077	.00217	.0823	.00130
%RSD	.43414	.58506	.51298	1.1328	.30975	.44073	1.6909	.53582
#1	.10019	.25280	.25126	1.9774	24.866	.49012	4.9113	.24454
#2	.10053	.25385	.25382	1.9594	24.976	.49273	4.9192	.24379
#3	.10106	.25093	.25219	2.0040	24.828	.49443	4.7728	.24200

Check? Chk Pass Chk P

Elem	Mo2020	Na5895	Ni2316	P_2149	Pb2203	Sb2068	Se1960	Si2124
Units	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm
Avg	. 49413	24.867	. 25584	4.8133	. 25859	. 59137	. 17938	2.5066
Stddev	.00068	.034	.00035	.0110	.00274	.00152	.01023	.0062
%RSD	.13789	.13549	.13634	.22871	1.0593	.25731	5.7045	.24796
#1	.49335	24.880	.25602	4.8070	.25744	.59074	.17055	2.5069
#2	.49440	24.893	.25606	4.8260	.26171	.59027	.17700	2.5003
#3	.49463	24.829	.25544	4.8069	.25660	.59311	.19059	2.5127

Check? Chk Pass Chk P

Sample Name: LCSW ZB Acquired: 5/16/2016 15:05:55 Type: Unk

Method: ICP-THERMO3_6010_200.7WATER_3YLINES(v873) Mode: CONC Corr. Factor: 1.000000

User: JYH Custom ID1: Custom ID2: Custom ID3:

Comment: WG568346-03

Elem	Sn1899	Sr4077	Ti3372	TI1908	V_2924	Zn2062	Zr3391
Units	ppm	ppm	ppm	ppm	ppm	ppm	ppm
Avg	.50225	.48745	.48231	.24824	.49597	.50314	.31224
Stddev	.00068	.00139	.00507	.00439	.00283	.00021	.05703
%RSD	.13444	.28486	1.0514	1.7683	.57143	.04126	18.263
#1	.50156	.48612	.47677	.25278	.49400	.50292	.27594
#2	.50229	.48889	.48673	.24402	.49922	.50334	.37797
#3	.50291	.48736	.48341	.24791	.49469	.50316	.28282

Check? Chk Pass Chk P

Low Limit

Int. Std.	Y_2243	Y_3600	Y_3774
Units	Cts/S	Cts/S	Cts/S
Avg	13471.	97215.	4414.8
Stddev	2.	324.	24.5
%RSD	.01776	.33292	.55507
#1	13473.	97235.	4394.9
#2	13468.	97529.	4407.3
#3	13472.	96883.	4442.2

Sample Name: L1605050713 Acquired: 5/16/2016 15:09:39 Type: Unk Method: ICP-THERMO3_6010_200.7WATER_3YLINES(v873) Mode: CONC Corr. Factor: 1.00000 User: JYH Custom ID1: Custom ID2: Custom ID3: Comment: WG568346-01							
Elem	Ag3280	Al3082	As1890	B_2496	Ba4554	Be3131	Ca4226
Units	ppm	ppm	ppm	ppm	ppm	ppm	ppm
Avg	00290	00958	. 00716	. 03401	. 47166	.00004	113.59
Stddev	.00329	.00665	.00329	.00079	.00123	.00005	.32
%RSD	113.54	69.395	46.035	2.3370	.26144	106.16	.28283
#1	.00088	00782	.00643	.03341	.47300	.00007	113.63
#2	00515	00399	.01075	.03491	.47141	.00008	113.89
#3	00441	01693	.00429	.03371	.47057	00001	113.25
Check ? High Limit Low Limit	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass
Elem Units Avg Stddev %RSD #1 #2	Cd2288 ppm .00038 .00015 40.686	Co2286 ppm00012 .00021 178.670003600003	Cr2677 ppm .00164 .00004 2.3491 .00163 .00169	Cu2247 ppm 00024 .00096 407.87 00105 00049	Fe2611 ppm 6.7153 .0374 .55736 6.7513 6.6766	K_7664 ppm . 97573 .02741 2.8090 .94408 .99170	Li6707 ppm . 01386 .00234 16.849 .01585
#3 Check? High Limit Low Limit	.00056	.00004	.00161	.00083	6.7181	.99142	.01129
	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass
Elem	Mg2790	Mn2576	Mo2020	Na5895	Ni2316	P_2149	Pb2203
Units	ppm	ppm	ppm	ppm	ppm	ppm	ppm
Avg	39.836	. 35968	. 00114	52.141	00145	. 27102	00189
Stddev	.272	.00283	.00035	.126	.00077	.00737	.00181
%RSD	.68378	.78622	30.386	.24231	53.196	2.7210	95.900
#1	39.588	.35762	.00095	52.197	00234	.27953	00207
#2	40.127	.35852	.00154	52.230	00107	.26663	.00000
#3	39.793	.36290	.00093	51.996	00094	.26689	00361
Check ? High Limit Low Limit	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass

Sample Name Method: ICP- User: JYH Comment: WO	THERMO3_60 Custom ID)10_200.7W <i>A</i>	red: 5/16/2010 ATER_3YLIN stom ID2:		Type: Unk Mode: CONO ID3:	C Corr. F	Factor: 1.00000(
Elem Units Avg Stddev %RSD	Sb2068 ppm 00065 .00323 497.89	Se1960 ppm .00226 .00656 290.30	Si2124 ppm 5.8298 .0114 .19542	Sn1899 ppm 00003 .00124 3662.8	Sr4077 ppm . 49946 .00161 .32329	Ti3372 ppm 01518 .00293 19.324	TI1908 ppm 00018 .00240 1319.4
#1 #2 #3	00416 .00220 .00001	.00140 00382 .00921	5.8392 5.8329 5.8171	00058 00091 .00139	.49764 .50071 .50003	01301 01852 01402	.00209 .00006 00269
Check ? High Limit Low Limit	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass
Elem Units Avg Stddev %RSD	V_2924 ppm . 00020 .00110 540.23	Zn2062 ppm .00987 .00025 2.4954	Zr3391 ppm F06223 .26081 419.10				
#1 #2 #3	00093 .00028 .00126	.01000 .01003 .00959	.16731 34584 00817				
Check ? High Limit Low Limit	Chk Pass	Chk Pass	Chk Fail 36.000 04000				
Int. Std. Units Avg Stddev %RSD	Y_2243 Cts/S 13186. 11. .08207	Y_3600 Cts/S 94471. 186. .19716	Y_3774 Cts/S 4401.8 30.0 .68245				
#1 #2 #3	13185. 13196. 13175.	94310. 94427. 94675.	4384.6 4384.4 4436.5				

Sample Name: L1605050713S Acquired: 5/16/2016 15:13:34 Type: Unk Method: ICP-THERMO3 6010 200.7WATER 3YLINES(v873) Mode: CONC Corr. Factor: 1.000000 User: JYH Custom ID1: Custom ID2: Custom ID3: Comment: WG568346-04 Al3082 B_2496 Ba4554 Ca4226 Cd2288 Elem Ag3280 As1890 Be3131 Units ppm ppm ppm ppm ppm ppm ppm ppm Avg .20093 5.0377 .21430 1.0428 .95767 .02445 115.05 .02506 Stddev .00074 .0077 .00080 .0007 .00523 .00014 .57 .00025 .49507 %RSD .36761 .15367 .37375 .06583 .54639 .57996 1.0153 .02534 #1 .21449 1.0435 .20178 5.0442 .95187 .02429 114.44 #2 .20047 5.0398 .21499 1.0427 .96203 .02454 115.57 .02496 #3 .20054 5.0292 .21342 1.0422 .95912 .02452 115.13 .02486 Check? Chk Pass Chk Pass Chk Pass Chk Pass Chk Pass Chk Pass Chk Pass Chk Pass **High Limit** Low Limit Elem Co2286 Cr2677 Cu2247 Fe2611 K_7664 Mg2790 Mn2576 Li6707 Units ppm ppm ppm ppm ppm ppm ppm ppm 43.633 .25912 .25517 26.430 .59130 Avg .10006 8.5383 .51611 .00053 .00040 .00093 Stddev .0595 .078 .00703 .326 .00317 %RSD .53427 .15262 .36389 .69661 .29374 .74810 .53660 1.3624 #1 .09956 .25866 .25619 8.4844 26.350 .51660 43.269 .58929 #2 .10063 .25934 .25496 8.6021 26.505 .52289 43.901 .58964 .25935 .25437 8.5284 26.436 43.729 #3 .10000 .50885 .59495 Check? Chk Pass Chk Pass Chk Pass Chk Pass Chk Pass Chk Pass Chk Pass High Limit Low Limit P_2149 Elem Mo2020 Na5895 Ni2316 Pb2203 Sb2068 Se1960 Si2124 Units ppm ppm ppm ppm ppm ppm ppm ppm .51069 75.846 .25385 5.4019 .25691 .61969 .18798 8.2099 Avg .235 .00081 .0094 .00196 .00525 .00567 .0048 Stddev .00184 %RSD .36070 .31031 .31880 .17322 .76213 .84679 3.0166 .05813 #1 75.627 5.3979 .51280 .25311 .25770 .61758 .19395 8.2044 5.4126 76.095 .25836 .18267 #2 .50986 .25372 .61583 8.2130 #3 .50940 75.817 .25471 5.3952 .25469 .62567 .18732 8.2123

Chk Pass Chk Pass Chk Pass Chk Pass Chk Pass Chk Pass Chk Pass

Approved: May 17, 2016

Check?

High Limit Low Limit Sample Name: L1605050713S Acquired: 5/16/2016 15:13:34 Type: Unk

Method: ICP-THERMO3_6010_200.7WATER_3YLINES(v873) Mode: CONC Corr. Factor: 1.000000

User: JYH Custom ID1: Custom ID2: Custom ID3:

Comment: WG568346-04

Elem	Sn1899	Sr4077	Ti3372	TI1908	V_2924	Zn2062	Zr3391
Units	ppm	ppm	ppm	ppm	ppm	ppm	ppm
Avg	.51194	.97198	.48513	.24816	.51339	.51250	.16631
Stddev	.00048	.00747	.00431	.00390	.00034	.00051	.16753
%RSD	.09449	.76847	.88825	1.5718	.06580	.09884	100.73
#1	.51217	.96489	.48038	.24608	.51377	.51292	.01149
#2	.51138	.97978	.48621	.25266	.51329	.51264	.14326
#3	.51226	.97128	.48879	.24574	.51312	.51194	.34416

Check? Chk Pass Chk P

Int. Std.	Y_2243	Y_3600	Y_3774
Units	Cts/S	Cts/S	Cts/S
Avg	13115 .	93516.	4354.6
Stddev	10.	483.	16.1
%RSD	.07328	.51643	.37028
#1	13106.	93154.	4366.7
#2	13125.	94064.	4360.9
#3	13113.	93329.	4336.3

Sample Name: L1605050713SD Acquired: 5/16/2016 15:17:18 Type: Unk Method: ICP-THERMO3_6010_200.7WATER_3YLINES(v873) Mode: CONC Corr. Factor: 1.000000 User: JYH Custom ID1: Custom ID2: Custom ID3: Comment: WG568346-05 Ag3280 Al3082 B_2496 Ba4554 Ca4226 Cd2288 Elem As1890 Be3131 Units ppm ppm ppm ppm ppm ppm ppm ppm 4.9859 1.0287 Avg .19710 .21140 .95972 .02420 117.30 .02456 Stddev .00275 .0266 .00327 .0022 .00272 .00004 .31 .00012 %RSD 1.3965 .53392 1.5455 .21043 .28341 .15592 .26551 .48600 #1 .19586 4.9906 .20918 1.0309 .96232 .02470 .02423 117.51 #2 .19518 5.0098 .21515 1.0265 .95689 .02421 116.94 .02449 #3 .20025 4.9572 .20987 1.0288 .95995 .02415 117.45 .02449 Chk Pass Chk Pass Chk Pass Chk Pass Chk Pass Chk Pass Chk Pass Check? High Limit Low Limit Mg2790 Elem Co2286 Cr2677 Cu2247 Fe2611 K_7664 Li6707 Mn2576 Units ppm ppm ppm ppm ppm ppm ppm ppm .09852 .25742 .24992 8.6699 26.164 .60197 Avg .50491 44.113 .00206 .00203 .0146 .00609 Stddev .00045 .037 .00185 .261 .45737 %RSD .80120 .81201 .16810 .14254 .36688 .59155 1.0109 .24951 #1 .09892 .25555 8.6649 26.202 .50367 43.993 .60449 #2 .09803 .25708 .24813 8.6864 26.128 .50704 43.934 .59503 .09862 8.6586 #3 .25963 .25213 26.163 .50402 44.413 .60639 Check? Chk Pass Chk Pass Chk Pass Chk Pass Chk Pass Chk Pass Chk Pass High Limit

Low Limit

Elem	Mo2020	Na5895	Ni2316	P_2149	Pb2203	Sb2068	Se1960	Si2124
Units	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm
Avg	. 50337	76.614	. 25019	5.3350	. 25634	. 61173	.18510	8.2723
Stddev	.00033	.198	.00176	.0181	.00111	.00239	.00698	.0125
%RSD	.06627	.25836	.70471	.33843	.43430	.38993	3.7721	.15068
#1	.50311	76.830	.25137	5.3510	.25575	.60984	.18879	8.2850
#2	.50326	76.441	.24817	5.3154	.25763	.61094	.18946	8.2719
#3	.50374	76.571	.25105	5.3385	.25565	.61441	.17704	8.2601

Check? Chk Pass Chk Pass Chk Pass Chk Pass Chk Pass Chk Pass Chk Pass High Limit Low Limit

Sample Name: L1605050713SD Acquired: 5/16/2016 15:17:18 Type: Unk

Method: ICP-THERMO3_6010_200.7WATER_3YLINES(v873) Mode: CONC Corr. Factor: 1.000000

User: JYH Custom ID1: Custom ID2: Custom ID3:

Comment: WG568346-05

Elem	Sn1899	Sr4077	Ti3372	TI1908	V_2924	Zn2062	Zr3391
Units	ppm	ppm	ppm	ppm	ppm	ppm	ppm
Avg	.50518	.97387	.47906	.24334	.50748	.50489	.41058
Stddev	.00274	.00201	.00611	.00217	.00212	.00104	.16529
%RSD	.54174	.20647	1.2762	.88992	.41808	.20643	40.258
#1	.50680	.97619	.47229	.24551	.50732	.50609	.22128
#2	.50202	.97264	.48073	.24118	.50544	.50442	.48415
#3	.50672	.97277	.48417	.24332	.50967	.50417	.52633

Check? Chk Pass Chk P

Low Limit

Int. Std.	Y_2243	Y_3600	Y_3774
Units	Cts/S	Cts/S	Cts/S
Avg	13104.	94018.	4350.8
Stddev	56.	367.	46.6
%RSD	.42911	.38982	1.0715
#1	13075.	94012.	4297.1
#2	13169.	93654.	4374.2
#3	13069.	94387.	4381.1

Sample Name: L1605044601 Acquired: 5/16/2016 15:21:00 Type: Unk Method: ICP-THERMO3_6010_200.7WATER_3YLINES(v873) Mode: CONC Corr. Factor: 1.000000 User: JYH Custom ID1: Custom ID2: Custom ID3: Comment:									
Elem	Ag3280	Al3082	As1890	B_2496	Ba4554	Be3131	Ca4226	Cd2288	
Units	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	
Avg	00257	. 03600	. 00111	. 01318	. 07608	. 00007	50.552	. 00043	
Stddev	.00155	.00583	.00080	.00090	.00102	.00005	.482	.00026	
%RSD	60.150	16.202	72.700	6.8496	1.3347	71.742	.95398	60.806	
#1	00309	.03004	.00132	.01398	.07694	.00010	50.592	.00014	
#2	00083	.04170	.00178	.01220	.07633	.00001	51.013	.00064	
#3	00379	.03626	.00022	.01335	.07496	.00010	50.051	.00052	
Check ? High Limit Low Limit	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	
Elem	Co2286	Cr2677	Cu2247	Fe2611	K_7664	Li6707	Mg2790	Mn2576	
Units	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	
Avg	00045	.00135	.00025	. 06564	. 88790	. 01421	5.9078	. 00306	
Stddev	.00036	.00059	.00107	.02179	.11722	.00175	.0966	.00076	
%RSD	80.828	43.789	436.98	33.199	13.201	12.326	1.6359	24.734	
#1	00054	.00139	00089	.07940	.89847	.01589	5.9934	.00234	
#2	00005	.00074	.00125	.07701	.99948	.01240	5.8030	.00385	
#3	00076	.00191	.00038	.04052	.76576	.01434	5.9270	.00298	
Check ? High Limit Low Limit	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	
Elem	Mo2020	Na5895	Ni2316	P_2149	Pb2203	Sb2068	Se1960	Si2124	
Units	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	
Avg	.00068	2.6491	00095	. 00201	00188	00258	00361	3.8875	
Stddev	.00052	.0362	.00095	.00483	.00216	.00358	.00641	.0056	
%RSD	75.563	1.3662	99.726	239.90	115.11	138.44	177.78	.14484	
#1	.00019	2.6879	00201	.00272	00233	00069	00992	3.8817	
#2	.00064	2.6430	00067	.00645	.00047	00035	.00290	3.8930	
#3	.00122	2.6163	00017	00313	00378	00671	00380	3.8879	
Check ? High Limit Low Limit	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	

Sample Nar Method: ICF User: JYH Comment:		3_6010_200	.cquired: 5/1 .7WATER_ Custom IE	3YLINES(v8		ype: Unk ode: CONC :	Corr. Fa	ctor: 1.00000(
Elem Units Avg Stddev %RSD	Sn1899 ppm . 00013 .00029 219.99	Sr4077 ppm . 14187 .00021 .14616	Ti3372 ppm 01249 .01133 90.706	TI1908 ppm 00220 .00113 51.234	V_2924 ppm . 00119 .00130 109.49	Zn2062 ppm . 00591 .00018 2.9683	Zr3391 ppm . 28450 .21151 74.344	
#1 #2 #3	.00044 .00010 00014	.14209 .14184 .14168	01340 00074 02335	00170 00141 00350	.00020 .00267 .00071	.00588 .00575 .00610	.33406 .46684 .05262	
Check ? High Limit Low Limit	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	
Int. Std. Units Avg Stddev %RSD	Y_2243 Cts/S 13502. 17. .12562	Y_3600 Cts/S 97162. 331. .34019	Y_3774 Cts/S 4389.2 18.3 .41580					
#1 #2 #3	13492. 13521. 13492.	96788. 97414. 97286.	4368.5 4396.2 4402.9					

Sample Name: L1605044602 Acquired: 5/16/2016 15:24:57 Type: Unk Method: ICP-THERMO3_6010_200.7WATER_3YLINES(v873) Mode: CONC Corr. Factor: 1.000000 User: JYH Custom ID1: Custom ID2: Custom ID3: Comment:									
Elem	Ag3280	Al3082	As1890	B_2496	Ba4554	Be3131	Ca4226	Cd2288	
Units	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	
Avg	00194	. 59626	00017	.00876	.07870	.00010	37.190	. 00023	
Stddev	.00087	.01204	.00465	.00419	.00054	.00007	.338	.00017	
%RSD	44.828	2.0200	2766.2	47.775	.68686	62.600	.90874	71.664	
#1	00220	.60265	.00428	.00396	.07931	.00012	37.579	.00012	
#2	00097	.60376	00499	.01166	.07853	.00016	37.019	.00043	
#3	00265	.58236	.00020	.01065	.07827	.00003	36.972	.00016	
Check ? High Limit Low Limit	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	
Elem	Co2286	Cr2677	Cu2247	Fe2611	K_7664	Li6707	Mg2790	Mn2576	
Units	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	
Avg	.00026	. 00072	.00032	. 80468	1.0827	. 00997	2.6457	. 05551	
Stddev	.00058	.00070	.00064	.03110	.0273	.00393	.0866	.00395	
%RSD	221.25	97.311	203.48	3.8650	2.5262	39.449	3.2741	7.1144	
#1	.00093	.00093	00024	.84048	1.1132	.00714	2.7366	.05912	
#2	00002	.00128	.00102	.78916	1.0604	.00831	2.5641	.05129	
#3	00012	00006	.00017	.78438	1.0745	.01446	2.6365	.05612	
Check ? High Limit Low Limit	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	
Elem	Mo2020	Na5895	Ni2316	P_2149	Pb2203	Sb2068	Se1960	Si2124	
Units	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	
Avg	. 00041	2.0251	.00038	. 04457	. 00449	00260	.00307	4.5058	
Stddev	.00005	.0188	.00048	.00435	.00048	.00203	.00340	.0098	
%RSD	12.786	.92684	127.51	9.7704	10.761	77.813	110.92	.21744	
#1	.00046	2.0280	.00057	.04674	.00395	00478	.00088	4.5100	
#2	.00038	2.0050	.00074	.03955	.00466	00225	.00133	4.5128	
#3	.00037	2.0422	00017	.04741	.00488	00078	.00698	4.4946	
Check ? High Limit Low Limit	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	

Sample Nar Method: ICF User: JYH Comment:		3_6010_200	.cquired: 5/1 .7WATER_ Custom II	3YLINES(v8		ype: Unk ode: CONC :	Corr. Facto	or: 1.00000(
Elem Units Avg Stddev %RSD	Sn1899 ppm . 00012 .00078 627.87	Sr4077 ppm . 08540 .00049 .56976	Ti3372 ppm .00760 .00260 34.227	TI1908 ppm 00315 .00134 42.723	V_2924 ppm . 00256 .00092 35.852	Zn2062 ppm . 00419 .00006 1.4077	Zr3391 ppm 00366 .34766 9495.2	
#1 #2 #3	.00102 00022 00043	.08590 .08493 .08535	.00672 .00555 .01053	00331 00440 00173	.00159 .00269 .00341	.00413 .00424 .00421	10345 .38299 29052	
Check ? High Limit Low Limit	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	
Int. Std. Units Avg Stddev %RSD	Y_2243 Cts/S 13631. 30. .21674	Y_3600 Cts/S 97998. 345. .35243	Y_3774 Cts/S 4418.4 26.4 .59812					
#1 #2 #3	13604. 13626. 13662.	97617. 98292. 98085.	4388.1 4437.0 4430.0					

Sample Name: L1605044602PS Acquired: 5/16/2016 15:28:53 Type: Unk Method: ICP-THERMO3_6010_200.7WATER_3YLINES(v873) Mode: CONC Corr. Factor: 1.000000 User: JYH Custom ID1: Custom ID2: Custom ID3: Comment: WG568394-03 Ag3280 Al3082 B_2496 Ba4554 Ca4226 Cd2288 Elem As1890 Be3131 Units ppm ppm ppm ppm ppm ppm ppm ppm .02390 .98214 Avg .19511 5.4212 .19195 .55748 38.112 .02415 Stddev .00209 .0109 .00183 .00283 .00187 .00003 .178 .00021 %RSD 1.0726 .20054 .95548 .28862 .33495 .12709 .46688 .88727 #1 .19607 .19253 .98493 .02392 5.4164 .55730 .02393 38.168 #2 .19271 5.4136 .19342 .97927 55944 .02387 38.256 .02434 #3 .19655 5.4337 .18990 .98221 .55572 .02389 37.914 .02421 Chk Pass Chk Pass Chk Pass Chk Pass Chk Pass Chk Pass Chk Pass Check? **High Limit** Low Limit Mg2790 Elem Co2286 Cr2677 Cu2247 Fe2611 K_7664 Li6707 Mn2576 Units ppm ppm ppm ppm ppm ppm ppm ppm .09994 .25243 .25236 25.907 .29373 Avg 2.7289 .49768 7.2972 .00060 .00117 .00067 .206 .00044 Stddev .0061 .00209 .0485 %RSD .60143 .46384 .26718 .22228 .42095 .66458 .14956 .79523 #1 .10063 .25281 .25217 2.7230 25.703 .49993 7.2624 .29363 #2 .09952 .25337 .25181 2.7351 26.115 .49579 7.2765 .29421 .25311 .09968 .25112 2.7287 25.905 7.3526 #3 .49731 .29335

Check? Chk Pass Chk P

Elem	Mo2020	Na5895	Ni2316	P_2149	Pb2203	Sb2068	Se1960	Si2124
Units	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm
Avg	. 49366	26.786	. 25515	4.9711	. 25581	. 60242	.17609	6.6131
Stddev	.00180	.133	.00045	.0012	.00259	.00204	.00593	.0074
%RSD	.36438	.49486	.17731	.02456	1.0109	.33782	3.3700	.11236
#1	.49567	26.706	.25567	4.9698	.25598	.60026	.17874	6.6206
#2	.49312	26.939	.25488	4.9723	.25314	.60431	.18024	6.6058
#3	.49219	26.712	.25490	4.9712	.25831	.60270	.16929	6.6128

Check? Chk Pass Chk P

Sample Name: L1605044602PS Acquired: 5/16/2016 15:28:53 Type: Unk

Method: ICP-THERMO3_6010_200.7WATER_3YLINES(v873) Mode: CONC Corr. Factor: 1.000000

User: JYH Custom ID1: Custom ID2: Custom ID3:

Comment: WG568394-03

Elem	Sn1899	Sr4077	Ti3372	TI1908	V_2924	Zn2062	Zr3391
Units	ppm	ppm	ppm	ppm	ppm	ppm	ppm
Avg	.50345	.56692	.49405	.24812	.49937	.50538	.71677
Stddev	.00162	.00250	.00470	.00535	.00071	.00047	.23354
%RSD	.32083	.44049	.95073	2.1543	.14231	.09363	32.582
#1	.50164	.56453	.48981	.25125	.49855	.50591	.74019
#2	.50473	.56951	.49325	.24195	.49972	.50502	.93771
#3	.50399	.56672	.49910	.25116	.49984	.50521	.47241

Check? Chk Pass Chk P

Low Limit

Int. Std.	Y_2243	Y_3600	Y_3774
Units	Cts/S	Cts/S	Cts/S
Avg	13500.	96689.	4389.6
Stddev	12.	184.	33.0
%RSD	.08738	.19007	.75221
#1	13499.	96504.	4351.7
#2	13512.	96693.	4405.5
#3	13488.	96871.	4411.7

Sample Name: L1605044602SDL Acquired: 5/16/2016 15:32:36 Type: Unk Method: ICP-THERMO3 6010 200.7WATER 3YLINES(v873) Mode: CONC Corr. Factor: 1.000000 User: JYH Custom ID1: 5 Custom ID2: Custom ID3: Comment: WG568394-04 Al3082 As1890 B 2496 Ba4554 Be3131 Ca4226 Cd2288 Elem Ag3280 Units ppm ppm ppm ppm ppm ppm ppm ppm .00522 Avg -.00365 .10541 .00060 .01784 .00009 7.6741 .00015 Stddev .00051 .00538 .00293 .00157 .00055 .00006 .0477 .00011 489.33 %RSD 13.911 5.1027 30.085 3.0620 67.783 .62188 71.248 #1 -.00321 .10110 -.00193 .00643 .00002 7.6202 .00028 .01733 #2 -.00421 .11144 -.00008 .00578 .01778 .00012 7.7109 .00010 #3 -.00354 .10369 .00381 .00344 .01841 .00012 7.6912 .00008 Check? Chk Pass Chk Pass Chk Pass Chk Pass Chk Pass Chk Pass Chk Pass Chk Pass **High Limit** Low Limit Elem Co2286 Cr2677 Cu2247 Fe2611 K_7664 Li6707 Mg2790 Mn2576 Units ppm ppm ppm ppm ppm ppm ppm ppm -.00029 .00129 -.00006 .18382 .00701 Avg .32968 .57845 .01154 .00074 .06485 Stddev .00015 .00077 .00363 .08629 .00222 .00110 %RSD 51.504 59.698 1166.2 1.9720 11.212 9.5066 26.173 31.717 #1 -.00017 .00073 -.00091 .18146 .23107 .00459 .64056 .01079 #2 -.00046 .00097 .00048 .18800 .39134 .00896 .58362 .01279 .00024 .00748 #3 -.00025 .00217 .18202 .36663 .51116 .01103 Check? Chk Pass Chk Pass Chk Pass Chk Pass Chk Pass Chk Pass Chk Pass High Limit Low Limit Elem Mo2020 Na5895 Ni2316 P_2149 Pb2203 Sb2068 Se1960 Si2124 Units ppm ppm ppm ppm ppm ppm ppm ppm .00077 .34576 -.00057 .00962 .00101 -.00127 .90188 Avg -.00157 .00018 .02805 .00097 .00672 .00459 .00292 .00946 Stddev .00182 %RSD 23.891 8.1136 171.04 69.858 454.39 186.44 745.18 .20138 #1 -.00001 .00059 .35476 .00519 .00630 .00180 .00411 .90305 .00096 .36821 -.00001 -.00302 -.01219 .90280 #2 .00632 -.00139 -.00348 #3 .00077 .31431 -.00169 .01736 -.00188 .00427 .89978 Check? Chk Pass Chk Pass Chk Pass Chk Pass Chk Pass Chk Pass Chk Pass High Limit Low Limit

•	Sample Name: L1605044602SDL								
User: JYH	Custom	ID1: 5	Custom I	D2:	Custom ID3	3:			
Comment: \	NG568394-0)4							
Elem	Sn1899	Sr4077	Ti3372	TI1908	V_2924	Zn2062	Zr3391		
Units	ppm	ppm	ppm	ppm	ppm	ppm	ppm		
Avg Stddev	00120 .00043	. 01738 .00038	. 00085 .00680	00237 .00264	. 00105 .00027	. 00151 .00031	. 10323 .45812		
%RSD	36.193	2.1634	803.35	111.36	25.358	20.564	443.81		
701102	00.100	2.1001	000.00	111.00	20.000	20.001	110.01		
#1	00099	.01697	00086	00043	.00086	.00187	.60351		
#2	00170	.01770	.00834	00131	.00136	.00135	29577		
#3	00091	.01748	00494	00538	.00094	.00131	.00193		
Check ? High Limit Low Limit	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass		
Int. Std.	Y 2243	Y 3600	Y 3774						
Units	_Cts/S	_Cts/S	_Cts/S						
Avg	13399.	96755.	4231.3						
Stddev %RSD	38. .28442	186. .19193	30.4 .71945						
%K3D	.20442	. 19 193	.71945						
#1	13411.	96751.	4247.8						
#2	13430.	96571.	4196.2						
#3	13356.	96943.	4250.0						

Sample Name: L1605044602SDL Acquired: 5/16/2016 15:36:35 Type: Unk Mode: CONC Method: ICP-THERMO3 6010 200.7WATER 3YLINES(v873) Corr. Factor: 1.000000 User: JYH Custom ID1: 25 Custom ID2: Custom ID3: Comment: WG568394-04 AI3082 As1890 B 2496 Ba4554 Be3131 Ca4226 Elem Ag3280 Units ppm ppm ppm ppm ppm ppm ppm -.00264 Avg -.00270 .00178 -.00186 .00422 .00012 1.4549 Stddev .00109 .00397 .00139 .00205 .00093 .00007 .0460 %RSD 40.327 150.66 77.823 109.87 22.065 55.734 3.1611 #1 -.00195 .00142 .00090 -.00377 .00425 .00015 1.4165 #2 -.00220 -.00282 .00107 .00030 .00327 .00017 1.5059 #3 -.00395 -.00651 .00338 -.00212 .00513 .00005 1.4423 **Chk Pass** Check? Chk Pass **Chk Pass Chk Pass Chk Pass Chk Pass Chk Pass High Limit** Low Limit Elem Cd2288 Co2286 Cr2677 Cu2247 Fe2611 K_7664 Li6707 Units ppm ppm ppm ppm ppm ppm ppm -.00018 .00033 .00057 .03620 .27975 Avg .00062 .00695 .00025 .00059 .03222 .00244 Stddev .00167 .00136 .12674 %RSD 141.94 180.80 295.59 220.00 88.983 45.305 35.089 #1 -.00011 .00035 -.00137 -.00009 .01833 .14007 .00975 #2 -.00045 -.00027 .00155 .00219 .01689 .38742 .00535 #3 .00003 .00090 .00151 -.00024.07339 .31175 .00573 Check? **Chk Pass** Chk Pass **Chk Pass Chk Pass Chk Pass Chk Pass Chk Pass** High Limit Low Limit Mo2020 Elem Mg2790 Mn2576 Na5895 Ni2316 P_2149 Pb2203 Units ppm ppm ppm ppm ppm ppm ppm .24442 .00144 -.00008 .01409 -.00129 .01096 .00025 Avg .00093 .00039 .04899 .00094 .00697 .00342 Stddev .01206 %RSD 478.86 4.9325 64.356 347.58 73.279 63.620 1355.5 #1 .24513 .00114 .00023 -.04195 -.00025 .01042 .00127 #2 .25610 .00249 .00005 .04876 -.00153 .00427 .00305 #3 .23202 .00071 -.00053 .03548 -.00208 .01818 -.00357 Check? **Chk Pass** Chk Pass **Chk Pass Chk Pass Chk Pass Chk Pass Chk Pass** High Limit

Approved: May 17, 2016

Low Limit

Method: ICP- User: JYH	Sample Name: L1605044602SDL Acquired: 5/16/2016 15:36:35 Type: Unk Method: ICP-THERMO3_6010_200.7WATER_3YLINES(v873) Mode: CONC Corr. Factor: 1.000000 User: JYH Custom ID1: 25 Custom ID2: Custom ID3: Comment: WG568394-04									
Elem Units Avg Stddev %RSD	Sb2068 ppm 00641 .00533 83.217	Se1960 ppm 00388 .01211 311.96	Si2124 ppm . 15035 .00093 .62089	Sn1899 ppm 00024 .00041 170.11	Sr4077 ppm . 00361 .00015 4.1334	Ti3372 ppm 00277 .00904 326.25	TI1908 ppm 00020 .00179 874.79			
#1 #2 #3	00392 00277 01252	00204 .00720 01681	.14976 .15143 .14986	00049 .00023 00047	.00344 .00368 .00372	00374 .00671 01129	.00110 .00052 00224			
Check ? High Limit Low Limit	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass			
Elem Units Avg Stddev %RSD	V_2924 ppm . 00014 .00047 332.43	Zn2062 ppm .00091 .00015 16.553	Zr3391 ppm F16712 .10361 61.998							
#1 #2 #3	00011 .00069 00015	.00077 .00089 .00107	28003 07640 14495							
Check ? High Limit Low Limit	Chk Pass	Chk Pass	Chk Fail 36.000 04000							
Int. Std. Units Avg Stddev %RSD	Y_2243 Cts/S 13694. 51. .37217	Y_3600 Cts/S 97340. 767. .78808	Y_3774 Cts/S 4296.8 17.8 .41464							
#1 #2 #3	13703. 13741. 13640.	97446. 96525. 98048.	4313.9 4278.3 4298.3							

Sample Nam Method: ICP User: JYH Comment:				LINES(v873	pe: QC) Mode: tom ID3:	CONC (Corr. Factor:	1.000000
Elem	Ag3280	Al3082	As1890	B_2496	Ba4554	Be3131	Ca4226	
Units	ppm	ppm	ppm	ppm	ppm	ppm	ppm	
Avg	. 40552	10.216	. 40367	. 51241	1.0099	. 04999	9.8439	
Stddev	.00289	.007	.00024	.00514	.0022	.00035	.0366	
%RSD	.71163	.06961	.06064	1.0032	.21309	.69254	.37220	
#1	.40660	10.223	.40363	.51459	1.0119	.04997	9.8828	
#2	.40225	10.216	.40393	.51610	1.0076	.05035	9.8389	
#3	.40771	10.209	.40345	.50654	1.0102	.04966	9.8100	
Check ? Value Range	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	
Elem	Cd2288	Co2286	Cr2677	Cu2247	Fe2611	K_7664	Li6707	
Units	ppm	ppm	ppm	ppm	ppm	ppm	ppm	
Avg	. 04990	. 20785	. 52310	. 52096	4.1341	50.726	1.0109	
Stddev	.00063	.00054	.00216	.00060	.0281	.068	.0062	
%RSD	1.2591	.25970	.41213	.11578	.67982	.13414	.60819	
#1	.05063	.20837	.52176	.52129	4.1047	50.738	1.0114	
#2	.04953	.20730	.52558	.52132	4.1607	50.654	1.0045	
#3	.04955	.20789	.52194	.52026	4.1368	50.788	1.0168	
Check ? Value Range	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	
Elem	Mg2790	Mn2576	Mo2020	Na5895	Ni2316	P_2149	Pb2203	
Units	ppm	ppm	ppm	ppm	ppm	ppm	ppm	
Avg	10.193	. 50705	. 99828	51.459	. 52940	10.263	. 53077	
Stddev	.094	.00055	.00457	.118	.00150	.006	.00209	
%RSD	.92128	.10779	.45807	.22981	.28394	.05771	.39434	
#1	10.095	.50722	1.0023	51.582	.53111	10.267	.52874	
#2	10.282	.50749	.99917	51.346	.52882	10.266	.53067	
#3	10.202	.50644	.99332	51.448	.52829	10.257	.53292	
Check ? Value Range	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	

Sample Nam Method: ICP User: JYH Comment:	ne: CCV / -THERMO3_ Custom I	_		LINES(v873)	pe: QC) Mode: tom ID3:	CONC (Corr. Factor: 1	1.000000
Elem Units Avg Stddev %RSD	Sb2068 ppm 1.2245 .0032 .25855	Se1960 ppm .38008 .00965 2.5384	Si2124 ppm 5.1416 .0038 .07351	Sn1899 ppm 1.0330 .0018 .17617	Sr4077 ppm 1.0046 .0004 .04232	Ti3372 ppm 1.0005 .0050 .50121	TI1908 ppm . 51329 .00065 .12717	
#1 #2 #3	1.2253 1.2211 1.2273	.37588 .37324 .39111	5.1458 5.1402 5.1387	1.0351 1.0320 1.0320	1.0050 1.0047 1.0041	.99495 1.0047 1.0018	.51288 .51405 .51295	
Check ? Value Range	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	
Elem Units Avg Stddev %RSD	V_2924 ppm 1.0255 .0038 .37019	Zn2062 ppm 1.0534 .0018 .17013	Zr3391 ppm F .86714 .30648 35.343					
#1 #2 #3	1.0275 1.0211 1.0279	1.0545 1.0544 1.0514	1.1226 .52733 .95147					
Check ? Value Range	Chk Pass	Chk Pass	Chk Fail 1.0000 -10.000%					
Int. Std. Units Avg Stddev %RSD	Y_2243 Cts/S 13160. 33. .24943	Y_3600 Cts/S 93252. 229. .24608	Y_3774 Cts/S 4261.4 19.0 .44499					
#1 #2 #3	13139. 13144. 13198.	93107. 93516. 93132.	4275.0 4269.5 4239.8					

Sample Name: CCB Acquired: 5/16/2016 15:44:13 Type: Blank Method: ICP-THERMO3_6010_200.7WATER_3YLINES(v873) Mode: CONC Corr. Factor: 1.000000 User: JYH Custom ID1: Custom ID2: Custom ID3: Comment:									
Elem	Ag3280	Al3082	As1890	B_2496	Ba4554	Be3131	Ca4226		
Units	ppm	ppm	ppm	ppm	ppm	ppm	ppm		
Avg	00298	01675	. 00256	00030	. 00109	. 00012	02052		
Stddev	.00079	.00528	.00320	.00180	.00064	.00005	.02422		
%RSD	26.502	31.498	125.01	605.12	59.134	36.750	118.04		
#1	00283	01941	.00083	00208	.00154	.00011	04276		
#2	00384	02016	.00625	.00151	.00035	.00017	02409		
#3	00229	01067	.00060	00033	.00138	.00009	.00529		
Check ? High Limit Low Limit	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass		
Elem	Cd2288	Co2286	Cr2677	Cu2247	Fe2611	K_7664	Li6707		
Units	ppm	ppm	ppm	ppm	ppm	ppm	ppm		
Avg	. 00026	.00010	. 00092	. 00043	01521	. 21808	. 00506		
Stddev	.00049	.00014	.00072	.00159	.02085	.06012	.00183		
%RSD	192.69	140.21	78.147	365.18	137.05	27.568	36.139		
#1	.00056	00006	.00010	.00226	02109	.19222	.00715		
#2	00031	.00021	.00143	00053	03250	.17521	.00425		
#3	.00053	.00016	.00123	00043	.00794	.28680	.00377		
Check ? High Limit Low Limit	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass		
Elem	Mg2790	Mn2576	Mo2020	Na5895	Ni2316	P_2149	Pb2203		
Units	ppm	ppm	ppm	ppm	ppm	ppm	ppm		
Avg	. 04336	00058	. 00359	04738	00118	. 00170	00254		
Stddev	.09596	.00396	.00027	.01548	.00060	.00415	.00053		
%RSD	221.31	688.15	7.4050	32.673	51.038	244.28	20.749		
#1	.13593	00284	.00389	04366	00186	.00267	00313		
#2	05566	00288	.00349	06438	00095	.00528	00212		
#3	.04980	.00400	.00339	03410	00072	00285	00236		
Check ? High Limit Low Limit	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass		

Sample Name: CCB Acquired: 5/16/2016 15:44:13 Type: Blank Method: ICP-THERMO3_6010_200.7WATER_3YLINES(v873) Mode: CONC Corr. Factor: 1.000000 User: JYH Custom ID1: Custom ID2: Custom ID3: Comment:									
Elem Units Avg Stddev %RSD	Sb2068 ppm . 00452 .00283 62.522	Se1960 ppm .00543 .00185 34.084	Si2124 ppm 02610 .00231 8.8514	Sn1899 ppm 00030 .00078 261.38	Sr4077 ppm . 00027 .00015 56.810	Ti3372 ppm 00122 .00593 487.26	TI1908 ppm 00186 .00235 126.70		
#1 #2 #3	.00660 .00567 .00130	.00470 .00753 .00405	02435 02872 02523	00046 .00055 00098	.00010 .00040 .00032	00561 .00552 00356	.00081 00276 00362		
Check ? High Limit Low Limit	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass		
Elem Units Avg Stddev %RSD	V_2924 ppm . 00060 .00036 59.409	Zn2062 ppm .00032 .00018 55.420	Zr3391 ppm F20226 .14886 73.601						
#1 #2 #3	.00099 .00029 .00053	.00027 .00053 .00018	32422 03638 24617						
Check ? High Limit Low Limit	Chk Pass	Chk Pass	Chk Fail .04000 04000						
Int. Std. Units Avg Stddev %RSD	Y_2243 Cts/S 13179 . 15. .11184	Y_3600 Cts/S 94385. 250. .26443	Y_3774 Cts/S 4212.0 19.0 .45100						
#1 #2 #3	13175. 13166. 13195.	94294. 94193. 94667.	4191.6 4229.2 4215.1						

Sample Name: L1605045001 Acquired: 5/16/2016 15:48:12 Type: Unk Method: ICP-THERMO3_6010_200.7WATER_3YLINES(v873) Mode: CONC Corr. Factor: 1.000000 User: JYH Custom ID1: Custom ID2: Custom ID3: Comment:									
Elem	Ag3280	Al3082	As1890	B_2496	Ba4554	Be3131	Ca4226	Cd2288	
Units	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	
Avg	00353	01006	00107	. 06016	. 15887	.00013	54.715	. 00012	
Stddev	.00203	.00510	.00304	.00107	.00046	.00006	.113	.00017	
%RSD	57.604	50.674	282.76	1.7735	.28824	41.541	.20734	133.62	
#1	00389	00449	00198	.05894	.15864	.00016	54.844	.00015	
#2	00134	01449	00355	.06059	.15939	.00017	54.666	00005	
#3	00535	01118	.00231	.06095	.15857	.00007	54.634	.00027	
Check ? High Limit Low Limit	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	
Elem	Co2286	Cr2677	Cu2247	Fe2611	K_7664	Li6707	Mg2790	Mn2576	
Units	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	
Avg	00039	.00061	.06035	.01585	1.2102	. 01259	13.122	. 02031	
Stddev	.00040	.00035	.00104	.00710	.0800	.00329	.151	.00196	
%RSD	102.17	57.274	1.7166	44.798	6.6124	26.114	1.1514	9.6391	
#1	00028	.00045	.06146	.02193	1.2091	.01465	13.100	.01834	
#2	00084	.00101	.05941	.01758	1.1308	.01433	12.983	.02034	
#3	00006	.00037	.06018	.00805	1.2908	.00880	13.282	.02226	
Check ? High Limit Low Limit	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	
Elem	Mo2020	Na5895	Ni2316	P_2149	Pb2203	Sb2068	Se1960	Si2124	
Units	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	
Avg	.00154	32.384	00064	00000	. 00177	00030	.00144	4.9248	
Stddev	.00002	.040	.00035	.00788	.00197	.00183	.00157	.0049	
%RSD	1.0432	.12416	54.087	310540.	110.99	601.56	109.21	.09909	
#1	.00152	32.378	00037	.00277	.00331	.00172	.00297	4.9293	
#2	.00156	32.427	00103	00889	00044	00079	00017	4.9196	
#3	.00155	32.347	00052	.00612	.00245	00184	.00152	4.9254	
Check ? High Limit Low Limit	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	

Sample Name: L1605045001 Acquired: 5/16/2016 15:48:12 Type: Unk Method: ICP-THERMO3_6010_200.7WATER_3YLINES(v873) Mode: CONC Corr. Factor: 1.000000 User: JYH Custom ID1: Custom ID2: Custom ID3:								
Comment:								
Elem Units Avg Stddev %RSD	Sn1899 ppm 00029 .00018 62.569	Sr4077 ppm . 37430 .00074 .19713	Ti3372 ppm 01252 .00312 24.886	TI1908 ppm 00081 .00124 154.09	V_2924 ppm .00033 .00152 460.03	Zn2062 ppm . 01721 .00018 1.0416	Zr3391 ppm . 17337 .23038 132.88	
#1 #2 #3	00049 00027 00012	.37515 .37397 .37379	01269 01555 00933	.00012 00222 00032	00138 .00083 .00154	.01707 .01715 .01741	.43234 00881 .09659	
Check ? High Limit Low Limit	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	
Int. Std. Units Avg Stddev %RSD	Y_2243 Cts/S 13359. 42. .31453	Y_3600 Cts/S 96046. 126. .13112	Y_3774 Cts/S 4375.9 14.7 .33541					
#1 #2 #3	13311. 13392. 13373.	95944. 96007. 96187.	4382.7 4386.0 4359.1					

Sample Name: L1605045002 Acquired: 5/16/2016 15:52:09 Type: Unk Method: ICP-THERMO3_6010_200.7WATER_3YLINES(v873) Mode: CONC Corr. Factor: 1.000000 User: JYH Custom ID1: Custom ID2: Custom ID3: Comment:								
Elem	Ag3280	Al3082	As1890	B_2496	Ba4554	Be3131	Ca4226	
Units	ppm	ppm	ppm	ppm	ppm	ppm	ppm	
Avg	00267	01868	.00222	. 05872	. 16059	.00003	54.760	
Stddev	.00095	.00735	.00129	.00095	.00137	.00003	.248	
%RSD	35.677	39.367	58.018	1.6164	.85200	84.633	.45295	
#1	00350	01020	.00262	.05933	.16143	.00002	55.046	
#2	00288	02321	.00077	.05919	.15901	.00001	54.618	
#3	00163	02264	.00325	.05762	.16132	.00006	54.615	
Check ? High Limit Low Limit	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	
Elem	Cd2288	Co2286	Cr2677	Cu2247	Fe2611	K_7664	Li6707	
Units	ppm	ppm	ppm	ppm	ppm	ppm	ppm	
Avg	. 00042	00010	. 00070	. 05830	00634	1.2093	. 01512	
Stddev	.00015	.00037	.00050	.00042	.01257	.0983	.00209	
%RSD	34.350	378.13	71.402	.71700	198.29	8.1304	13.791	
#1	.00056	.00029	.00022	.05839	01635	1.2470	.01355	
#2	.00043	00043	.00066	.05866	01044	1.0977	.01749	
#3	.00027	00015	.00122	.05784	.00777	1.2832	.01434	
Check ? High Limit Low Limit	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	
Elem	Mg2790	Mn2576	Mo2020	Na5895	Ni2316	P_2149	Pb2203	
Units	ppm	ppm	ppm	ppm	ppm	ppm	ppm	
Avg	12.979	. 02251	. 00161	32.999	00047	00313	. 00178	
Stddev	.130	.00064	.00015	.103	.00026	.00137	.00134	
%RSD	1.0044	2.8398	9.3313	.31202	55.524	43.698	75.422	
#1	12.987	.02250	.00178	33.105	00069	00469	.00057	
#2	12.845	.02316	.00156	32.899	00018	00263	.00155	
#3	13.105	.02188	.00149	32.993	00054	00209	.00322	
Check ? High Limit Low Limit	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	

Sample Name Method: ICP-1 User: JYH Comment:)10_200.7W <i>A</i>	6 15:52:09 ES(v873) Custom	Type: Unk Mode: CON ID3:	C Corr. F	Factor: 1.000000	
Elem Units Avg Stddev %RSD	Sb2068 ppm 00394 .00065 16.386	Se1960 ppm 00157 .00718 457.23	Si2124 ppm 4.9256 .0146 .29663	Sn1899 ppm 00042 .00080 188.82	Sr4077 ppm . 37584 .00155 .41292	Ti3372 ppm 01179 .00053 4.4810	TI1908 ppm 00130 .00221 169.90
#1 #2 #3	00443 00419 00321	00981 .00178 .00332	4.9372 4.9092 4.9305	.00029 00128 00028	.37751 .37445 .37556	01138 01239 01161	00385 00018 .00012
Check ? High Limit Low Limit	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass
Elem Units Avg Stddev %RSD	V_2924 ppm 00060 .00110 184.92	Zn2062 ppm .01869 .00028 1.4877	Zr3391 ppm F21991 .09414 42.807				
#1 #2 #3	00122 .00068 00124	.01897 .01842 .01867	17551 15617 32803				
Check ? High Limit Low Limit	Chk Pass	Chk Pass	Chk Fail 36.000 04000				
Int. Std. Units Avg Stddev %RSD	Y_2243 Cts/S 13499. 11. .08317	Y_3600 Cts/S 96443. 292. .30297	Y_3774 Cts/S 4405.3 13.3 .30108				
#1 #2 #3	13508. 13502. 13486.	96200. 96767. 96361.	4398.5 4396.9 4420.6				

Sample Name: L1605045003 Acquired: 5/16/2016 15:56:05 Type: Unk Method: ICP-THERMO3_6010_200.7WATER_3YLINES(v873) Mode: CONC Corr. Factor: 1.00000 User: JYH Custom ID1: Custom ID2: Custom ID3: Comment:							
Elem	Ag3280	Al3082	As1890	B_2496	Ba4554	Be3131	Ca4226
Units	ppm	ppm	ppm	ppm	ppm	ppm	ppm
Avg	00315	02007	00026	. 04677	. 00192	.00008	. 05150
Stddev	.00066	.00773	.00239	.00121	.00057	.00004	.00287
%RSD	20.876	38.533	903.88	2.5954	29.782	43.814	5.5745
#1	00391	02294	00047	.04787	.00229	.00007	.05482
#2	00281	01131	.00222	.04696	.00126	.00005	.04981
#3	00273	02596	00254	.04547	.00222	.00012	.04988
Check ? High Limit Low Limit	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass
Elem	Cd2288	Co2286	Cr2677	Cu2247	Fe2611	K_7664	Li6707
Units	ppm	ppm	ppm	ppm	ppm	ppm	ppm
Avg	. 00044	.00005	.00084	. 00424	. 00494	. 22614	. 00517
Stddev	.00021	.00037	.00021	.00122	.03482	.01797	.00081
%RSD	46.934	793.39	24.821	28.727	704.55	7.9467	15.679
#1	.00042	00033	.00061	.00288	.01387	.24683	.00592
#2	.00025	.00006	.00090	.00461	.03443	.21443	.00431
#3	.00066	.00042	.00101	.00523	03347	.21716	.00527
Check ? High Limit Low Limit	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass
Elem	Mg2790	Mn2576	Mo2020	Na5895	Ni2316	P_2149	Pb2203
Units	ppm	ppm	ppm	ppm	ppm	ppm	ppm
Avg	. 04328	. 00238	.00058	123.29	00093	. 00235	. 00026
Stddev	.06287	.00078	.00033	.55	.00063	.00636	.00054
%RSD	145.28	32.971	56.937	.44906	68.235	271.38	206.51
#1	.09160	.00327	.00069	123.89	00146	.00957	00023
#2	02781	.00201	.00021	123.21	00109	00009	.00017
#3	.06604	.00184	.00085	122.79	00023	00244	.00084
Check ? High Limit Low Limit	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass

