LONGHORN ARMY AMMUNITION PLANT KARNACK, TEXAS ## ADMINISTRATIVE RECORD Volume 38 2018 **Bate Stamp Numbers 00893762 – 00895335** **Prepared for** Department of the Army Longhorn Army Ammunition Plant 1976 - 2018 # LONGHORN ARMY AMMUNITION PLANT KARNACK, TEXAS ADMINISTRATIVE RECORD – CHRONOLOGICAL INDEX #### **VOLUME 38** 2018 A. Title: Report (cont'd) – Draft Final, Third Annual Remedial Action Operation Report, LHAAP-50, Former Sump Water Tank (LAB DATA) Author(s): Department of the Army Recipient: Environmental Protection Agency Date: August 14, 2018 Bate Stamp: 00893762 - 00893824 B. Title: Minutes – Final Minutes, Monthly Manager's Meeting (MMM), July 19, 2018 Author(s): Department of the Army Recipient: Environmental Protection Agency Date: August 21, 2018 Bate Stamp: 00893825 – 00893835 C. Title: Report – Final Technical Memorandum Semi-Annual Groundwater Sampling Methodology and Analytical Results for Year 1 (Oct 2015-Apr 2016), Year 2 (Oct 2016 & Apr 2017), and Year 3 (Nov 2017 & Apr 2018), Site LHAAP-02, Vacuum Truck and Overnight Parking Author(s): Department of the Army Recipient: Texas Commission on Environmental Quality Date: August 21, 2018 Bate Stamp: 00893836 - 00895335 s.dataFile Page 2 of 2 | Data File | LM37787.wiff | Result Table | 121716_JWR.rdb | |---------------------------|------------------------|-----------------|-----------------| | Acquisition Date | 12/17/2016 4:21:40 AM | Algorithm Used | Analyst Classic | | Acquisition Method | 062911.dam | Instrument Name | API 4000 | | Project | Perchlorate\2009_07_22 | | | | Sample Name | WG595142-03 CCV (1.0ug/L) | Injection Vial | 5.00 | |---------------------------|---------------------------|------------------------|-----------------| | Data File | LM37787.wiff | Injection Volume | 10.00 | | Acquisition Date | 12/17/2016 4:21:40 AM | Algorithm Used | Analyst Classic | | Acquisition Method | 062911.dam | Sample Type | Quality Control | | Instrument Name | API 4000 | Result Table | 121716_JWR.rdb | | Sample ID | WG595142-03 | Dilution Factor | 1.00 | | Sample Comment | 1,1 STD78249 | Weight to Volume | 0.00 | | Internal Standard | Area (cps) | RT
(min) | Target conc.
(ug/L) | Calc. Conc.
(ug/L) | |-------------------|------------|-------------|------------------------|-----------------------| | O18LP | 3.260e+05 | 9.54 | 5.00 | - | | Target Analyte | Area (cps) | RT | Target conc. | Calc. Conc. | |------------------|------------|-------|--------------|-------------| | | | (min) | (ug/L) | (ug/L) | | Perchlorate | 1.060e+05 | 9.55 | 1.00 | 0.97 | | Perchlorate conf | 3.710e+04 | 9.54 | 1.00 | 1.00 | s.dataFile Page 1 of 2 s.dataFile Page 2 of 2 | Data File | LM37796.wiff | Result Table | 121716_JWR.rdb | |---------------------------|------------------------|-----------------|-----------------| | Acquisition Date | 12/17/2016 7:12:04 AM | Algorithm Used | Analyst Classic | | Acquisition Method | 062911.dam | Instrument Name | API 4000 | | Project | Perchlorate\2009_07_22 | | | | Sample Name | WG595142-05 CCV (1.0ug/L) | Injection Vial | 5.00 | |--------------------|---------------------------|------------------------|-----------------| | Data File | LM37796.wiff | Injection Volume | 10.00 | | Acquisition Date | 12/17/2016 7:12:04 AM | Algorithm Used | Analyst Classic | | Acquisition Method | 062911.dam | Sample Type | Quality Control | | Instrument Name | API 4000 | Result Table | 121716_JWR.rdb | | Sample ID | WG595142-05 | Dilution Factor | 1.00 | | Sample Comment | 1,1 STD78249 | Weight to Volume | 0.00 | | Internal Standard | Area (cps) | RT
(min) | Target conc.
(ug/L) | Calc. Conc.
(ug/L) | |-------------------|------------|-------------|------------------------|-----------------------| | O18LP | 3.280e+05 | 9.54 | 5.00 | - | | Target Analyte | Area (cps) | RT | Target conc. | Calc. Conc. | |------------------|------------|-------|--------------|-------------| | | | (min) | (ug/L) | (ug/L) | | Perchlorate | 1.090e+05 | 9.56 | 1.00 | 0.996 | | Perchlorate conf | 3.770e+04 | 9.54 | 1.00 | 1.01 | s.dataFile Page 1 of 2 Perchlorate (98.8/83.3 amu) Nee 109e 05 counts Hei ght 9512 601 cps RT 956 min RT (Exp. 9.56 (9.56) min RT): 9000 0.996 ng/ml Calculated conc: 8000 Area Ratio: 0.334 Sample (Quality Control) 7000 Type: 6000 5000 4000 3000 2000 1000 0 Time'min New 377 e CD4 counts Height: 332A CLB cps RT: 954 min Perchlorate conf (100.8/85.2 amu) RT (Exp. 9.54 (9.56) min 3200 RT): 954 Calculated 1.01 ng/ml 3000 conc: 2800 Area Ratio: 0.115 2600 Sample (Quality Control) Type: 2400 2200 2000 1800 1600 1400 1200 1000 800 600 400 200 Time min s.dataFile Page 2 of 2 | Data File | LM37776.wiff | Result Table | 121716_JWR.rdb | |---------------------------|------------------------|-----------------|-----------------| | Acquisition Date | 12/17/2016 12:53:22 AM | Algorithm Used | Analyst Classic | | Acquisition Method | 062911.dam | Instrument Name | API 4000 | | Project | Perchlorate\2009_07_22 | | | | Sample Name | WG595135-07 MRL (0.2ug/L) | Injection Vial | 3.00 | |--------------------|---------------------------|------------------------|-----------------| | Data File | LM37776.wiff | Injection Volume | 10.00 | | Acquisition Date | 12/17/2016 12:53:22 AM | Algorithm Used | Analyst Classic | | Acquisition Method | 062911.dam | Sample Type | Unknown | | Instrument Name | API 4000 | Result Table | 121716_JWR.rdb | | Sample ID | WG595135-07 | Dilution Factor | 1.00 | | Sample Comment | 1,1 STD78249 | Weight to Volume | 0.00 | | Internal Standard | Area (cps) | RT
(min) | Target conc.
(ug/L) | Calc. Conc.
(ug/L) | |-------------------|------------|-------------|------------------------|-----------------------| | O18LP | 3.150e+05 | 9.56 | 5.00 | - | | Target Analyte | Area (cps) | RT | Target conc. | Calc. Conc. | |------------------|------------|-------|--------------|-------------| | | | (min) | (ug/L) | (ug/L) | | Perchlorate | 2.150e+04 | 9.56 | N/A | 0.199 | | Perchlorate conf | 7.030e+03 | 9.54 | N/A | 0.183 | s.dataFile Page 1 of 2 s.dataFile Page 2 of 2 | Data File | LM37788.wiff | Result Table | 121716_JWR.rdb | |---------------------------|------------------------|-----------------|-----------------| | Acquisition Date | 12/17/2016 4:40:37 AM | Algorithm Used | Analyst Classic | | Acquisition Method | 062911.dam | Instrument Name | API 4000 | | Project | Perchlorate\2009_07_22 | | | | Sample Name | WG595135-08 MRL (0.2ug/L) | Injection Vial | 3.00 | |---------------------------|---------------------------|------------------------|-----------------| | Data File | LM37788.wiff | Injection Volume | 10.00 | | Acquisition Date | 12/17/2016 4:40:37 AM | Algorithm Used | Analyst Classic | | Acquisition Method | 062911.dam | Sample Type | Unknown | | Instrument Name | API 4000 | Result Table | 121716_JWR.rdb | | Sample ID | WG595135-08 | Dilution Factor | 1.00 | | Sample Comment | 1,1 STD78249 | Weight to Volume | 0.00 | | Internal Standard | Area (cps) | RT
(min) | Target conc.
(ug/L) | Calc. Conc.
(ug/L) | |-------------------|------------|-------------|------------------------|-----------------------| | O18LP | 3.230e+05 | 9.54 | 5.00 | - | | Target Analyte | Area (cps) | RT | Target conc. | Calc. Conc. | |------------------|------------|-------|--------------|-------------| | | | (min) | (ug/L) | (ug/L) | | Perchlorate | 2.170e+04 | 9.56 | N/A | 0.196 | | Perchlorate conf | 8.020e+03 | 9.54 | N/A | 0.205 | s.dataFile Page 1 of 2 s.dataFile Page 2 of 2 | Data File | LM37797.wiff | Result Table | 121716_JWR.rdb | |---------------------------|------------------------|-----------------|-----------------| | Acquisition Date | 12/17/2016 7:31:00 AM | Algorithm Used | Analyst Classic | | Acquisition Method | 062911.dam | Instrument Name | API 4000 | | Project | Perchlorate\2009_07_22 | | | | Sample Name | WG595135-09 MRL (0.2ug/L) | Injection Vial | 3.00 | |---------------------------|---------------------------|------------------------|-----------------| | Data File | LM37797.wiff | Injection Volume | 10.00 | | Acquisition Date | 12/17/2016 7:31:00 AM | Algorithm Used | Analyst Classic | | Acquisition Method | 062911.dam | Sample Type | Unknown | | Instrument Name | API 4000 | Result Table | 121716_JWR.rdb | | Sample ID | WG595135-09 | Dilution Factor | 1.00 | | Sample Comment | 1,1 STD78249 | Weight to Volume | 0.00 | | Internal Standard | Area (cps) | RT
(min) | Target conc.
(ug/L) | Calc. Conc.
(ug/L) | |-------------------|------------|-------------|------------------------|-----------------------| | O18LP | 3.390e+05 | 9.55 | 5.00 | - | | Target Analyte | Area (cps) | RT | Target conc. | Calc. Conc. | |------------------|------------|-------|--------------|-------------| | | | (min) | (ug/L) | (ug/L) | | Perchlorate | 2.250e+04 | 9.56 | N/A | 0.193 | | Perchlorate conf | 7.620e+03 | 9.55 | N/A | 0.184 | s.dataFile Page 1 of 2 s.dataFile Page 2 of 2 | Data File | LM37774.wiff | Result Table | 121716_JWR.rdb | |---------------------------|------------------------|-----------------|-----------------| | Acquisition Date | 12/17/2016 12:15:30 AM | Algorithm Used | Analyst Classic | | Acquisition Method | 062911.dam | Instrument Name | API 4000 | | Project | Perchlorate\2009_07_22 | | | | Sample Name | WG595142-01 CCB | Injection Vial | 1.00 | |---------------------------|------------------------|------------------|-----------------| | Data File | LM37774.wiff | Injection Volume | 10.00 | | Acquisition Date | 12/17/2016 12:15:30 AM | Algorithm Used | Analyst Classic | | Acquisition Method | 062911.dam | Sample Type | Unknown | | Instrument Name | API 4000 | Result Table | 121716_JWR.rdb | | Sample ID | WG595142-01 | Dilution Factor | 1.00 | | Sample Comment | 11.00 | Weight to Volume | 0.00 | | Internal Standard | Area (cps) | RT | Target conc. | Calc. Conc. |
-------------------|------------|-------|--------------|-------------| | | | (min) | (ug/L) | (ug/L) | | O18LP | 3.150e+05 | 9.55 | 5.00 | - | | Target Analyte | Area (cps) | RT | Target conc. | Calc. Conc. | |------------------|------------|-------|--------------|-------------| | | | (min) | (ug/L) | (ug/L) | | Perchlorate | 0.000e+00 | 0.00 | N/A | No Peak | | Perchlorate conf | 0.000e+00 | 0.00 | N/A | No Peak | s.dataFile Page 1 of 2 s.dataFile Page 2 of 2 | Data File | LM37789.wiff | Result Table | 121716_JWR.rdb | |---------------------------|------------------------|-----------------|-----------------| | Acquisition Date | 12/17/2016 4:59:32 AM | Algorithm Used | Analyst Classic | | Acquisition Method | 062911.dam | Instrument Name | API 4000 | | Project | Perchlorate\2009_07_22 | | | | Sample Name | WG595142-04 CCB | Injection Vial | 1.00 | |---------------------------|-----------------------|------------------|-----------------| | Data File | LM37789.wiff | Injection Volume | 10.00 | | Acquisition Date | 12/17/2016 4:59:32 AM | Algorithm Used | Analyst Classic | | Acquisition Method | 062911.dam | Sample Type | Unknown | | Instrument Name | API 4000 | Result Table | 121716_JWR.rdb | | Sample ID | WG595142-04 | Dilution Factor | 1.00 | | Sample Comment | 11.00 | Weight to Volume | 0.00 | | Internal Standard | Area (cps) | RT
(min) | Target conc.
(ug/L) | Calc. Conc.
(ug/L) | |-------------------|------------|-------------|------------------------|-----------------------| | O18LP | 3.490e+05 | 9.55 | 5.00 | - | | Target Analyte | Area (cps) | RT | Target conc. | Calc. Conc. | |------------------|------------|-------|--------------|-------------| | | | (min) | (ug/L) | (ug/L) | | Perchlorate | 0.000e+00 | 0.00 | N/A | No Peak | | Perchlorate conf | 0.000e+00 | 0.00 | N/A | No Peak | s.dataFile Page 1 of 2 s.dataFile Page 2 of 2 | Data File | LM37798.wiff | Result Table | 121716_JWR.rdb | |---------------------------|------------------------|-----------------|-----------------| | Acquisition Date | 12/17/2016 7:49:55 AM | Algorithm Used | Analyst Classic | | Acquisition Method | 062911.dam | Instrument Name | API 4000 | | Project | Perchlorate\2009_07_22 | | | | Sample Name | WG595142-06 CCB | Injection Vial | 1.00 | |---------------------------|-----------------------|------------------|-----------------| | Data File | LM37798.wiff | Injection Volume | 10.00 | | Acquisition Date | 12/17/2016 7:49:55 AM | Algorithm Used | Analyst Classic | | Acquisition Method | 062911.dam | Sample Type | Unknown | | Instrument Name | API 4000 | Result Table | 121716_JWR.rdb | | Sample ID | WG595142-06 | Dilution Factor | 1.00 | | Sample Comment | 11.00 | Weight to Volume | 0.00 | | Internal Standard | Area (cps) | RT | Target conc. | Calc. Conc. | |-------------------|------------|-------|--------------|-------------| | | | (min) | (ug/L) | (ug/L) | | O18LP | 3.490e+05 | 9.55 | 5.00 | - | | Target Analyte | Area (cps) | RT | Target conc. | Calc. Conc. | |------------------|------------|-------|--------------|-------------| | | | (min) | (ug/L) | (ug/L) | | Perchlorate | 0.000e+00 | 0.00 | N/A | No Peak | | Perchlorate conf | 0.000e+00 | 0.00 | N/A | No Peak | s.dataFile Page 1 of 2 s.dataFile Page 2 of 2 Created with Analyst Reporter Printed: 12/17/2016 2:15 PM | Data File | LM37777.wiff | Result Table | 121716_JWR.rdb | |---------------------------|------------------------|-----------------|-----------------| | Acquisition Date | 12/17/2016 1:12:17 AM | Algorithm Used | Analyst Classic | | Acquisition Method | 062911.dam | Instrument Name | API 4000 | | Project | Perchlorate\2009_07_22 | | | | Sample Name | WG595135-01 MCT (0.2ug/L) | Injection Vial | 10.00 | |---------------------------|---------------------------|------------------------|-----------------| | Data File | LM37777.wiff | Injection Volume | 10.00 | | Acquisition Date | 12/17/2016 1:12:17 AM | Algorithm Used | Analyst Classic | | Acquisition Method | 062911.dam | Sample Type | Unknown | | Instrument Name | API 4000 | Result Table | 121716_JWR.rdb | | Sample ID | WG595135-01 | Dilution Factor | 1.00 | | Sample Comment | 1,1 STD78251 | Weight to Volume | 0.00 | | Internal Standard | Area (cps) | RT | Target conc. | Calc. Conc. | |-------------------|------------|-------|--------------|-------------| | | | (min) | (ug/L) | (ug/L) | | O18LP | 2.960e+05 | 8.95 | 5.00 | - | | Target Analyte | Area (cps) | RT
(min) | Target conc.
(ug/L) | Calc. Conc.
(ug/L) | |------------------|------------|-------------|------------------------|-----------------------| | Perchlorate | 2.050e+04 | 8.97 | N/A | 0.202 | | Perchlorate conf | 7.290e+03 | 8.96 | N/A | 0.204 | s.dataFile Page 1 of 2 Created with Analyst Reporter Printed: 12/17/2016 2:15 PM s.dataFile Page 2 of 2 C lected by: N/A E.ectronic Signature: no Operator: lcms1 Printing Date: Saturday, December 17, 2016 #4 JWR/12/17/16 12.19.1V Collected by: N/A Electronic Signature: no Operator: lcms1 TO THE STATE OF TH ### **2.1.1.5** Raw QC Data | Data File | LM37778.wiff | Result Table | 121716_JWR.rdb | |---------------------------|------------------------|-----------------|-----------------| | Acquisition Date | 12/17/2016 1:31:16 AM | Algorithm Used | Analyst Classic | | Acquisition Method | 062911.dam | Instrument Name | API 4000 | | Project | Perchlorate\2009_07_22 | | | | Sample Name | WG595135-02 BLANK | Injection Vial | 11.00 | |--------------------|-----------------------|------------------|-----------------| | Data File | LM37778.wiff | Injection Volume | 10.00 | | Acquisition Date | 12/17/2016 1:31:16 AM | Algorithm Used | Analyst Classic | | Acquisition Method | 062911.dam | Sample Type | Unknown | | Instrument Name | API 4000 | Result Table | 121716_JWR.rdb | | Sample ID | WG595135-02 | Dilution Factor | 1.00 | | Sample Comment | 11.00 | Weight to Volume | 0.00 | | Internal Standard | Area (cps) | RT
(min) | Target conc.
(ug/L) | Calc. Conc.
(ug/L) | |-------------------|------------|-------------|------------------------|-----------------------| | O18LP | 3.380e+05 | 9.55 | 5.00 | - | | Target Analyte | Area (cps) | RT | Target conc. | Calc. Conc. | |------------------|------------|-------|--------------|-------------| | | | (min) | (ug/L) | (ug/L) | | Perchlorate | 0.000e+00 | 0.00 | N/A | No Peak | | Perchlorate conf | 1.990e+02 | 9.61 | N/A | < 0 | s.dataFile Page 1 of 2 Created with Analyst Reporter Printed: 12/17/2016 2:16 PM Perchlorate (98.8/83.3 amu) (peak not found) RT (Exp. 0.00 (9.56) min 200 RT): 803 Calculated No Peak ng/ml 180 conc: Area Ratio: 0.00 160 Sample (Unknown) Type: 140 120 100 80 60 40 20 0 Time min Nesi 199e'CD counts Height: 31916 cps RT-961 min Perchlorate conf (100.8/85.2 amu) RT (Exp. 9.61 (9.56) min 803 RT): 160 Calculated < 0 ng/ml conc: 0.001 Area Ratio: 140 Sample (Unknown) Type: 120 100 80 60 40 20 Time'min s.dataFile Page 2 of 2 | Data File | LM37779.wiff | Result Table | 121716_JWR.rdb | |---------------------------|------------------------|-----------------|-----------------| | Acquisition Date | 12/17/2016 1:50:11 AM | Algorithm Used | Analyst Classic | | Acquisition Method | 062911.dam | Instrument Name | API 4000 | | Project | Perchlorate\2009_07_22 | | | | Sample Name | WG595135-03 LCS (0.2ug/L) | Injection Vial | 12.00 | |---------------------------|---------------------------|------------------------|-----------------| | Data File | LM37779.wiff | Injection Volume | 10.00 | | Acquisition Date | 12/17/2016 1:50:11 AM | Algorithm Used | Analyst Classic | | Acquisition Method | 062911.dam | Sample Type | Unknown | | Instrument Name | API 4000 | Result Table | 121716_JWR.rdb | | Sample ID | WG595135-03 | Dilution Factor | 1.00 | | Sample Comment | 1,1 STD78251 | Weight to Volume | 0.00 | | Internal Standard | Area (cps) | RT | Target conc. | Calc. Conc. | |-------------------|------------|-------|--------------|-------------| | | | (min) | (ug/L) | (ug/L) | | O18LP | 3.300e+05 | 9.54 | 5.00 | - | | Target Analyte | Area (cps) | RT | Target conc. | Calc. Conc. | |------------------|------------|-------|--------------|-------------| | | | (min) | (ug/L) | (ug/L) | | Perchlorate | 2.260e+04 | 9.56 | N/A | 0.20 | | Perchlorate conf | 8.110e+03 | 9.54 | N/A | 0.203 | s.dataFile Page 1 of 2 s.dataFile Page 2 of 2 ### 3.0 Attachments ### Microbac Laboratories Inc. Ohio Valley Division Analyst List December 19, 2016 001 - BIO-CHEM TESTING WVDEP 220 002 - REIC Consultants, Inc. WVDEP 060 003 - Sturm Environmental 004 - MICROBAC PITTSBURGH 005 - ES LABORATORIES 006 - ALCOSAN LABORATORIES 007 - ALS LABORATORIES 010 - MICROBAC CHICAGOLAND CANTER 008 - BENCHMARK LABORATORIES AC - AMBER R. CARMICHAEL ADG - APRIL D. GREENE AED - ALLEN E. DAVIS ALS - ADRIANE L. STEED AMA - ALEXANDRA M. ALFRED AWE - ANDREW W. ESSIG AZH - AFTER HOURS BJO - BRIAN J. OGDEN BUC - BRIAN J. OGDEN BKT - BRENDAN TORRENCE BLG - BRENDA L. GREENWAL BNB - Brandi N. Bentley BRG - BRENDA R. GREGORY CAA - CASSIE A. AUGENSTEIN CAF - CHERYL A. FLOWERS CAS - Craig A. Smith CEB - CHAD E. BARNES BLG - BRENDA L. GREENWALT CAS - Craig A. Smith CJQ - Cameron J. Quick CLC - CHRYS L. CRAWFORD CLS - CARA L. STRICKLER CPD - CHAD P. DAVIS CRW - CHRISTINA R. WILSON CSH - CHRIS S. HILL CV - Carl Volkman DAK - DEAN A. KETELSEN DEV - DAVID E. VANDENBERG DLB - DAVID L. BUMGARNER DLP - DOROTHY L. PAYNE DSM - DAVID S. MOSSOR DTG - DOMINIC T. GEHRET ECL - ERIC C. LAWSON EMW - ERIC M. WILKEN ENY - EMILY N. YOAK ERP - ERIN R. PORTER FJB - FRANCES J. BOLDEN JDH - JUSTIN D. HESSON JDS - JARED D. SMITH JKP - JACQUELINE K. PARSONS JLD - JESSICA L. DELONG JLL - JOHN L. LENT JTP - JOSHUA T. PEMBERTON JWR - JOHN W. RICHARDS JLD - JESSICA L. DELONG JLL - JOHN L. LENT JMW - JEANA M. WHITE JTP - JOSHUA T. PEMBERTON JWR - JOHN W. RICHARDS JWS - JACK W. SHEAVES JYH - JI Y. HU KAK - KATHY A. KIRBY KAT - KATHY A.
TUCKER KDD - Katelyn D. Daley KDW - KATHRYN D. WELCH KEB - KATIE E. BARNES KHR - KIM H. RHODES KKB - KERRI K. BUCK KRA - KATHY R. ALBERTSON KRB - KAELY R. BECKER KRP - KATHY R. PARSONS LJH - Lacey J. Hendershot KRP - KATHY R. PARSONS LKN - LINDA K. NEDEFF LSB - LESLIE S. BUCINA LJH - Lacey J. Hendershot LLS - LARRY L. STEPHENS LSJ - LAURA S. JONES MAP - MARLA A. PORTER MDA - MIKE D. ALBERTSON MES - MARY E. SCHILLING MBK - MORGAN B. KNOWLTON MDC - MIKE D. COCHRAN MRT - MICHELLE R. TAYLOR MMB - MAREN M. BEERY MSW - MATT S. WILSON NPH - Natalie P. Hart PIT - MICROBAC WARRENDALE PDM - PIERCE D. MORRIS RAH - ROY A. HALSTEAD RLB - BOB BUCHANAN SAV - SARAH A. VANDENBERG QX - QIN XU REK - BOB E. KYER RNP - RICK N. PETTY SCB - SARAH C. BOGOLIN SDC - SHALYN D. CONLEY SLM - STEPHANIE L. MOSSBURG SLP - SHERI L. PFALZGRAF TGF - TIM G. FELTON TB - TODD BOYLE TMM - TAMMY M. MORRIS TMB - TIFFANY M. BAILEY WJB - WILL J. BEASLEY VC - VICKI COLLIER WTD - WADE T. DELONG XXX - UNAVAILABLE OR SUBCONTRACT ### Microbac Laboratories Inc. List of Valid Qualifiers December 19, 2016 Qualkey: DOD | Qualifier | Description | |------------|--| | * | Surrogate or spike compound out of range | | + | Correlation coefficient for the MSA is less than 0.995 | | < | Result is less than the associated numerical value. | | > | Greater than | | >,H1 | Result is greater than the associated numerical value. Sample analysis performed past holding time. | | A
B | See the report narrative The reported result is associated with a contaminated method blank. | | B,H1 | Analyte present in method blank. Sample analysis performed past holding time. | | B1 | Target analyte detected in method blank at or above the method reporting limit | | B3 | Target analyte detected in calibration blank at or above the method reporting limit | | B4 | The BOD unseeded dilution water blank exceeded 0.2 mg/L | | С | Confirmed by GC/MS | | CG | Confluent growth | | CT1 | Cooler temperature at sample reciept exceeded regulatory limit. | | DL | Surrogate or spike compound was diluted out | | E
E,CT1 | Estimated concentration due to sample matrix interference Estimated results. The cooler temperature at receipt exceeded regulatory guidelines for requested testing. | | EDL | Elevated sample reporting limits, presence of non-target analytes | | EMPC | Estimated Maximum Possible Concentration | | F, S | Estimated result below quantitation limit; method of standard additions(MSA) | | F,CT1 | Estimated value; the analyte concentration was less than the RL/LOQ. The cooler temperature at receipt exceeded regula | | FL | Free Liquid | | FP1 | Did not ignite. | | H1 | Sample analysis performed past holding time. | | H1,CT1 | Sample analysis performed past holding time. The cooler temperature at receipt exceeded regulatory guidelines for reque | | I
J | Semiquantitative result (out of instrument calibration range) Estimated concentration; sample matrix interference. | | J | Estimated value; the analyte concentration was greater than the highest standard | | Ĵ | Estimated value ; the analyte concentration was less than the LOQ. | | Ĵ | The reported result is an estimated value. | | J,B | Analyte detected in both the method blank and sample above the MDL. | | J,CT1 | Estimated value; the analyte concentration was less than the LOQ. Cooler temperature at sample reciept exceeded regu | | J,H1 | Estimated value; the analyte concentration was less than the LOQ. Sample analysis performed past holding time. | | J,H1 | The reported result is an estimated value. Sample was analyzed past holding time. | | J,P
J,S | Estimate; columns don't agree to within 40% Estimated concentration; analyzed by method of standard addition (MSA) | | JB | The reported result is an estimated value. The reported result is also associated with a contaminated method blank. | | ĴQ | The reported result is an estimated value and one or more quality control criteria failed. See narrative. | | L | Sample reporting limits elevated due to matrix interference | | L1 | The associated blank spike (LCS) recovery was above the laboratory acceptance limits. | | L2 | The associated blank spike (LCS) recovery was below the laboratory acceptance limits. | | M | Matrix effect; the concentration is an estimate due to matrix effect. | | N | Nontarget analyte; the analyte is a tentativlely identified compound (TIC) by GC/MS | | NA
ND | Not applicable Not detected at or above the reporting limit (RL) | | ND, B | Not detected at or above the reporting limit (RL). Analyte present in method blank. | | ND, CT1 | Analyte was not detected. The concentration is below the reported LOD. The cooler temperature at receipt exceeded reg | | NĎ, L | Not detected; sample reporting limit (RL) elevated due to interference | | ND, S | Not detected; analyzed by method of standard addition (MSA) | | ND,H1 | Not detected; Sample analysis performed past holding time. | | ND,H1,CT1 | Not detected; Sample analysis performed past holding time. The cooler temperature at receipt exceeded regulatory guide | | NF
NFL | Not found by library search | | NI | No free liquid
Non-ignitable | | NR | Analyte is not required to be analyzed | | NS | Not spiked | | Р | Concentrations >40% difference between the two GC columns | | Q | One or more quality control criteria failed. See narrative. | | Q,H1 | One or more quality control criteria failed. Sample analyzed past holding time. See narrative. | | QNS | Quantity of sample not sufficient to perform analysis | | RA
RE | Reanalysis confirms reported results Reanalysis confirms sample matrix interference | | S | Analyzed by method of standard addition (MSA) | | SMI | Sample matrix interference on surrogate | | SP | Reported results are for spike compounds only | | T5 | Laboratory not licensed for this parameter | | TIC | Library Search Compound | ### Microbac Laboratories Inc. List of Valid Qualifiers December 19, 2016 Qualkey: DOD | Too numerous to count | |--| | Too numerous to count. Analyte present in method blank. | | Too numerous to count. The cooler temperature at receipt exceeded regulatory guidelines for requested testing. | | Too numerous to count. Sample analysis performed past holding time. | | Analyte was not detected. The concentration is below the reported LOD. | | Analyte was not detected. The concentration is below the reported LOD. Cooler temperature at sample reciept exceeded | | Not detected; Sample analysis performed past holding time. | | Undetected; the MDL and RL are estimated due to quality control discrepancies. | | Undetected; the analyte was analyzed for, but not detected. | | Post-digestion spike for furnace AA out of control limits | | Exceeds regulatory limit | | Exceeds regulatory limit; method of standard additions (MSA) | | Cannot be resolved from isomer - see below | | | | | AMCOM | | | | Chain of Custody Record | of C | ustoc | ly Re | cord | | | | | C | COC Number | | | | |---------------------------------|--|-------|--------|-------------------|--|----------------|---------------------|----------------|------------|--------------------|---|---|-----------|--------------------|---|------------------------|---------|--------| | Laboratory: | Microbac POC: Stephanie Mossburg | sburg | | Project Manager: | ger: | De | Debra Richmann | mann | | | | | Mail to: | | I inda Raahe | ahe
e | | Г | | Address: | 158 Starlite Drive | | | Phone/Fax Number: | ımber: | 210 | 210-296-2000 | 2 | | | | | | , ' | 110 Fact Decan | 5 | STE 400 | T | | | Marietta, OH 45750 | | | Sampler (print): | ä | i V | Scott Beasinger | nger | | | | | | , * | Con Ante | ביים לביים | 1 400 | Т | | Phone: | 1-800-373-4071 | | | | | <u> </u> | All Decs | <u> </u> | | | | | | - 1,, | 210-296-2000 | 7000
2000 | cnz8/ | Т | | Client: | AECOM | | | Signature: | | | | | | | | | Fed Ex A | Fed Ex Airbill No: | | | | Т | | Address: | 112 East Pecan Ste. 400 | | | | | - | | | | | | | | | | | | | | | San Antonio, TX 78205 | | | | | | | - | | F | F | F | 0.00 | | | | | T | | Turn Around Time: | Time: STANDARD | | | Ä | | | | SJ | | | | | riogram | | | | | | | Project Name/Location: | | | | <u>.</u> | | | | | | | | | | | | | | | | Project Number: | | | | | | | | r Cor
hlors | | | | | | ERPIN | IS REQUI | ERPIMS REQUIRED FIELDS | SQ | T | | Site Name | Sample ID/I ocation ID | Cas | G
G | į | | | Τ''- | o tedmi | | | | | ∋ac | al 1 | LOT C | LOT CONTROL NUMBERS | IMBERS | T | | | | dae | SED | Date | e
E | noວ | JeM | ηN | | · · · · · | | | SA CC | Coole | ABLOT | EBLOT | TBLOT | Γ. | | ∀ | HBW 7 - 112916 | | | 11/29/16 | 8:13 | × | ≥ | × | | | | | | 1 | | | | Т | | 9 ə. | HBW 10 - 112916 | | | 11/29/16 | 8:27 | × | 3 | × | | | | | | | | | | Т | | ာ | HBW 1 - 112916 | | | 11/29/16 | 8:35 | × | ≥ | × | | | | | | | | | | T | | əin | GPW 1 - 112916 | | | 11/29/16 | 8:28 | × | ┼— | × | | - | | | | | | | | Т. | | e1 | GPW 3 - 112916 | | | 11/29/16 | 9:10 | × | > | × | | | | | | | | | | Τ | | d (| | | | | | | ╁ | ┿ | | + | 1 | - | \dagger | 1 | | | | Т | | 98 | | | | | | \mp | _ - | + | | + | + | 1 | 1 | + | | | | Т | | 00 | | | | | | - | \int | - | | 1 | + | | \dashv | + | | | | T | | ອ | | | | | | \perp | | - | | | | | | | | | | | | 8 | | | | | | | | | | | | - | | | | | | | | no | | | | | | - | | | | | | | | | | | | T - | | γe | | | | | | - | | | | | | | | | | | | T | | e u | | | | | | \blacksquare | | | | | | | | | | | | | | osin | | | | | | | | | | | | | |
 | | | - 1 | | Har | Comments: STANDARD TAT | | | | | | | | | 1 | |] | | 1 | | | | | | Relinguished by: | (| Date | ۔ ا | Time | Received by: (Signature) | (Signatu | <u>e</u> | | | 1 | | | į | | | atture) | 6 | 33 | | (Signature) | TOUTH HAS | 2 | 20/16 | 15:00 | | | | | =

 | Microbac OVD | oso ox | ;; 60
0 F ; | 32 | • | 420A0000 | | 6 | | | Relinquished by:
(Signature) |)
) | Date | | | Received for Laboratory by (Signature) | Laborato | ory by: | | | eceived
y: BREN | Received: 11/30/20'
By: BRENDA GREGORY | Received: 11/30/2010 US:
Received: GREGORY
By: BRENDA GREGORY | | 221 | 0.0000000000000000000000000000000000000 | I | | 00 | | -Homogenize a | Homogenize all composite samples prior to analysis | | | | | | Distribution: White | on: Whit | | Loun | Aunda Arean | 7.00 | | | - manager | e, | | 189379 | | | | | | | | | | | | • | | | | | | | | 92 | Cooler ID 1024 #### COOLER TEMP >6° C LOG | | Bottle 1 | Bottle 2 | Bottle 3 | Bottle 4 | Bottle 5 | Bottle 6 | |---------------------------------------|----------|----------|----------|----------|----------|----------| | SAMPLE ID | °C | °C | °C | °C | °C | °C | | · · · · · · · · · · · · · · · · · · · | 1. | | | | | | | 100 | 0 | | | | | | | 111111 | | | | | | | | | | | | | | | 0 | | | | | | | 1 | 169 · | | | | | | | | | | | | | | | . , | pH Lot # | HC581 | 117 | |----------|-------------|-----| | | | | pH Exceptions | SAMPLE ID | Bottle 1 | Bottle 2 | Bottle 3 | Bottle 4 | Bottle 5 | Bottle 6 | |-----------|--|----------|--|----------|----------|---------------------------------------| | | | | | | | | | | | | | | | | | | | | ······································ | | | | | *** | | | · · · · · · · · · · · · · · · · · · · | , | | | | | | | | 12 | All | | | | | | <u> </u> | $-\pi$ | | | | | · | | | | | | | | | | | | | | | | | | | - | | | | | | | | | | | | | | | | | | | · · · · · · · · · · · · · · · · · · · | | PRESE | RVATI\
PTIONS | /F | | | | | | | ···· | | | | | | | EXCE | :FIIONS | 5 | | | Document Control # 1957 Last 10-07-2016 _NONE _AS NOTED Issued to: Document Master File Microbac Laboratories Inc. Internal Chain of Custody Report **Login:** L16111326 **Account:** 2551 **Project:** 2551.096 Samples: 5 **Due Date:** 09-DEC-2016 Samplenum Container ID Products L16111326-01 834862 6850 Bottle: 1 | Seq. | Purpose | From | То | Date/Time | Accept | Relinquish | На | |------|---------|--------|-----|-------------------|--------|------------|----| | 1 | LOGIN | COOLER | W1 | 30-NOV-2016 10:08 | BRG | | | | 2 | ANALYZ | W1 | SEM | 15-DEC-2016 14:34 | JWR | BRG | | | 3 | STORE | SEM | A1 | 17-DEC-2016 18:31 | AZH | JWR | | <u>Samplenum</u> <u>Container ID</u> <u>Products</u> <u>L16111326-02</u> 834863 6850 Bottle: 1 | Seq. | Purpose | From | То | Date/Time | Accept | Relinquish | Нд | |------|---------|--------|-----|-------------------|--------|------------|----| | 1 | LOGIN | COOLER | W1 | 30-NOV-2016 10:08 | BRG | | | | 2 | ANALYZ | W1 | SEM | 15-DEC-2016 14:34 | JWR | BRG | | | 3 | STORE | SEM | A1 | 17-DEC-2016 18:31 | AZH | JWR | | <u>Samplenum</u> <u>Container ID</u> <u>Products</u> <u>L16111326-03</u> 834864 6850 Bottle: 1 | Seq. | Purpose | From | То | Date/Time | Accept | Relinquish | pН | |------|---------|--------|-----|-------------------|--------|------------|----| | 1 | LOGIN | COOLER | W1 | 30-NOV-2016 10:08 | BRG | | | | 2 | ANALYZ | W1 | SEM | 15-DEC-2016 14:34 | JWR | BRG | | | 3 | STORE | SEM | A1 | 17-DEC-2016 18:31 | AZH | JWR | | <u>Samplenum</u> <u>Container ID</u> <u>Products</u> <u>L16111326-04</u> 834865 6850 Bottle: 1 | Seq. | Purpose | From | То | Date/Time | Accept | Relinquish | рН | |------|---------|--------|-----|-------------------|--------|------------|----| | 1 | LOGIN | COOLER | W1 | 30-NOV-2016 10:08 | BRG | | | | 2 | ANALYZ | W1 | SEM | 15-DEC-2016 14:34 | JWR | BRG | | | 3 | STORE | SEM | A1 | 17-DEC-2016 18:31 | AZH | JWR | | A1 - Sample Archive (COLD) A2 - Sample Archive (AMBIENT) F1 - Volatiles Freezer in Login V1 - Volatiles Refrigerator in Login W1 - Walkin Cooler in Login Microbac Laboratories Inc. Internal Chain of Custody Report Login: L16111326 Account: 2551 Project: 2551.096 Samples: 5 **Due Date:** 09-DEC-2016 <u>Samplenum</u> <u>Container ID</u> <u>Products</u> <u>L16111326-05</u> 834866 6850 Bottle: 1 | Seq. | Purpose | From | То | Date/Time | Accept | Relinquish | рН | |------|---------|--------|-----|-------------------|--------|------------|----| | 1 | LOGIN | COOLER | W1 | 30-NOV-2016 10:08 | BRG | | | | 2 | ANALYZ | W1 | SEM | 15-DEC-2016 14:34 | JWR | BRG | | | 3 | STORE | SEM | A1 | 17-DEC-2016 18:31 | AZH | JWR | | A1 - Sample Archive (COLD) A2 - Sample Archive (AMBIENT) F1 - Volatiles Freezer in Login V1 - Volatiles Refrigerator in Login W1 - Walkin Cooler in Login ### NELAP Addendum - January 4, 2016 ### **Non-NELAP LIMS Product and Description** The following is a list of those tests that are not included in the Microbac – OVD NELAP Scope of Accreditation: Heat of Combustion (BTU) Total Halide by Bomb Combustion (TX) Particle Sizing - 200 Mesh (PS200) Specific Gravity/Density (SPGRAV) Total Residual Chlorine (CL-TRL) Total Volatile Solids (all forms) (TVS) Total Coliform Bacteria (all methods) Fecal Coliform Bacteria (all methods) Sulfite (SO3) Propionaldehyde (HPLC-UV) ### **SOLID AND HAZARDOUS CHEMICALS** Nitrogen, Ammonia by Method 350.1 Chromium, Hexavalent, Leachable by SM3500 Cr-B 2009 Phenolics, Total by Method 420.1 ASTM D3987-06 ### **NELAP Accreditation by Laboratory SOP** ### **NONPOTABLE WATER** ### OVD HPLC02/HPLC-UV Nitroglycerin Acetic acid Butyric acid Lactic acid Propionic acid Pyruvic acid ### OVD MSS01/GC-MS 1,4-Phenylenediamine 1-Methylnaphthalene 1,4-Dioxane Atrazine Benzaldehyde Biphenyl Caprolactam Hexamethylphosphoramide (HMPA) Pentachlorobenzene Pentachloroethane ### **NELAP Accreditation by Laboratory SOP** ### **NONPOTABLE WATER** ### OVD MSV01/GC-MS 1, 1, 2-Trichloro-1,2,2-trifluoroethane 1,3-Butadiene Cyclohexane Cyclohexanone Dimethyl disulfide Dimethylsulfide Ethyl-t-butylether (ETBE) Isoprene Methylacetate Methylcyclohexane T-amylmethylether (TAME) Tetrahydrofuran (THF) ### OVD HPLC07/HPLC-MS-MS Hexamethylphosphoramide (XMPA-LCMS) ### OVD HPLC12/HPLC/UV Acetate Formate ### OVD RSK01/GC-FID Acetylene Propane ### **OVD K9305/ISE** Fluoroborate ### **SOLID AND HAZARDOUS CHEMICALS** ### OVD MSS0I/GC-MS 1-Methylnaphthalene Benzaldehyde Biphenyl Caprolactam Pentachloroethane ### **NELAP Accreditation by Laboratory SOP** ### **SOLID AND HAZARDOUS CHEMICALS** ### OVD MSV0I/GC-MS 1.3-Butadiene Cyclohexane Cyclohexanone Dimethyl disulfide Dimethylsulfide Ethyl-t-butylether (ETBE) Isoprene Methylacetate Methylcyclohexane n-Hexane T-amylmethylether (TAME) # A=COM ### **Chain of Custody Record** ### COC Number: | | | | | 7 | | | | | | | | | | | | | | | COC | Number: | | | |--------------------------------|---|---|----------|--------------|---------------|--------|-------|---------|----------------------|------------|----------|-----------|---------------|----------|------------|----------|----------------------|-------|-----------|------------|---------------|--------| | Laboratory: | Microbac POC: Stephanie Mo | ssburg | | Project Mana | ager: | | Deb | ora Ric | chma | ann | | | | | | | Mail to: Linda Raabe | | | | | | | Address: | 158 Starlite Drive | | | Phone/Fax N | umber: | | 210 | -296- | 2000 | 1 | | | | | | | | | | 112 East F | Pecan STE | E. 400 | | | Marietta, OH 45750 | | | Sampler (pri | nt): | | Sco | tt Bee | esing | er | | | | | - 3 | | | | 1.5 | San Anton | io, TX 782 | 205 | | Phone: | 1-800-373-4071 | | | | | | | | 30-70.1) | A | | | | | | | 210-296-2000 | | | | | | | Client: | AECOM | (6) | | Signature: | (| - | 1 | D- | 0.0 | _ | | | | | | | Fed | Ex Ai | irbill N | 0: | | | | Address: | 112 East Pecan Ste. 400 | | | | 0 | iet | 0 | 7 | ll: | بعر | ge | ~ | | | | | | | | | | | | | San Antonio, TX 78205 | | | | | | | | | | | | | | | | Prog | gram: | | | | | | Turn Around T | STANDARD | | | pH: | | | | | ers | | | | | | | | | | | | | | | Project Name/I | Longhorn Longhorn | | | | | | | | ntair | ate | | | | | | | | | | | | | | Project Numbe | er: 60256135.0009AA | 0009AA | | | ber of Contai | | | | | - | ERPII | VIS REQUI | RED FIELI | DS | | | | | | | | | | O'to No. | Complete ID/Leasting ID | 000 | 000 | | | -du | qp | rix | Number of Containers | Per | | | | | | | ODF | | er ID | LOT C | ONTROL NUI | MBERS | | Site Name | Sample ID/Location ID | SBD | SED | Date | Time | Comp- | Grab | Matrix | ž | | | | | | | | SACODE | | Cooler ID | ABLOT | EBLOT | TBLOT | | × | HBW 7 - 082316 | | | 8/23/16 | 8:25 | | Х | W | 1 | Х | | | | | | | | | | | | | | .ee | HBW 10 - 082316 | | | 8/23/16 | 8:30 | | X | W | 1 | X | | | | | | | | | | | | | | Goose Prarie Creek | HBW 1 - 082316 | | | 8/23/16 | 8:50 | | Х | W | 1 | Х | | | | | | | | | | | | | | rie | GPW 1 - 082316 | | | 8/23/16 | 9:08 | | х | W | 1 | X | | | | | | | | | | | | | | <u>a</u> | GPW 3 - 082316 | | | 8/23/16 | 9:20 | | Х | W | 1 | х | | \neg | \top | \neg | \top | | | | | | | | | ۵ | 01 44 0 - 002010 | _ | - | 0/23/10 | 3.20 | | ^ | - 00 | + ' | 1^ | | + | \dashv | + | + | \dashv | + | + | | | | | | 90 | | | - | - | | | | - | - | - | \vdash | \dashv | + | + | + | _ | - | + | | | | | | ő | | | | | | | | | | | | _ | | _ | | | | | | | | | | 0 | Γ | | | | | | | | | | | | | | |
n | | | <u> </u> | | | | | | _ | | | \dashv | \neg | \dashv | \neg | | | | | | | | | 0 | | | + | | | | | | - | - | | \dashv | + | + | + | - | + | + | | | | | | a | | | - | | | | | | - | - | | \dashv | + | + | _ | _ | - | - | | | | | | Harrison Bayou & | on | .0 | ar. | Comments: STANDAR | D TA | Ï | Comments: STANDAR | DIA | 0.10 | ate, | Time | Received | by: (8 | Signa | ture) | | | | Tr | 7 | -71 | (0) | | TE | | - • | q | by: (Signatur | e) | | Relinquished by
(Signature) | COLOR OSCI | 8/2 | 3/16 | 12:00 | | | | | | | licro | bac | : 0٧ | D | | | | | | | | | | Relinquished by | Jan | THE RESIDENCE OF THE PERSON NAMED IN COLUMN 1 | ate | Time | Received | for La | abora | tory by | | = F | Receiv | ed: (| 28/24 | /201 | 6 10: | 10 | | | | | | | | (Signature) | 8 | | | | (Signatur | e) | | | | E-19-12-20 | By: BRI | | | | | 0 | | | 000090 | | | | | •Homogenize | all composite samples prior to analysis | | | | | | | Distri | bu = | | BI | 0 | | 1 | 1 | AL | 298 | 100 | | | nger | | | 1 Torriogeriize | an composite sumples prior to analysis | | | | | | | 510011 | | | N | | N | | 1 | | 10 | (| 2 | 2 | 30, | | # **AECOM** ### **Chain of Custody Record** **COC Number:** | Microbac POC: Stephanie Mossb | ourg | | Project Manager: Debra Richmann | | | | | | | | | | Mail | to: | | Linda Raa | be | | | | | |---|---|---|--|---|--|---|--|--
--|--------------------|--|---|--------------------------------|--------------------|--------------------|---|-----------------------------------|--
---|--|--| | 158 Starlite Drive | | | Phone/Fax | Number | | 210- | 296-2 | 2000 | | | | | | | | | | | 112 East F | ecan STE | . 400 | | Marietta, OH 45750 | | | Sampler (p | rint): | | Scot | tt Bee | singe | er | | | | | | | | | | | | 05 | | 1-800-373-4071 | AECOM | | | Signature: | | (| Sai | A | Ro | 20 | | | | | | | Fed | Ex / | Airbiii N | 0: | | | | 112 East Pecan Ste. 400 | | | | an susign | | | | | | | | | | | | | | | | | | | San Antonio, TX 78205 | | | | | | | | | | Prog | gram |): | | | | | | | | | | | SIANDAND | | | pH: 발 | Longnon | | | | | | | | ontai | rate | | | 33 | | | | | | | white the same of | | | | Project Number: 60256135.0009AA | | | 2 | | | | ğ | S 용 | | | | | | | | | ERPI | MS REQUI | RED FIELD | os | | | Site Name Sample ID/Location ID SBD SED | | | | | | | | per | Per | | | | | | | H | 1 | 0 | LOT CONTROL N | | WBERS | | Sample ID/Location ID | SBD | SED | Date | Time | Сошр | Grab | Matri | Mun | | | | | | | | SACO | 3 | Cooler | ABLOT | EBLOT | TBLOT | | HBW 7 - 022516 | | | 2/25/16 | 12:40 | | Х | W | 1 | Х | | | | | | | | | | | | | | HBW 10 - 022516 | | | 2/25/16 | 12:50 | | х | W | 1 | Х | | | | | | | | | | | | | | HBW 1 - 022516 | | | 2/25/16 | 13:05 | | х | W | 1 | х | | | | | | | | | | | | | | GPW 3 - 022516 | | | 2/25/16 | 13:20 | | х | W | 1 | х | | | | | | | | | | | | | | GPW 1 - 022516 | | | 2/25/16 | 13:40 | | Х | W | 1 | Х | | | | \perp | _ | l line | + | \dashv | | | | | publication | | | | | | | | | | | | - | - | - | \vdash | \dashv | \dashv | + | - | - | | | | | 2000 | | | | | | | | | | | | _ | | | | | | | | | | | | | | | 1000000 | T | \top | | | | | | | | | OTANDADD | C TE | USDE IT | 5 4 12 6 2 | 1, Same 5 2 | 4116 | 1 65 | tada. | | 234 | | NG L | week. | | | | | 94 | | HERRIE | | | | Comments: SIANUARD | IA | Statu Beecing | , | | | Received | by: (S | Signati | иге) | | | | | Recei | ved by | r: (Sigr | nature) | Da | ate | Time | Relinquished | by: (Signatur | е) | | | | | | | | borat | tory by: | | | | | Da | te | | 400 | | Tin | ne | Remarks: | | | | | 158 Starlite Drive Marietta, OH 45750 1-800-373-4071 AECOM 112 East Pecan Ste. 400 San Antonio, TX 78205 me: STANDARD .ocation: Longhorn r: 60256135.0009AA Sample ID/Location ID HBW 7 - 022516 HBW 10 - 022516 GPW 3 - 022516 GPW 1 - 022516 GPW 1 - 022516 GPW 1 - 022516 Comments: STANDARD | 158 Starlite Drive Marietta, OH 45750 1-800-373-4071 AECOM 112 East Pecan Ste. 400 San Antonio, TX 78205 me: STANDARD .ocation: Longhorn F: 60256135.0009AA Sample ID/Location ID HBW 7 - 022516 HBW 1 - 022516 GPW 3 - 022516 GPW 1 | 158 Starlite Drive Marietta, OH 45750 1-800-373-4071 AECOM 112 East Pecan Ste. 400 San Antonio, TX 78205 me: STANDARD coation: Longhorn r: 60256135.0009AA Sample ID/Location ID SBD SED HBW 10 - 022516 HBW 10 - 022516 GPW 3 - 022516 GPW 1 - 022516 GPW 3 - 022516 GPW 1 | 158 Starlite Drive Marietta, OH 45750 1-800-373-4071 AECOM 112 East Pecan Ste. 400 San Antonio, TX 78205 me: STANDARD .ocation: Longhorn r: 60256135.0009AA Sample ID/Location ID SBD SED Date HBW 7 - 022516 HBW 1 - 022516 GPW 3 - 022516 GPW 1 - 022516 GPW 1 - 022516 GPW 1 - 022516 GPW 1 - 022516 Comments: STANDARD Comments: STANDARD Date Date Date Time Longhorn The comments of | Phone/Fax Number Phone/Fax Number Sampler (print): | Total Starlite Drive Phone/Fax Number: Sampler (print): | Phone/Fax Number: 210. Sampler (print): Scot | Time Standard St | Time