Sample Name Method: ICP-1 User: JYH Comment:)10_200.7W <i>A</i>	6 15:56:05 ES(v873) Custom	Type: Unk Mode: CON ID3:	C Corr. F	Factor: 1.000000	
Elem Units Avg Stddev %RSD	Sb2068 ppm 00237 .00290 122.32	Se1960 ppm .00781 .00329 42.178	Si2124 ppm 5.2159 .0113 .21569	Sn1899 ppm . 00011 .00121 1075.5	Sr4077 ppm . 00071 .00004 5.3436	Ti3372 ppm 00378 .00582 153.82	TI1908 ppm 00273 .00149 54.528
#1 #2 #3	00208 .00037 00540	.01132 .00732 .00479	5.2266 5.2041 5.2171	.00150 00077 00038	.00074 .00067 .00073	01040 00152 .00056	00325 00389 00105
Check ? High Limit Low Limit	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass
Elem Units Avg Stddev %RSD	V_2924 ppm .00001 .00081 10483.	Zn2062 ppm .00333 .00014 4.3345	Zr3391 ppm F13564 .18755 138.27				
#1 #2 #3	.00090 00021 00067	.00346 .00335 .00318	.07477 19645 28525				
Check ? High Limit Low Limit	Chk Pass	Chk Pass	Chk Fail 36.000 04000				
Int. Std. Units Avg Stddev %RSD	Y_2243 Cts/S 13454. 10. .07693	Y_3600 Cts/S 95458. 304. .31843	Y_3774 Cts/S 4381.3 16.5 .37670				
#1 #2 #3	13460. 13442. 13460.	95809. 95281. 95284.	4390.9 4362.2 4390.7				

Sample Name: L1605045004 Acquired: 5/16/2016 16:00:04 Type: Unk Method: ICP-THERMO3_6010_200.7WATER_3YLINES(v873) Mode: CONC Corr. Factor: 1.000000 User: JYH Custom ID1: Custom ID2: Custom ID3: Comment:										
Elem	Ag3280	Al3082	As1890	B_2496	Ba4554	Be3131	Ca4226	Cd2288		
Units	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm		
Avg	00328	00770	00100	. 04582	.00267	.00015	. 13687	. 00020		
Stddev	.00067	.00771	.00210	.00030	.00076	.00005	.02732	.00023		
%RSD	20.500	100.18	209.96	.65263	28.480	30.817	19.962	116.89		
#1	00259	01060	00250	.04617	.00194	.00010	.10590	.00040		
#2	00393	01353	.00140	.04567	.00346	.00015	.15756	00005		
#3	00331	.00104	00189	.04563	.00261	.00020	.14714	.00024		
Check ? High Limit Low Limit	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass		
Elem	Co2286	Cr2677	Cu2247	Fe2611	K_7664	Li6707	Mg2790	Mn2576		
Units	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm		
Avg	.00010	.00035	.00306	.00711	. 14155	. 00922	. 16058	. 00132		
Stddev	.00045	.00033	.00058	.02223	.05249	.00101	.01595	.00126		
%RSD	454.06	95.091	18.885	312.76	37.079	10.970	9.9326	95.399		
#1	00033	.00042	.00355	.03271	.18543	.01030	.16030	.00144		
#2	.00057	00001	.00321	00399	.08341	.00904	.17667	.00001		
#3	.00006	.00064	.00242	00739	.15582	.00831	.14478	.00252		
Check ? High Limit Low Limit	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass		
Elem	Mo2020	Na5895	Ni2316	P_2149	Pb2203	Sb2068	Se1960	Si2124		
Units	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm		
Avg	.00098	124.19	00145	00590	. 00144	00347	. 00136	5.2836		
Stddev	.00020	.51	.00099	.00665	.00213	.00392	.00405	.0240		
%RSD	20.234	.41187	68.443	112.78	148.32	113.03	298.22	.45510		
#1	.00103	124.01	00041	.00059	00092	00334	00209	5.2584		
#2	.00076	124.77	00155	01270	.00200	00744	.00035	5.3063		
#3	.00115	123.80	00239	00559	.00324	.00039	.00581	5.2863		
Check ? High Limit Low Limit	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass		

Sample Nan Method: ICF User: JYH Comment:		3_6010_200	•	•		ype: Unk ode: CONC :	Corr. Fa	ctor: 1.00000(
Elem Units Avg Stddev %RSD	Sn1899 ppm 00064 .00073 113.70	Sr4077 ppm . 00205 .00022 10.574	Ti3372 ppm 00335 .00400 119.55	TI1908 ppm 00337 .00150 44.370	V_2924 ppm . 00012 .00105 853.91	Zn2062 ppm . 00492 .00013 2.6427	Zr3391 ppm . 14883 .24691 165.90	
#1 #2 #3	00004 00043 00144	.00228 .00199 .00186	00093 00797 00114	00483 00345 00184	.00046 .00096 00105	.00505 .00491 .00480	.15540 10129 .39239	
Check? High Limit Low Limit	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	
Int. Std. Units Avg Stddev %RSD	Y_2243 Cts/S 13356. 26. .19371	Y_3600 Cts/S 95430. 412. .43143	Y_3774 Cts/S 4358.5 35.7 .81798					
#1 #2 #3	13386. 13341. 13341.	95408. 95029. 95852.	4367.0 4319.3 4389.1					

Sample Name Method: ICP- User: JYH Comment:		010_200.7W	red: 5/16/201 ATER_3YLIN stom ID2:		Type: Unk Mode: CONO ID3:	C Corr. F	Factor: 1.00000(
Elem	Ag3280	Al3082	As1890	B_2496	Ba4554	Be3131	Ca4226
Units	ppm	ppm	ppm	ppm	ppm	ppm	ppm
Avg	00288	01587	00020	. 05855	. 16603	.00008	56.304
Stddev	.00026	.00915	.00400	.00429	.00063	.00003	.105
%RSD	8.8933	57.663	1956.8	7.3192	.38137	38.285	.18579
#1	00259	02446	00239	.05374	.16535	.00009	56.307
#2	00303	00624	00263	.06197	.16614	.00005	56.406
#3	00303	01691	.00441	.05995	.16660	.00011	56.197
Check ? High Limit Low Limit	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass
Elem	Cd2288	Co2286	Cr2677	Cu2247	Fe2611	K_7664	Li6707
Units	ppm	ppm	ppm	ppm	ppm	ppm	ppm
Avg	. 00027	00024	. 00137	00056	. 04620	1.1900	. 01430
Stddev	.00022	.00021	.00023	.00064	.00445	.0588	.00074
%RSD	81.384	86.278	17.136	113.64	9.6325	4.9384	5.1549
#1	.00035	00000	.00151	00123	.04331	1.2570	.01359
#2	.00002	00039	.00110	.00004	.04397	1.1656	.01506
#3	.00045	00033	.00151	00050	.05133	1.1473	.01424
Check ? High Limit Low Limit	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass
Elem	Mg2790	Mn2576	Mo2020	Na5895	Ni2316	P_2149	Pb2203
Units	ppm	ppm	ppm	ppm	ppm	ppm	ppm
Avg	13.557	. 05751	. 00097	33.078	00123	00237	00237
Stddev	.080	.00072	.00010	.054	.00054	.00692	.00297
%RSD	.59124	1.2461	10.006	.16316	44.164	291.61	125.28
#1	13.617	.05802	.00108	33.127	00080	00845	00364
#2	13.589	.05669	.00090	33.088	00104	00383	.00102
#3	13.466	.05783	.00094	33.020	00184	.00516	00450
Check ? High Limit Low Limit	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass

Sample Name Method: ICP-1 User: JYH Comment:)10_200.7W <i>A</i>	6 16:04:02 ES(v873) Custom	Type: Unk Mode: CONO ID3:	C Corr. F	Factor: 1.00000(
Elem Units Avg Stddev %RSD	Sb2068 ppm 00421 .00408 96.859	Se1960 ppm 00283 .00300 105.90	Si2124 ppm 5.0071 .0182 .36353	Sn1899 ppm 00061 .00075 122.02	Sr4077 ppm . 38385 .00165 .43018	Ti3372 ppm 00677 .00426 62.950	TI1908 ppm 00278 .00128 45.942
#1 #2 #3	00006 00435 00821	00629 00093 00127	5.0245 5.0086 4.9882	00147 00027 00010	.38572 .38328 .38257	00285 01130 00615	00133 00375 00327
Check ? High Limit Low Limit	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass
Elem Units Avg Stddev %RSD	V_2924 ppm 00044 .00100 227.43	Zn2062 ppm . 00507 .00006 1.0883	Zr3391 ppm F18976 .53733 283.16				
#1 #2 #3	00025 .00045 00152	.00501 .00506 .00512	.15133 .08854 80915				
Check ? High Limit Low Limit	Chk Pass	Chk Pass	Chk Fail 36.000 04000				
Int. Std. Units Avg Stddev %RSD	Y_2243 Cts/S 13350. 9. .06851	Y_3600 Cts/S 95729. 172. .17997	Y_3774 Cts/S 4356.8 44.6 1.0242				
#1 #2 #3	13359. 13351. 13341.	95533. 95858. 95795.	4342.4 4321.2 4406.9				

Sample Name: L1605045006 Acquired: 5/16/2016 16:07:58 Type: Unk Method: ICP-THERMO3_6010_200.7WATER_3YLINES(v873) Mode: CONC Corr. Factor: 1.000000 User: JYH Custom ID1: Custom ID2: Custom ID3: Comment:								
Elem	Ag3280	Al3082	As1890	B_2496	Ba4554	Be3131	Ca4226	
Units	ppm	ppm	ppm	ppm	ppm	ppm	ppm	
Avg	00396	00141	.00202	. 04610	.22353	.00011	51.283	
Stddev	.00038	.00428	.00263	.00279	.00014	.00003	.077	
%RSD	9.5948	304.13	130.02	6.0597	.06249	27.883	.14984	
#1	00436	00367	.00492	.04288	.22367	.00014	51.367	
#2	00361	.00353	.00137	.04745	.22352	.00009	51.216	
#3	00392	00409	00022	.04796	.22339	.00009	51.266	
Check ? High Limit Low Limit	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	
Elem	Cd2288	Co2286	Cr2677	Cu2247	Fe2611	K_7664	Li6707	
Units	ppm	ppm	ppm	ppm	ppm	ppm	ppm	
Avg	. 00014	00011	. 00103	. 00021	. 70898	1.2620	. 01366	
Stddev	.00007	.00023	.00043	.00069	.00386	.0514	.00175	
%RSD	49.989	216.08	41.706	331.43	.54452	4.0700	12.810	
#1	.00021	00015	.00122	00048	.71122	1.2774	.01339	
#2	.00007	00032	.00132	.00090	.71120	1.3039	.01206	
#3	.00013	.00014	.00054	.00021	.70452	1.2047	.01552	
Check ? High Limit Low Limit	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	
Elem	Mg2790	Mn2576	Mo2020	Na5895	Ni2316	P_2149	Pb2203	
Units	ppm	ppm	ppm	ppm	ppm	ppm	ppm	
Avg	10.820	. 17491	.00038	34.680	00136	. 00187	. 00521	
Stddev	.021	.00464	.00056	.031	.00041	.00554	.00204	
%RSD	.19839	2.6520	149.12	.08824	29.865	296.37	39.198	
#1	10.821	.17197	00027	34.714	00101	00151	.00330	
#2	10.841	.17251	.00076	34.655	00128	00115	.00737	
#3	10.798	.18026	.00064	34.671	00181	.00827	.00496	
Check ? High Limit Low Limit	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	

Sample Name Method: ICP-1 User: JYH Comment:)10_200.7W <i>A</i>	6 16:07:58 ES(v873) Custom	Type: Unk Mode: CONO ID3:	C Corr. F	Factor: 1.00000(
Elem Units Avg Stddev %RSD	Sb2068 ppm 00116 .00386 334.03	Se1960 ppm .00238 .00230 96.258	Si2124 ppm 5.1360 .0113 .22078	Sn1899 ppm 00068 .00074 110.21	Sr4077 ppm . 66615 .00054 .08067	Ti3372 ppm 00932 .00325 34.900	TI1908 ppm . 00005 .00173 3171.1
#1 #2 #3	00525 00062 .00241	.00493 .00048 .00175	5.1392 5.1455 5.1235	.00008 00141 00070	.66610 .66671 .66564	00967 00591 01238	.00157 00183 .00042
Check ? High Limit Low Limit	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass
Elem Units Avg Stddev %RSD	V_2924 ppm . 00113 .00117 103.28	Zn2062 ppm .00997 .00041 4.1439	Zr3391 ppm F05747 .22632 393.82				
#1 #2 #3	.00007 .00238 .00095	.01044 .00970 .00976	.15440 03091 29589				
Check ? High Limit Low Limit	Chk Pass	Chk Pass	Chk Fail 36.000 04000				
Int. Std. Units Avg Stddev %RSD	Y_2243 Cts/S 13455. 25. .18906	Y_3600 Cts/S 96197. 232. .24118	Y_3774 Cts/S 4379.5 38.0 .86770				
#1 #2 #3	13472. 13468. 13426.	96037. 96463. 96091.	4358.1 4423.4 4357.1				

Sample Name: L1605045007 Acquired: 5/16/2016 16:11:55 Type: Unk Method: ICP-THERMO3_6010_200.7WATER_3YLINES(v873) Mode: CONC Corr. Factor: 1.000000 User: JYH Custom ID1: Custom ID2: Custom ID3: Comment:								
Elem	Ag3280	Al3082	As1890	B_2496	Ba4554	Be3131	Ca4226	
Units	ppm	ppm	ppm	ppm	ppm	ppm	ppm	
Avg	F00481	00211	00055	. 04685	. 14457	.00007	53.267	
Stddev	.00199	.01034	.00037	.00043	.00069	.00003	.077	
%RSD	41.332	489.87	67.855	.91313	.47462	40.723	.14385	
#1	00254	.00318	00044	.04704	.14514	.00004	53.347	
#2	00625	.00451	00096	.04636	.14477	.00010	53.261	
#3	00563	01403	00024	.04714	.14381	.00008	53.194	
Check ? High Limit Low Limit	Chk Fail 9.0000 00400	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	
Elem	Cd2288	Co2286	Cr2677	Cu2247	Fe2611	K_7664	Li6707	
Units	ppm	ppm	ppm	ppm	ppm	ppm	ppm	
Avg	. 00023	00030	. 00147	. 00187	1.7712	1.2505	. 01323	
Stddev	.00020	.00032	.00025	.00090	.0174	.0725	.00468	
%RSD	85.379	106.93	16.801	48.365	.98375	5.7947	35.376	
#1	.00000	00029	.00146	.00092	1.7722	1.3204	.00799	
#2	.00032	.00001	.00172	.00273	1.7880	1.2554	.01470	
#3	.00036	00062	.00123	.00196	1.7532	1.1757	.01701	
Check ? High Limit Low Limit	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	
Elem	Mg2790	Mn2576	Mo2020	Na5895	Ni2316	P_2149	Pb2203	
Units	ppm	ppm	ppm	ppm	ppm	ppm	ppm	
Avg	11.366	. 12390	. 00116	35.050	00026	. 00676	. 00069	
Stddev	.049	.00173	.00008	.141	.00061	.00959	.00151	
%RSD	.42932	1.3947	7.0402	.40331	233.01	141.95	221.03	
#1	11.331	.12196	.00107	35.211	00082	.01732	00036	
#2	11.422	.12527	.00118	34.992	00035	.00437	00001	
#3	11.345	.12447	.00123	34.947	.00039	00141	.00242	
Check ? High Limit Low Limit	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	

Sample Name Method: ICP-7 User: JYH Comment:)10_200.7W	red: 5/16/2010 ATER_3YLIN stom ID2:		Type: Unk Mode: CONO ID3:	C Corr. F	Factor: 1.00000(
Elem Units Avg Stddev %RSD	Sb2068 ppm 00002 .00252 11495.	Se1960 ppm 00338 .00141 41.838	Si2124 ppm 5.5406 .0022 .03966	Sn1899 ppm 00108 .00052 48.354	Sr4077 ppm . 63364 .00149 .23573	Ti3372 ppm 00782 .00298 38.105	TI1908 ppm . 00015 .00085 578.88
#1 #2 #3	.00119 .00166 00292	00455 00181 00379	5.5429 5.5386 5.5404	00129 00048 00146	.63535 .63303 .63256	00510 00735 01100	.00092 .00029 00076
Check ? High Limit Low Limit	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass
Elem Units Avg Stddev %RSD	V_2924 ppm . 00116 .00041 35.487	Zn2062 ppm .00173 .00018 10.560	Zr3391 ppm F 09343 .08962 95.914				
#1 #2 #3	.00100 .00085 .00162	.00171 .00155 .00191	15430 13547 .00947				
Check ? High Limit Low Limit	Chk Pass	Chk Pass	Chk Fail 36.000 04000				
Int. Std. Units Avg Stddev %RSD	Y_2243 Cts/S 13506. 23. .16695	Y_3600 Cts/S 96318. 288. .29947	Y_3774 Cts/S 4385 .1 34.4 .78454				
#1 #2 #3	13524. 13481. 13514.	96063. 96260. 96631.	4380.1 4353.5 4421.7				

•								
Elem	Ag3280	Al3082	As1890	B_2496	Ba4554	Be3131	Ca4226	Cd2288
Units	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm
Avg	00276	. 00700	. 00289	. 06738	.18113	.00009	38.461	. 00039
Stddev	.00037	.01169	.00144	.00302	.00091	.00006	.173	.00015
%RSD	13.441	167.06	49.696	4.4755	.50414	63.343	.44983	38.013
#1	00235	.01669	.00304	.06913	.18189	.00003	38.499	.00022
#2	00284	.01027	.00425	.06911	.18139	.00015	38.612	.00048
#3	00308	00598	.00139	.06390	.18012	.00008	38.272	.00046
Check ? High Limit Low Limit	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass
Elem	Co2286	Cr2677	Cu2247	Fe2611	K_7664	Li6707	Mg2790	Mn2576
Units	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm
Avg	00011	.00088	00037	.06231	1.1037	. 01103	9.2222	. 05295
Stddev	.00033	.00064	.00132	.01675	.0164	.00489	.1021	.00116
%RSD	297.66	73.216	353.84	26.877	1.4857	44.367	1.1071	2.1904
#1	00045	.00108	00115	.04347	1.0964	.00618	9.3398	.05313
#2	00008	.00016	00112	.06793	1.1225	.01095	9.1559	.05401
#3	.00020	.00140	.00115	.07552	1.0922	.01597	9.1710	.05171
Check ? High Limit Low Limit	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass
Elem	Mo2020	Na5895	Ni2316	P_2149	Pb2203	Sb2068	Se1960	Si2124
Units	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm
Avg	. 00140	61.403	00175	. 00267	00294	00068	00367	3.9714
Stddev	.00042	.250	.00067	.00106	.00015	.00178	.00131	.0098
%RSD	30.289	.40795	38.398	39.893	5.1479	259.53	35.773	.24784
#1	.00182	61.571	00248	.00217	00288	.00012	00492	3.9742
#2	.00098	61.522	00117	.00389	00282	.00054	00378	3.9794
#3	.00139	61.115	00160	.00195	00311	00272	00230	3.9604
Check ? High Limit Low Limit	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass

Sample Nar Method: ICF User: JYH Comment:		_6010_200	cquired: 5/1 .7WATER_ Custom IE	3YLINES(v8	•	ype: Unk ode: CONC :	Corr. Fa	ctor: 1.00000(
Elem Units Avg Stddev %RSD	Sn1899 ppm 00115 .00078 67.677	Sr4077 ppm . 29768 .00031 .10523	Ti3372 ppm 00091 .00418 456.46	TI1908 ppm 00090 .00274 306.18	V_2924 ppm 00047 .00040 84.240	Zn2062 ppm . 00424 .00014 3.2340	Zr3391 ppm . 01548 .08044 519.46	
#1 #2 #3	00047 00200 00098	.29793 .29778 .29733	.00290 00026 00538	00346 .00200 00123	00073 00068 00001	.00408 .00430 .00433	07666 .07165 .05147	
Check ? High Limit Low Limit	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	
Int. Std. Units Avg Stddev %RSD	Y_2243 Cts/S 13560. 29. .21049	Y_3600 Cts/S 96968. 230. .23732	Y_3774 Cts/S 4435.2 14.5 .32747					
#1 #2 #3	13528. 13584. 13567.	97140. 96707. 97059.	4418.4 4444.4 4442.7					

•								
Elem	Ag3280	Al3082	As1890	B_2496	Ba4554	Be3131	Ca4226	Cd2288
Units	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm
Avg	00284	00416	. 00119	. 03325	.00997	.00009	178.46	. 00075
Stddev	.00032	.00684	.00220	.00265	.00067	.00001	.13	.00008
%RSD	11.304	164.38	184.27	7.9769	6.7111	7.3277	.07132	10.178
#1	00277	.00166	.00046	.03282	.01042	.00009	178.35	.00069
#2	00256	01169	00054	.03609	.00920	.00009	178.60	.00083
#3	00319	00245	.00367	.03084	.01029	.00010	178.44	.00072
Check ? High Limit Low Limit	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass
Elem	Co2286	Cr2677	Cu2247	Fe2611	K_7664	Li6707	Mg2790	Mn2576
Units	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm
Avg	00023	. 00405	. 00173	. 01496	3.4726	. 03911	152.33	. 02450
Stddev	.00053	.00064	.00112	.02213	.0546	.00222	.27	.00188
%RSD	235.19	15.906	64.542	147.86	1.5717	5.6832	.17576	7.6579
#1	.00017	.00372	.00285	.03121	3.5237	.04166	152.12	.02667
#2	00002	.00365	.00062	.02393	3.4151	.03814	152.24	.02332
#3	00083	.00480	.00171	01024	3.4791	.03755	152.63	.02352
Check ? High Limit Low Limit	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass
Elem	Mo2020	Na5895	Ni2316	P_2149	Pb2203	Sb2068	Se1960	Si2124
Units	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm
Avg	. 00035	164.49	00050	. 00132	00078	. 00240	00900	3.6003
Stddev	.00054	.31	.00134	.00435	.00289	.00075	.01131	.0086
%RSD	153.82	.19031	265.21	330.29	370.63	31.417	125.72	.23889
#1	.00080	164.84	.00007	.00433	00060	.00192	01564	3.5976
#2	.00049	164.23	.00045	00367	.00202	.00201	.00406	3.6099
#3	00025	164.41	00203	.00328	00376	.00327	01541	3.5933
Check ? High Limit Low Limit	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass

Sample Nar Method: ICF User: JYH Comment:		3_6010_200	.cquired: 5/1 .7WATER_ Custom II	3YLINES(v8		ype: Unk ode: CONC :	Corr. Fa	ctor: 1.00000(
Elem Units Avg Stddev %RSD	Sn1899 ppm 00142 .00121 85.712	Sr4077 ppm . 46806 .00092 .19554	Ti3372 ppm 02969 .00290 9.7687	TI1908 ppm 00309 .00232 74.900	V_2924 ppm 00035 .00150 433.67	Zn2062 ppm . 00264 .00011 4.0914	Zr3391 ppm . 14565 .17955 123.28	
#1 #2 #3	00106 00277 00042	.46700 .46854 .46863	02753 02855 03298	00274 00097 00557	.00138 00133 00108	.00255 .00276 .00260	.19640 05381 .29437	
Check ? High Limit Low Limit	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	
Int. Std. Units Avg Stddev %RSD	Y_2243 Cts/S 12936. 11. .08329	Y_3600 Cts/S 92241. 362. .39257	Y_3774 Cts/S 4410.4 15.7 .35501					
#1 #2 #3	12924. 12942. 12943.	92562. 91849. 92313.	4394.0 4412.2 4425.2					

•								
Elem	Ag3280	Al3082	As1890	B_2496	Ba4554	Be3131	Ca4226	Cd2288
Units	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm
Avg	00221	. 03470	. 00094	. 06529	.19828	.00012	84.908	. 00037
Stddev	.00186	.00690	.00346	.00179	.00051	.00005	.362	.00004
%RSD	84.255	19.876	366.88	2.7457	.25497	39.364	.42600	10.694
#1	00435	.02854	.00323	.06731	.19870	.00017	85.000	.00033
#2	00131	.03342	.00264	.06387	.19843	.00009	85.214	.00041
#3	00097	.04215	00304	.06469	.19772	.00010	84.509	.00037
Check ? High Limit Low Limit	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass
Elem	Co2286	Cr2677	Cu2247	Fe2611	K_7664	Li6707	Mg2790	Mn2576
Units	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm
Avg	. 00074	.00143	.00082	.46033	4.4448	. 05186	34.518	. 25694
Stddev	.00010	.00027	.00155	.01443	.0020	.00331	.115	.00517
%RSD	13.056	18.623	188.88	3.1339	.04550	6.3813	.33366	2.0123
#1	.00063	.00168	00006	.47669	4.4470	.05515	34.394	.26290
#2	.00075	.00115	.00262	.45485	4.4444	.05192	34.537	.25372
#3	.00083	.00145	00008	.44944	4.4430	.04853	34.622	.25419
Check ? High Limit Low Limit	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass
Elem	Mo2020	Na5895	Ni2316	P_2149	Pb2203	Sb2068	Se1960	Si2124
Units	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm
Avg	. 00105	52.687	00023	00168	. 00157	. 00057	00398	4.2464
Stddev	.00021	.218	.00065	.00239	.00038	.00417	.00473	.0020
%RSD	20.125	.41458	286.57	142.57	24.378	738.46	118.74	.04700
#1	.00082	52.736	00077	00010	.00199	.00382	.00118	4.2463
#2	.00108	52.877	.00050	00051	.00124	00414	00502	4.2485
#3	.00124	52.449	00042	00443	.00149	.00201	00811	4.2445
Check ? High Limit Low Limit	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass

Sample Nar Method: ICF User: JYH Comment:		3_6010_200	•	•		ype: Unk ode: CONC :	Corr. Fac	ctor: 1.00000(
Elem Units Avg Stddev %RSD	Sn1899 ppm 00038 .00078 209.23	Sr4077 ppm 2.3688 .0102 .43207	Ti3372 ppm 01488 .00360 24.193	TI1908 ppm 00484 .00299 61.868	V_2924 ppm 00010 .00095 971.12	Zn2062 ppm .00356 .00014 4.0643	Zr3391 ppm . 28616 .43165 150.84	
#1 #2 #3	00096 .00052 00068	2.3745 2.3750 2.3570	01083 01772 01610	00741 00556 00155	00114 .00073 .00012	.00342 .00354 .00371	.10023 .77962 02136	
Check ? High Limit Low Limit	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	
Int. Std. Units Avg Stddev %RSD	Y_2243 Cts/S 13421. 23. .17267	Y_3600 Cts/S 96021. 171. .17786	Y_3774 Cts/S 4384.2 6.2 .14183					
#1 #2 #3	13448. 13407. 13408.	95957. 95891. 96214.	4389.1 4377.2 4386.3					

Sample Name: CCV Acquired: 5/16/2016 16:27:40 Type: QC Method: ICP-THERMO3_6010_200.7WATER_3YLINES(v873) Mode: CONC Corr. Factor: 1.000000 User: JYH Custom ID1: Custom ID2: Custom ID3: Comment:								
Elem	Ag3280	Al3082	As1890	B_2496	Ba4554	Be3131	Ca4226	
Units	ppm	ppm	ppm	ppm	ppm	ppm	ppm	
Avg	. 40185	10.161	. 40427	. 50191	1.0000	. 04968	9.7702	
Stddev	.00073	.019	.00282	.00229	.0036	.00003	.0270	
%RSD	.18064	.18737	.69768	.45575	.36312	.05253	.27649	
#1	.40210	10.155	.40712	.50013	.99698	.04965	9.7428	
#2	.40103	10.146	.40148	.50449	1.0040	.04970	9.7710	
#3	.40242	10.182	.40421	.50111	.99908	.04969	9.7968	
Check ? Value Range	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	
Elem	Cd2288	Co2286	Cr2677	Cu2247	Fe2611	K_7664	Li6707	
Units	ppm	ppm	ppm	ppm	ppm	ppm	ppm	
Avg	.04998	. 20745	. 52135	. 51927	4.1038	50.185	1.0041	
Stddev	.00015	.00082	.00250	.00059	.0097	.193	.0051	
%RSD	.30247	.39691	.48014	.11294	.23703	.38527	.50437	
#1	.05015	.20710	.51928	.51882	4.0927	50.003	.99832	
#2	.04987	.20686	.52065	.51906	4.1080	50.388	1.0078	
#3	.04991	.20839	.52413	.51993	4.1107	50.164	1.0061	
Check ? Value Range	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	
Elem	Mg2790	Mn2576	Mo2020	Na5895	Ni2316	P_2149	Pb2203	
Units	ppm	ppm	ppm	ppm	ppm	ppm	ppm	
Avg	10.186	. 50267	. 99950	50.963	. 52722	10.219	. 52662	
Stddev	.062	.00542	.00296	.097	.00130	.026	.00238	
%RSD	.60618	1.0791	.29565	.19102	.24648	.25115	.45139	
#1	10.179	.49687	1.0028	50.894	.52808	10.224	.52571	
#2	10.129	.50352	.99843	51.074	.52572	10.191	.52932	
#3	10.251	.50762	.99723	50.921	.52785	10.242	.52484	
Check ? Value Range	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	

Sample Nam Method: ICP- User: JYH Comment:		6010_200.7	16/2016 16:2 WATER_3YI Custom ID2:	LINES(v873)	pe: QC) Mode: tom ID3:	CONC (Corr. Factor: 1	.000000
Elem Units Avg Stddev %RSD	Sb2068 ppm 1.2118 .0032 .26379	Se1960 ppm .38489 .00489 1.2696	Si2124 ppm 5.1118 .0075 .14724	Sn1899 ppm 1.0332 .0004 .03534	Sr4077 ppm . 99495 .00293 .29431	Ti3372 ppm . 99741 .00545 .54670	TI1908 ppm . 51012 .00256 .50184	
#1 #2 #3	1.2151 1.2115 1.2087	.38131 .39046 .38291	5.1169 5.1031 5.1154	1.0329 1.0336 1.0330	.99202 .99788 .99496	.99584 .99291 1.0035	.51089 .50727 .51221	
Check ? Value Range	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	
Elem Units Avg Stddev %RSD	V_2924 ppm 1.0187 .0047 .45832	Zn2062 ppm 1.0518 .0013 .11930	Zr3391 ppm F .68764 .39142 56.922					
#1 #2 #3	1.0138 1.0194 1.0230	1.0514 1.0509 1.0533	.29954 .68109 1.0823					
Check ? Value Range	Chk Pass	Chk Pass	Chk Fail 1.0000 -10.000%					
Int. Std. Units Avg Stddev %RSD	Y_2243 Cts/S 13278. 30. .22278	Y_3600 Cts/S 94606. 662. .70002	Y_3774 Cts/S 4307.4 40.5 .94118					
#1 #2 #3	13250. 13275. 13309.	94973. 95002. 93841.	4319.9 4340.3 4262.1					

•									
Elem	Ag3280	Al3082	As1890	B_2496	Ba4554	Be3131	Ca4226		
Units	ppm	ppm	ppm	ppm	ppm	ppm	ppm		
Avg	00317	01543	00103	.00088	.00105	.00007	02852		
Stddev	.00229	.00720	.00131	.00093	.00068	.00002	.01419		
%RSD	72.019	46.643	127.33	105.47	64.369	34.236	49.756		
#1	00313	01290	00080	.00090	.00061	.00004	03249		
#2	00548	00984	00244	.00180	.00071	.00009	04031		
#3	00091	02355	.00015	00006	.00183	.00008	01277		
Check ? High Limit Low Limit	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass		
Elem	Cd2288	Co2286	Cr2677	Cu2247	Fe2611	K_7664	Li6707		
Units	ppm	ppm	ppm	ppm	ppm	ppm	ppm		
Avg	. 00012	00015	.00102	00103	.01231	. 26432	. 00626		
Stddev	.00004	.00039	.00005	.00084	.00620	.07959	.00354		
%RSD	37.099	255.12	5.2786	81.731	50.389	30.112	56.440		
#1	.00016	00059	.00102	00075	.01751	.29839	.00382		
#2	.00012	.00015	.00097	00036	.00544	.17336	.01032		
#3	.00008	00002	.00108	00197	.01399	.32121	.00465		
Check ? High Limit Low Limit	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass		
Elem	Mg2790	Mn2576	Mo2020	Na5895	Ni2316	P_2149	Pb2203		
Units	ppm	ppm	ppm	ppm	ppm	ppm	ppm		
Avg	. 03378	.00011	. 00435	01783	00125	. 00261	. 00075		
Stddev	.04413	.00242	.00023	.01234	.00094	.00554	.00164		
%RSD	130.63	2305.7	5.2176	69.255	75.280	212.30	218.15		
#1	.04847	00119	.00412	01693	00095	00331	.00259		
#2	.06871	00139	.00457	03059	00230	.00766	.00023		
#3	01582	.00290	.00438	00595	00050	.00347	00057		
Check ? High Limit Low Limit	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass		

Sample Nam Method: ICP User: JYH Comment:	ne: CCB / -THERMO3_ Custom I			LINES(v873	pe: Blank) Mode: tom ID3:	CONC (Corr. Factor: 1	1.000000
Elem Units Avg Stddev %RSD	Sb2068 ppm . 00389 .00405 104.29	Se1960 ppm 00336 .00386 114.73	Si2124 ppm 02829 .00115 4.0821	Sn1899 ppm 00029 .00037 128.97	Sr4077 ppm . 00064 .00031 48.745	Ti3372 ppm 00722 .00633 87.772	TI1908 ppm . 00180 .00336 186.54	
#1 #2 #3	.00138 .00171 .00856	00572 00546 .00109	02696 02887 02904	00048 .00014 00052	.00057 .00037 .00098	01452 00385 00328	.00566 00041 .00014	
Check ? High Limit Low Limit	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	
Elem Units Avg Stddev %RSD	V_2924 ppm . 00136 .00047 34.776	Zn2062 ppm .00016 .00023 146.51	Zr3391 ppm F .42641 .27511 64.519					
#1 #2 #3	.00164 .00081 .00162	.00036 00009 .00020	.52708 .63701 .11514					
Check ? High Limit Low Limit	Chk Pass	Chk Pass	Chk Fail .04000 04000					
Int. Std. Units Avg Stddev %RSD	Y_2243 Cts/S 13268. 12. .09022	Y_3600 Cts/S 95003. 456. .47956	Y_3774 Cts/S 4249.0 9.7 .22838					
#1 #2 #3	13280. 13256. 13269.	94757. 94723. 95528.	4246.1 4241.1 4259.9					

•										
Elem	Ag3280	Al3082	As1890	B_2496	Ba4554	Be3131	Ca4226	Cd2288		
Units	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm		
Avg	00151	. 02548	.00156	. 06781	. 19943	.00006	83.271	. 00048		
Stddev	.00087	.00471	.00070	.00036	.00127	.00002	.298	.00005		
%RSD	57.730	18.505	45.295	.53585	.63471	30.398	.35760	10.913		
#1	00175	.02010	.00079	.06745	.19799	.00005	83.013	.00051		
#2	00224	.02888	.00169	.06818	.20037	.00008	83.203	.00050		
#3	00054	.02746	.00218	.06781	.19993	.00005	83.597	.00042		
Check ? High Limit Low Limit	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass		
Elem	Co2286	Cr2677	Cu2247	Fe2611	K_7664	Li6707	Mg2790	Mn2576		
Units	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm		
Avg	.00038	. 00137	. 00125	. 41978	4.3750	. 05518	33.603	. 23007		
Stddev	.00040	.00080	.00053	.02714	.0804	.00279	.299	.00101		
%RSD	104.70	58.514	42.280	6.4648	1.8374	5.0540	.89041	.43820		
#1	.00006	.00046	.00068	.40974	4.2983	.05229	33.684	.23046		
#2	.00083	.00171	.00135	.45050	4.4586	.05786	33.271	.23083		
#3	.00026	.00195	.00173	.39909	4.3680	.05538	33.853	.22893		
Check ? High Limit Low Limit	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass		
Elem	Mo2020	Na5895	Ni2316	P_2149	Pb2203	Sb2068	Se1960	Si2124		
Units	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm		
Avg	. 00184	54.876	.00053	. 02688	. 00284	00296	00360	4.1988		
Stddev	.00033	.233	.00055	.00487	.00273	.00214	.01014	.0112		
%RSD	17.832	.42406	104.22	18.121	95.957	72.249	281.26	.26754		
#1	.00149	54.631	.00002	.02222	.00436	00255	.00758	4.2096		
#2	.00189	54.903	.00045	.02648	.00448	00528	01219	4.1872		
#3	.00214	55.095	.00111	.03193	00031	00106	00620	4.1995		
Check ? High Limit Low Limit	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass		

Sample Name: L1605050704 Acquired: 5/16/2016 16:35:17 Type: Unk Method: ICP-THERMO3_6010_200.7WATER_3YLINES(v873) Mode: CONC Corr. Factor: 1.000000 User: JYH Custom ID1: Custom ID2: Custom ID3: Comment:								
Elem Units Avg Stddev %RSD	Sn1899 ppm 00009 .00092 1032.9	Sr4077 ppm 2.3442 .0102 .43561	Ti3372 ppm 01311 .00182 13.857	TI1908 ppm 00283 .00336 118.57	V_2924 ppm . 00091 .00036 39.284	Zn2062 ppm . 00539 .00019 3.6074	Zr3391 ppm . 20185 .36829 182.45	
#1 #2 #3	.00013 .00070 00110	2.3339 2.3444 2.3543	01481 01120 01334	00494 00459 .00104	.00118 .00103 .00050	.00536 .00560 .00521	.26137 .53676 19257	
Check ? High Limit Low Limit	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	
Int. Std. Units Avg Stddev %RSD	Y_2243 Cts/S 13287. 40. .30473	Y_3600 Cts/S 95159. 327. .34411	Y_3774 Cts/S 4361.1 44.7 1.0246					
#1 #2 #3	13303. 13241. 13316.	95474. 94820. 95185.	4404.9 4362.8 4315.6					

•										
Elem	Ag3280	Al3082	As1890	B_2496	Ba4554	Be3131	Ca4226	Cd2288		
Units	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm		
Avg	00268	.10631	.00089	. 02272	.03580	.00006	56.649	. 00057		
Stddev	.00046	.00609	.00185	.00199	.00118	.00002	.089	.00003		
%RSD	17.287	5.7250	208.25	8.7680	3.3036	33.936	.15762	4.4793		
#1	00242	.11011	00124	.02287	.03543	.00004	56.635	.00054		
#2	00241	.09929	.00177	.02066	.03712	.00006	56.745	.00058		
#3	00322	.10953	.00214	.02464	.03484	.00008	56.568	.00059		
Check ? High Limit Low Limit	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass		
Elem	Co2286	Cr2677	Cu2247	Fe2611	K_7664	Li6707	Mg2790	Mn2576		
Units	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm		
Avg	.00087	. 00460	. 00262	. 17264	. 86025	. 01249	23.653	. 06864		
Stddev	.00013	.00076	.00204	.01910	.07870	.00460	.181	.00386		
%RSD	14.938	16.533	77.850	11.065	9.1489	36.831	.76704	5.6227		
#1	.00072	.00505	.00178	.19461	.85478	.01460	23.446	.07259		
#2	.00093	.00502	.00495	.15994	.94155	.01566	23.781	.06487		
#3	.00096	.00372	.00113	.16337	.78443	.00721	23.733	.06848		
Check ? High Limit Low Limit	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass		
Elem	Mo2020	Na5895	Ni2316	P_2149	Pb2203	Sb2068	Se1960	Si2124		
Units	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm		
Avg	. 00127	146.85	. 00117	. 02130	. 00045	00161	. 00831	4.4775		
Stddev	.00029	.62	.00118	.00388	.00559	.00201	.00839	.0033		
%RSD	22.924	.42204	101.32	18.236	1241.2	124.90	100.97	.07291		
#1	.00114	146.77	.00091	.02493	00555	00393	.00160	4.4776		
#2	.00107	147.51	.00014	.01721	.00549	00047	.01771	4.4742		
#3	.00161	146.28	.00246	.02175	.00141	00042	.00561	4.4807		
Check ? High Limit Low Limit	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass		

Sample Name: L1605050705 Acquired: 5/16/2016 16:39:13 Type: Unk Method: ICP-THERMO3_6010_200.7WATER_3YLINES(v873) Mode: CONC Corr. Factor: 1.000000 User: JYH Custom ID1: Custom ID2: Custom ID3: Comment:								
Elem Units Avg Stddev %RSD	Sn1899 ppm 00039 .00029 74.005	Sr4077 ppm . 20880 .00070 .33384	Ti3372 ppm 00749 .00087 11.667	TI1908 ppm 00207 .00160 77.430	V_2924 ppm . 00195 .00028 14.474	Zn2062 ppm . 00386 .00022 5.7574	Zr3391 ppm . 20991 .42542 202.67	
#1 #2 #3	00007 00064 00047	.20824 .20958 .20856	00840 00744 00665	00389 00085 00147	.00163 .00204 .00218	.00361 .00396 .00402	.67977 .09910 14914	
Check ? High Limit Low Limit	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	
Int. Std. Units Avg Stddev %RSD	Y_2243 Cts/S 13194. 40. .30048	Y_3600 Cts/S 94165. 553. .58694	Y_3774 Cts/S 4374.3 30.3 .69189					
#1 #2 #3	13226. 13206. 13149.	94796. 93935. 93765.	4353.1 4360.8 4408.9					

•										
Elem	Ag3280	Al3082	As1890	B_2496	Ba4554	Be3131	Ca4226			
Units	ppm	ppm	ppm	ppm	ppm	ppm	ppm			
Avg	00336	00416	.00952	. 03917	. 40224	. 00009	107.53			
Stddev	.00015	.00357	.00156	.00077	.00150	.00004	.27			
%RSD	4.4543	85.804	16.440	1.9618	.37233	45.280	.25465			
#1	00345	00011	.00772	.03830	.40051	.00005	107.22			
#2	00344	00552	.01027	.03976	.40310	.00014	107.66			
#3	00319	00684	.01057	.03944	.40311	.00010	107.72			
Check ? High Limit Low Limit	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass			
Elem	Cd2288	Co2286	Cr2677	Cu2247	Fe2611	K_7664	Li6707			
Units	ppm	ppm	ppm	ppm	ppm	ppm	ppm			
Avg	.00057	00015	.00081	. 00126	8.0391	. 94378	. 01164			
Stddev	.00031	.00018	.00117	.00064	.0100	.02378	.00114			
%RSD	54.838	123.74	143.19	50.613	.12379	2.5193	9.8232			
#1	.00021	00000	.00165	.00196	8.0276	.92194	.01134			
#2	.00076	00009	00052	.00071	8.0444	.96911	.01290			
#3	.00073	00036	.00131	.00112	8.0452	.94028	.01067			
Check ? High Limit Low Limit	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass			
Elem	Mg2790	Mn2576	Mo2020	Na5895	Ni2316	P_2149	Pb2203			
Units	ppm	ppm	ppm	ppm	ppm	ppm	ppm			
Avg	46.686	. 52841	. 00104	35.412	00131	. 75525	00046			
Stddev	.350	.00666	.00037	.093	.00095	.00462	.00221			
%RSD	.74915	1.2598	35.961	.26302	72.667	.61207	478.22			
#1	46.866	.52253	.00084	35.304	00241	.75955	00079			
#2	46.282	.52706	.00080	35.461	00072	.75582	00249			
#3	46.908	.53564	.00147	35.470	00080	.75036	.00189			
Check ? High Limit Low Limit	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass			

Sample Name Method: ICP-1 User: JYH Comment:)10_200.7W <i>A</i>	6 16:43:10 ES(v873) Custom	Type: Unk Mode: CONO ID3:	C Corr. F	Factor: 1.00000(
Elem Units Avg Stddev %RSD	Sb2068 ppm . 00038 .00128 339.77	Se1960 ppm 00387 .00521 134.56	Si2124 ppm 6.6514 .0072 .10798	Sn1899 ppm 00027 .00167 608.46	Sr4077 ppm . 45688 .00222 .48628	Ti3372 ppm 01678 .00860 51.278	TI1908 ppm 00096 .00503 524.82
#1 #2 #3	.00064 .00150 00101	00780 .00204 00585	6.6501 6.6592 6.6450	.00076 .00062 00220	.45483 .45657 .45924	01497 02614 00922	00660 .00066 .00307
Check ? High Limit Low Limit	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass
Elem Units Avg Stddev %RSD	V_2924 ppm . 00019 .00078 418.98	Zn2062 ppm .00189 .00025 13.138	Zr3391 ppm F10390 .58270 560.84				
#1 #2 #3	.00064 .00064 00072	.00199 .00208 .00161	76418 .11412 .33836				
Check ? High Limit Low Limit	Chk Pass	Chk Pass	Chk Fail 36.000 04000				
Int. Std. Units Avg Stddev %RSD	Y_2243 Cts/S 13287. 25. .18476	Y_3600 Cts/S 95106. 441. .46351	Y_3774 Cts/S 4398.9 29.6 .67266				
#1 #2 #3	13310. 13261. 13291.	94804. 94902. 95612.	4365.2 4420.6 4410.9				

•										
Elem	Ag3280	Al3082	As1890	B_2496	Ba4554	Be3131	Ca4226	Cd2288		
Units	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm		
Avg	00323	01456	. 01432	.03809	. 50088	.00005	118.87	. 00064		
Stddev	.00075	.00528	.00072	.00179	.00273	.00001	.36	.00017		
%RSD	23.273	36.290	4.9996	4.6917	.54481	19.176	.30297	26.492		
#1	00302	01153	.01474	.03654	.50182	.00004	119.27	.00083		
#2	00261	01149	.01473	.03768	.50301	.00006	118.78	.00055		
#3	00407	02066	.01350	.04004	.49780	.00006	118.57	.00053		
Check ? High Limit Low Limit	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass		
Elem	Co2286	Cr2677	Cu2247	Fe2611	K_7664	Li6707	Mg2790	Mn2576		
Units	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm		
Avg	00034	.00195	.00159	10.461	. 90958	. 01096	46.189	. 22501		
Stddev	.00023	.00052	.00148	.042	.11876	.00182	.120	.00266		
%RSD	69.129	26.614	93.127	.40197	13.056	16.632	.26070	1.1814		
#1	00060	.00226	.00092	10.444	.88655	.00907	46.267	.22803		
#2	00017	.00135	.00056	10.509	.80402	.01270	46.250	.22304		
#3	00024	.00224	.00328	10.430	1.0382	.01111	46.050	.22396		
Check ? High Limit Low Limit	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass		
Elem	Mo2020	Na5895	Ni2316	P_2149	Pb2203	Sb2068	Se1960	Si2124		
Units	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm		
Avg	.00058	37.110	00135	. 61211	. 00221	00206	00633	6.7308		
Stddev	.00020	.149	.00099	.00934	.00104	.00186	.00801	.0090		
%RSD	34.469	.40081	73.226	1.5256	47.042	90.609	126.52	.13412		
#1	.00079	37.244	00132	.60141	.00260	00337	.00237	6.7302		
#2	.00054	37.137	00236	.61631	.00103	00288	00796	6.7221		
#3	.00040	36.950	00038	.61862	.00298	.00008	01339	6.7401		
Check ? High Limit Low Limit	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass		

Sample Nar Method: ICF User: JYH Comment:		3_6010_200	•	•		ype: Unk ode: CONC :	Corr. Fa	actor: 1.00000(
Elem Units Avg Stddev %RSD	Sn1899 ppm . 00024 .00108 455.19	Sr4077 ppm . 49067 .00056 .11390	Ti3372 ppm 00983 .00513 52.150	TI1908 ppm 00430 .00152 35.383	V_2924 ppm . 00064 .00159 248.96	Zn2062 ppm . 00236 .00006 2.5921	Zr3391 ppm 02274 .11637 511.72	
#1 #2 #3	.00023 00084 .00132	.49005 .49082 .49113	01425 00421 01102	00601 00310 00378	00004 00050 .00246	.00230 .00242 .00235	.09153 01865 14110	
Check ? High Limit Low Limit	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	
Int. Std. Units Avg Stddev %RSD	Y_2243 Cts/S 13300. 37. .27582	Y_3600 Cts/S 95354. 57. .05963	Y_3774 Cts/S 4424.8 17.3 .39001					
#1 #2 #3	13274. 13283. 13342.	95369. 95291. 95402.	4406.1 4428.0 4440.2					

•										
Elem	Ag3280	Al3082	As1890	B_2496	Ba4554	Be3131	Ca4226	Cd2288		
Units	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm		
Avg	00263	.00013	00115	. 01169	. 07142	.00008	83.053	. 00042		
Stddev	.00083	.00397	.00152	.00220	.00032	.00006	.323	.00027		
%RSD	31.560	3006.7	131.70	18.774	.45132	79.573	.38885	64.439		
#1	00354	.00433	00038	.01379	.07130	.00001	83.206	.00017		
#2	00190	00037	00290	.01188	.07178	.00014	83.271	.00071		
#3	00246	00356	00018	.00941	.07116	.00008	82.682	.00039		
Check ? High Limit Low Limit	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass		
Elem	Co2286	Cr2677	Cu2247	Fe2611	K_7664	Li6707	Mg2790	Mn2576		
Units	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm		
Avg	.00070	. 00167	.00469	.04316	. 31219	. 01026	54.200	. 21529		
Stddev	.00040	.00115	.00077	.01268	.06297	.00134	.167	.00312		
%RSD	56.487	68.833	16.481	29.385	20.171	13.072	.30731	1.4500		
#1	.00053	.00165	.00405	.03751	.26692	.00890	54.015	.21889		
#2	.00116	.00283	.00555	.05768	.38410	.01031	54.338	.21334		
#3	.00042	.00053	.00448	.03429	.28555	.01158	54.248	.21365		
Check ? High Limit Low Limit	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass		
Elem	Mo2020	Na5895	Ni2316	P_2149	Pb2203	Sb2068	Se1960	Si2124		
Units	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm		
Avg	. 00094	58.334	. 25503	. 00897	. 00063	00162	. 00226	3.4991		
Stddev	.00034	.344	.00033	.00281	.00232	.00259	.01001	.0012		
%RSD	36.659	.59048	.12983	31.305	370.66	160.12	443.57	.03448		
#1	.00124	58.306	.25531	.00792	.00264	00258	.00378	3.4994		
#2	.00101	58.691	.25466	.01215	00191	.00132	.01142	3.4978		
#3	.00056	58.004	.25511	.00684	.00115	00358	00843	3.5002		
Check ? High Limit Low Limit	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass		