STANDARD ST | Marietta, OH 45750 | Section Standard | Second Standard | Phone/Fax Number: 210-296-2000 | Marietta, OH 45750 | Marietta, OH 45750 | Phone/Fax Number: 210-296-2000 Sampler (print): Scott Beesinger | Microback PUC: Stephanie Mossburg | Secure Comments: STANDARD Time Comments: STANDARD ST | Microbac PUC: Signame Mossourg | Microbac Policy Segregation Microbac Policy Pronoff as Number: 210-268-2000 112 East East San Anton 210-296-21 12-600-373-4071 1-600-37 | Delta Richards PUC: Stephane Mossourg Puchane | # QUALITY CONTROL SUMMARY REPORT LONGHORN ARMY AMMUNITION PLANT KARNACK, TEXAS # **Prepared For:** **U.S. Army Corps of Engineers** **Prepared By:** **AECOM Technical Services** **June 2016** ### **Table of Contents** | 1 | INTRO | ODUCTION | 1 | |---|--------|--|---| | | 1.1 In | tended Use of Data | 1 | | | | eservation and Holding Times | | | | | alibrations | | | | 1.3.1 | Continuing Calibration Verifications (CCV) | | | | 1.3.2 | Blanks | | | | 1.3.3 | Surrogates | 1 | | | | Laboratory Control Sample (LCS) | | | 2 | | USABILITY SUMMARY | | ### **List of Tables** Table 1: Completeness by Method Table 2: Field Sample Identification and Laboratory Identification ### 1 INTRODUCTION AECOM reviewed four data packages from Microbac Laboratory Services, Marietta, OH. Surface and groundwater samples were collected November 19, December 29, 2015 and February 25, 2016 at Longhorn Army Ammunition Plant (LHAAP), Karnack, Texas. Data were reviewed for conformance to the requirements of the following guidance documents: Automated Data Review by Laboratory Data Consultants (ADR.net), United States Environmental Protection Agency (EPA) Contract Laboratory Program National Functional Guidelines for Inorganic Data Review, (EPA, July 2002), and EPA Contract Laboratory Program National Functional Guidelines for Low Concentration Organic Data Review, (EPA, June 2001). ### 1.1 Intended Use of Data Groundwater treatment activities consist of monitoring of treated water to ensure compliance with the discharge limitations. Analyses requested included: • SW6850 – Perchlorates by LC/MS/MS Table 2 lists the sample identifications and their associated laboratory identifications. ### 1.2 Preservation and Holding Times Sample identification data were evaluated for agreement with the chain-of-custody (COC). All samples were received in appropriate containers, within the proper temperature range, in good condition, and with the required signatures. ### 1.3 Calibrations Initial calibration criteria modification includes RSD< or = to 30%, two compounds allowed up to 40%. If the continuing calibration verification (CCV) compound exceeds 30% drift, the compound is checked in the LCS, if both are outside recovery limits, the compound is rejected, R. If only the CCV exceeds recovery criteria and is less than \pm 40% drift, then the compound is qualified J or UJ. ### 1.3.1 Continuing Calibration Verifications (CCV) CCVs within control limits. ### 1.3.2 Blanks Where contamination by a target analyte of one of the various blanks was found, if the sample result for an associated sample was non-detect or less than 5X (10X for common laboratory contaminants) the analyte concentration in the blank, the corresponding sample result for the analyte was qualified B. Where the sample result for the affected analyte was greater than 5X the amount in the blank, no qualifier was applied. No blank contamination found. ### 1.3.3 Surrogates All surrogates are within criteria. June 2016 ### 1.3.4 Laboratory Control Sample (LCS) All LCS are within criteria. ### 2 DATA USABILITY SUMMARY The data are usable for the intended purposes of the project. The data quality objectives have been met for the project. **Table 1: Completeness by Method** | Method | Total Analytes | No. of Rejected Results | % Completeness | |--------|----------------|-------------------------|----------------| | SW6850 | 13 | 0 | 100 | Table 2: Field Sample Identification and Laboratory Identification | Client Sample ID | Lab Sample ID | Collected | SW6850 | |------------------|---------------|-----------|--------| | HBW7-111915 | L1511223-01 | 11/19/15 | X | | HBW10-111915 | L1511223-02 | 11/19/15 | X | | HBW1-111915 | L1511223-03 | 11/19/15 | X | | GPW1-111915 | L1511223-04 | 11/19/15 | X | | GPW3-111915 | L1511223-05 | 11/19/15 | X | | PW133-122915 | L15121571-01 | 12/29/15 | X | | PW134-122915 | L15121571-02 | 12/29/15 | X | | HBW 7-022516 | L16021328-01 | 2/25/16 | X | | HBW 10-022516 | L16021328-02 | 2/25/16 | X | | HBW 1-022516 | L16021328-03 | 2/25/16 | X | | GPW 3-022516 | L16021328-04 | 2/25/16 | X | | GPW 1-022516 | L16021328-05 | 2/25/16 | X | # QUALITY CONTROL SUMMARY REPORT LHAAP-50, FORMER SUMP WATER TANK FOR LONGHORN ARMY AMMUNITION PLANT KARNACK, TEXAS ## **Prepared For:** **U.S. Army Corps of Engineers** **Prepared By:** **AECOM Technical Services** ### **Table of Contents** | 1 | IN' | TRODUCTION | 2 | |---|-----|--|---| | | 1.1 | Intended Use of Data | | | | 1.2 | Preservation and Holding Times | | | | 1.3 | Calibrations | | | | | 3.1 Continuing Calibration Verifications (CCV) | | | | 1 | .3.1.1 SW8260B | | | | 1.4 | Blanks | | | | | .1 SW8260B | | | | 1.5 | Surrogates | | | | 1.6 | Laboratory Control Sample (LCS)/Laboratory Control Sample Duplicate (LCSD) |) | | | 1.6 | | | | | 1.7 | Matrix Spike/Matrix Spike Duplicate (MS/MSD) | 5 | | | 1.7 | | | | | 1.8 | Field Duplicate Precision | | |) | DA | TA USABILITY SUMMARY | | ### **List of Tables** Table 1: Field Sample Identification and Laboratory Identification Table 2: Qualified Analytical Data Table 3: Completeness by Method ### 1 INTRODUCTION AECOM reviewed seven data packages from Microbac Laboratory Services (Microbac), Marietta, OH. Groundwater samples were collected May 18-31, 2016 and November 1-4, 2016 at the LHAAP-50 site at the Longhorn Army Ammunition Plant (LHAAP), Karnack, Texas. Data were reviewed for conformance to the requirements of the following guidance documents: Automated Data Review by Laboratory Data Consultants (ADR.net), United States Environmental Protection Agency (EPA) Contract Laboratory Program National Functional Guidelines for Inorganic Data Review, (EPA, January 2017), and EPA Contract Laboratory Program National Functional Guidelines for Low Concentration Organic Data Review, (EPA, January 2017). ### 1.1 Intended Use of Data The objective of this sampling event was to collect data for the Remedial Action Completion Report. Analyses requested included: - SW8260B Volatiles - SW6850 Perchlorate - RSK 175 Dissolved gases (methane, ethane, ethene, CO₂) - E365.4 Total Phosphorus - E415.1 Total Organic Carbon - · SW6010C Fe (total and dissolved) - SW6020A –Mn (dissolved) - SW9056 Common Anions (chloride, sulfate, nitrate, nitrite) - E310.1 Alkalinity - · SM4500-S(-2) Sulfide **Table 1** lists the sample identifications and their associated laboratory identifications. **Table 2** lists qualified results with the associated quality control parameter that was exceeded. ### 1.2 Preservation and Holding Times Sample identification data were evaluated for agreement with the chain-of-custody (COC). All samples submitted for analyses were received in appropriate containers, within the proper temperature range, in good condition, and with the required signatures excepted as noted below. ### 1.3 Calibrations Initial calibration acceptance criteria are a relative standard deviation (RSD) less than or equal to 15 percent (%) or a correlation coefficient $(r^2) > 0.99$. All calibration curves met criteria. ### 1.3.1 Continuing Calibration Verifications (CCV) ### 1.3.1.1 SW8260B If the continuing calibration verification (CCV) compound exceeds 20% difference, the compound is checked in the LCS, if both are outside recovery limits, the compound is rejected, R. If only the CCV exceeds recovery criteria (80% to 120%) and is less than \pm 20% difference, then the compound is qualified J or UJ CCV WG568232-02 run on 5/10/16 had a chloromethane recovery of 78.8%, below the lower control limit of 80%. This compound is not detected in the associated samples and the results are qualified UJ. CCV WG569560-02 run on 5/19/16 had a bromoform recovery of
120.4%, above the upper control limit of 120%. This compound is not detected in the associated samples; therefore, no qualification is necessary. CCV WG569785-02 run on 5/21/16 had recoveries for carbon tetrachloride, dichlorodifluoromethane, 1,2-dichloroethane, 2,2-dichloropropane, and trichlorofluoromethane above the upper control limit of 120%. The results for these compounds in the associated sample are non-detects so no qualification is necessary. In addition, the CCV recovery for hexachlorobutadiene is 77.8%, below the lower control limit of 80%. This compound is not detected in the associated samples and the results are qualified UJ. CCV WG569788-02 run on 5/21/16 had a bromomethane recovery of 70.2%, below the lower control limit of 80% This compound is not detected in the associated sample and the results are qualified UJ. CCV WG596792-02 run on 5/22/16 had recoveries for carbon tetrachloride, dichlorodifluoromethane, 2,2-dichloropropane, 1,1,1-trichloroethane, and trichlorofluoroemthane above the upper control limits. The results for these compounds in the associated sample are non-detects so no qualification is necessary. CCV WG590132-02 run on 11/2/16 had a 2-chlorotoluene recovery of 125.2%, above the upper control limit. The result for the associated sample is non-detect so no qualification is necessary. In addition, the CCV recoveries for 2-hexanone (75.4%) and 4-methyl-2-pentanone (77%) are below the lower control limit. These compounds are not detected in the associated samples and the results are qualified UJ. CCV WG590291-02 run on 11/3/16 had a 2-chlorotoluene recovery of 123.4%, above the upper control limit. The results for the associated samples are non-detect so no qualification is necessary. In addition, the CCV recovery for 2-hexanone (77%) is below the lower control limit. This compound is not detected in the associated samples and the results are qualified UJ. CCV WG591384-02 run on 11/11/16 had CCV recoveries for 4-chlorotoluene of 79.4%, 2-hexanone of 76.6%, and 1,2,3-trichlorobenzene of 79.4%, all below the lower control limit of 80%. These compounds are not detected in the associated sample and the results are qualified UJ. **Table 2** shows qualified analytical data. ### 1.4 Blanks Where contamination by a target analyte of one of the various blanks was found, if the sample result for an associated sample was non-detect or less than 5X (10X for common laboratory contaminants) the analyte concentration in the blank, the corresponding sample result for the analyte was qualified J. Where the sample result for the affected analyte was greater than 5X (10X) the amount in the blank, no qualifier was applied. ### 1.4.1 SW8260B The following analytes were detected in blanks associated with the project samples: | Blank | Analyte | Result | Units | |-----------------------|------------------------|--------|-------| | Method Blank - | Bromobenzene | 0.158 | μg/L | | WG569773-01 (5/20/16) | n-Butylbenzene | 0.408 | μg/L | | | Chlorobenzene | 0.139 | μg/L | | | 2-Chlorotoluene | 0.147 | mg/L | | | 1,2-Dichlorobenzene | 0.182 | μg/L | | | 1,3-Dichlorobenzene | 0.304 | μg/L | | | 1,4-Dichlorobenzene | 0.331 | μg/L | | | Hexachlorobutadiene | 0.468 | μg/L | | | Naphthalene | 0.306 | μg/L | | | n-Propylbenzene | 0.207 | μg/L | | | 1,2,3-Trichlorobenzene | 0.461 | μg/L | | | 1,2,4-Trichlorobenzene | 0.575 | μg/L | | Method Blank - | 1,4-Dichlorobenzene | 0.144 | μg/L | | WG569789-01 (5/21/16) | 1,2,3-Trichlorobenzene | 0.241 | μg/L | | | 1,2,4-Trichlorobenzene | 0.281 | μg/L | | Trip Blank (11/01/16) | Chloromethane | 0.526 | μg/L | | Trip Blank (11/14/16) | Acetone | 2.79 | μg/L | **Table 2** shows qualified analytical data. ### 1.5 Surrogates Surrogates were evaluated using limits defined by method in project-specific QAPP in Worksheet 28. The recoveries for two SW8260B surrogate compounds were above the acceptance criteria in sample 50WW26-051216. Target compounds were not detected in the sample; therefore no data were qualified due to the high surrogate recoveries. All other surrogates are within criteria. ### 1.6 Laboratory Control Sample (LCS)/Laboratory Control Sample Duplicate (LCSD) LCS/LCSD recoveries were evaluated using limits defined by method in project-specific QAPP in Worksheet 15. ### 1.6.1 SW8260B LCS duplicate sample (LCSD) was spiked double the concentration of the following five compounds - 2-butanone, 2-hexanone, 4-methyl-2-pentaone, acetone, and carbon disulfide - as was spiked into LCS WG569561-03 run on 5/19/16 (associated with sample 50WW11-051016). The LCS and LCSD recoveries are within control limits; however the %RPDs were not within acceptance criteria for the aforementioned analytes. Since the LCS/LCSD variability for these compounds is due to an assignable laboratory error and not indicative of a laboratory or matrix effects; these results were not used to qualify the associated sample data. LCS/LCSD pairs WG590133-02/03 and WG590292-02/03 have recoveries for several compounds above control limits. The affected compounds were not detected in the associated samples, so no qualification is necessary. LCS WG590443-02/03 had average recoveries of 121% for benzene and of 125.5% for dibromomethane, which are above the upper control limits for these analytes. These compounds were not detected in the associated samples so no qualification is necessary. **Table 2** shows qualified analytical data. ### 1.7 Matrix Spike/Matrix Spike Duplicate (MS/MSD) MS/MSD recoveries were evaluated using limits defined by method in project-specific QAPP in Worksheet 15. ### 1.7.1 SW8260B Two MS/MSDs were analyzed in SW8260B Batch WG569773. Therefore, these MS/MSD results were used to qualify the associated parent samples only: 50WW07-051116 was spiked for the MS/MSD. Recoveries for 1,1,2,2-tetrachloroethane (133% and 131%) are above the upper control limit of 130%. The analyte is non-detect in the parent sample; therefore, no qualification is necessary. 50WW27-051216 was spiked for the MS/MSD. Recoveries for 1,1-dichloroethene (68.6% and 66.9%) and 1,1-dichloropropene (75% and 73.4%) are below the lower control limit of 70% for 1,1-dichloroethene and 75% for 1,1,-dichloropropene. These analytes are non-detected in the parent sample and are qualified UJ. 50WW05-110316 was spiked for the MS/MSD. Recoveries for 1,1,-dichloroethene (67.4% and 68.3%) and cis-1,2-dichloroethene (37.3% and 36.6%) are below the control limits. These analytes are non-detected in the parent sample and are qualified UJ. In addition, the trichloroethene concentrations in the parent sample are more than 4X the spike amount; therefore, the MS/MSD results for this analyte were not used to qualify associated sample results. **Table 2** shows qualified analytical data. ### 1.8 Field Duplicate Precision Precision is the measure of variability of individual sample measurements. Evaluation of field duplicates for precision was done using the Relative Percent Difference (RPD). The RPD is defined as the difference between two duplicate samples divided by the mean and expressed as a percent. Field duplicate RPD limits were set at $\pm 25\%$ for groundwater matrices. The variability for tetrachloroethane (69%) and trichloroethene (29%) were outside the acceptance criteria of \pm 25% in sample 50WW15-110216 and its field duplicate. These results were qualified with J. **Table 2** shows qualified analytical data. ### 2 DATA USABILITY SUMMARY The data are usable for the intended purposes of the project (see Table 3). The data quality objectives have been met for the project. **Table 1: Field Sample Identification and Laboratory Identification** | Client Sample ID | Laboratory
Sample ID | SW6850 | SW8260B | SW6010C | SW6020A | RSK 175 | SW9056 | E310.2 | E365.4 | SM4500-S(-2) | E415.1 | | |------------------|-------------------------|--------|---------|---------|---------|---------|--------|--------|--------|--------------|--------|--| | | May 2016 | | | | | | | | | | | | | 50WW14-050316 | L16050151-03 | X | X | | | X | X | X | X | X | X | | | 50WW14FF-050316 | L16050151-04 | | | X | X | | | | | | | | | 50WW08-050316 | L16050151-05 | X | X | | | X | X | X | X | X | X | | | 50WW08FF-050316 | L16050151-06 | | | X | X | | | | | | | | | 50WW18-050316 | L16050151-07 | X | X | | | X | X | X | X | X | X | | | 50WW18FF-050316 | L16050151-08 | | | X | X | | | | | | | | | 50WW25-050316 | L16050151-09 | X | X | | | X | X | X | X | X | X | | | 50WW25FF-050316 | L16050151-10 | | | X | X | | | | | | | | | Trip Blank | L16050151-11 | | X | | | | | | | | | | | 50WW22-051016 | L16050571-01 | X | X | | | X | X | X | X | X | X | | | 50WW22FF-051016 | L16050571-02 | | | X | X | | | | | | | | | 50WW11-051016 | L16050571-03 | X | X | | | X | X | X | X | X | X | | | 50WW11FF-051016 | L16050571-04 | | | X | X | | | | | | | | | 50WW06-051016 | L16050571-05 | X | X | | | X | X | X | X | X | X | | | 50WW06FF-051016 | L16050571-06 | | | X | X | | | | | | | | | 50WW12-051016 | L16050571-07 | X | X | | | X | X | X | X | X | X | | | 50WW12FF-051016 | L16050571-08 | | | X | X | | | | | | | | | 50WW24-051016 | L16050571-09 | X | X | | | X | X | X | X | X | X | | | 50WW24FF-051016 | L16050571-10 | | | X | X | | | | | | | | | 50WW23-051016 | L16050571-11 | X | X | | | X | X | X | X | X | X | | | Client Sample ID | Laboratory
Sample ID | SW6850 | SW8260B | SW6010C | SW6020A | RSK 175 | SW9056 | E310.2 | E365.4 | SM4500-S(-2) | E415.1 | |------------------|-------------------------|--------|---------|---------|---------|---------|--------|--------|--------|--------------|--------| | 50WW23FF-051016 | L16050571-12 | | | X | X | | | | | | | | Trip Blank | L16050571-13 | | X | | | | | | | | | | 50WW07-051116 | L16050763-01 | X | X | | | | | | | | | | 50WW28-051116 | L16050763-04 | X | X | | | | | | | | | | 50WW20-051116 | L16050763-05 | X | X | | | | | | | | | | 50WW05-051116 | L16050763-06 | X | X | | | | | | | | | | 50WW05FD-051116 | L16050763-07 | X | X | | |
 | | | | | | 50WW16-051116 | L16050763-08 | X | X | | | | | | | | | | 50WW01-051216 | L16050763-09 | X | X | | | | | | | | | | 50WW09-051216 | L16050763-10 | X | X | | | | | | | | | | 50WW10-051216 | L16050763-11 | X | X | | | | | | | | | | 50WW10FD-051216 | L16050763-12 | X | X | | | | | | | | | | 50WW15-051216 | L16050763-13 | X | X | | | | | | | | | | 50WW27-051216 | L16050763-14 | X | X | | | | | | | | | | 50WW21-051216 | L16050763-17 | X | X | | | | | | | | | | 50WW12FD-051216 | L16050763-18 | X | X | | | | | | | | | | 50WW26-051216 | L16050763-19 | X | X | | | | | | | | | | Trip Blank | L16050763-20 | | X | | | | | | | | | | 50WW19T-051316 | L16050972-01 | X | X | | | | | | | | | | 50WW19M-051316 | L16050972-02 | X | X | | | | | | | | | | 50WW19B-051316 | L16050972-03 | X | X | | | | | | | | | | 50WW17T-051316 | L16050972-04 | X | X | | | | | | | | | | 50WW17M-051316 | L16050972-05 | X | X | | | | | | | | | | 50WW17B-051316 | L16050972-06 | X | X | | | | | | | | | | 50WW13T-051316 | L16050972-07 | X | X | | | | | | | | | | 50WW13B-051316 | L16050972-08 | X | X | | | | | | | | | | Trip Blank | L16050972-09 | | X | | | | | | | | | | | Nov | ember | 2016 | | | | | | | | | | 50WW13-110116 | L16110074-01 | X | X | | | X | X | X | X | X | X | | 50WW13FF-110116 | L16110074-02 | | | X | X | | | | | | | | 50WW14-110116 | L16110074-03 | X | X | | | X | X | X | X | X | X | | 50WW14FF-110116 | L16110074-04 | | | X | X | | | | | | | | 50WW11-110116 | L16110074-05 | X | X | | | X | X | X | X | X | X | | 50WW11FF-110116 | L16110074-06 | | | X | X | | | | | | | | 50WW06-110116 | L16110074-07 | X | X | | | X | X | X | X | X | X | | 50WW06FF-110116 | L16110074-08 | | | X | X | | | | | | | | 50WW12-110116 | L16110074-09 | X | X | | | X | X | X | X | X | X | | Client Sample ID | Laboratory
Sample ID | SW6850 | SW8260B | SW6010C | SW6020A | RSK 175 | SW9056 | E310.2 | E365.4 | SM4500-S(-2) | E415.1 | |------------------|-------------------------|--------|---------|---------|---------|---------|--------|--------|--------|--------------|--------| | 50WW12FF-110116 | L16110074-10 | | | X | X | | | | | | | | 50WW23-110116 | L16110074-11 | X | X | | | X | X | X | X | X | X | | 50WW23FF-110116 | L16110074-12 | | | X | X | | | | | | | | Trip Blank | L16110074-13 | | X | | | | | | | | | | 50WW08-110216 | L16110144-01 | X | X | | | X | X | X | X | X | X | | 50WW08FF-110216 | L16110144-02 | | | X | X | | | | | | | | 50WW22-110216 | L16110144-03 | X | X | | | X | X | X | X | X | X | | 50WW22FF-110216 | L16110144-04 | | | X | X | | | | | | | | 50WW16-110216 | L16110144-05 | X | X | | | X | X | X | X | X | X | | 50WW16FF-110216 | L16110144-06 | | | X | X | | | | | | | | 50WW27-110216 | L16110144-07 | X | X | | | | | | | | | | 50WW15-110216 | L16110144-08 | X | X | | | | | | | | | | 50WW15FD-110216 | L16110144-09 | X | X | | | | | | | | | | Trip Blank | L16110144-10 | | X | | | | | | | | | | 50WW09-110316 | L16110321-01 | X | X | | | | | | | | | | 50WW10-110316 | L16110321-02 | X | X | | | | | | | | | | 50WW10FD-110316 | L16110321-03 | X | X | | | | | | | | | | 50WW05-110316 | L16110321-04 | X | X | | | | | | | | | | 50WW21-110316 | L16110321-07 | X | X | | | | | | | | | | 50WW24-110316 | L16110321-08 | X | X | | | | | | | | | | 50WW18-110316 | L16110321-09 | X | X | | | | | | | | | | 50WW19-110416 | L16110321-10 | X | X | | | | | | | | | | 50WW17-110416 | L16110321-11 | X | X | | | | | | | | | | Trip Blank | L16110321-12 | | X | | | | | | | | | $[\]label{eq:continuous} E-U.S.\ Environmental\ Protection\ Agency\ method.$ $Laboratory-Micorbac\ Laboratories\ in\ Marietta,\ Ohio\ (groundwater).$ SM – Standard Methods for the Examination of Water and Wastewater. SW-846 - Test Methods for Evaluating Solid Waste, Physical/Chemical Methods. X – Sample analyzed for indicated parameter. **Table 2: Qualified Analytical Data** | Client Sample ID | Laboratory
Sample ID | Analyte Name | Result | Units | Data Validation
Qualifier | Reason for qualification | |------------------|-------------------------|------------------------|---------|-------|------------------------------|----------------------------------| | 50WW14-050316 | L17060151-03 | Chloromethane | <1.00 | μg/L | UJ | CCV below control limits | | 50WW08-050316 | L17060151-05 | Chloromethane | <1.00 | μg/L | UJ | CCV below control limits | | 50WW18-050316 | L17060151-07 | Chloromethane | <1.00 | μg/L | UJ | CCV below control limits | | 50WW25-050316 | L17060151-09 | Chloromethane | <1.00 | μg/L | UJ | CCV below control limits | | 50WW07-051116 | L16050763-01 | 1,2,4-Trichlorobenzene | 0.311 | μg/L | U | Method blank contamination | | | | 1,4-Dichlorobenzene | 0.194 | μg/L | U | Method blank contamination | | | | 1,2,3-Trichlorobenzene | 0.221 | μg/L | U | Method blank contamination | | 50WW28-051116 | L16050763-04 | 1,2,4-Trichlorobenzene | 0.207 | μg/L | U | Method blank contamination | | | | 1,4-Dichlorobenzene | 0.137 | μg/L | U | Method blank contamination | | 50WW16-051116 | L16050763-08 | Bromomethane | <1.00 | μg/L | UJ | CCV below control limits | | 50WW10-051216 | L16050763-11 | Bromomethane | <1.00 | μg/L | UJ | CCV below control limits | | 50WW27-051216 | L16050763-14 | 1,2,4-Trichlorobenzene | 0.256 | μg/L | U | Method blank contamination | | | | 1,1-Dichloroethene | <1.00 | μg/L | UJ | MS/MSD below control limits | | | | 1,1-Dichloropropene | < 0.500 | μg/L | UJ | MS/MSD below control limits | | | | 1,4-Dichlorobenzene | 0.165 | μg/L | U | Method blank contamination | | | | 1,2,3-Trichlorobenzene | 0.184 | μg/L | U | Method blank contamination | | 50WW26-051216 | L16050763-19 | Hexachlorobutadiene | < 0.500 | μg/L | UJ | CCV below control limits | | 50WW13-110116 | L16110074-01 | 2-Hexanone | <250 | μg/L | UJ | CCV below control limits | | 50WW14-110116 | L16110074-03 | 2-Hexanone | < 5.00 | μg/L | UJ | CCV below control limits | | 50WW11-110116 | L16110074-05 | 2-Hexanone | < 5.00 | μg/L | UJ | CCV below control limits | | | | 4-Methyl-2-pentanone | < 5.00 | μg/L | UJ | CCV below control limits | | | | Chloromethane | 0.554 | μg/L | U | Trip blank contamination | | 50WW06-110116 | L16110074-07 | 2-Hexanone | < 5.00 | μg/L | UJ | CCV below control limits | | 50WW12-110116 | L16110074-09 | 2-Hexanone | < 5.00 | μg/L | UJ | CCV below control limits | | 50WW23-110116 | L16110074-11 | 4-Chlorotoluene | < 0.500 | μg/L | UJ | CCV below control limits | | | | 2-Hexanone | < 5.00 | μg/L | UJ | CCV below control limits | | | | 1,2,3-Trichlorobenzene | < 0.300 | μg/L | UJ | CCV below control limits | | 50WW15-110216 | L16110144-08 | Tetrachloroethane | 1.89 | μg/L | J | Field precision outside criteria | | | | Trichloroethene | 9.52 | μg/L | J | Field precision outside criteria | | Client Sample ID | Laboratory
Sample ID | Analyte Name | Result | Units | Data Validation
Qualifier | Reason for qualification | |------------------|-------------------------|------------------------|--------|-------|------------------------------|--| | 50WW15FD-110216 | L16110144-09 | Tetrachloroethane | 0.917 | μg/L | J | Field precision outside criteria | | | | Trichloroethene | 7.10 | μg/L | J | Field precision outside criteria | | 50WW09-110316 | L16110321-01 | Acetone | 4.50 | μg/L | U | Trip blank contamination | | 50WW10-110316 | L16110321-02 | Acetone | 4.19 | μg/L | U | Trip blank contamination | | 50WW10FD-110316 | L16110321-03 | Acetone | 3.67 | μg/L | U | Trip blank contamination | | 50WW05-110316 | L16110321-04 | 1,1-Dichloroethene | 1.78 | μg/L | J | MS/MSD recoveries below the control limits | | | | cis-1,2-Dichloroethene | 66.7 | μg/L | J | MS/MSD recoveries below the control limits | **Table 3: Completeness by Method** | Method | No. of Rejected Results | % Completeness | |--------------|-------------------------|----------------| | SW6850 | 0 | 100 | | SW8260 | 0 | 100 | | SW6010C | 0 | 100 | | SW6020A | 0 | 100 | | RSK 175 | 0 | 100 | | SW9056 | 0 | 100 | | E310.2 | 0 | 100 | | E365.4 | 0 | 100 | | SM4500-S(-2) | 0 | 100 | | E415.1 | 0 | 100 | E – U.S. Environmental Protection Agency method. SM – Standard Methods for the Examination of Water and Wastewater. SW-846 - Test Methods for Evaluating Solid Waste, Physical/Chemical Methods. # QUALITY CONTROL SUMMARY REPORT SURFACE WATER 2016 LONGHORN ARMY AMMUNITION PLANT KARNACK, TEXAS # **Prepared For:** **U.S. Army Corps of Engineers** **Prepared By:** **AECOM Technical Services** **November 2017** ### **Table of Contents** | 1 | IN | TRODUCTION | 1 | |---|-----|---|---| | | 1.1 | Intended Use of Data | 1 | | | 1.2 | Preservation and Holding Times | | | | 1.3 | Calibrations | | | | | 3.1 Continuing Calibration Verifications (CCV) | | | | 1.4 | Blanks | | | | 1.5 | | | | | 1.6 | Matrix Spike (MS)/Matrix Spike Duplicate Sample (MSD) | | | | 1.7 | Internal Standards. | | | | 1.8 | Field Precision | | | | | ATA IISARII ITY SIIMMARY | | ### **List of Tables** Table 1: Field Sample Identification and Laboratory Identification Table 2: Qualified Analytical Data Table 3: Completeness by Method ### 1 INTRODUCTION AECOM reviewed three data packages from Microbac Laboratory Services, Marietta, OH. Surface water samples were collected May 27, August 23, and November 29, 2016 at Goose Prairie Creek and Harrison Bayou at the Longhorn Army Ammunition Plant (LHAAP), Karnack, Texas. Data were reviewed for conformance to the requirements of the following guidance documents: Automated Data Review by Laboratory Data Consultants (ADR.net), United States Environmental Protection Agency (EPA) Contract Laboratory Program National Functional Guidelines for Inorganic Data Review, (EPA, January 2017), and EPA Contract Laboratory Program National Functional Guidelines for Low Concentration Organic Data Review, (EPA, January 2017). ### 1.1 Intended Use of Data Groundwater treatment activities consist of monitoring of treated water to ensure compliance with the
discharge limitations. Analyses requested included: SW6850 – Perchlorate by LC/MS/MS **Table 1** lists the sample identification numbers (IDs) and their associated laboratory IDs. **Table 2** lists qualified results with the associated quality control parameter that was exceeded. ### 1.2 Preservation and Holding Times Sample identification data were evaluated for agreement with the chain-of-custody (COC). All samples were received in appropriate containers, within the proper temperature range, in good condition, and with the required signatures. ### 1.3 Calibrations Initial calibration acceptance criteria are specified in Worksheet 24 of the project-specific QAPP. For perchlorate, the methods criteria are a relative standard deviation (RSD) less than or equal to 20 percent (%) or a correlation coefficient $(r^2) \ge 0.99$. All calibrations met the method criteria. ### 1.3.1 Continuing Calibration Verifications (CCV) The continuing calibration verification (CCV) acceptance criteria are specified in Worksheet 24 of the project-specific QAPP. For perchlorate, the methods criteria are if the CCV exceeds 15% difference (%D), the compound is checked in the LCS, if both are outside recovery limits, the compound is rejected, R. If only the CCV exceeds recovery criteria and is less than \pm 15% difference, then the compound is qualified J or UJ. All CCVs were within the acceptance criteria. ### 1.4 Blanks If the sample result for an associated sample was non-detect or less than 5X (10X for common laboratory contaminants) the analyte concentration in the blank, the corresponding sample result for the analyte was qualified U. Where the sample result for the affected analyte was greater than 5X (10X) the amount in the blank, no qualifier was applied. Perchlorate was not detected in the blanks. ### 1.5 Laboratory Control Sample (LCS)/Laboratory Control Sample Duplicate (LCSD) LCS/LCSD recoveries were evaluated using limits defined for each method in Worksheet 15 of the project-specific QAPP. All LCS/LCSD recoveries were within the control limits. ### 1.6 Matrix Spike (MS)/Matrix Spike Duplicate Sample (MSD) MS/MSD recoveries were evaluated using limits defined for each method in Worksheet 15 of the project-specific QAPP. An MS/MSD was not run on a client sample. Therefore, matrix-specific accuracy and variability were not evaluated. ### 1.7 Internal Standards. When the percent recovery for an internal standard in a sample is outside the laboratory limits, the associated sample is qualified for the analyte(s) associated with the internal standard(s) outside of the acceptance criteria. Internal standard recoveries were within the acceptance criteria. ### 1.8 Field Precision Precision is the measure of variability of individual sample measurements. Evaluation of field duplicates for precision was done using the Relative Percent Difference (RPD). The RPD is defined as the difference between two duplicate samples divided by the mean and expressed as a percent. Field duplicate RPD limits were set at 0-25% for groundwater matrices. Field duplicate samples were not submitted with this sample set; therefore, field duplicate variability was not evaluated. ### 2 DATA USABILITY SUMMARY The data are usable for the intended purposes of the project (see Table 3). The data quality objectives have been met for the project. **Table 1: Field Sample Identification and Laboratory Identification** | Client Sample ID | Laboratory Sample ID | SW6850 | |------------------|----------------------|--------| | GPW1-052716 | L16051583-01 | X | | GPW3-052716 | L16051583-02 | X | | HBW1-052716 | L16051583-03 | X | | HBW10-052716 | L16051583-04 | X | | HBW7-052716 | L16051583-05 | X | | HBW 7 - 082316 | L16081156-01 | X | | HBW 10 - 082316 | L16081156-02 | X | | HBW 1 - 082316 | L11081156-03 | X | | GPW 1 - 082316 | L11081156-04 | X | | GPW 3 - 082316 | L11081156-05 | X | | HBW7-112916 | L16111326-01 | X | | HBW10-112916 | L16111326-02 | X | | HBW1-112916 | L16111326-03 | X | | GPW1-112916 | L16111326-04 | X | | GPW3-112916 | L16111326-05 | X | Laboratory - Microbac Laboratories in Marietta, Ohio SW-846 - Test Methods for Evaluating Solid Waste, Physical/Chemical Methods. X – Sample analyzed for indicated parameter. **Table 2: Qualified Analytical Data** | Client Sample ID | Laboratory
Sample ID | Analyte Name | Data Validation
Qualifier | Reason for Qualification | |------------------|-------------------------|--------------|------------------------------|--------------------------| | N/A | N/A | N/A | N/A | N/A | N/A - Not applicable. **Table 3: Completeness by Method** | Method | No. of Rejected Results | % Completeness | |--------|-------------------------|----------------| | SW6850 | 0 | 100 | SW-846 - Test Methods for Evaluating Solid Waste, Physical/Chemical Methods. # **AECOM** ### **Chain of Custody Record** **COC Number:** | oratory: Microbac POC: Stephanie Mossburg | | | | Debra Richmann | | | | | | | | | | | | Mail to: Linda Raabe | | | | | | | |---|---|--|---|--------------------|--
--	----------------	--	---	---
--|----------------------------------|---------------------------------------|---|--|--|--| | ddress: 158 Starlite Drive | | | | | Phone/Fax Number: 210-296-2000 | | | | | | | | | | | | 112 East Pecan STE, 400 | | | | | | | Marietta, OH 45750 | | | | | | Sampler (print): Scott Beesinger | | | | | | | | | | Ì | | | | | 05 | | | Phone: 1-800-373-4071 | 000 | | | | AECOM | | | Signature: | | < | 7.5 | - | C | 20 |) — (| | | | | | | Fed Ex | Airbill N | o: | | | | | 112 East Pecan Ste. 400 | | | | | \leq | ンし | | F | 34 | | عم | <u>~</u> | | | | | | | | - | | | | San Antonio, TX 78205 | | | | | | | | | | | 7 | | | | | | Progran | n: | | | | | | SIMIDAND | | | pH: | | | | | ners | | | | | | | | | | | | | | | | Longhorn Longhorn | | | | | | | | omtai | ate | | | | | | | | | | | Tel Charles Compa | - Englisher | | | er: 60256135.0009AA | | | | | | | | Ş | 왕 | | | | | 1900 | | ٠ | | ERPI | MS REQUI | RED FIELD | os | | | | | | | | à | Q | ix | ape. | Per | | | | | SHOOT STATE | | | DE | ð | LOT CO | ONTROL NUI | MBERS | | | Sample ID/Location ID | SBD | SED | Date | Time | Com | Gra | Matr | N | | | | | | | | | SACC | Coole | ABLOT | EBLOT | TBLOT | | | GPW 1 - 052716 | | | 5/27/16 | 8:50 | | Х | W | 1 | Х | | | | | | | | | | | | | | | GPW 3 - 052716 | | | 5/27/16 | 9:05 | | Х | W | 1 | х | | | | | | L. | | | | | | | | | HBW 1 - 022516 | | | 5/27/16 | 9:20 | | Х | W | 1 | х | | | | | | | | | | | | | | | HBW 10 - 052716 | | | 5/27/16 | 9:33 | | Х | W | 1 | Х | | | | | | | | | | | | | | | HBW 7 - 052716 | | | 5/27/16 | 9:50 | | Х | W | 1 | X | _ | and the second | 10 10 10 10 10 10 10 10 | 1 8 8 | | | | | 1 0 150 to to | | | | | | | | | | | | | | | | | | | 7 - 10 | | | | | | | | | | | | | \vdash | | | | | | | _ | | | | | 9 | | | | | | | | | | | | - | | | - | | | | | | | Divine A | | | | | | | | | | - 1 | | *, * | | | <u> </u> | | | | | | | _ | 3 2 3 | | | | | | | CTANDADD | LTAE | JUEB | | N. Page | WES. | | 100 | (d) | | Files | Harris. | Magy | | 2.7 | | | Inc. all | | | | | | | Comments: SIANDARD | Relinquished by: Date | | | | Received | by: (| Signat | ture) | | | | | Rece | eived t | y: (Si | gnatu | re) | Date | Time | Relinquished | l by: (Signatur | re) | | | (Signature) Relinquished by: (Signature) | | Time Received for Laboratory by: (Signature) | | | | | | | | Date | | | | | T | ime | Remarks: | | | | | | | | Marietta, OH 45750 1-800-373-4071 AECOM 112 East Pecan Ste. 400 San Antonio, TX 78205 ime: STANDARD cocation: Longhorn 60256135.0009AA Sample ID/Location ID GPW 1 - 052716 GPW 3 - 052716 HBW 1 - 022516 HBW 7 - 052716 HBW 7 - 052716 Comments: STANDARD | Marietta, OH 45750 1-800-373-4071 AECOM 112 East Pecan Ste. 400 San Antonio, TX 78205 ime: STANDARD Cocation: Longhorn PT: 60256135.0009AA Sample ID/Location ID GPW 1 - 052716 GPW 3 - 052716 HBW 10 - 052716 HBW 7 - 052716 HBW 7 - 052716 Comments: STANDARD Comments: STANDARD TA | 158 Starlite Drive Marietta, OH 45750 1-800-373-4071 AECOM 112 East Pecan Ste. 400 San Antonio, TX 78205 Ime: STANDARD STANDARD Sample ID/Location ID SBD SED | 158 Starlite Drive | Phone/Fax Number Sampler (print): (pr | Sample ID/Location ID SBD SED Date Time Signature Signature ID/Location ID ID | Startite Drive | Time Starille Drive Phone/Fax Number: 210-296-2 210-296-2 210-296-2 210-296-2 210-296-2 210-296-2 210-296-2 210-296-2 210-296-2 210-296-2 210-296-2 210-296-2 210-296-2 210-296-2 210-296-2 210-296-2
210-296-2 210-296- | Time | Time STANDARD September Secretary | Second S | Second Standard | Second S | Second S | Second | Second S | Microsca Pot: Stephanie Mossourg | Microback POC: Stephanie Mossourg | Microbac Pote Stephanie Mossourg ProneFax Number 210-296-2000 | Microback PUC: Stephanle Micseoury Phone/Fax Number: 210-268-2000 112 East Food 14750 Sampler (print): Scott Beesinger Fed Ex Arbiti No: 1400-373-4071 210-268-2000 12 East Pecan Site. 400 San Antonio, TX 78205 Fed Ex Arbiti No: Program: Prog | Delay Full Find Facility Find Fi | | # **A**ECOM ### **Chain of Custody Record** | Laboratory: | 1000 | | · | Dunia at St | | | | | | | | | | | | | | | | Number: | | | | |----------------------------------|---|--------------|------------|---------------|---------------------|--------|----------|--------------------|----------------------|-------------|---------|--------------|----------|-------------|-------|----------------------|-----------|------------------|---------------------|-----------------------------|-------------|----------|--| | Microbac FOC. Stephanie Wossburg | | | | | Debid Neimain | | | | | | | | | | | Mail to: Linda Raabe | | | | | | | | | | 158 Starlite Drive | | | 210-296-2000 | | | | | | | | | | _ | | 112 East | Pecan STI | E. 400 | | | | | | | Phone: | Marietta, OH 45750
1-800-373-4071 | | | Sampler (prin | π): | | Sco | tt Be | esing | er | | | | | | | | 1 | | San Antor | nio, TX 782 | 205 | | | Client: | | | | 01 | | | | | | | | | | | | | | | | 210-296-2 | 2000 | | | | Address: | AECOM | | | Signature: | | | | | | | | | | | | | Fed Ex | x Airbill I | No: | , | | | | | | 112 East Pecan Ste. 400 | | | | | | <u> </u> | | | | -, | , | | | | | | | | | | | | | Turn Around T | San Antonio, TX 78205 | | | 4 | | | 1 | | | | 1 | | | | İ | | | Progra | m: | | | | | | Project Name/ | J ocation: | | | pH: | Project Number | Longhorn | | | 1 | | | | | ntai | rate | 1 | | | | | | | | | | | | | | rioject Numbe | 60256135.0009AA | _ | | | | |
 | | Number of Containers | Perchlorate | | | | | | | | | ERP | IMS REQUIRED FIELDS | | | | | | | | | | | Γ. | | J | ğ | Per | ļ | | | | | | | Щ | ₽ | LOT CONTROL NUMBERS | | | | | Site Name | Sample ID/Location ID | SBD | SED | Date | Time | Comp | Grab | Matrix | NEW | | | | | | | | | SA CODE | Cooler I | ABLOT | EBLOT | TBLOT | | | ¥ | HBW 7 - 112916 | | | 11/29/16 | 8:13 | | х | w | 1 | х | | | | | | |
 | | | | | <u> </u> | | | . Ge | HBW 10 - 112916 | | | 11/29/16 | 8:27 | | х | w | 1 | х | | | | | | | | | | | | | | | Goose Prarie Creek | HBW 1 - 112916 | | | 11/29/16 | 8:35 | | Х | w | 1 | х | | | | - | | | | | <u> </u> | | | | | | rie | GPW 1 - 112916 | | | 11/29/16 | 8:58 | | х | W | 1 | х | | | | | | | | | | | | | | | <u>ē</u> | GPW 3 - 112916 | | | 11/29/16 | 9:10 | | Х | W | <u> </u> | X | | | _ | | | | | | - | | | | | | ۵ | | 1 | | 11/23/10 | 3.10 | | ^ | VV | 1 | _ | | | | | | | | | - | | ļ | | | | Se | | | | | | | | | | | | _ | | | | | | | | | | | | | Ö | | ļ | | | | | | | <u> </u> | | | | | | | | | | | | | | | | ဗွ | | | | | | | ĺ | | | |]] | | | | | | | | | | | | | | ් | | | | | | | | - | | | | | \neg | | | | | | | | | | | | Ď | | ļ | | | | | -, | | | | | \dashv | \dashv | | | _ | | | | | | | | | ् । | | | | | | | | | | | | | \dashv | | | | | | | | | | | | Harrison Bayou & | ш | | | | | | | | | | | | Ì | ı | | | | | | | | | | | | ō | <u>.</u> | | | | | | \neg | \dashv | | | | | \dashv | \dashv | \dashv | 一十 | | | | | | | | | | E | STANDAGE | | - 10 Table | | 2.154.8850 | | 1 | 77.3.20 | 11.800 | 1,1872,18 | | | 37863 | JI Covid | | | | Zoraki i Frinc | 332 0.030 | 2 1 2 2 2 2 2 2 2 2 2 2 2 2 | | | | | Ϋ́ | Comments: STANDARD | IAI | | | | | | | | | Carlo M | | | | | | | | | | والمتعدد | | | | | | Da | ıte. | Time | Doggiyad | L., (C | 1 | 4.33 | | | | |)
 | | | | | | . A Samuel Commence | | | | | | Relinquished by:
Signature) | and the same | 1 | j) | 15:00 | Received | by: (S | igriatu | re) | | (| ,- | _ | | | oVD |) | | | | | ature) |) | | | | Jaco Hasin | 1 ZB | 7/16 | Time | Dossituad i | faala |
 | | | \
 | | Mic | SPOE | н. 1 | 1/30/ | /2016 | 3 09: | :32 221000094024 | | | | | | | Relinquished by:
Signature) | \mathcal{O} | Ja | (C | riille | Received (Signature | | oorato | ry by:
Distribi | | | | Rec | BRE | NDA | GREG | ORY | | | | | | | | | | | | | | Signature |) | | | | | | E 0y. | | | | | | | | | | | | | mornogenize a | III composite samples prior to analysis | | | | | | l | Distribi | ution: | Whit | e 🚍 | | | | | | | | | , _ manage | er | | | Subject: Final Minutes, Monthly Managers' Meeting (MMM), **Longhorn Army Ammunition Plant (LHAAP)** Location of Meeting: LHAAP Site Trailer and Via Conference Call-In 515-603-3155 with Code 1063533# Date of Meeting: July 19, 2018 – 10:00 AM Central Daylight Time (CDT) **Attendees:** Army BRAC: Rose Zeiler (RMZ) and Tom Lederle (TL) Chief, ACSIM BRAC Division EPA: Rich Mayer (RM) and Dorelle Harrison TCEQ: April Palmie (AP) USFWS: Paul Bruckwicki (PB) on the phone and Eric Duerkop (ED) USACE: Aaron Williams (AW) AEC: Nick Smith (NS) Bhate: Kim Nemmers (KN) APTIM: Bill Foss (BF) in person and Susan Watson (SW) and Praveen Srivastav (PS) on the phone ### **Action Items** ### **Army** • RMZ welcomed TL, who is the ACSIM BRAC Division Chief. Longhorn is under the administrative control of the BRAC Division. ### • LHAAP Enforceable Schedule: - RMZ handed out the enforceable schedule and stated that the copy should say draft final. The dates listed for several sites were discussed, including LHAAP-16, -17, -18/24 and -29. Several date changes were discussed and there were no objections. The schedule will be submitted as final. - o **Site LHAAP-17**: A Draft Pre-Design Investigation (PDI) Report was sent out as an electronic copy on Monday but there are still 13 soil samples to be collected in the wet area. BF stated that the soil is now dry. Sampling is planned for August to tie into the LHAAP-16 well installation. AP asked how the data will be provided if it is not included in the PDI Report. The samples that will be collected at LHAAP-17 were discussed and it was stated that the data from the samples would be included in the LHAAP-17 Remedial Design (RD)/Remedial Action Work Plan (RAWP). RMZ explained that adding the data to the RD/RAWP will push out the delivery date. PS stated that the report would be pushed out approximately 30 days and should be ready for delivery in December 2018. - Site LHAAP-18/24: RMZ discussed the deliverables listed for the Site LHAAP-18/24. RMZ explained that the Army has a new procedure requiring document review by an assessment panel in addition to legal review, which adds time to the Army review process. TL mentioned that he plans to hold a briefing session on what is being completed in the next 6 months so that he can delegate signature responsibility. This briefing session will likely be held in August 2018 and this should help with scheduling assessment panel reviews. RMZ stated that she is most concerned with LHAAP-18/24, which is going to be an expensive site. The draft Proposed Plan (PP) is planned for November 2018 for LHAAP-18/24. To allow flexibility during the remedial design phase and to carry out the vision of the April 2018 strawman developed by the regulators and Army, the proposed plan is being written with generalities in size and design. The goal for submittal of the Site 18/24 - Draft Proposed Plan is still October 12, but the enforceable date is November 12 moving the Draft ROD out one month as well. - o **Site LHAAP-29:** The LHAAP-29 Proposed Plan is in Army legal review. Although the goal for submittal of the draft to regulators is still September 14, the enforceable has been changed to October 14. This results in the revised ROD) for Site LHAAP-29 being pushed out a month also. - o **Site LHAAP-47:** Groundwater sampling is being completed again at Site LHAAP-47 and many of the wells are dry in the shallow zone. The final installation of monitoring wells is planned for the week of July 30th. The Draft PDI Report is pushed out at month. AW confirmed that the delivery dates are good and that there is no anticipated impact on the schedule for submittal of the Revised DF ROD. ### **United States Fish and Wildlife Service