Sample Nar Method: ICF User: JYH Comment:		3_6010_200	.cquired: 5/1 .7WATER_ Custom IE	3YLINES(v8		ype: Unk ode: CONC :	Corr. Fa	ctor: 1.00000(
Elem Units Avg Stddev %RSD	Sn1899 ppm 00049 .00011 21.510	Sr4077 ppm . 32034 .00148 .46191	Ti3372 ppm 01323 .00365 27.544	TI1908 ppm 00269 .00174 64.524	V_2924 ppm . 00032 .00037 115.68	Zn2062 ppm . 00460 .00017 3.7784	Zr3391 ppm 1.8974 .4706 24.803	
#1 #2 #3	00061 00045 00041	.31953 .32204 .31944	01638 01408 00924	00070 00347 00390	.00075 .00007 .00015	.00473 .00440 .00467	2.4376 1.6784 1.5763	
Check ? High Limit Low Limit	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	
Int. Std. Units Avg Stddev %RSD	Y_2243 Cts/S 13216. 29. .22044	Y_3600 Cts/S 94758. 779. .82179	Y_3774 Cts/S 4389.2 25.5 .58023					
#1 #2 #3	13233. 13183. 13233.	95522. 93965. 94787.	4405.4 4359.9 4402.4					

Sample Name: CCV Acquired: 5/16/2016 16:54:59 Type: QC Method: ICP-THERMO3_6010_200.7WATER_3YLINES(v873) Mode: CONC Corr. Factor: 1.000000 User: JYH Custom ID1: Custom ID2: Custom ID3: Comment:									
Elem	Ag3280	Al3082	As1890	B_2496	Ba4554	Be3131	Ca4226		
Units	ppm	ppm	ppm	ppm	ppm	ppm	ppm		
Avg	. 40462	10.178	. 40884	. 50795	1.0054	. 04996	9.7639		
Stddev	.00062	.025	.00133	.00341	.0022	.00015	.0304		
%RSD	.15270	.24964	.32533	.67053	.21838	.30043	.31155		
#1	.40529	10.203	.40731	.50814	1.0046	.05012	9.7946		
#2	.40407	10.179	.40945	.51125	1.0037	.04995	9.7633		
#3	.40450	10.152	.40975	.50445	1.0079	.04982	9.7338		
Check ? Value Range	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass		
Elem	Cd2288	Co2286	Cr2677	Cu2247	Fe2611	K_7664	Li6707		
Units	ppm	ppm	ppm	ppm	ppm	ppm	ppm		
Avg	. 04967	. 20667	. 52119	. 51813	4.1469	50.371	. 99764		
Stddev	.00028	.00016	.00174	.00209	.0059	.288	.00392		
%RSD	.55561	.07558	.33305	.40305	.14100	.57271	.39265		
#1	.04943	.20678	.52049	.52035	4.1502	50.116	.99513		
#2	.04962	.20649	.52317	.51785	4.1505	50.314	.99563		
#3	.04997	.20673	.51992	.51620	4.1402	50.684	1.0022		
Check ? Value Range	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass		
Elem	Mg2790	Mn2576	Mo2020	Na5895	Ni2316	P_2149	Pb2203		
Units	ppm	ppm	ppm	ppm	ppm	ppm	ppm		
Avg	10.214	. 50422	. 99512	51.204	. 52801	10.271	. 52950		
Stddev	.070	.00268	.00558	.174	.00174	.008	.00411		
%RSD	.68525	.53190	.56114	.34024	.32981	.07986	.77560		
#1	10.158	.50389	1.0005	51.126	.53002	10.279	.53292		
#2	10.292	.50171	.99558	51.082	.52709	10.263	.53063		
#3	10.190	.50705	.98933	51.404	.52692	10.270	.52494		
Check ? Value Range	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass		

Sample Nam Method: ICP User: JYH Comment:		6010_200.7	16/2016 16:5 WATER_3Y Custom ID2:	LINES(v873	pe: QC) Mode: tom ID3:	CONC (Corr. Factor: 1	.000000
Elem Units Avg Stddev %RSD	Sb2068 ppm 1.2212 .0042 .34074	Se1960 ppm . 37762 .00363 .96044	Si2124 ppm 5.1154 .0061 .11859	Sn1899 ppm 1.0333 .0033 .31975	Sr4077 ppm . 99699 .00440 .44176	Ti3372 ppm 1.0092 .0085 .84073	TI1908 ppm . 51329 .00085 .16593	
#1 #2 #3	1.2237 1.2235 1.2164	.37637 .37478 .38170	5.1210 5.1163 5.1089	1.0353 1.0295 1.0351	.99444 .99445 1.0021	.99946 1.0129 1.0151	.51279 .51280 .51427	
Check ? Value Range	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	
Elem Units Avg Stddev %RSD	V_2924 ppm 1.0223 .0046 .44832	Zn2062 ppm 1.0553 .0023 .22009	Zr3391 ppm F . 89191 .39044 43.776					
#1 #2 #3	1.0270 1.0219 1.0179	1.0577 1.0552 1.0530	.54699 1.3158 .81294					
Check ? Value Range	Chk Pass	Chk Pass	Chk Fail 1.0000 -10.000%					
Int. Std. Units Avg Stddev %RSD	Y_2243 Cts/S 13392. 18. .13734	Y_3600 Cts/S 94785. 655. .69107	Y_3774 Cts/S 4283.0 48.9 1.1425					
#1 #2 #3	13413. 13381. 13381.	94725. 94162. 95468.	4316.6 4305.6 4226.9					

Sample Name: CCB Acquired: 5/16/2016 16:58:37 Type: Blank Method: ICP-THERMO3_6010_200.7WATER_3YLINES(v873) Mode: CONC Corr. Factor: 1.000000 User: JYH Custom ID1: Custom ID2: Custom ID3: Comment:								
Elem	Ag3280	Al3082	As1890	B_2496	Ba4554	Be3131	Ca4226	Cd2288
Units	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm
Avg	00371	02094	.00059	00004	.00186	.00014	04634	. 00030
Stddev	.00043	.00565	.00375	.00324	.00077	.00012	.01955	.00009
%RSD	11.571	26.988	630.69	7822.4	41.552	83.938	42.182	29.604
#1	00418	02711	.00482	.00340	.00237	.00020	05981	.00021
#2	00363	01601	00236	00049	.00097	.00022	05528	.00031
#3	00333	01969	00067	00303	.00222	.00000	02392	.00039
Check ? High Limit Low Limit	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass
Elem	Co2286	Cr2677	Cu2247	Fe2611	K_7664	Li6707	Mg2790	Mn2576
Units	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm
Avg	00030	.00048	00139	00094	. 11341	. 00629	. 01693	00016
Stddev	.00034	.00062	.00078	.01326	.03309	.00438	.08852	.00206
%RSD	112.49	127.46	56.287	1409.4	29.176	69.535	522.98	1298.4
#1	00051	.00058	00053	.00239	.10480	.00383	.00188	00015
#2	.00009	00018	00207	01555	.08548	.01135	.11200	00223
#3	00048	.00104	00157	.01034	.14996	.00370	06310	.00190
Check ? High Limit Low Limit	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass
Elem	Mo2020	Na5895	Ni2316	P_2149	Pb2203	Sb2068	Se1960	Si2124
Units	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm
Avg	. 00421	02867	00111	. 00523	00045	. 00484	00215	02620
Stddev	.00041	.01008	.00121	.00861	.00075	.00607	.00335	.00169
%RSD	9.7268	35.143	109.21	164.70	163.92	125.38	156.00	6.4365
#1	.00374	03910	00233	00236	.00013	00194	00129	02527
#2	.00446	02792	00110	.01458	00130	.00977	00584	02814
#3	.00444	01899	.00010	.00347	00019	.00669	.00069	02518
Check ? High Limit Low Limit	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass

Sample Nar Method: ICF User: JYH Comment:		6010_200	5/16/2016 1 .7WATER_ Custom IE	3YLINES(v8	Type: Blan 373) Mc Custom ID3	de: CONC	Corr. Fa	ctor: 1.00000(
Elem Units Avg Stddev %RSD	Sn1899 ppm . 00067 .00034 50.401	Sr4077 ppm . 00016 .00027 167.62	Ti3372 ppm 00165 .00998 605.74	TI1908 ppm 00350 .00109 31.244	V_2924 ppm .00083 .00033 39.251	Zn2062 ppm . 00026 .00015 57.586	Zr3391 ppm . 01352 .63091 4668.2	
#1 #2 #3	.00095 .00029 .00075	.00039 .00023 00014	.00981 00844 00630	00357 00456 00237	.00114 .00049 .00086	.00023 .00013 .00042	58657 .67129 04418	
Check ? High Limit Low Limit	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	
Int. Std. Units Avg Stddev %RSD	Y_2243 Cts/S 13372. 25. .18821	Y_3600 Cts/S 95808. 232. .24163	Y_3774 Cts/S 4274.5 33.2 .77685					
#1 #2 #3	13388. 13343. 13385.	95591. 96052. 95780.	4241.7 4308.1 4273.7					

Sample Name: PBW B3 Acquired: 5/16/2016 17:02:37 Type: Unk

Method: ICP-THERMO3_6010_200.7WATER_3YLINES(v873) Mode: CONC Corr. Factor: 1.000000

User: JYH Custom ID1: Custom ID2: Custom ID3:

Comment: WG568687-02

Elem	Ag3280	Al3082	As1890	B_2496	Ba4554	Be3131	Ca4226
Units	ppm	ppm	ppm	ppm	ppm	ppm	ppm
Avg	F00425	01028	.00001	00034	. 00061	.00015	02654
Stddev	.00219	.00980	.00212	.00245	.00071	.00010	.02377
%RSD	51.575	95.322	41978.	721.93	114.89	65.303	89.586
#1	00663	01552	.00245	00218	.00076	.00007	00016
#2	00230	.00102	00127	.00244	00015	.00026	03315
#3	00383	01635	00116	00127	.00124	.00012	04630
Check ? High Limit Low Limit	Chk Fail 9.0000 00400	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass
Elem	Cd2288	Co2286	Cr2677	Cu2247	Fe2611	K_7664	Li6707
Units	ppm	ppm	ppm	ppm	ppm	ppm	ppm
Avg	. 00017	00014	.00055	. 00065	. 01753	.16081	. 00270
Stddev	.00014	.00029	.00023	.00084	.02466	.01119	.00191
%RSD	82.473	202.73	40.912	129.62	140.65	6.9612	70.635
#1	.00017	00045	.00080	.00063	.00613	.14869	.00061
#2	.00030	.00012	.00035	.00150	.04582	.17077	.00436
#3	.00003	00009	.00051	00018	.00064	.16298	.00313
Check ? High Limit Low Limit	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass
Elem	Mg2790	Mn2576	Mo2020	Na5895	Ni2316	P_2149	Pb2203
Units	ppm	ppm	ppm	ppm	ppm	ppm	ppm
Avg	. 14869	00147	. 00082	05223	00057	00312	. 00093
Stddev	.05788	.00115	.00053	.04675	.00071	.00835	.00400
%RSD	38.928	78.375	64.312	89.500	125.96	267.93	427.41
#1	.11313	00069	.00023	01537	00129	00132	.00551
#2	.21548	00280	.00124	10482	.00013	01222	00086
#3	.11746	00093	.00100	03651	00054	.00419	00185
Check ? High Limit Low Limit	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass

Method: ICP- User: JYH	Sample Name: PBW B3 Acquired: 5/16/2016 17:02:37 Type: Unk Method: ICP-THERMO3_6010_200.7WATER_3YLINES(v873) Mode: CONC Corr. Factor: 1.000000 User: JYH Custom ID1: Custom ID2: Custom ID3: Comment: WG568687-02									
Elem Units Avg Stddev %RSD	Sb2068 ppm 00068 .00255 376.67	Se1960 ppm 00446 .00334 74.862	Si2124 ppm 02499 .00051 2.0249	Sn1899 ppm 00033 .00036 108.99	Sr4077 ppm . 00015 .00025 164.93	Ti3372 ppm 00290 .00543 187.16	TI1908 ppm 00082 .00210 257.55			
#1 #2 #3	.00153 00347 00009	00062 00672 00605	02462 02478 02557	.00007 00044 00062	00007 .00010 .00041	.00278 00344 00805	00103 00280 .00138			
Check ? High Limit Low Limit	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass			
Elem Units Avg Stddev %RSD	V_2924 ppm . 00059 .00056 95.218	Zn2062 ppm . 00140 .00014 10.222	Zr3391 ppm F 29995 .25354 84.528							
#1 #2 #3	.00098 .00082 00005	.00127 .00138 .00156	18037 59117 12831							
Check ? High Limit Low Limit	Chk Pass	Chk Pass	Chk Fail 36.000 04000							
Int. Std. Units Avg Stddev %RSD	Y_2243 Cts/S 13631. 52. .38400	Y_3600 Cts/S 98147. 272. .27760	Y_3774 Cts/S 4399.8 27.2 .61742							
#1 #2 #3	13585. 13688. 13621.	98129. 98429. 97885.	4405.9 4370.1 4423.4							

Sample Name: LCSW B3 Acquired: 5/16/2016 17:06:37 Type: Unk

Method: ICP-THERMO3_6010_200.7WATER_3YLINES(v873) Mode: CONC Corr. Factor: 1.000000

User: JYH Custom ID1: Custom ID2: Custom ID3:

Comment: WG568687-03

Elem	Ag3280	Al3082	As1890	B_2496	Ba4554	Be3131	Ca4226	Cd2288
Units	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm
Avg	.19690	4.9253	.19515	.98012	.49506	.02405	4.8678	.02436
Stddev	.00099	.0190	.00475	.00067	.00066	.00014	.0276	.00009
%RSD	.50468	.38653	2.4315	.06811	.13396	.56159	.56765	.35743
#1	.19646	4.9432	.18979	.97963	.49504	.02415	4.8656	.02445
#2	.19620	4.9053	.19882	.97985	.49574	.02390	4.8965	.02434
#3	.19803	4.9274	.19683	.98088	.49441	.02410	4.8414	.02428

Check? Chk Pass Chk P

Elem	Co2286	Cr2677	Cu2247	Fe2611	K_7664	Li6707	Mg2790	Mn2576
Units	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm
Avg	. 10217	. 25552	. 25806	2.0220	25.148	. 50078	4.9503	. 24854
Stddev	.00023	.00185	.00121	.0227	.086	.00544	.0776	.00103
%RSD	.22897	.72321	.46973	1.1237	.34031	1.0855	1.5677	.41360
#1	.10242	.25418	.25736	2.0263	25.226	.50123	4.8639	.24754
#2	.10195	.25763	.25946	2.0422	25.163	.50598	4.9728	.24850
#3	.10214	.25474	.25735	1.9974	25.056	.49514	5.0142	.24959

Check? Chk Pass Chk P

Elem Units Avg Stddev %RSD	Mo2020 ppm . 50112 .00078 .15508	Na5895 ppm 25.246 .074 .29315	Ni2316 ppm . 26217 .00161 .61383	P_2149 ppm 4.9363 .0112 .22609	Pb2203 ppm . 26217 .00249 .94945	Sb2068 ppm . 60731 .00237 .39025	Se1960 ppm . 18622 .00257 1.3798	Si2124 ppm 2.5334 .0057 .22425
#1	.50182	25.304	.26036	4.9410	.26351	.60615	.18419	2.5307
#2	.50125	25.271	.26343	4.9443	.25930	.61004	.18537	2.5400
#3	.50029	25.162	.26274	4.9236	.26370	.60575	.18911	2.5296

Check? Chk Pass Chk P

Sample Name: LCSW B3 Acquired: 5/16/2016 17:06:37 Type: Unk

Method: ICP-THERMO3_6010_200.7WATER_3YLINES(v873) Mode: CONC Corr. Factor: 1.000000

User: JYH Custom ID1: Custom ID2: Custom ID3:

Comment: WG568687-03

Elem	Sn1899	Sr4077	Ti3372	TI1908	V_2924	Zn2062	Zr3391
Units	ppm	ppm	ppm	ppm	ppm	ppm	ppm
Avg	.51088	.49504	.49086	.25300	.50474	.51377	.69474
Stddev	.00138	.00088	.00967	.00288	.00302	.00119	.27347
%RSD	.27063	.17684	1.9697	1.1367	.59827	.23143	39.363
#1	.50928	.49595	.47976	.24976	.50457	.51326	.39429
#2	.51174	.49421	.49544	.25526	.50181	.51513	.92914
#3	.51162	.49495	.49739	.25396	.50784	.51292	.76079

Check? Chk Pass Chk P

Low Limit

Int. Std.	Y_2243	Y_3600	Y_3774
Units	Cts/S	Cts/S	Cts/S
Avg	13482 .	96302.	4401.0
Stddev	24.	155.	12.3
%RSD	.18152	.16095	.28035
#1	13510.	96126.	4395.2
#2	13473.	96418.	4415.2
#3	13464.	96362.	4392.6

Sample Name: F BLANK Acquired: 5/16/2016 17:10:08 Type: Unk Method: ICP-THERMO3 6010 200.7WATER 3YLINES(v873) Mode: CONC Corr. Factor: 1.000000 User: JYH Custom ID1: Custom ID2: Custom ID3: Comment: WG568558-01 Al3082 As1890 B 2496 Ba4554 Be3131 Ca4226 Cd2288 Elem Ag3280 Units ppm ppm ppm ppm ppm ppm ppm ppm -.00308 -.00020 .00374 .00034 Avg -.00484 .00078 .00011 .00022 Stddev .00140 .00918 .00422 .00151 .00010 .00005 .02291 .00026 %RSD 45.538 189.49 2142.1 40.467 12.748 46.443 6652.9 114.61 #1 -.00248 .00266 .00442 .00376 .00085 .00009 -.02566 .00013 #2 -.00469 -.01507 -.00384 .00222 .00067 .00017 .00910 .00051 #3 -.00208 -.00212 -.00116 .00524 .00083 .00007 .01759 .00003 Check? Chk Pass Chk Pass Chk Pass Chk Pass Chk Pass Chk Pass Chk Pass High Limit Low Limit Elem Co2286 Cr2677 Cu2247 Fe2611 K_7664 Li6707 Mg2790 Mn2576 Units ppm ppm ppm ppm ppm ppm ppm ppm -.00193 .00001 .00035 .02223 .00384 -.00006 Avg .16472 .07721 .00016 .00045 .01828 .00416 .00078 Stddev .00019 .04284 .02463 %RSD 1711.8 46.180 23.575 82.230 26.006 108.44 31.904 1256.1 #1 .00011 .00033 -.00143 .01305 .14606 -.00096 .10244 -.00066 #2 -.00021 .00052 -.00203 .04328 .13437 .00596 .05322 -.00036-.00232 .00651 .07597 #3 .00013 .00020 .01036 .21372 .00083 Check? Chk Pass Chk Pass Chk Pass Chk Pass Chk Pass Chk Pass Chk Pass High Limit Low Limit Elem Mo2020 Na5895 Ni2316 P_2149 Pb2203 Sb2068 Se1960 Si2124 Units ppm ppm ppm ppm ppm ppm ppm ppm .00097 124.68 -.00106 -.01050 .00069 -.00169 -.00037 -.02303 Avg Stddev .00014 .00074 .00823 .00109 .00292 .01078 .00167 .35 .27831 78.367 2895.1 %RSD 14.842 69.785 157.15 172.55 7.2358 #1 -.00093 -.02265 .00112 124.37 -.01794 .00173 -.00506 .00697 .00095 125.05 -.00039 -.00166 .00080 -.00008 .00466 #2 -.02485 #3 .00083 124.63 -.00185 -.01189 -.00045 .00006 -.01275 -.02158 Check? Chk Pass Chk Pass Chk Pass Chk Pass Chk Pass Chk Pass **Chk Pass** High Limit

Approved: May 17, 2016

Low Limit

Sample Name: F BLANK Acquired: 5/16/2016 17:10:08 Type: Unk Method: ICP-THERMO3_6010_200.7WATER_3YLINES(v873) Mode: CONC Corr. Factor: 1.000000 User: JYH Custom ID1: Custom ID2: Custom ID3: Comment: WG568558-01 Elem Sn1899 Sr4077 Ti3372 TI1908 V_2924 Zn2062 Zr3391 Units ppm ppm ppm ppm ppm ppm ppm -.00045 .00023 -.00153 .00048 -.00021 .00856 .15564 Avg Stddev .00086 .00041 .00999 .00299 .00036 .00003 .12577 193.14 180.62 653.00 620.98 171.94 .38172 %RSD 80.810 #1 -.00066 .00031 .00028 -.00065 -.00013 .00856 .29012 #2 -.00118 .00059 .00744 -.00177 -.00060 .00853 .13589 #3 .00050 -.00022 -.01231 .00387 .00010 .00860 .04091 Check? Chk Pass Chk Pass Chk Pass Chk Pass Chk Pass Chk Pass High Limit Low Limit Y_3774 Int. Std. Y_2243 Y_3600 Units Cts/S Cts/S Cts/S 13477. 95770. 4424.0 Avg Stddev 40. 292. 37.4 %RSD .29622 .30440 .84638 #1 13436. 95439. 4464.3

Approved: May 17, 2016

#2

#3

13516.

13481.

95989.

95881.

4390.3

4417.4

Sample Name: F BLANK Acquired: 5/16/2016 17:14:08 Type: Unk Method: ICP-THERMO3 6010 200.7WATER 3YLINES(v873) Mode: CONC Corr. Factor: 1.000000 User: JYH Custom ID1: Custom ID2: Custom ID3: Comment: WG568558-02 Al3082 As1890 B 2496 Ba4554 Be3131 Ca4226 Cd2288 Elem Ag3280 Units ppm ppm ppm ppm ppm ppm ppm ppm -.02220 -.00249 Avg -.00221 -.00106 .00029 .00007 .03173 .00029 Stddev .00115 .00713 .00306 .00266 .00033 .00002 .01151 .00009 288.39 %RSD 51.987 32.106 106.84 112.68 21.955 36.256 29.911 -.02633 #1 -.00240 .00197 -.00254 .00027 .00007 .02887 .00019 #2 -.00098 -.02630 -.00100 -.00513 .00063 .00006 .04440 .00035 #3 -.00326 -.01397 -.00416 .00019 -.00003 .00009 .02193 .00032 Check? Chk Pass Chk Pass Chk Pass Chk Pass Chk Pass Chk Pass Chk Pass **High Limit** Low Limit Elem Co2286 Cr2677 Cu2247 Fe2611 K_7664 Li6707 Mg2790 Mn2576 Units ppm ppm ppm ppm ppm ppm ppm ppm .00783 -.00060 .00024 .08098 .00642 -.00186 Avg .00041 .10968 .00037 .00035 .00082 .00466 Stddev .00322 .02467 .10178 .00283 %RSD 62.537 84.590 339.76 41.148 30.466 72.571 92.802 151.87 #1 -.00046 .00074 .00110 .01026 .07802 .01164 .03539 .00023 #2 -.00102 .00046 .00017 .00906 .05792 .00269 .06795 -.00073.22570 .00004 -.00054 .00492 #3 -.00032.00418 .10699 -.00509Check? Chk Pass Chk Pass Chk Pass Chk Pass Chk Pass Chk Pass Chk Pass High Limit Low Limit Elem Mo2020 Na5895 Ni2316 P_2149 Pb2203 Sb2068 Se1960 Si2124 Units ppm ppm ppm ppm ppm ppm ppm ppm .00007 .00671 -.00114 -.00113 -.00074 -.00084 .00607 -.02390 Avg .00278 Stddev .00010 .00130 .00477 .00239 .00154 .00471 .00140 146.95 %RSD 41.369 114.28 421.75 324.15 183.98 77.581 5.8692 #1 -.00225 .00001 .00982 .00120 .00143 .00061 .00538 -.02453 .00018 .00448 -.00146 .00203 -.00034 -.00247 #2 .00175 -.02488 .00583 #3 .00001 .00029 -.00662 -.00330 -.00066 .01109 -.02229 Check? Chk Pass Chk Pass Chk Pass Chk Pass Chk Pass Chk Pass **Chk Pass** High Limit

Approved: May 17, 2016

Low Limit

Sample Name: F BLANK Acquired: 5/16/2016 17:14:08 Type: Unk Method: ICP-THERMO3_6010_200.7WATER_3YLINES(v873) Mode: CONC Corr. Factor: 1.000000 User: JYH Custom ID1: Custom ID2: Custom ID3: Comment: WG568558-02 Elem Sn1899 Sr4077 Ti3372 TI1908 V_2924 Zn2062 Zr3391 Units ppm ppm ppm ppm ppm ppm ppm -.00024 .00129 -.00004 -.00187 .00048 .00296 .29862 Avg Stddev .00001 .00029 .00362 .00316 .00029 .00003 .16319 8276.0 168.55 60.244 1.0463 %RSD 4.1047 22.167 54.646 #1 -.00025 .00121 .00225 -.00377 .00018 .00300 .48489 #2 -.00024 .00105 -.00422 -.00362 .00076 .00295 .23013 #3 -.00023 .00160 .00184 .00177 .00050 .00294 .18085 Check? Chk Pass Chk Pass Chk Pass Chk Pass Chk Pass Chk Pass High Limit Low Limit Y_3774 Int. Std. Y_2243 Y_3600 Units Cts/S Cts/S Cts/S 13691. 98800. 4372.3 Avg Stddev 104. 651. 33.6 %RSD .75742 .65932 .76752 #1 13799. 99227. 4383.5

Approved: May 17, 2016

#2

#3

13683.

13592.

99123.

98050.

4398.9

4334.6

Sample Name: L1605067407 Acquired: 5/16/2016 17:18:08 Type: Unk Method: ICP-THERMO3_6010_200.7WATER_3YLINES(v873) Mode: CONC Corr. Factor: 1.000000 User: JYH Custom ID1: Custom ID2: Custom ID3: Comment: WG568687-01 AI3082 As1890 B_2496 Ba4554 Be3131 Ca4226 Elem Ag3280 Units ppm ppm ppm ppm ppm ppm ppm -.00030 Avg -.00166 .00015 .10651 42.985 -.00006 F 2260.5 Stddev .00213 .00902 .00068 .00208 1.008 .00006 15.6 .69086 %RSD 127.98 2960.1 447.30 1.9555 2.3457 101.31 #1 .00004 .00907 .00092 41.825 -.00013 .10481 2242.6 #2 -.00405 -.00105 -.00038 .10589 43.649 -.00001 2267.0 #3 -.00098 -.00893 -.00009 .10884 43.481 -.00005 2271.7 **Chk Pass** Chk Fail Check? Chk Pass **Chk Pass Chk Pass Chk Pass Chk Pass** 270.00 **High Limit** Low Limit -.10000 Elem Cd2288 Co2286 Cr2677 Cu2247 Fe2611 K 7664 Li6707 Units ppm ppm ppm ppm ppm ppm ppm 105.70 .00556 .00403 .00088 .01552 39.077 Avg 1.2187 .00034 .00052 .00099 Stddev .00137 .49 .0039 .272 %RSD 6.0470 12.831 112.97 8.8072 .69503 .32240 .46327 #1 .00523 .00443 .00196 .01635 38.765 105.16 1.2176 #2 .00553 .00421 .00067 .01627 39.264 106.10 1.2230 #3 .00001 39.202 105.86 .00590 .00344 .01394 1.2154 Check? **Chk Pass** Chk Pass **Chk Pass Chk Pass Chk Pass Chk Pass Chk Pass** High Limit Low Limit Elem Mg2790 Mn2576 Mo2020 Na5895 Ni2316 P_2149 Pb2203 Units ppm ppm ppm ppm ppm ppm ppm 185.42 17.010 -.00169 F 499.53 -.00839 .08698 .00439 Avg Stddev .00013 .00081 .02728 .00362 1.66 .062 1.69 7.7846 82.535 %RSD .89546 .36416 .33742 9.6416 31.361 #1 .00359 183.84 16.939 -.00169 498.37 -.00797 .11797 #2 187.15 -.00181 -.00788 .07637 .00834 17.055 501.47 #3 185.27 17.035 -.00155 498.77 -.00933 .06660 .00123 Check? **Chk Pass Chk Pass Chk Pass** Chk Fail **Chk Pass Chk Pass Chk Pass** High Limit 270.00

Approved: May 17, 2016

-.50000

Low Limit

Sample Name: L1605067407 Acquired: 5/16/2016 17:18:08 Type: Unk Method: ICP-THERMO3_6010_200.7WATER_3YLINES(v873) Mode: CONC Corr. Factor: 1.0 User: JYH Custom ID1: Custom ID2: Custom ID3: Comment: WG568687-01							Factor: 1.00000(
Elem Units Avg Stddev %RSD	Sb2068 ppm 01596 .00298 18.665	Se1960 ppm F04942 .00240 4.8519	Si2124 ppm 4.8698 .0916 1.8803	Sn1899 ppm 00189 .00056 29.833	Sr4077 ppm F 49.258 .396 .80312	Ti3372 ppm F17943 .00720 4.0135	TI1908 ppm 00599 .00892 149.00
#1 #2 #3	01416 01432 01940	04744 04874 05209	4.9244 4.9209 4.7641	00205 00126 00236	49.082 49.711 48.982	17437 17625 18768	.00272 00557 01512
Check ? High Limit Low Limit	Chk Pass	Chk Fail 90.000 01000	Chk Pass	Chk Pass	Chk Fail 9.0000 01000	Chk Fail 36.000 03000	Chk Pass
Elem Units Avg Stddev %RSD	V_2924 ppm . 00419 .00158 37.674	Zn2062 ppm .00158 .00029 18.321	Zr3391 ppm F -1.3727 .2821 20.546				
#1 #2 #3	.00488 .00530 .00238	.00136 .00191 .00148	-1.6786 -1.1228 -1.3168				
Check ? High Limit Low Limit	Chk Pass	Chk Pass	Chk Fail 36.000 04000				
Int. Std. Units Avg Stddev %RSD	Y_2243 Cts/S 10815. 85. .78428	Y_3600 Cts/S 76607. 213. .27771	Y_3774 Cts/S 4022.8 19.4 .48343				
#1 #2 #3	10748. 10786. 10910.	76445. 76848. 76529.	4035.9 4000.4 4031.9				

Sample Name: L1605067408S Acquired: 5/16/2016 17:22:30 Type: Unk Method: ICP-THERMO3_6010_200.7WATER_3YLINES(v873) Mode: CONC Corr. Factor: 1.000000 User: JYH Custom ID1: Custom ID2: Custom ID3: Comment: WG568687-04 AI3082 As1890 B 2496 Ba4554 Be3131 Ca4226 Elem Ag3280 Units ppm ppm ppm ppm ppm ppm ppm 5.5582 .22497 Avg .23376 1.2120 44.409 .02387 F 2235.2 Stddev .00174 .0214 .00486 .0017 1.724 .00014 58.5 %RSD .74542 .38522 2.1587 .13959 3.8829 .59916 2.6149 #1 .23462 .02390 5.5633 .21938 1.2106 43.125 2171.8 #2 .23490 5.5766 .22737 1.2139 43.734 .02399 2286.9 #3 .23175 5.5347 .22817 1.2115 46.369 .02371 2247.0 **Chk Pass** Chk Fail Check? Chk Pass **Chk Pass** Chk Pass **Chk Pass Chk Pass** 270.00 **High Limit** Low Limit -.10000 Elem Cd2288 Co2286 Cr2677 Cu2247 Fe2611 K 7664 Li6707 Units ppm ppm ppm ppm ppm ppm ppm .10015 .25646 .26506 Avg .03299 41.962 134.63 1.7721 .00041 Stddev .00067 .00181 .00351 .316 1.55 .0253 %RSD 2.0193 .40931 .70702 1.3226 .75247 1.4297 1.1514 #1 .03374 .10006 .25535 .26776 41.602 132.84 1.7431 #2 .03247 .10059 .25855 .26632 42.094 135.59 1.7832 #3 .03276 .09978 .25547 .26110 42.191 135.46 1.7900 Check? **Chk Pass** Chk Pass **Chk Pass Chk Pass Chk Pass Chk Pass Chk Pass** High Limit Low Limit P_2149 Elem Mg2790 Mn2576 Mo2020 Na5895 Ni2316 Pb2203 Units ppm ppm ppm ppm ppm ppm ppm 193.90 17.593 .50213 F 520.10 .23146 5.6660 .25135 Avg .207 .00388 .00305 .0308 Stddev 2.12 6.79 .00291 %RSD 1.1773 1.0916 .77238 1.3059 1.3164 .54328 1.1587 #1 .25401 191.46 17.354 .50369 512.27 .23345 5.6760 5.6906 195.05 17.714 .50498 524.38 .23298 .24824 #2 #3 195.19 17.712 .49771 523.66 .22795 5.6315 .25179 Check? **Chk Pass** Chk Pass **Chk Pass** Chk Fail **Chk Pass Chk Pass Chk Pass** High Limit 270.00 -.50000 Low Limit

Sample Name: L1605067408S Acquired: 5/16/2016 17:22:30 Type: Unk Method: ICP-THERMO3_6010_200.7WATER_3YLINES(v873) Mode: CONC Corr. Factor: 1.00 User: JYH Custom ID1: Custom ID2: Custom ID3: Comment: WG568687-04							Factor: 1.00000(
Elem Units Avg Stddev %RSD	Sb2068 ppm . 67538 .00631 .93368	Se1960 ppm .17257 .00261 1.5103	Si2124 ppm 8.2147 .0342 .41671	Sn1899 ppm . 49243 .00559 1.1357	Sr4077 ppm F 50.546 .304 .60120	Ti3372 ppm . 33634 .00499 1.4833	TI1908 ppm . 21805 .00102 .47003
#1 #2 #3	.67527 .68174 .66913	.17188 .17037 .17545	8.2289 8.2396 8.1757	.49458 .49663 .48608	50.888 50.307 50.443	.33316 .34209 .33376	.21768 .21920 .21726
Check ? High Limit Low Limit	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Fail 9.0000 01000	Chk Pass	Chk Pass
Elem Units Avg Stddev %RSD	V_2924 ppm . 52747 .00376 .71194	Zn2062 ppm . 47903 .00344 .71889	Zr3391 ppm F -1.3305 .2877 21.621				
#1 #2 #3	.52881 .53037 .52323	.48129 .48073 .47507	-1.6445 -1.0798 -1.2671				
Check ? High Limit Low Limit	Chk Pass	Chk Pass	Chk Fail 36.000 04000				
Int. Std. Units Avg Stddev %RSD	Y_2243 Cts/S 10784. 28. .25822	Y_3600 Cts/S 76194. 828. 1.0867	Y_3774 Cts/S 4079.6 50.6 1.2408				
#1 #2 #3	10761. 10776. 10815.	75561. 75889. 77131.	4138.0 4048.5 4052.3				

Sample Name: L1605067409SD Acquired: 5/16/2016 17:26:43 Type: Unk

Method: ICP-THERMO3_6010_200.7WATER_3YLINES(v873) Mode: CONC Corr. Factor: 1.000000

User: JYH Custom ID1: Custom ID2: Custom ID3:

Comment: WG568687-05

Elem	Ag3280	Al3082	As1890	B_2496	Ba4554	Be3131	Ca4226
Units	ppm	ppm	ppm	ppm	ppm	ppm	ppm
Avg	. 23420	5.4761	.22103	1.2008	F 45.603	.02358	F 2234.0
Stddev	.00146	.0208	.00525	.0051	.933	.00003	28.8
%RSD	.62235	.38065	2.3734	.42325	2.0465	.12337	1.2893
#1	.23372	5.4872	.22227	1.1983	45.004	.02359	2200.7
#2	.23583	5.4890	.21527	1.2066	46.678	.02360	2249.1
#3	.23304	5.4520	.22554	1.1974	45.125	.02355	2252.0
Check ? High Limit Low Limit	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Fail 45.000 00500	Chk Pass	Chk Fail 270.00 10000
Elem	Cd2288	Co2286	Cr2677	Cu2247	Fe2611	K_7664	Li6707
Units	ppm	ppm	ppm	ppm	ppm	ppm	ppm
Avg	. 03216	.09886	. 25157	. 25940	42.503	137.18	1.8080
Stddev	.00028	.00065	.00182	.00184	.346	.82	.0154
%RSD	.86013	.65656	.72187	.71055	.81454	.60034	.85314
#1	.03186	.09959	.24948	.26127	42.372	137.10	1.8009
#2	.03241	.09864	.25244	.25759	42.895	138.04	1.8257
#3	.03220	.09835	.25278	.25934	42.240	136.40	1.7973
Check ? High Limit Low Limit	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass
Elem	Mg2790	Mn2576	Mo2020	Na5895	Ni2316	P_2149	Pb2203
Units	ppm	ppm	ppm	ppm	ppm	ppm	ppm
Avg	196.35	17.890	. 49584	F 540.38	.22938	5.5692	. 25168
Stddev	1.05	.114	.00411	17.60	.00028	.0325	.00689
%RSD	.53732	.63708	.82932	3.2576	.12286	.58277	2.7395
#1	196.88	17.888	.49905	522.65	.22931	5.5962	.24680
#2	197.03	18.005	.49727	557.86	.22969	5.5781	.25957
#3	195.13	17.777	.49121	540.64	.22914	5.5332	.24866
Check ? High Limit Low Limit	Chk Pass	Chk Pass	Chk Pass	Chk Fail 270.00 50000	Chk Pass	Chk Pass	Chk Pass

Sample Name: L1605067409SD Acquired: 5/16/2016 17:26:43 Type: Unk Method: ICP-THERMO3_6010_200.7WATER_3YLINES(v873) Mode: CONC Corr. Factor: 1.000000 User: JYH Custom ID1: Custom ID2: Custom ID3: Comment: WG568687-05							
Elem Units Avg Stddev %RSD	Sb2068 ppm . 66731 .00286 .42912	Se1960 ppm .16908 .00157 .92845	Si2124 ppm 8.2324 .0328 .39907	Sn1899 ppm . 48494 .00320 .66007	Sr4077 ppm F 51.479 1.085 2.1080	Ti3372 ppm . 32421 .01141 3.5181	TI1908 ppm . 21718 .00538 2.4753
#1 #2 #3	.66526 .67058 .66610	.16899 .17069 .16756	8.2601 8.2410 8.1961	.48718 .48637 .48127	50.481 52.634 51.321	.32027 .33706 .31529	.21633 .21227 .22292
Check ? High Limit Low Limit	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Fail 9.0000 01000	Chk Pass	Chk Pass
Elem Units Avg Stddev %RSD	V_2924 ppm . 51767 .00178 .34391	Zn2062 ppm . 47062 .00308 .65398	Zr3391 ppm F -1.3839 .1077 7.7830				
#1 #2 #3	.51957 .51740 .51604	.47358 .47083 .46744	-1.2681 -1.4812 -1.4023				
Check ? High Limit Low Limit	Chk Pass	Chk Pass	Chk Fail 36.000 04000				
Int. Std. Units Avg Stddev %RSD	Y_2243 Cts/S 10715. 44. .40626	Y_3600 Cts/S 76149. 63. .08246	Y_3774 Cts/S 4043.3 42.0 1.0397				
#1 #2 #3	10679. 10763. 10703.	76133. 76096. 76218.	4071.1 3995.0 4063.9				

Sample Name: L1605067410 Acquired: 5/16/2016 17:30:57 Type: Unk Method: ICP-THERMO3_6010_200.7WATER_3YLINES(v873) Mode: CONC Corr. Factor: 1.00000 User: JYH Custom ID1: Custom ID2: Custom ID3: Comment:							Factor: 1.00000(
Elem	Ag3280	Al3082	As1890	B_2496	Ba4554	Be3131	Ca4226
Units	ppm	ppm	ppm	ppm	ppm	ppm	ppm
Avg	00214	00652	.01573	. 10656	3.4940	00016	F 1668.6
Stddev	.00194	.00549	.00077	.00212	.0293	.00004	15.1
%RSD	90.814	84.171	4.9006	1.9882	.83861	26.762	.90729
#1	.00006	00033	.01641	.10756	3.4727	00016	1661.7
#2	00362	00846	.01590	.10412	3.4818	00012	1658.2
#3	00286	01079	.01489	.10798	3.5274	00020	1686.0
Check ? High Limit Low Limit	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Fail 270.00 10000
Elem	Cd2288	Co2286	Cr2677	Cu2247	Fe2611	K_7664	Li6707
Units	ppm	ppm	ppm	ppm	ppm	ppm	ppm
Avg	. 00264	.00070	. 00245	. 00945	3.3490	274.62	1.5893
Stddev	.00024	.00054	.00049	.00128	.0558	2.08	.0166
%RSD	8.9022	77.004	20.043	13.551	1.6656	.75596	1.0459
#1	.00239	.00131	.00297	.01020	3.2986	273.59	1.5760
#2	.00285	.00045	.00240	.00798	3.3394	273.26	1.5840
#3	.00268	.00032	.00199	.01019	3.4090	277.01	1.6079
Check ? High Limit Low Limit	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass
Elem	Mg2790	Mn2576	Mo2020	Na5895	Ni2316	P_2149	Pb2203
Units	ppm	ppm	ppm	ppm	ppm	ppm	ppm
Avg	12.663	2.4254	. 00489	74.175	.07787	. 06328	. 00567
Stddev	.091	.0281	.00044	.643	.00125	.01177	.00196
%RSD	.72034	1.1569	9.0542	.86739	1.6091	18.601	34.492
#1	12.580	2.3997	.00445	73.763	.07924	.07685	.00697
#2	12.761	2.4211	.00490	73.845	.07679	.05590	.00342
#3	12.649	2.4553	.00534	74.916	.07757	.05709	.00662
Check ? High Limit Low Limit	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass

Sample Name: L1605067410 Acquired: 5/16/2016 17:30:57 Method: ICP-THERMO3_6010_200.7WATER_3YLINES(v873) User: JYH Custom ID1: Custom ID2: Custom ICCOmment:					Type: Unk Mode: CON ID3:	C Corr. F	Factor: 1.00000(
Elem Units Avg Stddev %RSD	Sb2068 ppm 00687 .00378 55.005	Se1960 ppm F02975 .00827 27.785	Si2124 ppm 3.0567 .0068 .22325	Sn1899 ppm 00118 .00027 22.727	Sr4077 ppm 6.8905 .0505 .73234	Ti3372 ppm F15379 .00837 5.4425	TI1908 ppm 00531 .00547 102.98
#1 #2 #3	01110 00382 00569	03160 03694 02072	3.0626 3.0492 3.0581	00114 00093 00147	6.8563 6.8669 6.9485	16297 14658 15181	01006 00654 .00067
Check ? High Limit Low Limit	Chk Pass	Chk Fail 90.000 01000	Chk Pass	Chk Pass	Chk Pass	Chk Fail 36.000 03000	Chk Pass
Elem Units Avg Stddev %RSD	V_2924 ppm . 00137 .00059 42.841	Zn2062 ppm . 00280 .00028 9.8417	Zr3391 ppm F21365 .34005 159.16				
#1 #2 #3	.00076 .00142 .00193	.00263 .00266 .00312	.16136 30036 50196				
Check ? High Limit Low Limit	Chk Pass	Chk Pass	Chk Fail 36.000 04000				
Int. Std. Units Avg Stddev %RSD	Y_2243 Cts/S 12340. 34. .27433	Y_3600 Cts/S 87124. 373. .42827	Y_3774 Cts/S 4458.4 20.4 .45852				
#1 #2 #3	12301. 12363. 12356.	86899. 86918. 87554.	4463.3 4476.0 4436.0				

Sample Name: L1605067410PS Acquired: 5/16/2016 17:34:53 Type: Unk

Method: ICP-THERMO3_6010_200.7WATER_3YLINES(v873) Mode: CONC Corr. Factor: 1.000000

User: JYH Custom ID1: Custom ID2: Custom ID3:

Comment: WG568955-01

Elem	Ag3280	Al3082	As1890	B_2496	Ba4554	Be3131	Ca4226
Units	ppm	ppm	ppm	ppm	ppm	ppm	ppm
Avg	. 22079	5.4017	. 23192	1.1620	3.6211	. 02407	F 1567.1
Stddev	.00106	.0295	.00564	.0048	.0161	.00011	6.6
%RSD	.48155	.54650	2.4329	.41581	.44386	.47677	.42405
#1	.22107	5.4208	.22559	1.1658	3.6363	.02420	1574.2
#2	.22169	5.3677	.23642	1.1566	3.6043	.02400	1561.1
#3	.21962	5.4165	.23376	1.1636	3.6229	.02399	1566.1
Check ? High Limit Low Limit	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Fail 270.00 10000
Elem	Cd2288	Co2286	Cr2677	Cu2247	Fe2611	K_7664	Li6707
Units	ppm	ppm	ppm	ppm	ppm	ppm	ppm
Avg	. 02850	.09971	. 25747	. 26256	4.9625	268.83	1.9231
Stddev	.00042	.00042	.00252	.00118	.0512	1.63	.0043
%RSD	1.4665	.42083	.98069	.44873	1.0316	.60723	.22589
#1	.02817	.09978	.25892	.26210	5.0095	270.60	1.9279
#2	.02837	.10008	.25455	.26390	4.9079	267.38	1.9195
#3	.02897	.09925	.25894	.26168	4.9701	268.51	1.9221
Check ? High Limit Low Limit	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass
Elem	Mg2790	Mn2576	Mo2020	Na5895	Ni2316	P_2149	Pb2203
Units	ppm	ppm	ppm	ppm	ppm	ppm	ppm
Avg	16.120	2.4084	. 51496	92.349	. 32058	5.5291	. 25254
Stddev	.277	.0182	.00151	.593	.00032	.0253	.00659
%RSD	1.7183	.75501	.29340	.64239	.09884	.45778	2.6084
#1	16.421	2.4294	.51466	92.934	.32077	5.5017	.24615
#2	16.065	2.3977	.51660	91.748	.32021	5.5517	.25931
#3	15.875	2.3982	.51363	92.365	.32075	5.5339	.25215
Check ? High Limit Low Limit	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass

Approved: May 17, 2016

J'ye 1hu

Sample Name: L1605067410PS Acquired: 5/16/2016 17:34:53 Type: Unk Method: ICP-THERMO3_6010_200.7WATER_3YLINES(v873) Mode: CONC Corr. Factor: 1.000000 User: JYH Custom ID1: Custom ID2: Custom ID3: Comment: WG568955-01 Sb2068 Se1960 Si2124 Sn1899 Sr4077 Ti3372 TI1908 Elem Units ppm ppm ppm ppm ppm ppm ppm .66379 .18288 5.8429 .50234 .23094 Avg 6.6426 .36358 Stddev .00437 .01075 .0139 .00054 .0402 .00430 .00782 %RSD .65884 5.8784 .23775 .10711 .60482 1.1830 3.3874 #1 .66251 .19237 5.8272 .50192 6.6827 .36706 .23259 #2 .66020 .18506 5.8537 .50214 6.6024 .36491 .23780 #3 .66866 .17120 5.8477 .50294 6.6428 .35877 .22242 **Chk Pass** Check? Chk Pass Chk Pass Chk Pass Chk Pass Chk Pass **Chk Pass** High Limit Low Limit Elem V_2924 Zn2062 Zr3391 Units ppm ppm ppm .52210 .49426 .05982 Avg .00209 .00051 Stddev .27896 %RSD .40105 .10406 466.31 #1 .52447 .49413 -.22588 #2 .52049 .49383 .33150 #3 .49483 .07385 .52135 Check? Chk Pass Chk Pass **Chk Pass** High Limit Low Limit Int. Std. Y_2243 Y_3600 Y_3774 Cts/S Units Cts/S Cts/S 12337. 87716. 4426.1 Avg Stddev 470. 15.0 9. .07041 .53629 .33870 %RSD #1 4410.5 12347. 87175. 12332. 87940. 4427.6 #2 #3 12333. 4440.3 88033.

Sample Name: L1605067410SDL Acquired: 5/16/2016 17:38:34 Type: Unk Method: ICP-THERMO3_6010_200.7WATER_3YLINES(v873) Mode: CONC Corr. Factor: 1.000000 User: JYH Custom ID1: 5 Custom ID2: Custom ID3: Comment: WG568955-02 Al3082 As1890 B_2496 Ba4554 Be3131 Ca4226 Elem Ag3280 Units ppm ppm ppm ppm ppm ppm ppm .00005 Avg -.00177 -.01243 .00475 .02209 .62655 F 418.43 Stddev .00114 .00470 .00191 .00214 .00592 .00004 4.08 .97440 %RSD 64.254 37.813 40.178 9.6814 .94517 77.865 #1 -.00303 -.00805 .00256 .02035 .00001 .63240 422.77 #2 -.00082 -.01739 .00559 .02448 .62670 .00008 417.84 .02145 #3 -.00146 -.01184.00609 .62056 .00005 414.69 Chk Fail Check? Chk Pass Chk Pass **Chk Pass Chk Pass Chk Pass Chk Pass** 270.00 **High Limit** Low Limit -.10000 Elem Cd2288 Co2286 Cr2677 Cu2247 Fe2611 K 7664 Li6707 Units ppm ppm ppm ppm ppm ppm ppm 49.308 .00067 -.00011 .00255 .62229 .28433 Avg .00241 .00042 .00027 .00025 .00097 Stddev .05723 .397 .00632 2.2234 %RSD 62.909 248.91 9.8415 40.396 9.1972 .80498 .29109 #1 .00095 .00010 .00229 .00285 .68714 49.688 #2 .00088 -.00041 .00256 .00130 .60088 49.339 .28335 -.00002 #3 .00019 .00280 .00309 .57885 48.896 .27856 Check? **Chk Pass** Chk Pass **Chk Pass Chk Pass Chk Pass Chk Pass Chk Pass** High Limit Low Limit Elem Mg2790 Mn2576 Mo2020 Na5895 Ni2316 P_2149 Pb2203 Units ppm ppm ppm ppm ppm ppm ppm 2.4710 .45043 .00116 13.310 .01453 .02842 .00218 Avg .00549 .00023 .00070 .00069 Stddev .0694 .155 .00401 %RSD 2.8071 1.2191 20.140 1.1629 4.8042 2.4292 183.86 #1 .02919 2.4990 .45620 .00133 13.460 .01477 .00670 2.3920 .44981 .00089 13.321 .01507 .02785 .00079 #2 #3 2.5220 .44527 .00124 13.151 .01374 .02822 -.00095

Approved: May 17, 2016

Chk Pass

Chk Pass

Chk Pass

Chk Pass

Check?

High Limit Low Limit **Chk Pass**

Chk Pass

Chk Pass

Sample Name: L1605067410SDL Acquired: 5/16/2016 17:38:34 Type: Unk Method: ICP-THERMO3_6010_200.7WATER_3YLINES(v873) Mode: CONC Corr. Factor: 1.000000 User: JYH Custom ID1: 5 Custom ID2: Custom ID3: Comment: WG568955-02 Elem Sb2068 Se1960 Si2124 Sn1899 Sr4077 Ti3372 TI1908 Units ppm ppm ppm ppm ppm ppm ppm -.00580 .53140 1.2412 F-.05541 -.00286 Avg -.00294 -.00135 Stddev .00252 .00238 .00670 .00043 .0123 .00255 .00393 %RSD 85.673 41.101 1.2602 31.796 .98673 4.6074 137.17 .00050 #1 -.00574 -.00572 .52417 -.00124 1.2541 -.05835 #2 -.00224 -.00821 .53263 -.00099 1.2399 -.05412 -.00718 #3 -.00085 -.00345 .53739 -.00183 1.2297 -.05376 -.00191 **Chk Pass Chk Pass** Chk Fail **Chk Pass** Check? **Chk Pass Chk Pass Chk Pass** 36.000 High Limit Low Limit -.03000 Elem V_2924 Zn2062 Zr3391 Units ppm ppm ppm .00065 .00137 F -. 17376 Avg .00071 .00007 Stddev .17478 %RSD 109.08 4.9193 100.58 #1 .00120 .00133 -.09795 #2 .00090 .00145 -.37365 #3 -.00015 -.04969 .00133 Check? Chk Pass Chk Pass Chk Fail High Limit 36.000 Low Limit -.04000 Int. Std. Y_2243 Y_3600 Y_3774 Units Cts/S Cts/S Cts/S 13605. 96745. 4568.3 Avg Stddev 361. 38.1 63. .46198 .37291 %RSD .83313 #1 4524.4 13669. 97132. 13601. 96418. 4591.6 #2

96684.

13544.