(USFWS)** • PB stated that he had provided copies, via email, of the annual inspections and certification documents for the last five years in support of the five-year review. PB stated that he only had three but RMZ stated that it was good. # Defense Environmental Restoration Program (DERP) Performance Based Remediation (PBR) Update KN asked everyone to refer to the Document and Issues Tracking Table dated July 19, 2018. - Task 1 (Project Management) - - KN stated that the prior meeting minutes for the June 2018 MMM will be finalized and sent out. - AP stated that she does not need hard copies for the Restoration Advisory Board (RAB). KN stated that she will correct her distribution sheet information. - KN stated that responses to the Regulatory comments on the revisions to the Standard Operating Procedures (SOP) A19 were prepared and are under Army review. - Task 2 (LHAAP-02 Semi-Annual Groundwater Monitoring Report) KN stated that the Technical Memorandum for Site LHAAP-002 was sent out on 9 July 2018. RMZ clarified that LHAAP-02 is a non-National Priorities List (NPL) site - Task 3 (LHAAP-03 ROD and Explanation of Significant Difference [ESD]) PS stated that the ROD has been sent to the regulators for signature and concurrence. AP stated that the TCEQ letter is being routed for signature. EPA's statement regarding the Site 3 ROD, that the Army is required to consider and comply with CERCLA decision-making requirements. including all appropriate information, which would include the Texas Risk Reduction Program soil cleanup concentrations, was discussed by the group with TCEQ stating that the dispute was not about soil, but was about groundwater. TL stated that he is concerned that the EPA seems to think that there is ambiguity in what was covered by the Dispute Resolution. RM stated that the EPA needs to review the TCEQ guidance to determine protectiveness. AP stated that Texas considers the Texas Risk Reduction Rule (TRRR) Medium Specific Concentrations (MSCs) to be protective and that the burden is on the EPA to do the comparison. A brief discussion regarding who is responsible for the comparison occurred. RM stated that the EPA wants to make sure that the values used are protective. However, RM indicated that the TRRR values are protective for the current usage at Site 3. AP suggested that the EPA review values at the PP phase instead of the ROD. NS stated that the risk should be evaluated in the Remedial Investigation (RI)/Feasibility Study (FS) phase. AP stated that this is not a Texas Risk Reduction Program (TRRP) site. RMZ stated that she needs to know who is expected to do the evaluation of protectiveness for the next RODs. Rich stated that he would follow-up with that action. PS stated that the ESD for moving the groundwater from LHAAP-03 to LHAAP-58 is ready for signature. BF provided the hard copy of the ESD to TL, who signed. AP stated that a letter for concurrence will be issued. AP requested that a date be placed on the document tracker line for the ESD instead of not applicable (NA). - Task 4 (LHAAP-04 RD/RAWP) PS explained that Bhate is working on a response to the Request for Proposal (RFP) for the additional investigation work at LHAAP-04, which will include a technical memorandum (tech memo). The sketch for the agreed upon work was discussed, but Bhate was not aware of the sketch. RMZ stated that the sketch will be provided. AP asked about the tech memo. BF stated that the tech memo will be the work plan. AP asked if the data will be in the report. BF confirmed that the data will be provided in the RD and then stated that each of the 12 locations will have two points. One point will be used to document the lithology and the other will be used for hydropunch sampling. PS asked if this information should be put into the proposal assumptions to which AW confirmed. - Task 5 (LHAAP-12 Annual Remedial Action Operation [RA-O] Report) PS stated that the draft RA-O Report was sent to the Regulators on 10 July 2018. RM noted that concentrations were low, and RMZ pointed out that groundwater elevations were also low. - Task 6 (LHAAP-16 RAWP) PS stated that the Draft Final RAWP was issued 21 June 2018. KN stated that a change page for the Response to Comments (RTCs) was needed. PS asked KN about the annual compliance sampling data. KN stated that the LHAAP-16 annual compliance sampling data is included in the First Quarter 2018 Report for the Groundwater Treatment Plant (GWTP) that is currently under Army Review. - Task 7 (LHAAP-17 PDI Report) PS stated that the PDI Report was released and that the RD data to be collected from the previously wet area was already discussed. - Task 9 (LHAAP-37) PS stated that ³/₄ of the Year 1 data has been collected and that the most recently validated data is being provided for this meeting. - Task 10 (LHAAP-46) Year 4 RA-O Report PS stated that sampling is scheduled for August. RM stated that there are lots of dry wells. RMZ clarified that the dry wells are primarily in the production plant areas. Drought has cleared up, but dry wells are still being observed at LHAAP-50 and LHAAP-47 in addition to LHAAP-46, but not necessarily LHAAP-58 and -16. RMZ stated that the observed dry wells could be associated with reduced water leakage from discontinued former plant operations since the sites are near each other. AP stated that the well should not be abandoned as they could produce in the future. RM stated that the monitoring wells are more reliable when they are deeper. RMZ stated that most of the groundwater at LHAAP-47 is now found in the shallow intermediate zone which is where the current drilling is occurring. The depth to groundwater is approximately 30 feet below ground surface. RMZ believes that the production plant might have affected the shallow. Regarding possible water line leakage also influencing LHAAP-04 groundwater, RMZ stated that radial groundwater contour is not likely correct – that actually topography may be the influencing factor. RM stated that it is strange that some of the monitoring wells have had no contamination and then have an elevated detection. The discontinuous nature of the aquifer was discussed. PS stated that the annual report will be prepared and the monitored natural attenuation (MNA) remedy will be evaluated once the last quarter event is completed this year. - Task 11 (LHAAP-50 RA-O Report) PS stated that comments were received on the Year 3 RA-O Report from by the EPA and TCEQ on June 22nd. Comments will be provided by Friday, 20 July 2018. RMZ stated that the Army concurs with the need for a contingency remedy and AW noted that the ESD will be issued this year. KN clarified that a hard copy of the clean Draft Final RAWP needed to be submitted along with the compact disc (CD) that contains the clean copy of the Draft Final RAWP, a redlined strikeout of the draft file and the RTCs. KN then asked PS if the submittal date would be 23 July 2018. SW and PS stated that additional time was needed and that the copies would be sent out on 23 July 2018. AP stated that providing just the draft RTCs is appropriate only if there are questions or need for clarification or discussions but the process of providing the clean Draft Final version with the redlined strikeout and the final RTCs helps facilitate reviews and is required for concurrence. RMZ stated that acknowledgement of approval, if no comments, needs to be included in the RTCs also. PS stated that the Year 4 RA-O Report is currently being prepared. - Task 12 (LHAAP-58) KN stated that groundwater sampling had been completed on Wednesday 18 July 2018. RMZ asked if the blackish groundwater (indicating the presence of substrate) was observed. KN stated that within the eastern plume that the blackish groundwater was present though some wells appeared to have a reduced blackish color. Also, KN stated that the monitoring wells in the western plume had a milky white color with a fermenting odor that indicates that the substrate is treating the wells. KN noted that sodium lactate had been used in the eastern portion of the plume and that emulsified vegetable oil (EVO) was used in the western plume. The recent groundwater sampling included groundwater samples that are being analyzed for microbes. KN hoped to have at least the microbial data ahead of the next MMM. KN stated that the Remedial Action Completion Report (RACR) for the injections was issued on 13 July 2018. KN clarified that the RACR does not include the recent sampling but does present the actions completed for the injections. - Task 13 (LHAAP-67) PS stated that the Year 4 RA-O Report is currently being prepared. - Task 16 (GWTP) KN stated that the Fluidized Bed Reactor (FBR) was not repaired as planned due to issues with the potable water line. KN indicated that the holding tank for the FBR was plumbed and could be seen at the GWTP. KN stated that the plan is to remobilize 30 July 2018 to complete the repairs. KN then explained that the potable water supply well pressure had dropped to about 15 pounds per square inch (PSI) whereas it is typically at 60 PSI. Currently, the system is at approximately 45 PSI. This issue has occurred before and is likely due to recent overuse with the ongoing drilling activities. KN confirmed that rush turn-around perchlorate samples continue to be collected prior to discharge to the INF pond. KN stated that there is a repair that is needed to the GWTP piping, which is leaking, before the GWTP can run. Therefore, no groundwater extraction is occurring as of 18 July 2018. - Task 19 (Surface Water) KN stated that the creeks were dry by the time that surface water was planned for sampling so no surface water samples were collected but a sample will be collected if water is observed. - Administrative Record (AR) BF provided CDs to AW, RMZ, AP, KN and RM of the AR. Hard copies for the trailer will be sent separately. KN stated that the posting of the AR to the website will lag about a week or two weeks
behind due to the website process. ### Field Work in July and August 2018 • BF stated that Scott Beesinger believes that the LHAAP-16 area is dry enough to bulldoze. RMZ reminded everyone that Erik needs to be involved and coordinated with for the bulldozing. BF stated that the bulldozing is planned for the first full week in August. Erik stated that there is no bulldozing over the creek. BF stated that the plan is to come in from site LHAAP-18/24. RMZ asked for a revised schedule for the injections. ### **Other Site Updates** - **Site LHAAP-47** RMZ discussed the results to date. RM stated that he didn't recall receiving the cross-section figure. RMZ passed the cross section around to the group and explained the figures that were going to be presented at the RAB meeting. - **Site LHAAP-29** RMZ indicated that the PP is currently with Army Legal along with a summary of the prior version. - **Site LHAAP 18/24** RMZ indicated that the PP is under Army review. - **Five Year Review (FYR)** Draft FYR will be provided November 2018. Baltimore USACE contacted RM with a questionnaire. ### Schedule Next Managers' Meeting The August 2018 MMM will be held on August 15, 2018 at LHAAP at 1:00 PM CDT. ### **ACRONYM LIST** AEC United States Army Environmental Command AP April Palmie AR Administrative Record AW Aaron Williams BF Bill Foss Bhate Environmental Associates, Inc. BRAC Base Realignment and Closure CD Compact Disc CDT Central Daylight Time DERP Defense Environmental Restoration Program ED Eric Duerkop EPA United States Environmental Protection Agency ESD Explanation of Significant Differences EVO Emulsified Vegetable Oil FBR Fluidized bed reactor FS Feasibility Study FYR Five Year Review GWTP Ground Water Treatment Plant KN Kim Nemmers LHAAP Longhorn Army Ammunition Plant MMM Monthly Managers' Meeting MNA Monitored Natural Attenuation MSC Medium Specific Concentrations NA Not applicable NPL National Priorities List NS Nick Smith PB Paul Bruckwicki PBR Performance-Based Remediation PDI Pre-Design Investigation PP Proposed Plan PS Praveen Srivastav PSI Pounds per square inch RACR Remedial Action Completion Report RA Remedial Action RAB Restoration Advisory Board RA-O remedial action – operation RAWP Remedial Action Work Plan RD Remedial Design RFP Request for Proposal RI Remedial Investigation ROD Record of Decision RM Rich Mayer RMZ Rose M. Zeiler RRS Risk Reduction Standards RTC Response to Comment SOP standard operating procedure SW Susan Watson TCE Trichloroethene TCEQ Texas Commission on Environmental Quality TL Tom Lederle TRRP Texas Risk Reduction Program TRRR Texas Risk Reduction Rule USACE United States Army Corps of Engineers USFWS United States Fish and Wildlife Service # LHAAP Validated Data Packages for July 2018 Monthly Manager's Meeting | LHAAP Area | Analytic Method | | |------------|----------------------------|--| | LHAAP-37 | Year 1 Quarter 3, May 2018 | | | | VOCs (SW8260) | | | | L | ocation Code | | 35BV | VW01 | | 35BV | VW04 | 35B\ | WW05 | 35BV | VW06 | 35BV | VW07 | 35BV | 80WV | |------------------------|---------|---------------|--------|-------------------------|---------|-------------------------|-------------|-----------|-------------|---------------|--------|-------------------------|--------|---------------|-----------|-------------------------| | | | Sample ID | 35BWW0 | 1-180524 | 35BWW01 | -180524FD | 35BWW0 | 14-180522 | 35BWW0 |)5-180521 | 35BWW0 | 06-180521 | 35BWW0 | 7-180523 | 35BWW0 | 08-180523 | | | | Sample Date | 5/24/ | /2018 | 5/24 | /2018 | 5/22/ | /2018 | 5/21 | /2018 | 5/21/ | /2018 | 5/23/ | /2018 | 5/23/2018 | | | | Locatio | n Description | | w zone, | | w zone, | Shallow zon | | | ne, impacted, | | allow zone, | | e, unimpacted | | w zone, | | | | | • | I, within site
ndary | | d, within site
ndary | within site | boundary | within site | e boundary | | d, within site
ndary | downg | radient | • | d, within site
ndary | | Parameter | Units | MCL/PCL | Result | Val Qual | VOCs | | | | | | | | | | | | | | | | | | 1,1-Dichloroethene | μg/L | 7 | < 0.5 | U | cis-1,2-Dichloroethene | μg/L | 70 | < 0.5 | U | Tetrachloroethene | μg/L | 5 | < 0.5 | U | < 0.5 | U | 5.3 | | 2 | | < 0.5 | U | < 0.5 | U | < 0.5 | U | | Trichloroethene | μg/L | 5 | < 0.5 | U | < 0.5 | U | < 0.5 | U | 8.5 | | < 0.5 | U | < 0.5 | U | < 0.5 | U | | Vinyl Chloride | μg/L | 2 | < 0.5 | U #### Notes: # Blue highlighted/**bold** results indicate concentrations above the MCL/PCL. Some samples may have been diluted due to the concentration(s) of one or more analytes exceeding the upper limit of the calibration curve. estimation due to discrepancies in meeting certain analyte-specific quality control criteria. U - Undetected. The analyte was analyzed for, but not detected. μ g/L - micrograms per liter ID - identification MCL - maximum contaminant limit PCL – Texas Risk Reduction Program (TRRP) Tier 1 Groundwater Residential Protective Concentration Level (for Perchlorate only). Val Qual - validation qualifier | | L | ocation Code | 35BV | VW09 | 35BV | VW10 | 35BV | VW11 | | 35BV | VW12 | | 35BV | VW13 | 35BV | WW14 | |------------------------|---------|---------------|-------------|------------|---------|----------------|-------------------|----------------------|--------|-------------------------|---------|-------------------------|-------------|-------------|-------------|---------------| | | | Sample ID | 35BWW0 | 9-180521 | 35BWW1 | 0-180524 | 35BWW1 | 1-180521 | 35BWW1 | 12-180523 | 35BWW12 | -180523FD | 35BWW1 | 13-180524 | 35BWW1 | 14-180522 | | | | Sample Date | 5/21 | /2018 | 5/24 | /2018 | 5/21 | /2018 | 5/23 | /2018 | 5/23/ | /2018 | 5/24 | /2018 | 5/22 | /2018 | | | Locatio | n Description | | • | | oacted, within | | one, v. low | | w zone, | | w zone, | | one, v. low | | ne, impacted, | | | | | outside sit | e boundary | site bo | undary | impact, v
bour | vithin site
ndary | | d, within site
ndary | | d, within site
ndary | impact, cro | ossgradient | within site | e boundary | | Parameter | Units | MCL/PCL | Result | Val Qual | VOCs | | | | | | | | | | | | | | | | | | 1,1-Dichloroethene | μg/L | 7 | < 0.5 | U | 5.1 | | | cis-1,2-Dichloroethene | μg/L | 70 | 0.96 | J | < 0.5 | U | 2.6 | | | Tetrachloroethene | μg/L | 5 | < 0.5 | U | 30 | | < 0.5 | U | 6.2 | | 7 | | < 0.5 | U | 30 | | | Trichloroethene | μg/L | 5 | 240 | | 36 | | < 0.5 | U | 23 | | | Vinyl Chloride | μg/L | 2 | < 0.5 | U #### Notes: # Blue highlighted/**bold** results indicate concentrations above the MCL/PCL. Some samples may have been diluted due to the concentration(s) of one or more analytes exceeding the upper limit of the calibration curve. estimation due to discrepancies in meeting certain analyte-specific quality control criteria. U - Undetected. The analyte was analyzed for, but not detected. μ g/L - micrograms per liter ID - identification MCL - maximum contaminant limit PCL – Texas Risk Reduction Program (TRRP) Tier 1 Groundwater Residential Protective Concentration Level (for Perchlorate only). Val Qual - validation qualifier | | L | ocation Code | 35BV | VW15 | 35BV | VW16 | 35BV | VW17 | 35B\ | WW18 | 35BV | VW19 | 35BV | VW20 | 35BV | VW23 | |------------------------|---------|---------------|-------------|----------|-------------|---------------|--------|----------------|--------|----------------|--------|----------------|-------------|-----------|----------------|----------------| | | | Sample ID | 35BWW1 | 5-180521 | 35BWW1 | 6-180524 | 35BWW1 | 7-180524 | 35BWW1 | 18-180521 | 35BWW1 | 9-180521 | 35BWW2 | 20-180524 | 35BWW23-180522 | | | | | Sample Date | 5/21/ | /2018 | 5/24 | /2018 | 5/24 | /2018 | 5/21 | /2018 | 5/21 | /2018 | 5/24 | /2018 | 5/22 | /2018 | | | Locatio | n Description | | | | ne, impacted, | | w zone, | Shallo | w zone, | Shallo | w zone, | Shallow zor | • | | w zone, | | | | | within site | boundary | outside sit | e boundary | • | l, within site | • | , outside site | | , outside site | within site | boundary | | , outside site | | | | | | | | | bour | ndary | boui | ndary | bour | ndary | | | bour | ndary | | Parameter | Units | MCL/PCL | Result | Val Qual | VOCs | | | | | | | | | | | | | | | | | | 1,1-Dichloroethene | μg/L | 7 | 3.4 | | < 0.5 | U | | cis-1,2-Dichloroethene | μg/L | 70 | < 0.5 | U | Tetrachloroethene | μg/L | 5 | 13 | | 7.8 | | < 0.5 | U | < 0.5 | U | < 0.5 | U | 29 | | < 0.5 | U | | Trichloroethene | μg/L | 5 | 13 | | 4 | | < 0.5 | U | < 0.5 | U | < 0.5 | U | 6.3 | | < 0.5 | U | | Vinyl Chloride | μg/L | 2 | < 0.5 | U #### Notes: # Blue highlighted/**bold** results indicate concentrations above the MCL/PCL. Some samples may have been diluted due to the concentration(s) of one or more analytes exceeding the upper limit of the calibration curve. estimation due to discrepancies in meeting certain analyte-specific quality control criteria. U - Undetected. The analyte was analyzed for, but not detected. μ g/L - micrograms per liter ID - identification MCL - maximum contaminant limit PCL – Texas Risk Reduction Program (TRRP) Tier 1 Groundwater Residential Protective Concentration Level (for Perchlorate only). Val Qual - validation qualifier | | L | ocation Code | 35BV | VW24 | | 35BV | VW25 | | 35BV | VW26 | LHSI | MW58 | |------------------------|---------|---------------|------------|------------------------------------|--------|-----------------------------|---------|-----------------------------|------------|------------------------------------|--------|-----------------------------| | | | Sample ID | 35BWW2 | 4-180524 | 35BWW2 | 25-180523 | 35BWW25 | -180523FD | 35BWW2 | 6-180522 | LHSMW5 | 58-180524 | | | | Sample Date | 5/24 | /2018 | 5/23 | /2018 | 5/23 | /2018 | 5/22/ | /2018 | 5/24 | /2018 | | | Locatio | n Description | unimpacted | w zone,
, outside site
ndary | | ne, impacted,
e boundary | | ne, impacted,
e boundary | unimpacted | w zone,
I, within site
ndary | | ne, impacted,
e boundary | |
Parameter | Units | MCL/PCL | Result | Val Qual | | VOCs | | | | | | | | | | | | | | 1,1-Dichloroethene | μg/L | 7 | < 0.5 | U | | cis-1,2-Dichloroethene | μg/L | 70 | < 0.5 | U | | Tetrachloroethene | μg/L | 5 | < 0.5 | U | 12 | | | Trichloroethene | μg/L | 5 | < 0.5 | U | 5.5 | | 5.1 | | < 0.5 | U | 1.4 | | | Vinyl Chloride | μg/L | 2 | < 0.5 | U | #### Notes: #### Blue highlighted/bold results indicate concentrations above the MCL/PCL. Some samples may have been diluted due to the concentration(s) of one or more analytes exceeding the upper limit of the calibration curve. estimation due to discrepancies in meeting certain analyte-specific quality control criteria. U - Undetected. The analyte was analyzed for, but not detected. μg/L - micrograms per liter ID - identification MCL - maximum contaminant limit PCL – Texas Risk Reduction Program (TRRP) Tier 1 Groundwater Residential Protective Concentration Level (for Perchlorate only). Val Qual - validation qualifier #### DEPARTMENT OF THE ARMY LONGHORN ARMY AMMUNITION PLANT POST OFFICE BOX 220 RATCLIFF, AR 72951 August 21, 2018 DAIM-ODB-LO Ms. April Palmie Texas Commission on Environmental Quality Superfund Section, MC-136 12100 Park 35 Circle, Bldg D Austin, TX 78753 Re: Final Technical Memorandum Semi-Annual Groundwater Sampling Methodology and Analytical Results for Year 1 (October 2015 and April 2016), Year 2 (October 2016 and April 2017), and Year 3 (November 2017 and April 2018), Site LHAAP-02, Vacuum Truck and Overnight Parking Longhorn Army Ammunition Plant, Karnack, Texas, August 2018 Dear Ms. Palmie, The above-referenced document is being transmitted to you for your records. The document was prepared by Bhate Environmental Associates, Inc., (Bhate) on behalf of the Army as part of Bhate's Performance Based Remediation contract for the facility. I ask that Kim Nemmers, Bhate's Project Manager, be copied on any communications related to the project. The point of contact for this action is the undersigned. I may be contacted at 479-635-0110, or by email at rose.m.zeiler.civ@mail.mil. Sincerely, Rose M. Zeiler, Ph.D. Roem - Zilu Longhorn AAP Site Manager #### Copies furnished: R. Mayer, USEPA Region 6, Dallas, TX P. Bruckwicki, Caddo Lake NWR, TX A. Williams, USACE, Tulsa District, OK N. Smith, USAEC, San Antonio, TX K. Nemmers, Bhate, Lakewood, CO (for project files) #### **MEMORANDUM FOR RECORD** SUBJECT: Semi-Annual Groundwater Sampling Methodology and Analytical Results for Year 1 (October 2015 and April 2016), Year 2 (October 2016 and April 2017), and Year 3 (November 2017 and April 2018), Site LHAAP-02, **Vacuum Truck and Overnight Parking** Longhorn Army Ammunition Plant (LHAAP), Karnack, Texas **DATE:** August 21, 2018 #### **INTRODUCTION AND OBJECTIVES** In accordance with the Final Decision Document for LHAAP-02 Vacuum Truck Overnight Parking, Longhorn Army Ammunition Plant, Karnack, Texas (Shaw Environmental and Infrastructure, Inc. [Shaw], July 2010), no remediation is necessary for LHAAP-02. As per the LHAAP-02 Decision Document, the site does not present unacceptable risks for the anticipated future use as part of the Caddo Lake National Wildlife Refuge which is considered an industrial use scenario. As required by the Decision Document which was signed by the Army and approved by the Texas Commission on Environmental Quality (TCEQ), semi-annual groundwater monitoring was conducted at one well (35AWW13) at LHAAP-02 for 3 years. Six semi-annual groundwater sampling events (October 2015 through April 2018) were conducted to evaluate the concentrations of arsenic and lead with respect to their Safe Drinking Water Maximum Contaminant Levels (MCLs). This Memorandum presents the methodology and analytical results for 3 years of semi-annual groundwater sampling conducted at LHAAP-02 from October 2015 to April 2018. The MCLs are 0.01 milligrams per liter (mg/L) for arsenic and 0.015 mg/L for lead. The single groundwater monitoring well sampled at LHAAP-02 (35AWW13) is screened in the Shallow Zone. #### SITE HISTORY AND DESCRIPTION Site LHAAP-02 is located in the northwestern portion of the LHAAP within the shops area known as LHAAP-35A(58). LHAAP-02 was a parking lot for the vacuum trucks that were used to pump out various sumps around LHAAP (**Figure 1**). It was in use beginning approximately in 1942 through 1997 and has a history of metals contamination (i.e. arsenic and lead in soils exceeding Texas Risk Reduction Standard No. 2 medium-specific concentrations [MSCs] for industrial use), as indicated by sampling in July 2009 and earlier (Shaw, January 2009). #### SEMI-ANNUAL GROUNDWATER SAMPLING METHODOLOGY (YEARS 1, 2, AND 3) During Years 1 through 3 the sampling rationale and methodology followed the procedures documented in the Installation-Wide Work Plan (IWWP) (AECOM, July 2014). Sampling for arsenic and lead was conducted based on the requirements of the Final Decision Document for LHAAP-02 (Shaw, July 2010). Groundwater samples were collected from monitoring well 35AWW13 using low-flow sampling techniques. Prior to sampling, the depth to groundwater and total depth of the monitoring well were measured using a Solinst Model 101 water level meter. The construction log for monitoring well 35AWW13 was used to identify the screened interval in the monitoring well. A bladder pump was lowered into the well and placed within the screened interval, then pumped at a rate of approximately 200 milliliters (mL) or less per minute. The groundwater was pumped through a flow-through cell where field parameters including temperature, pH, conductivity, oxygen reduction potential (ORP), dissolved oxygen (DO), and turbidity were measured using a U-52 Horiba water quality meter. After the groundwater parameters stabilized within the ranges specified in the IWWP (AECOM, July 2014), each groundwater sample was filtered using a 10 micron filter into a 250-mL clear plastic bottle. The bottles were labelled and placed in coolers containing ice for temporary storage and shipment to the selected off-site laboratory following chain-of-custody procedures. Groundwater samples collected from monitoring well 35AWW13 were analyzed for arsenic and lead using USEPA Method SW6020A. Quality control (QC) samples, including a field duplicate, matrix spike (MS), and matrix spike duplicate (MSD), were collected as prescribed in the IWWP (AECOM, July 2014) to assess the precision, accuracy, and representativeness of the analytical results. The groundwater samples were analyzed within the maximum holding time for Method SW6020A. Analytical data received from the selected off-site laboratory were validated in accordance with quality assurance (QA)/QC requirements for this project and were determined to be usable for their intended purpose. #### LHAAP-02 SEMI-ANNUAL GROUNDWATER RESULTS (YEARS 1, 2, AND 3) There were no exceedances of lead or arsenic above their respective MCLs during the Year 1 (October 2015 and April 2016), Year 2 (October 2016 and April 2017), and Year 3 (November 2017 and April 2018) semi-annual groundwater sampling events. The groundwater analytical results and laboratory data packages for Year 1 are provided in **Table 1** and **Attachment A-1**, respectively. The groundwater analytical results and the laboratory data packages for Year 2 are presented in **Table 2** and **Attachment A-2**, respectively. During the Year 3 semi-annual groundwater sampling events, arsenic and lead were detected in the samples collected from 35AWW13 in November 2017 and in April 2018. However, arsenic and lead did not exceed their respective MCLs during either sampling event. The groundwater analytical results for arsenic and lead for November 2017 and April 2018 are presented in **Table 3**. The Year 3 Groundwater Sample Collection Forms are provided in **Attachment B**, data validation information is summarized in the Quality Control Summary Report (QCSR) presented in **Attachment C**, and the laboratory data reports for the groundwater samples are provided in **Attachment D**. #### **CONCLUSIONS AND RECOMMENDATIONS** During the past six semi-annual groundwater sampling events (October 2015, April 2016, October 2016, April 2017, November 2017, and April 2018), detected arsenic and lead concentrations from monitoring well 35AWW13 have remained below their respective MCLs. Therefore, in accordance with the LHAAP-02 Decision Document (Shaw, July 2010), groundwater monitoring will cease. The only remaining requirement of the Decision Document is limited monitoring in the form of Letters of Certification to the State of Texas every 5 years to certify that the land use remains nonresidential. # **REFERENCES** AECOM. July 2014. Final Installation-Wide Work Plan for Longhorn Army Ammunition Plant, Karnack, Texas. Shaw Environmental and Infrastructure, Inc. (Shaw). January 2009. Final Site Investigation Report LHAAP-02, Vacuum Truck Overnight Parking Lot, Longhorn Army Ammunition Plant, Karnack, Texas. Shaw. July 2010. Final Decision Document for LHAAP-02, Vacuum Truck Overnight Parking, Longhorn Army Ammunition Plant, Karnack, Texas. **TABLES** Table 1. LHAAP-02 Year 1 Semi-Annual Groundwater Sampling Results - October 2015 and April 2016 | | Location ID:
Sample Date: | Units | MCL | 35AWW13F-101515
10/15/2015 | 35AWW13-042916
4/29/2016 | 35AWW13FD-042916
4/29/2016 | |----------------|------------------------------|-------|-------|-------------------------------|-----------------------------|-------------------------------| | Metals (6020A) | | | | | | | | Arsenic | | mg/L | 0.01 | 0.0017 J | 0.00237 | 0.00242 | | Lead | | mg/L | 0.015 | 0.00139 J | <0.001 U | <0.001 U | #### Notes: J - Estimated: The analyte was positively identified, the quantitation is an estimation due to discrepancies in meeting certain analyte-specific quality control criteria. MCL - Maximum Contaminant Limit mg/L - milligrams per liter U - Undetected: The analyte was analyzed for, but not detected.
Table 2. LHAAP-02 Year 2 Semi-Annual Groundwater Sampling - October 2016 and April 2017 | Location ID:
Sample Date: | Units | MCL | 35AWW13F-100616
10/6/2016 | 35AWW13FDF-100616
10/6/2016 | 35AWW13F-041917
4/19/2017 | 35AWW13FDF-041917
4/19/2017 | |------------------------------|---------------|-----------|--|---|--|---| | Loc | cation De | scription | Shallow zone,
unimpacted
downgradient. Field
filtered with 10 micron
filter. | Shallow zone,
unimpacted
downgradient. Field
filtered with 10 micron
filter. Field duplicate. | Shallow zone,
unimpacted
downgradient. Field
filtered with 10 micron
filter. | Shallow zone,
unimpacted
downgradient. Field
filtered with 10 micron
filter. Field duplicate. | | Metals (6020A) | etals (6020A) | | | | | | | Arsenic | mg/L | 0.01 | 0.00173 J | 0.00173 J | 0.00218 | 0.00214 | | Lead | mg/L | 0.015 | <0.001 U | <0.001 U | <0.001 U | <0.001 U | #### Notes: MCL - Maximum Contaminant Limit mg/L - milligrams per liter U - Undetected: The analyte was analyzed for, but not detected. J - Estimated: The analyte was positively identified, the quantitation is an estimation due to discrepancies in meeting certain analyte-specific quality control criteria. Table 3. LHAAP-02 Year 3 Semi-Annual Groundwater Sampling Results - November 2017 and April 2018 | | Locatio | n Identification:
Sample Date: | | 35AWW13_111617_a
11/16/17 | 35AWW13_040418
4/4/18 | 35AWW13_040418_a
4/4/18 | |--------------------------|---------|-----------------------------------|--|---|--|---| | | | Sample Type: | Parent | Field Duplicate | Parent | Field Duplicate | | | Locat | ion Description: | Shallow zone, unimpacted downgradient. Field filtered with 10 micron filter. | Shallow zone, unimpacted
downgradient. Field filtered
with 10 micron filter.
Field Duplicate | Shallow zone, unimpacted downgradient. Field filtered with 10 micron filter. | Shallow zone, unimpacted
downgradient. Field filtered
with 10 micron filter.
Field Duplicate | | Metals (By Method 6020A) | Units | USEPA MCL | | | | | | Arsenic | mg/L | 0.01 | 0.00117 J | 0.00120 J | 0.000986 J | 0.000895 J | | Lead | mg/L | 0.015 | 0.00306 | 0.00353 | 0.00122 J | 0.00109 J | Notes: mg/L - milligrams per liter J - estimated value between the limit of quantitation and the detection limit USEPA - United States Environmental Protection Agency MCL - Maximum Contaminant Level **FIGURES** # ATTACHMENT A-1 YEAR 1 SEMIANNUAL GROUNDWATER ANALYTICAL DATA (OCTOBER 2015 AND APRIL 2016) #### DEPARTMENT OF THE ARMY LONGHORN ARMY AMMUNITION PLANT POST OFFICE BOX 220 RATCLIFF, AR 72951 October 27, 2016 #### DAIM-ODB-LO Mr. Rich Mayer US Environmental Protection Agency Federal Facilities Section R6 1445 Ross Avenue Dallas, TX 75202-2733 Re: Technical Memorandum for Groundwater Sampling Methodology and Analytical Results for Year 1 (October 2015 and April 2016 Semi-Annual Events), LHAAP-02, Vacuum Truck Overnight Parking at Longhorn Army Ammunition Plant, Karnack, Texas Dear Mr. Mayer, The above-referenced document is being transmitted to you for your records. The document was prepared by AECOM on behalf of the Army as part of AECOM's Performance Based Remediation contract for the facility. I ask that Debra Richmann, AECOM's Project Manager, be copied on any communications related to the project. The point of contact for this action is the undersigned. I may be contacted at 479-635-0110, or by email at rose.m.zeiler.civ@mail.mil. Sincerely, Rose M. Zeiler, Ph.D. Longhorn AAP Site Manager RoseM.Zjiler #### Copies furnished: A. Palmie, TCEQ, Austin, TX P. Bruckwicki, Caddo Lake NWR, TX R. Smith, USACE, Tulsa District, OK A. Williams, USACE, Tulsa District, OK N. Smith, USAEC, San Antonio, TX D. Richmann, AECOM – San Antonio, TX (for project files) #### DEPARTMENT OF THE ARMY LONGHORN ARMY AMMUNITION PLANT POST OFFICE BOX 220 RATCLIFF, AR 72951 October 27, 2016 DAIM-ODB-LO Ms. April Palmie Texas Commission on Environmental Quality Superfund Section, MC-136 12100 Park 35 Circle, Bldg D Austin, TX 78753 Re: Technical Memorandum for Groundwater Sampling Methodology and Analytical Results for Year 1 (October 2015 and April 2016 Semi-Annual Events), LHAAP-02, Vacuum Truck Overnight Parking at Longhorn Army Ammunition Plant, Karnack, Texas Dear Ms. Palmie, The above-referenced document is being transmitted to you for your records. The document was prepared by AECOM on behalf of the Army as part of AECOM's Performance Based Remediation contract for the facility. I ask that Debra Richmann, AECOM's Project Manager, be copied on any communications related to the project. The point of contact for this action is the undersigned. I may be contacted at 479-635-0110, or by email at <u>rose.m.zeiler.civ@mail.mil</u>. Sincerely. Rose M. Zeiler, Ph.D. Longhorn AAP Site Manager RoseM.Zjiler #### Copies furnished: - R. Mayer, USEPA Region 6, Dallas, TX - P. Bruckwicki, Caddo Lake NWR, TX - R. Smith, USACE, Tulsa District, OK - A. Williams, USACE, Tulsa District, OK - N. Smith, USAEC, San Antonio, TX - D. Richmann, AECOM, San Antonio, TX (for project files) #### MEMORANDUM FOR RECORD October 27, 2016 SUBJECT: Groundwater Sampling Methodology and Analytical Results for Year 1 (October 2015 and April 2016 Semi-Annual Events), LHAAP-02, Vacuum Truck Overnight Parking, at Longhorn Army Ammunition Plant, Karnack, Texas This memorandum presents the methodology and analytical results for two semi-annual groundwater sampling events conducted at LHAAP-02 on October 15, 2015 and April 29, 2016. The purpose of the groundwater sampling and analysis is to determine the presence or absence of arsenic and lead at concentrations above their respective groundwater United States Environmental Protection Agency (USEPA) Safe Drinking Water Act Maximum Contaminant Levels (MCLs). The MCLs are 0.01 mg/L for arsenic and 0.015 mg/L for lead. The single groundwater monitoring well sampled at LHAAP-02 (35AWW13) is screened in the Shallow Zone. The sampling rationale and methodology followed the procedures documented in the Installation-Wide Work Plan (IWWP) (AECOM, July 2014). Sampling for arsenic and lead was conducted based on the requirements of the Final Decision Document for LHAAP-02 dated July 2010. Groundwater samples were collected from Shallow Zone monitoring well 35AWW13 and analyzed for arsenic and lead, using EPA Method SW6020A. The LHAAP-02 site served as the former vacuum truck overnight parking area and has a history of metals contamination (i.e. arsenic and lead in soils exceeding Texas Risk Reduction Standard No. 2 medium-specific concentrations (MSCs) for industrial use), as indicated by sampling in July 2009 and earlier (Shaw, 2009). Groundwater samples were collected utilizing low-flow sampling techniques. Prior to sampling, the depth to groundwater and total depth of the monitoring well were measured using a Solinst Model 101 water level meter. The construction log for monitoring well 35AWW13 was used to identify the screened interval in the monitoring well. A bladder pump was lowered into the well and placed within the screened interval, then pumped at a rate of approximately 200 milliliters (mL) or less per minute. The groundwater was pumped through a flow-through cell where field parameters including temperature, pH, conductivity, oxygen reduction potential (ORP), dissolved oxygen (DO), and turbidity were measured using a U-52 Horiba water quality meter. After the groundwater parameters stabilized within the ranges specified in the IWWP (AECOM, 2014), each groundwater sample was collected in a 250-mL clear plastic bottle. The bottles were labelled and placed in coolers containing ice for temporary storage and shipment to the Microbac laboratory located in Marietta, Ohio following Chain-of-Custody procedures. **Appendix A** provides the field sampling forms. Quality control (QC) samples, including a field duplicate, matrix spike (MS), and matrix spike duplicate (MSD), were collected as prescribed in the IWWP (July, 2014) to assess the precision, accuracy, and representativeness of the analytical results. The groundwater samples were analyzed within the maximum holding time for Method SW 6020A. Analytical data received from Microbac were validated in accordance with quality assurance/quality control (QA/QC) requirements for this project and were determined to be usable for their intended purpose. The data validation information is summarized in the Quality Control Summary Report (QCSR) presented in **Appendix B**. **Appendix C** provides the laboratory reports for the groundwater samples. Arsenic and lead were detected in the samples collected from 35AWW13F (F indicates a filtered sample) in October 2015 and 35AWW13F in April 2016. Arsenic and lead did not exceed their respective MCLs during the April 2016 sampling event. The groundwater analytical results for arsenic and lead for October 2015 and April 2016 are presented in **Table 1.** #### REFERENCES - AECOM, 2014. Final Installation-Wide Work Plan for Longhorn Army Ammunition Plant, Karnack, Texas, July. - Shaw Environmental and Infrastructure, Inc. (Shaw), 2009. Final Site Investigation Report LHAAP-02, Vacuum Truck Overnight Parking
Lot, Longhorn Army Ammunition Plant, Karnack, Texas, January. - Shaw Environmental and Infrastructure, Inc. (Shaw), 2010. Results of Additional Sampling at Site LHAAP-02 (Former Vacuum Truck Overnight Parking), Longhorn Army Ammunition Plant, Karnack, Texas, February. - Shaw Environmental and Infrastructure, Inc. (Shaw), 2010. Final Decision Document for LHAAP-02, Vacuum Truck Overnight Parking, Longhorn Army Ammunition Plant, Karnack, Texas, July. Table 1: LHAAP-02 Year 1 Sampling Results - October 2015 and April 2016 | | Location ID:
Sample Date: | Units | MCL | 35AWW13F-
101515
10/15/2015 | 35AWW13-
042916
4/29/2016 | 35AWW13FD-
042916
4/29/2016 | |----------------|------------------------------|-------|-------|-----------------------------------|---------------------------------|-----------------------------------| | Metals (6020A) | | | | | | | | ARSENIC | | mg/L | 0.01 | 0.0017 J | 0.00237 | 0.00242 | | LEAD | | mg/L | 0.015 | 0.00139 J | <0.001 U | <0.001 U | J - Estimated: The analyte was positively identified, the quantitation is an estimation due to discrepancies in meeting certain analyte-specific quality control criteria. MCL - Maximum Contaminant Limit mg/L - milligrams per liter U - Undetected: The analyte was analyzed for, but not detected. # **AECOM** # MONITORING WELL SAMPLE COLLECTION FORM | | | | | | | | | | | | | | | 1 | | | |-------------------|---|-------------------|--------------------|---------------|----------------|------------------|----------------|------------------|----------------|------------------|--------------|--|---------------|---------------------------------------|-------------|---------------------------------------| | 1 | LOCATION Site: 02 Project: Longhorn Army Ammunition Plant Water Quality Meter Type/ID #: Horiba U-52 | | | | | | LocID: 35 | AWW13 | | | | Date: / | 0/15/ | 15 | | | | | LUCATION | | norn Army Ammui | nition Plant | | | Project No. | 6027418 | 5.0012SOV | V12 | | Recorded By | : Scott Bees | inger | Chec | ked By: | | | | | | | | | Water Interfac | na Proha: | Water Level II | dicator: Solinst | ID#- 101 | Min Rechame | Level = (TD-D | TW/0 80)) - T | D | | | | CANLWELLI | Unit # | 2120 | | | | Sampling Equ | _ | Bladder Pump | | ID#: | man recrisinge | 1000 - (10-1 | 7111(0.00)) = 1 | | | | | | | | 3- | | | | - | | | | | | 4110 | 0 | <u>-</u> | | | WELL | Casing I.D. (in): | | 110 5 | - | | Static Water I | evel Reading | (ft) from TOC: | 24,6 | | Weather Cond | | CLAA | | | | | INFO | Total Well Depth | h (ft) from TOC: | 40.2 | .3 | | | val (ft) from TC | | | | Condition of V | Vell/Remarks: | 600 | 7 | | | | | | | | - Matte A Re | | Pump Placen | ent (ft) from T | 0C: 3 | 2.50 | | | | - | | | | | | Casing I.D. (in): | | | | 0.75 | 1.5 | 2.0 | 2.2 | 3.0 | 4.0 | 4.3 | 5.0 | 6.0 | 7.0 | 8.0 | | | INFO | Unit Casing Volu | ume (gal/lin ft): | | | 0.023 | 0.09 | 0.16 | 0.20 | 0.37 | 0.65 | 0.75 | 1.0 | 1.5 | 2.0 | 2.6 | | | | | | | Т | | 1 | | | | 2.55 | | | | - | | | | | | Water | Pumping | | | | | : | | | | | | | | | | D-4- | Time | Level | Rate | Temp. | -ti | Cond | DO (mo/l) | Turb.
(NTU) | ORP | | | | Remarks | | | | | Date | (24 hr) | (FTOC) | (mL/mln) | (°C) | pH | (µS/cm) | (mg/L) | | (mv) | | | | (odor, clarity, etc | .] | | | | 10 15/15 | 1315 | 24,67 | 00 | 26.43 | | 1.50 | 1.46 | 308 | 154 | ļ | | | | | | | | 1) | 1320 | 24,75 | 100 | 36.84 | 5,42 | 1.65 | 0.62 | 221 | 137 | | | | | | | | | | 1325 | 24,81 | 100 | 36.81 | 5134 | 1113 | 0.30 | 144 | 134 | | | | | | | | | - 11 | 1330 | 24,85 | 100 | 18.95 | 5,33 | | 0.22 | 130 | 13) | 0.0 | | | | | | | | - 11 | 1335 | 24.87 | 100 | 26.87 | 5,32 | 1.87 | 0.12 | 109 | 400 | 29 | | | | | | | | " | 1340 | 24.89 | 100 | 27.10 | 5,34 | | 0.07 | 69.9 | 127 | | | | | | <u></u> | | | - 11 | 1345 | 24,90 | 100 | 27.12 | 6.34 | 1.96 | 0.00 | 64.1 | 127 | | | | · · · · · · · · · · · · · · · · · · · | | | | | - 11 | 1350 | 24.91 | 100 | 27.10 | 5.33 | 1.97 | ტ.00 | 63.9 | 126 | | | | | | | | | [1 | 1355 | 24.91 | 100 | 27.09 | | 1,98 | 0.00 | 63.5 | 125 | | | | | | | | | N. | 1400 | 24,91 | 100 | 27.09 | 5,33 | 1.98 | 00.A | 63.1 | 125 | 8 | · · · · · · · · · · · · · · · · · · · | . 1 | | | <u> </u> | | | | | 100 | | | | | | | | | | | ` | | | | 9 | - | | | | | | m; <0.33 ft Measur | | Stabilization: | +/-10% C, +/-0.1 | pH, +/-3% Co | nd, +/-10% DO, | | | | | | - 22 | W 103 | -50-12200y | | a | SAMPLE ID: 2 | SAWW | 13-10 50 | _ TIME | 1400 | No. Containe | | | | | Filter (Y/N) | Pump OR Ba | iler | Parameter(s | | <u> </u> | | | | | 10 10 00 |) | • • | 1 - 500 n | nL plastic | | | HNO3 | У | Pump | | Total Met | als | | | | İ | | | | | | | | | | · | | | | | | | DUPLICATE (D): NO | | | | | | | | | | ļ | ļ | | | | | | | | MATRIX SPIKE (| | _ | | | | | | | | | | | 4 4- | | | | | MATRIX DUPLIC | ATE (MD): N | 0 | | | | | | | | | - | | | | | | | | | | | | | | 17/3-1 | | | | | | | 5) | | | | | CO= | LEL= | OXY= | H2S= | | | | | | 1 | 1 | | | | 10 23 | # **AECOM** CO= LEL= OXY= H2S= # MONITORING WELL SAMPLE COLLECTION FORM | | Site: 02 | | | | | LociD: 35 | AWW13 | | | | Date: | 4/29/201 | 6 | | | | |----------------|--|-----------------------|------------------|--------------------|--|--|--|----------------|-------------------|--|--------------|----------------|--------------------------------|-----------|-------------|---| | LOCATION | | norn Army Ammu | nition Plant | | · · · · · · · · · · · · · · · · · · · | Project No. | | 5.0012SOV | V12 | | Recorded By | y: Scott Bee | singer | Checked | d By: | | | - | Water Quality M | | Horiba U-52 | | | Water Interfa | ce Probe: | Water Level b | ndicator: Solinst | : ID#: 101 | Min Recharge | e Level = (TD- | DTW(0.80)) - TD |) | | | | EQUIPMENT | Unit# | 21099 | | | | Sampling Eq | - | Bladder Pump | | ID#: | | | | | | | | \ \ \ | Casing I.D. (in): | 2" | | | y muse | Static Water | Level Reading | (ft) from TOC: | 23.7 | 7 | Weather Con | ditions C | Loudy | RAIN | | | | WELL | Total Well Depti | | 40.2 | Q | | | val (ft) from TO | | | | | Well/Remarks: | | X | | | | INFO | 1000 1100 | . (1.) 11 0111 1 0 01 | 40.0 | - | | _ | nent (ft) from T | | 32.98 | } | | | | | ··· | | | CASING | Casing I.D. (in): | | | The stable and the | 0.75 | 1.5 | 2.0 | 2.2 | 3.0 | 4.0 | 4.3 | 5.0 | 6.0 | 7.0 | 8.0 | | | INFO | Unit Casing Vol | | | | 0.023 | 0.09 | 0.16 | 0.20 | 0.37 | 0.65 | 0.75 | 1.0 | 1.5 | 2.0 | 2.6 | j | | | a a | | | | | | 1 | 1 | | | | | | | | | | | | Water | Pumping | | | | | | | | | | | | | | | Date | Time
(24 hr) | Level
(FTOC) | Rate
(mL/min) | Temp.
(°C) | pH | Cond
(µS/cm) | DO
(mg/L) | Turb.
(NTU) | ORP
(mv) | | | | Remarks
(odor, clarity, etc | -1 | | | | 4/29/16 | 1355 | 23.74 | 100 | 22 45 | 5.97 | 1,24 | 1.54 | 10.5 | 149 | | | | (Odor, Clarity, ex | <u>~ </u> | | | | 7101114 | 1400 | 23.80 | 100 | 23.16 | 5.93 | 1.25 | 1.01 | 12.1 | 136 | | | | | | | | | | 1405 | 33.87 | 100 | 23,05 | | 1.24 | 0.85 | 11.5 | 132 | | | | | | | | | | 1410 | 23-92 | 100 | 22.95 | 5.77 | 1.23 | 0.67 | 10.2 | 131 | | | | | | | | | | 14/5 | 23.95 | 100 | 22.83 | 5.70 | 1.22 | 0.67 | 9.7 | 137 | | | | | | | | | | 1420 | 23.97 | 100 | 12.81 | 5.70 | 1.22 | 0.67 | 9.1 | 138 | | | | | | | | | | 1425 | 23.98 | 100 | | 5.69 | 1.22 | 0.67 | 8.8 | 139 | | | | | | | | | <u> </u> | 1430 | 23.99 | 100 | 37.80 | 2.68 | 1.22 | 0.66 | 85 | 139 | | | | | | -2 | | | | | | | | | ļ | | | | | | | | | 1 | | | | | | | - | - | <u> </u> | | | | | _ | | | | | ~ | | - | - | | | + | | | | | | | | | | | | - | | - | - | | | + | | - | | - | ļ | | | | | | | | | | | 4 | | | | | + | | | | | | | | | | | | | | | | | | | | | | | | 35000000 | 12. (2. =10). | | | | | | | | | ump Rate: <=0,5 L/min Drawdown: <0,33 ft Measurements: 3-5 min Stabilization: +/-10% C | | | | | | | -/-10%Turb(<=1 | | | | | | | | | | SAMPLE ID: | 111111111111111111111111111111111111111 | | | | | Containers/Volume/Type Preserv | | | | Filter (Y/N) | Pump OR B | ailer | Parameter(| | | | | | 5 - 50 | | | | | mL plastic | C | | HNO3 | N | Pump | | Total Me | tals | | | | DUDI ICATE (D) | DUDI ICATE IDV. VEC | | | | | | | _ | - | + | | | + | | | | | 1 | DUPLICATE (D): YES MATRIX SPIKE (MS): YES | | | | | | | | | | | | + | | | | | | MATRIX DUPLICATE (MD): YES | | | | | | | - | i | † | | | | | | | | | | | | | | | | | 1 | 1 | 1 | | | | | | # QUALITY CONTROL SUMMARY REPORT LHAAP-02 (OCTOBER 2015 AND APRIL 2016) FOR LONGHORN ARMY AMMUNITION PLANT KARNACK, TEXAS **Prepared For:** U.S. Army Corps of Engineers Tulsa District **Prepared By:** **AECOM Technical Services** September 2016 # **Table of Contents** | 1 | I | NTRODUCTION | 1 | |---|-----|---|---| | | 1.1 | Intended Use of Data | 1 | | | 1.2 | Preservation and Holding Times | 1 | | | 1.3 | Calibrations | | | | | .3.1 Continuing Calibration Verifications (CCV) | | | | | 1.3.1.1
SW6010 | | | | 1.4 | Blanks | 1 | | | 1.5 | Surrogates | 2 | | | 1.6 | Laboratory Control Sample (LCS) | 2 | | | 1.7 | Matrix Spike/Matrix Spike Duplicate (MS/MSD) | | | | | 1.7.1.1 SW6010 | | | | 1.8 | | | | | | DATA USABILITY SUMMARY | | # **List of Tables** - Table 1: Completeness by Method - Table 2: Field Sample Identification and Laboratory Identification - Table 3: Qualified Analytical Data #### 1 INTRODUCTION AECOM reviewed two (2) data packages from Microbac Laboratory Services, Marietta, OH. Groundwater samples were collected in October 2015 and April 2016 at LHAAP-02 Longhorn Army Ammunition Plant (LHAAP), Karnack, Texas. Data were reviewed for conformance to the requirements of the following guidance documents: Automated Data Review by Laboratory Data Consultants (ADR.net), United States Environmental Protection Agency (EPA) Contract Laboratory Program National Functional Guidelines for Inorganic Data Review, (EPA, July 2002), and EPA Contract Laboratory Program National Functional Guidelines for Low Concentration Organic Data Review, (EPA, June 2001). #### 1.1 Intended Use of Data Groundwater sampling was implemented at the LHAAP-02 site to monitor levels of metals including arsenic and lead: - SW6010 Metals - SW6020 Metals - 7470A- Hg by cold vapor atomic absorption **Table 2** lists the sample identifications and their associated laboratory identifications. **Table 3** lists qualified results with the associated quality control parameter that was exceeded. # 1.2 Preservation and Holding Times Sample identification data were evaluated for agreement with the chain-of-custody (COC). All samples were received in appropriate containers, within the proper temperature range, in good condition, and with the required signatures. #### 1.3 Calibrations Initial calibration criteria modification includes RSD< or = to 30%, two compounds allowed up to 40%. If the continuing calibration verification (CCV) compound exceeds 30% drift, the compound is checked in the LCS, if both are outside recovery limits, the compound is rejected, R. If only the CCV exceeds recovery criteria and is less than \pm 40% drift, then the compound is qualified J or UJ. # 1.3.1 Continuing Calibration Verifications (CCV) #### 1.3.1.1 SW6010 CCV WG569211-12 reported a recovery for selenium of 89.9%. Recovery limits for selenium at 90-110% and the associated sample reported a concentration less than the reporting limit, therefore the concentration of selenium is estimated (UJ). #### 1.4 Blanks Where contamination by a target analyte of one of the various blanks was found, if the sample result for an associated sample was non-detect or less than 5X (10X for common laboratory September2016 contaminants) the analyte concentration in the blank, the corresponding sample result for the analyte was qualified B. Where the sample result for the affected analyte was greater than 5X the amount in the blank, no qualifier was applied. All blanks were free of target analytes. #### 1.5 Surrogates All Surrogates are within criteria. # 1.6 Laboratory Control Sample (LCS) All LCS/LCSDs are within criteria. #### 1.7 Matrix Spike/Matrix Spike Duplicate (MS/MSD) #### 1.7.1.1 SW6010 The MS/MSD for sample L16050013-01 yielded a recovery of 244% and 237%, respectively, for sodium in SDG L16050013. This is above the upper control limit of 120%. The parent sample has a detection of sodium above the limit of quantitation (LOQ) and is estimated (J). **Table 3** shows qualified analytical data. # 1.8 Field Duplicate Precision Precision is the measure of variability of individual sample measurements. Evaluation of field duplicates for precision was done using the Relative Percent Difference (RPD). The RPD is defined as the difference between two duplicate samples divided by the mean and expressed as a percent. Field duplicate RPD limits were set at 0-30% for groundwater matrices. No data required qualification based field duplicate RPD outliers. Overall field precision was acceptable. #### 2 DATA USABILITY SUMMARY The data are usable for the intended purposes of the project. The data quality objectives have been met for the project. **Table 1: Completeness by Method** | Method | No. of Rejected Results | % Completeness | |--------|-------------------------|----------------| | SW6010 | 0 | 100 | | SW6020 | 0 | 100 | | 7470A | 0 | 100 | September 2016 **Table 2: Field Sample Identification and Laboratory Identification** | ClientSampleID | LabSampleID | SW6010 | SW6020 | 7470A | |--------------------------------|--------------|--------|--------|-------| | 35AWW13F-101515 | L15101055-01 | X | X | X | | 35AWW13-042616 | L16050013-01 | X | X | X | | 35AWW13FD-042616 | L16050013-02 | X | X | X | | 35AWW13MS-042616 | L16050013-03 | X | X | X | | 35AWW13MSD-042616 | L16050013-04 | X | X | X | | LHAAP02 Equipment Rinse-042916 | L16050013-05 | X | X | X | **Table 3: Qualified Analytical Data** | | ClientSampleID | LabSampleID | AnalyteName | DVQualOverall | Reason | |---|------------------|--------------|-------------|---------------|-------------------| | | 35AWW13-042616 | L16050013-01 | Sodium | J | MS/MSD %R Failure | | 3 | 35AWW13FD-042616 | L16050013-02 | Selenium | UJ | CCV %R Failure | **Laboratory Report Number:** L15101055 Kayla Teague AECOM Technical Services, Inc. 16000 Dallas Parkway Dallas, TX 75248 Please find enclosed the analytical results for the samples you submitted to Microbac Laboratories. Review and compilation of your report was completed by Microbac's Ohio Valley Division (OVD). If you have any questions, comments, or require further assistance regarding this report, please contact your service representative listed below. Laboratory Contact: Stephanie Mossburg – Team Chemist/Data Specialist (740) 373-4071 Stephanie.Mossburg@microbac.com I certify that all test results meet all of the requirements of the DoD QSM and other applicable contract terms and conditions. Any exceptions are attached to this cover page or addressed in the method narratives presented in the report. All results for soil samples are reported on a 'dry-weight' basis unless specified otherwise. Analytical results for water and wastes are reported on a 'as received' basis unless specified otherwise. A statement of uncertainty for each analysis is available upon request. This laboratory report shall not be reproduced, except in full, without the written approval of Microbac Laboratories, DoD ELAP certification number 2936.01. The reported results are related only to the samples analyzed as received. This report was certified on October 30 2015 David E. Vardenberg David Vandenberg - Managing Director State of Origin: TX Accrediting Authority: Texas Commission on Environmental Quality ID:T104704252-07-TX QAPP: DOD Ver 4.1 Microbac Laboratories * Ohio Valley Division 158 Starlite Drive, Marietta, OH 45750 * T: (740) 373-4071 F: (740) 373-4835 * www.microbac.com Χ Yes Yes NA Discrepancy 0.0 Gun Н **Lab Report #:** L15101055 **Lab Project #:** 2551.096 Project Name: Longhorn Army Ammunition Lab Contact: Stephanie Mossburg Resolution J2317162191 # Record of Sample Receipt and Inspection #### Comments/Discrepancies This is the record of the shipment conditions and the inspection records for the samples received and reported as a sample delivery group (SDG). All of the samples were inspected and observed to conform to our receipt policies, except as noted below. There were no discrepancies. 00110489 10 11 12 | Coolers | | | | | | |----------|-------------|-------------|------|-----------|----------------| | Cooler # | Temperature | Temperature | COC# | Airbill # | Temp Required? | | spection Che | ecklist | | |--------------|--|--------| | # | Question | Result | | 1 | Were shipping coolers sealed? | Yes | | 2 | Were custody seals intact? | Yes | | 3 | Were cooler temperatures in range of 0-6? | Yes | | 4 | Was ice present? | Yes | | 5 | Were COC's received/information complete/signed and dated? | Yes | | 6 | Were sample containers intact and match COC? | Yes | | 7 | Were sample labels intact and match COC? | Yes | | 8 | Were the correct containers and volumes received? | Yes | | 9 | Were samples received within EPA hold times? | Yes | Were correct preservatives used? (water only) Were pH ranges acceptable? (voa's excluded) Were VOA samples free of headspace (less than 6mm)? **Lab Report #:** L15101055 **Lab Project #:** 2551.096 Project Name: Longhorn Army Ammunition Lab Contact: Stephanie Mossburg | Samples Received | | | | | |------------------|-----------------|---------------|------------------|------------------| | | Client ID | Laboratory ID | Date Collected | Date Received | | | 35AWW13F-101515 | L15101055-01 | 10/15/2015 14:00 | 10/16/2015 10:26 | # Microbac REPORT L15101055 PREPARED FOR AECOM Technical Services, Inc. WORK ID: | 1.0 Summary Data | Ę | |----------------------------------|-----| | 1.1 Narratives | | | 1.2 Certificate of Analysis | | | 2.0 Full Sample Data Package | | | 2.1 Metals Data | | | 2.1.1 Metals I C P Data | 34 | | 2.1.1.1 Summary Data | | | 2.1.1.2 QC Summary Data | | | 2.1.1.3 Raw Data | | | 2.1.2 Metals ICP-MS Data | | | 2.1.2.1 Summary Data | | | 2.1.2.2 QC Summary Data | | | 2.1.2.3 Raw Data | | | 2.1.3 Metals CVAA Data (Mercury) | | | 2.1.3.1 Summary Data | 724 | | 2.1.3.2 QC Summary | | | 2.1.3.3 Raw Data | | | 3.0 Attachments | 752 | # 1.0 Summary Data # 1.1 Narratives | Laboratory Name: | Microbac OVD | Laboratory Log Number: | L15101055 | |-----------------------|---------------------|------------------------|-------------| | Project Name: | | Method: | 6010 | | Prep Batch Number(s): | WG543718 | Reviewer Name: | Maren Beery | | LRC Date: | 2015-10-30 00:00:00 | | | Laboratory Data Package Cover Page | R2 S | Field chain-of-custody documentation; Sample identification cross-reference; Test reports (analytical data sheets) for each environmental sample that includes: (a) Items consistent with
NELAC Chapter 5, (b) dilution factors, (c) preparation methods, (d) cleanup methods, and (e) a.if required for the project, tentatively identified compounds (TICs). Surrogate recovery data including: (a) Calculated recovery (%R), and (b) the laboratory's surrogate QC limits. | |-------|--| | R3 | Test reports (analytical data sheets) for each environmental sample that includes: (a) Items consistent with NELAC Chapter 5, (b) dilution factors, (c) preparation methods, (d) cleanup methods, and (e) a.if required for the project, tentatively identified compounds (TICs). Surrogate recovery data including: (a) Calculated recovery (%R), and (b) the laboratory's surrogate QC | | r | with NELAC Chapter 5, (b) dilution factors, (c) preparation methods, (d) cleanup methods, and (e) a.if required for the project, tentatively identified compounds (TICs). Surrogate recovery data including: (a) Calculated recovery (%R), and (b) the laboratory's surrogate QC | | R4 9 | | | | | | R5 - | Test reports/summary forms for blank samples; | | | Test reports/summary forms for laboratory control samples (LCSs) including: (a) LCS spiking amounts, (b) calculated %R for each analyte, and (c) the laboratory's LCS QC limits. | | \ 6 | Test reports for project matrix spike/matrix spike duplicates (MS/MSDs) including: (a) samples associated with the MS/MSD clearly identified, (b) MS/MSD spiking compounds, (c) concentration of each MS/MSD analyte measured in the parent and spiked samples, (d) calculated %Rs and relative percent differences (RPDs), and (e) the laboratory's MS/MSD QC limits. | | | Laboratory analytical duplicate (if applicable) recovery and precision: (a) the amount of analyte measured in the duplicate, (b) the calculated RPD, and (c) the laboratory's QC limits for analytical duplicates. | | | List of method quantitation limits (MQLs) and detectability check sample results for each analyte for each method and matrix. | | R10 (| Other problems or anomalies. | | Name (Printed) | Signature | Official Title (Printed) | Date | |----------------|-------------|--------------------------|---------------------| | Maren Beery | Maren Beery | Metals Supervisor | 2015-10-30 13:33:44 | | Laboratory Name: | Microbac OVD | Laboratory Log Number: | L15101055 | |-----------------------|---------------------|------------------------|-------------| | Project Name: | | Method: | 6010 | | Prep Batch Number(s): | WG543718 | Reviewer Name: | Maren Beery | | LRC Date: | 2015-10-30 00:00:00 | | | | Description | Yes | No | NA | NR | ER# | |---|-----|----|----|----|------| | Chain-of-custody (C-O-C) | | | | | | | Did samples meet the laboratory's standard conditions of sample acceptability upon receipt? | Х | | | | | | Were all departures from standard conditions described in an exception report? | Х | | | | | | Sample and quality control (QC) identification | Х | | | | | | Are all field sample ID numbers cross-referenced to the laboratory ID numbers? | Х | | | | | | Are all laboratory ID numbers cross-referenced to the corresponding QC data? | Х | | | | | | Test reports | Х | | | | | | Were all samples prepared and analyzed within holding times? | Х | | | | | | Other than those results < MQL, were all other raw values bracketed by calibration standards? | Х | | | | ER#1 | | Were calculations checked by a peer or supervisor? | Х | | | | | | Were all analyte identifications checked by a peer or supervisor? | Х | | | | | | Were sample detection limits reported for all analytes not detected? | Х | | | | | | Were all results for soil and sediment samples reported on a dry weight basis? | Х | | | | | | Were % moisture (or solids) reported for all soil and sediment samples? | Х | | | | | | Were bulk soils/solids samples for volatile analysis extracted with methanol per SW846 Method 5035? | | | Х | | | | If required for the project, are TICs reported? | | | Х | | | | Surrogate recovery data | | | | | | | Were surrogates added prior to extraction? | | | Х | | | | Were surrogate percent recoveries in all samples within the laboratory QC limits? | | | Х | | | | Test reports/summary forms for blank samples | | | | | | | Were appropriate type(s) of blanks analyzed? | Х | | | | | | Were blanks analyzed at the appropriate frequency? | Х | | | | | | Were method blanks taken through the entire analytical process, including preparation and, if applicable, cleanup procedures? | Х | | | | | | Were blank concentrations < MQL? | Х | | | | | | Laboratory control samples (LCS): | Х | | | | | | Were all COCs included in the LCS? | Х | | | | | RG-366/TRRP-13 May 2010 | Laboratory Name: | Microbac OVD | Laboratory Log Number: | L15101055 | |-----------------------|---------------------|------------------------|-------------| | Project Name: | | Method: | 6010 | | Prep Batch Number(s): | WG543718 | Reviewer Name: | Maren Beery | | LRC Date: | 2015-10-30 00:00:00 | | | | Was each LCS taken through the entire analytical procedure, including prep and cleanup steps? | Х | | | |--|---|---|--| | Were LCSs analyzed at the required frequency? | Х | | | | Were LCS (and LCSD, if applicable) %Rs within the laboratory QC limits? | Х | | | | Does the detectability check sample data document the laboratory's capability to detect the COCs at the MDL used to calculate the SDLs? | Х | | | | Was the LCSD RPD within QC limits? | | Х | | | Matrix spike (MS) and matrix spike duplicate (MSD) data | | | | | Were the project/method specified analytes included in the MS and MSD? | | Х | | | Were MS/MSD analyzed at the appropriate frequency? | | Х | | | Were MS (and MSD, if applicable) %Rs within the laboratory QC limits? | | Х | | | Were MS/MSD RPDs within laboratory QC limits? | | Х | | | Analytical duplicate data | | | | | Were appropriate analytical duplicates analyzed for each matrix? | | Х | | | Were analytical duplicates analyzed at the appropriate frequency? | | Х | | | Were RPDs or relative standard deviations within the laboratory QC limits? | | Х | | | Method quantitation limits (MQLs): | | | | | Are the MQLs for each method analyte included in the laboratory data package? | Х | | | | Do the MQLs correspond to the concentration of the lowest non-zero calibration standard? | Х | | | | Are unadjusted MQLs and DCSs included in the laboratory data package? | Х | | | | Other problems/anomalies | | | | | Are all known problems/anomalies/special conditions noted in this LRC and ER? | Х | | | | Was applicable and available technology used to lower the SDL to minimize the matrix interference effects on the sample results? | Х | | | | Is the laboratory NELAC-accredited under the Texas Laboratory Accreditation Program for the analytes, matrices and methods associated with this laboratory data package? | X | | | | Initial calibration (ICAL) | | | | | Were response factors and/or relative response factors for each analyte within QC limits? | Х | | | | Were percent RSDs or correlation coefficient criteria met? | Х | | | RG-366/TRRP-13 May 2010 | Laboratory Name: | Microbac OVD | Laboratory Log Number: | L15101055 | |-----------------------|---------------------|------------------------|-------------| | Project Name: | | Method: | 6010 | | Prep Batch Number(s): | WG543718 | Reviewer Name: | Maren Beery | | LRC Date: | 2015-10-30 00:00:00 | | | | Was the number of standards recommended in the method used for all analytes? | Х | | | |--|---|---|--| | Were all points generated between the lowest and highest standard used to calculate the curve? | | | | | Are ICAL data available for all instruments used? | Х | | | | Has the initial calibration curve been verified using an appropriate second source standard? | Х | | | | Initial and continuing calibration verification (ICCV and CCV) and continuing calibration blank (CCB): | | | | | Was the CCV analyzed at the method-required frequency? | Х | | | | Were percent differences for each analyte within the method-required QC limits? | Х | | | | Was the ICAL curve verified for each analyte? | Х | | | | Was the absolute value of the analyte concentration in the inorganic CCB < MDL? | Х | | | | Mass spectral tuning | | | | | Was the appropriate compound for the method used for tuning? | | Х | | | Were ion abundance data within the method-required QC limits? | | Х | | | Internal standards (IS) | | | | | Were IS area counts and retention times within the method-required QC limits? | | Х | | | Raw data (NELAC Section 5.5.10) | | | | | Were the raw data (for example, chromatograms, spectral data) reviewed by an analyst? | Х | | | | Were data associated with manual integrations flagged on the raw data? | | Х | | | Dual column confirmation | | | | | Did dual column confirmation results meet the method-required QC? | | X | | | Tentatively identified compounds (TICs) | | | | | If TICs were requested, were the mass spectra and TIC data subject to appropriate checks? | | X | | | Interference Check Sample (ICS) results | | | | | Were percent recoveries within method QC limits? | Х | | | | Serial dilutions, post digestion spikes, and method of standard additions | | | | | Were percent differences, recoveries, and the linearity within the QC
limits specified in the method? | Х | | | | Method detection limit (MDL) studies | | | | | | | | | RG-366/TRRP-13 May 2010 | Laboratory Name: | Microbac OVD | Laboratory Log Number: | L15101055 | |-----------------------|---------------------|------------------------|-------------| | Project Name: | | Method: | 6010 | | Prep Batch Number(s): | WG543718 | Reviewer Name: | Maren Beery | | LRC Date: | 2015-10-30 00:00:00 | | | | Was a MDL study performed for each reported analyte? | Х | | |--|---|--| | Is the MDL either adjusted or supported by the analysis of DCSs? | Х | | | Proficiency test reports | | | | Was the laboratory's performance acceptable on the applicable proficiency tests or evaluation studies? | Х | | | Standards documentation | | | | Are all standards used in the analyses NIST-traceable or obtained from other appropriate sources? | X | | | Compound/analyte identification procedures | | | | Are the procedures for compound/analyte identification documented? | X | | | Demonstration of analyst competency (DOC) | | | | Was DOC conducted consistent with NELAC Chapter 5? | Х | | | Is documentation of the analyst's competency up-to-date and on file? | Х | | | Verification/validation documentation for methods (NELAC Chapter 5) | | | | Are all the methods used to generate the data documented, verified, and validated, where applicable? | Х | | | Laboratory standard operating procedures (SOPs) | | | | Are laboratory SOPs current and on file for each method performed | Х | | | | | | - 1. Items identified by the letter "R" must be included in the laboratory data package submitted in the TRRP-required report(s). Items identified by the letter "S" should be retained and made available upon request for the appropriate retention period; - 2. O = organic analyses; I = inorganic analyses (and general chemistry, when applicable); - 3. NA = Not applicable; - 4. NR = Not reviewed; - 5. ER# = Exception Report identification number (an Exception Report should be completed for an item if "NR" or "No" is checked). The Exception Report for each "No" or "Not Reviewed (NR)" item in Laboratory Review Checklist and for each analyte, matrix, and method for which the laboratory does not hold NELAC accreditation under the Texas Laboratory Accreditation Program. **Release Statement:** I am responsible for the release of this laboratory data package. This laboratory is NELAC accredited under the Texas Laboratory Accreditation Program for all the methods, analytes, and matrices reported in this data package except as noted in the Exception Reports. The data have been reviewed and are technically compliant with the requirements of the methods used, except where noted by the laboratory in the Exception Reports. By my signature RG-366/TRRP-13 May 2010 | Laboratory Name: | Microbac OVD | Laboratory Log Number: | L15101055 | |-----------------------|---------------------|------------------------|-------------| | Project Name: | | Method: | 6010 | | Prep Batch Number(s): | WG543718 | Reviewer Name: | Maren Beery | | LRC Date: | 2015-10-30 00:00:00 | | | | below, I affirm to the best of my knowledge all problems/anomalies observed by the laboratory have been identified in the Laboratory Review Checklist, and no information affecting the quality of the data has been knowingly withheld. | |---| | Check, if applicable: [] This laboratory meets an exception under 30 TAC §25.6 and was last inspection by [] TCEQ or [] on (enter date of last inspection). Any findings affecting the data in this laboratory data package are noted in the Exception Reports herein. The official signing the cover page of the report in which these data are used is responsible for releasing this data package and is by signature affirming the above release statement is true. | | Exceptions Report | ER#1 - Client sample 01 required dilution analysis in order to obtain a result for iron within the calibration range. RG-366/TRRP-13 May 2010 | Laboratory Name: | Microbac OVD | Laboratory Log Number: | L15101055 | |-----------------------|---------------------|------------------------|-------------| | Project Name: | | Method: | 6020 | | Prep Batch Number(s): | WG543446 | Reviewer Name: | Maren Beery | | LRC Date: | 2015-10-28 00:00:00 | | | Laboratory Data Package Cover Page | R2 S | Field chain-of-custody documentation; Sample identification cross-reference; Test reports (analytical data sheets) for each environmental sample that includes: (a) Items consistent with NELAC Chapter 5, (b) dilution factors, (c) preparation methods, (d) cleanup methods, and (e) a.if required for the project, tentatively identified compounds (TICs). Surrogate recovery data including: (a) Calculated recovery (%R), and (b) the laboratory's surrogate QC limits. | |-------|--| | R3 | Test reports (analytical data sheets) for each environmental sample that includes: (a) Items consistent with NELAC Chapter 5, (b) dilution factors, (c) preparation methods, (d) cleanup methods, and (e) a.if required for the project, tentatively identified compounds (TICs). Surrogate recovery data including: (a) Calculated recovery (%R), and (b) the laboratory's surrogate QC | | r | with NELAC Chapter 5, (b) dilution factors, (c) preparation methods, (d) cleanup methods, and (e) a.if required for the project, tentatively identified compounds (TICs). Surrogate recovery data including: (a) Calculated recovery (%R), and (b) the laboratory's surrogate QC | | R4 9 | | | | | | R5 - | Test reports/summary forms for blank samples; | | | Test reports/summary forms for laboratory control samples (LCSs) including: (a) LCS spiking amounts, (b) calculated %R for each analyte, and (c) the laboratory's LCS QC limits. | | \ 6 | Test reports for project matrix spike/matrix spike duplicates (MS/MSDs) including: (a) samples associated with the MS/MSD clearly identified, (b) MS/MSD spiking compounds, (c) concentration of each MS/MSD analyte measured in the parent and spiked samples, (d) calculated %Rs and relative percent differences (RPDs), and (e) the laboratory's MS/MSD QC limits. | | | Laboratory analytical duplicate (if applicable) recovery and precision: (a) the amount of analyte measured in the duplicate, (b) the calculated RPD, and (c) the laboratory's QC limits for analytical duplicates. | | | List of method quantitation limits (MQLs) and detectability check sample results for each analyte for each method and matrix. | | R10 (| Other problems or anomalies. | | Name (Printed) | Signature | Official Title (Printed) | Date | |----------------|-------------|--------------------------|---------------------| | Maren Beery | Maren Beery | Metals Supervisor | 2015-10-28 15:14:13 | | Laboratory Name: | Microbac OVD | Laboratory Log Number: | L15101055 | |-----------------------|---------------------|------------------------|-------------| | Project Name: | | Method: | 6020 | | Prep Batch Number(s): | WG543446 | Reviewer Name: | Maren Beery | | LRC Date: | 2015-10-28 00:00:00 | | | | Description | Yes | No | NA | NR | ER# | |---|-----|----|----|----|------| | Chain-of-custody (C-O-C) | | | | | | | Did samples meet the laboratory's standard conditions of sample acceptability upon receipt? | Х | | | | | | Were all departures from standard conditions described in an exception report? | Х | | | | | | Sample and quality control (QC) identification | Х | | | | | | Are all field sample ID numbers cross-referenced to the laboratory ID numbers? | Х | | | | | | Are all laboratory ID numbers cross-referenced to the corresponding QC data? | Х | | | | | | Test reports | Х | | | | | | Were all samples prepared and analyzed within holding times? | Х | | | | | | Other than those results < MQL, were all other raw values bracketed by calibration standards? | Х | | | | ER#1 | | Were calculations checked by a peer or supervisor? | Х | | | | | | Were all analyte identifications checked by a peer or supervisor? | Х | | | | | | Were sample detection limits reported for all analytes not detected? | Х | | | | | | Were all results for soil and sediment samples reported on a dry weight basis? | Х | | | | | | Were % moisture (or solids) reported for all soil and sediment samples? | Х | | | | | | Were bulk soils/solids samples for volatile analysis extracted with methanol per SW846 Method 5035? | | | Х | | | | If required for the project, are TICs reported? | | | Х | | | | Surrogate recovery data | | | | | | | Were surrogates added prior to extraction? | | | Х | | | | Were surrogate percent recoveries in all samples within the laboratory QC limits? | | | Х | | | | Test reports/summary forms for blank samples | | | | | | | Were appropriate type(s) of blanks analyzed? | Х | | | | | | Were blanks analyzed at the appropriate frequency? | Х | | | | | | Were method blanks taken through the entire analytical process, including preparation and, if
applicable, cleanup procedures? | Х | | | | | | Were blank concentrations < MQL? | Х | | | | | | Laboratory control samples (LCS): | Х | | | | | | Were all COCs included in the LCS? | Х | | | | | RG-366/TRRP-13 May 2010 | Laboratory Name: | Microbac OVD | Laboratory Log Number: | L15101055 | |-----------------------|---------------------|------------------------|-------------| | Project Name: | | Method: | 6020 | | Prep Batch Number(s): | WG543446 | Reviewer Name: | Maren Beery | | LRC Date: | 2015-10-28 00:00:00 | | | | Was each LCS taken through the entire analytical procedure, including prep and cleanup steps? | Х | | | |--|---|---|--| | Were LCSs analyzed at the required frequency? | Х | | | | Were LCS (and LCSD, if applicable) %Rs within the laboratory QC limits? | Х | | | | Does the detectability check sample data document the laboratory's capability to detect the COCs at the MDL used to calculate the SDLs? | Х | | | | Was the LCSD RPD within QC limits? | | Х | | | Matrix spike (MS) and matrix spike duplicate (MSD) data | | | | | Were the project/method specified analytes included in the MS and MSD? | | Х | | | Were MS/MSD analyzed at the appropriate frequency? | | Х | | | Were MS (and MSD, if applicable) %Rs within the laboratory QC limits? | | Х | | | Were MS/MSD RPDs within laboratory QC limits? | | X | | | Analytical duplicate data | | | | | Were appropriate analytical duplicates analyzed for each matrix? | | Х | | | Were analytical duplicates analyzed at the appropriate frequency? | | Х | | | Were RPDs or relative standard deviations within the laboratory QC limits? | | Х | | | Method quantitation limits (MQLs): | | | | | Are the MQLs for each method analyte included in the laboratory data package? | Х | | | | Do the MQLs correspond to the concentration of the lowest non-zero calibration standard? | Х | | | | Are unadjusted MQLs and DCSs included in the laboratory data package? | Х | | | | Other problems/anomalies | | | | | Are all known problems/anomalies/special conditions noted in this LRC and ER? | Х | | | | Was applicable and available technology used to lower the SDL to minimize the matrix interference effects on the sample results? | Х | | | | Is the laboratory NELAC-accredited under the Texas Laboratory Accreditation Program for the analytes, matrices and methods associated with this laboratory data package? | X | | | | Initial calibration (ICAL) | | | | | Were response factors and/or relative response factors for each analyte within QC limits? | Х | | | | Were percent RSDs or correlation coefficient criteria met? | Х | | | RG-366/TRRP-13 May 2010 | Laboratory Name: | Microbac OVD | Laboratory Log Number: | L15101055 | |-----------------------|---------------------|------------------------|-------------| | Project Name: | | Method: | 6020 | | Prep Batch Number(s): | WG543446 | Reviewer Name: | Maren Beery | | LRC Date: | 2015-10-28 00:00:00 | | | | | | |