4589.0

Approved: May 17, 2016

#3

Sample Nam Method: ICP User: JYH Comment:				LINES(v873	pe: QC) Mode: tom ID3:	CONC (Corr. Factor:	1.000000
Elem	Ag3280	Al3082	As1890	B_2496	Ba4554	Be3131	Ca4226	
Units	ppm	ppm	ppm	ppm	ppm	ppm	ppm	
Avg	. 38721	9.7772	. 39070	. 48800	. 97398	. 04769	9.5797	
Stddev	.00413	.0397	.00510	.00385	.01590	.00008	.2190	
%RSD	1.0656	.40631	1.3053	.78953	1.6322	.15868	2.2864	
#1	.38289	9.7341	.39641	.48819	.98797	.04761	9.7859	
#2	.39111	9.8122	.38660	.49175	.97729	.04770	9.6032	
#3	.38763	9.7855	.38908	.48405	.95669	.04777	9.3498	
Check ? Value Range	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	
Elem	Cd2288	Co2286	Cr2677	Cu2247	Fe2611	K_7664	Li6707	
Units	ppm	ppm	ppm	ppm	ppm	ppm	ppm	
Avg	. 04782	.20018	. 50352	. 50193	4.0134	48.995	. 98315	
Stddev	.00054	.00222	.00048	.00536	.0637	.966	.01433	
%RSD	1.1226	1.1100	.09476	1.0679	1.5873	1.9723	1.4580	
#1	.04844	.20267	.50312	.50764	4.0793	49.722	.99621	
#2	.04752	.19838	.50404	.49701	4.0086	49.364	.98543	
#3	.04751	.19950	.50339	.50114	3.9522	47.898	.96781	
Check ? Value Range	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	
Elem	Mg2790	Mn2576	Mo2020	Na5895	Ni2316	P_2149	Pb2203	
Units	ppm	ppm	ppm	ppm	ppm	ppm	ppm	
Avg	9.9132	. 48809	. 96179	49.623	. 51029	9.8349	. 50829	
Stddev	.2214	.00774	.01165	.890	.00469	.1010	.00985	
%RSD	2.2338	1.5849	1.2111	1.7928	.91836	1.0271	1.9378	
#1	9.9669	.49572	.97497	50.342	.51540	9.9358	.51716	
#2	10.103	.48829	.95287	49.899	.50619	9.7337	.49769	
#3	9.6698	.48025	.95753	48.628	.50928	9.8352	.51002	
Check ? Value Range	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	

Sample Nam Method: ICP User: JYH Comment:		6010_200.7	16/2016 17:4 WATER_3Y Custom ID2:	LINES(v873	pe: QC) Mode: tom ID3:	CONC (Corr. Factor: 1	.000000
Elem Units Avg Stddev %RSD	Sb2068 ppm 1.1760 .0123 1.0456	Se1960 ppm . 36727 .00583 1.5883	Si2124 ppm 4.9352 .0434 .87945	Sn1899 ppm . 99698 .00665 .66684	Sr4077 ppm . 96866 .01642 1.6951	Ti3372 ppm . 96409 .01149 1.1921	TI1908 ppm . 49703 .00415 .83442	
#1 #2 #3	1.1902 1.1678 1.1701	.37053 .36053 .37074	4.9729 4.8877 4.9449	1.0034 .99012 .99744	.98093 .97505 .95001	.97684 .96092 .95452	.50061 .49249 .49798	
Check ? Value Range	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	
Elem Units Avg Stddev %RSD	V_2924 ppm . 98590 .00787 .79809	Zn2062 ppm 1.0110 .0111 1.0958	Zr3391 ppm F . 84677 .09297 10.979					
#1 #2 #3	.97729 .99273 .98767	1.0220 .99980 1.0112	.85734 .74896 .93400					
Check ? Value Range	Chk Pass	Chk Pass	Chk Fail 1.0000 -10.000%					
Int. Std. Units Avg Stddev %RSD	Y_2243 Cts/S 13572. 98. .72530	Y_3600 Cts/S 96723 . 304. .31404	Y_3774 Cts/S 4374.3 65.3 1.4927					
#1 #2 #3	13481. 13677. 13559.	96983. 96389. 96797.	4311.8 4369.2 4442.0					

Sample Name Method: ICP-T User: JYH Comment:		010_200.7W <i>A</i>	2016 17:46:1 ATER_3YLIN stom ID2:	• •	Mode: CON	C Corr. F	factor: 1.00000(
Elem	Ag3280	Al3082	As1890	B_2496	Ba4554	Be3131	Ca4226
Units	ppm	ppm	ppm	ppm	ppm	ppm	ppm
Avg	00202	02526	.00092	. 00251	. 00190	.00015	04034
Stddev	.00175	.00694	.00248	.00196	.00011	.00006	.02650
%RSD	86.740	27.473	269.63	78.119	5.7681	42.493	65.692
#1	00397	02604	.00150	.00180	.00181	.00011	06031
#2	00058	03178	00180	.00100	.00187	.00012	05044
#3	00151	01796	.00305	.00473	.00202	.00023	01028
Check ? High Limit Low Limit	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass
Elem	Cd2288	Co2286	Cr2677	Cu2247	Fe2611	K_7664	Li6707
Units	ppm	ppm	ppm	ppm	ppm	ppm	ppm
Avg	.00009	00006	.00070	00032	.01163	. 24241	. 00193
Stddev	.00018	.00017	.00095	.00156	.01671	.06947	.00323
%RSD	189.97	285.97	136.15	488.10	143.71	28.656	167.52
#1	00010	00017	.00172	00192	00560	.17193	.00201
#2	.00024	00014	00016	.00119	.02777	.24450	00134
#3	.00014	.00013	.00054	00023	.01271	.31081	.00511
Check ? High Limit Low Limit	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass
Elem	Mg2790	Mn2576	Mo2020	Na5895	Ni2316	P_2149	Pb2203
Units	ppm	ppm	ppm	ppm	ppm	ppm	ppm
Avg	.11075	. 00129	. 00450	02670	00108	. 00273	. 00256
Stddev	.05153	.00215	.00019	.00398	.00195	.00429	.00279
%RSD	46.530	166.93	4.2460	14.892	180.61	156.98	109.28
#1	.10014	.00367	.00429	03098	.00028	.00713	.00053
#2	.16676	00053	.00455	02311	00331	00144	.00575
#3	.06535	.00073	.00467	02602	00021	.00250	.00140
Check ? High Limit Low Limit	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass

Sample Name Method: ICP-1 User: JYH Comment:		010_200.7W <i>A</i>	2016 17:46:1 ATER_3YLIN stom ID2:	• •	Mode: CON	C Corr. F	Factor: 1.00000(
Elem Units Avg Stddev %RSD	Sb2068 ppm . 00154 .00140 91.164	Se1960 ppm 00680 .00295 43.304	Si2124 ppm .00089 .00220 245.57	Sn1899 ppm 00038 .00039 101.70	Sr4077 ppm . 00028 .00053 186.51	Ti3372 ppm 00577 .00489 84.746	TI1908 ppm 00115 .00213 186.44
#1 #2 #3	00007 .00249 .00220	00819 00880 00342	00155 .00154 .00270	00067 .00006 00054	00029 .00076 .00039	01047 00613 00071	00360 00015 .00031
Check ? High Limit Low Limit	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass
Elem Units Avg Stddev %RSD	V_2924 ppm . 00045 .00071 158.79	Zn2062 ppm .00009 .00023 257.51	Zr3391 ppm F12320 .45894 372.51				
#1 #2 #3	00036 .00073 .00098	.00035 .00001 00009	38903 .40674 38732				
Check ? High Limit Low Limit	Chk Pass	Chk Pass	Chk Fail .04000 04000				
Int. Std. Units Avg Stddev %RSD	Y_2243 Cts/S 13411. 31. .22965	Y_3600 Cts/S 95741. 640. .66838	Y_3774 Cts/S 4319.2 52.8 1.2229				
#1 #2 #3	13377. 13418. 13438.	95703. 96399. 95121.	4358.2 4340.3 4259.1				

Sample Nam Method: ICP User: JYH Comment:		6010_200.7		` .			Corr. Factor:	1.00000(
Elem	Ag3280	Al3082	As1890	B_2496	Ba4554	Be3131	Ca4226	
Units	ppm	ppm	ppm	ppm	ppm	ppm	ppm	
Avg	00396	. 31302	00169	. 27427	. 43917	.00014	10.328	
Stddev	.00155	.00404	.00089	.00018	.00421	.00009	.100	
%RSD	39.134	1.2912	52.624	.06388	.95928	62.307	.96740	
#1	00243	.31704	00255	.27447	.44201	.00022	10.393	
#2	00390	.31306	00077	.27414	.44116	.00015	10.378	
#3	00553	.30895	00176	.27421	.43433	.00005	10.213	
Check ? High Limit Low Limit	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	
Elem	Cd2288	Co2286	Cr2677	Cu2247	Fe2611	K_7664	Li6707	
Units	ppm	ppm	ppm	ppm	ppm	ppm	ppm	
Avg	.00026	.00142	.00090	.00394	.01499	295.98	. 67072	
Stddev	.00023	.00024	.00063	.00040	.02157	2.99	.00350	
%RSD	87.175	16.795	69.424	10.202	143.90	1.0087	.52195	
#1	.00022	.00145	.00092	.00349	.02483	297.83	.67476	
#2	.00051	.00117	.00027	.00407	.02988	297.57	.66884	
#3	.00006	.00165	.00152	.00427	00975	292.54	.66857	
Check ? High Limit Low Limit	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	
Elem	Mg2790	Mn2576	Mo2020	Na5895	Ni2316	P_2149	Pb2203	
Units	ppm	ppm	ppm	ppm	ppm	ppm	ppm	
Avg	14.249	. 00907	.00118	F 558.98	.00164	. 76236	. 00195	
Stddev	.077	.00115	.00026	6.38	.00034	.01142	.00147	
%RSD	.53850	12.702	22.385	1.1408	21.062	1.4981	75.214	
#1	14.167	.00933	.00099	557.37	.00203	.75276	.00285	
#2	14.318	.01008	.00107	553.55	.00148	.75934	.00275	
#3	14.263	.00782	.00148	566.00	.00140	.77499	.00026	
Check ? High Limit Low Limit	Chk Pass	Chk Pass	Chk Pass	Chk Fail 270.00 50000	Chk Pass	Chk Pass	Chk Pass	

•	ne: L1605045 -THERMO3_ Custom I	6010_200.7		, ,			Corr. Factor: 1.	.000000
Elem Units Avg Stddev %RSD	Sb2068 ppm 00102 .00449 439.15	Se1960 ppm .00235 .00307 130.59	Si2124 ppm 1.9212 .0039 .20111	Sn1899 ppm 00017 .00049 290.51	Sr4077 ppm . 11503 .00125 1.0837	Ti3372 ppm 00828 .00781 94.282	ppm 00266 .00041	
#1 #2 #3	.00081 .00226 00614	00081 .00533 .00253	1.9250 1.9172 1.9213	.00028 00069 00010	.11537 .11608 .11365	00299 01724 00461	00239 00246 00314	
Check ? High Limit Low Limit	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	
Elem Units Avg Stddev %RSD	V_2924 ppm .00013 .00054 416.20	Zn2062 ppm .00310 .00017 5.5345	Zr3391 ppm . 12504 .18939 151.46					
#1 #2 #3	.00042 .00045 00049	.00305 .00296 .00329	.06020 .33833 02341					
Check ? High Limit Low Limit	Chk Pass	Chk Pass	Chk Pass					
Int. Std. Units Avg Stddev %RSD	Y_2243 Cts/S 12580. 19. .15121	Y_3600 Cts/S 87600. 270. .30858	Y_3774 Cts/S 4275.0 41.3 .96592					
#1 #2 #3	12559. 12589. 12594.	87310. 87647. 87844.	4287.3 4228.9 4308.7					

Sample Name Method: ICP- User: JYH Comment:		010_200.7W	red: 5/16/201 ATER_3YLIN stom ID2:		Type: Unk Mode: CON ID3:	C Corr. F	Factor: 1.000000
Elem	Ag3280	Al3082	As1890	B_2496	Ba4554	Be3131	Ca4226
Units	ppm	ppm	ppm	ppm	ppm	ppm	ppm
Avg	00382	00065	.00053	. 02025	. 32355	.00006	F 465.46
Stddev	.00106	.00636	.00335	.00084	.00203	.00003	.55
%RSD	27.847	975.92	636.86	4.1234	.62700	46.407	.11903
#1	00501	00268	00286	.02112	.32219	.00005	465.68
#2	00351	00576	.00060	.02020	.32258	.00004	464.82
#3	00295	.00648	.00383	.01945	.32589	.00009	465.86
Check ? High Limit Low Limit	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Fail 270.00 10000
Elem	Cd2288	Co2286	Cr2677	Cu2247	Fe2611	K_7664	Li6707
Units	ppm	ppm	ppm	ppm	ppm	ppm	ppm
Avg	. 00058	.00078	. 00182	. 01292	.01117	213.41	. 48785
Stddev	.00010	.00041	.00212	.00068	.01381	.35	.00565
%RSD	17.754	52.905	116.37	5.2931	123.67	.16233	1.1581
#1	.00065	.00120	.00311	.01269	.02007	213.50	.49285
#2	.00062	.00075	.00297	.01369	00474	213.02	.48172
#3	.00046	.00038	00062	.01238	.01818	213.70	.48898
Check ? High Limit Low Limit	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass
Elem	Mg2790	Mn2576	Mo2020	Na5895	Ni2316	P_2149	Pb2203
Units	ppm	ppm	ppm	ppm	ppm	ppm	ppm
Avg	. 03530	00178	. 00885	251.37	00225	. 04319	. 07527
Stddev	.08710	.00135	.00041	.52	.00157	.00488	.00175
%RSD	246.76	76.026	4.6895	.20613	69.704	11.299	2.3307
#1	.13038	00145	.00920	251.85	00406	.04478	.07426
#2	04061	00326	.00839	250.82	00134	.03771	.07426
#3	.01612	00062	.00896	251.43	00135	.04708	.07730
Check ? High Limit Low Limit	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass

Sample Name Method: ICP-1 User: JYH Comment:)10_200.7W <i>A</i>	red: 5/16/2010 ATER_3YLIN stom ID2:		Type: Unk Mode: CON ID3:	C Corr. F	Factor: 1.00000(
Elem Units Avg Stddev %RSD	Sb2068 ppm 00190 .00335 176.88	Se1960 ppm . 00617 .00706 114.33	Si2124 ppm . 30441 .00567 1.8618	Sn1899 ppm 00065 .00077 118.15	Sr4077 ppm . 50634 .00188 .37226	Ti3372 ppm F06408 .00486 7.5817	TI1908 ppm 00339 .00404 119.20
#1 #2 #3	00189 00526 .00145	.00978 .01070 00196	.31015 .30425 .29882	00109 00110 .00024	.50689 .50424 .50789	06220 06044 06959	00087 00804 00125
Check ? High Limit Low Limit	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Fail 36.000 03000	Chk Pass
Elem Units Avg Stddev %RSD	V_2924 ppm .00062 .00117 188.38	Zn2062 ppm . 57832 .00156 .27060	Zr3391 ppm . 18093 .65145 360.06				
#1 #2 #3	.00155 00069 .00100	.57929 .57915 .57651	18218 .93301 20805				
Check ? High Limit Low Limit	Chk Pass	Chk Pass	Chk Pass				
Int. Std. Units Avg Stddev %RSD	Y_2243 Cts/S 12520. 15. .11944	Y_3600 Cts/S 89026. 252. .28315	Y_3774 Cts/S 4304.5 18.4 .42833				
#1 #2 #3	12536. 12507. 12516.	88769. 89037. 89272.	4302.4 4287.1 4323.8				

Sample Name Method: ICP-1 User: JYH Comment:)10_200.7W	red: 5/16/201 ATER_3YLIN stom ID2:		Type: Unk Mode: CONO ID3:	C Corr. F	Factor: 1.00000(
Elem	Ag3280	Al3082	As1890	B_2496	Ba4554	Be3131	Ca4226
Units	ppm	ppm	ppm	ppm	ppm	ppm	ppm
Avg	F00451	28.788	.00260	. 30205	1.5541	.00056	48.346
Stddev	.00204	.208	.00148	.00204	.0123	.00004	.246
%RSD	45.360	.72092	56.788	.67630	.79084	6.9576	.50976
#1	00611	28.636	.00325	.30184	1.5412	.00060	48.127
#2	00520	28.704	.00364	.30011	1.5657	.00052	48.613
#3	00221	29.025	.00091	.30418	1.5554	.00055	48.298
Check ? High Limit Low Limit	Chk Fail 9.0000 00400	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass
Elem	Cd2288	Co2286	Cr2677	Cu2247	Fe2611	K_7664	Li6707
Units	ppm	ppm	ppm	ppm	ppm	ppm	ppm
Avg	. 00059	.02269	. 01034	.00198	4.2844	361.37	. 04929
Stddev	.00029	.00063	.00054	.00056	.0609	1.86	.00450
%RSD	49.241	2.7833	5.2649	28.301	1.4203	.51443	9.1206
#1	.00036	.02315	.00972	.00198	4.2197	360.46	.05262
#2	.00092	.02296	.01055	.00254	4.2932	363.51	.04418
#3	.00050	.02197	.01075	.00142	4.3405	360.15	.05108
Check ? High Limit Low Limit	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass
Elem	Mg2790	Mn2576	Mo2020	Na5895	Ni2316	P_2149	Pb2203
Units	ppm	ppm	ppm	ppm	ppm	ppm	ppm
Avg	91.403	. 61601	. 00043	F 499.32	. 07154	. 08004	. 19880
Stddev	.850	.00995	.00047	5.13	.00114	.00859	.00102
%RSD	.92971	1.6154	107.77	1.0267	1.5922	10.730	.51395
#1	90.438	.60602	.00048	501.98	.07122	.08995	.19779
#2	92.036	.62593	.00088	493.41	.07281	.07491	.19878
#3	91.736	.61609	00006	502.57	.07060	.07525	.19983
Check ? High Limit Low Limit	Chk Pass	Chk Pass	Chk Pass	Chk Fail 270.00 50000	Chk Pass	Chk Pass	Chk Pass

Sample Name Method: ICP-T User: JYH Comment:)10_200.7W <i>A</i>	ed: 5/16/2016 ATER_3YLINI stom ID2:		Type: Unk Mode: CON0 ID3:	C Corr. F	Factor: 1.000000
Elem Units Avg Stddev %RSD	Sb2068 ppm 00310 .00297 95.833	Se1960 ppm .00136 .00463 339.95	Si2124 ppm 4.6980 .0222 .47161	Sn1899 ppm .00392 .00128 32.720	Sr4077 ppm . 77098 .00629 .81535	Ti3372 ppm 00638 .00144 22.571	TI1908 ppm 00133 .00284 212.77
#1 #2 #3	00492 .00033 00471	.00669 00164 00096	4.7162 4.7045 4.6734	.00365 .00279 .00531	.76389 .77587 .77318	00768 00662 00483	00153 00407 .00160
Check ? High Limit Low Limit	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass
Elem Units Avg Stddev %RSD	V_2924 ppm . 00053 .00074 140.97	Zn2062 ppm 1.4943 .0148 .99093	Zr3391 ppm . 41278 .38061 92.205				
#1 #2 #3	.00115 00029 .00072	1.5093 1.4939 1.4797	.85071 .16181 .22582				
Check ? High Limit Low Limit	Chk Pass	Chk Pass	Chk Pass				
Int. Std. Units Avg Stddev %RSD	Y_2243 Cts/S 12543. 79. .62759	Y_3600 Cts/S 88037. 489. .55542	Y_3774 Cts/S 4265.2 7.1 .16673				
#1 #2 #3	12471. 12530. 12627.	88555. 87972. 87583.	4257.4 4271.4 4266.7				

Sample Nam Method: ICP User: JYH Comment:		6010_200.7	•	, ,			Corr. Factor:	1.000000
Elem	Ag3280	Al3082	As1890	B_2496	Ba4554	Be3131	Ca4226	
Units	ppm	ppm	ppm	ppm	ppm	ppm	ppm	
Avg	00357	25.519	.00032	. 30917	1.7118	. 00047	51.909	
Stddev	.00286	.076	.00190	.00181	.0114	.00007	.376	
%RSD	80.120	.29904	598.99	.58462	.66800	15.664	.72430	
#1	00275	25.560	.00220	.30722	1.7019	.00039	51.553	
#2	00675	25.566	.00034	.31079	1.7243	.00050	52.303	
#3	00121	25.431	00159	.30950	1.7091	.00052	51.871	
Check ? High Limit Low Limit	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	
Elem	Cd2288	Co2286	Cr2677	Cu2247	Fe2611	K_7664	Li6707	
Units	ppm	ppm	ppm	ppm	ppm	ppm	ppm	
Avg	. 00053	.01711	. 01206	. 00527	7.0652	440.19	. 27197	
Stddev	.00021	.00048	.00071	.00045	.0729	2.30	.00470	
%RSD	39.368	2.8136	5.8747	8.5389	1.0317	.52193	1.7273	
#1	.00034	.01759	.01281	.00577	7.0032	437.97	.26696	
#2	.00050	.01711	.01141	.00490	7.1455	442.56	.27628	
#3	.00076	.01663	.01197	.00513	7.0470	440.04	.27268	
Check ? High Limit Low Limit	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	
Elem	Mg2790	Mn2576	Mo2020	Na5895	Ni2316	P_2149	Pb2203	
Units	ppm	ppm	ppm	ppm	ppm	ppm	ppm	
Avg	95.757	. 49225	.00013	F 472.82	.03514	. 13025	. 09624	
Stddev	.339	.00210	.00053	2.73	.00112	.00351	.00133	
%RSD	.35410	.42651	399.52	.57820	3.1876	2.6923	1.3780	
#1	95.441	.49018	00013	470.01	.03524	.12857	.09776	
#2	96.116	.49438	00021	475.47	.03398	.13428	.09557	
#3	95.715	.49218	.00074	472.98	.03621	.12790	.09538	
Check ? High Limit Low Limit	Chk Pass	Chk Pass	Chk Pass	Chk Fail 270.00 50000	Chk Pass	Chk Pass	Chk Pass	

Sample Nam Method: ICP- User: JYH Comment:		6010_200.7		, ,			Corr. Factor: 1.00000(
Elem Units Avg Stddev %RSD	Sb2068 ppm 00017 .00435 2617.8	Se1960 ppm 00036 .00635 1775.4	Si2124 ppm 6.5078 .0130 .19959	Sn1899 ppm . 00661 .00063 9.4948	Sr4077 ppm . 58538 .00374 .63882	Ti3372 ppm . 00262 .00351 133.82	TI1908 ppm 00439 .00191 43.424
#1 #2 #3	00228 .00484 00306	.00494 .00139 00740	6.5183 6.5117 6.4933	.00607 .00730 .00645	.58493 .58933 .58189	.00611 00091 .00267	00622 00242 00453
Check ? High Limit Low Limit	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass
Elem Units Avg Stddev %RSD	V_2924 ppm . 00265 .00053 19.934	Zn2062 ppm . 09251 .00059 .63592	Zr3391 ppm . 01624 .23014 1417.6				
#1 #2 #3	.00204 .00301 .00290	.09318 .09227 .09208	24950 .15130 .14691				
Check ? High Limit Low Limit	Chk Pass	Chk Pass	Chk Pass				
Int. Std. Units Avg Stddev %RSD	Y_2243 Cts/S 12551. 27. .21403	Y_3600 Cts/S 87830. 184. .20922	Y_3774 Cts/S 4265.1 52.5 1.2318				
#1 #2 #3	12521. 12563. 12571.	87623. 87972. 87895.	4323.3 4221.1 4251.0				

Sample Name Method: ICP-1 User: JYH Comment:)10_200.7W <i>A</i>	ed: 5/16/2010 ATER_3YLIN Stom ID2:		Type: Unk Mode: CONO ID3:	C Corr. F	Factor: 1.000000
Elem	Ag3280	Al3082	As1890	B_2496	Ba4554	Be3131	Ca4226
Units	ppm	ppm	ppm	ppm	ppm	ppm	ppm
Avg	00395	.01803	.00096	.11141	.03052	.00008	209.14
Stddev	.00159	.00403	.00416	.00221	.00036	.00003	1.32
%RSD	40.187	22.373	435.16	1.9808	1.1807	31.073	.63056
#1	00363	.01935	00370	.11124	.03094	.00008	208.09
#2	00568	.01350	.00226	.11370	.03027	.00011	210.62
#3	00255	.02124	.00431	.10930	.03036	.00006	208.71
Check ? High Limit Low Limit	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass
Elem	Cd2288	Co2286	Cr2677	Cu2247	Fe2611	K_7664	Li6707
Units	ppm	ppm	ppm	ppm	ppm	ppm	ppm
Avg	.00065	.00074	. 00291	.00087	.09770	3.3260	. 09542
Stddev	.00034	.00036	.00080	.00157	.02052	.0652	.00449
%RSD	52.360	48.532	27.384	181.88	21.006	1.9599	4.7003
#1	.00104	.00033	.00346	00053	.10088	3.3877	.09842
#2	.00046	.00089	.00200	.00257	.11645	3.2578	.09758
#3	.00044	.00100	.00328	.00056	.07578	3.3325	.09027
Check ? High Limit Low Limit	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass
Elem	Mg2790	Mn2576	Mo2020	Na5895	Ni2316	P_2149	Pb2203
Units	ppm	ppm	ppm	ppm	ppm	ppm	ppm
Avg	85.684	.01983	00015	F 380.88	00087	. 06727	00074
Stddev	.875	.00122	.00078	1.88	.00017	.00168	.00405
%RSD	1.0214	6.1607	535.83	.49369	19.339	2.5034	544.67
#1	84.749	.02006	00003	379.63	00104	.06555	.00184
#2	86.484	.01851	00098	383.05	00070	.06891	.00135
#3	85.821	.02092	.00057	379.97	00087	.06734	00542
Check ? High Limit Low Limit	Chk Pass	Chk Pass	Chk Pass	Chk Fail 270.00 50000	Chk Pass	Chk Pass	Chk Pass

Sample Name: L1605057102 Acquired: 5/16/2016 18:06:0 Method: ICP-THERMO3_6010_200.7WATER_3YLINES(v873) User: JYH Custom ID1: Custom ID2: Custom ID2: Custom ID2: Custom ID2: Custom ID2: Custom ID2: Custom ID3: Custom ID3: Custom ID3: Custom ID4: C					Type: Unk Mode: CONO ID3:	C Corr. F	Factor: 1.00000(
Elem Units Avg Stddev %RSD	Sb2068 ppm . 00080 .00377 471.57	Se1960 ppm .00637 .00578 90.865	Si2124 ppm 16.070 .009 .05341	Sn1899 ppm 00090 .00042 46.947	Sr4077 ppm 2.4571 .0176 .71670	Ti3372 ppm 02876 .00351 12.199	TI1908 ppm 00362 .00468 129.32
#1 #2 #3	00235 .00497 00022	.00234 .01299 .00376	16.071 16.061 16.078	00065 00067 00139	2.4440 2.4771 2.4502	02509 02909 03208	00227 00883 .00024
Check ? High Limit Low Limit	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass
Elem Units Avg Stddev %RSD	V_2924 ppm . 00098 .00087 88.950	Zn2062 ppm . 00457 .00013 2.8590	Zr3391 ppm F09948 .22979 230.99				
#1 #2 #3	00000 .00165 .00129	.00458 .00444 .00470	03004 .08758 35598				
Check ? High Limit Low Limit	Chk Pass	Chk Pass	Chk Fail 36.000 04000				
Int. Std. Units Avg Stddev %RSD	Y_2243 Cts/S 12402. 36. .29147	Y_3600 Cts/S 87876. 233. .26547	Y_3774 Cts/S 4257.8 28.1 .65984				
#1 #2 #3	12385. 12443. 12377.	87975. 87610. 88044.	4280.7 4226.5 4266.3				

•										
Elem	Ag3280	Al3082	As1890	B_2496	Ba4554	Be3131	Ca4226	Cd2288		
Units	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm		
Avg	00368	. 00174	00124	.03015	. 02450	.00018	71.420	. 00095		
Stddev	.00099	.00433	.00193	.00124	.00067	.00005	.340	.00011		
%RSD	26.839	248.73	155.15	4.1227	2.7481	26.692	.47659	11.331		
#1	00481	.00609	.00046	.03084	.02428	.00024	71.050	.00088		
#2	00296	.00170	00085	.02871	.02526	.00014	71.491	.00089		
#3	00328	00257	00334	.03088	.02397	.00016	71.720	.00107		
Check ? High Limit Low Limit	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass		
Elem	Co2286	Cr2677	Cu2247	Fe2611	K_7664	Li6707	Mg2790	Mn2576		
Units	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm		
Avg	.00138	. 00099	.00026	. 04501	1.6577	. 07133	35.293	. 09303		
Stddev	.00039	.00058	.00098	.02231	.1036	.00046	.047	.00243		
%RSD	28.583	59.216	379.26	49.567	6.2491	.64048	.13328	2.6128		
#1	.00123	.00080	.00139	.05673	1.5455	.07138	35.308	.09515		
#2	.00182	.00164	00032	.01928	1.6780	.07084	35.330	.09038		
#3	.00108	.00052	00030	.05901	1.7497	.07175	35.240	.09357		
Check ? High Limit Low Limit	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass		
Elem	Mo2020	Na5895	Ni2316	P_2149	Pb2203	Sb2068	Se1960	Si2124		
Units	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm		
Avg	.00019	201.44	00021	. 05713	. 00102	00245	00036	18.423		
Stddev	.00037	.74	.00079	.00209	.00174	.00065	.00672	.039		
%RSD	193.15	.36518	382.75	3.6660	169.58	26.708	1891.2	.21279		
#1	00024	200.94	00107	.05880	.00183	00198	.00521	18.444		
#2	.00042	201.10	00005	.05478	00097	00320	00782	18.378		
#3	.00039	202.28	.00050	.05780	.00221	00217	.00155	18.448		
Check ? High Limit Low Limit	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass		

Sample Nar Method: ICF User: JYH Comment:		3_6010_200	.cquired: 5/1 .7WATER_ Custom ID	3YLINES(v8		ype: Unk ode: CONC :	Corr. Fa	ctor: 1.00000(
Elem Units Avg Stddev %RSD	Sn1899 ppm 00151 .00050 33.253	Sr4077 ppm . 91753 .00240 .26127	Ti3372 ppm 01087 .00797 73.319	TI1908 ppm 00234 .00244 104.23	V_2924 ppm . 00113 .00097 85.835	Zn2062 ppm . 00405 .00021 5.1660	Zr3391 ppm . 13764 .30877 224.33	
#1 #2 #3	00175 00184 00093	.91564 .91672 .92023	01068 00299 01892	00286 .00032 00447	.00126 .00010 .00204	.00385 .00427 .00403	00859 .49236 07085	
Check ? High Limit Low Limit	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	
Int. Std. Units Avg Stddev %RSD	Y_2243 Cts/S 12854. 47. .36731	Y_3600 Cts/S 91394. 341. .37335	Y_3774 Cts/S 4276.6 44.9 1.0502					
#1 #2 #3	12802. 12894. 12866.	91485. 91016. 91679.	4309.5 4295.0 4225.5					

Sample Name: L1605057106 Acquired: 5/16/2016 18:13:54 Type: Unk Method: ICP-THERMO3_6010_200.7WATER_3YLINES(v873) Mode: CONC User: JYH Custom ID1: Custom ID2: Custom ID3: Comment:								
Elem	Ag3280	Al3082	As1890	B_2496	Ba4554	Be3131	Ca4226	Cd2288
Units	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm
Avg	00254	. 03463	00249	. 02361	. 16929	.00007	133.59	. 00084
Stddev	.00210	.00601	.00187	.00149	.00117	.00004	1.16	.00009
%RSD	82.869	17.344	74.824	6.3078	.68849	56.756	.86641	10.378
#1	00051	.02948	00465	.02526	.16884	.00003	132.72	.00084
#2	00471	.04123	00146	.02319	.17061	.00008	134.90	.00074
#3	00240	.03317	00138	.02238	.16841	.00010	133.14	.00092
Check ? High Limit Low Limit	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass
Elem	Co2286	Cr2677	Cu2247	Fe2611	K_7664	Li6707	Mg2790	Mn2576
Units	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm
Avg	.00034	. 00420	.00119	.08783	2.0544	. 04167	13.589	. 04609
Stddev	.00024	.00050	.00098	.02626	.0627	.00216	.108	.00160
%RSD	70.690	11.906	82.870	29.897	3.0507	5.1866	.79360	3.4683
#1	.00045	.00426	.00026	.09739	2.0206	.03991	13.591	.04784
#2	.00051	.00367	.00222	.05813	2.1267	.04103	13.480	.04570
#3	.00007	.00466	.00108	.10797	2.0159	.04409	13.696	.04472
Check ? High Limit Low Limit	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass
Elem	Mo2020	Na5895	Ni2316	P_2149	Pb2203	Sb2068	Se1960	Si2124
Units	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm
Avg	. 00456	102.33	.00103	. 02300	00061	. 00023	00439	10.227
Stddev	.00080	.66	.00144	.00654	.00345	.00391	.00783	.021
%RSD	17.426	.64011	139.03	28.446	569.87	1702.0	178.53	.20753
#1	.00546	102.04	.00150	.01882	.00269	00347	00290	10.244
#2	.00394	103.08	00058	.01963	00032	.00431	.00259	10.234
#3	.00428	101.87	.00218	.03053	00419	00015	01285	10.203
Check ? High Limit Low Limit	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass

Sample Nar Method: ICF User: JYH Comment:		3_6010_200	cquired: 5/1 .7WATER_: Custom IE	3YLINES(v8		ype: Unk ode: CONC :	Corr. Fa	ctor: 1.00000(
Elem Units Avg Stddev %RSD	Sn1899 ppm 00144 .00063 43.838	Sr4077 ppm 2.5319 .0171 .67440	Ti3372 ppm 02398 .00182 7.5960	TI1908 ppm 00354 .00545 154.05	V_2924 ppm . 00276 .00036 12.878	Zn2062 ppm . 00716 .00022 3.1085	Zr3391 ppm . 37325 .17842 47.802	
#1 #2 #3	00103 00113 00217	2.5217 2.5517 2.5224	02563 02430 02202	.00272 00724 00610	.00236 .00305 .00287	.00742 .00706 .00701	.42635 .51909 .17430	
Check ? High Limit Low Limit	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	
Int. Std. Units Avg Stddev %RSD	Y_2243 Cts/S 12840. 13. .09900	Y_3600 Cts/S 91833. 424. .46135	Y_3774 Cts/S 4291.3 54.2 1.2639					
#1 #2 #3	12834. 12855. 12832.	91706. 92306. 91488.	4344.1 4235.7 4294.2					

Sample Name Method: ICP-1 User: JYH Comment:)10_200.7W	6 18:17:51 ES(v873) Custom	Type: Unk Mode: CONO ID3:	C Corr. F	Factor: 1.00000(
Elem	Ag3280	Al3082	As1890	B_2496	Ba4554	Be3131	Ca4226
Units	ppm	ppm	ppm	ppm	ppm	ppm	ppm
Avg	00325	.00100	00251	. 04747	.02978	.00009	263.14
Stddev	.00202	.00427	.00269	.00195	.00080	.00002	.29
%RSD	62.220	426.35	107.02	4.1115	2.6796	25.929	.11002
#1	00552	00081	00002	.04720	.02959	.00009	263.46
#2	00261	.00588	00536	.04566	.03065	.00011	262.88
#3	00162	00206	00216	.04954	.02909	.00006	263.09
Check ? High Limit Low Limit	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass
Elem	Cd2288	Co2286	Cr2677	Cu2247	Fe2611	K_7664	Li6707
Units	ppm	ppm	ppm	ppm	ppm	ppm	ppm
Avg	. 00162	.00144	. 00347	.00028	. 06304	2.5145	. 09844
Stddev	.00009	.00061	.00021	.00064	.02854	.0532	.00329
%RSD	5.5766	42.250	6.1782	231.32	45.276	2.1168	3.3404
#1	.00163	.00076	.00322	.00077	.08697	2.5441	.10047
#2	.00152	.00164	.00354	00044	.03145	2.4531	.09465
#3	.00170	.00193	.00363	.00050	.07069	2.5465	.10020
Check ? High Limit Low Limit	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass
Elem	Mg2790	Mn2576	Mo2020	Na5895	Ni2316	P_2149	Pb2203
Units	ppm	ppm	ppm	ppm	ppm	ppm	ppm
Avg	120.86	. 06036	00019	F 292.36	. 00601	. 05300	.00002
Stddev	.10	.00277	.00017	.64	.00054	.00146	.00317
%RSD	.07924	4.5961	94.094	.21909	8.9248	2.7612	17288.
#1	120.78	.06135	00001	292.85	.00567	.05321	.00358
#2	120.96	.06250	00036	291.64	.00663	.05144	00249
#3	120.83	.05723	00019	292.61	.00573	.05434	00103
Check ? High Limit Low Limit	Chk Pass	Chk Pass	Chk Pass	Chk Fail 270.00 50000	Chk Pass	Chk Pass	Chk Pass

Sample Name: L1605057108 Acquired: 5/16/2016 18 Method: ICP-THERMO3_6010_200.7WATER_3YLINES(User: JYH Custom ID1: Custom ID2: Comment:					Type: Unk Mode: CON ID3:	C Corr. F	Factor: 1.00000(
Elem Units Avg Stddev %RSD	Sb2068 ppm 00120 .00297 246.77	Se1960 ppm 00193 .01615 838.39	Si2124 ppm 19.461 .028 .14357	Sn1899 ppm 00069 .00052 75.422	Sr4077 ppm 2.8103 .0049 .17447	Ti3372 ppm F04154 .00687 16.537	TI1908 ppm 00297 .00340 114.57
#1 #2 #3	.00081 .00019 00461	01347 .01653 00884	19.433 19.462 19.489	00121 00017 00069	2.8107 2.8053 2.8151	03587 04918 03957	00686 00153 00052
Check ? High Limit Low Limit	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Fail 36.000 03000	Chk Pass
Elem Units Avg Stddev %RSD	V_2924 ppm 00042 .00018 42.109	Zn2062 ppm .00483 .00009 1.9553	Zr3391 ppm .08197 .21936 267.62				
#1 #2 #3	00027 00038 00062	.00475 .00481 .00494	.30852 12942 .06680				
Check ? High Limit Low Limit	Chk Pass	Chk Pass	Chk Pass				
Int. Std. Units Avg Stddev %RSD	Y_2243 Cts/S 12340. 37. .30102	Y_3600 Cts/S 87762. 384. .43760	Y_3774 Cts/S 4205.2 48.7 1.1590				
#1 #2 #3	12377. 12342. 12303.	88167. 87403. 87716.	4163.3 4193.6 4258.7				

Sample Name Method: ICP-T User: JYH Comment:)10_200.7W <i>A</i>	red: 5/16/2010 ATER_3YLINI stom ID2:		Type: Unk Mode: CONO ID3:	C Corr. F	Factor: 1.00000(
Elem	Ag3280	Al3082	As1890	B_2496	Ba4554	Be3131	Ca4226
Units	ppm	ppm	ppm	ppm	ppm	ppm	ppm
Avg	00313	00147	00029	. 01556	. 04803	.00010	70.561
Stddev	.00078	.00291	.00317	.00098	.00018	.00003	.621
%RSD	25.022	197.58	1085.0	6.2699	.37284	27.731	.88033
#1	00403	.00185	00158	.01612	.04820	.00011	70.514
#2	00258	00354	.00332	.01443	.04784	.00007	71.204
#3	00279	00273	00261	.01612	.04805	.00011	69.965
Check ? High Limit Low Limit	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass
Elem	Cd2288	Co2286	Cr2677	Cu2247	Fe2611	K_7664	Li6707
Units	ppm	ppm	ppm	ppm	ppm	ppm	ppm
Avg	.00065	00004	.00313	.00085	. 02943	1.4632	. 03594
Stddev	.00023	.00004	.00021	.00118	.02877	.1204	.00230
%RSD	35.700	93.229	6.5668	139.61	97.739	8.2316	6.4085
#1	.00038	00002	.00317	.00093	.05340	1.5485	.03390
#2	.00078	00002	.00291	.00198	00247	1.5156	.03547
#3	.00079	00008	.00332	00037	.03736	1.3254	.03844
Check ? High Limit Low Limit	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass
Elem	Mg2790	Mn2576	Mo2020	Na5895	Ni2316	P_2149	Pb2203
Units	ppm	ppm	ppm	ppm	ppm	ppm	ppm
Avg	28.603	. 00863	. 00032	176.11	00037	. 17570	F00506
Stddev	.220	.00134	.00049	2.00	.00081	.00188	.00307
%RSD	.76794	15.557	153.75	1.1339	216.18	1.0711	60.661
#1	28.357	.00843	.00011	176.95	.00041	.17398	00278
#2	28.779	.01006	00003	177.56	00032	.17771	00384
#3	28.674	.00740	.00089	173.83	00120	.17542	00855
Check ? High Limit Low Limit	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Fail 225.00 00500

Sample Name: L1605057110 Acquired: 5/16/2016 18:2 Method: ICP-THERMO3_6010_200.7WATER_3YLINES(v8) User: JYH Custom ID1: Custom ID2: Comment:					Type: Unk Mode: CONO ID3:	C Corr. F	Factor: 1.00000(
Elem Units Avg Stddev %RSD	Sb2068 ppm . 00043 .00208 480.56	Se1960 ppm 00107 .00071 66.381	Si2124 ppm 16.120 .022 .13461	Sn1899 ppm 00164 .00103 63.178	Sr4077 ppm . 65554 .00551 .84036	Ti3372 ppm 01225 .00148 12.052	TI1908 ppm 00245 .00389 158.92
#1 #2 #3	.00245 00171 .00057	00186 00082 00051	16.145 16.108 16.107	00155 00065 00271	.65583 .66091 .64990	01269 01060 01345	00209 00650 .00125
Check ? High Limit Low Limit	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass
Elem Units Avg Stddev %RSD	V_2924 ppm . 00053 .00023 44.045	Zn2062 ppm . 00260 .00023 8.7348	Zr3391 ppm . 02210 .50754 2296.9				
#1 #2 #3	.00077 .00052 .00030	.00248 .00246 .00286	16105 .59579 36845				
Check ? High Limit Low Limit	Chk Pass	Chk Pass	Chk Pass				
Int. Std. Units Avg Stddev %RSD	Y_2243 Cts/S 12768. 26. .20564	Y_3600 Cts/S 90786. 401. .44184	Y_3774 Cts/S 4224.2 63.3 1.4976				
#1 #2 #3	12756. 12798. 12751.	90336. 91106. 90917.	4183.1 4192.5 4297.1				

Sample Name Method: ICP-T User: JYH Comment:)10_200.7W <i>A</i>	ed: 5/16/2010 ATER_3YLIN stom ID2:		Type: Unk Mode: CONO ID3:	C Corr. F	Factor: 1.00000(
Elem	Ag3280	Al3082	As1890	B_2496	Ba4554	Be3131	Ca4226
Units	ppm	ppm	ppm	ppm	ppm	ppm	ppm
Avg	00261	. 00611	00062	. 01756	. 29989	.00013	F 306.55
Stddev	.00108	.00433	.00289	.00067	.00211	.00002	1.20
%RSD	41.143	70.856	467.36	3.8185	.70379	18.948	.39061
#1	00261	.00892	00304	.01722	.29794	.00014	305.26
#2	00369	.00830	.00258	.01833	.29959	.00010	306.79
#3	00154	.00112	00140	.01712	.30213	.00015	307.61
Check ? High Limit Low Limit	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Fail 270.00 10000
Elem	Cd2288	Co2286	Cr2677	Cu2247	Fe2611	K_7664	Li6707
Units	ppm	ppm	ppm	ppm	ppm	ppm	ppm
Avg	. 00135	.00046	. 00433	.00259	. 12555	4.2452	. 11213
Stddev	.00026	.00006	.00087	.00100	.02128	.0405	.00317
%RSD	19.122	12.202	20.047	38.545	16.947	.95472	2.8282
#1	.00125	.00042	.00527	.00216	.13651	4.2768	.11535
#2	.00116	.00052	.00356	.00373	.13911	4.2593	.10902
#3	.00164	.00043	.00417	.00188	.10103	4.1995	.11201
Check ? High Limit Low Limit	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass
Elem	Mg2790	Mn2576	Mo2020	Na5895	Ni2316	P_2149	Pb2203
Units	ppm	ppm	ppm	ppm	ppm	ppm	ppm
Avg	129.40	.06825	. 00009	F 296.42	. 00794	. 06814	00021
Stddev	.48	.00319	.00009	.66	.00082	.00208	.00403
%RSD	.36710	4.6805	103.60	.22198	10.272	3.0464	1949.0
#1	128.86	.07059	.00019	295.99	.00741	.07027	00002
#2	129.61	.06461	.00002	296.08	.00754	.06612	.00373
#3	129.73	.06955	.00005	297.18	.00888	.06804	00433
Check ? High Limit Low Limit	Chk Pass	Chk Pass	Chk Pass	Chk Fail 270.00 50000	Chk Pass	Chk Pass	Chk Pass

Sample Name: L1605057112 Acquired: 5/16/2016 18:25:43 Method: ICP-THERMO3_6010_200.7WATER_3YLINES(v873) User: JYH Custom ID1: Custom ID2: Custom Comment:					Type: Unk Mode: CON ID3:	C Corr. F	Factor: 1.00000(
Elem Units Avg Stddev %RSD	Sb2068 ppm 00737 .00100 13.563	Se1960 ppm 00570 .00384 67.423	Si2124 ppm 19.032 .025 .13116	Sn1899 ppm 00172 .00085 49.155	Sr4077 ppm 3.3960 .0059 .17284	Ti3372 ppm F04752 .00314 6.6171	TI1908 ppm 00442 .00266 60.254
#1 #2 #3	00817 00769 00625	00156 00639 00915	19.029 19.059 19.009	00118 00269 00128	3.3897 3.3970 3.4014	04503 05105 04649	00577 00614 00135
Check ? High Limit Low Limit	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Fail 36.000 03000	Chk Pass
Elem Units Avg Stddev %RSD	V_2924 ppm . 00156 .00156 99.491	Zn2062 ppm .00369 .00013 3.4893	Zr3391 ppm . 27367 .10919 39.899				
#1 #2 #3	.00165 00003 .00308	.00372 .00380 .00355	.17570 .25393 .39139				
Check ? High Limit Low Limit	Chk Pass	Chk Pass	Chk Pass				
Int. Std. Units Avg Stddev %RSD	Y_2243 Cts/S 12166. 29. .24049	Y_3600 Cts/S 87063. 458. .52627	Y_3774 Cts/S 4158.4 47.5 1.1422				
#1 #2 #3	12140. 12160. 12198.	87570. 86678. 86942.	4200.8 4167.4 4107.1				

Sample Nam Method: ICP User: JYH Comment:		_		LINES(v873	pe: QC) Mode: tom ID3:	CONC (Corr. Factor:	1.00000(
Elem	Ag3280	Al3082	As1890	B_2496	Ba4554	Be3131	Ca4226	
Units	ppm	ppm	ppm	ppm	ppm	ppm	ppm	
Avg	.38803	9.7592	.38825	. 48562	. 95107	. 04792	9.3698	
Stddev	.00102	.0526	.00219	.00070	.00946	.00038	.1090	
%RSD	.26327	.53867	.56478	.14517	.99465	.79018	1.1631	
#1	.38900	9.7075	.38700	.48642	.94068	.04749	9.2506	
#2	.38696	9.7574	.38696	.48511	.95335	.04806	9.3946	
#3	.38814	9.8126	.39078	.48531	.95919	.04820	9.4643	
Check ? Value Range	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	
Elem	Cd2288	Co2286	Cr2677	Cu2247	Fe2611	K_7664	Li6707	
Units	ppm	ppm	ppm	ppm	ppm	ppm	ppm	
Avg	. 04767	. 19923	. 50644	. 49902	3.8960	47.951	. 96338	
Stddev	.00017	.00060	.00410	.00177	.0448	.427	.01117	
%RSD	.35943	.29958	.80905	.35564	1.1490	.89119	1.1595	
#1	.04784	.19970	.50254	.49758	3.8588	47.468	.95048	
#2	.04768	.19856	.50606	.50101	3.8836	48.102	.96969	
#3	.04750	.19943	.51071	.49848	3.9457	48.282	.96996	
Check ? Value Range	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	
Elem	Mg2790	Mn2576	Mo2020	Na5895	Ni2316	P_2149	Pb2203	
Units	ppm	ppm	ppm	ppm	ppm	ppm	ppm	
Avg	9.7691	. 48015	. 96001	48.432	. 50786	9.8213	. 51132	
Stddev	.1399	.00407	.00496	.462	.00134	.0120	.00044	
%RSD	1.4324	.84829	.51679	.95467	.26440	.12170	.08619	
#1	9.6098	.47625	.96560	47.947	.50773	9.8235	.51158	
#2	9.8250	.47984	.95830	48.482	.50926	9.8085	.51157	
#3	9.8724	.48438	.95613	48.867	.50658	9.8321	.51081	
Check ? Value Range	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	

Sample Nam Method: ICP User: JYH Comment:		6010_200.7	16/2016 18:2 WATER_3Y Custom ID2:	LINES(v873	pe: QC) Mode: tom ID3:	CONC (Corr. Factor: [·]	1.000000
Elem Units Avg Stddev %RSD	Sb2068 ppm 1.1744 .0014 .11826	Se1960 ppm . 36527 .00334 .91424	Si2124 ppm 4.9109 .0085 .17314	Sn1899 ppm . 99290 .00177 .17845	Sr4077 ppm . 94734 .00954 1.0074	Ti3372 ppm . 95027 .00623 .65577	TI1908 ppm . 49416 .00196 .39702	
#1 #2 #3	1.1735 1.1737 1.1760	.36645 .36785 .36150	4.9119 4.9019 4.9188	.99297 .99109 .99463	.93714 .94881 .95606	.94317 .95483 .95282	.49484 .49195 .49570	
Check ? Value Range	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	
Elem Units Avg Stddev %RSD	V_2924 ppm . 98843 .00599 .60640	Zn2062 ppm 1.0103 .0018 .17864	Zr3391 ppm F . 75625 .46531 61.529					
#1 #2 #3	.98359 .98657 .99514	1.0114 1.0082 1.0113	1.1831 .26024 .82538					
Check ? Value Range	Chk Pass	Chk Pass	Chk Fail 1.0000 -10.000%					
Int. Std. Units Avg Stddev %RSD	Y_2243 Cts/S 13566. 48. .35214	Y_3600 Cts/S 96398. 1005. 1.0423	Y_3774 Cts/S 4395.7 86.9 1.9765					
#1 #2 #3	13519. 13614. 13565.	96908. 97046. 95241.	4496.0 4344.0 4347.0					

Sample Name: CCB Acquired: 5/16/2016 18:33:17 Type: Blank Method: ICP-THERMO3_6010_200.7WATER_3YLINES(v873) Mode: CONC Corr. Factor: 1.000000 User: JYH Custom ID1: Custom ID2: Custom ID3: Comment:									
Elem	Ag3280	Al3082	As1890	B_2496	Ba4554	Be3131	Ca4226		
Units	ppm	ppm	ppm	ppm	ppm	ppm	ppm		
Avg	00292	00934	00031	00022	.00142	. 00009	03137		
Stddev	.00182	.00638	.00159	.00259	.00106	.00003	.02053		
%RSD	62.431	68.344	517.48	1202.0	74.656	29.347	65.451		
#1	00320	00237	.00085	.00277	.00264	.00008	02522		
#2	00458	01074	.00035	00152	.00089	.00007	01461		
#3	00097	01490	00212	00190	.00073	.00012	05427		
Check ? High Limit Low Limit	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass		
Elem	Cd2288	Co2286	Cr2677	Cu2247	Fe2611	K_7664	Li6707		
Units	ppm	ppm	ppm	ppm	ppm	ppm	ppm		
Avg	. 00007	00014	.00009	.00048	.01610	. 23760	. 00362		
Stddev	.00031	.00017	.00104	.00127	.03331	.07725	.00106		
%RSD	427.71	114.09	1098.4	266.23	206.91	32.511	29.377		
#1	00012	00034	00024	00085	.00061	.25536	.00248		
#2	.00043	00006	.00126	.00169	.05433	.30441	.00379		
#3	00010	00004	00074	.00060	00665	.15302	.00459		
Check ? High Limit Low Limit	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass		
Elem	Mg2790	Mn2576	Mo2020	Na5895	Ni2316	P_2149	Pb2203		
Units	ppm	ppm	ppm	ppm	ppm	ppm	ppm		
Avg	. 03514	00028	. 00416	. 00334	00075	00178	00261		
Stddev	.04981	.00206	.00041	.01054	.00070	.00787	.00064		
%RSD	141.75	747.19	9.8045	315.75	93.728	441.51	24.529		
#1	.09260	.00055	.00371	.01414	00155	.00726	00267		
#2	.00864	.00124	.00452	00692	00030	00557	00195		
#3	.00418	00263	.00423	.00280	00039	00704	00322		
Check ? High Limit Low Limit	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass		