 | |--|---|---|------| | Was the number of standards recommended in the method used for all analytes? | X | | | | Were all points generated between the lowest and highest standard used to calculate the curve? | | | | | Are ICAL data available for all instruments used? | Х | | | | Has the initial calibration curve been verified using an appropriate second source standard? | Х | | | | Initial and continuing calibration verification (ICCV and CCV) and continuing calibration blank (CCB): | | | | | Was the CCV analyzed at the method-required frequency? | Х | | | | Were percent differences for each analyte within the method-required QC limits? | Х | | | | Was the ICAL curve verified for each analyte? | Х | | | | Was the absolute value of the analyte concentration in the inorganic CCB < MDL? | Х | | | | Mass spectral tuning | | | | | Was the appropriate compound for the method used for tuning? | Х | | | | Were ion abundance data within the method-required QC limits? | Х | | | | Internal standards (IS) | | | | | Were IS area counts and retention times within the method-required QC limits? | Х | | | | Raw data (NELAC Section 5.5.10) | | | | | Were the raw data (for example, chromatograms, spectral data) reviewed by an analyst? | Х | | | | Were data associated with manual integrations flagged on the raw data? | | Х | | | Dual column confirmation | | | | | Did dual column confirmation results meet the method-required QC? | | Х | | | Tentatively identified compounds (TICs) | | | | | If TICs were requested, were the mass spectra and TIC data subject to appropriate checks? | | Х | | | Interference Check Sample (ICS) results | | | | | Were percent recoveries within method QC limits? | Х | | | | Serial dilutions, post digestion spikes, and method of standard additions | | | | | Were percent differences, recoveries, and the linearity within the QC limits specified in the method? | Х | | | | Method detection limit (MDL) studies | | | | RG-366/TRRP-13 May 2010 | Laboratory Name: | Microbac OVD | Laboratory Log Number: | L15101055 | |-----------------------|---------------------|------------------------|-------------| | Project Name: | | Method: | 6020 | | Prep Batch Number(s): | WG543446 | Reviewer Name: | Maren Beery | | LRC Date: | 2015-10-28 00:00:00 | | | | Was a MDL study performed for each reported analyte? | Х | | |--|---|--| | Is the MDL either adjusted or supported by the analysis of DCSs? | Х | | | Proficiency test reports | | | | Was the laboratory's performance acceptable on the applicable proficiency tests or evaluation studies? | Х | | | Standards documentation | | | | Are all standards used in the analyses NIST-traceable or obtained from other appropriate sources? | X | | | Compound/analyte identification procedures | | | | Are the procedures for compound/analyte identification documented? | X | | | Demonstration of analyst competency (DOC) | | | | Was DOC conducted consistent with NELAC Chapter 5? | Х | | | Is documentation of the analyst's competency up-to-date and on file? | Х | | | Verification/validation documentation for methods (NELAC Chapter 5) | | | | Are all the methods used to generate the data documented, verified, and validated, where applicable? | Х | | | Laboratory standard operating procedures (SOPs) | | | | Are laboratory SOPs current and on file for each method performed | Х | | | | | | - 1. Items identified by the letter "R" must be included in the laboratory data package submitted in the TRRP-required report(s). Items identified by the letter "S" should be retained and made available upon request for the appropriate retention period; - 2. O = organic analyses; I = inorganic analyses (and general chemistry, when applicable); - 3. NA = Not applicable; - 4. NR = Not reviewed; - 5. ER# = Exception Report identification number (an Exception Report should be completed for an item if "NR" or "No" is checked). The Exception Report for each "No" or "Not Reviewed (NR)" item in Laboratory Review Checklist and for each analyte, matrix, and method for which the laboratory does not hold NELAC accreditation under the Texas Laboratory Accreditation Program. **Release Statement:** I am responsible for the release of this laboratory data package. This laboratory is NELAC accredited under the Texas Laboratory Accreditation Program for all the methods, analytes, and matrices reported in this data package except as noted in the Exception Reports. The data have been reviewed and are technically compliant with the requirements of the methods used, except where noted by the laboratory in the Exception Reports. By my signature RG-366/TRRP-13 May 2010 | Laboratory Name: | Microbac OVD | Laboratory Log Number: | L15101055 | |-----------------------|---------------------|------------------------|-------------| | Project Name: | | Method: | 6020 | | Prep Batch Number(s): | WG543446 | Reviewer Name: | Maren Beery | | LRC Date: | 2015-10-28 00:00:00 | | | | below, I affirm to the best of my knowledge all problems/anomalies observed by the laboratory have been identified in the Laboratory Review Checklist, and no information affecting the quality of the data has been knowingly withheld. | |---| | Check, if applicable: [] This laboratory meets an exception under 30 TAC §25.6 and was last inspection by [] TCEQ or [] on (enter date of last inspection). Any findings affecting the data in this laboratory data package are noted in the Exception Reports herein. The official signing the cover page of the report in which these data are used is responsible for releasing this data package and is by signature affirming the above release statement is true. | | Exceptions Report | | ER#1 - Client sample 01 required dilution analysis in order to obtain a result for manganese within the calibration range. | RG-366/TRRP-13 May 2010 Generated: 10/30/2015 10:11 | Laboratory Name: | Microbac OVD | Laboratory Log Number: | L15101055 | |-----------------------|---------------------|------------------------|-------------| | Project Name: | | Method: | 7471 | | Prep Batch Number(s): | WG543702 | Reviewer Name: | Maren Beery | | LRC Date: | 2015-10-28 00:00:00 | | | Laboratory Data Package Cover Page | R2 S | Field chain-of-custody documentation; Sample
identification cross-reference; Test reports (analytical data sheets) for each environmental sample that includes: (a) Items consistent with NELAC Chapter 5, (b) dilution factors, (c) preparation methods, (d) cleanup methods, and (e) a.if required for the project, tentatively identified compounds (TICs). Surrogate recovery data including: (a) Calculated recovery (%R), and (b) the laboratory's surrogate QC limits. | |-------|--| | R3 | Test reports (analytical data sheets) for each environmental sample that includes: (a) Items consistent with NELAC Chapter 5, (b) dilution factors, (c) preparation methods, (d) cleanup methods, and (e) a.if required for the project, tentatively identified compounds (TICs). Surrogate recovery data including: (a) Calculated recovery (%R), and (b) the laboratory's surrogate QC | | r | with NELAC Chapter 5, (b) dilution factors, (c) preparation methods, (d) cleanup methods, and (e) a.if required for the project, tentatively identified compounds (TICs). Surrogate recovery data including: (a) Calculated recovery (%R), and (b) the laboratory's surrogate QC | | R4 9 | | | | | | R5 - | Test reports/summary forms for blank samples; | | | Test reports/summary forms for laboratory control samples (LCSs) including: (a) LCS spiking amounts, (b) calculated %R for each analyte, and (c) the laboratory's LCS QC limits. | | \ 6 | Test reports for project matrix spike/matrix spike duplicates (MS/MSDs) including: (a) samples associated with the MS/MSD clearly identified, (b) MS/MSD spiking compounds, (c) concentration of each MS/MSD analyte measured in the parent and spiked samples, (d) calculated %Rs and relative percent differences (RPDs), and (e) the laboratory's MS/MSD QC limits. | | | Laboratory analytical duplicate (if applicable) recovery and precision: (a) the amount of analyte measured in the duplicate, (b) the calculated RPD, and (c) the laboratory's QC limits for analytical duplicates. | | | List of method quantitation limits (MQLs) and detectability check sample results for each analyte for each method and matrix. | | R10 (| Other problems or anomalies. | | Name (Printed) | Signature | Official Title (Printed) | Date | |----------------|-------------|--------------------------|---------------------| | Maren Beery | Maren Beery | Metals Supervisor | 2015-10-28 15:15:29 | | Laboratory Name: | Microbac OVD | Laboratory Log Number: | L15101055 | |-----------------------|---------------------|------------------------|-------------| | Project Name: | | Method: | 7471 | | Prep Batch Number(s): | WG543702 | Reviewer Name: | Maren Beery | | LRC Date: | 2015-10-28 00:00:00 | | | | Description | Yes | No | NA | NR | ER# | |---|-----|----|----|----|-----| | Chain-of-custody (C-O-C) | | | | | | | Did samples meet the laboratory's standard conditions of sample acceptability upon receipt? | Х | | | | | | Were all departures from standard conditions described in an exception report? | Х | | | | | | Sample and quality control (QC) identification | Х | | | | | | Are all field sample ID numbers cross-referenced to the laboratory ID numbers? | Х | | | | | | Are all laboratory ID numbers cross-referenced to the corresponding QC data? | Х | | | | | | Test reports | Х | | | | | | Were all samples prepared and analyzed within holding times? | Х | | | | | | Other than those results < MQL, were all other raw values bracketed by calibration standards? | Х | | | | | | Were calculations checked by a peer or supervisor? | Х | | | | | | Were all analyte identifications checked by a peer or supervisor? | Х | | | | | | Were sample detection limits reported for all analytes not detected? | Х | | | | | | Were all results for soil and sediment samples reported on a dry weight basis? | Х | | | | | | Were % moisture (or solids) reported for all soil and sediment samples? | Х | | | | | | Were bulk soils/solids samples for volatile analysis extracted with methanol per SW846 Method 5035? | | | Х | | | | If required for the project, are TICs reported? | | | Х | | | | Surrogate recovery data | | | | | | | Were surrogates added prior to extraction? | | | Х | | | | Were surrogate percent recoveries in all samples within the laboratory QC limits? | | | Х | | | | Test reports/summary forms for blank samples | | | | | | | Were appropriate type(s) of blanks analyzed? | Х | | | | | | Were blanks analyzed at the appropriate frequency? | Х | | | | | | Were method blanks taken through the entire analytical process, including preparation and, if applicable, cleanup procedures? | Х | | | | | | Were blank concentrations < MQL? | Х | | | | | | Laboratory control samples (LCS): | Х | | | | | | Were all COCs included in the LCS? | Х | | | | | RG-366/TRRP-13 May 2010 | Laboratory Name: | Microbac OVD | Laboratory Log Number: | L15101055 | |-----------------------|---------------------|------------------------|-------------| | Project Name: | | Method: | 7471 | | Prep Batch Number(s): | WG543702 | Reviewer Name: | Maren Beery | | LRC Date: | 2015-10-28 00:00:00 | | | | Was each LCS taken through the entire analytical procedure, including prep and cleanup steps? | Х | | | |--|---|---|--| | Were LCSs analyzed at the required frequency? | Х | | | | Were LCS (and LCSD, if applicable) %Rs within the laboratory QC limits? | Х | | | | Does the detectability check sample data document the laboratory's capability to detect the COCs at the MDL used to calculate the SDLs? | Х | | | | Was the LCSD RPD within QC limits? | | Х | | | Matrix spike (MS) and matrix spike duplicate (MSD) data | | | | | Were the project/method specified analytes included in the MS and MSD? | | Х | | | Were MS/MSD analyzed at the appropriate frequency? | | Х | | | Were MS (and MSD, if applicable) %Rs within the laboratory QC limits? | | Х | | | Were MS/MSD RPDs within laboratory QC limits? | | X | | | Analytical duplicate data | | | | | Were appropriate analytical duplicates analyzed for each matrix? | | Х | | | Were analytical duplicates analyzed at the appropriate frequency? | | Х | | | Were RPDs or relative standard deviations within the laboratory QC limits? | | Х | | | Method quantitation limits (MQLs): | | | | | Are the MQLs for each method analyte included in the laboratory data package? | Х | | | | Do the MQLs correspond to the concentration of the lowest non-zero calibration standard? | Х | | | | Are unadjusted MQLs and DCSs included in the laboratory data package? | Х | | | | Other problems/anomalies | | | | | Are all known problems/anomalies/special conditions noted in this LRC and ER? | Х | | | | Was applicable and available technology used to lower the SDL to minimize the matrix interference effects on the sample results? | Х | | | | Is the laboratory NELAC-accredited under the Texas Laboratory Accreditation Program for the analytes, matrices and methods associated with this laboratory data package? | X | | | | Initial calibration (ICAL) | | | | | Were response factors and/or relative response factors for each analyte within QC limits? | Х | | | | Were percent RSDs or correlation coefficient criteria met? | Х | | | RG-366/TRRP-13 May 2010 | Laboratory Name: | Microbac OVD | Laboratory Log Number: | L15101055 | |-----------------------|---------------------|------------------------|-------------| | Project Name: | | Method: | 7471 | | Prep Batch Number(s): | WG543702 | Reviewer Name: | Maren Beery | | LRC Date: | 2015-10-28 00:00:00 | | | | M | | | | |--|---|---|---| | Was the number of standards recommended in the method used for all analytes? | X | | | | Were all points generated between the lowest and highest standard used to calculate the curve? | | | | | Are ICAL data available for all instruments used? | Х | | | | Has the initial calibration curve been verified using an appropriate second source standard? | X | | | | Initial and continuing calibration verification (ICCV and CCV) and continuing calibration blank (CCB): | | | | | Was the CCV analyzed at the method-required frequency? | Х | | | | Were percent differences for each analyte within the method-required QC limits? | Х | | | | Was the ICAL curve verified for each analyte? | Х | | | | Was the absolute value of the analyte concentration in the inorganic CCB < MDL? | Х | | | | Mass spectral tuning | | | | | Was the appropriate compound for the method used for tuning? | Х | | | | Were ion abundance data within the method-required QC limits? | Х | | | | Internal standards (IS) | | | | | Were IS area counts and retention times within the method-required QC limits? | Х | | | | Raw data (NELAC Section 5.5.10) | | | | | Were the raw data (for example, chromatograms, spectral data) reviewed by an analyst? | X | | | | Were data associated with manual integrations flagged on the raw data? | | Х | | | Dual column confirmation | | | | | Did dual column confirmation results meet the method-required QC? | | X | | | Tentatively identified compounds (TICs) | | | | | If TICs were requested, were the mass spectra and TIC data subject to appropriate checks? | | X | | | Interference Check Sample (ICS) results | | | | | Were percent
recoveries within method QC limits? | Х | | | | Serial dilutions, post digestion spikes, and method of standard additions | | | | | Were percent differences, recoveries, and the linearity within the QC limits specified in the method? | X | | | | Method detection limit (MDL) studies | | | | | | 1 | | | RG-366/TRRP-13 May 2010 | Laboratory Name: | Microbac OVD | Laboratory Log Number: | L15101055 | |-----------------------|---------------------|------------------------|-------------| | Project Name: | | Method: | 7471 | | Prep Batch Number(s): | WG543702 | Reviewer Name: | Maren Beery | | LRC Date: | 2015-10-28 00:00:00 | | | | X | | | |---|-------------|---| | X | | | | | | | | Х | | | | | | | | X | | | | | | | | X | | | | | | | | X | | | | X | | | | | | | | Х | | | | | | | | X | | | | | X X X X X X | X | - 1. Items identified by the letter "R" must be included in the laboratory data package submitted in the TRRP-required report(s). Items identified by the letter "S" should be retained and made available upon request for the appropriate retention period; - 2. O = organic analyses; I = inorganic analyses (and general chemistry, when applicable); - 3. NA = Not applicable; - NR = Not reviewed; - 5. ER# = Exception Report identification number (an Exception Report should be completed for an item if "NR" or "No" is checked). The Exception Report for each "No" or "Not Reviewed (NR)" item in Laboratory Review Checklist and for each analyte, matrix, and method for which the laboratory does not hold NELAC accreditation under the Texas Laboratory Accreditation Program. **Release Statement:** I am responsible for the release of this laboratory data package. This laboratory is NELAC accredited under the Texas Laboratory Accreditation Program for all the methods, analytes, and matrices reported in this data package except as noted in the Exception Reports. The data have been reviewed and are technically compliant with RG-366/TRRP-13 May 2010 | Laboratory Name: | Microbac OVD | Laboratory Log Number: | L15101055 | |-----------------------|---------------------|------------------------|-------------| | Project Name: | | Method: | 7471 | | Prep Batch Number(s): | WG543702 | Reviewer Name: | Maren Beery | | LRC Date: | 2015-10-28 00:00:00 | | | | Check, if applicable: [] This laboratory meets an exception under 30 TAC §25.6 and was last inspection by [] TCEQ or [] on (enter date of last inspection). Any findings affecting the data in this laboratory data package are noted in the Exception Reports herein. The official signing the cover page of the report in which these data are used | | |---|--| | s responsible for releasing this data package and is by signature affirming the above release statement is true. | | RG-366/TRRP-13 May 2010 # 1.2 Certificate of Analysis Microbac Lab Project #: 2551.096 Project Name: Longhorn Army Ammunition Lab Contact: Stephanie Mossburg Certificate of Analysis Sample #: L15101055-01 PrePrep Method: N/A Instrument: ICP-THERMO3 Client ID: 35AWW13F-101515 Prep Method: 3015 Prep Date: 10/21/2015 09:19 Matrix: Water Analytical Method: 6010C Cal Date: 10/23/2015 10:00 Workgroup #: WG543782 Analyst: JYH Run Date: 10/23/2015 11:19 Collect Date: 10/15/2015 14:00 Dilution: 1 File ID: T3.102315.111942 Sample Tag: 01 Units: mg/L | Analyte | CAS# | Result | Qual | LOQ | LOD | DL | |------------------|-----------|---------|------|--------|--------|---------| | Aluminum, Total | 7429-90-5 | 0.100 | U | 0.200 | 0.100 | 0.0500 | | Beryllium, Total | 7440-41-7 | 0.0100 | U | 0.0200 | 0.0100 | 0.00500 | | Iron, Total | 7439-89-6 | 0.156 | J | 0.200 | 0.100 | 0.0500 | | Potassium, Total | 7440-09-7 | 0.601 | J | 2.00 | 1.00 | 0.500 | | Selenium, Total | 7782-49-2 | 0.00515 | J | 0.0200 | 0.0100 | 0.00500 | | J | Estimated value ; the analyte concentration was less than the LOQ. | |---|--| | U | Analyte was not detected. The concentration is below the reported LOD. | Page 1 of 6 Generated at Oct 30, 2015 10:22 Lab Project #: 2551.096 Project Name: Longhorn Army Ammunition Lab Contact: Stephanie Mossburg Certificate of Analysis Sample #: L15101055-01 PrePrep Method: N/A Instrument: ICP-THERMO3 Client ID: 35AWW13F-101515 Prep Method: 3015 Prep Date: 10/21/2015 09:19 Matrix: Water Analytical Method: 6010C Cal Date: 10/23/2015 10:00 Workgroup #: WG543782 Analyst: JYH Run Date: 10/23/2015 11:27 Sample Tag: DL01 Units: mg/L | Analyte | CAS# | Result | Qual | LOQ | LOD | DL | |------------------|-----------|--------|------|------|------|-------| | Calcium, Total | 7440-70-2 | 73.0 | | 2.50 | 1.25 | 0.625 | | Magnesium, Total | 7439-95-4 | 54.1 | | 5.00 | 2.50 | 1.25 | | Sodium, Total | 7440-23-5 | 254 | | 5.00 | 2.50 | 1.25 | U Analyte was not detected. The concentration is below the reported LOD. Lab Project #: 2551.096 Project Name: Longhorn Army Ammunition Lab Contact: Stephanie Mossburg Certificate of Analysis Sample #: L15101055-01 PrePrep Method: N/A Instrument: ICP-MS2 Client ID: 35AWW13F-101515 Prep Method: 3015 Prep Date: 10/19/2015 13:28 Matrix: Water Analytical Method: 6020A Cal Date: 10/27/2015 13:15 Workgroup #: WG543486 Analyst: BKT Run Date: 10/27/2015 13:57 Collect Date: 10/15/2015 14:00 Dilution: 1 File ID: NI.102715.135713 Sample Tag: 01 Units: mg/L | Analyte | CAS# | Result | Qual | LOQ | LOD | DL | |-----------------|-----------|----------|------|----------|----------|----------| | Antimony, Total | 7440-36-0 | 0.00607 | | 0.00200 | 0.00100 | 0.000500 | | Arsenic, Total | 7440-38-2 | 0.00170 | J | 0.00200 | 0.00100 | 0.000500 | | Barium, Total | 7440-39-3 | 0.0317 | | 0.00600 | 0.00300 | 0.00150 | | Cadmium, Total | 7440-43-9 | 0.000585 | J | 0.00120 | 0.000600 | 0.000300 | | Chromium, Total | 7440-47-3 | 0.00357 | J | 0.00400 | 0.00200 | 0.00100 | | Cobalt, Total | 7440-48-4 | 0.00465 | | 0.00200 | 0.00100 | 0.000500 | | Copper, Total | 7440-50-8 | 0.0116 | | 0.00400 | 0.00200 | 0.00100 | | Lead, Total | 7439-92-1 | 0.00139 | J | 0.00200 | 0.00100 | 0.000500 | | Nickel, Total | 7440-02-0 | 0.0849 | | 0.00800 | 0.00400 | 0.00200 | | Silver, Total | 7440-22-4 | 0.00100 | U | 0.00200 | 0.00100 | 0.000500 | | Thallium, Total | 7440-28-0 | 0.000200 | U | 0.000400 | 0.000200 | 0.000100 | | Vanadium, Total | 7440-62-2 | 0.00110 | J | 0.00200 | 0.00100 | 0.000500 | | Zinc, Total | 7440-66-6 | 0.116 | | 0.0500 | 0.0250 | 0.0125 | | J | Estimated value ; the analyte concentration was less than the LOQ. | |---|---| | J | Estimated value ; the analyte concentration was greater than the highest standard | | U | Analyte was not detected. The concentration is below the reported LOD. | Page 3 of 6 Generated at Oct 30, 2015 10:22 Microbac Lab Project #: 2551.096 Project Name: Longhorn Army Ammunition Lab Contact: Stephanie Mossburg Certificate of Analysis Sample #: L15101055-01 PrePrep Method: N/A Instrument: ICP-MS2 Client ID: 35AWW13F-101515 Prep Method: 3015 Prep Date: 10/19/2015 13:28 Matrix: Water Analytical Method: 6020A Cal Date: 10/27/2015 13:15 Workgroup #: WG543486 Analyst: BKT Run Date: 10/27/2015 14:03 Collect Date: 10/15/2015 14:00 Dilution: 5 File ID: NI.102715.140335 Sample Tag: DL01 Units: mg/L | | Analyte | CAS# | Result | Qual | LOQ | LOD | DL | | |---------------|---------|-----------|--------|------|--------|--------|---------|--| | Manganese, To | otal | 7439-96-5 | 0.708 | | 0.0200 | 0.0100 | 0.00500 | | | | | | | | | | | | J Estimated value; the analyte concentration was less than the LOQ. U Analyte was not detected. The concentration is below the reported LOD. Microbac Lab Project #: 2551.096 Project Name: Longhorn Army Ammunition Lab Contact: Stephanie Mossburg Certificate of Analysis Sample #: L15101055-01 PrePrep Method: N/A Instrument: CVAA1 Client ID: 35AWW13F-101515 Prep Method: 7470A Prep Date: 10/21/2015 07:09 Matrix: Water Analytical Method: 7470A Cal Date: 10/21/2015 14:31 Workgroup #: WG543786 Analyst: PDM Run Date: 10/21/2015 15:03 Collect Date: 10/15/2015 14:00 Dilution: 1 File ID: M7.102115.150358 Sample Tag: 01 Units: mg/L | | Analyte | CAS# | Result | Qual | LOQ | LOD | DL | |--|---------|-----------|----------|------|----------|----------|----------| | Mercury | | 7439-97-6 | 0.000200 | U | 0.000400 | 0.000200 | 0.000100 | | U Analyte was not detected. The concentration is below the reported LOD. | | | | | | | | Lab Project #: 2551.096 Project Name: Longhorn Army Ammunition Lab Contact: Stephanie Mossburg Page 6 of 6 Generated at Oct 30, 2015 10:22 # 2.0 Full Sample Data Package # 2.1 Metals Data ## 2.1.1 Metals I C P Data # 2.1.1.1 Summary Data Microbac Lab Project #: 2551.096 Project Name: Longhorn Army Ammunition Lab Contact: Stephanie Mossburg Certificate of Analysis Sample #: L15101055-01 PrePrep Method: N/A Instrument: ICP-THERMO3 Client ID: 35AWW13F-101515 Prep Method: 3015 Prep Date: 10/21/2015 09:19 Matrix: Water Analytical Method: 6010C Cal Date: 10/23/2015 10:00 Workgroup #: WG543782 Analyst: JYH Run Date: 10/23/2015 11:19 Sample Tag: 01 Units: mg/L | Analyte | CAS# | Result | Qual | LOQ | LOD | DL | |------------------|-----------|---------|------|--------|--------|---------| | Aluminum, Total | 7429-90-5 | 0.100 | U | 0.200 | 0.100 | 0.0500 | | Beryllium, Total | 7440-41-7 | 0.0100 | U | 0.0200 | 0.0100 | 0.00500 | | Iron, Total | 7439-89-6 | 0.156 | J | 0.200 | 0.100 | 0.0500 | | Potassium, Total | 7440-09-7 | 0.601 | J | 2.00 | 1.00 | 0.500 | | Selenium, Total | 7782-49-2 | 0.00515 | J | 0.0200 |
0.0100 | 0.00500 | | J | Estimated value ; the analyte concentration was less than the LOQ. | |---|--| | U | Analyte was not detected. The concentration is below the reported LOD. | Page 1 of 3 Generated at Oct 30, 2015 10:22 Lab Project #: 2551.096 Project Name: Longhorn Army Ammunition Lab Contact: Stephanie Mossburg #### Certificate of Analysis Sample #: L15101055-01 PrePrep Method: N/A Instrument: ICP-THERMO3 Client ID: 35AWW13F-101515 Prep Method: 3015 Prep Date: 10/21/2015 09:19 Matrix: Water Analytical Method: 6010C Cal Date: 10/23/2015 10:00 Workgroup #: WG543782 Analyst: JYH Run Date: 10/23/2015 11:27 Collect Date: 10/15/2015 14:00 Dilution: 5 File ID: T3.102315.112724 Sample Tag: DL01 Units: mg/L | Analyte | | CAS# | Result | Qual | LOQ | LOD | DL | |------------------|---|---------------|--------|------|------|------|-------| | Calcium, Total | | 7440-70-2 | 73.0 | | 2.50 | 1.25 | 0.625 | | Magnesium, Total | | 7439-95-4 | 54.1 | | 5.00 | 2.50 | 1.25 | | Sodium, Total | | 7440-23-5 | 254 | | 5.00 | 2.50 | 1.25 | | U | Analyte was not detected. The concentra | reported LOD. | | | | | | Page 2 of 3 Generated at Oct 30, 2015 10:22 Lab Project #: 2551.096 Project Name: Longhorn Army Ammunition Lab Contact: Stephanie Mossburg Page 3 of 3 Generated at Oct 30, 2015 10:22 # 2.1.1.2 QC Summary Data ## Example 6010 Calculations Thermo Scientific iCAP #### 1.0 Initial Calibration (ICAL) Parameters For a multi-point calibration, the system performs linear regression from data consisting of a blank and four standards. 2.0 Calculating the concentration (C) of an element in water using data from prep log, run log, and quantitation report (note:the data system performs this calculation automatically when correction factors have been entered): $$Cx = Cs \times \frac{Vf}{Vi} \times D$$ | Where: | Example: | |---|----------| | Cs = Concentration computed by the data system in ug/mL (ppm) | 0.1 | | Vf = Final volume (mL) | 50 | | Vi = Initial volume (mL) | 50 | | D = Dilution factor as a multiplier (10X = 10) | 1 | | Con-Concentration of element in value (mall) | 0.1 | | Cx = Concentration of element in ug/mL (mg/L) | 0.1 | 3.0 Calculating the concentration (C) of an element in soil using data from prep log, run log, and quantitation report (note: the data system performs this calculation automatically when correction factors have been entered): $$Cx = Cs \times \frac{Vf}{Vi} \times D$$ | Where: | Example: | | | |---|----------|--|--| | Cs = Concentration computed by the data system (mg/L) (ppm) | 0.1 | | | | Vf = Final volume (mL) | 50 | | | | Vi = Initial weight (g) | 1 | | | | D = Dilution factor as a multiplier (10X = 10) | 1 | | | | Cx = Concentration of element in ug/g (mg/kg) | 5 | | | #### 4.0 Adjusting the concentration to dry weight: $$Cdry = \frac{Cx \times 100}{Px}$$ | Where: | Example: | |---|----------| | Cx = Concentration calculated as received (wet basis) | 5 | | Px = Percent solids of sample (%wt) | 80 | | - | | | Cdry = Concentration calculated as dry weight (mg/kg) | 6.25 | Workgroup: WG543718 Analyst:AC Spike Analyst:AC Run Date: 10/21/2015 09:19 Method: 3015 Balance: BAL019 Instrument: MW-1 Instrument Start: 10/21/2015 09:19 SOP: ME407 Revison 18 Spike Solution: STD72998 Spike Witness: VC HNO3 Lot #: COA18442 HCL Lot #: COA18443 ICP Filters- fisher-Lot#RGT32945 40 & 50 ML. DIGESTION TUCOA18222 | | SAMPLE # | Туре | Matrix | Initial Amount | Final Volume | Initial Vessel Wt | Final Vessel Wt | Spike Amount | Due Date | |----|--------------|---------|--------|----------------|--------------|-------------------|-----------------|--------------|----------| | 1 | WG543718-02 | BLANK | 1 | 40 mL | 50 mL | 206.275 g | 206.273 g | | | | 2 | WG543718-04 | FLT_BLK | 1 | 40 mL | 50 mL | 205.498 g | 205.494 g | | | | 3 | WG543718-03 | LCS | 1 | 40 mL | 50 mL | 209.252 g | 209.247 g | 5 mL | | | 4 | L15100882-03 | SAMP | 1 | 40 mL | 50 mL | 203.206 g | 203.2 g | | 10/26/15 | | 5 | L15100882-04 | SAMP | 1 | 40 mL | 50 mL | 203.082 g | 203.067 g | | 10/26/15 | | 6 | L15100882-05 | SAMP | 1 | 40 mL | 50 mL | 204.213 g | 204.196 g | | 10/26/15 | | 7 | L15101055-01 | SAMP | 1 | 40 mL | 50 mL | 206.236 g | 206.231 g | | 10/27/15 | | 8 | L15101082-01 | SAMP | 1 | 40 mL | 50 mL | 205.698 g | 205.687 g | | 10/26/15 | | 9 | L15101083-01 | SAMP | 1 | 40 mL | 50 mL | 207.068 g | 207.059 g | | 10/26/15 | | 10 | L15101083-02 | SAMP | 1 | 40 mL | 50 mL | 206.124 g | 206.111 g | | 10/26/15 | | 11 | L15101083-03 | SAMP | 1 | 40 mL | 50 mL | 205.263 g | 205.249 g | | 10/26/15 | | 12 | L15101083-04 | SAMP | 1 | 40 mL | 50 mL | 205.918 g | 205.905 g | | 10/26/15 | | 13 | L15101084-01 | SAMP | 1 | 40 mL | 50 mL | 205.109 g | 205.098 g | | 10/26/15 | | 14 | L15101084-02 | SAMP | 1 | 40 mL | 50 mL | 205.27 g | 205.257 g | | 10/26/15 | | 15 | L15101084-03 | SAMP | 1 | 40 mL | 50 mL | 204.278 g | 204.264 g | | 10/26/15 | | 16 | L15101084-04 | SAMP | 1 | 40 mL | 50 mL | 202.37 g | 202.357 g | | 10/26/15 | | 17 | L15101115-01 | SAMP | 1 | 40 mL | 50 mL | 204.845 g | 204.837 g | | 10/27/15 | | 18 | L15101135-01 | SAMP | 1 | 40 mL | 50 mL | 205.493 g | 205.481 g | | 10/27/15 | | 19 | L15101135-02 | SAMP | 1 | 40 mL | 50 mL | 205.171 g | 205.153 g | | 10/27/15 | | 20 | L15101135-03 | SAMP | 1 | 40 mL | 50 mL | 205.259 g | 205.251 g | | 10/27/15 | | 21 | L15101135-04 | SAMP | 1 | 40 mL | 50 mL | 204.73 g | 204.717 g | | 10/27/15 | | 22 | WG543718-01 | REF | 1 | 40 mL | 50 mL | 205.767 g | 205.767 g | | | | 23 | L15101177-01 | SAMP | 1 | 40 mL | 50 mL | 205.767 g | 205.767 g | | 10/28/15 | | 24 | WG543718-05 | MS | 1 | 40 mL | 50 mL | 212.648 g | 212.629 g | 5 mL | | | 25 | WG543718-06 | MSD | 1 | 40 mL | 50 mL | 208.928 g | 208.923 g | 5 mL | | L15101135-03 filtered digestate Reviewer: Vech Colle MW_DIG - Modified 09/30/2009 PDF ID: 4453910 Report generated: 10/21/2015 10:18 Microbac Instrument Run Log | Instrument: | ICP-THERMO3 | Dataset: | 102315T3.1 | | |---------------------|-------------------|-----------|------------|--------| | Analyst1: | JYH | Analyst2: | N/A | | | Method: | 200.7/6010B/6010C | SOP: | ME600G | Rev: 7 | | Maintenance Log ID: | | | | | Calibration Std: STD73151 ICV Std: STD72898 Post Spike: STD72336 ICSA: STD72970 ICSAB: STD72936 Int. Std: RGT34839 CCV: STD72934 LLCCV: STD72971 Tuning Sol: Stannous : _____ Hydroxylamine : _____ Workgroups: <u>543657,543782,544052,543824,543659,544079</u> Comments: | Seq. | File ID | Sample | ID | Prep | Dil | Reference | Date/Time | |------|------------------|--------------|----------------------------------|-------|-----|--------------|----------------| | 1 | T3.102315.094442 | WG544081-01 | Calibration Point | | 1 | | 10/23/15 09:44 | | 2 | T3.102315.094848 | WG544081-02 | Calibration Point | | 1 | | 10/23/15 09:48 | | 3 | T3.102315.095242 | WG544081-03 | Calibration Point | | 1 | | 10/23/15 09:52 | | 4 | T3.102315.095646 | WG544081-04 | Calibration Point | | 1 | | 10/23/15 09:56 | | 5 | T3.102315.100032 | WG544081-05 | Calibration Point | | 1 | | 10/23/15 10:00 | | 6 | T3.102315.100416 | WG544081-06 | Initial Calibration Verification | | 1 | | 10/23/15 10:04 | | 7 | T3.102315.100801 | WG544081-07 | Initial Calib Blank | | 1 | | 10/23/15 10:08 | | 8 | T3.102315.101205 | WG544081-08 | Low Level Initial Calibration V | | 1 | | 10/23/15 10:12 | | 9 | T3.102315.101609 | WG544081-09 | Low Level Initial Calibration V | | 1 | | 10/23/15 10:16 | | 10 | T3.102315.102013 | WG544081-10 | Interference Check | | 1 | | 10/23/15 10:20 | | 11 | T3.102315.102415 | WG544081-11 | Interference Check | | 1 | | 10/23/15 10:24 | | 12 | T3.102315.102806 | WG544081-12 | CCV | | 1 | | 10/23/15 10:28 | | 13 | T3.102315.103152 | WG544081-13 | ССВ | | 1 | | 10/23/15 10:31 | | 14 | T3.102315.103605 | L15101032-02 | WH9002 | 5/50 | 2 | | 10/23/15 10:36 | | 15 | T3.102315.104008 | +1 PPM PB | +1 PPM PB | | 2 | | 10/23/15 10:40 | | 16 | T3.102315.104411 | +1.5 PPM PB | +1.5 PPM PB | | 2 | | 10/23/15 10:44 | | 17 | T3.102315.104812 | +2 PPM PB | +2 PPM PB | | 2 | | 10/23/15 10:48 | | 18 | T3.102315.105215 | WG544081-14 | CCV | | 1 | | 10/23/15 10:52 | | 19 | T3.102315.105600 | WG544081-15 | ССВ | | 1 | | 10/23/15 10:56 | | 20 | T3.102315.110007 | WG543718-02 | Method/Prep Blank | 40/50 | 1 | | 10/23/15 11:00 | | 21 | T3.102315.110414 | WG543718-03 | Laboratory Control S | 40/50 | 1 | | 10/23/15 11:04 | | 22 | T3.102315.110802 | WG543718-01 | Reference Sample | | 1 | L15101177-01 | 10/23/15 11:08 | | 23 | T3.102315.111204 | WG543718-05 | Matrix Spike | 40/50 | 1 | L15101177-01 | 10/23/15 11:12 | | 24 | T3.102315.111553 | WG543718-06 | Matrix Spike Duplica | 40/50 | 1 | L15101177-01 | 10/23/15 11:15 | | 25 | T3.102315.111942 | L15101055-01 | 35AWW13F-101515 | 40/50 | 1 | | 10/23/15 11:19 | | 26 | T3.102315.112333 | WG543782-03 | Post Digestion Spike | | 1 | L15101055-01 | 10/23/15 11:23 | | 27 | T3.102315.112724 | WG543782-04 | Serial Dilution | 40/50 | 5 | L15101055-01 | 10/23/15 11:27 | | 28 | T3.102315.113126 | WG543782-04 | Serial Dilution | | 25 | L15101055-01 | 10/23/15 11:31 | | 29 | T3.102315.113530 | WG544081-30 | CCV | | 1 | | 10/23/15 11:35 | | 30 | T3.102315.113916 | WG544081-31 | ССВ | | 1 | | 10/23/15 11:39 | | 31 | T3.102315.114321 | WG543956-02 | Method/Prep Blank | 40/50 | 1 | | 10/23/15 11:43 | | 32 | T3.102315.114727 | WG543956-03 | Laboratory Control S | 40/50 | 1 | | 10/23/15 11:47 | | 33 | T3.102315.115117 | WG543956-01 | Reference Sample | | 1 | L15101262-10 | 10/23/15 11:51 | | 34 | T3.102315.115520 | WG543956-04 | Matrix Spike | 40/50 | 1 | L15101262-10 | 10/23/15 11:55 | | | | L | | | | | | Page: 1 Approved: October 26, 2015 B 1 7 Instrument Run Log | Instrument: | ICP-THERMO3 | Dataset: | 102315T3.1 | |