Sample Name: CCB Acquired: 5/16/2016 18:33:17 Type: Blank Method: ICP-THERMO3_6010_200.7WATER_3YLINES(v873) Mode: CONC Corr. Factor: 1.000000 User: JYH Custom ID1: Custom ID2: Custom ID3: Comment:								
Elem Units Avg Stddev %RSD	Sb2068 ppm . 00280 .00360 128.50	Se1960 ppm 00239 .00390 162.94	Si2124 ppm 00256 .00208 81.230	Sn1899 ppm 00003 .00061 2083.1	Sr4077 ppm . 00020 .00030 149.07	Ti3372 ppm 00129 .00464 359.19	TI1908 ppm 00313 .00219 69.921	
#1 #2 #3	.00654 00065 .00252	00686 .00026 00057	00137 00134 00495	.00062 00013 00058	.00022 .00049 00011	.00383 00249 00522	00350 00511 00078	
Check ? High Limit Low Limit	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	
Elem Units Avg Stddev %RSD	V_2924 ppm . 00134 .00055 40.900	Zn2062 ppm .00022 .00017 78.318	Zr3391 ppm F21016 .10129 48.197					
#1 #2 #3	.00131 .00191 .00081	.00028 .00034 .00002	31665 19879 11503					
Check ? High Limit Low Limit	Chk Pass	Chk Pass	Chk Fail .04000 04000					
Int. Std. Units Avg Stddev %RSD	Y_2243 Cts/S 13481. 69. .51110	Y_3600 Cts/S 96195. 317. .32928	Y_3774 Cts/S 4291.4 25.0 .58348					
#1 #2 #3	13532. 13403. 13509.	96250. 95854. 96480.	4310.6 4300.5 4263.1					

•										
Elem	Ag3280	Al3082	As1890	B_2496	Ba4554	Be3131	Ca4226	Cd2288		
Units	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm		
Avg	00366	00365	.00414	. 04489	. 49349	.00013	37.233	. 00018		
Stddev	.00280	.00937	.00299	.00070	.00342	.00004	.217	.00009		
%RSD	76.516	256.66	72.113	1.5626	.69393	33.162	.58162	51.000		
#1	00044	00989	.00672	.04481	.48955	.00011	37.018	.00008		
#2	00504	00818	.00483	.04423	.49513	.00009	37.229	.00026		
#3	00550	.00712	.00087	.04562	.49578	.00017	37.451	.00019		
Check ? High Limit Low Limit	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass		
Elem	Co2286	Cr2677	Cu2247	Fe2611	K_7664	Li6707	Mg2790	Mn2576		
Units	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm		
Avg	00003	. 00236	. 00060	1.9053	1.2107	. 01563	8.7138	. 55230		
Stddev	.00027	.00150	.00116	.0284	.1003	.00768	.1238	.00258		
%RSD	813.80	63.727	193.10	1.4928	8.2814	49.125	1.4210	.46685		
#1	.00027	.00376	.00194	1.9351	1.1621	.02348	8.8461	.55054		
#2	00026	.00077	00007	1.9022	1.1440	.00814	8.6946	.55109		
#3	00010	.00256	00007	1.8785	1.3260	.01527	8.6008	.55525		
Check ? High Limit Low Limit	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass		
Elem	Mo2020	Na5895	Ni2316	P_2149	Pb2203	Sb2068	Se1960	Si2124		
Units	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm		
Avg	. 00165	19.802	00051	. 15513	00197	. 00185	.00310	5.4537		
Stddev	.00040	.081	.00064	.00595	.00042	.00108	.00992	.0183		
%RSD	24.270	.41126	125.63	3.8382	21.296	58.456	320.19	.33487		
#1	.00174	19.722	00064	.16192	00149	.00268	.00127	5.4658		
#2	.00121	19.798	.00019	.15076	00227	.00225	00578	5.4626		
#3	.00199	19.885	00107	.15273	00214	.00063	.01381	5.4327		
Check ? High Limit Low Limit	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass		

Sample Nar Method: ICF User: JYH Comment:		3_6010_200	.cquired: 5/1 .7WATER_ Custom IE	3YLINES(v8		ype: Unk ode: CONC :	Corr. Fa	ctor: 1.00000(
Elem Units Avg Stddev %RSD	Sn1899 ppm 00059 .00071 119.54	Sr4077 ppm . 48997 .00127 .25922	Ti3372 ppm 00606 .00601 99.168	TI1908 ppm 00053 .00203 382.33	V_2924 ppm .00022 .00052 240.22	Zn2062 ppm . 00337 .00007 2.2246	Zr3391 ppm . 25302 .18231 72.054	
#1 #2 #3	00140 00030 00007	.48957 .48895 .49139	01016 .00084 00887	00003 00276 .00120	00002 00015 .00081	.00331 .00334 .00345	.04515 .32817 .38575	
Check ? High Limit Low Limit	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	
Int. Std. Units Avg Stddev %RSD	Y_2243 Cts/S 13057. 34. .26344	Y_3600 Cts/S 93615. 220. .23487	Y_3774 Cts/S 4260.7 34.4 .80711					
#1 #2 #3	13044. 13095. 13030.	93449. 93865. 93533.	4228.0 4296.6 4257.5					

•										
Elem	Ag3280	Al3082	As1890	B_2496	Ba4554	Be3131	Ca4226	Cd2288		
Units	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm		
Avg	00338	00691	00155	. 05073	. 80054	.00011	53.096	.00058		
Stddev	.00215	.00033	.00033	.00125	.00184	.00007	.101	.00008		
%RSD	63.442	4.7529	21.268	2.4575	.23043	59.725	.19023	13.508		
#1	00124	00664	00119	.04954	.79932	.00019	52.980	.00063		
#2	00338	00728	00163	.05062	.80266	.00008	53.162	.00049		
#3	00553	00682	00183	.05202	.79965	.00007	53.146	.00061		
Check ? High Limit Low Limit	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass		
Elem	Co2286	Cr2677	Cu2247	Fe2611	K_7664	Li6707	Mg2790	Mn2576		
Units	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm		
Avg	00007	.00155	00015	.01352	2.3252	. 01388	9.8216	. 30122		
Stddev	.00027	.00092	.00122	.00059	.0853	.00206	.1165	.00338		
%RSD	393.64	58.953	808.61	4.3686	3.6674	14.869	1.1858	1.1210		
#1	00021	.00261	00081	.01418	2.3966	.01365	9.8976	.30383		
#2	00024	.00097	00090	.01333	2.2308	.01605	9.6875	.29741		
#3	.00024	.00108	.00126	.01305	2.3483	.01195	9.8797	.30241		
Check ? High Limit Low Limit	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass		
Elem	Mo2020	Na5895	Ni2316	P_2149	Pb2203	Sb2068	Se1960	Si2124		
Units	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm		
Avg	. 00083	107.51	.00259	00656	.00048	. 00322	.00284	4.1504		
Stddev	.00029	.14	.00028	.00628	.00414	.00238	.00317	.0092		
%RSD	34.691	.12662	10.666	95.742	871.05	73.841	111.59	.22142		
#1	.00099	107.66	.00242	00083	00416	.00436	.00621	4.1598		
#2	.00050	107.47	.00291	00557	.00179	.00481	.00239	4.1500		
#3	.00102	107.40	.00245	01326	.00380	.00049	00008	4.1414		
Check ? High Limit Low Limit	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass		

Sample Nar Method: ICF User: JYH Comment:		3_6010_200	•	•		ype: Unk ode: CONC :	Corr. Fa	ctor: 1.00000(
Elem Units Avg Stddev %RSD	Sn1899 ppm 00045 .00086 191.18	Sr4077 ppm . 53291 .00117 .22035	Ti3372 ppm 00575 .00363 63.217	TI1908 ppm 00018 .00124 685.74	V_2924 ppm . 00198 .00120 60.735	Zn2062 ppm . 00280 .00014 4.9726	Zr3391 ppm . 12045 .14661 121.72	
#1 #2 #3	00085 .00054 00103	.53207 .53241 .53425	00498 00256 00971	.00109 00140 00023	.00059 .00263 .00270	.00282 .00265 .00292	.22897 .17871 04633	
Check ? High Limit Low Limit	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	
Int. Std. Units Avg Stddev %RSD	Y_2243 Cts/S 12869. 12. .09391	Y_3600 Cts/S 91743 . 241. .26288	Y_3774 Cts/S 4257.3 21.9 .51532					
#1 #2 #3	12873. 12855. 12878.	91575. 91635. 92019.	4271.7 4232.0 4268.1					

•										
Elem	Ag3280	Al3082	As1890	B_2496	Ba4554	Be3131	Ca4226			
Units	ppm	ppm	ppm	ppm	ppm	ppm	ppm			
Avg	00221	01551	00414	. 00024	.00116	.00011	. 00837			
Stddev	.00081	.00561	.00057	.00134	.00072	.00003	.02069			
%RSD	36.739	36.190	13.755	565.80	62.014	29.240	247.36			
#1	00304	02198	00473	00027	.00035	.00013	.01334			
#2	00141	01242	00411	.00175	.00141	.00007	.02612			
#3	00219	01211	00359	00077	.00173	.00012	01436			
Check ? High Limit Low Limit	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass			
Elem	Cd2288	Co2286	Cr2677	Cu2247	Fe2611	K_7664	Li6707			
Units	ppm	ppm	ppm	ppm	ppm	ppm	ppm			
Avg	. 00051	00026	. 00028	. 00008	.02566	.12798	. 00509			
Stddev	.00021	.00043	.00012	.00155	.01025	.04215	.00242			
%RSD	40.959	165.44	43.870	1930.2	39.930	32.930	47.445			
#1	.00031	00075	.00021	.00183	.02779	.15364	.00344			
#2	.00072	00005	.00021	00047	.01451	.07934	.00397			
#3	.00050	.00002	.00043	00112	.03467	.15096	.00787			
Check ? High Limit Low Limit	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass			
Elem	Mg2790	Mn2576	Mo2020	Na5895	Ni2316	P_2149	Pb2203			
Units	ppm	ppm	ppm	ppm	ppm	ppm	ppm			
Avg	. 10252	. 00005	.00009	. 01883	00028	00442	. 00025			
Stddev	.14738	.00195	.00056	.01599	.00026	.00917	.00199			
%RSD	143.76	4176.8	601.63	84.949	92.182	207.51	796.79			
#1	.04721	00218	00055	.01285	.00000	00142	.00225			
#2	.26956	.00144	.00043	.00669	00050	.00287	.00022			
#3	00920	.00088	.00040	.03695	00033	01471	00173			
Check ? High Limit Low Limit	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass			

Sample Name: L1605067403 Acquired: 5/16/2016 18:45:10 Method: ICP-THERMO3_6010_200.7WATER_3YLINES(v873) User: JYH Custom ID1: Custom ID2: Custom Comment:					Type: Unk Mode: CON0 ID3:	C Corr. F	Factor: 1.000000
Elem Units Avg Stddev %RSD	Sb2068 ppm 00004 .00191 5056.1	Se1960 ppm 00274 .00427 155.97	Si2124 ppm 01989 .00047 2.3742	Sn1899 ppm 00003 .00066 2421.9	Sr4077 ppm .00016 .00022 134.71	Ti3372 ppm .00021 .00749 3530.3	TI1908 ppm 00284 .00032 11.342
#1 #2 #3	00174 .00203 00040	.00211 00438 00595	02030 01938 02000	.00022 00077 .00047	.00004 .00003 .00041	00747 .00748 .00063	00269 00321 00263
Check ? High Limit Low Limit	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass
Elem Units Avg Stddev %RSD	V_2924 ppm .00070 .00088 126.52	Zn2062 ppm . 00260 .00028 10.586	Zr3391 ppm F28347 .23243 81.993				
#1 #2 #3	.00164 .00057 00012	.00261 .00232 .00287	27834 05366 51842				
Check ? High Limit Low Limit	Chk Pass	Chk Pass	Chk Fail 36.000 04000				
Int. Std. Units Avg Stddev %RSD	Y_2243 Cts/S 13123. 7. .05606	Y_3600 Cts/S 95228. 125. .13097	Y_3774 Cts/S 4264.0 27.2 .63787				
#1 #2 #3	13115. 13129. 13125.	95210. 95113. 95360.	4243.9 4295.0 4253.2				

•										
Elem	Ag3280	Al3082	As1890	B_2496	Ba4554	Be3131	Ca4226	Cd2288		
Units	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm		
Avg	00377	. 01186	.00074	.06071	.16878	. 00013	10.318	. 00019		
Stddev	.00164	.00118	.00264	.00142	.00088	.00004	.022	.00014		
%RSD	43.402	9.9196	358.10	2.3392	.52106	27.517	.21221	72.636		
#1	00556	.01312	.00274	.05947	.16808	.00009	10.344	.00014		
#2	00235	.01167	00225	.06040	.16977	.00015	10.306	.00035		
#3	00340	.01079	.00172	.06226	.16850	.00015	10.305	.00008		
Check ? High Limit Low Limit	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass		
Elem	Co2286	Cr2677	Cu2247	Fe2611	K_7664	Li6707	Mg2790	Mn2576		
Units	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm		
Avg	00008	. 00092	. 00138	. 04196	1.6366	. 00775	1.4062	. 00372		
Stddev	.00029	.00089	.00195	.00729	.0784	.00389	.0664	.00188		
%RSD	354.21	97.421	141.10	17.371	4.7896	50.136	4.7234	50.682		
#1	.00016	.00070	.00068	.04964	1.7234	.00548	1.4376	.00156		
#2	00041	.00015	00012	.04111	1.5708	.00553	1.4511	.00504		
#3	00000	.00190	.00359	.03514	1.6158	.01224	1.3299	.00455		
Check ? High Limit Low Limit	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass		
Elem	Mo2020	Na5895	Ni2316	P_2149	Pb2203	Sb2068	Se1960	Si2124		
Units	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm		
Avg	. 00390	118.61	.00015	.00301	00045	. 00242	00706	4.4219		
Stddev	.00030	.24	.00184	.00623	.00280	.00078	.00922	.0085		
%RSD	7.5854	.20048	1249.8	206.85	626.93	32.094	130.56	.19270		
#1	.00363	118.66	00140	00350	00015	.00307	.00355	4.4237		
#2	.00385	118.82	00034	.00361	.00219	.00156	01163	4.4293		
#3	.00422	118.35	.00218	.00892	00338	.00263	01311	4.4126		
Check ? High Limit Low Limit	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass		

Sample Nar Method: ICF User: JYH Comment:		3_6010_200	.cquired: 5/1 .7WATER_ Custom II	3YLINES(v8		ype: Unk ode: CONC :	Corr. Fa	ctor: 1.00000(
Elem Units Avg Stddev %RSD	Sn1899 ppm 00150 .00085 56.508	Sr4077 ppm . 10398 .00010 .09159	Ti3372 ppm 00328 .00288 87.732	TI1908 ppm 00347 .00397 114.37	V_2924 ppm . 00314 .00119 37.916	Zn2062 ppm .00338 .00016 4.6724	Zr3391 ppm . 12105 .50767 419.39	
#1 #2 #3	00112 00248 00091	.10397 .10408 .10389	00657 00203 00124	00241 00786 00014	.00432 .00194 .00315	.00356 .00325 .00333	.59864 .17664 41213	
Check ? High Limit Low Limit	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	
Int. Std. Units Avg Stddev %RSD	Y_2243 Cts/S 12966. 49. .37707	Y_3600 Cts/S 92377. 319. .34576	Y_3774 Cts/S 4287.3 37.9 .88483					
#1 #2 #3	12925. 12952. 13020.	92022. 92466. 92642.	4258.7 4272.9 4330.3					

Sample Name: L1605067405 Acquired: 5/16/2016 18:53:06 Type: Unk Method: ICP-THERMO3_6010_200.7WATER_3YLINES(v873) Mode: CONC Corr. Fact User: JYH Custom ID1: Custom ID2: Custom ID3: Comment:							Factor: 1.00000(
Elem	Ag3280	Al3082	As1890	B_2496	Ba4554	Be3131	Ca4226
Units	ppm	ppm	ppm	ppm	ppm	ppm	ppm
Avg	00043	. 00660	.00031	. 11436	F 48.505	00001	F 2223.7
Stddev	.00199	.01235	.00722	.00073	.134	.00008	12.2
%RSD	460.33	187.30	2312.7	.63657	.27694	1103.4	.55036
#1	00263	.01983	00572	.11389	48.376	.00008	2226.2
#2	.00008	.00460	.00831	.11520	48.496	00009	2210.4
#3	.00125	00464	00165	.11399	48.644	00001	2234.5
Check ? High Limit Low Limit	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Fail 45.000 00500	Chk Pass	Chk Fail 270.00 10000
Elem	Cd2288	Co2286	Cr2677	Cu2247	Fe2611	K_7664	Li6707
Units	ppm	ppm	ppm	ppm	ppm	ppm	ppm
Avg	. 00592	.00506	.00356	. 01210	35.663	86.778	1.1964
Stddev	.00039	.00034	.00047	.00217	.101	.383	.0032
%RSD	6.6528	6.6548	13.285	17.912	.28284	.44088	.26479
#1	.00634	.00469	.00306	.01154	35.771	87.065	1.1958
#2	.00555	.00535	.00362	.01449	35.645	86.926	1.1998
#3	.00588	.00513	.00400	.01027	35.571	86.344	1.1936
Check ? High Limit Low Limit	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass
Elem	Mg2790	Mn2576	Mo2020	Na5895	Ni2316	P_2149	Pb2203
Units	ppm	ppm	ppm	ppm	ppm	ppm	ppm
Avg	206.87	16.627	00129	F 524.87	00895	. 09222	. 00645
Stddev	.74	.118	.00055	3.06	.00116	.00854	.00656
%RSD	.35845	.70840	42.468	.58362	13.014	9.2646	101.79
#1	207.68	16.708	00081	527.58	00774	.08704	.00254
#2	206.71	16.681	00188	525.48	01006	.10208	.00277
#3	206.22	16.492	00117	521.54	00904	.08755	.01402
Check ? High Limit Low Limit	Chk Pass	Chk Pass	Chk Pass	Chk Fail 270.00 50000	Chk Pass	Chk Pass	Chk Pass

Sample Name: Method: ICP-T User: JYH Comment:)10_200.7W <i>A</i>	ed: 5/16/2016 ATER_3YLINI stom ID2:		Type: Unk Mode: CON ID3:	C Corr. F	Factor: 1.00000(
Elem Units Avg Stddev %RSD	Sb2068 ppm 01205 .00661 54.899	Se1960 ppm F04137 .00046 1.1132	Si2124 ppm 4.9039 .0602 1.2284	Sn1899 ppm 00219 .00053 24.170	Sr4077 ppm F 56.938 .700 1.2294	Ti3372 ppm F19518 .00402 2.0614	TI1908 ppm 00438 .00224 51.138
#1 #2 #3	01677 00449 01488	04188 04099 04122	4.9282 4.9483 4.8353	00225 00164 00269	56.597 56.474 57.743	19066 19838 19649	00314 00304 00696
Check ? High Limit Low Limit	Chk Pass	Chk Fail 90.000 01000	Chk Pass	Chk Pass	Chk Fail 9.0000 01000	Chk Fail 36.000 03000	Chk Pass
Elem Units Avg Stddev %RSD	V_2924 ppm . 00446 .00088 19.841	Zn2062 ppm .00365 .00015 4.2174	Zr3391 ppm F -1.2585 .4982 39.589				
#1 #2 #3	.00357 .00533 .00447	.00348 .00375 .00373	-1.3519 -1.7034 72018				
Check ? High Limit Low Limit	Chk Pass	Chk Pass	Chk Fail 36.000 04000				
Int. Std. Units Avg Stddev %RSD	Y_2243 Cts/S 10520. 31. .29874	Y_3600 Cts/S 74800. 167. .22357	Y_3774 Cts/S 3978.1 36.0 .90467				
#1 #2 #3	10503. 10557. 10502.	74697. 74993. 74710.	3952.3 4019.2 3962.7				

Sample Name Method: ICP- User: JYH Comment:		010_200.7W	Acquired: 5/16/2016 18:57:25 0_200.7WATER_3YLINES(v873) Custom ID2: Custom I			Type: Unk Mode: CONC Corr. Factor: 1.0000 ID3:		
Elem	Ag3280	Al3082	As1890	B_2496	Ba4554	Be3131	Ca4226	
Units	ppm	ppm	ppm	ppm	ppm	ppm	ppm	
Avg	F00410	00704	. 00934	. 11723	. 05917	.00013	1.5180	
Stddev	.00188	.00155	.00280	.00199	.00067	.00004	.0262	
%RSD	45.783	22.047	30.016	1.6952	1.1380	30.157	1.7264	
#1	00627	00595	.00835	.11504	.05892	.00011	1.4966	
#2	00301	00882	.01250	.11891	.05866	.00011	1.5473	
#3	00302	00636	.00716	.11775	.05993	.00018	1.5102	
Check ? High Limit Low Limit	Chk Fail 9.0000 00400	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	
Elem	Cd2288	Co2286	Cr2677	Cu2247	Fe2611	K_7664	Li6707	
Units	ppm	ppm	ppm	ppm	ppm	ppm	ppm	
Avg	. 00022	00003	. 00090	00038	.02307	1.6824	. 01461	
Stddev	.00041	.00051	.00144	.00208	.01243	.0757	.00320	
%RSD	188.69	1609.8	159.90	546.56	53.890	4.4980	21.867	
#1	.00026	.00055	.00149	.00073	.03721	1.6774	.01811	
#2	00021	00026	00074	.00091	.01383	1.6093	.01185	
#3	.00061	00039	.00196	00279	.01817	1.7604	.01387	
Check ? High Limit Low Limit	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	
Elem	Mg2790	Mn2576	Mo2020	Na5895	Ni2316	P_2149	Pb2203	
Units	ppm	ppm	ppm	ppm	ppm	ppm	ppm	
Avg	. 36940	. 00576	. 00319	143.73	. 00132	. 05271	00175	
Stddev	.17566	.00293	.00052	.41	.00040	.00859	.00283	
%RSD	47.553	50.835	16.401	.28692	30.235	16.286	161.46	
#1	.45457	.00240	.00301	143.66	.00086	.04903	00009	
#2	.48625	.00773	.00278	143.36	.00159	.06253	00502	
#3	.16739	.00715	.00378	144.17	.00150	.04659	00014	
Check ? High Limit Low Limit	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	

Sample Name Method: ICP-T User: JYH Comment:)10_200.7W <i>A</i>	0_200.7WATER_3YLINES(v873)			Type: Unk Mode: CONC Corr. Factor: 1.000000 ID3:		
Elem Units Avg Stddev %RSD	Sb2068 ppm 00016 .00347 2154.1	Se1960 ppm 00302 .00276 91.324	Si2124 ppm 2.7982 .0042 .14820	Sn1899 ppm . 13242 .00099 .75037	Sr4077 ppm . 07971 .00069 .86394	Ti3372 ppm 00031 .00594 1887.9	TI1908 ppm 00120 .00341 283.47	
#1 #2 #3	.00069 .00280 00397	00617 00187 00103	2.7950 2.8029 2.7968	.13130 .13319 .13277	.07907 .07961 .08044	.00179 00703 .00429	.00244 00431 00174	
Check ? High Limit Low Limit	Chk Pass hk Pass							
Elem Units Avg Stddev %RSD	V_2924 ppm . 00140 .00066 47.346	Zn2062 ppm . 00250 .00018 7.3931	Zr3391 ppm . 00568 .34852 6132.8					
#1 #2 #3	.00070 .00202 .00149	.00234 .00246 .00270	38175 .29369 .10511					
Check ? High Limit Low Limit	Chk Pass	Chk Pass	Chk Pass					
Int. Std. Units Avg Stddev %RSD	Y_2243 Cts/S 12959. 23. .17614	Y_3600 Cts/S 92583. 150. .16228	Y_3774 Cts/S 4256.5 39.5 .92733					
#1 #2 #3	12975. 12970. 12933.	92411. 92689. 92650.	4216.8 4257.0 4295.7					

Sample Nam Method: ICP User: JYH Comment:		-		LINES(v873)	pe: QC) Mode: tom ID3:	CONC (Corr. Factor:	1.00000(
Elem	Ag3280	Al3082	As1890	B_2496	Ba4554	Be3131	Ca4226	
Units	ppm	ppm	ppm	ppm	ppm	ppm	ppm	
Avg	. 38922	9.7922	.38956	. 48768	. 95351	. 04780	9.3293	
Stddev	.00115	.0421	.00315	.00123	.00124	.00014	.0072	
%RSD	.29500	.43011	.80899	.25299	.13047	.30075	.07723	
#1	.39014	9.7770	.38945	.48777	.95244	.04796	9.3230	
#2	.38794	9.8398	.38647	.48641	.95488	.04772	9.3372	
#3	.38959	9.7598	.39277	.48887	.95321	.04770	9.3277	
Check ? Value Range	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	
Elem	Cd2288	Co2286	Cr2677	Cu2247	Fe2611	K_7664	Li6707	
Units	ppm	ppm	ppm	ppm	ppm	ppm	ppm	
Avg	. 04742	.19810	. 50317	. 49786	3.9163	48.118	. 96885	
Stddev	.00003	.00091	.00128	.00100	.0157	.059	.00242	
%RSD	.05976	.45728	.25407	.20061	.40077	.12262	.24950	
#1	.04738	.19758	.50455	.49807	3.9294	48.055	.97164	
#2	.04744	.19758	.50291	.49678	3.9207	48.172	.96727	
#3	.04743	.19915	.50204	.49874	3.8989	48.126	.96765	
Check ? Value Range	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	
Elem	Mg2790	Mn2576	Mo2020	Na5895	Ni2316	P_2149	Pb2203	
Units	ppm	ppm	ppm	ppm	ppm	ppm	ppm	
Avg	9.6369	. 47897	. 95538	48.668	. 50480	9.7331	. 50260	
Stddev	.0278	.00058	.00181	.080	.00236	.0257	.00265	
%RSD	.28814	.12121	.18940	.16428	.46770	.26369	.52719	
#1	9.6276	.47830	.95747	48.620	.50331	9.7355	.50495	
#2	9.6681	.47922	.95440	48.760	.50357	9.7063	.50312	
#3	9.6150	.47937	.95428	48.625	.50752	9.7574	.49973	
Check ? Value Range	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	

Sample Nam Method: ICP User: JYH Comment:		6010_200.7	16/2016 19:0 WATER_3YI Custom ID2:	LINES(v873	pe: QC) Mode: tom ID3:	CONC (Corr. Factor:	1.000000
Elem Units Avg Stddev %RSD	Sb2068 ppm 1.1669 .0069 .59050	Se1960 ppm .36742 .00560 1.5254	Si2124 ppm 4.8791 .0053 .10906	Sn1899 ppm . 98852 .00248 .25099	Sr4077 ppm . 94932 .00033 .03430	Ti3372 ppm . 95985 .01105 1.1511	TI1908 ppm . 49045 .00336 .68538	
#1 #2 #3	1.1746 1.1646 1.1614	.36808 .36151 .37266	4.8772 4.8749 4.8851	.98991 .98565 .98999	.94967 .94903 .94927	.94768 .96924 .96264	.48978 .48748 .49410	
Check ? Value Range	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	
Elem Units Avg Stddev %RSD	V_2924 ppm . 98488 .00281 .28564	Zn2062 ppm 1.0017 .0022 .21816	Zr3391 ppm F . 85076 .37237 43.769					
#1 #2 #3	.98768 .98493 .98205	1.0018 .99952 1.0039	.51112 .79224 1.2489					
Check ? Value Range	Chk Pass	Chk Pass	Chk Fail 1.0000 -10.000%					
Int. Std. Units Avg Stddev %RSD	Y_2243 Cts/S 13604. 81. .59267	Y_3600 Cts/S 96314. 322. .33414	Y_3774 Cts/S 4406.9 34.8 .78929					
#1 #2 #3	13664. 13635. 13512.	95942. 96505. 96494.	4423.4 4430.3 4366.9					

Sample Name Method: ICP-T User: JYH Comment:		010_200.7W <i>A</i>	2016 19:05:0 ATER_3YLIN stom ID2:		Mode: CONG	C Corr. F	factor: 1.00000(
Elem	Ag3280	Al3082	As1890	B_2496	Ba4554	Be3131	Ca4226
Units	ppm	ppm	ppm	ppm	ppm	ppm	ppm
Avg	00273	00943	.00316	.00092	. 00143	.00012	02610
Stddev	.00150	.00544	.00134	.00209	.00008	.00003	.02000
%RSD	54.963	57.662	42.258	226.23	5.8494	24.040	76.633
#1	00132	00491	.00441	.00303	.00145	.00009	02975
#2	00258	01546	.00176	.00089	.00133	.00014	00453
#3	00431	00791	.00331	00115	.00149	.00013	04402
Check ? High Limit Low Limit	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass
Elem	Cd2288	Co2286	Cr2677	Cu2247	Fe2611	K_7664	Li6707
Units	ppm	ppm	ppm	ppm	ppm	ppm	ppm
Avg	.00026	00020	.00108	00105	00831	. 23191	. 00924
Stddev	.00022	.00025	.00112	.00147	.00871	.16071	.00426
%RSD	84.320	129.12	103.97	139.88	104.81	69.299	46.125
#1	.00003	00047	00012	00270	00211	.08986	.00578
#2	.00046	.00003	.00210	.00009	00456	.40635	.01400
#3	.00029	00014	.00125	00054	01827	.19952	.00793
Check ? High Limit Low Limit	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass
Elem	Mg2790	Mn2576	Mo2020	Na5895	Ni2316	P_2149	Pb2203
Units	ppm	ppm	ppm	ppm	ppm	ppm	ppm
Avg	. 13406	. 00025	. 00465	02493	00089	. 00221	00297
Stddev	.03849	.00141	.00027	.02741	.00027	.00306	.00300
%RSD	28.710	557.60	5.9094	109.95	30.299	138.62	101.11
#1	.17502	.00034	.00445	05638	00099	00080	00561
#2	.12854	.00162	.00454	00612	00058	.00531	.00030
#3	.09863	00120	.00496	01229	00109	.00211	00360
Check ? High Limit Low Limit	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass

Sample Name Method: ICP-T User: JYH Comment:)10_200.7W <i>A</i>	2016 19:05:0 ATER_3YLIN stom ID2:		Mode: CON	C Corr. F	Factor: 1.00000(
Elem Units Avg Stddev %RSD	Sb2068 ppm . 00517 .00217 41.900	Se1960 ppm 00057 .00532 931.58	Si2124 ppm 00458 .00368 80.468	Sn1899 ppm .00087 .00058 65.936	Sr4077 ppm .00032 .00013 42.768	Ti3372 ppm 00287 .00425 148.18	TI1908 ppm 00011 .00409 3706.3	
#1 #2 #3	.00269 .00671 .00612	.00498 00107 00562	00419 00844 00110	.00106 .00133 .00023	.00034 .00044 .00017	00265 .00127 00723	.00431 00375 00089	
Check ? High Limit Low Limit	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	
Elem Units Avg Stddev %RSD	V_2924 ppm . 00072 .00091 125.33	Zn2062 ppm 00001 .00018 2142.5	Zr3391 ppm F05039 .17523 347.71					
#1 #2 #3	.00045 00001 .00174	.00015 00021 .00003	.09645 24437 00326					
Check ? High Limit Low Limit	Chk Pass	Chk Pass	Chk Fail .04000 04000					
Int. Std. Units Avg Stddev %RSD	Y_2243 Cts/S 13523. 5. .03478	Y_3600 Cts/S 96698. 28. .02878	Y_3774 Cts/S 4289.4 40.8 .95120					
#1 #2 #3	13525. 13526. 13518.	96680. 96730. 96684.	4243.1 4320.2 4304.8					

Sample Name: PBW 81 Acquired: 5/16/2016 19:09:01 Type: Unk

Method: ICP-THERMO3_6010_200.7WATER_3YLINES(v873) Mode: CONC Corr. Factor: 1.000000

User: JYH Custom ID1: Custom ID2: Custom ID3:

Comment: WG567819-02

Elem	Ag3280	Al3082	As1890	B_2496	Ba4554	Be3131	Ca4226
Units	ppm	ppm	ppm	ppm	ppm	ppm	ppm
Avg	F00403	01601	.00203	00214	.00079	.00011	04587
Stddev	.00176	.00510	.00198	.00103	.00061	.00002	.02053
%RSD	43.716	31.835	97.599	48.386	77.279	18.378	44.759
#1	00607	01102	.00432	00112	.00145	.00009	06932
#2	00289	02121	.00086	00319	.00025	.00012	03109
#3	00315	01580	.00091	00209	.00067	.00012	03721
Check ? High Limit Low Limit	Chk Fail 9.0000 00400	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass
Elem	Cd2288	Co2286	Cr2677	Cu2247	Fe2611	K_7664	Li6707
Units	ppm	ppm	ppm	ppm	ppm	ppm	ppm
Avg	. 00007	00004	. 00099	00031	01915	.08945	. 00366
Stddev	.00011	.00010	.00114	.00114	.01545	.07150	.00469
%RSD	170.39	296.69	114.59	369.14	80.694	79.935	128.05
#1	.00017	00005	.00036	00081	00560	.17197	00028
#2	00005	00013	.00230	00112	03598	.04611	.00242
#3	.00008	.00007	.00031	.00100	01588	.05026	.00885
Check ? High Limit Low Limit	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass
Elem	Mg2790	Mn2576	Mo2020	Na5895	Ni2316	P_2149	Pb2203
Units	ppm	ppm	ppm	ppm	ppm	ppm	ppm
Avg	. 03607	.00113	.00043	05808	00061	00098	00128
Stddev	.14633	.00257	.00022	.01669	.00089	.00398	.00174
%RSD	405.66	228.06	50.227	28.738	145.78	406.95	136.28
#1	.14489	.00248	.00048	03983	00162	.00131	00289
#2	.09361	00183	.00062	07258	00028	00558	00150
#3	13028	.00273	.00019	06181	.00006	.00134	.00057
Check ? High Limit Low Limit	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass

Method: ICP-7 User: JYH	Sample Name: PBW 81 Acquired: 5/16/2016 19:09:01 Type: Unk Method: ICP-THERMO3_6010_200.7WATER_3YLINES(v873) Mode: CONC Corr. Factor: 1.000000 User: JYH Custom ID1: Custom ID2: Custom ID3: Comment: WG567819-02								
Elem Units Avg Stddev %RSD	Sb2068 ppm 00118 .00318 269.67	Se1960 ppm 00322 .00328 101.76	Si2124 ppm 02574 .00186 7.2354	Sn1899 ppm . 00039 .00028 72.156	Sr4077 ppm . 00013 .00025 196.13	Ti3372 ppm 00304 .00390 128.07	TI1908 ppm 00308 .00073 23.861		
#1 #2 #3	.00235 00384 00205	00331 .00010 00646	02472 02789 02462	.00047 .00008 .00063	.00015 .00037 00014	00753 00053 00107	00355 00223 00346		
Check ? High Limit Low Limit	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass		
Elem Units Avg Stddev %RSD	V_2924 ppm 0001 .00115 7993.0	Zn2062 ppm 00008 .00017 210.19	Zr3391 ppm F 06543 .33136 506.43						
#1 #2 #3	00112 00010 .00118	00009 00024 .00009	.12030 44799 .13141						
Check ? High Limit Low Limit	Chk Pass	Chk Pass	Chk Fail 36.000 04000						
Int. Std. Units Avg Stddev %RSD	Y_2243 Cts/S 14051. 7. .05274	Y_3600 Cts/S 99439. 678. .68211	Y_3774 Cts/S 4430.3 8.9 .20047						
#1 #2 #3	14043. 14056. 14055.	99486. 100090. 98739.	4439.3 4429.9 4421.6						

Sample Name: LCSW 81 Acquired: 5/16/2016 19:13:00 Type: Unk

Method: ICP-THERMO3_6010_200.7WATER_3YLINES(v873) Mode: CONC Corr. Factor: 1.000000

User: JYH Custom ID1: Custom ID2: Custom ID3:

Comment: WG567819-03

Elem	Ag3280	Al3082	As1890	B_2496	Ba4554	Be3131	Ca4226	Cd2288
Units	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm
Avg	.19844	4.9990	.19748	.98976	.50533	.02461	4.9726	.02508
Stddev	.00067	.0132	.00404	.00639	.00273	.00012	.0342	.00011
%RSD	.33615	.26373	2.0483	.64511	.53935	.49772	.68828	.45170
#1	.19919	5.0034	.20016	.98424	.50662	.02455	4.9953	.02521
#2	.19821	5.0094	.19944	.98830	.50220	.02453	4.9332	.02505
#3	.19792	4.9842	.19282	.99676	.50718	.02475	4.9891	.02499

Check? Chk Pass Chk P

Elem	Co2286	Cr2677	Cu2247	Fe2611	K_7664	Li6707	Mg2790	Mn2576
Units	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm
Avg	.10429	. 25889	. 26323	2.0952	25.928	. 51222	5.0418	. 25397
Stddev	.00026	.00079	.00119	.0088	.112	.00101	.0835	.00266
%RSD	.25230	.30413	.45370	.42004	.43208	.19725	1.6566	1.0475
#1	.10407	.25975	.26196	2.0912	26.056	.51250	4.9502	.25383
#2	.10458	.25821	.26340	2.0892	25.849	.51110	5.1137	.25138
#3	.10423	.25870	.26433	2.1053	25.879	.51306	5.0615	.25669

Check? Chk Pass Chk P

Elem	Mo2020	Na5895	Ni2316	P_2149	Pb2203	Sb2068	Se1960	Si2124
Units	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm
Avg	. 51124	25.828	. 26660	5.0261	. 26632	. 61659	.18937	2.5819
Stddev	.00077	.135	.00138	.0110	.00170	.00411	.00465	.0046
%RSD	.15159	.52119	.51595	.21819	.63826	.66717	2.4556	.17763
#1	.51115	25.971	.26758	5.0386	.26749	.61530	.19469	2.5838
#2	.51206	25.704	.26502	5.0217	.26437	.62119	.18737	2.5852
#3	.51052	25.808	.26719	5.0179	.26709	.61327	.18605	2.5767

Check? Chk Pass Chk P

Sample Name: LCSW 81 Acquired: 5/16/2016 19:13:00 Type: Unk

Method: ICP-THERMO3_6010_200.7WATER_3YLINES(v873) Mode: CONC Corr. Factor: 1.000000

User: JYH Custom ID1: Custom ID2: Custom ID3:

Comment: WG567819-03

Elem	Sn1899	Sr4077	Ti3372	TI1908	V_2924	Zn2062	Zr3391
Units	ppm	ppm	ppm	ppm	ppm	ppm	ppm
Avg	.52128	.50961	.50357	.25540	.50998	.52200	.64186
Stddev	.00218	.00207	.01153	.00204	.00091	.00138	.56280
%RSD	.41857	.40550	2.2890	.80048	.17753	.26461	87.682
#1	.52369	.51190	.51661	.25729	.50895	.52295	.05191
** *							
#2	.52074	.50788	.49938	.25569	.51064	.52263	.70080
#3	.51943	.50906	.49473	.25323	.51036	.52042	1.1729

Check? Chk Pass Chk P

Low Limit

Int. Std.	Y_2243	Y_3600	Y_3774
Units	Cts/S	Cts/S	Cts/S
Avg	13002.	92774.	4223.4
Stddev	24.	247.	23.6
%RSD	.18161	.26574	.55991
#1	12998.	92507.	4242.6
#2	12981.	92821.	4230.7
#3	13027.	92993.	4197.0

Sample Name: L1605015401 Acquired: 5/16/2016 19:16:44 Type: Unk Method: ICP-THERMO3 6010 200.7WATER 3YLINES(v873) Mode: CONC Corr. Factor: 1.000000 User: JYH Custom ID1: Custom ID2: Custom ID3: Comment: WG567819-01 Al3082 As1890 B 2496 Ba4554 Be3131 Ca4226 Cd2288 Elem Ag3280 Units ppm ppm ppm ppm ppm ppm ppm ppm .01696 .01373 Avg -.00290 -.00167 .02107 .00011 32.140 .00044 Stddev .00102 .00856 .00270 .00065 .00062 .00005 .107 .00017 %RSD 35.235 50.466 161.38 4.7687 2.9635 46.369 .33263 39.775 #1 -.00189 -.00478 .02054 .00009 .00057 .01918 .01393 32.081 #2 -.00288 .00751 .00009 .01299 .02092 80000. 32.263 .00024 -.00393 32.075 #3 .02419 -.00033 .01425 .02176 .00017 .00050 Chk Pass Chk Pass Chk Pass Chk Pass Check? Chk Pass Chk Pass Chk Pass **High Limit** Low Limit Elem Co2286 Cr2677 Cu2247 Fe2611 K_7664 Li6707 Mg2790 Mn2576 Units ppm ppm ppm ppm ppm ppm ppm ppm -.00025 .00029 .00102 2.4939 .00961 Avg .55911 4.6068 .10011 .00177 .00353 .1403 .00030 Stddev .00034 .00102 .01452 .0371 %RSD 135.12 352.47 174.69 2.5969 1.4883 36.710 3.0454 .29720 #1 -.00029 .00117 .00298 .57588 2.4723 .01250 4.4452 .09977 #2 .00011 -.00083 .00053 .55044 2.5367 .00568 4.6780 .10034 -.00058 -.00047 #3 .00052 .55102 2.4726 .01064 4.6972 .10021 Check? Chk Pass Chk Pass Chk Pass Chk Pass Chk Pass Chk Pass Chk Pass High Limit Low Limit Elem Mo2020 Na5895 Ni2316 P_2149 Pb2203 Sb2068 Se1960 Si2124 Units ppm ppm ppm ppm ppm ppm ppm ppm .00115 5.7473 -.00098 .00680 .00000 -.00009 2.1215 Avg -.00471 .00035 .00033 .00462 .00201 .00268 .00642 .0057 Stddev .0277 %RSD 6862.1 .26925 30.481 .48148 34.137 67.966 43096. 56.801 #1 .00075 5.7356 -.00119 .01065 -.00230 -.00276 .00130 2.1281 -.00059 .00168 -.00777 .00551 #2 .00131 5.7789 .00100 2.1181 5.7274 #3 .00140 -.00114 .00806 .00132 -.00362 -.00710 2.1183 Check? Chk Pass Chk Pass Chk Pass Chk Pass Chk Pass Chk Pass Chk Pass High Limit

Approved: May 17, 2016

Low Limit

Method: ICF User: JYH	me: L160501 P-THERMO3 Custom	3_6010_200 ID1:	cquired: 5/1 .7WATER_ Custom ID	3YLINES(v8	•	ype: Unk ode: CONC :	Corr. Fa	ctor: 1.00000(
Comment: V	NG567819-0)						
Elem Units Avg Stddev %RSD	Sn1899 ppm 00003 .00098 3121.8	Sr4077 ppm . 12152 .00027 .22390	Ti3372 ppm 00188 .00487 258.92	TI1908 ppm 00159 .00279 175.39	V_2924 ppm . 00113 .00187 165.26	Zn2062 ppm .00535 .00013 2.4232	Zr3391 ppm . 14577 .21500 147.50	
#1 #2 #3	.00105 00086 00029	.12139 .12133 .12183	00097 .00247 00714	00052 .00051 00476	.00316 .00075 00052	.00548 .00535 .00522	10149 .25004 .28875	
Check ? High Limit Low Limit	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	
Int. Std. Units Avg Stddev %RSD	Y_2243 Cts/S 13067. 18. .13573	Y_3600 Cts/S 94227. 229. .24314	Y_3774 Cts/S 4308.2 50.9 1.1825					
#1 #2 #3	13081. 13047. 13072.	94002. 94460. 94220.	4254.8 4313.5 4356.3					

Sample Name: L1605015402S Acquired: 5/16/2016 19:20:42 Type: Unk Mode: CONC Method: ICP-THERMO3 6010 200.7WATER 3YLINES(v873) Corr. Factor: 1.000000 User: JYH Custom ID1: Custom ID2: Custom ID3: Comment: WG567819-04 Al3082 B_2496 Ba4554 Ca4226 Cd2288 Elem Ag3280 As1890 Be3131 Units ppm ppm ppm ppm ppm ppm ppm ppm Avg .20027 5.0859 .19867 1.0137 .52398 .02486 36.277 .02498 Stddev .00271 .0204 .00155 .0028 .00356 .00007 .044 .00024 %RSD 1.3546 .40089 .77929 .28005 .68033 .27233 .12226 .96908 #1 .20074 5.0804 1.0105 .20016 .52057 .02479 36.226 .02471 #2 .19736 5.1085 .19707 1.0149 .52768 .02490 36.294 .02517 #3 .20273 5.0688 .19877 1.0158 .52368 .02490 36.310 .02506 Check? Chk Pass Chk Pass Chk Pass Chk Pass Chk Pass Chk Pass Chk Pass Chk Pass **High Limit** Low Limit Elem Co2286 Cr2677 Cu2247 Fe2611 K_7664 Mg2790 Mn2576 Li6707 Units ppm ppm ppm ppm ppm ppm ppm ppm .26342 .26081 2.6241 28.231 9.6416 .34880 Avg .10331 .51792 .00254 .0459 .1750 Stddev .00019 .00190 .095 .00406 .00142 %RSD .18004 .96247 .72850 1.7474 .78348 1.8152 .40598 .33637 #1 .10320 .26537 .26102 2.6158 28.202 .51342 9.5932 .34717 #2 .10322 .26435 .26259 2.5830 28.153 .51902 9.8357 .34948 9.4958 #3 .10353 .26056 .25881 2.6735 28.337 .52131 .34975 Check? Chk Pass Chk Pass Chk Pass Chk Pass Chk Pass Chk Pass Chk Pass High Limit Low Limit P_2149 Elem Mo2020 Na5895 Ni2316 Pb2203 Sb2068 Se1960 Si2124 Units ppm ppm ppm ppm ppm ppm ppm ppm .51915 31.380 .26367 5.1247 .26382 .61996 .18632 4.7566 Avg .083 .00190 .0067 .00232 .00619 Stddev .00141 .00111 .0120 .27097 .71917 %RSD .26290 .13094 .42153 .37399 3.3211 .25206 #1 31.329 .26254 .52064 .26501 5.1293 .62024 .18177 4.7698 31.475 .18383 4.7536 #2 .51898 .26450 5.1170 .26451 .61752 31.336 #3 .51784 .26150 5.1277 .26442 .62213 .19337 4.7464 Check? Chk Pass Chk Pass Chk Pass Chk Pass Chk Pass Chk Pass Chk Pass Chk Pass

Approved: May 17, 2016

High Limit Low Limit Sample Name: L1605015402S Acquired: 5/16/2016 19:20:42 Type: Unk

Method: ICP-THERMO3_6010_200.7WATER_3YLINES(v873) Mode: CONC Corr. Factor: 1.000000

User: JYH Custom ID1: Custom ID2: Custom ID3:

Comment: WG567819-04

Elem	Sn1899	Sr4077	Ti3372	TI1908	V_2924	Zn2062	Zr3391
Units	ppm	ppm	ppm	ppm	ppm	ppm	ppm
Avg	.52480	.62938	.49786	.25679	.52182	.52349	.47589
Stddev	.00132	.00065	.00289	.00107	.00189	.00017	.39236
%RSD	.25166	.10292	.58042	.41789	.36262	.03181	82.447
#1	.52538	.62968	.50013	.25719	.51980	.52330	.84452
#2	.52328	.62864	.49461	.25558	.52209	.52360	.51969
#3	.52573	.62982	.49884	.25762	.52356	.52356	.06348

Check? Chk Pass Chk P

Low Limit

Int. Std.	Y_2243	Y_3600	Y_3774
Units	Cts/S	Cts/S	Cts/S
Avg	12868.	92358.	4259.2
Stddev	10.	266.	37.3
%RSD	.08155	.28777	.87499
#1	12856.	92053.	4222.7
#2	12876.	92488.	4257.6
#3	12872.	92535.	4297.2

Sample Name: L1605015403SD Acquired: 5/16/2016 19:24:25 Type: Unk
Method: ICP-THERMO3 6010 200 7WATER 3VLINES(v873) Mode: CONC

Method: ICP-THERMO3_6010_200.7WATER_3YLINES(v873) Mode: CONC Corr. Factor: 1.000000

User: JYH Custom ID1: Custom ID2: Custom ID3:

Comment: WG567819-05

Elem	Ag3280	Al3082	As1890	B_2496	Ba4554	Be3131	Ca4226	Cd2288
Units	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm
Avg	.20010	5.0583	.20128	1.0151	.52590	.02499	36.184	.02516
Stddev	.00134	.0162	.00240	.0037	.00322	.00003	.136	.00004
%RSD	.66918	.31924	1.1930	.36239	.61236	.13295	.37480	.14486
#1	.19868	5.0507	.20269	1.0191	.52316	.02503	36.063	.02520
#2	.20028	5.0473	.20265	1.0143	.52509	.02498	36.159	.02515
#3	.20135	5.0768	.19851	1.0119	.52945	.02497	36.330	.02513

Check? Chk Pass Chk P

Elem	Co2286	Cr2677	Cu2247	Fe2611	K_7664	Li6707	Mg2790	Mn2576
Units	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm
Avg	.10354	. 26143	. 26111	2.6168	28.232	. 51378	9.7704	. 35299
Stddev	.00039	.00037	.00059	.0219	.026	.00101	.1463	.00166
%RSD	.37422	.14254	.22652	.83529	.09114	.19689	1.4975	.46966
#1	.10353	.26145	.26179	2.6034	28.259	.51429	9.6015	.35490
#2	.10393	.26179	.26076	2.6050	28.227	.51262	9.8491	.35195
#3	.10316	.26105	.26078	2.6420	28.208	.51443	9.8604	.35211

Check? Chk Pass Chk P

Elem	Mo2020	Na5895	Ni2316	P_2149	Pb2203	Sb2068	Se1960	Si2124
Units	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm
Avg	. 51537	31.311	.26435	5.1496	. 26216	. 62326	.19115	4.7396
Stddev	.00184	.043	.00127	.0024	.00239	.00160	.00331	.0026
%RSD	.35645	.13764	.47935	.04632	.91349	.25667	1.7341	.05577
#1	.51636	31.312	.26559	5.1469	.26001	.62288	.18790	4.7425
#2	.51650	31.268	.26439	5.1515	.26474	.62189	.19101	4.7373
#3	.51325	31.354	.26306	5.1504	.26173	.62502	.19453	4.7391

Check? Chk Pass Chk P

Sample Name: L1605015403SD Acquired: 5/16/2016 19:24:25 Type: Unk

Method: ICP-THERMO3_6010_200.7WATER_3YLINES(v873) Mode: CONC Corr. Factor: 1.000000

User: JYH Custom ID1: Custom ID2: Custom ID3:

Comment: WG567819-05

Elem	Sn1899	Sr4077	Ti3372	TI1908	V_2924	Zn2062	Zr3391
Units	ppm	ppm	ppm	ppm	ppm	ppm	ppm
Avg	.52428	.62867	.49719	.25215	.51915	.52569	.44216
Stddev	.00216	.00094	.01016	.00406	.00006	.00128	.25141
%RSD	.41192	.14947	2.0431	1.6089	.01154	.24332	56.859
#1	.52670	.62972	.49018	.25683	.51914	.52702	.36546
#2	.52355	.62790	.50884	.24978	.51910	.52559	.23803
#3	.52257	.62839	.49254	.24983	.51922	.52447	.72298

Check? Chk Pass Chk P

Low Limit

Int. Std.	Y_2243	Y_3600	Y_3774
Units	Cts/S	Cts/S	Cts/S
Avg	13057 .	93455.	4282.0
Stddev	50.	240.	35.1
%RSD	.38586	.25634	.81991
#1	13024.	93183.	4320.3
#2	13031.	93549.	4274.5
#3	13115.	93633.	4251.3

Sample Name: L1505022401 Acquired: 5/16/2016 19:28:07 Type: Unk Method: ICP-THERMO3_6010_200.7WATER_3YLINES(v873) Mode: CONC Corr. Factor: 1.000000 User: JYH Custom ID1: Custom ID2: Custom ID3: Comment:								
Elem	Ag3280	Al3082	As1890	B_2496	Ba4554	Be3131	Ca4226	Cd2288
Units	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm
Avg	00357	. 07111	00281	.00353	. 00257	.00007	. 23320	. 00034
Stddev	.00233	.01014	.00151	.00103	.00040	.00004	.01920	.00001
%RSD	65.101	14.258	53.558	29.220	15.501	58.541	8.2317	2.2864
#1	00090	.07410	00109	.00374	.00211	.00002	.21801	.00034
#2	00515	.05981	00346	.00445	.00285	.00010	.22681	.00034
#3	00468	.07942	00388	.00241	.00273	.00009	.25477	.00035
Check ? High Limit Low Limit	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass
Elem	Co2286 ppm00016 .00033 211.78 .00008	Cr2677	Cu2247	Fe2611	K_7664	Li6707	Mg2790	Mn2576
Units		ppm	ppm	ppm	ppm	ppm	ppm	ppm
Avg		.00052	.01994	.10549	.25709	. 00139	.10810	. 00149
Stddev		.00090	.00104	.01142	.03686	.00478	.08360	.00210
%RSD		172.91	5.2022	10.826	14.336	344.73	77.337	141.52
#2 #3	00002 00054	.00007	.02008	.11858	.29714	.00673	.12677	.00391
Check ? High Limit Low Limit	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass
Elem	Mo2020	Na5895	Ni2316	P_2149	Pb2203	Sb2068	Se1960	Si2124
Units	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm
Avg	. 00095	.07392	00025	. 00938	00059	00308	.00549	. 14619
Stddev	.00014	.02218	.00046	.00515	.00044	.00114	.00374	.00103
%RSD	14.387	30.003	181.17	54.948	74.043	37.092	68.103	.70739
#1	.00084	.09696	00077	.00809	00013	00193	.00338	.14629
#2	.00091	.07207	00008	.00499	00065	00421	.00328	.14510
#3	.00110	.05272	.00010	.01505	00100	00310	.00981	.14716
Check? High Limit Low Limit	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass

Sample Nar Method: ICF User: JYH Comment:		_6010_200	cquired: 5/1 .7WATER_: Custom IE	3YLINES(v8		ype: Unk ode: CONC :	Corr. Fa	ctor: 1.00000(
Elem Units Avg Stddev %RSD	Sn1899 ppm 00011 .00010 88.824	Sr4077 ppm . 00104 .00006 5.8605	Ti3372 ppm 00431 .00375 87.035	TI1908 ppm . 00208 .00275 132.69	V_2924 ppm .00107 .00086 80.654	Zn2062 ppm . 00943 .00017 1.8192	Zr3391 ppm . 06964 .29775 427.58	
#1 #2 #3	00004 00008 00023	.00097 .00109 .00105	00777 00033 00482	.00069 .00029 .00525	.00114 .00018 .00190	.00943 .00926 .00960	.40671 15758 04022	
Check ? High Limit Low Limit	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	
Int. Std. Units Avg Stddev %RSD	Y_2243 Cts/S 13234. 40. .30225	Y_3600 Cts/S 95838. 238. .24880	Y_3774 Cts/S 4268.9 25.3 .59209					
#1 #2 #3	13280. 13205. 13217.	95817. 96086. 95610.	4295.1 4244.7 4267.0					

L1605022401PS

Sample Name: L1505022401PS Acquired: 5/16/2016 19:32:08 Type: Unk

Method: ICP-THERMO3_6010_200.7WATER_3YLINES(v873) Mode: CONC Corr. Factor: 1.000000

User: JYH Custom ID1: Custom ID2: Custom ID3:

Comment: WG568110-01

Elem	Ag3280	Al3082	As1890	B_2496	Ba4554	Be3131	Ca4226	Cd2288
Units	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm
Avg	.20421	5.1704	.20439	1.0096	.51702	.02511	5.3359	.02524
Stddev	.00034	.0089	.00372	.0011	.00138	.00003	.0704	.00017
%RSD	.16604	.17308	1.8192	.11099	.26630	.10190	1.3201	.66108
#1	.20456	5.1603	.20010	1.0098	.51823	.02514	5.4108	.02525
#2	.20418	5.1735	.20666	1.0084	.51552	.02509	5.3257	.02540
#3	.20388	5.1774	.20641	1.0106	.51731	.02510	5.2711	.02507

Check? Chk Pass Chk P

Elem	Co2286	Cr2677	Cu2247	Fe2611	K_7664	Li6707	Mg2790	Mn2576
Units	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm
Avg	.10641	. 26420	. 28583	2.2172	26.353	. 52040	5.2729	. 26133
Stddev	.00081	.00116	.00274	.0083	.113	.00034	.0665	.00133
%RSD	.76127	.43894	.95863	.37632	.42950	.06608	1.2618	.50900
#1	.10548	.26543	.28385	2.2166	26.460	.52045	5.3436	.26045
#2	.10687	.26313	.28468	2.2258	26.363	.52071	5.2114	.26069
#3	.10689	.26403	.28896	2.2091	26.234	.52003	5.2638	.26286

Check? Chk Pass Chk P

Elem	Mo2020	Na5895	Ni2316	P_2149	Pb2203	Sb2068	Se1960	Si2124
Units	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm
Avg	. 52364	26.359	. 27313	5.1221	. 27388	. 62954	.19004	2.7549
Stddev	.00121	.071	.00107	.0195	.00418	.00187	.00459	.0084
%RSD	.23029	.26810	.39147	.38144	1.5256	.29756	2.4152	.30525
#1	.52237	26.425	.27201	5.1039	.27496	.63089	.18562	2.7456
#2	.52376	26.285	.27326	5.1197	.26926	.63032	.18973	2.7572
#3	.52478	26.368	.27413	5.1427	.27740	.62740	.19478	2.7620

Check? Chk Pass Chk P

Sample Name: L1505022401PS Acquired: 5/16/2016 19:32:08 Type: Unk

Method: ICP-THERMO3_6010_200.7WATER_3YLINES(v873) Mode: CONC Corr. Factor: 1.000000

User: JYH Custom ID1: Custom ID2: Custom ID3:

Comment: WG568110-01

Elem	Sn1899	Sr4077	Ti3372	TI1908	V_2924	Zn2062	Zr3391
Units	ppm	ppm	ppm	ppm	ppm	ppm	ppm
Avg	.53082	.51775	.51597	.26262	.52283	.55008	.91484
Stddev	.00199	.00091	.00301	.00533	.00097	.00070	.45044
%RSD	.37545	.17512	.58379	2.0305	.18604	.12738	49.237
#1	.52935	.51879	.51811	.25748	.52305	.54927	.72411
#2	.53003	.51730	.51727	.26813	.52176	.55044	1.4293
#3	.53309	.51715	.51253	.26226	.52367	.55052	.59114

Check? Chk Pass Chk P

Low Limit

Int. Std.	Y_2243	Y_3600	Y_3774
Units	Cts/S	Cts/S	Cts/S
Avg	13033.	93959 .	4234.3
Stddev	18.	300.	63.0
%RSD	.13809	.31888	1.4879
#1	13049.	93955.	4171.5
#2	13014.	94260.	4297.5
#3	13037.	93661.	4233.7

Sample Name: L1505022401SDL Acquired: 5/16/2016 19:35:51 Type: Unk Corr. Factor: 1.000000 Method: ICP-THERMO3_6010_200.7WATER_3YLINES(v873) Mode: CONC User: JYH Custom ID1: 5 Custom ID2: Custom ID3: Comment: WG568110-02 Al3082 As1890 B 2496 Ba4554 Be3131 Ca4226 Cd2288 Elem Ag3280 Units ppm ppm ppm ppm ppm ppm ppm ppm .00054 .00284 .00084 Avg -.00273 .00142 .00013 .02210 .00002 Stddev .00077 .00820 .00267 .00025 .00012 .00007 .01847 .00033 %RSD 28.397 577.07 497.19 8.9681 14.429 55.586 83.573 1551.4 #1 -.00256 .00909 -.00224 .00271 .00081 .00015 -.00036 .01703 #2 -.00357 .00240 .00309 .00314 .00097 .00019 .04258 .00022 #3 -.00205 -.00722 .00076 .00269 .00073 .00005 .00670 .00020 Chk Pass Chk Pass Chk Pass Chk Pass Check? Chk Pass Chk Pass Chk Pass High Limit Low Limit Mg2790 Elem Co2286 Cr2677 Cu2247 Fe2611 K_7664 Li6707 Mn2576 Units ppm ppm ppm ppm ppm ppm ppm ppm -.00010 .03687 .00007 .00215 .03129 .00637 .00139 Avg .15456 .00056 .00025 .00090 .02404 .00258 .05083 Stddev .07926 .00126 %RSD 754.82 253.22 41.690 76.842 51.282 40.410 90.055 137.87 #1 .00046 .00016 .00115 .04481 .06482 .00559 -.00669 .00215 #2 -.00057-.00012 .00289 .04553 .18389 .00428 .09273 .00209 -.00034 .00925 .02458 #3 .00034 .00243 .00353 .21498 -.00006

Check? Chk Pass Chk Pass Chk Pass Chk Pass Chk Pass Chk Pass Chk Pass High Limit Low Limit

Elem	Mo2020	Na5895	Ni2316	P_2149	Pb2203	Sb2068	Se1960	Si2124
Units	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm
Avg	.00083	00771	00124	.00786	00144	00170	00115	. 00102
Stddev	.00010	.00887	.00033	.00390	.00612	.00032	.00378	.00254
%RSD	12.451	115.05	26.807	49.608	425.45	18.980	329.33	249.27
#1	.00094	00721	00161	.01052	00428	00183	00500	.00246
#2	.00078	.00090	00115	.00968	.00559	00133	00100	.00252
#3	.00075	01683	00096	.00338	00562	00193	.00255	00192

Check? Chk Pass Chk Pass Chk Pass Chk Pass Chk Pass Chk Pass Chk Pass Chk Pass High Limit Low Limit

Sample Name: L1505022401SDL Acquired: 5/16/2016 19:35:51 Type: Unk

Method: ICP-THERMO3_6010_200.7WATER_3YLINES(v873) Mode: CONC Corr. Factor: 1.000000

User: JYH Custom ID1: 5 Custom ID2: Custom ID3:

Comment: WG568110-02

#3

13985.

100790.

Elem Units Avg Stddev %RSD	Sn1899 ppm 00078 .00007 9.5925	Sr4077 ppm . 00046 .00009 19.874	Ti3372 ppm 00454 .01051 231.42	TI1908 ppm 00046 .00191 413.46	V_2924 ppm . 00097 .00027 27.483	Zn2062 ppm . 00254 .00004 1.3885	Zr3391 ppm . 78606 .15056 19.154
#1 #2 #3	00074 00073 00087	.00041 .00056 .00040	00580 .00654 01437	00048 .00145 00236	.00090 .00127 .00075	.00252 .00258 .00252	.61614 .90285 .83919
Check? High Limit Low Limit	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass
Int. Std. Units Avg Stddev %RSD	Y_2243 Cts/S 14014. 27. .19531	Y_3600 Cts/S 100740. 264. .26220	Y_3774 Cts/S 4418.9 40.9 .92588				
#1 #2	14017. 14040.	100970. 100450.	4438.2 4446.5				

4371.9

•		•		_		Mode: C	ONC C	Corr. Factor	: 1.00000(
Elem Units Avg Stddev %RSD	Ag3280 ppm . 38490 .00025 .06366	Al3082 ppm 9.6747 .0187 .19339	As1890 ppm . 38607 .00476 1.2340	ppm . 48472 .00592	ppm . 94789	Be3131 ppm . 04738 .00026 .54218	9.2637 .0794	.04705	
#1 #2 #3	.38478 .38473 .38518	9.6909 9.6542 9.6791	.39045 .38100 .38676	.47885 .49068 .48462	.94181 .95117 .95069	.04717 .04767 .04730		.04688 .04692 .04735	
Check ? Value Range	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	
Elem Units Avg Stddev %RSD	Co2286 ppm . 19615 .00025 .12698	Cr2677 ppm . 49743 .00307 .61796	.00069	ppm 3.8814 .0407	.196	Li6707 ppm . 95038 .00204 .21432	ppm 9.6075 .3188	.00473	
#1 #2 #3	.19643 .19604 .19597	.49827 .50000 .49403		3.8687 3.8485 3.9269	47.480 47.836 47.799	.95174 .95135 .94803		.47735	
Check ? Value Range	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	
Elem Units Avg Stddev %RSD	Mo2020 ppm . 94844 .00391 .41239	Na5895 ppm 48.419 .202 .41728	Ni2316 ppm . 50105 .00045 .09070	ppm 9.7341 .0086	Pb2203 ppm . 50057 .00490 .97856	Sb2068 ppm 1.1591 .0080 .69072	ppm . 36788 .00407	Si2124 ppm 4.8546 .0116 .23964	
#1 #2 #3	.95259 .94790 .94483	48.187 48.510 48.559	.50157 .50085 .50073	9.7245	.50131 .50505 .49534	1.1503 1.1658 1.1613	.37252		
Check ? Value Range	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	

Sample Na Method: IC	ame: CCV CP-THERMO	•	d: 5/16/201 200.7WATE			QC Mode: C	ONC C	orr. Factor: 1.000000
User: JYH Comment:		m ID1:	Custor	n ID2:	Custon	n ID3:		
Elem Units Avg Stddev %RSD	Sn1899 ppm . 98065 .00157 .15979	Sr4077 ppm . 94160 .00320 .33970	Ti3372 ppm . 94674 .00995 1.0509	TI1908 ppm . 48754 .00641 1.3148	V_2924 ppm . 97302 .00259 .26654	Zn2062 ppm . 99891 .00188 .18842		
#1 #2 #3	.97903 .98076 .98216	.93795 .94391 .94293	.94199 .95817 .94004	.48164 .48662 .49436	.97348 .97536 .97023	.99752 1.0011 .99816	.82279 .93119 .99752	
Check ? Value Range	Chk Pass	Chk Pass						
Int. Std. Units Avg Stddev %RSD	Y_2243 Cts/S 13762 . 35. .25563	Y_3600 Cts/S 96997. 281. .28951	Y_3774 Cts/S 4424.7 53.4 1.2068					
#1 #2 #3	13745. 13739. 13803.	97247. 96693. 97051.	4463.7 4363.9 4446.6					

Sample Name: CCB Acquired: 5/16/2016 19:43:29 Type: Blank Method: ICP-THERMO3_6010_200.7WATER_3YLINES(v873) Mode: CONC Corr. Factor: 1.000000 User: JYH Custom ID1: Custom ID2: Custom ID3: Comment:								
Elem	Ag3280	Al3082	As1890	B_2496	Ba4554	Be3131	Ca4226	
Units	ppm	ppm	ppm	ppm	ppm	ppm	ppm	
Avg	00402	01492	00059	. 00511	.00126	.00013	02850	
Stddev	.00041	.00877	.00390	.00078	.00040	.00003	.01947	
%RSD	10.173	58.785	665.92	15.313	31.997	23.129	68.318	
#1	00369	01614	00456	.00434	.00125	.00014	04796	
#2	00390	00560	00042	.00508	.00166	.00016	00902	
#3	00448	02302	.00323	.00590	.00086	.00010	02852	
Check ? High Limit Low Limit	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	
Elem	Cd2288	Co2286	Cr2677	Cu2247	Fe2611	K_7664	Li6707	
Units	ppm	ppm	ppm	ppm	ppm	ppm	ppm	
Avg	.00005	00022	. 00029	00070	.00162	. 14563	. 00219	
Stddev	.00020	.00021	.00079	.00057	.01823	.10229	.00317	
%RSD	410.54	92.803	276.84	80.771	1123.8	70.239	144.56	
#1	.00021	00014	.00013	00006	00180	.23736	00131	
#2	00018	00007	00042	00093	01465	.03532	.00485	
#3	.00011	00046	.00115	00112	.02132	.16422	.00304	
Check ? High Limit Low Limit	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	
Elem	Mg2790	Mn2576	Mo2020	Na5895	Ni2316	P_2149	Pb2203	
Units	ppm	ppm	ppm	ppm	ppm	ppm	ppm	
Avg	. 03306	. 00072	. 00480	. 00177	00096	. 00034	. 00027	
Stddev	.12145	.00116	.00037	.01015	.00052	.00322	.00256	
%RSD	367.40	160.64	7.6828	572.79	54.228	934.26	959.18	
#1	.17207	.00175	.00464	.01326	00142	00151	00218	
#2	05246	00054	.00454	00601	00105	.00406	.00006	
#3	02044	.00096	.00522	00193	00040	00152	.00292	
Check ? High Limit Low Limit	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	

Sample Nam Method: ICP User: JYH Comment:	ne: CCB / -THERMO3_ Custom I	_		LINES(v873	pe: Blank) Mode: tom ID3:	CONC (Corr. Factor:	1.000000
Elem Units Avg Stddev %RSD	Sb2068 ppm . 00244 .00359 147.03	Se1960 ppm 00074 .00604 813.32	Si2124 ppm 00312 .00152 48.677	Sn1899 ppm .00053 .00015 27.400	Sr4077 ppm . 00050 .00027 53.544	Ti3372 ppm 00445 .00401 90.015	TI1908 ppm 00085 .00216 252.23	
#1 #2 #3	00046 .00132 .00645	.00138 .00395 00756	00207 00487 00243	.00055 .00038 .00066	.00057 .00020 .00071	.00009 00748 00597	.00159 00167 00248	
Check ? High Limit Low Limit	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	
Elem Units Avg Stddev %RSD	V_2924 ppm . 00039 .00049 124.45	Zn2062 ppm .00005 .00009 168.59	Zr3391 ppm F .05433 .15707 289.10					
#1 #2 #3	.00091 .00034 00007	.00010 .00010 00005	.21321 10087 .05065					
Check ? High Limit Low Limit	Chk Pass	Chk Pass	Chk Fail .04000 04000					
Int. Std. Units Avg Stddev %RSD	Y_2243 Cts/S 13606. 10. .07174	Y_3600 Cts/S 97463. 889. .91180	Y_3774 Cts/S 4381.2 17.0 .38774					
#1 #2 #3	13598. 13602. 13617.	98128. 97808. 96454.	4398.2 4381.1 4364.2					

Sample Name: LLCCV Acquired: 5/16/2016 19:47:29 Type: Unk Method: ICP-THERMO3_6010_200.7WATER_3YLINES(v873) Mode: CONC Corr. Factor: 1.000000 User: JYH Custom ID1: Custom ID2: Custom ID3: Comment:									
Elem Units Avg Stddev %RSD	Ag3280 ppm . 00466 .00024 5.2523	ppm . 13843 .00585	ppm . 00526 .00126	ppm . 07423	Ba4554 ppm . 00877 .00028 3.1529	Be3131 ppm . 00156 .00005 3.3920	. 34658 .01960	Cd2288 ppm .00086 .00031 36.305	
#1 #2 #3	.00478 .00481 .00437	.14127 .13170 .14231			.00897 .00845 .00888	.00159 .00159 .00150	.32718 .36637 .34620	.00122 .00063 .00074	
Check ? High Limit Low Limit		Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	
Elem Units Avg Stddev %RSD	Co2286 ppm .00377 .00042 11.104	.00055	ppm . 00356	ppm . 09657 .01484	K_7664 ppm . 91479 .08443 9.2295	Li6707 ppm . 07939 .00061 .76385	3	Mn2576 ppm .00619 .00183 29.555	
#1 #2 #3	.00350 .00425 .00356		.00296	.11066	.81777 .95495 .97163	.07872 .07956 .07989		.00449 .00595 .00813	
Check ? High Limit Low Limit	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	
Elem Units Avg Stddev %RSD	Mo2020 ppm . 00776 .00004 .53481	Na5895 ppm . 37468 .01283 3.4241	ppm . 01470	ppm . 73118 .00407	Pb2203 ppm . 00600 .00327 54.576	Sb2068 ppm . 07822 .00159 2.0372	ppm . 01028 .00824	. 78870 .00163	
#1 #2 #3	.00777 .00772 .00780		.01345	.73314	.00573 .00939 .00286	.07960 .07648 .07859	.00080 .01562 .01443		
Check ? High Limit Low Limit	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	

Sample Name: LLCCV Acquired: 5/16/2016 19:47:29 Type: Unk Method: ICP-THERMO3_6010_200.7WATER_3YLINES(v873) Mode: CONC Corr. Factor: 1.000000 User: JYH Custom ID1: Custom ID2: Custom ID3:								
Comment:								
Elem Units Avg Stddev %RSD	Sn1899 ppm . 38150 .00168 .44066	Sr4077 ppm . 03734 .00025 .66451	Ti3372 ppm . 01794 .00539 30.028	TI1908 ppm . 14459 .00243 1.6800	V_2924 ppm . 00863 .00041 4.7730	Zn2062 ppm . 01654 .00004 .23723	Zr3391 ppm 33.636 .585 1.7396	
#1 #2 #3	.38260 .38234 .37957	.03751 .03746 .03705	.02378 .01686 .01317	.14208 .14476 .14693	.00840 .00838 .00910	.01659 .01652 .01651	34.156 33.748 33.002	
Check ? High Limit Low Limit	Chk Pass							
Int. Std. Units Avg Stddev %RSD	Y_2243 Cts/S 13679. 48. .35281	Y_3600 Cts/S 97774. 469. .47926	Y_3774 Cts/S 4345.3 35.9 .82718					
#1 #2 #3	13691. 13625. 13719.	97335. 97720. 98268.	4386.7 4322.3 4326.9					

Sample Name: LLCCV Acquired: 5/16/2016 19:51:28 Type: Unk Method: ICP-THERMO3_6010_200.7WATER_3YLINES(v873) Mode: CONC Corr. Factor: 1.000000 User: JYH Custom ID1: Custom ID2: Custom ID3: Comment:								
Elem	Ag3280	Al3082	As1890	B_2496	Ba4554	Be3131	Ca4226	
Units	ppm	ppm	ppm	ppm	ppm	ppm	ppm	
Avg	. 00719	. 17470	.00827	.09222	.01044	.00196	. 45636	
Stddev	.00082	.00308	.00168	.00116	.00021	.00003	.00733	
%RSD	11.340	1.7642	20.343	1.2572	2.0023	1.6824	1.6070	
#1	.00651	.17411	.00729	.09153	.01029	.00200	.46480	
#2	.00810	.17804	.01021	.09355	.01035	.00195	.45154	
#3	.00697	.17196	.00730	.09156	.01068	.00193	.45275	
Check ? High Limit Low Limit	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	
Elem	Cd2288	Co2286	Cr2677	Cu2247	Fe2611	K_7664	Li6707	
Units	ppm	ppm	ppm	ppm	ppm	ppm	ppm	
Avg	. 00134	.00461	. 00572	. 00427	.09710	1.1151	. 09866	
Stddev	.00021	.00008	.00062	.00145	.01754	.1158	.00056	
%RSD	15.426	1.7168	10.881	33.860	18.061	10.382	.56948	
#1	.00138	.00468	.00544	.00482	.11717	1.0638	.09804	
#2	.00112	.00463	.00529	.00263	.08473	1.0338	.09879	
#3	.00152	.00452	.00644	.00537	.08940	1.2476	.09914	
Check ? High Limit Low Limit	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	
Elem	Mg2790	Mn2576	Mo2020	Na5895	Ni2316	P_2149	Pb2203	
Units	ppm	ppm	ppm	ppm	ppm	ppm	ppm	
Avg	. 60938	. 01010	.00911	. 46118	.02029	. 91659	. 01152	
Stddev	.06068	.00028	.00030	.02202	.00016	.00193	.00219	
%RSD	9.9577	2.8077	3.3070	4.7742	.79356	.21057	19.003	
#1	.55717	.00977	.00946	.47714	.02030	.91767	.01247	
#2	.59502	.01021	.00891	.43606	.02012	.91774	.00901	
#3	.67595	.01030	.00896	.47035	.02045	.91436	.01307	
Check ? High Limit Low Limit	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	

Sample Nam Method: ICP User: JYH Comment:	ne: LLCCV -THERMO3_ Custom I	6010_200.7	5/16/2016 19 WATER_3Y Custom ID2:	LINES(v873)	Type: Unk) Mode: tom ID3:	CONC (Corr. Factor:	1.000000
Elem Units Avg Stddev %RSD	Sb2068 ppm . 09365 .00159 1.6954	Se1960 ppm .01377 .00726 52.674	Si2124 ppm .98405 .00380 .38584	Sn1899 ppm . 47683 .00163 .34170	Sr4077 ppm . 04667 .00024 .51398	Ti3372 ppm . 02634 .00464 17.626	TI1908 ppm . 18156 .00177 .97485	
#1 #2 #3	.09270 .09277 .09548	.01356 .02114 .00663	.98388 .98033 .98792	.47735 .47501 .47814	.04685 .04677 .04640	.03149 .02248 .02506	.17965 .18189 .18315	
Check ? High Limit Low Limit	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	
Elem Units Avg Stddev %RSD	V_2924 ppm . 01046 .00074 7.0319	Zn2062 ppm . 02106 .00025 1.1656	Zr3391 ppm F 44.044 1.109 2.5188					
#1 #2 #3	.01103 .01073 .00963	.02079 .02128 .02110	44.558 44.803 42.771					
Check ? High Limit Low Limit	Chk Pass	Chk Pass	Chk Fail 36.000 04000					
Int. Std. Units Avg Stddev %RSD	Y_2243 Cts/S 13669. 48. .35144	Y_3600 Cts/S 98514. 595. .60375	Y_3774 Cts/S 4352.1 62.6 1.4394					
#1 #2 #3	13714. 13674. 13619.	98374. 99166. 98001.	4292.4 4346.5 4417.3					

Sample Name: PBW A1 Acquired: 5/16/2016 19:55:27 Type: Unk

Method: ICP-THERMO3_6010_200.7WATER_3YLINES(v873) Mode: CONC Corr. Factor: 1.000000

User: JYH Custom ID1: Custom ID2: Custom ID3:

Comment: WG568874-02

Elem	Ag3280	Al3082	As1890	B_2496	Ba4554	Be3131	Ca4226
Units	ppm	ppm	ppm	ppm	ppm	ppm	ppm
Avg	F00424	00362	.00028	. 00204	.00052	.00013	00076
Stddev	.00263	.01043	.00138	.00433	.00086	.00004	.02101
%RSD	61.987	288.19	486.63	211.76	166.32	31.715	2763.7
#1	00644	01412	00060	.00598	.00036	.00010	00576
#2	00133	00347	00043	.00275	.00144	.00012	.02229
#3	00496	.00673	.00188	00259	00026	.00018	01881
Check ? High Limit Low Limit	Chk Fail 9.0000 00400	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass
Elem	Cd2288	Co2286	Cr2677	Cu2247	Fe2611	K_7664	Li6707
Units	ppm	ppm	ppm	ppm	ppm	ppm	ppm
Avg	. 00020	00024	. 00069	00054	01288	. 19062	. 00699
Stddev	.00037	.00011	.00119	.00092	.02520	.14329	.00090
%RSD	187.93	45.128	172.26	170.08	195.70	75.168	12.915
#1	00019	00013	00010	00081	.01477	.06338	.00792
#2	.00054	00026	.00206	00130	01885	.16265	.00611
#3	.00024	00034	.00011	.00048	03455	.34583	.00695
Check ? High Limit Low Limit	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass
Elem	Mg2790	Mn2576	Mo2020	Na5895	Ni2316	P_2149	Pb2203
Units	ppm	ppm	ppm	ppm	ppm	ppm	ppm
Avg	. 09436	00033	.00038	01570	00087	00780	00156
Stddev	.01222	.00101	.00042	.01776	.00082	.00498	.00229
%RSD	12.950	303.88	109.17	113.17	93.519	63.845	147.01
#1	.09808	.00034	00009	01272	00053	01341	00283
#2	.08071	.00015	.00054	03476	00028	00388	.00109
#3	.10429	00149	.00070	.00039	00181	00612	00293
Check ? High Limit Low Limit	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass

Sample Name: PBW A1 Acquired: 5/16/2016 19:55:27 Type: Unk Method: ICP-THERMO3_6010_200.7WATER_3YLINES(v873) Mode: CONC Corr. Factor: 1.000000 User: JYH Custom ID1: Custom ID2: Custom ID3: Comment: WG568874-02 Elem Sb2068 Se1960 Si2124 Sn1899 Sr4077 Ti3372 TI1908 Units ppm ppm ppm ppm ppm ppm ppm .00200 -.02071 -.00081 .00056 -.00120 -.00521 Avg -.00078 Stddev .00275 .00805 .00080 .00015 .00042 .00302 .00326 402.59 250.65 %RSD 352.00 3.8752 18.385 76.415 62.473 #1 .00051 .01119 -.02152 -.00070 .00101 -.00467 -.00338 #2 .00109 -.00137 -.01991 -.00075 .00017 .00086 -.00329 #3 -.00394 -.00382 -.02069 -.00098 .00049 .00020 -.00897 **Chk Pass Chk Pass Chk Pass** Check? **Chk Pass Chk Pass Chk Pass Chk Pass** High Limit Low Limit Elem V_2924 Zn2062 Zr3391 Units ppm ppm ppm F -.10800 .00056 .00158 Avg .00066 .00017 .24388 Stddev %RSD 116.59 10.457 225.81 #1 .00131 .00151 -.15476 #2 .00008 .00146 -.32512#3 .00031 .00177 .15587 Check? Chk Pass **Chk Pass** Chk Fail 36.000 High Limit Low Limit -.04000 Int. Std. Y_2243 Y_3600 Y_3774 Units Cts/S Cts/S Cts/S 13198. 94637. 4241.4 Avg Stddev 462. 18.1 14. .42713 %RSD .10746 .48802 #1 13204. 94106. 4243.9 #2 94862. 4222.1 13182.

94943.

13208.

4258.1

Approved: May 17, 2016

#3

Sample Name: LCSW A1 Acquired: 5/16/2016 19:59:26 Type: Unk

Method: ICP-THERMO3_6010_200.7WATER_3YLINES(v873) Mode: CONC Corr. Factor: 1.000000

User: JYH Custom ID1: Custom ID2: Custom ID3:

Comment: WG568874-03

Elem	Ag3280	Al3082	As1890	B_2496	Ba4554	Be3131	Ca4226	Cd2288
Units	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm
Avg	.20382	5.1568	.20421	1.0652	.51227	.02511	5.0988	.02518
Stddev	.00145	.0131	.00257	.0044	.00119	.00005	.0419	.00026
%RSD	.71079	.25366	1.2602	.41729	.23207	.20890	.82194	1.0201
#1	.20333	5.1711	.20401	1.0648	.51160	.02508	5.0703	.02516
#2	.20546	5.1539	.20688	1.0610	.51364	.02509	5.1469	.02493
#3	.20269	5.1454	.20174	1.0698	.51156	.02517	5.0791	.02544

Check? Chk Pass Chk P

Elem	Co2286	Cr2677	Cu2247	Fe2611	K_7664	Li6707	Mg2790	Mn2576
Units	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm
Avg	. 10516	. 26304	. 26398	2.1049	26.125	. 51500	5.2250	. 25754
Stddev	.00047	.00217	.00174	.0363	.042	.00407	.0490	.00162
%RSD	.44801	.82566	.65755	1.7259	.16034	.79087	.93749	.62810
#1	.10534	.26406	.26317	2.1073	26.172	.51633	5.2089	.25571
#2	.10463	.26451	.26597	2.0674	26.109	.51043	5.2800	.25811
#3	.10551	.26054	.26280	2.1399	26.092	.51825	5.1860	.25879

Check? Chk Pass Chk P

Elem	Mo2020	Na5895	Ni2316	P_2149	Pb2203	Sb2068	Se1960	Si2124
Units	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm
Avg	. 51555	26.141	. 26784	5.0990	. 26731	. 62209	.19179	2.5963
Stddev	.00082	.066	.00134	.0159	.00120	.00277	.00354	.0040
%RSD	.15889	.25432	.49868	.31080	.44709	.44501	1.8452	.15606
#1	.51557	26.145	.26644	5.1019	.26609	.62471	.19458	2.5938
#2	.51636	26.206	.26797	5.1131	.26737	.62238	.19298	2.6010
#3	.51472	26.073	.26910	5.0819	.26848	.61919	.18781	2.5941

Check? Chk Pass Chk P

Sample Name: LCSW A1 Acquired: 5/16/2016 19:59:26 Type: Unk

Method: ICP-THERMO3_6010_200.7WATER_3YLINES(v873) Mode: CONC Corr. Factor: 1.000000

User: JYH Custom ID1: Custom ID2: Custom ID3:

Comment: WG568874-03

Elem	Sn1899	Sr4077	Ti3372	TI1908	V_2924	Zn2062	Zr3391
Units	ppm	ppm	ppm	ppm	ppm	ppm	ppm
Avg	.52665	.51529	.51359	.25961	.51766	.53019	1.8378
Stddev	.00052	.00053	.00124	.00266	.00201	.00074	.2046
%RSD	.09926	.10202	.24062	1.0241	.38798	.14043	11.133
#1	.52606	.51588	.51490	.26116	.51998	.52966	1.9697
#2	.52682	.51514	.51343	.26113	.51648	.53104	1.6021
#3	.52706	.51486	.51244	.25654	.51653	.52988	1.9415

Check? Chk Pass Chk P

Low Limit

Int. Std.	Y_2243	Y_3600	Y_3774
Units	Cts/S	Cts/S	Cts/S
Avg	13155 .	93910.	4260.6
Stddev	40.	378.	30.9
%RSD	.30661	.40268	.72497
#1	13120.	93474.	4226.3
#2	13199.	94127.	4269.2
#3	13146.	94131.	4286.3

Sample Name: F BLANK Acquired: 5/16/2016 20:03:10 Type: Unk Method: ICP-THERMO3 6010 200.7WATER 3YLINES(v873) Mode: CONC Corr. Factor: 1.000000 User: JYH Custom ID1: Custom ID2: Custom ID3: Comment: WG568782-01 Al3082 As1890 B 2496 Ba4554 Ca4226 Cd2288 Elem Ag3280 Be3131 Units ppm ppm ppm ppm ppm ppm ppm ppm -.00280 .00090 -.00238 .00437 Avg .00039 .00012 -.02876 .00038 Stddev .00123 .00433 .00050 .00140 .00050 .00006 .03723 .00020 482.88 %RSD 43.837 20.942 32.124 125.87 51.283 129.47 51.292 #1 -.00420 .00113 -.00245 .00275 .00006 .00018 .00050 -.04686 #2 -.00229 -.00355 -.00185 .00512 .00015 .00010 .01406 .00049 .00511 #3 -.00191 -.00284 .00524 .00096 .00007 -.05348 .00016 Check? Chk Pass Chk Pass Chk Pass Chk Pass Chk Pass Chk Pass Chk Pass **High Limit** Low Limit Elem Co2286 Cr2677 Cu2247 Fe2611 K_7664 Li6707 Mg2790 Mn2576 Units ppm ppm ppm ppm ppm ppm ppm ppm .00005 .00090 -.00042 .19030 .00354 -.00000 Avg .04087 .00250 .00061 .00155 .01293 .00285 .08160 Stddev .00015 .04431 .00157 %RSD 313.63 68.207 368.97 31.634 23.283 80.514 3260.3 59682. #1 -.00010 .00126 -.00079 .04174 .23720 .00608 -.06599 .00180 #2 .00005 .00125 .00128 .05334 .18456 .00046 .09278 -.00110-.00175 .00408 #3 .00020 .00019 .02753 .14915 -.01928 -.00071 Check? Chk Pass Chk Pass Chk Pass Chk Pass Chk Pass Chk Pass Chk Pass High Limit Low Limit Elem Mo2020 Na5895 Ni2316 P_2149 Pb2203 Sb2068 Se1960 Si2124 Units ppm ppm ppm ppm ppm ppm ppm ppm .00056 129.58 -.00149 -.00361 -.00260 -.00103 .00560 -.01145 Avg Stddev .00053 .00088 .00252 .00097 .00246 .00585 .47 .00247 93.831 .36465 58.836 21.582 %RSD 69.725 37.417 238.24 104.45 #1 -.00085 .00032 130.08 -.00616 -.00364 .00175 .00823 -.00872 129.53 -.00114 -.00354 -.00194 -.01354 #2 .00116 -.00171 -.00110 #3 .00020 129.14 -.00249 -.00113 -.00246 -.00291 .00968 -.01208 Check? Chk Pass Chk Pass Chk Pass Chk Pass Chk Pass Chk Pass **Chk Pass** High Limit

Approved: May 17, 2016

Low Limit

Sample Name: F BLANK Acquired: 5/16/2016 20:03:10 Type: Unk Method: ICP-THERMO3_6010_200.7WATER_3YLINES(v873) Mode: CONC Corr. Factor: 1.000000 User: JYH Custom ID1: Custom ID2: Custom ID3: Comment: WG568782-01 Elem Sn1899 Sr4077 Ti3372 TI1908 V_2924 Zn2062 Zr3391 Units ppm ppm ppm ppm ppm ppm ppm -.00036 .00051 -.00574 -.00055 .00026 .00348 .00194 Avg Stddev .00031 .00021 .01282 .00220 .00089 .00033 .32440 40.893 223.34 396.81 9.4473 16702. %RSD 86.593 337.24 #1 -.00064 .00072 .00884 .00172 .00097 .00317 .09324 -.01079 #2 -.00041 .00050 -.00071 .00055 .00346 -.35833 #3 -.00002 .00030 -.01527 -.00267 -.00074 .00382 .27091 Check? Chk Pass Chk Pass Chk Pass Chk Pass Chk Pass Chk Pass High Limit Low Limit Y_3774 Int. Std. Y_2243 Y_3600 Units Cts/S Cts/S Cts/S 13103. 93290. Avg 4248.7 Stddev 59. 106. 46.3 %RSD .45225 .11371 1.0893 #1 13132. 93399. 4216.0

Approved: May 17, 2016

#2

#3

13143.

13035.

93187.

93282.

4228.4

4301.6

Sample Name: F BLANK Acquired: 5/16/2016 20:07:10 Type: Unk Method: ICP-THERMO3 6010 200.7WATER 3YLINES(v873) Mode: CONC Corr. Factor: 1.000000 User: JYH Custom ID1: Custom ID2: Custom ID3: Comment: WG568782-02 Al3082 As1890 B 2496 Ba4554 Ca4226 Cd2288 Elem Ag3280 Be3131 Units ppm ppm ppm ppm ppm ppm ppm ppm Avg -.00274 -.00984-.00237 .00115 .00144 .00006 -.00763 .00004 Stddev .00086 .00475 .00256 .00124 .00072 .00004 .03864 .00008 %RSD 31.159 48.336 108.07 107.94 49.618 61.621 506.52 181.56 #1 -.00360 -.00688 -.00529 .00029 .00069 .00008 -.03034 .00013 #2 -.00275 -.01532 -.00054 .00258 .00153 .00002 -.02954 .00002 #3 -.00189 -.00730 -.00127 .00059 .00212 80000. .03699 -.00002 Check? Chk Pass Chk Pass Chk Pass Chk Pass Chk Pass Chk Pass Chk Pass **High Limit** Low Limit Elem Co2286 Cr2677 Cu2247 Fe2611 K_7664 Li6707 Mg2790 Mn2576 Units ppm ppm ppm ppm ppm ppm ppm ppm -.00127 -.01727 .03626 -.00035 .00040 .00196 .00124 Avg .17219 .00008 .00049 .00020 .00519 Stddev .00731 .08184 .07730 .00267 %RSD 21.388 122.09 15.491 42.337 47.526 265.25 213.20 215.39 #1 -.00029 -.00010 -.00135 -.00883 .15497 .00436 .08848 .00405 #2 -.00033 .00087 -.00141 -.02122.10034 -.00400 .07284 -.00125.00043 -.00104 .00552 #3 -.00044-.02176.26127 -.05255 .00091 Check? Chk Pass Chk Pass Chk Pass Chk Pass Chk Pass Chk Pass Chk Pass High Limit Low Limit Elem Mo2020 Na5895 Ni2316 P_2149 Pb2203 Sb2068 Se1960 Si2124 Units ppm ppm ppm ppm ppm ppm ppm ppm -.00013 -.01524 -.00170 -.00451 .00038 -.00170 .00669 -.02075 Avg .00030 .02369 .00053 .00796 .00167 .00049 .00733 .00148 Stddev %RSD 155.41 31.160 239.82 176.32 437.48 28.739 109.60 7.1109 #1 -.00128 -.00031 -.00690 -.00226 .00156 -.00152 -.00114 -.02131 .00022 -.00161 .00132 -.00133 .00780 #2 -.04197 -.00153 -.01907 #3 -.00030 .00315 -.00122 -.01358 .00111 -.00225 .01339 -.02185 Check? Chk Pass Chk Pass Chk Pass Chk Pass Chk Pass Chk Pass **Chk Pass** High Limit

Approved: May 17, 2016

Low Limit

Sample Name: F BLANK Acquired: 5/16/2016 20:07:10 Type: Unk Method: ICP-THERMO3_6010_200.7WATER_3YLINES(v873) Mode: CONC Corr. Factor: 1.000000 User: JYH Custom ID1: Custom ID2: Custom ID3: Comment: WG568782-02 Elem Sn1899 Sr4077 Ti3372 TI1908 V_2924 Zn2062 Zr3391 Units ppm ppm ppm ppm ppm ppm ppm -.00118 .00047 .00230 -.00192 .00002 .00300 -.03616 Avg Stddev .00024 .00022 .00628 .00351 .00040 .00015 .10775 20.544 45.799 273.28 182.43 4.9364 %RSD 2174.3 297.99 #1 -.00134 .00033 -.00322 -.00074 .00041 .00314 -.10523 #2 -.00131 .00072 .00098 .00084 .00003 .00301 .08800 #3 -.00090 .00036 .00913 -.00588 -.00039 .00285 -.09124 Check? Chk Pass Chk Pass Chk Pass Chk Pass Chk Pass Chk Pass High Limit Low Limit Y_3774 Int. Std. Y_2243 Y_3600 Units Cts/S Cts/S Cts/S 13265. 95966. 4252.5 Avg Stddev 26. 333. 67.1 %RSD .19371 .34647 1.5783 #1 13277. 95981. 4175.1 #2 13282. 96291. 4294.6

Approved: May 17, 2016

#3

13236.

95626.

4287.7

Sample Name: L1605076402 Acquired: 5/16/2016 20:11:10 Type: Unk Method: ICP-THERMO3_6010_200.7WATER_3YLINES(v873) Mode: CONC Corr. Factor: 1.000000 User: JYH Custom ID1: Custom ID2: Custom ID3: Comment: WG568874-01 AI3082 As1890 B 2496 Ba4554 Be3131 Ca4226 Elem Ag3280 Units ppm ppm ppm ppm ppm ppm ppm F -.00408 .00005 .00422 .01989 Avg -.00046.02206 41.864 Stddev .00070 .00211 .00159 .00293 .00010 .00004 .065 %RSD 17.236 50.099 345.19 14.718 .47046 75.451 .15497 #1 -.00486 .00182 -.00096 .02226 .02210 .00001 41.807 #2 -.00349 .00580 .00132 .01662 .02213 .00005 41.849 #3 -.00391 .00505 -.00173 .02078 .02194 .00008 41.934 Chk Fail Check? Chk Pass **Chk Pass Chk Pass Chk Pass Chk Pass Chk Pass** High Limit 9.0000 Low Limit -.00400 Elem Cd2288 Co2286 Cr2677 Cu2247 Fe2611 K 7664 Li6707 Units ppm ppm ppm ppm ppm ppm ppm .00083 .00048 .00157 .00053 .02986 .64869 Avg .00913 .00016 .00014 .03239 .00132 Stddev .00212 .00036 .05168 %RSD 16.422 68.446 108.48 7.9666 14.441 32.772 135.17 #1 .00032 .00090 -.00031 .00034 .01768 .61424 .00777 #2 .00048 .00092 .00115 .00030 .00532 .62372 .01040 .00068 .00386 .06656 #3 .00064 .00095 .70811 .00922 Check? **Chk Pass Chk Pass Chk Pass Chk Pass Chk Pass Chk Pass Chk Pass** High Limit Low Limit Elem Mg2790 Mn2576 Mo2020 Na5895 Ni2316 P_2149 Pb2203 Units ppm ppm ppm ppm ppm ppm ppm 19.131 .71588 .00120 127.98 .01025 .00303 .00174 Avg .00232 .00010 .00040 .01006 .00154 Stddev .092 .40 %RSD .48120 .32350 8.5634 .30998 3.9126 332.31 88.602 #1 .00293 19.237 .71459 .00113 128.43 .01067 .00070 .01022 .71855 127.74 -.00566 .00000 #2 19.070 .00116 .71449 .00228 #3 19.087 .00132 127.75 .00987 .01405 Check? **Chk Pass** Chk Pass **Chk Pass Chk Pass Chk Pass Chk Pass Chk Pass** High Limit

Approved: May 17, 2016

Low Limit

Sample Name: L1605076402 Acquired: 5/16/2016 20:11:10 Method: ICP-THERMO3_6010_200.7WATER_3YLINES(v873) User: JYH Custom ID1: Custom ID2:					Type: Unk Mode: CON ID3:	C Corr. F	Factor: 1.00000(
Elem Units Avg Stddev %RSD	Sb2068 ppm . 00004 .00600 15733.	Se1960 ppm 00412 .00097 23.573	Si2124 ppm .18190 .00388 2.1336	Sn1899 ppm 00016 .00018 107.83	Sr4077 ppm . 07197 .00014 .19227	Ti3372 ppm 00818 .00524 64.074	TI1908 ppm 00447 .00158 35.287
#1 #2 #3	.00145 .00521 00654	00310 00421 00503	.17759 .18299 .18512	.00004 00023 00030	.07194 .07213 .07186	01071 00216 01169	00495 00575 00271
Check ? High Limit Low Limit	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass
Elem Units Avg Stddev %RSD	V_2924 ppm .00060 .00089 148.19	Zn2062 ppm . 22620 .00043 .18835	Zr3391 ppm . 06990 .37783 540.54				
#1 #2 #3	.00044 .00155 00020	.22645 .22571 .22644	35388 .19197 .37161				
Check ? High Limit Low Limit	Chk Pass	Chk Pass	Chk Pass				
Int. Std. Units Avg Stddev %RSD	Y_2243 Cts/S 12884. 38. .29353	Y_3600 Cts/S 91562. 501. .54742	Y_3774 Cts/S 4286.4 18.3 .42769				
#1 #2 #3	12920. 12844. 12889.	91129. 91447. 92111.	4266.9 4288.9 4303.3				

Sample Name: L1605076402S Acquired: 5/16/2016 20:15:07 Type: Unk Mode: CONC Method: ICP-THERMO3 6010 200.7WATER 3YLINES(v873) Corr. Factor: 1.000000 User: JYH Custom ID1: Custom ID2: Custom ID3: Comment: WG568874-04 Al3082 B_2496 Ba4554 Ca4226 Cd2288 Elem Ag3280 As1890 Be3131 Units ppm ppm ppm ppm ppm ppm ppm ppm Avg .20397 5.1527 .20593 1.0463 .53208 .02563 47.404 .02545 Stddev .00201 .0099 .00222 .0012 .00214 .00011 .092 .00002 %RSD .98359 .19234 1.0776 .11139 .40131 .41852 .19475 .09104 #1 1.0454 .02575 .02544 .20172 5.1636 .20429 .53005 47.322 #2 .20464 5.1443 .20504 1.0459 .53431 .02554 47.504 .02543 5.1502 .20845 .02547 #3 .20556 1.0476 .53187 .02560 47.385 Check? Chk Pass Chk Pass Chk Pass Chk Pass Chk Pass Chk Pass Chk Pass Chk Pass **High Limit** Low Limit Mg2790 Elem Co2286 Cr2677 Cu2247 Fe2611 K_7664 Mn2576 Li6707 Units ppm ppm ppm ppm ppm ppm ppm ppm .26415 .26012 2.1126 26.594 .99147 Avg .10468 .51346 24.787 .00021 .00074 Stddev .00266 .0244 .111 .00328 .145 .00561 %RSD .20216 1.0086 .28522 1.1567 .41908 .63805 .58575 .56595 #1 .10492 .26270 .26039 2.1292 26.723 .51037 24.744 .98540 #2 .10458 .26253 .25929 2.0845 26.528 .51312 24.668 .99648 #3 .10454 .26723 .26070 2.1240 26.531 .51690 24.948 .99253 Check? Chk Pass Chk Pass Chk Pass Chk Pass Chk Pass Chk Pass Chk Pass High Limit Low Limit P_2149 Elem Mo2020 Na5895 Ni2316 Pb2203 Sb2068 Se1960 Si2124 Units ppm ppm ppm ppm ppm ppm ppm ppm Avg .52294 157.52 .27453 5.2790 .26422 .62969 .19386 2.8653 .00089 .0032 .00519 .00685 Stddev .43 .00116 .00136 .0049 .17019 .21624 3.5324 %RSD .27213 .42181 .05989 1.9653 .17097 #1 .52343 5.2771 .25826 157.17 .27557 .62861 .20165 2.8644 .52347 158.00 5.2773 2.8609 #2 .27328 .26667 .19118 .63122 #3 .52191 157.38 .27473 5.2826 .26774 .62924 .18877 2.8706 Check? Chk Pass Chk Pass Chk Pass Chk Pass Chk Pass Chk Pass Chk Pass High Limit

Approved: May 17, 2016

Low Limit

Sample Name: L1605076402S Acquired: 5/16/2016 20:15:07 Type: Unk

Method: ICP-THERMO3_6010_200.7WATER_3YLINES(v873) Mode: CONC Corr. Factor: 1.000000

User: JYH Custom ID1: Custom ID2: Custom ID3:

Comment: WG568874-04

Elem	Sn1899	Sr4077	Ti3372	TI1908	V_2924	Zn2062	Zr3391
Units	ppm	ppm	ppm	ppm	ppm	ppm	ppm
Avg	.52507	.58682	.50789	.24570	.52662	.75427	.78821
Stddev	.00058	.00218	.00353	.00268	.00154	.00345	.42778
%RSD	.11068	.37074	.69437	1.0918	.29167	.45729	54.272
#1	.52461	.58521	.51102	.24730	.52487	.75275	.29535
#2	.52487	.58930	.50859	.24260	.52726	.75185	1.0632
#3	.52572	.58596	.50407	.24719	.52774	.75822	1.0061

Check? Chk Pass Chk P

Low Limit

Int. Std.	Y_2243	Y_3600	Y_3774
Units	Cts/S	Cts/S	Cts/S
Avg	12880.	91049 .	4273.7
Stddev	18.	203.	19.2
%RSD	.13857	.22342	.45011
#1	12860.	90815.	4267.4
#2	12894.	91156.	4295.3
#3	12885.	91177.	4258.4