---------------------|-------------------|-----------|------------|---------------| | Analyst1: | JYH | Analyst2: | N/A | | | Method: | 200.7/6010B/6010C | SOP: | ME600G | Rev: <u>7</u> | | Maintenance Log ID: | | | | | Calibration Std: STD73151 ICV Std: STD72898 Post Spike: STD72336 ICSA: STD72970 ICSAB: STD72936 Int. Std: RGT34839 CCV: STD72934 LLCCV: STD72971 Tuning Sol: Stannous : _____ Hydroxylamine : ____ Workgroups: <u>543657,543782,544052,543824,543659,544079</u> Comments: | Seq. | File ID | Sample | ID | Prep | Dil | Reference | Date/Time | |------|------------------|--------------|------------------------------|-------|-----|--------------|----------------| | 35 | T3.102315.115910 | WG543956-05 | Matrix Spike Duplica | 40/50 | 1 | L15101262-10 | 10/23/15 11:59 | | 36 | T3.102315.120259 | L15101195-01 | FARQUHAR S1 | 40/50 | 1 | | 10/23/15 12:02 | | 37 | T3.102315.120659 | L15101195-02 | FARQUHAR S1 | 40/50 | 1 | | 10/23/15 12:06 | | 38 | T3.102315.121102 | WG544052-01 | Post Digestion Spike | | 1 | L15101195-02 | 10/23/15 12:11 | | 39 | T3.102315.121439 | WG544052-02 | Serial Dilution | | 5 | L15101195-02 | 10/23/15 12:14 | | 40 | T3.102315.121842 | WG544052-02 | Serial Dilution | | 25 | L15101195-02 | 10/23/15 12:18 | | 41 | T3.102315.122246 | WG544081-18 | CCV | | 1 | | 10/23/15 12:22 | | 42 | T3.102315.122633 | WG544081-19 | ССВ | | 1 | | 10/23/15 12:26 | | 43 | T3.102315.123040 | L15101215-01 | 35BWW07-102015 | 40/50 | 1 | | 10/23/15 12:30 | | 44 | T3.102315.123431 | L15101215-03 | 35BWW01F-102015 | | 1 | | 10/23/15 12:34 | | 45 | T3.102315.123831 | L15101215-04 | LHSMW58-102015 | 40/50 | 1 | | 10/23/15 12:38 | | 46 | T3.102315.124233 | L15101215-05 | LHSMW58FD-102015 | 40/50 | 1 | | 10/23/15 12:42 | | 47 | T3.102315.124636 | L15101215-06 | 35BWW03-102015 | 40/50 | 1 | | 10/23/15 12:46 | | 48 | T3.102315.125038 | L15101215-07 | 35BWW08-102015 | 40/50 | 1 | | 10/23/15 12:50 | | 49 | T3.102315.125428 | L15101215-09 | 35BWW13F-102015 | 40/50 | 1 | | 10/23/15 12:54 | | 50 | T3.102315.125832 | L15101215-10 | 35BWW14-102015 | 40/50 | 1 | | 10/23/15 12:58 | | 51 | T3.102315.130234 | L15101262-01 | 45-11-11.01 S2 | 40/50 | 1 | | 10/23/15 13:02 | | 52 | T3.102315.130636 | L15101262-02 | 45-11-14.02 W1 | 40/50 | 1 | | 10/23/15 13:06 | | 53 | T3.102315.131039 | WG544081-20 | CCV | | 1 | | 10/23/15 13:10 | | 54 | T3.102315.131423 | WG544081-21 | ССВ | | 1 | | 10/23/15 13:14 | | 55 | T3.102315.131830 | L15101262-03 | 45-10-6 S4 | 40/50 | 1 | | 10/23/15 13:18 | | 56 | T3.102315.132232 | L15101262-04 | 45-10-6 S1 | 40/50 | 1 | | 10/23/15 13:22 | | 57 | T3.102315.132634 | L15101262-05 | 45-10-6 S3 | 40/50 | 1 | | 10/23/15 13:26 | | 58 | T3.102315.133036 | L15101262-06 | 45-10-6 S2 | 40/50 | 1 | | 10/23/15 13:30 | | 59 | T3.102315.133438 | L15101262-07 | 45-10-5.02 S1 | 40/50 | 1 | | 10/23/15 13:34 | | 60 | T3.102315.133840 | L15101262-08 | 45-10-5.02 S2 | 40/50 | 1 | | 10/23/15 13:38 | | 61 | T3.102315.134242 | L15101262-09 | 45-11-4.01 W1 | 40/50 | 1 | | 10/23/15 13:42 | | 62 | T3.102315.134645 | L15101215-03 | 35BWW01F-102015 | 40/50 | 10 | | 10/23/15 13:46 | | 63 | T3.102315.135049 | WG544081-22 | CCV | | 1 | | 10/23/15 13:50 | | 64 | T3.102315.135435 | WG544081-23 | ССВ | | 1 | | 10/23/15 13:54 | | 65 | T3.102315.135841 | WG544081-24 | Low Level Continuing Calibra | | 1 | | 10/23/15 13:58 | | 66 | T3.102315.140246 | WG544081-25 | Low Level Continuing Calibra | | 1 | | 10/23/15 14:02 | | 67 | T3.102315.140650 | WG543739-02 | Method/Prep Blank | 40/50 | 1 | | 10/23/15 14:06 | | 68 | T3.102315.141055 | WG543739-03 | Laboratory Control S | 40/50 | 1 | | 10/23/15 14:10 | | | | | 1 | | | 1 | | Page: 2 Approved: October 26, 2015 B. L. Zun Instrument Run Log | Instrument: | ICP-THERMO3 | _ Dataset: | 102315T3.1 | | |----------------------|-------------------|-------------|------------|----------------------| | Analyst1: | JYH | _ Analyst2: | N/A | | | Method: | 200.7/6010B/6010C | SOP: | ME600G | Rev: <u>7</u> | | Maintenance Log ID: | | _ | | | | Calibration Std: STD | 73151 | ICV Std: ST | D72898 | Post Spike: STD72336 | Stannous : ____ Hydroxylamine : ____ Workgroups: <u>543657,543782,544052,543824,543659,544079</u> Comments: | Seq. | File ID | Sample | ID | Prep | Dil | Reference | Date/Time | |------|------------------|--------------|------------------------------|-------|-----|--------------|----------------| | 69 | T3.102315.141445 | WG543739-01 | Reference Sample | | 1 | L15101148-05 | 10/23/15 14:14 | | 70 | T3.102315.141847 | WG543739-04 | Matrix Spike | 40/50 | 1 | L15101148-05 | 10/23/15 14:18 | | 71 | T3.102315.142236 | WG543739-05 | Matrix Spike Duplica | 40/50 | 1 | L15101148-05 | 10/23/15 14:22 | | 72 | T3.102315.142615 | L15101148-02 | 35BWW05F-101915 | 40/50 | 1 | | 10/23/15 14:26 | | 73 | T3.102315.143018 | L15101148-03 | 35BWW06-101915 | 40/50 | 1 | | 10/23/15 14:30 | | 74 | T3.102315.143420 | WG543824-01 | Post Digestion Spike | | 1 | L15101148-03 | 10/23/15 14:34 | | 75 | T3.102315.143810 | WG543824-02 | Serial Dilution | | 5 | L15101148-03 | 10/23/15 14:38 | | 76 | T3.102315.144213 | WG543824-02 | Serial Dilution | | 25 | L15101148-03 | 10/23/15 14:42 | | 77 | T3.102315.144608 | WG544081-32 | CCV | | 1 | | 10/23/15 14:46 | | 78 | T3.102315.144953 | WG544081-33 | ССВ | | 1 | | 10/23/15 14:49 | | 79 | T3.102315.145359 | L15101148-04 | 35BWW06FD-101915 | 40/50 | 1 | | 10/23/15 14:53 | | 80 | T3.102315.145803 | L15101148-09 | 35BWW04F-101915 | 40/50 | 1 | | 10/23/15 14:58 | | 81 | T3.102315.150206 | L15101148-11 | 35BWW12F-101915 | 40/50 | 1 | | 10/23/15 15:02 | | 82 | T3.102315.150608 | L15101148-12 | 35BWW09-101915 | 40/50 | 1 | | 10/23/15 15:06 | | 83 | T3.102315.151010 | WG544081-34 | CCV | | 1 | | 10/23/15 15:10 | | 84 | T3.102315.151356 | WG544081-35 | ССВ | | 1 | | 10/23/15 15:13 | | 85 | T3.102315.151847 | WG544081-36 | Low Level Continuing Calibra | | 1 | | 10/23/15 15:18 | | 86 | T3.102315.152252 | WG544081-37 | Low Level Continuing Calibra | | 1 | | 10/23/15 15:22 | | 87 | T3.102315.152645 | L15100749-18 | 01MW213S | 40/50 | 1 | | 10/23/15 15:26 | | 88 | T3.102315.153047 | L15100749-20 | 01MW214D | 40/50 | 1 | | 10/23/15 15:30 | | 89 | T3.102315.153449 | L15100749-22 | 01MW214S | 40/50 | 1 | | 10/23/15 15:34 | | 90 | T3.102315.153850 | L15100749-24 | 01MW215D | 40/50 | 1 | | 10/23/15 15:38 | | 91 | T3.102315.154252 | L15100812-06 | 42MW105 | 40/50 | 1 | | 10/23/15 15:42 | | 92 | T3.102315.154652 | L15100812-08 | 42MW109 | 40/50 | 1 | | 10/23/15 15:46 | | 93 | T3.102315.155055 | L15101016-01 | ROXIE PL-DEWATER | 40/50 | 1 | | 10/23/15 15:50 | | 94 | T3.102315.155459 | WG544081-38 | CCV | | 1 | | 10/23/15 15:54 | | 95 | T3.102315.155844 | WG544081-39 | CCB | | 1 | | 10/23/15 15:58 | | 96 | T3.102315.160250 | L15100749-28 | 01MW216S | 40/50 | 1 | | 10/23/15 16:02 | | 97 | T3.102315.160653 | L15100749-29 | 01MW217D | 40/50 | 1 | | 10/23/15 16:06 | | 98 | T3.102315.161103 | L15100749-30 | 01MW217S | 40/50 | 1 | | 10/23/15 16:11 | | 99 | T3.102315.161504 | L15100749-31 | 01MW217S | 40/50 | 1 | | 10/23/15 16:15 | | 100 | T3.102315.161907 | L15100749-32 | 01MW218S | 40/50 | 1 | | 10/23/15 16:19 | | 101 | T3.102315.162318 | L15100749-33 | 01MW400S | 40/50 | 1 | | 10/23/15 16:23 | | 102 | T3.102315.162728 | L15100749-36 | 01MW203D | 40/50 | 1 | | 10/23/15 16:27 | | | | | | | | | | Page: 3 Approved: October 26, 2015 B h. Zum Instrument Run Log | Instrument: | ICP-THERMO3 | _ Dataset: | 10231513.1 | | |-------------|-------------------|-------------|------------|--------| | Analyst1: | JYH | _ Analyst2: | N/A | | | Method: | 200.7/6010B/6010C | SOP: | ME600G | Rev: 7 | Maintenance Log ID: _ Stannous: _____ Hydroxylamine: ____ Workgroups: <u>543657,543782,544052,543824,543659,544079</u> Comments: | Seq. | File ID | Sample | ID | Prep | Dil | Reference | Date/Time | |------|------------------|--------------|-------------------------|-------|-----|--------------|--| | 103 | T3.102315.163134 | L15100749-37 | 01MW203D | 40/50 | 1 | | 10/23/15 16:31 | | 104 | T3.102315.163541 | L15100749-41 | 01MW413D | 40/50 | 1 | | 10/23/15 16:35 | | 105 | T3.102315.163952 | L15100749-42 | 01MW418S | 40/50 | 1 | | 10/23/15 16:39 | | 106 | T3.102315.164401 | WG544081-40 | CCV | | 1 | | 10/23/15 16:44 | | 107 | T3.102315.164748 | WG544081-41 | ССВ | | 1 | | 10/23/15 16:47 | | 108 | T3.102315.165153 | WG544044-02 | Method/Prep Blank | 40/50 | 1 | | 10/23/15 16:51 | | 109 | T3.102315.165559 | WG544044-03 | Laboratory Control S | 40/50 | 1 | | 10/23/15 16:55 | | 110 | T3.102315.165948 | WG543982-01 | Fluid Blank 1 | | 1 | | 10/23/15 16:59 | | 111 | T3.102315.170353 | WG543982-02 | Fluid Blank 2 | | 1 | | 10/23/15 17:03 | | 112 | T3.102315.170759 | L15101227-01 | 60500-SSP0017-SSP0017 | | 1 | WG544044-01 | 10/23/15 17:07 | | 113 | T3.102315.171200 | WG544044-04 | Matrix Spike | 5/50 | 1 | L15101227-01 | 10/23/15 17:12 | | 114 | T3.102315.171547 | WG544044-05 | Matrix Spike Duplica | 5/50 | 1 | L15101227-01 | 10/23/15 17:15 | | 115 | T3.102315.171936 | L15101102-01 | FRN SALTCAKE | 5/50 | 1 | | 10/23/15 17:19 | | 116 | T3.102315.172346 | WG544079-01 | Post Digestion Spike | | 1 | L15101102-01 | 10/23/15 17:23 | | 117 | T3.102315.172745 | WG544079-02 | Serial Dilution | | 5 | L15101102-01 | 10/23/15 17:27 | | 118 | T3.102315.173151 | WG544081-42 | CCV | | 1 | | 10/23/15 17:31 | | 119 | T3.102315.173537 | WG544081-43 | ССВ | | 1 | | 10/23/15 17:35 | | 120 | T3.102315.173943 | L15101102-02 | FRN FURNACE BAGHOUSE | 5/50 | 1 | | 10/23/15 17:39 | | 121 | T3.102315.174346 | L15101102-03 | FRN MILL FINES (SCREW 1 | 5/50 | 1 | | 10/23/15 17:43 | | 122 | T3.102315.174755 | L15101102-04 | FRN MILL FINES (SCREW 8 | 5/50 | 1 | | 10/23/15 17:47 | | 123 | T3.102315.175208 | L15101104-01 | C-3 | 5/50 | 1 | | 10/23/15 17:52 | | 124 | T3.102315.175610 | L15101104-02 | B-2 | 5/50 | 1 | | 10/23/15 17:56 | | 125 | T3.102315.180011 | L15101104-03 | A-1 | 5/50 | 1 | | 10/23/15 18:00 | | 126 |
T3.102315.180413 | L15101120-01 | CES 15.5 | 5/50 | 1 | | 10/23/15 18:04 | | 127 | T3.102315.180817 | L15101184-01 | AWV 19 BAGS 10/18/15 | 5/50 | 1 | | 10/23/15 18:08 | | 128 | T3.102315.181220 | L15101185-01 | ALAN 18 BAGS | 5/50 | 1 | | 10/23/15 18:12 | | 129 | T3.102315.181623 | L15101211-01 | TANK 2513 INTERIOR | 5/50 | 1 | | 10/23/15 18:16 | | 130 | T3.102315.182024 | WG544081-44 | CCV | | 1 | | 10/23/15 18:20 | | 131 | T3.102315.182409 | WG544081-45 | ССВ | | 1 | | 10/23/15 18:24 | | 132 | T3.102315.182815 | L15101211-02 | TANK 2513 EXTERIOR | 5/50 | 1 | | 10/23/15 18:28 | | 133 | T3.102315.183215 | L15101249-01 | J5J0358-01 | 5/50 | 1 | | 10/23/15 18:32 | | 134 | T3.102315.183617 | L15101342-01 | RIVER \#2 | 40/50 | 1 | | 10/23/15 18:36 | | 135 | T3.102315.184019 | L15101342-02 | RIVER \#1 | 40/50 | 1 | | 10/23/15 18:40 | | 136 | T3.102315.184422 | L15101342-03 | RIVER \#5 | 40/50 | 1 | | 10/23/15 18:44 | | | | | 1 | | | 1 | <u>. </u> | Page: 4 Approved: October 26, 2015 Bruh Zum Instrument Run Log | Instrument: | ICP-THERMO3 | _ Dataset: | 102315T3.1 | | |----------------------|-------------------|-------------|------------|----------------------| | Analyst1: | JYH | _ Analyst2: | N/A | | | Method: | 200.7/6010B/6010C | SOP: | ME600G | Rev: 7 | | Maintenance Log ID: | | _ | | | | Calibration Std: STD | 073151 | ICV Std: ST | D72898 | Post Spike: STD72336 | ICSAB: STD72936 Int. Std: <u>RGT34839</u> ICSA: STD72970 LLCCV: STD72971 CCV: <u>STD72934</u> Tuning Sol : _____ Hydroxylamine: _ Stannous : _____ > Workgroups: 543657,543782,544052,543824,543659,544079 Comments: | Seq. | File ID | Sample | ID | Prep | Dil | Reference | Date/Time | |------|------------------|--------------|------------------------------|-------|-----|-----------|----------------| | 137 | T3.102315.184824 | L15101342-04 | RIVER \#4 | 40/50 | 1 | | 10/23/15 18:48 | | 138 | T3.102315.185227 | WG544081-46 | CCV | | 1 | | 10/23/15 18:52 | | 139 | T3.102315.185613 | WG544081-47 | CCB | | 1 | | 10/23/15 18:56 | | 140 | T3.102315.190006 | WG544081-48 | Low Level Continuing Calibra | | 1 | | 10/23/15 19:00 | | 141 | T3.102315.190410 | WG544081-49 | Low Level Continuing Calibra | | 1 | | 10/23/15 19:04 | #### Comments | Seq. | Rerun Dil. | Reason | Analytes | | | | | | |------|-----------------------------------|--------|----------|--|--|--|--|--| | 23 | | | | | | | | | | | Wrong WG number. JYH | | | | | | | | | 24 | | | | | | | | | | | Wrong WG number. JYH | | | | | | | | | 74 | | | | | | | | | | | Seq. 74-76: wrong WG numbers. JYH | | | | | | | | Approved: October 26, 2015 Page: 5 Checklist ID: 107529893909 #### Microbac Laboratories Inc. #### Data Checklist Date: 23-OCT-2015 Analyst: <u>JYH</u> Analyst: NA Method: 6010B/6010C/200.7 Instrument: ICP-THERMO3 Curve Workgroup: 544081 Runlog ID: 71233 Analytical Workgroups: 543657,543782,544052,543824,543659,544079 | Calibration/Linearity | X | |--|----------------------------------| | ICV/CCV | X | | ICV RSD < 3% (EPA 200.7 only) | | | ICB/CCB | X | | ICSA/ICSAB | X | | CRI | | | Blank/LCS | X | | MS/MSD | X | | Post Spike/Serial Dilution | X | | Upload Results | X | | Data Qualifiers | | | Generate PDF Instrument Data | X | | Sign/Annotate PDF Data | X | | Upload Curve Data | X | | Workgroup Forms | X | | Case Narrative | X | | Client Forms | X | | Level X | | | Level 3 | | | Level 4 | 1032,1055,1215,1148,749,812,1227 | | Check for compliance with method and project specific requirements | X | | Check the completeness of reported information | X | | Check the information for the report narrative | X | | Primary Reviewer | JYH | | Secondary Reviewer | BKT | | | | | Comments | | Primary Reviewer: 26-OCT-2015 Secondary Reviewer: 26-OCT-2015 But To CHECKLIST1 - Modified 03/05/2008 Generated: OCT-26-2015 15:40:35 00893910 AAB#: WG543782 #### HOLDING TIMES EQUIVALENT TO AFCEE FORM 9 Analytical Method: 6010C Login Number: L15101055 Date TCLP | Max | Q | Run | Time | Max | Q | |------|---|---------------|------|------|-----| | Hold | | Date | Held | Hold | | | | | Max Q
Hold | ~ | ~ | ~ ■ | | | Client ID | 12 | Collected | Date | Held | Hold | ~ | Date | Held | Hold | ~ | Date | Held | Hold | × | |---|-----------------|----|-----------|------|------|------|---|------------|------|------|---|----------|------|------|---| | | 35AWW13F-101515 | 01 | 10/15/15 | | | | | 10/21/2015 | 5.8 | 180 | | 10/23/15 | 7.9 | 180 | | | | 35AWW13F-101515 | 01 | 10/15/15 | | | | | 10/21/2015 | 5.8 | 180 | | 10/23/15 | 7.9 | 180 | | | _ | | | | - | | | | | | | | | | | | Extract Time Max * = SEE PROJECT QAPP REQUIREMENTS HOLD_TIMES - Modified 03/06/2008 PDF File ID: 4459468 Report generated 10/23/2015 15:35 Page 48 #### METHOD BLANK SUMMARY Login Number: L15101055 Blank File ID: T3.102315.110007 Prep Date: 10/21/15 09:19 Analyzed Date: 10/23/15 11:00 Work Group: WG543782 Blank Sample ID: WG543718-02 Instrument ID: ICP-THERMO3 Method: 6010C Analyst:JYH #### This Method Blank Applies To The Following Samples: | Client ID | Lab Sample ID | Lab File ID | Time Analyzed | TAG | |-----------------|---------------|------------------|----------------|------| | LCS | WG543718-03 | T3.102115.141554 | 10/21/15 14:15 | 01 | | FLT_BLK | WG543718-04 | T3.102115.141933 | 10/21/15 14:19 | 01 | | LCS | WG543718-03 | T3.102315.110414 | 10/23/15 11:04 | 02 | | 35AWW13F-101515 | L15101055-01 | T3.102315.111942 | 10/23/15 11:19 | 01 | | 35AWW13F-101515 | L15101055-01 | T3.102315.112724 | 10/23/15 11:27 | DL01 | Report Name: BLANK_SUMMARY PDF File ID: 4459469 Report generated 10/23/2015 15:35 # Microbac Laboratories Inc. METHOD BLANK REPORT | Login Number: L15101055 | Prep Date: 10/21/15 09:19 | Sample ID: WG543718-02 | |----------------------------|---------------------------|------------------------| | Instrument ID: ICP-THERMO3 | Run Date: 10/23/15 11:00 | Prep Method: 3015 | | File ID:T3.102315.110007 | Analyst:JYH | Method: 6010C | | Workgroup (AAB#):WG543782 | Matrix:Water | Units:mg/L | | Contract #: | Cal ID:ICP-T | H-23-OCT-15 | | Analytes | DL | LOQ | Concentration | Dilution | Qualifier | |------------------|---------|--------|---------------|----------|-----------| | Aluminum, Total | 0.0500 | 0.200 | 0.0500 | 1 | υ | | Beryllium, Total | 0.00500 | 0.0200 | 0.00500 | 1 | υ | | Calcium, Total | 0.125 | 0.500 | 0.125 | 1 | υ | | Iron, Total | 0.0500 | 0.200 | 0.0500 | 1 | υ | | Magnesium, Total | 0.250 | 1.00 | 0.250 | 1 | υ | | Potassium, Total | 0.500 | 2.00 | 0.500 | 1 | υ | | Selenium, Total | 0.00500 | 0.0200 | 0.00500 | 1 | υ | | Sodium, Total | 0.250 | 1.00 | 0.250 | 1 | υ | DL Method Detection Limit LOQ Reporting/Practical Quantitation Limit ND Analyte Not detected at or above reporting limit * |Analyte concentration| > 1/2 RL Report Name:BLANK PDF ID: 4459470 23-OCT-2015 15:36 # Microbac Laboratories Inc. LABORATORY CONTROL SAMPLE (LCS) Login Number: L15101055 Run Date: 10/23/2015 Sample ID: WG543718-03 Instrument ID: ICP-THERMO3 Run Time: 11:04 Prep Method: 3015 File ID: T3.102315.110414 Analyst: JYH Method: 6010C Workgroup (AAB#): WG543782 Matrix: Water Units: mg/L QC Key:DOD4 Lot#:STD72998 Cal ID:ICP-TH-23-OCT-15 | Analytes | Expected | Found | % Rec | LCS | Limi | ts | Q | |------------------|----------|--------|-------|-----|------|-----|---| | Aluminum, Total | 6.25 | 6.82 | 109 | 80 | - | 120 | | | Beryllium, Total | 0.0313 | 0.0334 | 107 | 80 | - | 120 | | | Calcium, Total | 6.25 | 7.00 | 112 | 80 | - | 120 | | | Iron, Total | 2.50 | 2.77 | 111 | 80 | - | 120 | | | Magnesium, Total | 6.25 | 6.88 | 110 | 80 | - | 120 | | | Potassium, Total | 31.3 | 35.0 | 112 | 80 | - | 120 | | | Selenium, Total | 0.250 | 0.271 | 109 | 80 | - | 120 | | | Sodium, Total | 31.3 | 35.4 | 113 | 80 | - | 120 | | LCS - Modified 03/06/2008 PDF File ID: 4459471 Report generated: 10/23/2015 15:36 # Microbac Laboratories Inc. MATRIX SPIKE AND MATRIX SPIKE DUP (MS/MSD) | 0.0643 | | I | %Rec | Spiked | Found | %Rec | %RPD | Limits | Limit | Q | |--------|-------------------------------------|--|---|--|---|--|--
---|---|---| | 0.0642 | 6.25 | 6.78 | 107 | 6.25 | 6.78 | 107 | 0.0719 | 80 - 120 | 20 | | | ND | 0.0313 | 0.0336 | 108 | 0.0313 | 0.0338 | 108 | 0.371 | 80 - 120 | 20 | | | 59.4 | 6.25 | 68.6 | 147 | 6.25 | 68.0 | 138 | 0.873 | 80 - 120 | 20 | * | | 0.150 | 2.50 | 2.89 | 109 | 2.50 | 2.89 | 110 | 0.208 | 80 - 120 | 20 | | | 11.6 | 6.25 | 18.9 | 117 | 6.25 | 18.7 | 115 | 0.631 | 80 - 120 | 20 | | | 1.63 | 31.3 | 36.4 | 111 | 31.3 | 36.4 | 111 | 0.130 | 80 - 120 | 20 | | | ND | 0.250 | 0.273 | 109 | 0.250 | 0.263 | 105 | 3.84 | 80 - 120 | 20 | | | 59.8 | 31.3 | 96.7 | 118 | 31.3 | 96.1 | 116 | 0.606 | 80 - 120 | 20 | | | | 59.4
0.150
11.6
1.63
ND | ND 0.0313
59.4 6.25
0.150 2.50
11.6 6.25
1.63 31.3
ND 0.250 | ND 0.0313 0.0336
59.4 6.25 68.6
0.150 2.50 2.89
11.6 6.25 18.9
1.63 31.3 36.4
ND 0.250 0.273 | ND 0.0313 0.0336 108 59.4 6.25 68.6 147 0.150 2.50 2.89 109 11.6 6.25 18.9 117 1.63 31.3 36.4 111 ND 0.250 0.273 109 | ND 0.0313 0.0336 108 0.0313 59.4 6.25 68.6 147 6.25 0.150 2.50 2.89 109 2.50 11.6 6.25 18.9 117 6.25 1.63 31.3 36.4 111 31.3 ND 0.250 0.273 109 0.250 | ND 0.0313 0.0336 108 0.0313 0.0338 59.4 6.25 68.6 147 6.25 68.0 0.150 2.50 2.89 109 2.50 2.89 11.6 6.25 18.9 117 6.25 18.7 1.63 31.3 36.4 111 31.3 36.4 ND 0.250 0.273 109 0.250 0.263 | ND 0.0313 0.0336 108 0.0313 0.0338 108 59.4 6.25 68.6 147 6.25 68.0 138 0.150 2.50 2.89 109 2.50 2.89 110 11.6 6.25 18.9 117 6.25 18.7 115 1.63 31.3 36.4 111 31.3 36.4 111 ND 0.250 0.273 109 0.250 0.263 105 | ND 0.0313 0.0336 108 0.0313 0.0338 108 0.371 59.4 6.25 68.6 147 6.25 68.0 138 0.873 0.150 2.50 2.89 109 2.50 2.89 110 0.208 11.6 6.25 18.9 117 6.25 18.7 115 0.631 1.63 31.3 36.4 111 31.3 36.4 111 0.130 ND 0.250 0.273 109 0.250 0.263 105 3.84 | ND 0.0313 0.0336 108 0.0313 0.0338 108 0.371 80 - 120 59.4 6.25 68.6 147 6.25 68.0 138 0.873 80 - 120 0.150 2.50 2.89 109 2.50 2.89 110 0.208 80 - 120 11.6 6.25 18.9 117 6.25 18.7 115 0.631 80 - 120 1.63 31.3 36.4 111 31.3 36.4 111 0.130 80 - 120 ND 0.250 0.273 109 0.250 0.263 105 3.84 80 - 120 | ND 0.0313 0.0336 108 0.0313 0.0338 108 0.371 80 - 120 20 59.4 6.25 68.6 147 6.25 68.0 138 0.873 80 - 120 20 0.150 2.50 2.89 109 2.50 2.89 110 0.208 80 - 120 20 11.6 6.25 18.9 117 6.25 18.7 115 0.631 80 - 120 20 1.63 31.3 36.4 111 31.3 36.4 111 0.130 80 - 120 20 ND 0.250 0.273 109 0.250 0.263 105 3.84 80 - 120 20 | ^{*} FAILS %REC LIMIT NOTE: This is an internal quality control sample. WG_MSD_DRYWT - Modified 05/26/2011 PDF File ID: 4459472 Report generated 10/23/2015 15:36 [#] FAILS RPD LIMIT Serial Dilution Report Login: L15101055 Worknum: WG543782 Instrument: ICP-THERMO3 Method: 6010C Serial Dil: WG543782-04 File ID: T3.102315.112724 Dil: 5 Units: ug/L Sample:L15101055-01 File ID: T3.102315.111942 Dil: 1 | Analyte | Sample | Qual | Serial Dil | Qual | % Diff | Q | |-----------|--------|------|------------|------|--------|---| | Aluminum | 26.7 | | 21.8 | | 18.40 | E | | Beryllium | 0.0200 | X | ND | U | | | | Calcium | 61600 | | 58400 | | 5.23 | | | Iron | 125 | | 52.0 | | 58.50 | E | | Magnesium | 46200 | | 43300 | | 6.36 | | | Potassium | 480 | | 1360 | | 183.00 | E | | Selenium | 4.12 | | 9.10 | | 121.00 | E | | Sodium | 212000 | | 203000 | | 4.23 | | - U = Result is below MDL. - ${\tt F}$ = Result is greater than or equal to MDL and less than the RL. - X = Result is greater than or equal to RL and less than 25 times the MDL. - E = %D exceeds control limit of 10% and initial sample result is greater than or equal to 25 times the MDL. SERIAL_DIL - Modified 09/22/2008 PDF File ID: 4459466 10/23/2015 15:35 Serial Dilution Report Login: L15101055 Worknum: WG543782 Instrument: ICP-THERMO3 Method: 6010C Serial Dil: WG543782-04 File ID: T3.102315.113126 Dil: 25 Units: ug/L Sample: L15101055-01 File ID: T3.102315.112724 Dil: 5 | Analyte | Sample | Qual | Serial Dil | Qual | % Diff | Q | |-----------|--------|------|------------|------|--------|---| | Aluminum | 21.8 | | 106 | | 385.00 | E | | Beryllium | ND | U | ND | U | | | | Calcium | 58400 | | 57700 | | 1.26 | | | Iron | 52.0 | | ND | U | | | | Magnesium | 43300 | | 42900 | | 0.98 | | | Potassium | 1360 | | 3250 | | 139.00 | E | | Selenium | 9.10 | | ND | U | | | | Sodium | 203000 | | 202000 | | 0.61 | | - U = Result is below MDL. - ${\tt F}$ = Result is greater than or equal to MDL and less than the RL. - X = Result is greater than or equal to RL and less than 25 times the MDL. - E = %D exceeds control limit of 10% and initial sample result is greater than or equal to 25 times the MDL. SERIAL_DIL - Modified 09/22/2008 PDF File ID: 4459466 10/23/2015 15:35 # Microbac Laboratories Inc. POST SPIKE REPORT Sample Login ID: L15101055 Worknum: WG543782 Instrument ID: ICP-THERMO3 Method: 6010C Post Spike ID: WG543782-03 File ID:T3.102315.112333 Dil:1 Units: ug/L Sample ID: L15101055-01 File ID:T3.102315.111942 Dil:1 Matrix: Water | Analyte | Post Spike
Result | C | Sample
Result | С | Spike
Added(SA) | % R | Control
Limit %R | Q | |-----------|----------------------|---|------------------|---|--------------------|-------|---------------------|---| | ALUMINUM | 5410 | | 0 | U | 5000 | 108.2 | 75 - 125 | | | BERYLLIUM | 27.5 | | 0 | U | 25 | 109.8 | 75 - 125 | | | CALCIUM | 61200 | | 61600 | | 5000 | 114.7 | 75 - 125 | | | IRON | 2280 | | 125 | F | 2000 | 108.4 | 75 - 125 | | | MAGNESIUM | 47100 | | 46200 | | 5000 | 109.9 | 75 - 125 | | | POTASSIUM | 28300 | | 480 | F | 25000 | 111.6 | 75 - 125 | | | SELENIUM | 220 | | 4.12 | F | 200 | 108.1 | 75 - 125 | | | SODIUM | 219000 | | 212000 | | 25000 | 110.7 | 75 - 125 | | N = % Recovery exceeds control limits F = Result is between MDL and RL U = Sample result is below MDL. A value of zero is used in the calculation #### Microbac Laboratories Inc. Initial Calibration Summary Login: L15101055 Workgroup (AAB#): WG543782 Analytical Method: 6010C Instrument ID: ICP-THERMO3 ICAL Worknum: WG544081 Initial Calibration Date: 23-OCT-2015 10:00 | | WG544 | 081-01 | WG544 | 081-02 | WG544 | 081-03 | WG544081-04 | | WG544 | 081-05 |] | | |-----------|-------|------------|-------|----------|-------|----------|-------------|---------|-------|---------|---------|---| | | Conc | INT | Conc | INT | Conc | INT | Conc | INT | Conc | INT | R | Q | | ALUMINUM | 0 | 0.000540 | .1 | 0.00110 | .2 | 0.00167 | 10 | 0.0691 | 20 | 0.138 | .999998 | | | BERYLLIUM | 0 | 0.000260 | .0005 | 0.000530 | .001 | 0.000780 | .05 | 0.0361 | .1 | 0.0727 | .99996 | | | CALCIUM | 0 | 0.00106 | .1 | 0.00520 | .2 | 0.00791 | 10 | 0.458 | 20 | 0.922 | .99996 | | | IRON | 0 | -0.0000800 | .04 | 0.000160 | .08 | 0.000890 | 4 | 0.0647 | 8 | 0.131 | .999569 | | | MAGNESIUM | 0 | -0.000140 | NA | NA | .2 | 0.000180 | 10 | 0.0398 | 20 | 0.0809 | .999282 | | | POTASSIUM | 0 | -0.0146 | .5 | 0.00347 | 1 | 0.0231 | 50 | 2.13 | 100 | 4.31 | .999965 | | | SELENIUM | 0 | 0.0000100 | NA | NA | .008 | 0.000100 | .4 | 0.00453 | .8 | 0.00894 | .999812 | | | SODIUM | 0 | -0.0102 | .5 | 0.0458 | 1 | 0.0981 | 50 | 6.52 | 100 | 13.1 | .99999 | | INT = Instrument intensity R = Coefficient of correlation Q = Data Qualifier * = Out of Compliance; R < 0.995</pre> INT_CAL_ICP - Modified 03/06/2008 PDF File I D: 4459475 Report generated: 23-OCT-2015 15:35 # Microbac Laboratories Inc. INITIAL CALIBRATION BLANK (ICB) Login Number: L15101055 Run Date: 10/23/2015 Sample ID: WG544081-07 Instrument ID: ICP-THERMO3 Run Time: 10:08 Method: 6010C File ID: T3.102315.100801 Analyst: JYH Units: mg/L Workgroup (AAB#):WG543782 Cal ID:ICP-THERI - 23-OCT-15 Matrix:WATER | Analytes | MDL | RDL | Concentration | Qualifier | |-----------|------|------|---------------|-----------| | ALUMINUM | .04 | .16 | .04 | υ | | BERYLLIUM | .004 | .016 | .004 | υ | | CALCIUM | .1 | .4 | .1 | υ | | IRON | .04 | .16 | .04 | υ | | MAGNESIUM | .2 | .8 | .2 | υ | | POTASSIUM | . 4 | 1.6
 .4 | υ | | SELENIUM | .004 | .016 | .004 | υ | | SODIUM | .2 | .8 | .2 | υ | U = Result is less than 2 x MDL F = Result is between MDL and 2 x MDL * = Result is above 2 x MDL ICB - Modified 07/14/2009 PDF File ID: 4459477 Report generated 10/23/2015 15:35 # Microbac Laboratories Inc. CONTINUING CALIBRATION BLANK (CCB) Login Number: L15101055 Run Date: 10/23/2015 Sample ID: WG544081-13 Instrument ID: ICP-THERMO3 Run Time: 10:31 Method: 6010C File ID: T3.102315.103152 Analyst: JYH Units: mg/L Workgroup (AAB#):WG543782 Cal ID:ICP-TH - 23-OCT-15 Matrix:WATER QAPP:DOD4 | Analytes | MDL | RDL | Concentration | Qualifier | |-----------|---------|--------|---------------|-----------| | Aluminum | 0.0400 | 0.160 | 0.0400 | υ | | Beryllium | 0.00400 | 0.0160 | 0.00400 | υ | | Calcium | 0.100 | 0.400 | 0.100 | υ | | Iron | 0.0400 | 0.160 | 0.0400 | υ | | Magnesium | 0.200 | 0.800 | 0.200 | υ | | Potassium | 0.400 | 1.60 | 0.400 | υ | | Selenium | 0.00400 | 0.0160 | 0.00400 | υ | | Sodium | 0.200 | 0.800 | 0.200 | υ | U = Result is less than MDL. CCB - Modified 03/05/2008 PDF File ID: 4459480 Report generated 10/23/2015 15:35 F = Result is between MDL and RL. ^{* =} Result is above RL. # Microbac Laboratories Inc. CONTINUING CALIBRATION BLANK (CCB) Login Number: L15101055 Run Date: 10/23/2015 Sample ID: WG544081-15 Instrument ID: ICP-THERMO3 Run Time: 10:56 Method: 6010C File ID: T3.102315.105600 Analyst: JYH Units: mg/L Workgroup (AAB#):WG543782 Cal ID:ICP-TH - 23-OCT-15 Matrix:WATER QAPP:DOD4 | Analytes | MDL | RDL | Concentration | Qualifier | |-----------|---------|--------|---------------|-----------| | Aluminum | 0.0400 | 0.160 | 0.0400 | U | | Beryllium | 0.00400 | 0.0160 | 0.00400 | U | | Calcium | 0.100 | 0.400 | 0.100 | υ | | Iron | 0.0400 | 0.160 | 0.0400 | U | | Magnesium | 0.200 | 0.800 | 0.200 | U | | Potassium | 0.400 | 1.60 | 0.400 | U | | Selenium | 0.00400 | 0.0160 | 0.00400 | U | | Sodium | 0.200 | 0.800 | 0.200 | U | U = Result is less than MDL. CCB - Modified 03/05/2008 PDF File ID: 4459480 Report generated 10/23/2015 15:35 F = Result is between MDL and RL. ^{* =} Result is above RL. # Microbac Laboratories Inc. CONTINUING CALIBRATION BLANK (CCB) Login Number: L15101055 Run Date: 10/23/2015 Sample ID: WG544081-31 Instrument ID: ID: ID: Time: 11:39 Method: 6010C File ID: T3.102315.113916 Analyst: JYH Units: Units: mg/L Workgroup (AAB#):WG543782 Cal ID:ICP-TH - 23-OCT-15 Matrix:WATER QAPP:DOD4 | Analytes | MDL | RDL | Concentration | Qualifier | |-----------|---------|--------|---------------|-----------| | Aluminum | 0.0400 | 0.160 | 0.0400 | υ | | Beryllium | 0.00400 | 0.0160 | 0.00400 | υ | | Calcium | 0.100 | 0.400 | 0.100 | υ | | Iron | 0.0400 | 0.160 | 0.0400 | υ | | Magnesium | 0.200 | 0.800 | 0.200 | υ | | Potassium | 0.400 | 1.60 | 0.400 | υ | | Selenium | 0.00400 | 0.0160 | 0.00400 | υ | | Sodium | 0.200 | 0.800 | 0.200 | υ | U = Result is less than MDL. CCB - Modified 03/05/2008 PDF File ID: 4459480 Report generated 10/23/2015 15:35 F = Result is between MDL and RL. ^{* =} Result is above RL. # Microbac Laboratories Inc. INITIAL CALIBRATION VERIFICATION (ICV) (Alternate Source) Login Number:L15101055 Run Date:10/23/2015 Sample ID:WG544081-06 Instrument ID:ICP-THERMO3 Run Time:10:04 Method:6010C File ID:T3.102315.100416 Analyst:JYH Units:mg/L Workgroup (AAB#):WG543782 Cal ID:ICP-TH - 23-OCT-15 QC Key: DOD4 | Analyte | Expected | Found | %REC | LIMITS | Q | |-----------|----------|--------|------|----------|---| | Aluminum | 10 | 10.3 | 103 | 90 - 110 | | | Beryllium | .05 | 0.0511 | 102 | 90 - 110 | | | Calcium | 10 | 10.2 | 102 | 90 - 110 | | | Iron | 4 | 4.05 | 101 | 90 - 110 | | | Magnesium | 10 | 10.3 | 103 | 90 - 110 | | | Potassium | 50 | 50.8 | 102 | 90 - 110 | | | Selenium | .4 | 0.402 | 100 | 90 - 110 | | | Sodium | 50 | 51.0 | 102 | 90 - 110 | | ^{*} Exceeds LIMITS Limit ICV - Modified 03/06/2008 PDF File ID: 4459476 Report generated 10/23/2015 15:35 # Microbac Laboratories Inc. CONTINUING CALIBRATION VERIFICATION (CCV) Login Number: L15101055 Run Date: 10/23/2015 Sample ID: WG544081-12 Instrument ID: ICP-THERMO3 Run Time: 10:28 Method: 6010C File ID: T3.102315.102806 Analyst: JYH QC Key: DOD4 Workgroup (AAB#):WG543782 Cal ID:ICP-TH - 23-OCT-15 Matrix:WATER | Analyte | Expected | Found | UNITS | %REC | LIMITS | Q | |-----------|----------|--------|-------|------|----------|---| | Aluminum | 10.0 | 10.1 | mg/L | 101 | 90 - 110 | | | Beryllium | 0.0500 | 0.0504 | mg/L | 101 | 90 - 110 | | | Calcium | 10.0 | 10.1 | mg/L | 101 | 90 - 110 | | | Iron | 4.00 | 4.05 | mg/L | 101 | 90 - 110 | | | Magnesium | 10.0 | 9.97 | mg/L | 99.7 | 90 - 110 | | | Potassium | 50.0 | 50.9 | mg/L | 102 | 90 - 110 | | | Selenium | 0.400 | 0.408 | mg/L | 102 | 90 - 110 | | | Sodium | 50.0 | 50.9 | mg/L | 102 | 90 - 110 | | ^{*} Exceeds LIMITS Criteria CCV - Modified 03/05/2008 PDF File ID: 4459479 Report generated 10/23/2015 15:35 # Microbac Laboratories Inc. CONTINUING CALIBRATION VERIFICATION (CCV) Login Number: L15101055 Run Date: 10/23/2015 Sample ID: WG544081-14 Instrument ID: ICP-THERMO3 Run Time: 10:52 Method: 6010C File ID: T3.102315.105215 Analyst: JYH QC Key: DOD4 Workgroup (AAB#): WG543782 Cal ID: ICP-TH - 23-OCT-15 Expected UNITS %REC LIMITS Analyte Found Q Aluminum 10.0 10.4 mg/L 104 90 - 110 Beryllium 0.0500 0.0518 mg/L 104 90 - 110 Calcium 90 - 110 10.0 10.4 mg/L 104 Iron 4.00 4.12 mg/L 103 90 - 110 Magnesium 10.0 10.2 mg/L 102 90 - 110 Potassium 50.0 52.1 mg/L 90 - 110 104 Selenium 0.400 0.419 mg/L 105 90 - 110 50.0 52.3 mg/L 105 90 - 110 Sodium Matrix:WATER CCV - Modified 03/05/2008 PDF File ID: 4459479 Report generated 10/23/2015 15:35 ^{*} Exceeds LIMITS Criteria # Microbac Laboratories Inc. CONTINUING CALIBRATION VERIFICATION (CCV) Workgroup (AAB#):WG543782 Cal ID:ICP-TH - 23-OCT-15 Matrix:WATER | Analyte | Expected | Found | UNITS | %REC | LIMITS | Q | |-----------|----------|--------|-------|------|----------|---| | Aluminum | 10.0 | 10.3 | mg/L | 103 | 90 - 110 | | | Beryllium | 0.0500 | 0.0519 | mg/L | 104 | 90 - 110 | | | Calcium | 10.0 | 10.4 | mg/L | 104 | 90 - 110 | | | Iron | 4.00 | 4.15 | mg/L | 104 | 90 - 110 | | | Magnesium | 10.0 | 10.2 | mg/L | 102 | 90 - 110 | | | Potassium | 50.0 | 52.4 | mg/L | 105 | 90 - 110 | | | Selenium | 0.400 | 0.423 | mg/L | 106 | 90 - 110 | | | Sodium | 50.0 | 53.2 | mg/L | 106 | 90 - 110 | | ^{*} Exceeds LIMITS Criteria CCV - Modified 03/05/2008 PDF File ID: 4459479 Report generated 10/23/2015 15:35 # Microbac Laboratories Inc. LOW LEVEL CALIBRATION VERIFICATION Login Number: L15101055 Run Date: 10/23/2015 Sample ID: WG544081-08 Instrument ID: ICP-THERMO3 Run Time: 10:12 Method: 6010C File ID: T3.102315.101205 Analyst: JYH QC Key: DOD4 Workgroup (AAB#): WG543782 Cal ID: ICP-TH - 23-OCT-15 Workgroup (AAB#):WG543782 Cal ID:ICP-TH - 2 Matrix:WATER | Analyte | Expected | Found | UNITS | %REC | LIMITS | Q | |-----------|----------|---------|-------|------|----------|---| | Aluminum | 0.160 | 0.170 | mg/L | 106 | 70 - 130 | | | Beryllium | 0.00160 | 0.00156 | mg/L | 97.5 | 70 - 130 | | | Calcium | 0.400 | 0.412 | mg/L | 103 | 70 - 130 | | | Iron | 0.0800 | 0.0735 | mg/L | 91.9 | 70 - 130 | | | Magnesium | 0.400 | 0.335 | mg/L | 83.7 | 70 - 130 | | | Potassium | 0.800 | 0.948 | mg/L | 118 | 70 - 130 | | | Selenium | 0.0160 | 0.0167 | mg/L | 104 | 70 - 130 | | | Sodium | 0.400 | 0.433 | mg/L | 108 | 70 - 130 | | ^{*} Exceeds LIMITS Criteria LLCCV - Modified 1/7/2010 PDF File ID: 4459745 Report generated 10/23/2015 15:35 # Microbac Laboratories Inc. LOW LEVEL CALIBRATION VERIFICATION Login Number:L15101055 Run Date:10/23/2015 Sample ID:WG544081-24 Instrument ID:ICP-THERMO3 Run Time:13:58 Method:6010C File ID:T3.102315.135841 Analyst:JYH QC Key:DOD4 Workgroup (AAB#):WG543782 Cal ID:ICP-TH - 23-OCT-15 Expected UNITS %REC LIMITS Analyte Found Q Aluminum 0.160 0.173 mg/L 108 70 - 130 Beryllium 0.00160 0.00163 mg/L 102 70 - 130 Calcium 70 - 130 0.400 0.408 mg/L 102 70 - 130 Iron 0.0800 0.0846 mg/L 106 Magnesium 0.400 0.389 mg/L 97.3 70 - 130 Potassium 0.800 0.937 mg/L 117 70 - 130 Selenium 0.0160 0.0175 mg/L 109 70 - 130 0.400 0.469 mg/L 117 70 - 130 Sodium Matrix: WATER LLCCV - Modified 1/7/2010 PDF File ID: 4459745 Report generated 10/23/2015 15:35 ^{*} Exceeds LIMITS Criteria Login number: L15101055 Workgroup (AAB#): WG543782 Instrument ID: ICP-THERMO3 Method: 6010C File ID: T3.102315.102013 Sol. A:WG544081-10 Units:mg/L File ID: T3.102315.102415 Sol. AB: WG544081-11_ Matrix: Water | | | Sol. A | | | Sol. AB | | | | |-----------|------|------------|-----------|-------|---------|-----------|---|--| | ANALYTE | True | Found | %Recovery | True | Found | %Recovery | Q | | | Aluminum | 250 | 269 | 108 | 250 | 268 | 107 | | | | Beryllium | NS | -0.0000100 | NS | 0.250 | 0.259 | 104 | | | | Calcium | 250 | 222 | 88.8 | 250 | 223 | 89.2 | | | | Iron | 100 | 98.0 | 98.0 | 100 | 97.5 | 97.5 | | | | Magnesium | 250 | 251 | 100 | 250 | 250 | 100 | | | | Potassium | NS | 0.210 | NS | 5.00 | 5.54 | 111 | | | | Selenium | NS | 0.00334 | NS | 0.250 | 0.265 | 106 | | | | Sodium | NS | 0.0258 | NS | 5.00 | 5.42 | 108 | | | - * = Recovery of spiked element is outside acceptance limit of 80% 120% of true value. - # = Result for unspiked element is outside the acceptance limits of (+/-) the project reporting limit (RL). - + = Result for unspiked element is outside the acceptance limits of (+/-) 2 times the project method detection limit (MDL). This criteria is only applicable to specific QAPPs. ICS - Modified 03/06/2008 PDF File ID: 4459478 Report generated 10/23/2015 15:35 Login Number: L15101055 Date: 01/02/2015 Insturment ID: ICP-THERMO3 Method: 6010C | Analyte | Wave
Length | AG | AL | AS | В | ВА | |------------|----------------|----|------------|---------|---|------------| | ALUMINUM | 308.20 | 0 | 0 | 0 | 0 | 0 | | ANTIMONY | 206.80 | 0 | 0.0000190 | 0 | 0 | 0 | | ARSENIC | 189.00 | 0 | 0 | 0 | 0 | 0 | | BARIUM | 455.40 | 0 | 0 | 0 | 0 | 0 | | BERYLLIUM | 313.10 | 0
 0 | 0 | 0 | 0 | | BORON | 249.60 | 0 | 0 | 0 | 0 | 0 | | CADMIUM | 228.80 | 0 | 0 | 0.00200 | 0 | -0.0000800 | | CALCIUM | 422.60 | 0 | 0 | 0 | 0 | 0 | | CHROMIUM | 267.70 | 0 | 0 | 0 | 0 | 0 | | COBALT | 228.60 | 0 | 0 | 0 | 0 | 0 | | COPPER | 224.70 | 0 | 0 | 0 | 0 | 0 | | IRON | 261.10 | 0 | 0 | 0 | 0 | 0 | | LEAD | 220.30 | 0 | 0.000290 | 0 | 0 | 0 | | LITHIUM | 670.70 | 0 | 0 | 0 | 0 | 0 | | MAGNESIUM | 279.00 | 0 | 0 | 0 | 0 | 0 | | MANGANESE | 257.60 | 0 | 0 | 0 | 0 | 0 | | MOLYBDENUM | 202.00 | 0 | 0 | 0 | 0 | 0 | | NICKEL | 231.60 | 0 | 0 | 0 | 0 | 0 | | PHOSPHORUS | 214.90 | 0 | -0.000289 | 0 | 0 | 0 | | POTASSIUM | 766.40 | 0 | 0 | 0 | 0 | 0 | | SELENIUM | 196.00 | 0 | -0.0000460 | 0 | 0 | 0 | | SILICON | 212.40 | 0 | 0 | 0 | 0 | 0 | | SILVER | 328.00 | 0 | 0 | 0 | 0 | 0 | | SODIUM | 589.50 | 0 | 0 | 0 | 0 | 0 | | STRONTIUM | 407.70 | 0 | 0 | 0 | 0 | 0 | | THALLIUM | 190.80 | 0 | -0.0000120 | 0 | 0 | 0 | | TIN | 189.90 | 0 | 0 | 0 | 0 | 0 | | TITANIUM | 337.20 | 0 | 0 | 0 | 0 | 0 | | VANADIUM | 292.40 | 0 | 0.00300 | 0 | 0 | 0 | | ZINC | 206.20 | 0 | 0.00000200 | 0 | 0 | 0 | | ZIRCONIUM | 339.10 | 0 | 0 | 0 | 0 | 0 | CORR_FACTORS - Modified 03/05/2008 PDF File ID: 4459474 Report generated: 10/23/2015 15:35 Login Number: L15101055 Date: 01/02/2015 Insturment ID: ICP-THERMO3 Method: 6010C | Analyte | Wave
Length | BE | CA | CD | CO | CR | |------------|----------------|----|------------|----|------------|------------| | ALUMINUM | 308.20 | 0 | 0 | 0 | -0.000820 | 0 | | ANTIMONY | 206.80 | 0 | 0 | 0 | 0 | 0.00650 | | ARSENIC | 189.00 | 0 | 0 | 0 | 0 | 0.000490 | | BARIUM | 455.40 | 0 | 0 | 0 | 0 | 0 | | BERYLLIUM | 313.10 | 0 | 0 | 0 | 0 | 0 | | BORON | 249.60 | 0 | 0 | 0 | 0.00343 | 0 | | CADMIUM | 228.80 | 0 | 0 | 0 | -0.00210 | 0 | | CALCIUM | 422.60 | 0 | 0 | 0 | 0 | 0 | | CHROMIUM | 267.70 | 0 | 0 | 0 | 0 | 0 | | COBALT | 228.60 | 0 | 0 | 0 | 0 | -0.000200 | | COPPER | 224.70 | 0 | 0 | 0 | 0.0000770 | 0 | | IRON | 261.10 | 0 | 0 | 0 | 0 | -0.00100 | | LEAD | 220.30 | 0 | 0 | 0 | -0.0000130 | -0.000132 | | LITHIUM | 670.70 | 0 | 0 | 0 | 0 | 0 | | MAGNESIUM | 279.00 | 0 | 0 | 0 | 0 | 0 | | MANGANESE | 257.60 | 0 | 0 | 0 | 0 | -0.0000920 | | MOLYBDENUM | 202.00 | 0 | 0 | 0 | 0 | 0 | | NICKEL | 231.60 | 0 | 0 | 0 | -0.000500 | 0 | | PHOSPHORUS | 214.90 | 0 | 0 | 0 | 0 | 0 | | POTASSIUM | 766.40 | 0 | 0 | 0 | 0 | 0 | | SELENIUM | 196.00 | 0 | 0 | 0 | 0 | 0 | | SILICON | 212.40 | 0 | 0 | 0 | 0 | 0 | | SILVER | 328.00 | 0 | 0 | 0 | 0 | 0 | | SODIUM | 589.50 | 0 | 0 | 0 | 0 | 0 | | STRONTIUM | 407.70 | 0 | 0.00000500 | 0 | 0 | 0 | | THALLIUM | 190.80 | 0 | 0 | 0 | 0.00297 | 0.000276 | | TIN | 189.90 | 0 | 0 | 0 | 0 | 0 | | TITANIUM | 337.20 | 0 | 0 | 0 | 0 | 0 | | VANADIUM | 292.40 | 0 | 0 | 0 | 0 | -0.00138 | | ZINC | 206.20 | 0 | 0 | 0 | 0 | -0.000800 | | ZIRCONIUM | 339.10 | 0 | 0 | 0 | 0 | 0 | CORR_FACTORS - Modified 03/05/2008 PDF File ID: 4459474 Report generated: 10/23/2015 15:35 Login Number: L15101055 Date: 01/02/2015 Insturment ID: ICP-THERMO3 Method: 6010C | Analyte | Wave
Length | CU | FE | ĸ | LI | MG | |------------|----------------|----------|------------|---|----|-----------| | ALUMINUM | 308.20 | 0 | 0 | 0 | 0 | 0 | | ANTIMONY | 206.80 | 0 | 0.0000560 | 0 | 0 | 0 | | ARSENIC | 189.00 | 0 | -0.0000440 | 0 | 0 | 0 | | BARIUM | 455.40 | 0 | 0 | 0 | 0 | 0 | | BERYLLIUM | 313.10 | 0 | 0 | 0 | 0 | 0 | | BORON | 249.60 | 0 | -0.000619 | 0 | 0 | 0 | | CADMIUM | 228.80 | 0 | -0.0000250 | 0 | 0 | 0 | | CALCIUM | 422.60 | 0 | 0 | 0 | 0 | 0 | | CHROMIUM | 267.70 | 0 | 0.0000500 | 0 | 0 | 0 | | COBALT | 228.60 | 0 | 0 | 0 | 0 | 0 | | COPPER | 224.70 | 0 | 0.000800 | 0 | 0 | 0 | | IRON | 261.10 | 0 | 0 | 0 | 0 | 0 | | LEAD | 220.30 | 0.000609 | 0 | 0 | 0 | 0 | | LITHIUM | 670.70 | 0 | 0 | 0 | 0 | 0 | | MAGNESIUM | 279.00 | 0 | 0 | 0 | 0 | 0 | | MANGANESE | 257.60 | 0 | 0 | 0 | 0 | 0.0000300 | | MOLYBDENUM | 202.00 | 0 | 0 | 0 | 0 | 0 | | NICKEL | 231.60 | 0 | 0.0000420 | 0 | 0 | 0 | | PHOSPHORUS | 214.90 | -0.323 | 0.00118 | 0 | 0 | 0 | | POTASSIUM | 766.40 | 0 | 0 | 0 | 0 | 0 | | SELENIUM | 196.00 | 0 | 0 | 0 | 0 | 0 | | SILICON | 212.40 | 0 | 0 | 0 | 0 | 0 | | SILVER | 328.00 | 0 | -0.000240 | 0 | 0 | 0 | | SODIUM | 589.50 | 0 | 0 | 0 | 0 | 0 | | STRONTIUM | 407.70 | 0 | 0 | 0 | 0 | 0 | | THALLIUM | 190.80 | 0 | 0 | 0 | 0 | 0 | | TIN | 189.90 | 0 | 0 | 0 | 0 | 0 | | TITANIUM | 337.20 | 0 | 0 | 0 | 0 | 0 | | VANADIUM | 292.40 | 0 | 0.0000300 | 0 | 0 | 0 | | ZINC | 206.20 | 0 | 0 | 0 | 0 | 0 | | ZIRCONIUM | 339.10 | 0 | -0.0000300 | 0 | 0 | 0 | CORR_FACTORS - Modified 03/05/2008 PDF File ID: 4459474 Report generated: 10/23/2015 15:35 Login Number: L15101055 Date: 01/02/2015 Insturment ID: ICP-THERMO3 Method: 6010C | Analyte | Wave
Length | MN | мо | NA | NI | P | |------------|----------------|-----------|------------|----|-----------|----------| | ALUMINUM | 308.20 | 0 | 0.0163 | 0 | 0 | <u> </u> | | ANTIMONY | 206.80 | 0 | 0.0163 | 0 | 0 | 0 | | ARSENIC | 189.00 | 0 | 0.000870 | 0 | 0 | 0 | | - | | U | 0.00139 | | 0 | 0 | | BARIUM | 455.40 | 0 | 0 | 0 | 0 | 0 | | BERYLLIUM | 313.10 | 0 | 0 | 0 | 0 | 0 | | BORON | 249.60 | 0 | -0.00190 | 0 | 0 | 0 | | CADMIUM | 228.80 | 0 | 0.0000320 | 0 | -0.000128 | 0 | | CALCIUM | 422.60 | 0 | 0 | 0 | 0 | 0 | | CHROMIUM | 267.70 | 0.000330 | 0 | 0 | 0 | 0 | | COBALT | 228.60 | 0 | -0.000983 | 0 | 0.000175 | 0 | | COPPER | 224.70 | 0 | 0.00200 | 0 | -0.0120 | 0 | | IRON | 261.10 | 0 | 0 | 0 | 0 | 0 | | LEAD | 220.30 | 0 | -0.00280 | 0 | 0.000110 | 0 | | LITHIUM | 670.70 | 0 | 0 | 0 | 0 | 0 | | MAGNESIUM | 279.00 | -0.00190 | -0.0130 | 0 | 0 | 0 | | MANGANESE | 257.60 | 0 | 0 | 0 | 0 | 0 | | MOLYBDENUM | 202.00 | 0 | 0 | 0 | 0 | 0 | | NICKEL | 231.60 | 0 | 0 | 0 | 0 | 0 | | PHOSPHORUS | 214.90 | 0 | 0.00710 | 0 | 0 | 0 | | POTASSIUM | 766.40 | 0 | 0 | 0 | 0 | 0 | | SELENIUM | 196.00 | 0.000800 | 0.000156 | 0 | 0 | 0 | | SILICON | 212.40 | 0 | 0.0187 | 0 | 0 | 0 | | SILVER | 328.00 | 0 | -0.0000440 | 0 | 0 | 0 | | SODIUM | 589.50 | 0 | 0 | 0 | 0 | 0 | | STRONTIUM | 407.70 | 0 | 0 | 0 | 0 | 0 | | THALLIUM | 190.80 | 0.00100 | 0 | 0 | 0 | 0 | | TIN | 189.90 | 0 | 0 | 0 | 0 | 0 | | TITANIUM | 337.20 | 0 | -0.000153 | 0 | 0 | 0 | | VANADIUM | 292.40 | -0.000110 | -0.00778 | 0 | 0 | 0 | | ZINC | 206.20 | 0 | 0 | 0 | 0 | 0 | | ZIRCONIUM | 339.10 | 0 | 0 | 0 | 0 | 0 | CORR_FACTORS - Modified 03/05/2008 PDF File ID: 4459474 Report generated: 10/23/2015 15:35 Login Number: L15101055 Date: 01/02/2015 Insturment ID: ICP-THERMO3 Method: 6010C | Analyte | Wave
Length | PB | SB | SE | SI | SN | |------------|----------------|---------|----|----|----------|----------| | ALUMINUM | 308.20 | 0 | 0 | | | 0 | | ANTIMONY | 206.80 | 0 | 0 | 0 | 0 | -0.00840 | | ARSENIC | 189.00 | 0 | 0 | 0 | 0 | 0 | | BARIUM | 455.40 | 0 | 0 | 0 | 0 | 0 | | BERYLLIUM | 313.10 | 0 | 0 | 0 | 0 | 0 | | BORON | 249.60 | 0 | 0 | 0 | 0 | 0 | | CADMIUM | 228.80 | 0 | 0 | 0 | 0 | 0 | | CALCIUM | 422.60 | 0 | 0 | 0 | 0 | 0 | | CHROMIUM | 267.70 | 0 | 0 | 0 | 0 | 0 | | COBALT | 228.60 | 0 | 0 | 0 | 0 | 0 | | COPPER | 224.70 | 0.00300 | 0 | 0 | 0 | 0 | | IRON | 261.10 | 0 | 0 | 0 | 0 | 0 | | LEAD | 220.30 | 0 | 0 | 0 | 0.000112 | 0 | | LITHIUM | 670.70 | 0 | 0 | 0 | 0 | 0 | | MAGNESIUM | 279.00 | 0 | 0 | 0 | 0 | 0 | | MANGANESE | 257.60 | 0 | 0 | 0 | 0 | 0 | | MOLYBDENUM | 202.00 | 0 | 0 | 0 | 0 | 0 | | NICKEL | 231.60 | 0 | 0 | 0 | 0 | 0 | | PHOSPHORUS | 214.90 | 0 | 0 | 0 | 0 | 0 | | POTASSIUM | 766.40 | 0 | 0 | 0 | 0 | 0 | | SELENIUM | 196.00 | 0 | 0 | 0 | 0 | 0 | | SILICON | 212.40 | 0 | 0 | 0 | 0 | 0 | | SILVER | 328.00 | 0 | 0 | 0 | 0 | 0 | | SODIUM | 589.50 | 0 | 0 | 0 | 0 | 0 | | STRONTIUM | 407.70 | 0 | 0 | 0 | 0 | 0 | | THALLIUM | 190.80 | 0 | 0 | 0 | 0 | 0 | | TIN | 189.90 | 0 | 0 | 0 | 0 | 0 | | TITANIUM | 337.20 | 0 | 0 | 0 | 0 | 0 | | VANADIUM | 292.40 | 0 | 0 | 0 | 0 | 0 | | ZINC | 206.20 | 0 | 0 | 0 | 0 | 0 | | ZIRCONIUM | 339.10 | 0 | 0 | 0 | 0 | 0 | CORR_FACTORS - Modified 03/05/2008 PDF File ID: 4459474 Report generated: 10/23/2015 15:35 Login Number: L15101055 Date: 01/02/2015 Insturment ID: ICP-THERMO3 Method: 6010C | Analyte | Wave
Length SR | | TI | TL | v | ZN | |------------|-------------------|---|------------|----|-----------|----| | ALUMINUM | 308.20 | 0 | 0 | 0 | 0.00300 | 0 | | ANTIMONY | 206.80 | 0 | -0.00199 | 0 | -0.00438 | 0 | | ARSENIC | 189.00 | 0 | 0 | 0 | 0.000107 | 0 | | BARIUM | 455.40 | 0 | 0 | 0 | 0 | 0 | | BERYLLIUM | 313.10 | 0 | -0.0000770 | 0 | 0.000220 | 0 | | BORON | 249.60 | 0 | 0 | 0 | 0 | 0 | | CADMIUM | 228.80 | 0 | 0 | 0 | 0.000102 | 0 | | CALCIUM | 422.60 | 0 | 0 | 0 | 0 | 0 | | CHROMIUM | 267.70 | 0 | 0.0000550 | 0 | 0 | 0 | | COBALT | 228.60 | 0 | 0.00158 | 0 | 0.0000200 | 0 | | COPPER | 224.70 | 0 | 0.000269 | 0 | 0 | 0 | | IRON | 261.10 | 0 | 0 | 0 | 0 | 0 | | LEAD | 220.30 | 0 | 0 | 0 | -0.000126 | 0 | | LITHIUM | 670.70 | 0 | 0 | 0 | 0 | 0 | | MAGNESIUM | 279.00 | 0 | -0.00290 | 0 | 0 | 0 | | MANGANESE | 257.60 | 0 | 0 | 0 | 0 | 0 | | MOLYBDENUM | 202.00 | 0 | 0 | 0 | -0.000110 | 0 | | NICKEL | 231.60 | 0 | 0 | 0 | 0 | 0 | | PHOSPHORUS | 214.90 | 0 | 0 | 0 | -0.00100 | 0 | | POTASSIUM | 766.40 | 0 | 0 | 0 | 0 | 0 | | SELENIUM | 196.00 | 0 | 0 | 0 | 0 | 0 | | SILICON | 212.40 | 0 | 0 | 0 | 0 | 0 | | SILVER | 328.00 | 0 | -0.00620 | 0 | -0.00617 | 0 | | SODIUM | 589.50 | 0 | 0 | 0 | 0 | 0 | | STRONTIUM | 407.70 | 0 | 0 | 0 | 0 | 0 | | THALLIUM | 190.80 | 0 | -0.00170 | 0 | -0.00710 | 0 | | TIN | 189.90 | 0 | -0.00190 | 0 | 0 | 0 | | TITANIUM | 337.20 | 0 | 0 | 0 | 0 | 0 | | VANADIUM | 292.40 | 0 | 0.000600 | 0 | 0 | 0 | | ZINC | 206.20 | 0 | 0 | 0 | 0 | 0 | | ZIRCONIUM | 339.10 | 0 | 0 | 0 | 0 | 0 | CORR_FACTORS - Modified 03/05/2008 PDF File ID: 4459474 Report generated: 10/23/2015 15:35 Login Number: L15101055 Insturment ID: ICP-THERMO3 Date: 01/02/2015 Method: 6010C | | Wave | | | | |------------|--------|----|--|--| | Analyte | Length | ZR | | | | ALUMINUM | 308.20 | 0 | | | | ANTIMONY | 206.80 | 0 | | | | ARSENIC | 189.00 | 0 | | | |
BARIUM | 455.40 | 0 | | | | BERYLLIUM | 313.10 | 0 | | | | BORON | 249.60 | 0 | | | | CADMIUM | 228.80 | 0 | | | | CALCIUM | 422.60 | 0 | | | | CHROMIUM | 267.70 | 0 | | | | COBALT | 228.60 | 0 | | | | COPPER | 224.70 | 0 | | | | IRON | 261.10 | 0 | | | | LEAD | 220.30 | 0 | | | | LITHIUM | 670.70 | 0 | | | | MAGNESIUM | 279.00 | 0 | | | | MANGANESE | 257.60 | 0 | | | | MOLYBDENUM | 202.00 | 0 | | | | NICKEL | 231.60 | 0 | | | | PHOSPHORUS | 214.90 | 0 | | | | POTASSIUM | 766.40 | 0 | | | | SELENIUM | 196.00 | 0 | | | | SILICON | 212.40 | 0 | | | | SILVER | 328.00 | 0 | | | | SODIUM | 589.50 | 0 | | | | STRONTIUM | 407.70 | 0 | | | | THALLIUM | 190.80 | 0 | | | | TIN | 189.90 | 0 | | | | TITANIUM | 337.20 | 0 | | | | VANADIUM | 292.40 | 0 | | | | ZINC | 206.20 | 0 | | | | ZIRCONIUM | 339.10 | 0 | | | CORR_FACTORS - Modified 03/05/2008 PDF File ID: 4459474 Report generated: 10/23/2015 15:35 #### Microbac Laboratories Inc. LINEAR RANGE (QUARTERLY) Login Number: L15101055 Date: 08/03/2015 Insturment ID: ICP-THERMO3 Method: 6010C | | Integration Time | Concentration | |------------|------------------|---------------| | Analyte | (Sec.) | (mg/L) | | Aluminum | 10.00 | 810.0 | | Antimony | 20.00 | 90.0 | | Arsenic | 10.00 | 90.0 | | Barium | 10.00 | 45.0 | | Beryllium | 10.00 | 9.0 | | Boron | 20.00 | 90.0 | | Cadmium | 20.00 | 9.0 | | Calcium | 5.00 | 540.0 | | Chromium | 20.00 | 45.0 | | Cobalt | 20.00 | 90.0 | | Copper | 20.00 | 180.0 | | Iron | 5.00 | 900.0 | | Lead | 20.00 | 225.0 | | Lithium | 5.00 | 90.0 | | Magnesium | 5.00 | 900.0 | | Manganese | 10.00 | 90.0 | | Molybdenum | 20.00 | 27.0 | | Nickel | 20.00 | 90.0 | | Phosphorus | 20.00 | 450.0 | | Potassium | 5.00 | 450.0 | | Selenium | 20.00 | 90.0 | | Silicon | 20.00 | 45.0 | | Silver | 10.00 | 9.0 | | Sodium | 5.00 | 450.0 | | Strontium | 5.00 | 9.0 | | Thallium | 20.00 | 18.0 | | Tin | 20.00 | 45.0 | | Titanium | 5.00 | 45.0 | | Vanadium | 20.00 | 27.0 | | Zinc | 20.00 | 45.0 | | Zirconium | 10.00 | 45.0 | #### Comments: All analytes passed acceptance criteria at the specified concentration. LINEAR_RANGE - Modified 03/06/2008 PDF File ID: 4459473 Report generated: 10/23/2015 15:35 # **2.1.1.3 Raw Data** Sample Name: S0 Acquired: 10/23/2015 9:44:42 Type: Cal Method: ICP-THERMO3_6010_200.7WATER_3YLINES(v526) Mode: IR Corr. Factor: 1.000000 User: JYH Custom ID1: Custom ID2: Custom ID3: Comment: | Elem | Ag3280 | Al3082 | As1890 | B_2496 | Ba4554 | Be3131 | Ca4226 | |--------|----------------|--------|----------------|--------|--------|--------|--------| | Units | Cts/S | Avg | 00027 | .00054 | .00003 | .00011 | .01873 | .00026 | .00106 | | Stddev | .00002 | .00000 | .00003 | .00002 | .00072 | .00001 | .00110 | | %RSD | 5.9925 | .59339 | 117.60 | 15.421 | 3.8550 | 5.0384 | 103.60 | | #1 | 00028 | .00055 | .00006 | .00009 | .01945 | .00027 | .00009 | | #2 | 00026 | .00054 | .00002 | .00012 | .01874 | .00025 | .00084 | | #3 | 00029 | .00054 | 00000 | .00013 | .01801 | .00025 | .00225 | | Elem | Cd2288 | Co2286 | Cr2677 | Cu2247 | Fe2611 | K_7664 | Li6707 | | Units | Cts/S | Avg | .00024 | .00001 | 00006 | .00023 | 00008 | 01460 | 01493 | | Stddev | .00009 | .00007 | .00002 | .00005 | .00014 | .00186 | .00368 | | %RSD | 36.990 | 1114.2 | 31.128 | 21.824 | 176.30 | 12.763 | 24.650 | | #1 | .00022 | .00007 | 00007 | .00022 | 00022 | 01434 | 01082 | | #2 | .00033 | .00001 | 00008 | .00028 | .00006 | 01289 | 01604 | | #3 | .00016 | 00006 | 00004 | .00018 | 00007 | 01659 | 01792 | | Elem | Mg2790 | Mn2576 | Mo2020 | Na5895 | Ni2316 | P_2149 | Pb2203 | | Units | Cts/S | Avg | 00014 | .00071 | . 00004 | 01015 | 00035 | .00003 | 00038 | | Stddev | .00058 | .00026 | .00003 | .00209 | .00009 | .00002 | .00010 | | %RSD | 422.85 | 36.407 | 73.108 | 20.556 | 24.185 | 73.160 | 27.436 | | #1 | 00002 | .00093 | .00004 | 00833 | 00033 | .00006 | 00031 | | #2 | 00076 | .00079 | .00006 | 01242 | 00029 | .00002 | 00032 | | #3 | .00037 | .00042 | .00001 | 00970 | 00045 | .00002 | 00050 | | Elem | Sb2068 | Se1960 | Si2124 | Sn1899 | Sr4077 | Ti3372 | TI1908 | | Units | Cts/S | Avg | . 00003 | .00001 | . 00071 | .00003 | .00086 | 00124 | 00000 | | Stddev | .00005 | .00009 | .00005 | .00003 | .00044 | .00028 | .00003 | | %RSD | 155.59 | 1069.1 | 6.6249 | 87.289 | 51.724 | 22.378 | 1123.8 | | #1 | .00007 | .00007 | .00066 | .00006 | .00111 | 00113 | 00002 | | #2 | 00003 | .00006 | .00071 | .00001 | .00112 | 00103 | .00003 | | #3 | .00007 | 00010 | .00076 | .00002 | .00035 | 00155 | 00001 | Approved: October 26, 2015 J'ye 1hu Method: ICP-THERMO3_6010_200.7WATER_3YLINES(v526) Mode: IR Corr. Factor: 1.000000 User: JYH Custom ID1: Custom ID2: Custom ID3: Comment: | Elem | V_2924 | Zn2062 | Zr3391 | |-----------|----------------|---------------|---------------| | Units | Cts/S | Cts/S | Cts/S | | Avg | . 00014 | .00009 | 00476 | | Stddev | .00001 | .00001 | .00026 | | %RSD | 7.3253 | 9.7398 | 5.3847 | | #1 | .00014 | .00009 | 00474 | | #2 | .00015 | .00008 | 00451 | | #3 | .00013 | .00010 | 00502 | | Int. Std. | Y_2243 | Y_3600 | Y_3774 | | Units | Cts/S | Cts/S | Cts/S | | Avg | 11595. | 99656. | 4214.3 | | Stddev | 10. | 364. | 31.0 | | %RSD | .08955 | .36545 | .73646 | | #1 | 11588. | 99248. | 4211.4 | | #2 | 11591. | 99949. | 4246.7 | | #3 | 11607. | 99772. | 4184.8 | Approved: October 26, 2015 Method: ICP-THERMO3_6010_200.7WATER_3YLINES(v526) Mode: IR Corr. Factor: 1.000000 User: JYH Custom ID1: Custom ID2: Custom ID3: Comment: | Elem | Ag3280 | Al3082 | Ba4554 | Be3131 | Ca4226 | Cd2288 | Co2286 | |--|--|---|---|--|----------------|----------------|----------------| | Units | Cts/S | Avg | 00014 | .00110 | .03325 | .00053 | . 00520 | . 00036 | .00062 | | Stddev | .00008 | .00003 | .00102 | .00002 | .00041 | .00004 | .00006 | | %RSD | 58.787 | 3.1190 | 3.0735 | 3.7707 | 7.7877 | 10.986 | 9.8751 | | #1 | 00011 | .00108 | .03214 | .00054 | .00537 | .00035 | .00060 | | #2 | 00007 | .00109 | .03346 | .00051 | .00474 | .00040 | .00069 | | #3 | 00022 | .00114 | .03415 | .00055 | .00550 | .00032 | .00057 | | Elem | Cr2677 | Cu2247 | Fe2611 | K_7664 | Mn2576 | Mo2020 | Na5895 | | Units | Cts/S | Avg | .00006 | .00064 | .00016 | . 00347 | . 00151 | . 00103 | . 04578 | | Stddev | .00004 | .00005 | .00023 | .00196 | .00039 | .00003 | .00230 | | %RSD | 60.923 | 8.2709 | 144.52 | 56.351 | 25.644 | 2.5445 | 5.0326 | | #1 | .00002 | .00070 | .00026 | .00127 | .00189 | .00102 | .04464 | | #2 | .00007 | .00061 | 00010 | .00413 | .00150 | .00106 | .04426 | | #3 | .00009 | .00061 | .00032 | .00502 | .00112 | .00102 | .04843 | | Elem | Ni2316 | P_2149 | Pb2203 | Sb2068 | Si2124 | Sn1899 | Sr4077 | | Units | Cts/S | Avg | .00013 | .00067 | 00028 | . 00024 | . 00175 | . 00045 | . 02755 | | Stddev | .00012 | .00002 | .00008 | .00001 | .00003 | .00003 | .00034 | | %RSD | 92.153 | 2.3411 | 27.201 | 6.0598 | 1.8524 | 6.5928 | 1.2182 | | #1 | .00026 | .00068 | 00037 | .00022 | .00172 | .00048 | .02780 | | #2 | .00012 | .00068 | 00024 | .00025 | .00175 | .00042 | .02768 | | #3 | .00002 | .00065 | 00024 | .00025 | .00179 | .00044 | .02717 | | Elem
Units
Avg
Stddev
%RSD | Ti3372
Cts/S
00118
.00022
18.983 | V_2924
Cts/S
. 00042
.00002
3.6788 | Zn2062
Cts/S
.00218
.00009
4.2810 | Zr3391
Cts/S
00465
.00069
14.802 | | | | | #1
#2
#3 | 00104
00144
00107 | .00043
.00043
.00041 | .00217
.00228
.00210 | 00417
00433
00544 | | | | Approved: October 26, 2015 Sample Name: S1 Acquired: 10/23/2015 9:48:48 Type: Cal Method: ICP-THERMO3_6010_200.7WATER_3YLINES(v526) Mode: IR Corr. Factor: 1.000000 User: JYH Custom ID1: Custom ID2: Custom ID3: Comment: | Int. Std. | Y_2243 | Y_3600 | Y_3774 | |-----------|--------|--------|---------------| | Units | Cts/S | Cts/S | Cts/S | | Avg | 11626. | 99727. | 4177.5 | | Stddev | 25. | 256. | 13.3 | | %RSD | .21373 | .25662 | .31941 | | #1 | 11600. | 99466. | 4181.1 | | #2 | 11629. | 99739. | 4188.7 | | #3 | 11649. | 99977. | 4162.7 | Approved: October 26, 2015 J'ye lon Method: ICP-THERMO3_6010_200.7WATER_3YLINES(v526) Mode: IR Corr. Factor: 1.000000 User: JYH Custom ID1: Custom ID2: Custom ID3: Comment: | Elem | Ag3280 | Al3082 | As1890 | B_2496 | Ba4554 | Be3131 | Ca4226 | | |--------|----------------|----------------|----------------|----------------|----------------|----------------|----------------|--| | Units | Cts/S | | Avg | 00000 | . 00167 | .00008 | . 00022 | . 04942 | .00078 | . 00791 | | | Stddev | .00002 | .00004 | .00004 | .00003 | .00170 | .00003 | .00057 | | | %RSD | 570.67 | 2.1092 | 44.865 | 12.452 | 3.4390 | 3.5157 | 7.1477 | | | #1 | 00001 | .00167 | .00009 | .00021 | .04866 | .00080 | .00733 | | | #2 | .00002 | .00163 | .00011 | .00021 | .05137 | .00077 | .00794 | | | #3 | 00002 | .00170 | .00004 | .00025 | .04823 | .00075 | .00845 | | | Elem | Cd2288 | Co2286 | Cr2677 | Cu2247 | Fe2611 | K_7664 | Li6707 | | | Units | Cts/S | | Avg | .00051 | .00098 | . 00021 | .00095 | .00089 | .02313 | .00062 | | | Stddev | .00006 | .00006 | .00002 | .00012 | .00020 | .00143 | .00365 | | | %RSD | 10.852 | 6.5132 | 10.395 | 12.713 | 21.889 | 6.1648 | 586.36 | | | #1 | .00058 | .00105 | .00019 | .00090 | .00085 | .02167 | .00354 | | | #2 | .00048 | .00096 | .00021 | .00086 | .00073 | .02320 | .00180 | | | #3 | .00048 | .00092 | .00023 | .00109 | .00111 | .02452 | 00347 | | | Elem | Mg2790 | Mn2576 | Mo2020 | Na5895 | Ni2316 | P_2149 | Pb2203 | | | Units | Cts/S | | Avg | . 00018 | . 00241 | . 00206 | .09808 | .00051 | . 00139 | 00005 | | | Stddev | .00019 | .00026 | .00005 | .00196 |
.00004 | .00002 | .00017 | | | %RSD | 107.87 | 10.709 | 2.5452 | 1.9974 | 7.3958 | 1.5897 | 346.01 | | | #1 | .00032 | .00234 | .00206 | .09591 | .00051 | .00137 | .00014 | | | #2 | 00004 | .00219 | .00211 | .09972 | .00054 | .00141 | 00012 | | | #3 | .00026 | .00269 | .00201 | .09862 | .00047 | .00138 | 00016 | | | Elem | Sb2068 | Se1960 | Si2124 | Sn1899 | Sr4077 | Ti3372 | TI1908 | | | Units | Cts/S | | Avg | . 00050 | . 00010 | . 00278 | .00082 | . 05296 | . 00025 | .00009 | | | Stddev | .00006 | .00001 | .00009 | .00002 | .00011 | .00047 | .00001 | | | %RSD | 11.520 | 11.065 | 3.3098 | 2.7324 | .21537 | 184.47 | 10.701 | | | #1 | .00044 | .00010 | .00271 | .00083 | .05304 | .00069 | .00009 | | | #2 | .00051 | .00009 | .00276 | .00080 | .05301 | 00024 | .00010 | | | #3 | .00056 | .00011 | .00289 | .00084 | .05283 | .00032 | .00008 | | Approved: October 26, 2015 Sample Name: S2 Acquired: 10/23/2015 9:52:42 Type: Cal Method: ICP-THERMO3_6010_200.7WATER_3YLINES(v526) Mode: IR Corr. Factor: 1.000000 User: JYH Custom ID1: Custom ID2: Custom ID3: Comment: | Elem | V_2924 | Zn2062 | Zr3391 | |-----------|----------------|----------------|---------------| | Units | Cts/S | Cts/S | Cts/S | | Avg | . 00072 | . 00426 | 00401 | | Stddev | .00000 | .00001 | .00124 | | %RSD | .11171 | .34146 | 30.907 | | #1 | .00072 | .00424 | 00443 | | #2 | .00072 | .00427 | 00498 | | #3 | .00071 | .00427 | 00261 | | Int. Std. | Y_2243 | Y_3600 | Y_3774 | | Units | Cts/S | Cts/S | Cts/S | | Avg | 11624. | 99654. | 4162.7 | | Stddev | 8. | 196. | 24.0 | | %RSD | .06562 | .19677 | .57681 | | #1 | 11616. | 99487. | 4135.0 | | #2 | 11623. | 99607. | 4177.4 | | #3 | 11631. | 99870. | 4175.7 | Approved: October 26, 2015 Sample Name: S3 Acquired: 10/23/2015 9:56:46 Type: Cal Method: ICP-THERMO3_6010_200.7WATER_3YLINES(v526) Mode: IR Corr. Factor: 1.000000 User: JYH Custom ID1: Custom ID2: Custom ID3: Comment: | Elem | Ag3280 | Al3082 | As1890 | B_2496 | Ba4554 | Be3131 | Ca4226 | Cd2288 | |--------|----------------|----------------|----------------|----------------|----------------|----------------|----------------|----------------| | Units | Cts/S | Avg | .01674 | . 06912 | . 00638 | . 00675 | 2.0046 | . 03614 | . 45792 | .01770 | | Stddev | .00006 | .00002 | .00007 | .00004 | .0051 | .00006 | .00043 | .00004 | | %RSD | .36830 | .02702 | 1.0977 | .58980 | .25625 | .17372 | .09377 | .25422 | | #1 | .01671 | .06912 | .00632 | .00671 | 2.0105 | .03621 | .45750 | .01771 | | #2 | .01681 | .06914 | .00636 | .00679 | 2.0022 | .03612 | .45790 | .01765 | | #3 | .01669 | .06911 | .00645 | .00676 | 2.0012 | .03608 | .45835 | .01773 | | Elem | Co2286 | Cr2677 | Cu2247 | Fe2611 | K_7664 | Li6707 | Mg2790 | Mn2576 | | Units | Cts/S | Avg | . 05249 | . 01766 | . 04379 | . 06472 | 2.1274 | . 79703 | .03978 | . 10695 | | Stddev | .00021 | .00005 | .00015 | .00023 | .0053 | .00098 | .00070 | .00048 | | %RSD | .39708 | .26793 | .33176 | .36258 | .24740 | .12307 | 1.7476 | .45326 | | #1 | .05227 | .01769 | .04363 | .06467 | 2.1313 | .79670 | .03898 | .10687 | | #2 | .05269 | .01760 | .04390 | .06497 | 2.1214 | .79814 | .04018 | .10747 | | #3 | .05251 | .01767 | .04385 | .06451 | 2.1294 | .79626 | .04018 | .10651 | | Elem | Mo2020 | Na5895 | Ni2316 | P_2149 | Pb2203 | Sb2068 | Se1960 | Si2124 | | Units | Cts/S | Avg | . 13105 | 6.5176 | . 04767 | . 08644 | . 02165 | . 02482 | . 00453 | . 13543 | | Stddev | .00020 | .0078 | .00016 | .00016 | .00018 | .00008 | .00007 | .00022 | | %RSD | .15411 | .11937 | .33212 | .18801 | .85355 | .33583 | 1.6515 | .16473 | | #1 | .13124 | 6.5262 | .04768 | .08661 | .02178 | .02488 | .00447 | .13531 | | #2 | .13108 | 6.5111 | .04782 | .08641 | .02144 | .02485 | .00451 | .13530 | | #3 | .13084 | 6.5154 | .04750 | .08629 | .02173 | .02472 | .00462 | .13569 | | Elem | Sn1899 | Sr4077 | Ti3372 | TI1908 | V_2924 | Zn2062 | Zr3391 | | | Units | Cts/S | | Avg | . 04950 | 3.3435 | .09898 | . 01188 | .03840 | . 27253 | . 00038 | | | Stddev | .00014 | .0030 | .00019 | .00005 | .00006 | .00059 | .00047 | | | %RSD | .29281 | .09104 | .19652 | .40338 | .15095 | .21551 | 126.04 | | | #1 | .04966 | 3.3470 | .09876 | .01187 | .03845 | .27294 | .00045 | | | #2 | .04943 | 3.3418 | .09912 | .01194 | .03840 | .27279 | .00081 | | | #3 | .04940 | 3.3416 | .09906 | .01185 | .03834 | .27185 | 00013 | | Method: ICP-THERMO3_6010_200.7WATER_3YLINES(v526) Mode: IR Corr. Factor: 1.000000 User: JYH Custom ID1: Custom ID2: Custom ID3: Comment: | Int. Std. | Y_2243 | Y_3600 | Y_3774 | |-----------|--------|----------------|---------------| | Units | Cts/S | Cts/S | Cts/S | | Avg | 11411. | 96622 . | 4193.4 | | Stddev | 10. | 202. | 6.6 | | %RSD | .09093 | .20947 | .15641 | | #1 | 11421. | 96524. | 4193.3 | | #2 | 11400. | 96854. | 4200.0 | | #3 | 11411 | 96487 | 4186.9 | Approved: October 26, 2015 Sample Name: S4 Acquired: 10/23/2015 10:00:32 Type: Cal Method: ICP-THERMO3_6010_200.7WATER_3YLINES(v526) Mode: IR Corr. Factor: 1.000000 User: JYH Custom ID1: Custom ID2: Custom ID3: Comment: | Elem | Ag3280 | Al3082 | As1890 | B_2496 | Ba4554 | Be3131 | Ca4226 | Cd2288 | |---------------|--------------------------|--------------------------|--------------------------|--------------------------|---------------------|--------------------------|--------------------------|--------------------------| | Units | Cts/S | Avg
Stddev | . 03406
.00011 | . 13755
.00019 | . 01292
.00004 | . 01362
.00005 | 4.0269 .0008 | . 07267
.00007 | . 92175
.00206 | . 03530
.00006 | | %RSD | .31125 | .14028 | .27392 | .33734 | .02086 | .09648 | .22390 | .17740 | | 701100 | .01120 | .14020 | .27002 | .00704 | .02000 | .000+0 | .22000 | .17740 | | #1 | .03414 | .13776 | .01294 | .01368 | 4.0260 | .07274 | .92028 | .03523 | | #2 | .03410 | .13749 | .01294 | .01360 | 4.0272 | .07268 | .92086 | .03535 | | #3 | .03394 | .13739 | .01288 | .01360 | 4.0276 | .07260 | .92411 | .03533 | | Elem | Co2286 | Cr2677 | Cu2247 | Fe2611 | K_7664 | Li6707 | Mg2790 | Mn2576 | | Units | Cts/S | Avg | .10438 | .03567 | .08692 | .13123 | 4.3058 | 1.6176 | .08085 | .21503 | | Stddev | .00009 | .00007 | .00011 | .00052 | .0085 | .0013 | .00054 | .00172 | | %RSD | .08337 | .20722 | .12549 | .39397 | .19791 | .07961 | .66936 | .79917 | | #1 | .10447 | .03569 | .08705 | .13141 | 4.3127 | 1.6191 | .08077 | .21324 | | #2 | .10438 | .03559 | .08689 | .13064 | 4.2962 | 1.6167 | .08035 | .21518 | | #3 | .10429 | .03574 | .08684 | .13162 | 4.3084 | 1.6171 | .08143 | .21667 | | Elem | Mo2020 | Na5895 | Ni2316 | P_2149 | Pb2203 | Sb2068 | Se1960 | Si2124 | | Units | Cts/S | Avg | .26297 | 13.080 | .09521 | .17508 | .04311 | .04998 | .00894 | .27054 | | Stddev | .00042 | .022 | .00033 | .00030 | .00014 | .00007 | .00007 | .00023 | | %RSD | .16047 | .16754 | .34821 | .17199 | .33475 | .14511 | .76268 | .08319 | | #1 | .26338 | 13.073 | .09558 | .17526 | .04315 | .04989 | .00900 | .27040 | | #2 | .26298 | 13.062 | .09512 | .17526 | .04322 | .05001 | .00887 | .27043 | | #3 | .26254 | 13.104 | .09493 | .17473 | .04295 | .05003 | .00896 | .27080 | | Elem | Sn1899 | Sr4077 | Ti3372 | TI1908 | V_2924 | Zn2062 | Zr3391 | | | Units | Cts/S | | Avg | .09902 | 6.7596 | .20379 | .02323 | .07754 | .54303 | .00809 | | | Stddev | .00018 | .0077 | .00063 | .00007 | .00010 | .00066 | .00021 | | | %RSD | .18103 | .11422 | .30987 | .31715 | .12926 | .12166 | 2.6256 | | | #1 | .09896 | 6.7512 | .20309 | .02324 | .07764 | .54342 | .00828 | | | #2 | .09923 | 6.7614 | .20396 | .02329 | .07752 | .54339 | .00812 | | | #3 | .09889 | 6.7663 | .20431 | .02315 | .07745 | .54226 | .00786 | | Approved: October 26, 2015 Sample Name: S4 Acquired: 10/23/2015 10:00:32 Type: Cal Method: ICP-THERMO3_6010_200.7WATER_3YLINES(v526) Mode: IR Corr. Factor: 1.000000 User: JYH Custom ID1: Custom ID2: Custom ID3: Comment: | Int. Std. | Y_2243 | Y_3600 | Y_3774 | |-----------|--------|--------|---------------| | Units | Cts/S | Cts/S | Cts/S | | Avg | 11222. | 94660. | 4128.9 | | Stddev | 7. | 100. | 16.0 | | %RSD | .06435 | .10523 | .38809 | | #1 | 11216. | 94774. | 4122.1 | | #2 | 11221. | 94588. | 4147.3 | | #3 | 11230 | 94620 | 4117.5 | Approved: October 26, 2015 | Sample Nam
Method: ICP-
User: JYH
Comment: | | | | LINES(v526) | pe: QC
) Mode:
tom ID3: | CONC (| Corr. Factor: | 1.00000(| |---|----------------|----------------|----------------|----------------|-------------------------------|----------------|----------------|----------| | Elem | Ag3280 | Al3082 | As1890 | B_2496 | Ba4554 | Be3131 | Ca4226 | | | Units | ppm | | Avg | . 39783 | 10.324 | . 41308 | . 50792 | 1.0358 | . 05106 | 10.220 | | | Stddev | .00055 | .003 | .00261 | .00136 | .0056 | .00003 | .052 | | | %RSD | .13904 | .02689 | .63274 | .26872 | .54543 | .06341 | .50748 | | | #1 | .39795 | 10.327 | .41244 | .50950 | 1.0394 | .05110 | 10.278 | | | #2 | .39722 | 10.322 | .41596 | .50711 | 1.0293 | .05105 | 10.179 | | | #3 | .39831 | 10.324 | .41085 | .50716 | 1.0387 | .05104 | 10.202 | | | Check ?
Value
Range | Chk Pass | | Elem | Cd2288 | Co2286 | Cr2677 | Cu2247 | Fe2611 | K_7664 | Li6707 | | | Units | ppm | | Avg | . 05058 | . 20308 | . 50803 | . 51004 | 4.0492 | 50.783 | 1.0199 | | | Stddev | .00026 | .00064 | .00087 | .00165 | .0138 | .196 | .0071 | | | %RSD | .50974 | .31566 | .17087 | .32335 | .34169 | .38569 | .69436 | | | #1 | .05042 | .20269 | .50735 | .50967 | 4.0629 | 50.985 | 1.0273 | | | #2 | .05044 | .20382 | .50773 | .51184 | 4.0353 | 50.594 | 1.0132 | | | #3 | .05088 | .20273 | .50901 | .50860 |
4.0494 | 50.769 | 1.0193 | | | Check ?
Value
Range | Chk Pass | | Elem | Mg2790 | Mn2576 | Mo2020 | Na5895 | Ni2316 | P_2149 | Pb2203 | | | Units | ppm | | Avg | 10.338 | . 51445 | . 95744 | 51.020 | . 51123 | 10.043 | . 50966 | | | Stddev | .105 | .00448 | .00230 | .246 | .00121 | .024 | .00505 | | | %RSD | 1.0150 | .87114 | .24048 | .48188 | .23748 | .24386 | .99150 | | | #1 | 10.395 | .51275 | .95953 | 51.221 | .51214 | 10.069 | .50856 | | | #2 | 10.217 | .51107 | .95781 | 50.746 | .50985 | 10.039 | .51517 | | | #3 | 10.402 | .51953 | .95497 | 51.095 | .51169 | 10.021 | .50525 | | | Check ?
Value
Range | Chk Pass | | Sample Name: ICV Acquired: 10/23/2015 10:04:16 Type: QC Method: ICP-THERMO3_6010_200.7WATER_3YLINES(v526) Mode: CONC Corr. Factor: 1.000000 User: JYH Custom ID1: Custom ID2: Custom ID3: Comment: | | | | | | | | | |---|---|---|---|--|---|---|---|--| | Elem
Units
Avg
Stddev
%RSD | Sb2068
ppm
1.2129
.0086
.70787 | Se1960
ppm
. 40184
.00755
1.8794 | Si2124
ppm
F 5.3066
.0118
.22261 | Sn1899
ppm
1.0337
.0015
.14487 | Sr4077
ppm
1.0077
.0053
.52715 | Ti3372
ppm
1.0122
.0030
.29597 | TI1908
ppm
. 51970
.00277
.53337 | | | #1
#2
#3 | 1.2214
1.2130
1.2042 | .40939
.40184
.39429 | 5.2954
5.3055
5.3189 | 1.0353
1.0334
1.0323 | 1.0113
1.0016
1.0102 | 1.0092
1.0122
1.0152 | .51862
.51764
.52285 | | | Check ?
Value
Range | Chk Pass | Chk Pass | Chk Fail
5.0000
5.0000% | Chk Pass | Chk Pass | Chk Pass | Chk Pass | | | Elem
Units
Avg
Stddev
%RSD | V_2924
ppm
1.0080
.0007
.07290 | Zn2062
ppm
1.0218
.0022
.21630 | Zr3391
ppm
F . 43722
.14691
33.601 | | | | | | | #1
#2
#3 | 1.0080
1.0073
1.0088 | 1.0233
1.0228
1.0192 | .31847
.39169
.60151 | | | | | | | Check ?
Value
Range | Chk Pass | Chk Pass | Chk Fail
1.0000
-5.0000% | | | | | | | Int. Std.
Units
Avg
Stddev
%RSD | Y_2243
Cts/S
11414.
12.
.10554 | Y_3600
Cts/S
96389.
278.
.28826 | Y_3774
Cts/S
4156.3
22.8
.54738 | | | | | | | #1
#2
#3 | 11407.
11428.
11407. | 96673.
96376.
96118. | 4135.1
4180.3
4153.6 | | | | | | | Sample Nam
Method: ICP
User: JYH
Comment: | | | | LINES(v526) | rpe: Blank
) Mode:
tom ID3: | CONC (| Corr. Factor: | 1.00000(| |--|----------------|----------------|----------------|----------------|-----------------------------------|----------------|----------------|----------| | Elem | Ag3280 | Al3082 | As1890 | B_2496 | Ba4554 | Be3131 | Ca4226 | | | Units | ppm | | Avg | . 00054 | 00201 | 00316 | .00382 | .00057 | .00002 | .01606 | | | Stddev | .00040 | .00518 | .00258 | .00093 | .00126 | .00008 | .02776 | | | %RSD | 74.335 | 257.30 | 81.568 | 24.350 | 222.50 | 368.74 | 172.83 | | | #1 | .00099 | 00795 | 00488 | .00399 | .00144 | 00007 | 01364 | | | #2 | .00038 | .00032 | 00020 | .00281 | 00088 | .00008 | .04136 | | | #3 | .00024 | .00159 | 00441 | .00465 | .00113 | .00005 | .02046 | | | Check ?
High Limit
Low Limit | Chk Pass | | Elem | Cd2288 | Co2286 | Cr2677 | Cu2247 | Fe2611 | K_7664 | Li6707 | | | Units | ppm | | Avg | . 00009 | .00050 | .00023 | 00064 | 00970 | . 15986 | . 00184 | | | Stddev | .00007 | .00014 | .00073 | .00037 | .02012 | .01584 | .00192 | | | %RSD | 74.492 | 28.337 | 320.47 | 57.693 | 207.42 | 9.9082 | 104.23 | | | #1 | .00004 | .00034 | 00008 | 00077 | 03237 | .15064 | .00043 | | | #2 | .00007 | .00055 | .00106 | 00022 | .00607 | .17815 | .00402 | | | #3 | .00017 | .00062 | 00030 | 00093 | 00281 | .15080 | .00106 | | | Check ?
High Limit
Low Limit | Chk Pass | | Elem | Mg2790 | Mn2576 | Mo2020 | Na5895 | Ni2316 | P_2149 | Pb2203 | | | Units | ppm | | Avg | 02999 | . 00189 | . 00146 | . 01750 | .00052 | . 00144 | 00086 | | | Stddev | .04794 | .00099 | .00022 | .01955 | .00040 | .00332 | .00242 | | | %RSD | 159.82 | 52.564 | 15.309 | 111.69 | 76.603 | 230.29 | 280.14 | | | #1 | .02443 | .00121 | .00151 | .03531 | .00062 | .00358 | .00191 | | | #2 | 06596 | .00142 | .00165 | 00342 | .00086 | 00238 | 00195 | | | #3 | 04845 | .00302 | .00122 | .02062 | .00008 | .00313 | 00255 | | | Check ?
High Limit
Low Limit | Chk Pass | | • | | | | | | | | | | |---|---|---|---|--|---|--|--|--|--| | Elem
Units
Avg
Stddev
%RSD | Sb2068
ppm
. 00259
.00420
161.89 | Se1960
ppm
.00170
.00490
288.05 | Si2124
ppm
00274
.00145
53.056 | Sn1899
ppm
00007
.00062
830.76 | Sr4077
ppm
. 00017
.00009
50.445 | Ti3372
ppm
00194
.00144
73.977 | TI1908
ppm
00232
.00318
137.14 | | | | #1
#2
#3 | 00224
.00472
.00530 | .00639
.00211
00339 | 00283
00124
00414 | 00052
00034
.00064 | .00012
.00027
.00012 | 00197
00336
00049 | 00195
.00066
00567 | | | | Check ?
High Limit
Low Limit | Chk Pass | | | Elem
Units
Avg
Stddev
%RSD | V_2924
ppm
. 00007
.00066
887.54 | Zn2062
ppm
00006
.00017
302.16 | Zr3391
ppm
F .14522
.05506
37.913 | | | | | | | | #1
#2
#3 | .00004
.00075
00057 | 00022
00008
.00013 | .17440
.08172
.17956 | | | | | | | | Check ?
High Limit
Low Limit | Chk Pass | Chk Pass | Chk Fail
.04000
04000 | | | | | | | | Int. Std.
Units
Avg
Stddev
%RSD | Y_2243
Cts/S
11586.
18.
.15642 | Y_3600
Cts/S
99193.
227.
.22866 | Y_3774
Cts/S
4151.5
18.2
.43781 | | | | | | | | #1
#2
#3 | 11576.
11607.
11576. | 98943.
99386.
99249. | 4131.0
4165.5
4158.0 | | | | | | | | Sample Name: LLICV Acquired: 10/23/2015 10:12:05 Type: Unk Method: ICP-THERMO3_6010_200.7WATER_3YLINES(v526) Mode: CONC Corr. Factor: 1.0000 User: JYH Custom ID1: Custom ID2: Custom ID3: Comment: | | | | | | | | | : 1.00000(| |--|---|---|---------------------------------|---------------------------------|---|---|---------------------------------|---|------------| | Elem
Units
Avg
Stddev
%RSD | Ag3280
ppm
. 00914
.00063
6.8771 | Al3082
ppm
. 17038
.00685
4.0189 | ppm
. 00443
.00211 | ppm
. 07842
.00368 | Ba4554
ppm
. 00835
.00091
10.891 | Be3131
ppm
. 00156
.00005
3.0669 | . 41166
.01157 | Cd2288
ppm
. 00088
.00024
27.612 | | | #1
#2
#3 | .00858
.00902
.00982 | .17269
.16268
.17578 | .00444 | .07847 | .00824
.00931
.00750 | .00154
.00161
.00153 | .39870
.42095
.41534 | .00097
.00106
.00060 | | | Check ?
High Limit
Low Limit | Chk Pass | | Elem
Units
Avg
Stddev
%RSD | Co2286
ppm
. 00442
.00011
2.4633 | Cr2677
ppm
. 00422
.00071
16.818 | ppm
. 00388
.00059 | ppm
. 07349
.01212 | K_7664
ppm
. 94789
.00554
.58403 | Li6707
ppm
. 08902
.00274
3.0826 | ppm
. 33473
.05376 | Mn2576
ppm
. 00701
.00135
19.225 | | | #1
#2
#3 | .00455
.00437
.00435 | .00502
.00397
.00367 | .00445 | .07895 | .95231
.94969
.94168 | .09179
.08898
.08630 | .36087
.37041
.27290 | .00714
.00560
.00829 | | | Check ?
High Limit
Low Limit | Chk Pass | | Elem
Units
Avg
Stddev
%RSD | Mo2020
ppm
. 00836
.00018
2.1514 | Na5895
ppm
. 43263
.02623
6.0637 | ppm
. 01746 | _ ppm | Pb2203
ppm
. 01048
.00297
28.321 | Sb2068
ppm
. 07812
.00663
8.4923 | ppm | Si2124
ppm
. 78338
.00049
.06241 | | | #1
#2
#3 | .00856
.00822
.00829 | .40328
.45380
.44081 | | .76361
.76848
.76145 | .01245
.00706
.01191 | .07053
.08102
.08280 | .02014
.01832
.01169 | .78348
.78285
.78381 | | | Check ?
High Limit
Low Limit | Chk Pass | Sample Name: LLICV Acquired: 10/23/2015 10:12:05 Type: Unk Method: ICP-THERMO3_6010_200.7WATER_3YLINES(v526) Mode: CONC Corr. Factor: 1.000000 Custom ID1: User: JYH Custom ID2: Custom ID3: Comment: Elem Sn1899 Sr4077 Ti3372 TI1908 V_2924 Zn2062 Zr3391 Units ppm ppm ppm ppm ppm ppm ppm Avg .40352 .04011 .02098
.17069 .00728 .01696 17.459 Stddev .00305 .00027 .00222 .00097 .00020 80000. .192 %RSD .75685 .67487 10.586 .56862 2.6904 .49736 1.1020 #1 .40577 .04008 .02128 .16960 .00748 .01705 17.314 #2 .40475 .03985 .01863 .17104 .00709 .01689 17.677 .40005 .04039 .02304 #3 .17144 .00727 .01693 17.386 Check? Chk Pass Chk Pass Chk Pass Chk Pass Chk Pass Chk Pass **High Limit** Low Limit Y_3774 Int. Std. Y_2243 Y 3600 Units Cts/S Cts/S Cts/S 11639. 99820. 4180.6 Avg Stddev 178. 10.5 14. %RSD .11658 .17862 .25150 #1 11652. 99710. 4189.8 #2 11625. 99724. 4169.1 #3 11639. 100030. 4182.8 Approved: October 26, 2015 | • | Sample Name: LLICV Acquired: 10/23/2015 10:16:09 Type: Unk Method: ICP-THERMO3_6010_200.7WATER_3YLINES(v526) Mode: CONC Corr. Factor: 1.000000 | | | | | | | | | | |------------------------------------|---|--------------------------|--------------------------|--------------------------------|--------------------------------|--------------------------------|--------------------------|--------------------------|--|--| | User: JYH | Custom | | Custom ID | • | Custom ID3 | | 0011.11 | 10000000 | | | | Comment: | | | | | | | | | | | | Elem | Ag3280 | Al3082 | As1890 | B_2496 | Ba4554 | Be3131 | Ca4226 | Cd2288 | | | | Units | ppm | | | Avg
Stddev | . <mark>00908</mark>
.00040 | . 17209
.00434 | . 01555
.00553 | . <mark>08159</mark>
.00119 | . <mark>00931</mark>
.00045 | . <mark>00829</mark>
.00002 | . 39887
.00665 | . 00834
.00021 | | | | %RSD | 4.4448 | 2.5201 | 35.554 | 1.4575 | 4.8237 | .20655 | 1.6671 | 2.4680 | | | | #1 | .00900 | .16715 | .01991 | .08030 | .00970 | .00831 | .40143 | .00818 | | | | #2 | .00872 | .17528 | .01740 | .08264 | .00942 | .00829 | .39132 | .00857 | | | | #3 | .00952 | .17384 | .00933 | .08183 | .00882 | .00827 | .40385 | .00827 | | | | Check ?