Sample Name: L1605076402SD Acquired: 5/16/2016 20:18:50 Type: Unk Method: ICP-THERMO3_6010_200.7WATER_3YLINES(v873) Mode: CONC Corr. Factor: 1.000000 User: JYH Custom ID1: Custom ID2: Custom ID3: Comment: WG568874-05 Ag3280 Al3082 B_2496 Ba4554 Ca4226 Cd2288 Elem As1890 Be3131 Units ppm ppm ppm ppm ppm ppm ppm ppm 47.010 5.1487 .20796 Avg .20573 1.0463 .53511 .02563 .02568 Stddev .00082 .0142 .00142 .0057 .00101 .00004 .123 .00011 %RSD .39668 .27580 .68484 .54506 .18861 .15991 .26135 .41218 .02575 #1 .20565 .20692 1.0426 .02559 5.1363 .53536 47.142 #2 .20658 5.1456 .20738 1.0433 .53597 .02564 46.989 .02572 #3 .20496 5.1642 .20959 1.0528 .53400 .02567 46.899 .02556 Chk Pass Chk Pass Chk Pass Chk Pass Chk Pass Chk Pass Chk Pass Check? **High Limit** Low Limit Mg2790 Elem Co2286 Cr2677 Cu2247 Fe2611 K_7664 Li6707 Mn2576 Units ppm ppm ppm ppm ppm ppm ppm ppm .10534 .26210 .26040 2.0994 26.816 24.398 .98320 Avg .51167 .00091 .00044 .0231 .00392 Stddev .00023 .059 .00691 .136 .55865 %RSD .21987 .34870 .17011 1.1009 .21915 1.3510 .39820 #1 .10520 .26208 .26045 2.0734 26.800 .50453 24.554 .98684 #2 .10522 .26120 .25993 2.1075 26.881 .51833 24.302 .98371 .10561 26.767 #3 .26303 .26081 2.1174 .51215 24.338 .97906

Check? Chk Pass Chk P

Elem	Mo2020	Na5895	Ni2316	P_2149	Pb2203	Sb2068	Se1960	Si2124
Units	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm
Avg	. 52734	156.37	. 27611	5.2830	. 26684	. 63782	.19732	2.8855
Stddev	.00090	.65	.00181	.0121	.00077	.00210	.00344	.0042
%RSD	.17097	.41810	.65503	.22846	.28908	.32856	1.7439	.14401
#1	.52729	157.11	.27542	5.2694	.26596	.63916	.20071	2.8857
#2	.52647	156.14	.27475	5.2869	.26741	.63540	.19383	2.8813
#3	.52827	155.87	.27817	5.2926	.26715	.63889	.19743	2.8896

Check? Chk Pass Chk P

Method: ICP-THERMO3_6010_200.7WATER_3YLINES(v873) Mode: CONC Corr. Factor: 1.000000

User: JYH Custom ID1: Custom ID2: Custom ID3:

Comment: WG568874-05

Elem	Sn1899	Sr4077	Ti3372	TI1908	V_2924	Zn2062	Zr3391
Units	ppm	ppm	ppm	ppm	ppm	ppm	ppm
Avg	.52675	.59007	.51736	.25432	.52662	.75580	.76128
Stddev	.00254	.00205	.00334	.00327	.00313	.00079	.23757
%RSD	.48227	.34763	.64533	1.2848	.59473	.10417	31.207
#1	.52778	.58813	.51377	.25280	.53023	.75613	.91890
#2	.52861	.59222	.51795	.25807	.52466	.75637	.87691
#3	.52385	.58986	.52037	.25210	.52497	.75490	.48802

Check? Chk Pass Chk P

Low Limit

Int. Std.	Y_2243	Y_3600	Y_3774
Units	Cts/S	Cts/S	Cts/S
Avg	12809.	91408.	4269.6
Stddev	20.	94.	43.5
%RSD	.15466	.10261	1.0180
#1	12791.	91367.	4220.8
#2	12830.	91515.	4304.2
#3	12806.	91342.	4283.9

Sample Name: L1605062701 Acquired: 5/16/2016 20:22:30 Type: Unk Method: ICP-THERMO3_6010_200.7WATER_3YLINES(v873) Mode: CONC Corr. Factor: 1.000000 User: JYH Custom ID1: Custom ID2: Custom ID3: Comment:								
Elem	Ag3280	Al3082	As1890	B_2496	Ba4554	Be3131	Ca4226	Cd2288
Units	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm
Avg	00245	. 13213	00089	. 01555	. 04270	.00008	28.941	. 00058
Stddev	.00078	.00186	.00082	.00188	.00099	.00004	.073	.00017
%RSD	31.728	1.4085	92.783	12.088	2.3209	52.852	.25348	29.721
#1	00311	.13096	.00002	.01403	.04158	.00011	28.857	.00070
#2	00159	.13427	00110	.01497	.04302	.00003	28.984	.00038
#3	00264	.13114	00158	.01765	.04348	.00010	28.984	.00065
Check ? High Limit Low Limit	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass
Elem	Co2286	Cr2677	Cu2247	Fe2611	K_7664	Li6707	Mg2790	Mn2576
Units	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm
Avg	00018	.00163	.00086	. 12602	. 88001	. 01120	5.7669	. 00316
Stddev	.00036	.00086	.00119	.01556	.08171	.00311	.0860	.00057
%RSD	196.37	52.712	138.27	12.343	9.2853	27.793	1.4913	17.944
#1	00026	.00107	00020	.13833	.93854	.01393	5.8634	.00366
#2	00050	.00262	.00064	.10854	.78666	.01186	5.7386	.00327
#3	.00021	.00120	.00215	.13120	.91483	.00781	5.6986	.00254
Check ? High Limit Low Limit	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass
Elem	Mo2020	Na5895	Ni2316	P_2149	Pb2203	Sb2068	Se1960	Si2124
Units	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm
Avg	. 00119	4.7415	00204	. 01021	00046	00564	00176	3.6516
Stddev	.00017	.0348	.00010	.00233	.00355	.00240	.00192	.0102
%RSD	13.843	.73454	4.8593	22.813	765.80	42.541	109.30	.27872
#1	.00113	4.7345	00198	.00767	.00356	00317	00322	3.6526
#2	.00107	4.7793	00200	.01224	00314	00580	00246	3.6613
#3	.00138	4.7107	00216	.01072	00181	00796	.00042	3.6410
Check ? High Limit Low Limit	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass

Sample Nar Method: ICF User: JYH Comment:		3_6010_200	.cquired: 5/1 .7WATER_ Custom ID	3YLINES(v8	•	ype: Unk ode: CONC :	Corr. Fa	ctor: 1.00000(
Elem Units Avg Stddev %RSD	Sn1899 ppm 00010 .00110 1098.3	Sr4077 ppm . 13249 .00087 .65843	Ti3372 ppm 00061 .00422 689.21	TI1908 ppm 00296 .00398 134.51	V_2924 ppm . 00157 .00074 47.473	Zn2062 ppm . 00261 .00021 8.0780	Zr3391 ppm . 07038 .41849 594.57	
#1 #2 #3	00104 .00111 00037	.13264 .13327 .13155	.00425 00274 00334	00227 .00063 00723	.00088 .00146 .00236	.00248 .00286 .00251	40055 .39965 .21206	
Check ? High Limit Low Limit	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	
Int. Std. Units Avg Stddev %RSD	Y_2243 Cts/S 13084. 40. .30912	Y_3600 Cts/S 94832 . 393. .41393	Y_3774 Cts/S 4239.4 31.9 .75258					
#1 #2 #3	13054. 13130. 13068.	95116. 94384. 94995.	4274.0 4233.2 4211.1					

Sample Name: L1605062701PS Acquired: 5/16/2016 20:26:28 Type: Unk Method: ICP-THERMO3_6010_200.7WATER_3YLINES(v873) Mode: CONC Corr. Factor: 1.000000 User: JYH Custom ID1: Custom ID2: Custom ID3: Comment: WG569026-01 Elem Ag3280 Al3082 As1890 B_2496 Ba4554 Be3131 Ca4226 Cd2288 Units ppm ppm ppm ppm ppm ppm ppm ppm .02501 .20394 5.2501 .19898 1.0275 30.647 .02547 Avg .54519 Stddev .00084 .0159 .00115 .0013 .00233 .00003 .135 .00010 .30348 .12879 %RSD .41340 .57662 .42778 .13095 .44043 .39885 #1 .20322 5.2323 .19766 1.0271 .54256 .02500 30.509 .02547 #2 .20487 5.2551 .19968 1.0264 .54703 .02504 30.779 .02558 #3 .20374 5.2629 .19961 1.0289 .54597 .02498 30.654 .02537 Chk Pass Chk Pass Chk Pass Chk Pass Chk Pass Chk Pass Chk Pass Check?

High Limit Low Limit

Elem	Co2286	Cr2677	Cu2247	Fe2611	K_7664	Li6707	Mg2790	Mn2576
Units	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm
Avg	.10423	. 26538	. 26368	2.1679	26.648	. 52052	10.307	. 25654
Stddev	.00092	.00189	.00145	.0568	.057	.00273	.090	.00431
%RSD	.88288	.71209	.54901	2.6209	.21234	.52504	.87608	1.6799
#1	.10526	.26756	.26501	2.2197	26.703	.52290	10.378	.25173
#2	.10397	.26439	.26214	2.1769	26.651	.51754	10.338	.26006
#3	.10347	.26420	.26388	2.1072	26.590	.52113	10.206	.25781

Check? Chk Pass Chk Pass Chk Pass Chk Pass Chk Pass Chk Pass Chk Pass High Limit Low Limit

Elem	Mo2020	Na5895	Ni2316	P_2149	Pb2203	Sb2068	Se1960	Si2124
Units	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm
Avg	. 51915	29.923	. 26567	5.1301	. 26636	. 62577	.19159	5.9762
Stddev	.00196	.197	.00092	.0105	.00438	.00427	.00450	.0225
%RSD	.37799	.65787	.34601	.20536	1.6434	.68309	2.3506	.37629
#1	.52128	29.742	.26575	5.1248	.26407	.62966	.19621	6.0002
#2	.51741	30.133	.26471	5.1232	.26360	.62120	.19135	5.9556
#3	.51877	29.895	.26654	5.1422	.27140	.62647	.18722	5.9728

Check? Chk Pass Chk Pass Chk Pass Chk Pass Chk Pass Chk Pass Chk Pass High Limit Low Limit

Sample Name: L1605062701PS Acquired: 5/16/2016 20:26:28 Type: Unk

Method: ICP-THERMO3_6010_200.7WATER_3YLINES(v873) Mode: CONC Corr. Factor: 1.000000

User: JYH Custom ID1: Custom ID2: Custom ID3:

Comment: WG569026-01

Elem	Sn1899	Sr4077	Ti3372	TI1908	V_2924	Zn2062	Zr3391
Units	ppm	ppm	ppm	ppm	ppm	ppm	ppm
Avg	.52581	.63016	.50785	.25764	.52396	.52533	.67165
Stddev	.00167	.00183	.00604	.00659	.00244	.00157	.12794
%RSD	.31711	.28988	1.1887	2.5566	.46570	.29894	19.049
#1	.52727	.62856	.51388	.26420	.52483	.52688	.58440
					.000		
#2	.52399	.63215	.50786	.25102	.52584	.52374	.61204
#3	.52617	.62977	.50181	.25769	.52120	.52537	.81852

Check? Chk Pass Chk P

Low Limit

Int. Std.	Y_2243	Y_3600	Y_3774
Units	Cts/S	Cts/S	Cts/S
Avg	12954.	92409.	4252.6
Stddev	24.	140.	19.2
%RSD	.18171	.15171	.45211
#1	12968.	92555.	4230.4
#2	12927.	92396.	4262.6
#3	12968.	92275.	4264.8

Sample Name: L1605062701SDL Acquired: 5/16/2016 20:30:11 Type: Unk Method: ICP-THERMO3 6010 200.7WATER 3YLINES(v873) Mode: CONC Corr. Factor: 1.000000 User: JYH Custom ID1: 5 Custom ID2: Custom ID3: Comment: WG569026-02 Al3082 As1890 B 2496 Ba4554 Be3131 Ca4226 Cd2288 Elem Ag3280 Units ppm ppm ppm ppm ppm ppm ppm ppm .00729 Avg -.00199 .01456 -.00261 .00831 .00008 5.1817 .00032 Stddev .00089 .00315 .00380 .00085 .00046 .00003 .0400 .00016 %RSD 44.590 21.660 145.57 11.641 5.5747 33.282 .77221 50.002 #1 -.00114 -.00249 .00637 .00884 .00005 .00014 .01093 5.1919 #2 -.00291 .01613 .00113 .00805 .00797 .00010 5.1376 .00045 #3 -.00193 .01662 -.00646 .00745 .00813 .00009 5.2157 .00038 Check? Chk Pass Chk Pass Chk Pass Chk Pass Chk Pass Chk Pass Chk Pass Chk Pass **High Limit** Low Limit Elem Co2286 Cr2677 Cu2247 Fe2611 K_7664 Li6707 Mg2790 Mn2576 Units ppm ppm ppm ppm ppm ppm ppm ppm -.00022 -.00086 -.00077 .00198 .00057 .00020 Avg .30250 1.0710 .00063 .00061 .05527 .00300 .00056 Stddev .00018 .01673 .1035 %RSD 79.394 73.413 79.206 844.17 18.270 521.45 9.6653 279.09 #1 -.00015 -.00144 -.00135 -.00977 .36151 -.00239.96366 .00078 #2 -.00010 -.00096 -.00014 .02114 .29405 .00360 1.1702 .00016 -.00019 -.00081 .00052 #3 -.00042-.00543.25195 1.0791 -.00034Check? Chk Pass Chk Pass Chk Pass Chk Pass Chk Pass Chk Pass Chk Pass High Limit Low Limit Elem Mo2020 Na5895 Ni2316 P_2149 Pb2203 Sb2068 Se1960 Si2124 Units ppm ppm ppm ppm ppm ppm ppm ppm .00034 .83446 -.00091 .00109 -.00006 -.00106 .00091 .64265 Avg .00036 .03972 .00028 .00716 .00255 .00154 .00018 .00185 Stddev %RSD 105.77 .28765 4.7602 30.966 658.86 4271.4 144.97 19.788 #1 .00076 .86403 -.00077 .00901 .00286 -.00036 .00088 .64072 .00011 .78931 -.00123 -.00080 .00001 #2 -.00117 .00075 .64281 #3 .00016 .85004 -.00072 -.00494 -.00187 -.00282 .00111 .64441 Check? Chk Pass Chk Pass Chk Pass Chk Pass Chk Pass Chk Pass Chk Pass High Limit Low Limit

Sample Name: L1605062701SDL Acquired: 5/16/2016 20:30:11 Type: Unk								
Method: ICF	P-THERMO3	3_6010_200	.7WATER_	3YLINES(v8	373) Mc	de: CONC	Corr. Fa	ctor: 1.00000(
User: JYH	Custom	ID1: 5	Custom I	D2:	Custom ID3	3:		
Comment: \	NG569026-0)2						
Elem Units Avg Stddev %RSD	Sn1899 ppm 00032 .00077 243.69	Sr4077 ppm .02388 .00008 .31958	Ti3372 ppm 00464 .00415 89.499	TI1908 ppm 00209 .00176 84.100	V_2924 ppm .00066 .00198 300.73	Zn2062 ppm .00163 .00012 7.5984	Zr3391 ppm 00199 .09368 4716.8	
#1 #2 #3	00070 .00057 00082	.02386 .02397 .02382	00223 00943 00226	00022 00235 00371	.00290 00086 00007	.00173 .00167 .00149	.03746 .06552 10893	
Check ? High Limit Low Limit	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	
Int. Std. Units Avg Stddev %RSD	Y_2243 Cts/S 14078. 20. .14403	Y_3600 Cts/S 100900. 156. .15481	Y_3774 Cts/S 4475.6 43.9 .98172					
#1 #2 #3	14097. 14081. 14057.	101070. 100820. 100790.	4505.2 4425.1 4496.6					

Sample Nam Method: ICP User: JYH Comment:		_		LINES(v873)	pe: QC) Mode: tom ID3:	CONC (Corr. Factor:	1.00000(
Elem	Ag3280	Al3082	As1890	B_2496	Ba4554	Be3131	Ca4226	
Units	ppm	ppm	ppm	ppm	ppm	ppm	ppm	
Avg	. 37201	9.3862	. 37235	. 47043	. 92810	. 04634	9.1229	
Stddev	.00212	.0202	.00344	.00272	.00301	.00004	.0592	
%RSD	.56969	.21537	.92387	.57777	.32463	.09007	.64861	
#1	.37443	9.4075	.37277	.46801	.92505	.04639	9.1331	
#2	.37049	9.3673	.37556	.46993	.92818	.04632	9.0593	
#3	.37110	9.3839	.36872	.47337	.93107	.04631	9.1763	
Check ? Value Range	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	
Elem	Cd2288	Co2286	Cr2677	Cu2247	Fe2611	K_7664	Li6707	
Units	ppm	ppm	ppm	ppm	ppm	ppm	ppm	
Avg	. 04616	.19094	. 47399	. 47825	3.7865	46.947	. 93226	
Stddev	.00010	.00055	.00173	.00102	.0356	.171	.00441	
%RSD	.21618	.28868	.36510	.21284	.94082	.36383	.47322	
#1	.04621	.19050	.47438	.47792	3.7953	46.858	.92750	
#2	.04605	.19075	.47210	.47744	3.8169	46.838	.93307	
#3	.04622	.19155	.47550	.47940	3.7473	47.144	.93621	
Check ? Value Range	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	
Elem	Mg2790	Mn2576	Mo2020	Na5895	Ni2316	P_2149	Pb2203	
Units	ppm	ppm	ppm	ppm	ppm	ppm	ppm	
Avg	9.3098	. 47113	. 92683	47.394	. 48432	9.4319	. 48675	
Stddev	.1208	.00318	.00416	.192	.00049	.0124	.00434	
%RSD	1.2978	.67459	.44877	.40449	.10214	.13197	.89211	
#1	9.1994	.46750	.93093	47.254	.48420	9.4412	.48633	
#2	9.4389	.47339	.92695	47.315	.48486	9.4367	.49129	
#3	9.2909	.47251	.92262	47.613	.48389	9.4177	.48264	
Check ? Value Range	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	

Sample Nam Method: ICP User: JYH Comment:		6010_200.7	16/2016 20:3 WATER_3Y Custom ID2:	LINES(v873	pe: QC) Mode: tom ID3:	CONC (Corr. Factor: 1	.000000
Elem Units Avg Stddev %RSD	Sb2068 ppm 1.1293 .0029 .25700	Se1960 ppm .36028 .00448 1.2432	Si2124 ppm 4.7203 .0053 .11317	Sn1899 ppm . 95409 .00225 .23626	Sr4077 ppm . 92423 .00366 .39568	Ti3372 ppm . 93215 .00528 .56668	TI1908 ppm . 47926 .00518 1.0800	
#1 #2 #3	1.1311 1.1309 1.1260	.35917 .36521 .35646	4.7249 4.7216 4.7145	.95472 .95596 .95159	.92196 .92228 .92845	.92630 .93656 .93360	.48110 .47342 .48327	
Check ? Value Range	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	
Elem Units Avg Stddev %RSD	V_2924 ppm . 93360 .00328 .35152	Zn2062 ppm . 96969 .00138 .14183	Zr3391 ppm F .54548 .20830 38.187					
#1 #2 #3	.93652 .93005 .93424	.96816 .97081 .97010	.31206 .61194 .71245					
Check ? Value Range	Chk Pass	Chk Pass	Chk Fail 1.0000 -10.000%					
Int. Std. Units Avg Stddev %RSD	Y_2243 Cts/S 13754. 76. .55552	Y_3600 Cts/S 97794. 561. .57406	Y_3774 Cts/S 4449.9 17.6 .39621					
#1 #2 #3	13842. 13713. 13706.	97771. 97243. 98366.	4453.7 4465.3 4430.6					

Sample Nam Method: ICP User: JYH Comment:	ne: CCB / -THERMO3_ Custom I	_		LINES(v873	pe: Blank) Mode: tom ID3:	CONC (Corr. Factor:	1.00000(
Elem	Ag3280	Al3082	As1890	B_2496	Ba4554	Be3131	Ca4226	
Units	ppm	ppm	ppm	ppm	ppm	ppm	ppm	
Avg	00251	01236	.00031	. 00168	.00077	.00008	05050	
Stddev	.00197	.00491	.00285	.00145	.00109	.00005	.01496	
%RSD	78.311	39.689	931.02	86.305	140.48	61.601	29.625	
#1	00065	00790	00080	.00272	00043	.00006	06458	
#2	00457	01158	.00354	.00002	.00169	.00004	05213	
#3	00231	01762	00182	.00229	.00106	.00013	03479	
Check ? High Limit Low Limit	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	
Elem	Cd2288	Co2286	Cr2677	Cu2247	Fe2611	K_7664	Li6707	
Units	ppm	ppm	ppm	ppm	ppm	ppm	ppm	
Avg	. 00017	00003	00062	00023	.00748	.13088	. 00306	
Stddev	.00027	.00008	.00087	.00101	.01261	.01065	.00131	
%RSD	160.43	241.33	139.55	445.92	168.61	8.1354	42.651	
#1	00014	00011	00149	.00046	.01355	.14239	.00199	
#2	.00030	00003	00064	.00025	00702	.12139	.00451	
#3	.00035	.00005	.00026	00139	.01591	.12886	.00268	
Check ? High Limit Low Limit	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	
Elem	Mg2790	Mn2576	Mo2020	Na5895	Ni2316	P_2149	Pb2203	
Units	ppm	ppm	ppm	ppm	ppm	ppm	ppm	
Avg	. 07793	00091	. 00398	03461	00047	. 00437	. 00006	
Stddev	.06430	.00371	.00049	.02729	.00043	.00307	.00206	
%RSD	82.503	408.12	12.336	78.841	91.224	70.247	3557.7	
#1	.02980	00136	.00384	06169	.00000	.00610	.00061	
#2	.15095	00438	.00453	03503	00083	.00083	00222	
#3	.05304	.00300	.00358	00712	00058	.00619	.00179	
Check ? High Limit Low Limit	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	

Sample Nam Method: ICP User: JYH Comment:	ne: CCB / -THERMO3_ Custom I			LINES(v873)	pe: Blank) Mode: tom ID3:	CONC (Corr. Factor:	1.000000
Elem Units Avg Stddev %RSD	Sb2068 ppm . 00127 .00127 100.33	Se1960 ppm .00374 .00268 71.776	Si2124 ppm 02667 .00316 11.841	Sn1899 ppm 00054 .00079 146.33	Sr4077 ppm . 00032 .00031 97.836	Ti3372 ppm 00142 .00566 399.68	TI1908 ppm . 00022 .00341 1529.1	
#1 #2 #3	00011 .00152 .00240	.00679 .00176 .00266	02787 02309 02906	.00036 00089 00110	00004 .00045 .00055	00780 .00056 .00299	.00350 .00047 00331	
Check ? High Limit Low Limit	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	
Elem Units Avg Stddev %RSD	V_2924 ppm .00042 .00011 25.637	Zn2062 ppm .00002 .00013 550.96	Zr3391 ppm F .21324 .38666 181.33					
#1 #2 #3	.00039 .00033 .00054	.00017 00005 00005	.07619 .64977 08623					
Check ? High Limit Low Limit	Chk Pass	Chk Pass	Chk Fail .04000 04000					
Int. Std. Units Avg Stddev %RSD	Y_2243 Cts/S 13728. 31. .22803	Y_3600 Cts/S 98489. 356. .36154	Y_3774 Cts/S 4378.2 65.5 1.4969					
#1 #2 #3	13752. 13693. 13739.	98899. 98308. 98260.	4396.0 4305.6 4433.0					

Sample Nam Method: ICP User: JYH Comment:		6010_200.7					Corr. Factor:	1.00000(
Elem	Ag3280	Al3082	As1890	B_2496	Ba4554	Be3131	Ca4226	
Units	ppm	ppm	ppm	ppm	ppm	ppm	ppm	
Avg	00129	.11981	. 01401	. 23418	. 17034	.00010	5.6697	
Stddev	.00064	.01678	.00154	.00422	.00062	.00001	.0306	
%RSD	49.403	14.005	10.994	1.8014	.36290	13.840	.53920	
#1	00088	.10903	.01240	.23308	.17074	.00010	5.6370	
#2	00202	.11126	.01415	.23062	.16963	.00011	5.6975	
#3	00096	.13914	.01547	.23884	.17066	.00009	5.6747	
Check ? High Limit Low Limit	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	
Elem	Cd2288	Co2286	Cr2677	Cu2247	Fe2611	K_7664	Li6707	
Units	ppm	ppm	ppm	ppm	ppm	ppm	ppm	
Avg	.00035	.00093	.00165	.00182	. 15684	2.2544	. 02512	
Stddev	.00043	.00030	.00144	.00059	.04070	.1048	.00333	
%RSD	123.55	31.862	87.158	32.656	25.950	4.6472	13.270	
#1	.00080	.00064	.00200	.00122	.11954	2.2072	.02130	
#2	00006	.00124	.00007	.00241	.20025	2.1816	.02740	
#3	.00031	.00092	.00288	.00182	.15073	2.3745	.02666	
Check ? High Limit Low Limit	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	
Elem	Mg2790	Mn2576	Mo2020	Na5895	Ni2316	P_2149	Pb2203	
Units	ppm	ppm	ppm	ppm	ppm	ppm	ppm	
Avg	. 85842	.00303	.00693	F 326.69	.00078	. 01942	. 00115	
Stddev	.06384	.00276	.00008	.97	.00108	.00883	.00259	
%RSD	7.4371	91.086	1.2136	.29761	139.49	45.486	225.88	
#1	.78599	.00441	.00701	327.71	.00085	.02939	.00305	
#2	.88278	00015	.00693	325.77	.00182	.01258	00181	
#3	.90650	.00482	.00684	326.60	00034	.01628	.00220	
Check ? High Limit Low Limit	Chk Pass	Chk Pass	Chk Pass	Chk Fail 270.00 50000	Chk Pass	Chk Pass	Chk Pass	

Sample Nam Method: ICP- User: JYH Comment:		6010_200.7	juired: 5/16/2 WATER_3Y Custom ID2:	LINES(v873)			Corr. Factor: 1.00000(
Elem Units Avg Stddev %RSD	Sb2068 ppm 00566 .00354 62.611	Se1960 ppm 00118 .00800 677.06	Si2124 ppm 4.1494 .0095 .22767	Sn1899 ppm 00049 .00034 68.237	Sr4077 ppm . 23434 .00109 .46437	Ti3372 ppm . 00018 .00177 961.14	TI1908 ppm 00465 .00243 52.350
#1 #2 #3	00891 00188 00618	00968 .00621 00007	4.1589 4.1493 4.1400	00012 00077 00058	.23309 .23483 .23509	.00139 00185 .00101	00556 00649 00189
Check ? High Limit Low Limit	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass
Elem Units Avg Stddev %RSD	V_2924 ppm . 00135 .00107 79.420	Zn2062 ppm .00265 .00013 5.0549	Zr3391 ppm . 40379 .09743 24.128				
#1 #2 #3	.00017 .00161 .00227	.00256 .00259 .00281	.42287 .29823 .49026				
Check ? High Limit Low Limit	Chk Pass	Chk Pass	Chk Pass				
Int. Std. Units Avg Stddev %RSD	Y_2243 Cts/S 12728. 20. .16059	Y_3600 Cts/S 89477. 245. .27392	Y_3774 Cts/S 4202.7 7.7 .18305				
#1 #2 #3	12752. 12718. 12715.	89358. 89759. 89315.	4199.1 4211.6 4197.5				

Sample Name Method: ICP-1 User: JYH Comment:	C Corr. F	Factor: 1.000000					
Elem	Ag3280	Al3082	As1890	B_2496	Ba4554	Be3131	Ca4226
Units	ppm	ppm	ppm	ppm	ppm	ppm	ppm
Avg	F00412	. 00695	.00089	. 02455	.08243	.00004	132.21
Stddev	.00092	.00381	.00204	.00229	.00022	.00004	.50
%RSD	22.303	54.779	228.20	9.3450	.26668	93.486	.37528
#1	00468	.00665	.00210	.02720	.08263	.00002	132.78
#2	00463	.00330	.00205	.02308	.08220	.00009	131.94
#3	00306	.01090	00146	.02338	.08247	.00002	131.90
Check ? High Limit Low Limit	Chk Fail 9.0000 00400	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass
Elem	Cd2288	Co2286	Cr2677	Cu2247	Fe2611	K_7664	Li6707
Units	ppm	ppm	ppm	ppm	ppm	ppm	ppm
Avg	. 00055	.00044	.00115	. 00219	. 17391	1.1320	. 01880
Stddev	.00030	.00039	.00097	.00112	.03633	.0757	.00195
%RSD	53.410	89.289	83.892	51.384	20.892	6.6901	10.387
#1	.00026	00001	.00226	.00197	.13458	1.0700	.02099
#2	.00056	.00064	.00069	.00119	.20622	1.1096	.01815
#3	.00085	.00070	.00050	.00341	.18092	1.2164	.01725
Check ? High Limit Low Limit	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass
Elem	Mg2790	Mn2576	Mo2020	Na5895	Ni2316	P_2149	Pb2203
Units	ppm	ppm	ppm	ppm	ppm	ppm	ppm
Avg	28.778	. 33213	.00098	28.452	.00037	00345	. 00363
Stddev	.340	.00472	.00022	.118	.00064	.00197	.00316
%RSD	1.1832	1.4216	22.816	.41301	174.29	57.192	86.952
#1	29.143	.33697	.00121	28.585	.00028	00459	.00156
#2	28.722	.32753	.00097	28.405	.00105	00117	.00727
#3	28.469	.33188	.00076	28.364	00023	00459	.00207
Check ? High Limit Low Limit	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass

Sample Name: L1605065804 Acquired: 5/16 Method: ICP-THERMO3_6010_200.7WATER_3' User: JYH Custom ID1: Custom ID2 Comment:					Type: Unk Mode: CONO ID3:	C Corr. F	Factor: 1.00000(
Elem Units Avg Stddev %RSD	Sb2068 ppm 00090 .00302 335.80	Se1960 ppm 00461 .00648 140.43	Si2124 ppm 5.0205 .0077 .15261	Sn1899 ppm . 00023 .00121 526.73	Sr4077 ppm . 26778 .00036 .13448	Ti3372 ppm 02379 .00330 13.876	TI1908 ppm 00371 .00257 69.172
#1 #2 #3	00197 00324 .00251	.00112 01165 00331	5.0278 5.0212 5.0125	00099 .00024 .00144	.26816 .26745 .26774	02103 02289 02745	00097 00605 00411
Check ? High Limit Low Limit	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass
Elem Units Avg Stddev %RSD	V_2924 ppm . 00021 .00130 619.87	Zn2062 ppm .00173 .00023 13.102	Zr3391 ppm . 09919 .08540 86.097				
#1 #2 #3	00047 .00170 00061	.00199 .00157 .00163	.13226 .00220 .16311				
Check ? High Limit Low Limit	Chk Pass	Chk Pass	Chk Pass				
Int. Std. Units Avg Stddev %RSD	Y_2243 Cts/S 12936. 25. .19277	Y_3600 Cts/S 92330. 317. .34291	Y_3774 Cts/S 4261.5 36.4 .85385				
#1 #2 #3	12908. 12944. 12956.	92683. 92234. 92072.	4221.2 4271.1 4292.1				

•										
Elem	Ag3280	Al3082	As1890	B_2496	Ba4554	Be3131	Ca4226	Cd2288		
Units	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm		
Avg	00278	. 00395	00126	.03290	. 10169	.00004	120.78	. 00051		
Stddev	.00233	.00679	.00165	.00265	.00137	.00010	.43	.00015		
%RSD	83.872	171.75	130.78	8.0494	1.3470	261.58	.35619	29.121		
#1	00381	.00296	00102	.03072	.10240	00008	120.63	.00040		
#2	00011	00229	.00026	.03213	.10011	.00010	120.45	.00044		
#3	00442	.01119	00303	.03584	.10256	.00009	121.27	.00068		
Check ? High Limit Low Limit	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass		
Elem	Co2286	Cr2677	Cu2247	Fe2611	K_7664	Li6707	Mg2790	Mn2576		
Units	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm		
Avg	.00004	.00238	. 00152	.01538	1.2898	. 01262	53.041	. 00490		
Stddev	.00012	.00078	.00114	.02703	.0368	.00108	.459	.00490		
%RSD	320.18	33.006	74.710	175.73	2.8508	8.5665	.86534	100.08		
#1	.00016	.00321	.00056	.04315	1.3243	.01145	53.207	.00860		
#2	00007	.00227	.00124	01084	1.2511	.01282	52.522	.00676		
#3	.00002	.00165	.00278	.01384	1.2941	.01358	53.394	00066		
Check ? High Limit Low Limit	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass		
Elem	Mo2020	Na5895	Ni2316	P_2149	Pb2203	Sb2068	Se1960	Si2124		
Units	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm		
Avg	. 00026	28.089	00175	.00748	00115	00262	00087	4.6839		
Stddev	.00031	.124	.00077	.00304	.00494	.00471	.00480	.0062		
%RSD	120.50	.44243	44.046	40.633	429.70	179.73	550.97	.13241		
#1	00009	28.008	00166	.01034	.00453	.00280	.00441	4.6900		
#2	.00035	28.027	00256	.00429	00360	00569	00495	4.6841		
#3	.00051	28.232	00103	.00781	00438	00496	00207	4.6776		
Check ? High Limit Low Limit	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass		

Sample Nar Method: ICF User: JYH Comment:		3_6010_200	.cquired: 5/1 .7WATER_ Custom II	3YLINES(v8		ype: Unk ode: CONC :	Corr. Fa	ctor: 1.00000(
Elem Units Avg Stddev %RSD	Sn1899 ppm .00308 .00102 32.942	Sr4077 ppm . 35220 .00109 .31010	Ti3372 ppm 02112 .00689 32.619	TI1908 ppm 00268 .00165 61.553	V_2924 ppm . 00014 .00069 482.46	Zn2062 ppm . 00229 .00015 6.4798	Zr3391 ppm . 03554 .03844 108.14	
#1 #2 #3	.00406 .00316 .00203	.35127 .35194 .35340	02267 01358 02709	00379 00078 00346	00055 .00014 .00083	.00222 .00245 .00218	.01804 .07962 .00898	
Check ? High Limit Low Limit	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	
Int. Std. Units Avg Stddev %RSD	Y_2243 Cts/S 12790. 39. .30700	Y_3600 Cts/S 91549. 226. .24663	Y_3774 Cts/S 4253.0 33.9 .79783					
#1 #2 #3	12812. 12814. 12745.	91405. 91809. 91433.	4218.1 4285.9 4255.1					

•										
Elem	Ag3280	Al3082	As1890	B_2496	Ba4554	Be3131	Ca4226			
Units	ppm	ppm	ppm	ppm	ppm	ppm	ppm			
Avg	00276	.10872	.00762	. 21028	3.2839	. 00004	105.73			
Stddev	.00051	.01002	.00178	.00177	.0085	.00004	.31			
%RSD	18.376	9.2155	23.425	.84388	.25821	92.571	.29312			
#1	00220	.11671	.00961	.20827	3.2748	.00001	105.49			
#2	00318	.09748	.00618	.21095	3.2851	.00008	105.62			
#3	00289	.11197	.00706	.21163	3.2917	.00003	106.08			
Check ? High Limit Low Limit	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass			
Elem	Cd2288	Co2286	Cr2677	Cu2247	Fe2611	K_7664	Li6707			
Units	ppm	ppm	ppm	ppm	ppm	ppm	ppm			
Avg	. 00062	.00144	.00880	. 00097	. 69249	3.2516	. 04934			
Stddev	.00031	.00029	.00026	.00077	.02096	.0802	.00384			
%RSD	49.889	20.237	2.9647	78.892	3.0266	2.4674	7.7857			
#1	.00037	.00158	.00864	.00022	.71098	3.2980	.04720			
#2	.00097	.00110	.00866	.00175	.69677	3.1589	.04705			
#3	.00052	.00163	.00910	.00095	.66972	3.2978	.05378			
Check ? High Limit Low Limit	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass			
Elem	Mg2790	Mn2576	Mo2020	Na5895	Ni2316	P_2149	Pb2203			
Units	ppm	ppm	ppm	ppm	ppm	ppm	ppm			
Avg	29.570	.18760	. 00164	F 634.25	.00019	. 00644	00290			
Stddev	.227	.00213	.00066	9.85	.00090	.00660	.00428			
%RSD	.76739	1.1355	40.201	1.5531	474.58	102.53	147.95			
#1	29.766	.18550	.00138	642.23	00001	.01321	.00042			
#2	29.321	.18755	.00239	637.28	00059	.00608	00137			
#3	29.622	.18976	.00115	623.24	.00117	.00002	00773			
Check ? High Limit Low Limit	Chk Pass	Chk Pass	Chk Pass	Chk Fail 270.00 50000	Chk Pass	Chk Pass	Chk Pass			

Sample Nam Method: ICP- User: JYH Comment:		6010_200.7		, ,			Corr. Factor: 1.0	00000
Elem Units Avg Stddev %RSD	Sb2068 ppm 00227 .00353 155.45	Se1960 ppm 00560 .00532 95.044	Si2124 ppm 4.3246 .0204 .47110	Sn1899 ppm 00123 .00124 100.40	Sr4077 ppm 3.9283 .0120 .30657	Ti3372 ppm 01495 .00458 30.671	TI1908 ppm 00421 .00258 61.298	
#1 #2 #3	00450 00412 .00180	00598 00010 01072	4.3315 4.3406 4.3017	00214 .00018 00173	3.9165 3.9277 3.9406	01293 01171 02019	00716 00309 00238	
Check ? High Limit Low Limit	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	
Elem Units Avg Stddev %RSD	V_2924 ppm . 00066 .00113 172.08	Zn2062 ppm .00261 .00011 4.2829	Zr3391 ppm .03711 .16328 440.02					
#1 #2 #3	.00141 00064 .00121	.00274 .00252 .00257	00819 09874 .21825					
Check ? High Limit Low Limit	Chk Pass	Chk Pass	Chk Pass					
Int. Std. Units Avg Stddev %RSD	Y_2243 Cts/S 12272. 30. .24120	Y_3600 Cts/S 86071. 380. .44096	Y_3774 Cts/S 4196.0 45.0 1.0735					
#1 #2 #3	12306. 12252. 12257.	86497. 85768. 85950.	4155.0 4244.2 4188.8					

Sample Name Method: ICP-T User: JYH Comment:)10_200.7W <i>A</i>	10_200.7WATER_3YLINES(v873)			Type: Unk Mode: CONC Corr. Fa n ID3:		
Elem	Ag3280	Al3082	As1890	B_2496	Ba4554	Be3131	Ca4226	
Units	ppm	ppm	ppm	ppm	ppm	ppm	ppm	
Avg	F00566	. 09494	. 00673	. 21338	3.3668	.00008	108.62	
Stddev	.00207	.00355	.00367	.00419	.0020	.00006	.03	
%RSD	36.514	3.7358	54.558	1.9637	.06061	80.043	.02999	
#1	00636	.09559	.00999	.20936	3.3676	.00006	108.58	
#2	00334	.09811	.00746	.21307	3.3644	.00014	108.64	
#3	00729	.09111	.00275	.21772	3.3682	.00002	108.63	
Check ? High Limit Low Limit	Chk Fail 9.0000 00400	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	
Elem	Cd2288	Co2286	Cr2677	Cu2247	Fe2611	K_7664	Li6707	
Units	ppm	ppm	ppm	ppm	ppm	ppm	ppm	
Avg	. 00050	.00163	. 01302	.00005	. 66466	3.3253	. 05678	
Stddev	.00023	.00055	.00066	.00042	.03116	.0120	.00353	
%RSD	45.113	33.834	5.0370	830.44	4.6878	.35979	6.2226	
#1	.00025	.00099	.01282	00036	.64897	3.3311	.05320	
#2	.00059	.00193	.01248	.00048	.64447	3.3115	.05687	
#3	.00068	.00196	.01375	.00003	.70055	3.3332	.06027	
Check ? High Limit Low Limit	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	
Elem	Mg2790	Mn2576	Mo2020	Na5895	Ni2316	P_2149	Pb2203	
Units	ppm	ppm	ppm	ppm	ppm	ppm	ppm	
Avg	30.253	.19055	. 00150	F 641.59	. 00070	. 00359	. 00146	
Stddev	.205	.00238	.00009	13.79	.00125	.00449	.00161	
%RSD	.67655	1.2504	5.7103	2.1499	179.13	125.01	110.62	
#1	30.435	.18782	.00146	643.31	.00174	.00490	.00067	
#2	30.292	.19215	.00159	627.01	00068	.00729	.00332	
#3	30.031	.19169	.00143	654.44	.00103	00141	.00039	
Check ? High Limit Low Limit	Chk Pass	Chk Pass	Chk Pass	Chk Fail 270.00 50000	Chk Pass	Chk Pass	Chk Pass	

Sample Name: L1605065808 Acquired: 5/16/2016 20:57:33 Type: Unk Method: ICP-THERMO3_6010_200.7WATER_3YLINES(v873) Mode: CON User: JYH Custom ID1: Custom ID2: Custom ID3: Comment:							Factor: 1.00000(
Elem Units Avg Stddev %RSD	Sb2068 ppm 00443 .00110 24.755	Se1960 ppm .00044 .00125 286.20	Si2124 ppm 4.3884 .0165 .37646	Sn1899 ppm 00056 .00073 129.78	Sr4077 ppm 4.0367 .0036 .08969	Ti3372 ppm 01269 .00216 17.045	TI1908 ppm 00449 .00131 29.218
#1 #2 #3	00446 00332 00551	.00069 .00154 00092	4.3928 4.4023 4.3701	00139 00029 00001	4.0350 4.0342 4.0408	01516 01173 01117	00394 00599 00354
Check ? High Limit Low Limit	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass
Elem Units Avg Stddev %RSD	V_2924 ppm 00002 .00094 5310.4	Zn2062 ppm . 00251 .00023 9.0782	Zr3391 ppm . 10700 .42160 394.02				
#1 #2 #3	.00100 00019 00086	.00230 .00275 .00247	22982 02899 .57982				
Check ? High Limit Low Limit	Chk Pass	Chk Pass	Chk Pass				
Int. Std. Units Avg Stddev %RSD	Y_2243 Cts/S 12321. 19. .15272	Y_3600 Cts/S 85855. 160. .18652	Y_3774 Cts/S 4180.6 7.9 .18863				
#1 #2 #3	12305. 12317. 12342.	85966. 85927. 85671.	4174.0 4189.3 4178.4				

•										
Elem	Ag3280	Al3082	As1890	B_2496	Ba4554	Be3131	Ca4226			
Units	ppm	ppm	ppm	ppm	ppm	ppm	ppm			
Avg	00161	. 00936	00090	. 05947	. 05365	.00005	217.34			
Stddev	.00137	.00466	.00059	.00238	.00061	.00003	.41			
%RSD	85.007	49.821	66.083	3.9940	1.1369	70.683	.18980			
#1	00111	.01099	00076	.05686	.05296	.00006	216.88			
#2	00056	.00410	00155	.06006	.05385	.00007	217.68			
#3	00315	.01299	00039	.06150	.05413	.00001	217.46			
Check ? High Limit Low Limit	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass			
Elem	Cd2288	Co2286	Cr2677	Cu2247	Fe2611	K_7664	Li6707			
Units	ppm	ppm	ppm	ppm	ppm	ppm	ppm			
Avg	. 00070	.00227	.00241	.00324	7.1875	2.1110	. 01382			
Stddev	.00045	.00077	.00125	.00102	.0675	.1334	.00389			
%RSD	64.568	33.729	51.866	31.513	.93932	6.3196	28.165			
#1	.00023	.00145	.00210	.00344	7.1260	2.1129	.01256			
#2	.00112	.00241	.00135	.00214	7.2597	1.9767	.01071			
#3	.00074	.00296	.00379	.00415	7.1767	2.2435	.01818			
Check ? High Limit Low Limit	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass			
Elem	Mg2790	Mn2576	Mo2020	Na5895	Ni2316	P_2149	Pb2203			
Units	ppm	ppm	ppm	ppm	ppm	ppm	ppm			
Avg	126.65	1.3876	.00043	F 558.40	. 05798	. 34944	. 00053			
Stddev	.44	.0140	.00054	7.00	.00091	.01230	.00495			
%RSD	.34605	1.0067	123.33	1.2539	1.5723	3.5203	940.05			
#1	126.15	1.3726	00012	562.80	.05696	.35505	00032			
#2	126.86	1.4002	.00095	562.07	.05829	.33533	00395			
#3	126.95	1.3902	.00047	550.32	.05870	.35794	.00585			
Check ? High Limit Low Limit	Chk Pass	Chk Pass	Chk Pass	Chk Fail 270.00 50000	Chk Pass	Chk Pass	Chk Pass			

Sample Nam Method: ICP User: JYH Comment:	Corr. Factor: 1.000000						
Elem Units Avg Stddev %RSD	Sb2068 ppm 00061 .00402 662.57	Se1960 ppm 00282 .01106 391.71	Si2124 ppm 4.1344 .0158 .38279	Sn1899 ppm 00088 .00062 70.414	Sr4077 ppm 1.3149 .0030 .22606	Ti3372 ppm 02505 .00566 22.577	ppm 00551 .00605
#1 #2 #3	00243 00339 .00400	.00726 01466 00107	4.1520 4.1301 4.1212	00017 00132 00116	1.3117 1.3176 1.3153	02026 03129 02360	
Check ? High Limit Low Limit	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass
Elem Units Avg Stddev %RSD	V_2924 ppm . 00106 .00077 72.734	Zn2062 ppm . 00236 .00021 8.7638	Zr3391 ppm . 22134 .41773 188.73				
#1 #2 #3	.00074 .00195 .00051	.00226 .00222 .00260	.18400 .65650 17646				
Check ? High Limit Low Limit	Chk Pass	Chk Pass	Chk Pass				
Int. Std. Units Avg Stddev %RSD	Y_2243 Cts/S 12193. 3. .02655	Y_3600 Cts/S 85701 . 164. .19103	Y_3774 Cts/S 4191.9 6.9 .16391				
#1 #2 #3	12189. 12194. 12195.	85886. 85574. 85644.	4194.4 4197.2 4184.1				

•										
Elem	Ag3280	Al3082	As1890	B_2496	Ba4554	Be3131	Ca4226	Cd2288		
Units	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm		
Avg	00341	. 00726	.00506	. 01456	.06995	.00008	49.178	. 00055		
Stddev	.00211	.00437	.00221	.00184	.00044	.00008	.098	.00014		
%RSD	61.938	60.187	43.700	12.636	.62875	107.44	.19852	26.082		
#1	00150	.00938	.00349	.01462	.07043	.00013	49.089	.00040		
#2	00568	.00224	.00409	.01269	.06987	.00012	49.282	.00069		
#3	00305	.01017	.00758	.01636	.06956	00002	49.163	.00058		
Check ? High Limit Low Limit	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass		
Elem	Co2286	Cr2677	Cu2247	Fe2611	K_7664	Li6707	Mg2790	Mn2576		
Units	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm		
Avg	.00008	. 00146	. 00139	. 79753	1.1818	. 00854	19.469	. 84627		
Stddev	.00018	.00121	.00100	.00894	.0559	.00247	.144	.00330		
%RSD	237.69	83.090	72.014	1.1204	4.7296	28.979	.74221	.39036		
#1	00013	.00012	.00131	.78932	1.1436	.01105	19.444	.84401		
#2	.00023	.00248	.00043	.80705	1.2460	.00610	19.625	.84473		
#3	.00014	.00179	.00242	.79624	1.1558	.00846	19.339	.85006		
Check ? High Limit Low Limit	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass		
Elem	Mo2020	Na5895	Ni2316	P_2149	Pb2203	Sb2068	Se1960	Si2124		
Units	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm		
Avg	. 00054	32.728	.00051	. 05903	.00145	00015	00248	1.4996		
Stddev	.00020	.129	.00078	.00344	.00560	.00332	.00095	.0005		
%RSD	36.217	.39393	150.90	5.8236	385.22	2269.9	38.113	.03612		
#1	.00049	32.823	.00035	.06278	.00283	00293	00189	1.4992		
#2	.00076	32.780	00017	.05602	00471	.00353	00357	1.4995		
#3	.00038	32.581	.00136	.05829	.00624	00104	00199	1.5002		
Check ? High Limit Low Limit	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass		

Sample Nar Method: ICF User: JYH Comment:		3_6010_200	•	•		ype: Unk ode: CONC :	Corr. Fa	ctor: 1.00000(
Elem Units Avg Stddev %RSD	Sn1899 ppm 00135 .00098 72.574	Sr4077 ppm . 31177 .00105 .33524	Ti3372 ppm 00751 .00408 54.285	TI1908 ppm . 00017 .00189 1100.1	V_2924 ppm . 00048 .00027 56.046	Zn2062 ppm . 01642 .00019 1.1609	Zr3391 ppm . 17353 .14449 83.265	
#1 #2 #3	00248 00081 00077	.31233 .31056 .31241	00366 01179 00709	.00210 .00009 00168	.00073 .00051 .00020	.01629 .01664 .01633	.06324 .12025 .33709	
Check ? High Limit Low Limit	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	
Int. Std. Units Avg Stddev %RSD	Y_2243 Cts/S 12948. 3. .02616	Y_3600 Cts/S 92811. 259. .27888	Y_3774 Cts/S 4259.7 47.3 1.1112					
#1 #2 #3	12947. 12951. 12944.	92528. 92868. 93037.	4205.0 4285.1 4288.8					

Sample Name: L1605065814 Acquired: 5/16/2016 21:09:40 Type: Unk Method: ICP-THERMO3_6010_200.7WATER_3YLINES(v873) Mode: CONC Corr. Factor: 1.000000 User: JYH Custom ID1: Custom ID2: Custom ID3: Comment:							
Elem	Ag3280	Al3082	As1890	B_2496	Ba4554	Be3131	Ca4226
Units	ppm	ppm	ppm	ppm	ppm	ppm	ppm
Avg	F00412	00713	.00028	. 14373	. 14756	.00009	80.382
Stddev	.00117	.00503	.00091	.00127	.00058	.00005	.108
%RSD	28.342	70.606	324.48	.88472	.39011	56.324	.13455
#1	00493	00860	.00132	.14321	.14800	.00003	80.504
#2	00466	00152	00034	.14518	.14777	.00011	80.298
#3	00278	01126	00015	.14280	.14691	.00014	80.345
Check ? High Limit Low Limit	Chk Fail 9.0000 00400	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass
Elem	Cd2288	Co2286	Cr2677	Cu2247	Fe2611	K_7664	Li6707
Units	ppm	ppm	ppm	ppm	ppm	ppm	ppm
Avg	. 00065	.00043	. 00216	. 00102	1.3253	1.8146	. 02978
Stddev	.00011	.00009	.00097	.00134	.0113	.0677	.00170
%RSD	17.405	20.948	45.068	131.37	.85535	3.7332	5.7153
#1	.00052	.00039	.00106	.00256	1.3264	1.7998	.03110
#2	.00074	.00053	.00253	.00021	1.3134	1.7555	.03040
#3	.00069	.00037	.00290	.00028	1.3360	1.8886	.02786
Check ? High Limit Low Limit	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass
Elem	Mg2790	Mn2576	Mo2020	Na5895	Ni2316	P_2149	Pb2203
Units	ppm	ppm	ppm	ppm	ppm	ppm	ppm
Avg	25.169	. 09677	.00085	74.846	00007	.00079	. 00278
Stddev	.086	.00161	.00042	.075	.00034	.00293	.00296
%RSD	.34028	1.6651	49.810	.10049	462.06	368.93	106.73
#1	25.118	.09492	.00134	74.913	00046	00141	.00511
#2	25.268	.09786	.00060	74.765	.00007	00032	00056
#3	25.121	.09753	.00061	74.860	.00017	.00411	.00378
Check ? High Limit Low Limit	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass

Sample Name: L1605065814 Acquired: 5/16/2016 21:09:40 Type: UMethod: ICP-THERMO3_6010_200.7WATER_3YLINES(v873) Mode: CUSer: JYH Custom ID1: Custom ID2: Custom ID3: Comment:						C Corr. F	Factor: 1.000000
Elem Units Avg Stddev %RSD	Sb2068 ppm 00349 .00540 154.82	Se1960 ppm 00313 .00391 125.09	Si2124 ppm 6.5740 .0051 .07765	Sn1899 ppm 00087 .00050 57.916	Sr4077 ppm . 97344 .00103 .10606	Ti3372 ppm 01642 .00566 34.507	TI1908 ppm 00565 .00409 72.391
#1 #2 #3	00858 00407 .00218	.00044 00731 00252	6.5799 6.5710 6.5711	00114 00029 00117	.97261 .97312 .97460	01376 01257 02292	01021 00232 00441
Check ? High Limit Low Limit	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass
Elem Units Avg Stddev %RSD	V_2924 ppm . 00077 .00047 60.852	Zn2062 ppm . 00296 .00017 5.8003	Zr3391 ppm 01776 .17817 1003.2				
#1 #2 #3	.00069 .00035 .00128	.00315 .00284 .00287	.18352 15529 08151				
Check ? High Limit Low Limit	Chk Pass	Chk Pass	Chk Pass				
Int. Std. Units Avg Stddev %RSD	Y_2243 Cts/S 12667. 36. .28426	Y_3600 Cts/S 91233. 143. .15667	Y_3774 Cts/S 4210.6 49.2 1.1677				
#1 #2 #3	12645. 12647. 12708.	91240. 91087. 91372.	4157.2 4220.8 4253.9				

Sample Name Method: ICP-T User: JYH Comment:)10_200.7W <i>A</i>	10_200.7WATER_3YLINES(v873)			Type: Unk Mode: CONC Corr. Facto ID3:		
Elem	Ag3280	Al3082	As1890	B_2496	Ba4554	Be3131	Ca4226	
Units	ppm	ppm	ppm	ppm	ppm	ppm	ppm	
Avg	00337	.22671	.00009	. 00270	. 00369	.00014	. 51596	
Stddev	.00174	.00638	.00226	.00453	.00073	.00003	.03437	
%RSD	51.530	2.8153	2419.5	167.96	19.749	21.625	6.6607	
#1	00165	.22171	.00145	00243	.00285	.00017	.47659	
#2	00333	.22451	.00135	.00436	.00402	.00012	.53135	
#3	00512	.23390	00252	.00616	.00420	.00012	.53995	
Check ? High Limit Low Limit	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	
Elem	Cd2288	Co2286	Cr2677	Cu2247	Fe2611	K_7664	Li6707	
Units	ppm	ppm	ppm	ppm	ppm	ppm	ppm	
Avg	. 00013	.00001	. 00336	. 02241	. 52887	. 43159	. 00409	
Stddev	.00012	.00037	.00061	.00191	.03072	.09998	.00757	
%RSD	93.846	4003.9	18.063	8.5229	5.8083	23.167	185.07	
#1	00001	00041	.00406	.02133	.55723	.40690	.00218	
#2	.00019	.00014	.00303	.02461	.49624	.34626	.01243	
#3	.00020	.00029	.00299	.02129	.53313	.54160	00234	
Check ? High Limit Low Limit	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	
Elem	Mg2790	Mn2576	Mo2020	Na5895	Ni2316	P_2149	Pb2203	
Units	ppm	ppm	ppm	ppm	ppm	ppm	ppm	
Avg	. 31859	. 00638	. 00041	. 37382	. 00037	. 00409	00165	
Stddev	.11978	.00261	.00034	.01458	.00158	.01128	.00171	
%RSD	37.598	40.904	84.116	3.9006	427.06	275.74	103.89	
#1	.32777	.00766	.00053	.36222	.00066	00803	.00030	
#2	.19448	.00810	.00002	.36905	.00178	.00603	00289	
#3	.43351	.00338	.00067	.39019	00133	.01427	00235	
Check ? High Limit Low Limit	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	

Sample Name Method: ICP-1 User: JYH Comment:)10_200.7W <i>A</i>	red: 5/16/2010 ATER_3YLIN stom ID2:		Type: Unk Mode: CONO ID3:	C Corr. F	Factor: 1.00000(
Elem Units Avg Stddev %RSD	Sb2068 ppm 00218 .00299 136.76	Se1960 ppm 00461 .00146 31.754	Si2124 ppm . 50548 .01062 2.1002	Sn1899 ppm . 00025 .00056 224.04	Sr4077 ppm . 00254 .00009 3.4209	Ti3372 ppm . 00859 .01115 129.72	TI1908 ppm 00228 .00359 157.71
#1 #2 #3	00304 .00114 00465	00305 00595 00482	.51521 .50706 .49416	.00006 00019 .00089	.00250 .00263 .00247	.02146 .00203 .00228	00258 .00145 00571
Check ? High Limit Low Limit	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass
Elem Units Avg Stddev %RSD	V_2924 ppm . 00150 .00074 49.150	Zn2062 ppm .02387 .00018 .76698	Zr3391 ppm F 05858 .08489 144.91				
#1 #2 #3	.00235 .00103 .00112	.02398 .02396 .02366	12864 08294 .03582				
Check ? High Limit Low Limit	Chk Pass	Chk Pass	Chk Fail 36.000 04000				
Int. Std. Units Avg Stddev %RSD	Y_2243 Cts/S 13179. 25. .19194	Y_3600 Cts/S 94854. 220. .23156	Y_3774 Cts/S 4231.6 40.6 .96018				
#1 #2 #3	13198. 13150. 13188.	94705. 95107. 94752.	4229.9 4273.1 4191.9				

•								
Elem	Ag3280	Al3082	As1890	B_2496	Ba4554	Be3131	Ca4226	Cd2288
Units	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm
Avg	00273	. 08237	00084	. 02430	. 04710	.00012	139.25	. 00069
Stddev	.00205	.01414	.00219	.00392	.00114	.00003	.50	.00032
%RSD	74.866	17.165	261.88	16.129	2.4210	21.693	.35752	45.931
#1	00508	.07278	00310	.02326	.04581	.00014	138.69	.00033
#2	00179	.07573	00069	.02101	.04798	.00010	139.64	.00080
#3	00133	.09861	.00128	.02864	.04751	.00010	139.43	.00094
Check ? High Limit Low Limit	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass
Elem	Co2286	Cr2677	Cu2247	Fe2611	K_7664	Li6707	Mg2790	Mn2576
Units	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm
Avg	. 00217	. 00244	.00121	1.7741	. 56122	.00860	21.778	1.8867
Stddev	.00021	.00043	.00104	.0289	.09266	.00192	.119	.0016
%RSD	9.5347	17.738	85.648	1.6310	16.511	22.337	.54662	.08249
#1	.00193	.00202	.00005	1.8075	.66788	.00961	21.896	1.8864
#2	.00232	.00243	.00205	1.7588	.50051	.00639	21.781	1.8854
#3	.00225	.00289	.00153	1.7561	.51527	.00981	21.658	1.8884
Check ? High Limit Low Limit	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass
Elem	Mo2020	Na5895	Ni2316	P_2149	Pb2203	Sb2068	Se1960	Si2124
Units	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm
Avg	.00018	4.3497	.03060	. 00665	. 00361	. 00256	.00034	. 42137
Stddev	.00022	.0381	.00129	.00411	.00233	.00232	.00462	.00191
%RSD	126.26	.87573	4.2106	61.914	64.484	90.684	1360.3	.45318
#1	.00035	4.3147	.03040	.01115	.00163	.00379	00191	.42301
#2	.00024	4.3443	.02942	.00309	.00302	00012	00273	.41927
#3	00007	4.3903	.03197	.00569	.00618	.00402	.00565	.42184
Check ? High Limit Low Limit	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass

Sample Nar Method: ICF User: JYH Comment:		3_6010_200	•	•		ype: Unk ode: CONC :	Corr. Fa	ctor: 1.00000(
Elem Units Avg Stddev %RSD	Sn1899 ppm 00116 .00058 49.917	Sr4077 ppm .17578 .00053 .30028	Ti3372 ppm 02010 .00653 32.471	TI1908 ppm . 00095 .00368 387.62	V_2924 ppm . 00133 .00093 70.014	Zn2062 ppm . 76127 .00098 .12902	Zr3391 ppm . 09211 .05074 55.080	
#1 #2 #3	00053 00168 00128	.17541 .17639 .17555	01732 02755 01542	00000 .00501 00216	.00207 .00028 .00165	.76081 .76240 .76061	.07403 .14941 .05290	
Check ? High Limit Low Limit	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	
Int. Std. Units Avg Stddev %RSD	Y_2243 Cts/S 12925. 21. .16284	Y_3600 Cts/S 92445. 141. .15253	Y_3774 Cts/S 4273.4 7.8 .18314					
#1 #2 #3	12942. 12902. 12932.	92606. 92384. 92344.	4269.7 4268.1 4282.4					

Sample Nam Method: ICP User: JYH Comment:		_		LINES(v873	pe: QC) Mode: tom ID3:	CONC (Corr. Factor:	1.000000
Elem	Ag3280	Al3082	As1890	B_2496	Ba4554	Be3131	Ca4226	
Units	ppm	ppm	ppm	ppm	ppm	ppm	ppm	
Avg	. 37147	9.3752	. 37212	. 46331	. 92960	. 04631	9.1612	
Stddev	.00197	.0137	.00195	.00367	.00134	.00036	.0335	
%RSD	.52929	.14639	.52363	.79179	.14378	.77994	.36580	
#1	.37187	9.3612	.37066	.45932	.92832	.04612	9.1611	
#2	.37320	9.3887	.37136	.46654	.93099	.04672	9.1947	
#3	.36933	9.3758	.37433	.46406	.92950	.04608	9.1277	
Check ? Value Range	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	
Elem	Cd2288	Co2286	Cr2677	Cu2247	Fe2611	K_7664	Li6707	
Units	ppm	ppm	ppm	ppm	ppm	ppm	ppm	
Avg	. 04639	. 19100	. 47775	. 47794	3.7663	46.890	. 93757	
Stddev	.00038	.00027	.00323	.00119	.0146	.142	.00421	
%RSD	.81604	.14123	.67675	.24832	.38706	.30180	.44943	
#1	.04682	.19096	.47558	.47779	3.7585	46.727	.93513	
#2	.04617	.19075	.48146	.47920	3.7831	46.968	.93515	
#3	.04616	.19129	.47620	.47684	3.7572	46.976	.94244	
Check ? Value Range	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	
Elem	Mg2790	Mn2576	Mo2020	Na5895	Ni2316	P_2149	Pb2203	
Units	ppm	ppm	ppm	ppm	ppm	ppm	ppm	
Avg	9.5650	. 46849	. 92824	47.389	. 48220	9.3473	. 48774	
Stddev	.0702	.00914	.00451	.137	.00136	.0023	.00374	
%RSD	.73406	1.9517	.48630	.28869	.28202	.02448	.76612	
#1	9.5392	.46895	.93309	47.299	.48201	9.3476	.48453	
#2	9.6445	.45912	.92746	47.547	.48094	9.3449	.49184	
#3	9.5113	.47739	.92417	47.322	.48364	9.3495	.48685	
Check ? Value Range	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	

Sample Nam Method: ICP User: JYH Comment:	ne: CCV / -THERMO3_ Custom I	6010_200.7	16/2016 21:2 WATER_3YI Custom ID2:	LINES(v873)	pe: QC) Mode: tom ID3:	CONC (Corr. Factor:	1.00000(
Elem Units Avg Stddev %RSD	Sb2068 ppm 1.1238 .0022 .19990	Se1960 ppm F .35588 .00231 .64877	Si2124 ppm 4.6963 .0090 .19219	Sn1899 ppm . 95144 .00065 .06798	Sr4077 ppm . 92614 .00276 .29767	Ti3372 ppm . 92598 .00416 .44930	TI1908 ppm . 48063 .00360 .74821	
#1 #2 #3	1.1238 1.1216 1.1261	.35844 .35524 .35395	4.6947 4.7060 4.6881	.95217 .95093 .95122	.92375 .92915 .92551	.92165 .92635 .92995	.47655 .48334 .48200	
Check ? Value Range	Chk Pass	Chk Fail .40000 -10.000%	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	
Elem Units Avg Stddev %RSD	V_2924 ppm . 93872 .00223 .23788	Zn2062 ppm . 96594 .00078 .08049	Zr3391 ppm F . 89536 .22918 25.597					
#1 #2 #3	.93712 .94127 .93776	.96524 .96678 .96582	1.1534 .81735 .71536					
Check ? Value Range	Chk Pass	Chk Pass	Chk Fail 1.0000 -10.000%					
Int. Std. Units Avg Stddev %RSD	Y_2243 Cts/S 13781. 38. .27277	Y_3600 Cts/S 97901. 690. .70488	Y_3774 Cts/S 4393.5 12.2 .27653					
#1 #2 #3	13760. 13824. 13758.	97428. 97582. 98693.	4405.7 4381.4 4393.4					

•								
Elem	Ag3280	Al3082	As1890	B_2496	Ba4554	Be3131	Ca4226	Cd2288
Units	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm
Avg	00310	00819	.00134	. 00240	.00074	.00012	02907	. 00008
Stddev	.00098	.00047	.00370	.00061	.00044	.00002	.01176	.00021
%RSD	31.671	5.7420	276.72	25.392	59.907	20.417	40.463	251.71
#1	00411	00872	.00297	.00281	.00080	.00011	03788	00011
#2	00215	00782	00290	.00268	.00027	.00014	01571	.00031
#3	00303	00802	.00393	.00170	.00114	.00010	03360	.00005
Check ? High Limit Low Limit	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass
Elem	Co2286	Cr2677	Cu2247	Fe2611	K_7664	Li6707	Mg2790	Mn2576
Units	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm
Avg	00007	. 00057	00041	. 01422	. 15506	. 00526	. 14308	. 00058
Stddev	.00048	.00126	.00146	.01624	.04444	.00188	.08370	.00067
%RSD	676.00	223.18	359.57	114.18	28.658	35.809	58.500	115.95
#1	.00040	00063	00102	00433	.20395	.00450	.07825	.00020
#2	00004	.00189	.00126	.02583	.11711	.00741	.11341	.00018
#3	00057	.00044	00146	.02117	.14414	.00388	.23757	.00135
Check ? High Limit Low Limit	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass
Elem	Mo2020	Na5895	Ni2316	P_2149	Pb2203	Sb2068	Se1960	Si2124
Units	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm
Avg	. 00424	00569	00099	00010	. 00003	. 00373	00413	02964
Stddev	.00016	.01170	.00033	.00266	.00197	.00059	.01119	.00103
%RSD	3.7189	205.76	33.255	2763.8	7741.5	15.744	271.20	3.4673
#1	.00418	01724	00061	.00093	00224	.00376	00980	03082
#2	.00412	.00615	00118	.00189	.00134	.00431	.00876	02891
#3	.00442	00597	00118	00311	.00098	.00314	01134	02919
Check ? High Limit Low Limit	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass

Sample Nar Method: ICF User: JYH Comment:		3_6010_200	5/16/2016 2 .7WATER_ Custom II	3YLINES(v8	Type: Blan 373) Mc Custom ID3	de: CONC	Corr. Fa	ctor: 1.00000(
Elem Units Avg Stddev %RSD	Sn1899 ppm 00002 .00072 3533.5	Sr4077 ppm .00018 .00026 145.64	Ti3372 ppm . 00128 .00484 378.75	TI1908 ppm 00079 .00179 227.78	V_2924 ppm . 00045 .00091 199.61	Zn2062 ppm . 00021 .00025 119.91	Zr3391 ppm .01053 .12934 1228.7	
#1 #2 #3	00009 .00073 00070	.00047 .00011 00004	00424 .00480 .00327	00161 .00127 00202	.00132 .00052 00048	.00049 .00010 .00003	08205 04469 .15831	
Check ? High Limit Low Limit	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	
Int. Std. Units Avg Stddev %RSD	Y_2243 Cts/S 13667. 31. .22374	Y_3600 Cts/S 97994 . 279. .28521	Y_3774 Cts/S 4355.9 25.6 .58662					
#1 #2 #3	13694. 13634. 13674.	97676. 98103. 98202.	4332.3 4383.1 4352.3					

•								
Elem	Ag3280	Al3082	As1890	B_2496	Ba4554	Be3131	Ca4226	Cd2288
Units	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm
Avg	00332	. 05110	00344	. 13421	. 04914	.00017	2.8931	. 00096
Stddev	.00186	.00411	.00321	.00175	.00074	.00009	.0116	.00013
%RSD	55.977	8.0414	93.305	1.3011	1.4999	53.277	.40101	13.601
#1	00454	.04666	00039	.13516	.04829	.00023	2.8908	.00088
#2	00425	.05477	00314	.13219	.04953	.00007	2.9056	.00089
#3	00118	.05186	00678	.13527	.04961	.00021	2.8828	.00111
Check ? High Limit Low Limit	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass
Elem	Co2286	Cr2677	Cu2247	Fe2611	K_7664	Li6707	Mg2790	Mn2576
Units	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm
Avg	. 00077	. 01062	. 00260	1.0442	11.453	. 00359	162.68	. 06417
Stddev	.00044	.00071	.00183	.0086	.130	.00566	1.10	.00309
%RSD	56.927	6.6594	70.442	.82679	1.1326	157.87	.67786	4.8220
#1	.00049	.01028	.00147	1.0457	11.360	.00648	161.47	.06221
#2	.00128	.01014	.00471	1.0520	11.601	00294	163.63	.06255
#3	.00055	.01143	.00161	1.0349	11.399	.00721	162.94	.06774
Check ? High Limit Low Limit	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass
Elem	Mo2020	Na5895	Ni2316	P_2149	Pb2203	Sb2068	Se1960	Si2124
Units	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm
Avg	. 02677	189.97	.00352	. 25657	00191	. 00501	00315	. 48827
Stddev	.00060	.73	.00088	.00707	.00218	.00275	.00979	.00223
%RSD	2.2337	.38466	25.018	2.7544	114.04	54.850	311.13	.45593
#1	.02647	189.66	.00443	.25979	00096	.00196	.00753	.49083
#2	.02746	190.81	.00268	.24847	00037	.00580	00526	.48678
#3	.02638	189.45	.00345	.26145	00440	.00728	01171	.48720
Check ? High Limit Low Limit	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass

Sample Nar Method: ICF User: JYH Comment:		3_6010_200	.cquired: 5/1 .7WATER_ Custom IE	3YLINES(v8		ype: Unk ode: CONC :	Corr. Fac	ctor: 1.00000(
Elem Units Avg Stddev %RSD	Sn1899 ppm . 00054 .00042 76.898	Sr4077 ppm . 01298 .00023 1.8012	Ti3372 ppm . 00317 .00573 180.71	TI1908 ppm 00458 .00334 72.818	V_2924 ppm . 01015 .00044 4.3294	Zn2062 ppm . 01577 .00016 .99939	Zr3391 ppm 2.1107 .6917 32.770	
#1 #2 #3	.00073 .00083 .00006	.01301 .01319 .01273	.00564 00338 .00724	00156 00817 00403	.01016 .00971 .01059	.01559 .01584 .01589	2.6912 2.2955 1.3454	
Check ? High Limit Low Limit	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	
Int. Std. Units Avg Stddev %RSD	Y_2243 Cts/S 12816. 32. .24867	Y_3600 Cts/S 90625. 50. .05492	Y_3774 Cts/S 4298.4 12.6 .29238					
#1 #2 #3	12780. 12826. 12841.	90673. 90574. 90629.	4302.6 4284.3 4308.3					

Sample Name: L1605076404 Acquired: 5/16/2016 21:33:14 Type: Unk Method: ICP-THERMO3_6010_200.7WATER_3YLINES(v873) Mode: CONC Corr. Factor: 1.000000 User: JYH Custom ID1: Custom ID2: Custom ID3: Comment:										
Elem	Ag3280	Al3082	As1890	B_2496	Ba4554	Be3131	Ca4226	Cd2288		
Units	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm		
Avg	00127	. 00043	.00060	.08883	. 00929	.00010	4.2319	. 00031		
Stddev	.00224	.01212	.00123	.00109	.00104	.00007	.0211	.00013		
%RSD	176.20	2812.2	204.08	1.2280	11.146	71.268	.49826	42.466		
#1	00385	00276	.00103	.08989	.00874	.00008	4.2376	.00040		
#2	.00026	.01382	.00157	.08891	.00865	.00017	4.2495	.00016		
#3	00023	00977	00079	.08771	.01049	.00004	4.2085	.00037		
Check ? High Limit Low Limit	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass		
Elem	Co2286	Cr2677	Cu2247	Fe2611	K_7664	Li6707	Mg2790	Mn2576		
Units	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm		
Avg	.00004	.00398	.00118	. 11274	10.888	.00518	42.091	. 03070		
Stddev	.00036	.00049	.00063	.01610	.106	.00276	.236	.00156		
%RSD	971.64	12.400	53.567	14.281	.97659	53.338	.56163	5.0870		
#1	.00017	.00396	.00060	.12685	11.003	.00687	42.354	.03250		
#2	.00031	.00448	.00185	.11617	10.792	.00668	41.895	.02996		
#3	00037	.00349	.00110	.09520	10.870	.00199	42.025	.02965		
Check ? High Limit Low Limit	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass		
Elem	Mo2020	Na5895	Ni2316	P_2149	Pb2203	Sb2068	Se1960	Si2124		
Units	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm		
Avg	. 00462	119.83	.00018	. 17336	.00110	00256	00427	. 43765		
Stddev	.00048	.16	.00032	.00800	.00402	.00717	.00075	.00214		
%RSD	10.344	.13186	178.38	4.6160	366.26	280.37	17.553	.48937		
#1	.00500	119.75	00018	.16443	.00247	00859	00513	.43803		
#2	.00478	120.01	.00030	.17989	.00426	.00537	00375	.43957		
#3	.00408	119.72	.00042	.17576	00343	00446	00393	.43534		
Check ? High Limit Low Limit	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass		

Sample Nar Method: ICF User: JYH Comment:		3_6010_200	cquired: 5/1 .7WATER_: Custom IE	3YLINES(v8	•	ype: Unk ode: CONC :	Corr. Fa	ctor: 1.00000(
Elem Units Avg Stddev %RSD	Sn1899 ppm . 00005 .00079 1683.1	Sr4077 ppm . 01815 .00047 2.5741	Ti3372 ppm 00114 .00285 251.04	TI1908 ppm 00274 .00213 77.628	V_2924 ppm . 00630 .00044 7.0413	Zn2062 ppm .00381 .00029 7.5895	Zr3391 ppm . 64982 .24842 38.230	
#1 #2 #3	00036 00046 .00095	.01847 .01761 .01836	00345 00200 .00205	00251 00074 00498	.00652 .00579 .00660	.00360 .00368 .00414	.36410 .77061 .81474	
Check ? High Limit Low Limit	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	
Int. Std. Units Avg Stddev %RSD	Y_2243 Cts/S 12934. 14. .10694	Y_3600 Cts/S 92258. 277. .29983	Y_3774 Cts/S 4290.1 48.4 1.1277					
#1 #2 #3	12933. 12921. 12948.	92043. 92570. 92162.	4341.8 4282.6 4246.0					

Sample Name Method: ICP-1 User: JYH Comment:		010_200.7W	Acquired: 5/16/2016 21:37:15 0_200.7WATER_3YLINES(v873) Custom ID2: Custom I			Type: Unk Mode: CONC Corr. Factor: 1.00 ID3:		
Elem	Ag3280	Al3082	As1890	B_2496	Ba4554	Be3131	Ca4226	
Units	ppm	ppm	ppm	ppm	ppm	ppm	ppm	
Avg	00261	.33045	00706	.09883	41.357	00008	F 2307.6	
Stddev	.00168	.01046	.00319	.00215	.454	.00005	37.0	
%RSD	64.534	3.1662	45.124	2.1805	1.0968	70.071	1.6036	
#1	00225	.33073	01061	.09782	40.842	00005	2305.6	
#2	00113	.34076	00611	.09736	41.697	00014	2271.7	
#3	00444	.31984	00446	.10130	41.532	00004	2345.6	
Check ? High Limit Low Limit	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Fail 270.00 10000	
Elem	Cd2288	Co2286	Cr2677	Cu2247	Fe2611	K_7664	Li6707	
Units	ppm	ppm	ppm	ppm	ppm	ppm	ppm	
Avg	. 00606	.00749	. 00631	. 01262	4.1654	76.470	1.1195	
Stddev	.00032	.00076	.00152	.00223	.0432	.153	.0035	
%RSD	5.3219	10.156	24.167	17.668	1.0378	.19997	.30988	
#1	.00631	.00661	.00774	.01477	4.1792	76.646	1.1155	
#2	.00617	.00791	.00647	.01277	4.1170	76.390	1.1217	
#3	.00569	.00796	.00471	.01032	4.2001	76.374	1.1213	
Check ? High Limit Low Limit	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	
Elem	Mg2790	Mn2576	Mo2020	Na5895	Ni2316	P_2149	Pb2203	
Units	ppm	ppm	ppm	ppm	ppm	ppm	ppm	
Avg	217.54	15.991	00080	F 521.34	00338	. 09859	. 00669	
Stddev	.57	.070	.00002	2.48	.00165	.01123	.00748	
%RSD	.26327	.43516	2.1532	.47544	48.796	11.391	111.83	
#1	216.88	16.070	00078	524.16	00525	.11148	00170	
#2	217.86	15.962	00079	519.50	00212	.09092	.01266	
#3	217.88	15.940	00081	520.35	00278	.09338	.00909	
Check ? High Limit Low Limit	Chk Pass	Chk Pass	Chk Pass	Chk Fail 270.00 50000	Chk Pass	Chk Pass	Chk Pass	

Sample Name: Method: ICP-T User: JYH Comment:)10_200.7W <i>A</i>	ed: 5/16/2016 ATER_3YLINI stom ID2:		Type: Unk Mode: CON ID3:	C Corr. F	Factor: 1.00000(
Elem Units Avg Stddev %RSD	Sb2068 ppm 01834 .00418 22.778	Se1960 ppm F04115 .00983 23.899	Si2124 ppm 3.9285 .0399 1.0162	Sn1899 ppm 00358 .00165 45.998	Sr4077 ppm F 53.746 .994 1.8501	Ti3372 ppm F19636 .00206 1.0500	TI1908 ppm 00305 .00521 170.56
#1 #2 #3	02007 01358 02137	02997 04845 04502	3.9572 3.9454 3.8829	00463 00443 00168	52.768 54.756 53.715	19758 19752 19398	00104 .00085 00897
Check ? High Limit Low Limit	Chk Pass	Chk Fail 90.000 01000	Chk Pass	Chk Pass	Chk Fail 9.0000 01000	Chk Fail 36.000 03000	Chk Pass
Elem Units Avg Stddev %RSD	V_2924 ppm . 00271 .00015 5.4504	Zn2062 ppm .00941 .00035 3.7312	Zr3391 ppm F54340 .40048 73.699				
#1 #2 #3	.00254 .00278 .00281	.00943 .00975 .00904	72457 08435 82129				
Check ? High Limit Low Limit	Chk Pass	Chk Pass	Chk Fail 36.000 04000				
Int. Std. Units Avg Stddev %RSD	Y_2243 Cts/S 10407. 21. .20287	Y_3600 Cts/S 74399. 310. .41699	Y_3774 Cts/S 3904.1 38.6 .98762				
#1 #2 #3	10408. 10386. 10428.	74049. 74640. 74508.	3867.0 3944.0 3901.4				

Sample Name Method: ICP-T User: JYH Comment:)10_200.7W <i>A</i>	red: 5/16/2016 ATER_3YLINI stom ID2:		Type: Unk Mode: CONO ID3:	Factor: 1.00000(
Elem	Ag3280	Al3082	As1890	B_2496	Ba4554	Be3131	Ca4226
Units	ppm	ppm	ppm	ppm	ppm	ppm	ppm
Avg	00171	.01315	00488	.09886	29.074	00014	F 2145.2
Stddev	.00105	.00200	.00388	.00167	.387	.00011	21.1
%RSD	61.831	15.175	79.511	1.6932	1.3295	78.155	.98329
#1	00117	.01385	00046	.10066	29.377	00003	2168.6
#2	00292	.01471	00771	.09856	28.639	00024	2139.5
#3	00103	.01090	00648	.09735	29.208	00015	2127.6
Check ? High Limit Low Limit	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Fail 270.00 10000
Elem	Cd2288	Co2286	Cr2677	Cu2247	Fe2611	K_7664	Li6707
Units	ppm	ppm	ppm	ppm	ppm	ppm	ppm
Avg	. 00459	. 00290	. 00400	.01010	24.670	34.683	. 65790
Stddev	.00035	.00044	.00161	.00160	.269	.109	.00756
%RSD	7.7016	15.148	40.204	15.855	1.0912	.31297	1.1495
#1	.00498	.00341	.00215	.01141	24.929	34.732	.66158
#2	.00447	.00262	.00485	.00832	24.392	34.559	.64920
#3	.00431	.00267	.00501	.01056	24.688	34.758	.66292
Check ? High Limit Low Limit	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass
Elem	Mg2790	Mn2576	Mo2020	Na5895	Ni2316	P_2149	Pb2203
Units	ppm	ppm	ppm	ppm	ppm	ppm	ppm
Avg	312.36	10.254	00094	F 493.33	00918	. 06067	. 00573
Stddev	3.94	.122	.00038	3.16	.00106	.00749	.00534
%RSD	1.2601	1.1875	40.730	.64109	11.537	12.346	93.226
#1	315.68	10.364	00062	496.98	00842	.06031	.00674
#2	308.01	10.124	00137	491.45	01039	.06833	00005
#3	313.39	10.275	00084	491.56	00873	.05336	.01049
Check ? High Limit Low Limit	Chk Pass	Chk Pass	Chk Pass	Chk Fail 270.00 50000	Chk Pass	Chk Pass	Chk Pass

Sample Name Method: ICP-T User: JYH Comment:		010_200.7W <i>A</i>	red: 5/16/2016 ATER_3YLINI stom ID2:		Type: Unk Mode: CON ID3:	C Corr. F	Factor: 1.00000(
Elem Units Avg Stddev %RSD	Sb2068 ppm 01299 .00249 19.181	Se1960 ppm F04209 .00554 13.167	Si2124 ppm 5.1533 .0160 .30978	Sn1899 ppm 00299 .00048 15.976	Sr4077 ppm F 65.612 1.240 1.8897	Ti3372 ppm F18636 .00828 4.4430	TI1908 ppm 00594 .00425 71.545
#1 #2 #3	01524 01341 01031	04743 03637 04248	5.1717 5.1448 5.1435	00354 00281 00263	67.025 64.704 65.108	18594 17829 19484	00730 00118 00934
Check ? High Limit Low Limit	Chk Pass	Chk Fail 90.000 01000	Chk Pass	Chk Pass	Chk Fail 9.0000 01000	Chk Fail 36.000 03000	Chk Pass
Elem Units Avg Stddev %RSD	V_2924 ppm . 00140 .00141 101.07	Zn2062 ppm .00814 .00021 2.5813	Zr3391 ppm F -1.5006 .2705 18.029				
#1 #2 #3	.00147 .00277 00005	.00838 .00798 .00805	-1.2596 -1.4490 -1.7932				
Check ? High Limit Low Limit	Chk Pass	Chk Pass	Chk Fail 36.000 04000				
Int. Std. Units Avg Stddev %RSD	Y_2243 Cts/S 10625. 31. .29296	Y_3600 Cts/S 75401. 116. .15383	Y_3774 Cts/S 3962.5 15.7 .39702				
#1 #2 #3	10625. 10594. 10656.	75354. 75533. 75315.	3950.3 3956.9 3980.2				

Sample Name Method: ICP- User: JYH Comment:		010_200.7W	red: 5/16/201 ATER_3YLIN stom ID2:		Type: Unk Mode: CON0 ID3:	C Corr. F	Factor: 1.00000(
Elem	Ag3280	Al3082	As1890	B_2496	Ba4554	Be3131	Ca4226
Units	ppm	ppm	ppm	ppm	ppm	ppm	ppm
Avg	00041	. 02044	00292	.10508	30.239	00004	F 2101.9
Stddev	.00313	.00884	.00209	.00090	.269	.00004	14.3
%RSD	763.58	43.259	71.552	.85882	.88794	90.569	.68087
#1	00336	.02860	00450	.10404	30.544	00004	2092.3
#2	.00286	.02169	00372	.10565	30.040	00001	2095.0
#3	00073	.01104	00055	.10555	30.132	00009	2118.3
Check ? High Limit Low Limit	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Fail 270.00 10000
Elem	Cd2288	Co2286	Cr2677	Cu2247	Fe2611	K_7664	Li6707
Units	ppm	ppm	ppm	ppm	ppm	ppm	ppm
Avg	. 00510	. 00279	.00338	.01013	25.414	36.579	. 69229
Stddev	.00028	.00059	.00169	.00129	.077	.228	.00859
%RSD	5.5400	21.143	49.923	12.712	.30381	.62330	1.2401
#1	.00533	.00211	.00468	.01064	25.340	36.438	.69172
#2	.00479	.00315	.00399	.01108	25.494	36.842	.70115
#3	.00519	.00311	.00147	.00867	25.409	36.456	.68400
Check ? High Limit Low Limit	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass
Elem	Mg2790	Mn2576	Mo2020	Na5895	Ni2316	P_2149	Pb2203
Units	ppm	ppm	ppm	ppm	ppm	ppm	ppm
Avg	322.12	10.631	00073	F 516.38	00936	. 05467	. 00506
Stddev	1.39	.035	.00023	1.53	.00050	.00398	.00307
%RSD	.43137	.32490	30.887	.29686	5.3036	7.2894	60.712
#1	320.65	10.615	00072	515.34	00977	.05925	.00705
#2	323.41	10.671	00051	518.14	00951	.05275	.00660
#3	322.31	10.608	00097	515.67	00881	.05200	.00152
Check ? High Limit Low Limit	Chk Pass	Chk Pass	Chk Pass	Chk Fail 270.00 50000	Chk Pass	Chk Pass	Chk Pass

Sample Name: Method: ICP-T User: JYH Comment:		6010_200.7WATER_3YLINES(v873)			Type: Unk Mode: CONC Corr. Factor: 1.000000 i ID3:			
Elem Units Avg Stddev %RSD	Sb2068 ppm 00838 .00221 26.375	Se1960 ppm F03393 .00840 24.753	Si2124 ppm 5.3479 .0483 .90220	Sn1899 ppm 00278 .00053 19.127	Sr4077 ppm F 68.453 .440 .64247	Ti3372 ppm F18862 .00445 2.3572	TI1908 ppm 00201 .00510 254.35	
#1 #2 #3	01013 00910 00590	04361 02846 02974	5.3720 5.3794 5.2924	00339 00237 00260	68.945 68.317 68.097	19199 18358 19029	.00228 00765 00065	
Check ? High Limit Low Limit	Chk Pass	Chk Fail 90.000 01000	Chk Pass	Chk Pass	Chk Fail 9.0000 01000	Chk Fail 36.000 03000	Chk Pass	
Elem Units Avg Stddev %RSD	V_2924 ppm . 00167 .00049 29.206	Zn2062 ppm . 00832 .00009 1.0858	Zr3391 ppm F -1.4200 .1801 12.684					
#1 #2 #3	.00218 .00161 .00121	.00841 .00823 .00832	-1.6277 -1.3256 -1.3067					
Check ? High Limit Low Limit	Chk Pass	Chk Pass	Chk Fail 36.000 04000					
Int. Std. Units Avg Stddev %RSD	Y_2243 Cts/S 10547. 21. .19631	Y_3600 Cts/S 75279. 119. .15799	Y_3774 Cts/S 3950.0 12.6 .31886					
#1 #2 #3	10523. 10558. 10560.	75386. 75151. 75298.	3963.8 3939.2 3946.9					

Sample Name Method: ICP-1 User: JYH Comment:)10_200.7W	red: 5/16/2010 ATER_3YLIN stom ID2:		Type: Unk Mode: CONC Corr. Factor: 1.00000 ID3:		
Elem	Ag3280	Al3082	As1890	B_2496	Ba4554	Be3131	Ca4226
Units	ppm	ppm	ppm	ppm	ppm	ppm	ppm
Avg	00223	.01853	00369	. 12120	F 48.882	00014	F 2259.9
Stddev	.00266	.00678	.00494	.00240	.936	.00010	26.1
%RSD	119.40	36.590	133.79	1.9840	1.9150	73.701	1.1530
#1	.00076	.02324	.00189	.12057	49.621	00006	2278.9
#2	00433	.01076	00547	.12386	49.196	00011	2270.6
#3	00312	.02160	00749	.11918	47.830	00026	2230.2
Check ? High Limit Low Limit	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Fail 45.000 00500	Chk Pass	Chk Fail 270.00 10000
Elem	Cd2288	Co2286	Cr2677	Cu2247	Fe2611	K_7664	Li6707
Units	ppm	ppm	ppm	ppm	ppm	ppm	ppm
Avg	. 00581	.00378	. 00167	. 01023	37.829	128.15	1.3834
Stddev	.00019	.00061	.00082	.00113	.137	.65	.0029
%RSD	3.3332	16.145	49.225	11.080	.36181	.50591	.21245
#1	.00603	.00371	.00073	.01050	37.845	128.29	1.3803
#2	.00569	.00443	.00226	.01120	37.957	128.72	1.3862
#3	.00571	.00321	.00202	.00899	37.685	127.45	1.3838
Check ? High Limit Low Limit	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass
Elem	Mg2790	Mn2576	Mo2020	Na5895	Ni2316	P_2149	Pb2203
Units	ppm	ppm	ppm	ppm	ppm	ppm	ppm
Avg	189.37	17.533	00090	F 540.21	00895	. 08652	. 00924
Stddev	.67	.059	.00050	3.54	.00118	.00348	.00153
%RSD	.35300	.33588	55.216	.65509	13.210	4.0235	16.568
#1	189.06	17.535	00088	543.98	00963	.08902	.00963
#2	190.13	17.591	00041	536.96	00758	.08254	.01054
#3	188.91	17.473	00141	539.68	00963	.08799	.00755
Check ? High Limit Low Limit	Chk Pass	Chk Pass	Chk Pass	Chk Fail 270.00 50000	Chk Pass	Chk Pass	Chk Pass

Sample Name: Method: ICP-T User: JYH Comment:)10_200.7W <i>A</i>	red: 5/16/2016 ATER_3YLINI stom ID2:		Type: Unk Mode: CONC Corr. Factor: 1.000000 1 ID3:			
Elem Units Avg Stddev %RSD	Sb2068 ppm 01144 .00684 59.789	Se1960 ppm F05361 .00526 9.8104	Si2124 ppm 5.4918 .0276 .50285	Sn1899 ppm 00259 .00207 80.202	Sr4077 ppm F 53.828 .631 1.1716	Ti3372 ppm F19451 .00097 .49999	TI1908 ppm 00538 .00241 44.729	
#1 #2 #3	00731 00768 01934	05388 04822 05872	5.5008 5.5138 5.4608	00254 00054 00468	54.493 53.754 53.239	19352 19546 19456	00321 00797 00495	
Check ? High Limit Low Limit	Chk Pass	Chk Fail 90.000 01000	Chk Pass	Chk Pass	Chk Fail 9.0000 01000	Chk Fail 36.000 03000	Chk Pass	
Elem Units Avg Stddev %RSD	V_2924 ppm . 00357 .00158 44.348	Zn2062 ppm .00355 .00028 7.9567	Zr3391 ppm F -1.5422 .2946 19.105					
#1 #2 #3	.00510 .00367 .00194	.00367 .00323 .00375	-1.2069 -1.6599 -1.7598					
Check ? High Limit Low Limit	Chk Pass	Chk Pass	Chk Fail 36.000 04000					
Int. Std. Units Avg Stddev %RSD	Y_2243 Cts/S 10431. 15. .14639	Y_3600 Cts/S 74663. 204. .27280	Y_3774 Cts/S 3950.6 29.4 .74483					
#1 #2 #3	10441. 10414. 10439.	74428. 74771. 74790.	3953.2 3920.0 3978.7					

Sample Nam Method: ICP User: JYH Comment:		_		LINES(v873	pe: QC) Mode: tom ID3:	CONC (Corr. Factor:	1.00000(
Elem	Ag3280	Al3082	As1890	B_2496	Ba4554	Be3131	Ca4226	
Units	ppm	ppm	ppm	ppm	ppm	ppm	ppm	
Avg	. 37547	9.4568	. 37277	. 46498	. 92569	. 04653	9.3667	
Stddev	.00065	.0069	.00449	.00183	.00710	.00035	.1112	
%RSD	.17405	.07280	1.2053	.39397	.76702	.74451	1.1872	
#1	.37557	9.4575	.37421	.46628	.92264	.04693	9.3939	
#2	.37478	9.4495	.36774	.46289	.92061	.04631	9.2445	
#3	.37608	9.4632	.37637	.46577	.93380	.04635	9.4618	
Check ? Value Range	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	
Elem	Cd2288	Co2286	Cr2677	Cu2247	Fe2611	K_7664	Li6707	
Units	ppm	ppm	ppm	ppm	ppm	ppm	ppm	
Avg	. 04687	. 19224	. 48330	. 48110	3.8088	46.508	. 94056	
Stddev	.00062	.00026	.00494	.00074	.0422	.388	.00714	
%RSD	1.3310	.13770	1.0230	.15308	1.1077	.83323	.75914	
#1	.04681	.19208	.48899	.48112	3.7732	46.347	.93639	
#2	.04753	.19255	.48003	.48035	3.7977	46.226	.93649	
#3	.04628	.19209	.48089	.48183	3.8554	46.950	.94881	
Check ? Value Range	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	
Elem	Mg2790	Mn2576	Mo2020	Na5895	Ni2316	P_2149	Pb2203	
Units	ppm	ppm	ppm	ppm	ppm	ppm	ppm	
Avg	9.5121	. 46933	. 93941	46.764	. 48628	9.4615	. 48531	
Stddev	.0859	.00284	.00446	.409	.00210	.0102	.00160	
%RSD	.90325	.60506	.47516	.87366	.43258	.10742	.33024	
#1	9.5487	.46625	.94381	46.620	.48714	9.4647	.48365	
#2	9.5736	.46991	.93954	46.448	.48782	9.4501	.48685	
#3	9.4139	.47184	.93489	47.225	.48388	9.4696	.48542	
Check ? Value Range	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	

Sample Nam Method: ICP User: JYH Comment:		6010_200.7	16/2016 21:5 WATER_3Y Custom ID2:	LINES(v873	pe: QC) Mode: tom ID3:	CONC (Corr. Factor: 1	.000000
Elem Units Avg Stddev %RSD	Sb2068 ppm 1.1275 .0050 .44770	Se1960 ppm . 36471 .00199 .54431	Si2124 ppm 4.7398 .0002 .00392	Sn1899 ppm . 95861 .00129 .13431	Sr4077 ppm . 92229 .00675 .73154	Ti3372 ppm . 92015 .01225 1.3313	TI1908 ppm . 48371 .00199 .41225	
#1 #2 #3	1.1300 1.1309 1.1217	.36544 .36623 .36247	4.7396 4.7398 4.7400	.95739 .95995 .95848	.91720 .91973 .92994	.90837 .91926 .93282	.48345 .48582 .48186	
Check ? Value Range	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	
Elem Units Avg Stddev %RSD	V_2924 ppm . 95212 .00279 .29285	Zn2062 ppm . 96910 .00062 .06438	Zr3391 ppm F 1.1747 .4280 36.435					
#1 #2 #3	.95534 .95068 .95035	.96981 .96881 .96867	1.0459 .82594 1.6523					
Check ? Value Range	Chk Pass	Chk Pass	Chk Fail 1.0000 10.000%					
Int. Std. Units Avg Stddev %RSD	Y_2243 Cts/S 13825. 30. .21473	Y_3600 Cts/S 98210. 361. .36711	Y_3774 Cts/S 4507.7 22.0 .48907					
#1 #2 #3	13851. 13832. 13793.	97950. 98060. 98622.	4517.2 4523.4 4482.5					

Sample Name: CCB Acquired: 5/16/2016 21:58:03 Type: Blank Method: ICP-THERMO3_6010_200.7WATER_3YLINES(v873) Mode: CC User: JYH Custom ID1: Custom ID2: Custom ID3: Comment:						de: CONC	Corr. Factor: 1.000000	
Elem	Ag3280	Al3082	As1890	B_2496	Ba4554	Be3131	Ca4226	Cd2288
Units	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm
Avg	00276	00893	00100	. 00196	.00032	.00010	00710	. 00024
Stddev	.00027	.01175	.00376	.00133	.00030	.00003	.03298	.00020
%RSD	9.8284	131.70	376.34	67.852	94.477	32.499	464.24	84.653
#1	00245	00001	00451	.00298	.00038	.00014	00786	.00041
#2	00295	00452	00144	.00046	00001	.00007	.02624	.00001
#3	00288	02225	.00296	.00243	.00057	.00009	03970	.00030
Check ? High Limit Low Limit	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass
Elem	Co2286	Cr2677	Cu2247	Fe2611	K_7664	Li6707	Mg2790	Mn2576
Units	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm
Avg	00039	.00019	00048	. 02649	. 17306	. 00430	. 04367	. 00050
Stddev	.00025	.00034	.00066	.01305	.09726	.00401	.13427	.00128
%RSD	65.622	176.43	137.74	49.267	56.202	93.234	307.50	254.83
#1	00057	.00005	00010	.03142	.23891	.00561	07869	.00037
#2	00050	.00058	00125	.01170	.06134	.00749	.02237	00071
#3	00010	00006	00010	.03637	.21892	00020	.18731	.00185
Check ? High Limit Low Limit	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass
Elem	Mo2020	Na5895	Ni2316	P_2149	Pb2203	Sb2068	Se1960	Si2124
Units	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm
Avg	. 00417	. 01242	00164	00738	00206	. 00164	00006	02623
Stddev	.00026	.00979	.00085	.00627	.00284	.00345	.01241	.00201
%RSD	6.2119	78.790	51.743	84.995	137.61	210.83	20845.	7.6792
#1	.00389	.00225	00068	00509	.00121	00231	01437	02846
#2	.00423	.01325	00227	01447	00389	.00406	.00778	02565
#3	.00439	.02178	00198	00257	00351	.00316	.00641	02456
Check ? High Limit Low Limit	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass

Sample Nar Method: ICF User: JYH Comment:		6010_200	5/16/2016 2 .7WATER_ Custom IE	3YLINES(v8	Type: Blan 373) Mc Custom ID3	de: CONC	Corr. Fa	ctor: 1.00000(
Elem Units Avg Stddev %RSD	Sn1899 ppm 00005 .00111 2103.5	Sr4077 ppm .00053 .00032 60.092	Ti3372 ppm 00120 .00709 591.19	TI1908 ppm 00194 .00179 92.646	V_2924 ppm 00007 .00032 446.83	Zn2062 ppm . 00022 .00018 81.323	Zr3391 ppm . 01420 .12496 879.72	
#1 #2 #3	00034 00099 .00117	.00088 .00043 .00027	00846 .00570 00083	00395 00052 00134	.00015 .00007 00044	.00012 .00043 .00012	10253 .14602 00088	
Check ? High Limit Low Limit	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	
Int. Std. Units Avg Stddev %RSD	Y_2243 Cts/S 13763. 36. .26289	Y_3600 Cts/S 98536. 407. .41266	Y_3774 Cts/S 4462.8 67.0 1.5006					
#1 #2 #3	13781. 13721. 13786.	98332. 98272. 99004.	4387.4 4485.2 4515.6					

Sample Name: ICSA Acquired: 5/16/2016 22:02:03 Type: QC Method: ICP-THERMO3_6010_200.7WATER_3YLINES(v873) Mode: CONC Corr. Factor: 1.000000 User: JYH Custom ID1: Custom ID2: Custom ID3: Comment:								
Elem	Ag3280	Al3082	As1890	B_2496	Ba4554	Be3131	Ca4226	
Units	ppm	ppm	ppm	ppm	ppm	ppm	ppm	
Avg	00151	271.58	00153	. 02248	. 00051	. 00001	245.00	
Stddev	.00074	.46	.00154	.00372	.00076	.00012	1.86	
%RSD	48.951	.16761	100.67	16.550	149.40	1176.6	.76097	
#1	00076	271.47	00328	.01818	.00033	.00006	243.00	
#2	00223	271.18	00093	.02467	.00135	00012	245.31	
#3	00154	272.07	00038	.02458	00014	.00009	246.69	
Check ? High Limit Low Limit	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	
Elem	Cd2288	Co2286	Cr2677	Cu2247	Fe2611	K_7664	Li6707	
Units	ppm	ppm	ppm	ppm	ppm	ppm	ppm	
Avg	. 00060	00149	00141	. 00186	99.992	. 15679	. 02027	
Stddev	.00038	.00006	.00052	.00133	.619	.10614	.00287	
%RSD	63.714	4.0547	36.810	71.585	.61902	67.693	14.181	
#1	.00033	00154	00133	.00051	99.464	.11859	.01729	
#2	.00043	00142	00093	.00318	99.839	.07504	.02049	
#3	.00104	00151	00196	.00190	100.67	.27674	.02303	
Check ? High Limit Low Limit	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	
Elem	Mg2790	Mn2576	Mo2020	Na5895	Ni2316	P_2149	Pb2203	
Units	ppm	ppm	ppm	ppm	ppm	ppm	ppm	
Avg	254.09	. 00011	00045	. 00649	00125	. 04975	.00068	
Stddev	1.92	.00295	.00033	.02474	.00149	.01426	.00596	
%RSD	.75735	2647.7	73.740	381.40	119.27	28.664	881.66	
#1	252.72	00319	00023	02080	00246	.04833	.00159	
#2	253.26	.00103	00029	.01281	.00041	.03625	.00612	
#3	256.29	.00250	00083	.02745	00170	.06466	00569	
Check ? High Limit Low Limit	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	

Sample Name: ICSA Acquired: 5/16/2016 22:02:03 Type: QC Method: ICP-THERMO3_6010_200.7WATER_3YLINES(v873) Mode: CONC Corr. Factor: 1.000000 User: JYH Custom ID1: Custom ID2: Custom ID3: Comment:								
Elem Units Avg Stddev %RSD	Sb2068 ppm 00285 .00275 96.487	Se1960 ppm . 00260 .00472 181.14	Si2124 ppm . 22038 .00106 .47911	Sn1899 ppm 00125 .00098 78.696	Sr4077 ppm . 00050 .00029 56.760	Ti3372 ppm 00176 .00646 367.32	TI1908 ppm 00547 .00377 68.819	
#1 #2 #3	00448 .00032 00438	.00596 00279 .00464	.22058 .22132 .21924	00040 00102 00232	.00079 .00051 .00022	00768 00274 .00514	00948 00200 00494	
Check ? High Limit Low Limit	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	
Elem Units Avg Stddev %RSD	V_2924 ppm . 00207 .00074 35.904	Zn2062 ppm .00443 .00016 3.6985	Zr3391 ppm F -3.1999 .2476 7.7373					
#1 #2 #3	.00157 .00293 .00173	.00428 .00460 .00441	-3.1027 -3.4814 -3.0157					
Check ? High Limit Low Limit	Chk Pass	Chk Pass	Chk Fail .02000 02000					
Int. Std. Units Avg Stddev %RSD	Y_2243 Cts/S 12474. 62. .49490	Y_3600 Cts/S 88237. 503. .56955	Y_3774 Cts/S 4210.4 15.9 .37778					
#1 #2 #3	12532. 12480. 12409.	88348. 87688. 88675.	4214.2 4224.2 4193.0					