High Limit
Low Limit | Chk Pass | | | Elem | Co2286 | Cr2677 | Cu2247 | Fe2611 | K_7664 | Li6707 | Mg2790 | Mn2576 | | | | Units | ppm | ppm | ppm | ppm | _ ppm | ppm | ppm | ppm | | | | Avg | .00916 | .01666 | .01585 | .07974 | .88084 | .08842 | .37580 | .00752 | | | | Stddev | .00007 | .00116 | .00066 | .00289 | .04455 | .00380 | .08032 | .00098 | | | | %RSD | .77001 | 6.9538 | 4.1753 | 3.6278 | 5.0572 | 4.2945 | 21.374 | 13.023 | | | | #1 | .00908 | .01655 | .01508 | .07894 | .83743 | .08961 | .31163 | .00668 | | | | #2 | .00919 | .01556 | .01627 | .08294 | .87866 | .08417 | .34988 | .00729 | | | | #3 | .00921 | .01787 | .01618 | .07733 | .92644 | .09148 | .46588 | .00859 | | | | Check ?
High Limit
Low Limit | Chk Pass | | | Elem | Mo2020 | Na5895 | Ni2316 | P_2149 | Pb2203 | Sb2068 | Se1960 | Si2124 | | | | Units | ppm | | | Avg | .04704 | .41636 | .03452 | .00359 | .01368 | .01598 | .01556 | 00291 | | | | Stddev
%RSD | .00090
1.9106 | .01333
3.2004 | .00078
2.2521 | .00527
146.88 | .00344
25.144 | .00167
10.417 | .00107
6.8562 | .00209
71.658 | | | | | | | | | | | | | | | | #1 | .04736 | .42042 | .03417 | .00825 | .00997 | .01446 | .01432 | 00491 | | | | #2 | .04774 | .40148 | .03542 | 00214 | .01431 | .01574 | .01614 | 00308 | | | | #3 | .04603 | .42719 | .03399 | .00467 | .01677 | .01776 | .01621 | 00075 | | | | Check ?
High Limit
Low Limit | Chk Pass | | | Sample Nar
Method: ICF
User: JYH
Comment: | | 3_6010_200 | : 10/23/201!
:7WATER_;
Custom IE | 3YLINES(v | Type: U
526) Mc
Custom ID3 | de: CONC | Corr. Fa | ctor: 1.00000(| |--|---|---|---|---|---|---|---|----------------| | Elem
Units
Avg
Stddev
%RSD | Sn1899
ppm
.08083
.00032
.39783 | Sr4077
ppm
. 00873
.00020
2.2844 | Ti3372
ppm
. 02094
.00188
8.9956 | TI1908
ppm
. 08449
.00217
2.5705 | V_2924
ppm
. 00851
.00066
7.7004 | Zn2062
ppm
. 01757
.00021
1.1682 | Zr3391
ppm
. 17274
.12486
72.279 | | | #1
#2
#3 | .08054
.08118
.08076 | .00874
.00893
.00853 | .02049
.01932
.02300 | .08205
.08619
.08524 | .00920
.00790
.00842 | .01778
.01754
.01737 | .24052
.24906
.02866 | | | Check ?
High Limit
Low Limit | Chk Pass | | Int. Std.
Units
Avg
Stddev
%RSD | Y_2243
Cts/S
11 57 1.
18.
.15962 | Y_3600
Cts/S
99215.
99.
.10006 | Y_3774
Cts/S
4170.3
2.6
.06331 | | | | | | | #1
#2
#3 | 11554.
11567.
11591. | 99104.
99295.
99247. | 4168.0
4173.2
4169.7 | | | | | | | • | | | | | | | | | | | |------------------------------------|----------------|----------------------------|-------------------------|-----------------------------|----------------------------|--------------------------|----------------------------|--|--|--| | Elem | Ag3280 | Al3082 | As1890 | B_2496 | Ba4554 | Be3131 | Ca4226 | | | | | Units | ppm | | | | Avg | 00113 | 268.84 | 00402 | 03617 | . 00043 | 00001 | 222.28 | | | | | Stddev | .00088 | .11 | .00467 | .00166 | .00014 | .00004 | .62 | | | | | %RSD | 77.994 | .03968 | 116.22 | 4.5774 | 32.577 | 349.45 | .27834 | | | | | #1
#2
#3 | 00143
00182 | 268.90
268.90
268.72 | 00277
00010
00918 | 03437
03652
03763 | .00054
.00048
.00027 | 00000
00006
.00002 | 221.69
222.23
222.92 | | | | | Check ?
High Limit
Low Limit | Chk Pass | | | | Elem | Cd2288 | Co2286 | Cr2677 | Cu2247 | Fe2611 | K_7664 | Li6707 | | | | | Units | ppm | | | | Avg | . 00040 | 00062 | 00202 | F .00402 | 97.962 | . 20973 | . 02169 | | | | | Stddev | .00015 | .00029 | .00088 | .00113 | .308 | .04680 | .00447 | | | | | %RSD | 36.826 | 46.997 | 43.831 | 28.205 | .31404 | 22.317 | 20.607 | | | | | #1 | .00040 | 00043 | 00107 | .00456 | 97.638 | .15697 | .01763 | | | | | #2 | .00026 | 00048 | 00282 | .00478 | 97.999 | .24626 | .02648 | | | | | #3 | .00055 | 00096 | 00216 | .00272 | 98.250 | .22596 | .02097 | | | | | Check ?
High Limit
Low Limit | Chk Pass | Chk Pass | Chk Pass | Chk Fail
.00400
00400 | Chk Pass | Chk Pass | Chk Pass | | | | | Elem | Mg2790 | Mn2576 | Mo2020 | Na5895 | Ni2316 | P_2149 | Pb2203 | | | | | Units | ppm | | | | Avg | 250.61 | 00071 | . 00015 | . 02581 | .00350 | . 01931 | 00065 | | | | | Stddev | .03 | .00137 | .00027 | .02590 | .00142 | .00454 | .00405 | | | | | %RSD | .01304 | 191.86 | 179.67 | 100.35 | 40.485 | 23.506 | 621.54 | | | | | #1 | 250.59 | 00095 | 00016 | .04725 | .00208 | .02017 | 00421 | | | | | #2 | 250.65 | .00076 | .00031 | 00297 | .00491 | .02336 | .00375 | | | | | #3 | 250.59 | 00195 | .00030 | .03314 | .00350 | .01440 | 00150 | | | | | Check ?
High Limit
Low Limit | Chk Pass | | | | • | | | | | | | | | | |---|---|---|---|--|---|---|---|--|--| | Elem
Units
Avg
Stddev
%RSD | Sb2068
ppm
. 00474
.00273
57.551 | Se1960
ppm
.00334
.00967
289.36 | Si2124
ppm
. 12923
.00199
1.5434 | Sn1899
ppm
00011
.00030
272.71 | Sr4077
ppm
. 00039
.00029
74.432 | Ti3372
ppm
. 00417
.00620
148.56 | TI1908
ppm
. 00252
.00299
118.87 | | | | #1
#2
#3 | .00545
.00173
.00705 | .00115
00505
.01393 | .12895
.12738
.13134 | .00003
00046
.00009 | .00016
.00030
.00071 | .00600
00273
.00925 | .00103
.00056
.00596 | | | | Check ?
High Limit
Low Limit | Chk Pass | | | Elem
Units
Avg
Stddev
%RSD | V_2924
ppm
00138
.00070
50.506 | Zn2062
ppm
00713
.00044
6.1266 | Zr3391
ppm
F -1.4027
.1968
14.031 | | | | | | | | #1
#2
#3 | 00089
00108
00218 | 00665
00722
00751 | -1.2864
-1.2917
-1.6299 | | | | | | | | Check ?
High Limit
Low Limit | Chk Pass | Chk Pass | Chk Fail
.02000
02000 | | | | | | | | Int. Std.
Units
Avg
Stddev
%RSD | Y_2243
Cts/S
10785.
19. | Y_3600
Cts/S
91108.
82.
.09000 | Y_3774
Cts/S
4120.4
2.5
.06065 | | | | | | | | #1
#2
#3 | 10782.
10805.
10767. | 91106.
91026.
91190. | 4123.3
4119.1
4118.9 | | | | | | | | Elem | Ag3280 | Al3082 | As1890 | B_2496 | Ba4554 | Be3131 | Ca4226 | | | |--|--------------------|--------------------|--------------------|--------------------|--------------------|--------------------|--------------------|--|--| | Units | ppm | | | Avg | . 53469 | 268.49 | . 25453 | 05063 | . 25802 | . 25859 | 223.23 | | | | Stddev | .00244 | .30 | .00353 | .00104 | .00029 | .00033 | .69 | | | | %RSD | .45723 | .11256 | 1.3851 | 2.0550 | .11293 | .12788 | .30838 | | | | #1 | .53232 | 268.15 | .25795 | 05108 | .25806 | .25833 | 223.27 | | | | #2 | .53455 | 268.71 | .25091 | 04944 | .25771 | .25896 | 222.52 | | | | #3 | .53721 | 268.62 | .25473 | 05137 | .25829 | .25849 | 223.90 | | | | Check ?
High Limit
Low Limit | Chk Pass | | |
Elem | Cd2288 | Co2286 | Cr2677 | Cu2247 | Fe2611 | K_7664 | Li6707 | | | | Units | ppm | | | Avg | . 51058 | .24122 | .25205 | .25400 | 97.484 | 5.5368 | . 02056 | | | | Stddev | .00128 | .00100 | .00047 | .00425 | .441 | .0459 | .00201 | | | | %RSD | .25057 | .41285 | .18506 | 1.6714 | .45236 | .82974 | 9.7552 | | | | #1 | .51196 | .24162 | .25212 | .25474 | 97.541 | 5.5155 | .01824 | | | | #2 | .51034 | .24195 | .25248 | .25782 | 97.017 | 5.5053 | .02160 | | | | #3
Check ?
High Limit
Low Limit | .50944
Chk Pass | .24008
Chk Pass | .25155
Chk Pass | .24943
Chk Pass | 97.894
Chk Pass | 5.5895
Chk Pass | .02183
Chk Pass | | | | Elem | Mg2790 | Mn2576 | Mo2020 | Na5895 | Ni2316 | P_2149 | Pb2203 | | | | Units | ppm | | | Avg | 249.75 | . 25322 | .00013 | 5.4235 | . 48993 | . 09823 | . 49048 | | | | Stddev | .33 | .00319 | .00035 | .0448 | .00188 | .00895 | .00300 | | | | %RSD | .13270 | 1.2608 | 259.75 | .82676 | .38335 | 9.1073 | .61107 | | | | #1 | 249.91 | .25366 | 00027 | 5.4352 | .49202 | .09924 | .49362 | | | | #2 | 249.37 | .25617 | .00037 | 5.3740 | .48938 | .08882 | .48765 | | | | #3 | 249.98 | .24983 | .00030 | 5.4614 | .48839 | .10663 | .49018 | | | | Check ?
High Limit
Low Limit | Chk Pass | | | • | | | | | | | | | |---|---|--|---|---|---|---|---|--| | Elem
Units
Avg
Stddev
%RSD | Sb2068
ppm
. 51769
.00887
1.7128 | Se1960
ppm
.26484
.00471
1.7788 | Si2124
ppm
.00605
.00416
68.802 | Sn1899
ppm
. 00126
.00068
54.185 | Sr4077
ppm
. 00036
.00018
49.568 | Ti3372
ppm
. 00740
.00168
22.683 | TI1908
ppm
. 49624
.00444
.89406 | | | #1
#2
#3 | .52411
.52138
.50757 | .26516
.25998
.26939 | .00281
.00459
.01074 | .00078
.00204
.00096 | .00054
.00018
.00036 | .00790
.00553
.00878 | .50129
.49295
.49448 | | | Check ?
High Limit
Low Limit | Chk Pass | | Elem
Units
Avg
Stddev
%RSD | V_2924
ppm
. 25613
.00168
.65719 | Zn2062
ppm
. 48083
.00150
.31225 | Zr3391
ppm
F -1.5581
.0464
2.9781 | | | | | | | #1
#2
#3 | .25629
.25773
.25437 | .48184
.48154
.47910 | -1.6022
-1.5623
-1.5097 | | | | | | | Check ?
High Limit
Low Limit | Chk Pass | Chk Pass | Chk Fail
.02500
02500 | | | | | | | Int. Std.
Units
Avg
Stddev
%RSD | Y_2243
Cts/S
10725.
14.
.13354 | Y_3600
Cts/S
9 0465 .
124.
.13704 | Y_3774
Cts/S
4101.5
3.2
.07825 | | | | | | | #1
#2
#3 | 10713.
10721.
10741. | 90608.
90383.
90404. | 4104.8
4101.3
4098.4 | | | | | | | Sample Name: CCV Acquired: 10/23/2015 10:28:06 Type: QC Method: ICP-THERMO3_6010_200.7WATER_3YLINES(v526) Mode: CONC Corr. Factor: 1.0000 User: JYH Custom ID1: Custom ID2: Custom ID3: Comment: | | | | | | | | | 1.00000(| |---|---|---|---|---|--|---|-----------------------------------|---|----------| | Elem
Units
Avg
Stddev
%RSD | Ag3280
ppm
. 40128
.00101
.25259 | ppm
10.101
.012 | ppm
. 40694
.00278 | ppm
. 50096
.00274 | Ba4554
ppm
1.0134
.0043
.42891 | Be3131
ppm
. 05044
.00008
.15535 | 10.138
.043 | Cd2288
ppm
. 05007
.00014
.28133 | | | #1
#2
#3 | .40245
.40068
.40070 | 10.091 | .40589 | | 1.0158
1.0084
1.0161 | .05053
.05039
.05040 | 10.174
10.091
10.149 | .05023
.04999
.04998 | | | Check ?
Value
Range | Chk Pass | | Elem
Units
Avg
Stddev
%RSD | Co2286
ppm
. 20165
.00040
.19920 | ppm
. 50125
.00321
.64118 | ppm
. 50571
.00093
.18450 | ppm
4.0534
.0391
.96543 | .048
.09522 | ppm
1.0093
.0018
.17294 | 9. 9705
.0393
.39410 | . 50429
.00238
.47168 | | | #1
#2
#3 | .20182
.20194
.20119 | .50311
.50310
.49754 | | | 50.860
50.886
50.954 | 1.0079
1.0088
1.0113 | 9.9293 | .50663
.50435
.50188 | | | Check ?
Value
Range | Chk Pass | | Elem
Units
Avg
Stddev
%RSD | Mo2020
ppm
1.0074
.0031
.31051 | ppm | ppm
. 50723
.00265 | ppm
10.015 | ppm | | ppm
. 40834
.00264 | Si2124
ppm
5.0502
.0081
.16053 | | | #1
#2
#3 | 1.0082
1.0101
1.0040 | 50.821 | .51028 | 10.020
10.033
9.9904 | .50569
.50314
.49409 | 1.2055
1.2104
1.2081 | | 5.0506
5.0581
5.0419 | | | Check ?
Value
Range | Chk Pass | | Sample Na | ame: CCV | Acquire | d: 10/23/20 | 15 10:28:0 | 6 Туре | e: QC | | | |---------------------------|-----------------------|----------------------|-------------------------|-----------------------|----------------------|---------------|------------------------|------------------------| | Method: IC | P-THERMO | 03_6010_2 | 200.7WATE | R_3YLINE | S(v526) | Mode: C | ONC | Corr. Factor: 1.000000 | | User: JYH | Custo | m ID1: | Custor | n ID2: | Custon | n ID3: | | | | Comment: | | | | | | | | | | Elem | Sn1899 | Sr4077 | Ti3372 | TI1908 | V_2924 | Zn2062 | Zr339 | 1 | | Units | ppm
1.0092 | ppm
1.0128 | ppm
1.0155 | ppm
. 50972 | ppm
1.0073 | ppm
1.0091 | ppr
. 9466 . | | | Avg
Stddev | .0037 | .0031 | .0114 | .00161 | | | | | | %RSD | .36388 | .30088 | 1.1210 | .31553 | .09625 | | 9.711 | | | #1 | 1.0114 | 1.0144 | 1.0141 | .51153 | 1.0071 | 1.0092 | .9462 | 4 | | #2 | 1.0113 | 1.0093 | 1.0050 | .50919 | 1.0065 | 1.0114 | .8548 | | | #3 | 1.0050 | 1.0148 | 1.0276 | .50845 | 1.0084 | 1.0068 | 1.038 | 7 | | Check ?
Value
Range | Chk Pass | Chk Pass | Chk Pass | Chk Pass | Chk Pass | Chk Pass | Chk Pas | S | | Int. Std. | Y_2243 | Y_3600 | Y_3774 | | | | | | | Units | Cts/S | Cts/S | Cts/S | | | | | | | Avg
Stddev | 11 353 .
9. | 96206 . 176. | 41 73 .5
12.4 | | | | | | | %RSD | .08006 | .18327 | | | | | | | | #1 | 11364. | 96204. | 4167.1 | | | | | | | #2 | 11347. | 96031. | 4165.6 | | | | | | | #3 | 11349. | 96383. | 4187.8 | | | | | | | • | | | | | | | | | | |------------------------------------|----------------|----------|----------------|----------------|----------|----------------|----------------|--|--| | Elem | Ag3280 | Al3082 | As1890 | B_2496 | Ba4554 | Be3131 | Ca4226 | | | | Units | ppm | | | Avg | . 00045 | .00615 | 00068 | .00095 | .00023 | .00001 | 00359 | | | | Stddev | .00155 | .00282 | .00187 | .00072 | .00017 | .00004 | .01137 | | | | %RSD | 348.70 | 45.882 | 275.03 | 75.634 | 74.187 | 323.61 | 317.16 | | | | #1 | .00136 | .00810 | 00280 | .00128 | .00004 | .00000 | 00175 | | | | #2 | 00135 | .00743 | .00007 | .00013 | .00035 | 00002 | 01576 | | | | #3 | .00133 | .00291 | .00070 | .00145 | .00029 | .00006 | .00676 | | | | Check ?
High Limit
Low Limit | Chk Pass | | | Elem | Cd2288 | Co2286 | Cr2677 | Cu2247 | Fe2611 | K_7664 | Li6707 | | | | Units | ppm | | | Avg | 00005 | 00004 | .00052 | 00121 | 00170 | . 17504 | . 00406 | | | | Stddev | .00011 | .00017 | .00089 | .00118 | .00958 | .04025 | .00252 | | | | %RSD | 228.07 | 388.95 | 169.59 | 97.669 | 564.39 | 22.997 | 62.086 | | | | #1 | .00007 | .00012 | .00003 | 00107 | .00780 | .20354 | .00137 | | | | #2 | 00006 | 00023 | .00155 | 00246 | 00152 | .19258 | .00444 | | | | #3 | 00015 | 00002 | 00000 | 00011 | 01137 | .12899 | .00636 | | | | Check ?
High Limit
Low Limit | Chk Pass | | | Elem | Mg2790 | Mn2576 | Mo2020 | Na5895 | Ni2316 | P_2149 | Pb2203 | | | | Units | ppm | | | Avg | 03698 | 00069 | . 00103 | . 03352 | .00081 | 00673 | 00075 | | | | Stddev | .03942 | .00114 | .00027 | .00746 | .00148 | .00314 | .00121 | | | | %RSD | 106.59 | 163.70 | 26.485 | 22.260 | 183.03 | 46.637 | 161.57 | | | | #1 | 06593 | 00201 | .00072 | .02844 | .00033 | 00814 | 00029 | | | | #2 | 05293 | 00007 | .00115 | .04209 | .00247 | 00313 | .00016 | | | | #3 | .00791 | 00001 | .00123 | .03003 | 00037 | 00892 | 00213 | | | | Check ?
High Limit
Low Limit | Chk Pass | | | Sample Nam
Method: ICP
User: JYH
Comment: | ne: CCB /
-THERMO3_
Custom I | 6010_200.7 | /23/2015 10:
WATER_3YI
Custom ID2: | LINES(v526) | ype: Blank
) Mode:
tom ID3: | CONC (| Corr. Factor: | 1.00000(| |--|---|--|---|---|---|--|--|----------| | Elem
Units
Avg
Stddev
%RSD | Sb2068
ppm
. 00186
.00090
48.705 | Se1960
ppm
00209
.00537
257.47 |
Si2124
ppm
.00050
.00098
194.86 | Sn1899
ppm
. 00043
.00117
271.95 | Sr4077
ppm
. 00019
.00041
215.25 | Ti3372
ppm
00005
.00085
1783.4 | TI1908
ppm
00217
.00274
126.35 | | | #1
#2
#3 | .00134
.00133
.00290 | 00332
00673
.00380 | 00050
.00056
.00146 | .00135
.00083
00089 | .00039
.00046
00028 | 00024
.00088
00078 | 00101
00529
00019 | | | Check ?
High Limit
Low Limit | Chk Pass | | Elem
Units
Avg
Stddev
%RSD | V_2924
ppm
. 00004
.00040
1055.7 | Zn2062
ppm
.00002
.00043
1909.4 | Zr3391
ppm
F .18959
.11486
60.585 | | | | | | | #1
#2
#3 | .00027
00042
.00026 | .00024
00048
.00030 | .32078
.14087
.10711 | | | | | | | Check ?
High Limit
Low Limit | Chk Pass | Chk Pass | Chk Fail
.04000
04000 | | | | | | | Int. Std.
Units
Avg
Stddev
%RSD | Y_2243
Cts/S
11499.
19.
.16527 | Y_3600
Cts/S
9 90 19.
457.
.46159 | Y_3774
Cts/S
4186.6
14.3
.34212 | | | | | | | #1
#2
#3 | 11477.
11507.
11513. | 99011.
99481.
98567. | 4185.9
4201.2
4172.6 | | | | | | | | | _6010_200 | .7WATER_ | 3YLINES(v | 526) Mo | de: CONC | Corr. Fa | actor: 1.000000 | | | |------------------------------------|--------------------------|---|--------------------------|-----------------------|--------------------------|--------------------------------|--------------------------|--------------------------|--|--| | | 0 | Method: ICP-THERMO3_6010_200.7WATER_3YLINES(v526) Mode: CONC Corr. Factor: 1.000000 | | | | | | | | | | User: JYH | Custom | ID1: 2 | Custom II | D2: | Custom ID3 | 3 : | | | | | | Comment: | Elem | Ag3280 | Al3082 | As1890 | B 2496 | Ba4554 | Be3131 | Ca4226 | Cd2288 | | | | Units | ppm | | | Avg | .00026 | .01715 | 00046 | .01450 | .02679 | 00002 | 25.403 | .00115 | | | | Stddev | .00151 | .00451 | .00191 | .00251 | .00028 | .00006 | .063 | .00022 | | | | %RSD | 572.94 | 26.311 | 412.95 | 17.303 | 1.0552 | 272.31 | .24614 | 19.296 | | | | #1 | 00023 | .02209 | 00129 | .01283 | .02652 | .00003 | 25.400 | .00124 | | | | #2 | .00195 | .01613 | 00123 | .01329 | .02708 | 00001 | 25.342 | .00124 | | | | #3 | 00093 | .01324 | .00172 | .01739 | .02677 | 00008 | 25.467 | .00089 | | | | | | | | | | | | | | | | Check? | Chk Pass | | | High Limit | | | | | | | | | | | | Low Limit | | | | | | | | | | | | Elem | Co2286 | Cr2677 | Cu2247 | Fe2611 | K_7664 | Li6707 | Mg2790 | Mn2576 | | | | Units | ppm | ppm | ppm | ppm | _
ppm | ppm | ppm | ppm | | | | Avg | .00136 | .01943 | .00225 | .00681 | .31201 | .00822 | 1.5062 | .04477 | | | | Stddev | .00011 | .00016 | .00096 | .02275 | .02190 | .00576 | .0614 | .00091 | | | | %RSD | 8.2753 | .84463 | 42.867 | 334.13 | 7.0197 | 70.060 | 4.0762 | 2.0345 | | | | #1 | .00146 | .01951 | .00333 | .03176 | .33149 | .00454 | 1.4722 | .04582 | | | | #2 | .00139 | .01954 | .00191 | .00144 | .28830 | .00527 | 1.5771 | .04428 | | | | #3 | .00124 | .01924 | .00149 | 01277 | .31625 | .01486 | 1.4693 | .04421 | | | | Check? | Chk Pass | Chk Pass | Chk Pass | Chk Docc | Chk Pass | Chk Docc | Chk Pass | Chk Pass | | | | High Limit | Clik Fass | CIR F ass | CIIK F d55 | Clik F d55 | CIR F ass | CIIK F d55 | Clik F d55 | Clik F d55 | | | | Low Limit | Elem | Mo2020 | Na5895 | Ni2316 | P_2149 | Pb2203 | Sb2068 | Se1960 | Si2124 | | | | Units | ppm | ppm
133.32 | ppm | ppm
. 07651 | ppm | ppm | ppm | ppm | | | | Avg
Stddev | . 00057
.00034 | .33 | . 00176
.00090 | .00147 | . 21115
.00126 | . <mark>00221</mark>
.00199 | . 01018
.00582 | . 18879
.00186 | | | | %RSD | 60.063 | .25073 | 51.087 | 1.9165 | .59788 | 89.989 | 57.171 | .98490 | | | | 701100 | 00.000 | .20070 | 01.007 | 1.0100 | .00700 | 00.000 | 07.171 | .00+00 | | | | #1 | .00061 | 133.46 | .00264 | .07597 | .21226 | .00423 | .00646 | .18703 | | | | #2 | .00021 | 132.94 | .00177 | .07817 | .21142 | .00027 | .01688 | .18861 | | | | #3 | .00090 | 133.57 | .00085 | .07540 | .20977 | .00212 | .00719 | .19074 | | | | Check ?
High Limit
Low Limit | Chk Pass | | | Sample Nar | ne: L151010 |)3202 A | cquired: 10/ | /23/2015 10 | :36:05 | Type: Unk | | | |-------------|------------------|------------------|------------------|-------------|------------|-----------|----------|----------------| | Method: ICF | P-THERMO3 | 3_6010_200 | .7WATER_ | 3YLINES(v | 526) Mo | de: CONC | Corr. Fa | ctor: 1.000000 | | User: JYH | Custom | ID1: 2 | Custom II | D2: | Custom ID3 | 3: | | | | Comment: | Elem | Sn1899 | Sr4077 | Ti3372 | TI1908 | V 2924 | Zn2062 | Zr3391 | | | Units | ppm | | Avg | 00033 | .02270 | .00261 | 00295 | 00012 | 1.5345 | .16153 | | | Stddev | .00022 | .00045 | .00737 | .00316 | .00076 | .0070 | .09748 | | | %RSD | 68.008 | 1.9999 | 282.53 | 107.16 | 608.38 | .45832 | 60.349 | | | #1 | 00010 | .02219 | 00284 | 00660 | 00002 | 1.5394 | .05021 | | | #1
#2 | 00010 | .02219 | 00284 | 00102 | .00058 | 1.5394 | .20278 | | | #3 | 00054 | .02306 | .01099 | 00102 | 00093 | 1.5265 | .23162 | | | | | | | | | | | | | Check? | Chk Pass | | High Limit | | | | | | | | | | Low Limit | | | | | | | | | | Int. Std. | Y 2243 | Y 3600 | Y_3774 | | | | | | | Units | Cts/S | Cts/S | Cts/S | | | | | | | Avg | 11298. | 96088. | 4214.5 | | | | | | | Stďdev | 9. | 59. | 20.3 | | | | | | | %RSD | .08043 | .06151 | .48124 | | | | | | | ш. | 11000 | 00040 | 4104.0 | | | | | | | #1
#2 | 11296.
11308. | 96046.
96062. | 4194.0
4215.0 | | | | | | | #2
#3 | 11291. | 96062.
96156. | 4215.0 | | | | | | | 110 | 11201. | 55156. | 7207.0 | | | | | | | Sample Name: +1 PPM PB Acquired: 10/23/2015 10:40:08 Type: Unk | | | | | | | | | |--|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|---------------------|----------------------|-----------------------| | Method: ICF | P-THERMO3 | 3_6010_200 | .7WATER_ | 3YLINES(v | 526) Mo | de: CONC | actor: 1.00000(| | | User: JYH | Custom | ID1: 2 | Custom I | D2: | Custom ID3 | 3: | | | | Comment: | Elem | Ag3280 | Al3082 | As1890 | B_2496 | Ba4554 | Be3131 | Ca4226 | Cd2288 | | Units | ppm
. 00064 | ppm
. 01471 | ppm
. 00071 | ppm
. 01228 | ppm
. 02679 | ppm
00007 | ppm
25.409 | ppm
. 00105 | | Avg
Stddev | .00004 | .00221 | .00283 | .00233 | .00036 | .00007 | .068 | .00103 | | %RSD | 153.53 | 15.053 | 401.56 | 18.945 | 1.3474 | 45.864 | .26619 | 1.6343 | | | | | | | | | | | | #1 | 00039 | .01440 | .00050 | .01359 | .02717 | 00010 | 25.340 | .00103 | | #2
#3 | .00074 | .01707
.01267 | .00363 | .00960
.01367 | .02676
.02645 | 00004 | 25.412
25.475 | .00106 | | #3 | .00156 | .01207 | 00202 | .01307 | .02045 | 00008 | 25.475 | .00106 | | Check? | Chk Pass | High Limit | | | | | | | | | | Low Limit | | | | | | | | | | Elem | Co2286 | Cr2677 | Cu2247 | Fe2611 | K_7664 | Li6707 | Mg2790 | Mn2576 | | Units | ppm | Avg | .00092 | .01915 | .00732 | 01064 | .30565 | .00346 | 1.5680 | .04386 | | Stddev | .00017 | .00063 | .00058 | .01115 | .09211 | .00329 | .0644 | .00227 | | %RSD | 18.468 | 3.2850 | 7.9784 | 104.77 | 30.137 | 95.158 | 4.1049 | 5.1773 | | #1 | .00073 | .01904 | .00665 | .00125 | .29113 | .00702 | 1.5059 | .04610 | | #2 | .00102 | .01983 | .00760 | 01233 | .40416 | .00752 | 1.6344 | .04156 | | #3 | .00103 | .01859 | .00771 | 02086 | .22165 | .00286 | 1.5637 | .04393 | | | | | | | | | | | | Check? | Chk Pass | High Limit
Low Limit | | | | | | | | | | LOW LITTIE | | | | | | | | | | Elem | Mo2020 | Na5895 | Ni2316 | P_2149 | Pb2203 | Sb2068 | Se1960 | Si2124 | | Units | ppm | Avg | .00058 | 133.05 | .00201 | .08300 | 1.2949 | .00123 | .00498 | .18871 | | Stddev | .00049 | .31 | .00113 | .00647 | .0036 | .00270 | .00598 | .00246 | | %RSD | 84.291 | .23573 | 56.384 | 7.8002 | .27524 | 220.13 | 120.03 | 1.3055 | | #1 | .00046 | 133.00 | .00332 | .08121 | 1.2966 | 00084 | .00297 | .19057 | | #2 | .00016 | 132.76 | .00129 | .09018 | 1.2908 | .00024 | .01171 | .18965 | | #3 | .00111 | 133.38 | .00142 | .07761 | 1.2973 | .00429 | .00027 | .18592 | | Check ?
High Limit
Low Limit | Chk Pass | Sample Name: +1 PPM PB Acquired: 10/23/2015 10:40:08 Type: Unk | | | | | | | | | |--|-----------------|------------|-----------|-----------|------------|----------|----------|----------------| | Method: ICP | -THERMO3 | 3_6010_200 | .7WATER_ | 3YLINES(v | 526) Mc | de: CONC | Corr. Fa | ctor: 1.00000(| | User: JYH | Custom | ID1: 2 | Custom II | D2: | Custom ID3 | 3: | | | | Comment: | | | | | | | | | | Elem | Sn1899 | Sr4077 | Ti3372 | TI1908 | V_2924 | Zn2062 | Zr3391 | | | Units | ppm | | Avg | .00008 | .02246 | 00148 | 00576 | .00011 | 1.5387 | .15069 | | | Stddev | .00098 | .00010 | .00344 | .00107 | .00039 | .0055 | .09416 | | | %RSD | 1307.1 | .44009 | 231.75 | 18.528 | 358.97 | .35942 | 62.485 | | | #1 | .00107 | .02248 | 00496 | 00487 | 00017 | 1.5432 | .05084 | | | #2 | .00006 | .02235 | .00192 | 00547 | .00056 | 1.5405 | .16337 | | | #3 | 00090 | .02255 | 00141 | 00695 | 00006 | 1.5326 | .23787 | | | Check ?
High Limit
Low Limit | Chk Pass | | Int. Std. | Y 2243 | Y_3600 | Y_3774 | | | | | | | Units | Cts/S | Cts/S | Cts/S | | | | | | | Avg | 1123 <u>1</u> . | 95269. | 4222.7 | | | | | | | Stddev | 5. | 276. | 10.0 | | | | | | | %RSD | .04561 | .28948 | .23586 | | | | | | | #1 | 11235. | 94971. | 4232.9 | | | | | | | #2 | 11225. |
95515. | 4222.2 | | | | | | | #3 | 11233. | 95322. | 4213.0 | | | | | | | | | | | | | | | | | Sample Name: +1.5 PPM PB Acquired: 10/23/2015 10:44:11 Type: Unk Method: ICP-THERMO3_6010_200.7WATER_3YLINES(v526) Mode: CONC Corr. Factor: 1.000000 | | | | | | | | | |---|--------------------------|--------------------------|--------------------------------|--------------------------------|--------------------------|--------------------------------|--------------------------------|--------------------------| | | | | _ | • | , | de: CONC | Corr. Fa | actor: 1.00000(| | User: JYH | Custom | ID1: 2 | Custom II | D2: | Custom ID3 | 3: | | | | Comment: | | | | | | | | | | Elem | Ag3280 | Al3082 | As1890 | B 2496 | Ba4554 | Be3131 | Ca4226 | Cd2288 | | Units | ppm | ppm | ppm | ррm | ppm | ppm | ppm | ppm | | Avg | 00163 | .01369 | .00206 | .01474 | .02661 | .00002 | 25.568 | .00114 | | Stddev | .00093 | .00365 | .00149 | .00116 | .00004 | .00002 | .042 | .00021 | | %RSD | 57.346 | 26.646 | 72.142 | 7.8999 | .16671 | 155.97 | .16290 | 18.818 | | #1 | 00252 | .01660 | .00050 | .01606 | .02663 | .00004 | 25.579 | .00133 | | #2 | 00066 | .01486 | .00347 | .01429 | .02656 | .00001 | 25.522 | .00116 | | #3 | 00170 | .00960 | .00222 | .01387 | .02665 | 00001 | 25.603 | .00091 | | Check ?
High Limit | Chk Pass | Low Limit | | | | | | | | | | Elem | Co2286 | Cr2677 | Cu2247 | Fe2611 | K_7664 | Li6707 | Mg2790 | Mn2576 | | Units | ppm | Avg
Stddev | . 00123
.00053 | . 01965
.00015 | . <mark>00831</mark>
.00076 | . <mark>00241</mark>
.01002 | . 38423
.09846 | . <mark>00528</mark>
.00170 | 1.6183 .0623 | . 04480
.00096 | | %RSD | 42.759 | .77862 | 9.2075 | 415.61 | 25.625 | 32.137 | 3.8467 | 2.1398 | | 701102 | 12.700 | .,,,,,, | 0.2070 | 110.01 | 20.020 | 02.107 | 0.0107 | 2.1000 | | #1 | .00064 | .01978 | .00877 | .01384 | .47364 | .00489 | 1.6896 | .04379 | | #2 | .00139 | .01948 | .00742 | 00488 | .40033 | .00714 | 1.5910 | .04490 | | #3 | .00166 | .01968 | .00872 | 00173 | .27871 | .00382 | 1.5744 | .04570 | | Check? | Chk Pass | High Limit | | | | | | | | | | Low Limit | | | | | | | | | | Elem | Mo2020 | Na5895 | Ni2316 | P_2149 | Pb2203 | Sb2068 | Se1960 | Si2124 | | Units | ppm | Avg
Stddev | . 00043
.00004 | 133.96
.02 | . <mark>00172</mark>
.00071 | . 07605
.00296 | 1.8555 .0075 | 00370
.00271 | . <mark>00621</mark>
.00565 | . 19276
.00329 | | %RSD | 10.337 | .01810 | 41.191 | 3.8890 | .40500 | 73.319 | 90.890 | 1.7067 | | 701.102 | 10.007 | | | 0.0000 | | | 00.000 | | | #1 | .00048 | 133.98 | .00112 | .07835 | 1.8592 | 00664 | .00286 | .18918 | | #2 | .00041 | 133.93 | .00154 | .07271 | 1.8604 | 00130 | .00305 | .19566 | | #3 | .00040 | 133.96 | .00250 | .07708 | 1.8468 | 00316 | .01273 | .19343 | | Check ?
High Limit
Low Limit | Chk Pass | Sa | ample Nar | ne: +1.5 PP | MPB A | cquired: 10/ | 23/2015 10 | :44:11 | Гуре: Unk | | | |----------|-------------|------------------------|---------------------|----------------|----------------|----------------|------------------|-----------------|----------------| | M | ethod: ICF | -THERMO3 | 3_6010_200 | .7WATER_ | 3YLINES(v | 526) Mc | de: CONC | Corr. Fa | ctor: 1.00000(| | U: | ser: JYH | Custom | ID1: 2 | Custom II | D2: | Custom ID3 | 3: | | | | C | omment: | FI | lem | Sn1899 | Sr4077 | Ti3372 | TI1908 | V 2924 | Zn2062 | Zr3391 | | | | nits | ppm | | A۱ | vg | - 00051 | .02315 | 00419 | 00185 | - 00077 | 1.5539 | .06758 | | | St | tddev | .00065 | .00033 | .00231 | .00171 | .00034 | .0053 | .17070 | | | % | RSD | 127.25 | 1.4281 | 55.154 | 92.161 | 44.370 | .33949 | 252.59 | | | | | 00000 | 00007 | 00055 | 00070 | 00001 | 4 5554 | 05004 | | | #1 | = | .00020 | .02297 | 00355 | 00073 | 00061 | 1.5554 | .05664 | | | #2
#3 | | 00108
00066 | .02295
.02353 | 00675
00227 | 00381
00101 | 00053
00115 | 1.5584
1.5481 | .24349
09739 | | | # < | , | 00000 | .02333 | 00227 | 00101 | 00113 | 1.5461 | 09739 | | | С | heck? | Chk Pass | | Hi | igh Limit | | | | | | | | | | Lo | ow Limit | t. Std. | Y_2243 | Y_3600 | Y_3774 | | | | | | | | nits | Cts/S | Cts/S | Cts/S | | | | | | | | vg
tddev | 1111 7 .
17. | 94218 . 359. | 4180.6
11.7 | | | | | | | | RSD | .15174 | .38123 | .27987 | | | | | | | 70 | TOD | .10174 | .00120 | .27007 | | | | | | | #1 | 1 | 11135. | 94307. | 4167.1 | | | | | | | #2 | 2 | 11102. | 93823. | 4187.1 | | | | | | | #3 | 3 | 11113. | 94525. | 4187.6 | | | | | | | | | | | | | | | | | | Sample Name: +2 PPM PB Acquired: 10/23/2015 10:48:12 Type: Unk Method: ICP-THERMO3_6010_200.7WATER_3YLINES(v526) Mode: CONC Corr. Factor: 1.000000 | | | | | | | | | |---|--------------------------------|--------------------------------|--------------------------|--------------------------|--------------------------|--------------------------------|--------------------------|--------------------------| | User: JYH | Custom | | ./WATER
 Custom | , | Custom ID3 | | Corr. Fa | actor: 1.00000(| | Comment: | | | | | | | | | | Elem | Ag3280 | Al3082 | As1890 | B_2496 | Ba4554 | Be3131 | Ca4226 | Cd2288 | | Units
Avg | ppm
. 00017 | ppm
. 01665 | ppm
00294 | ppm
.01412 | ppm
. 02660 | ppm
00002 | ppm
25.677 | ppm
. 00124 | | Stddev | .00168 | .00428 | .00495 | .00237 | .00069 | .00002 | .153 | .00013 | | %RSD | 980.46 | 25.733 | 168.53 | 16.751 | 2.5790 | 209.10 | .59710 | 10.090 | | #1 | .00144 | .02088 | .00040 | .01537 | .02701 | 00001 | 25.656 | .00130 | | #2
#3 | 00173
.00080 | .01231
.01676 | 00863
00058 | .01560
.01139 | .02699
.02581 | 00006
.00002 | 25.536
25.840 | .00110
.00133 | | | | | | | | | | | | Check ?
High Limit
Low Limit | Chk Pass | Elem | Co2286 | Cr2677 | Cu2247 | Fe2611 | K_7664 | Li6707 | Mg2790 | Mn2576 | | Units | ppm | Avg
Stddev | . <mark>00091</mark>
.00029 | . <mark>02003</mark>
.00137 | . 01196
.00036 | 00368
.00474 | . 40920
.06068 | . <mark>00474</mark>
.00291 | 1. 5434
.0334 | . 04517
.00095 | | %RSD | 32.259 | 6.8389 | 3.0064 | 128.75 | 14.830 | 61.433 | 2.1641 | 2.0929 | | #1 | .00058 | .01994 | .01205 | .00025 | .47037 | .00739 | 1.5714 | .04508 | | #2 | .00101 | .02145 | .01226 | 00234 | .34901 | .00162 | 1.5064 | .04427 | | #3 | .00113 | .01871 | .01156 | 00895 | .40821 | .00522 | 1.5524 | .04616 | | Check ?
High Limit
Low Limit | Chk Pass | Elem | Mo2020 | Na5895 | Ni2316 | P_2149 | Pb2203 | Sb2068 | Se1960 | Si2124 | | Units | ppm | Avg
Stddev | . 00039
.00015 | 134.90
.69 | . 00164
.00053 | . 07875
.00290 | 2.4457 .0106 | 00078
.00173 | . 00364
.00309 | . 19236
.00127 | | %RSD | 37.802 | .51353 | 32.538 | 3.6862 | .43392 | 221.30 | 84.984 | .66238 | | #1 | .00055 | 135.11 | .00216 | .07825 | 2.4462 | .00097 | .00693 | .19366 | | #2
#3 | .00026 | 134.13 | .00109 | .08187 | 2.4561 | 00082 | .00321
.00079 | .19231 | | #3 | .00036 | 135.47 | .00166 | .07613 | 2.4349 | 00250 | .00079 | .19111 | | Check ?
High Limit
Low Limit | Chk Pass | Sample Name: +2 PPM PB Acquired: 10/23/2015 10:48:12 Type: Unk | | | | | | | | | |--|-----------|------------|-----------|-----------|------------|----------|----------|----------------| | Method: ICF | P-THERMO3 | 3_6010_200 | .7WATER_ | 3YLINES(v | 526) Mc | de: CONC | Corr. Fa | ctor: 1.000000 | | User: JYH | Custom | ID1: 2 | Custom II | D2: | Custom ID3 | 3: | | | | Comment: | | | | | | | | | | Elem | Sn1899 | Sr4077 | Ti3372 | TI1908 | V_2924 | Zn2062 | Zr3391 | | | Units | ppm | | Avg | .00015 | .02294 | 00303 | .00002 | 00098 | 1.5510 | .02909 | | | Stddev | .00077 | .00029 | .00353 | .00079 | .00133 | .0083 | .03755 | | | %RSD | 519.98 | 1.2565 | 116.77 | 3167.9 | 135.99 | .53448 | 129.07 | | | #1 | .00096 | .02277 | .00094 | 00049 | 00099 | 1.5550 | .03766 | | | #2 | 00057 | .02277 | 00417 | .00093 | .00036 | 1.5564 | .06162 | | | #3 | .00006 | .02327 | 00584 | 00036 | 00231 | 1.5414 | 01200 | | | Check ?
High Limit
Low Limit | Chk Pass | | Int. Std. | Y 2243 | Y_3600 | Y_3774 | | | | | | | Units | Cts/S | Cts/S | Cts/S | | | | | | | Avg | 11097. | 94227. | 4156.2 | | | | | | | Stddev | 24. | 282. | 17.9 | | | | | | | %RSD | .21664 | .29905 | .42975 | | | | | | | #1 | 11122. | 93908. | 4140.8 | | | | | | | #2 | 11074. | 94442. | 4175.8 | | | | | | | #3 | 11097. | 94331. | 4152.0 | | | | | | | Sample Nam
Method: ICP
User: JYH
Comment: | | | | LINES(v526) | ype: QC
) Mode:
tom ID3: | CONC (| Corr. Factor: | 1.00000(| |--|----------------|----------------|----------------|----------------|--------------------------------|----------------|----------------|----------| | Elem | Ag3280 | Al3082 | As1890 | B_2496 | Ba4554 | Be3131 | Ca4226 | | | Units | ppm | | Avg | . 41217 | 10.353 | . 41654 | . 51392 | 1.0434 | . 05180 | 10.352 | | | Stddev | .00155 | .050 | .00062 | .00269 | .0078 | .00017 | .059 | | | %RSD | .37604 | .47869 | .14833 | .52440 | .74499 | .32938 | .56628 | | | #1 | .41367 | 10.407 | .41617 | .51702 | 1.0383 | .05198 | 10.314 | | | #2 | .41057 | 10.310 | .41619 | .51211 | 1.0397 | .05164 | 10.323 | | | #3 | .41227 | 10.341 | .41725 | .51263 | 1.0524 | .05177 | 10.420 | | | Check ?
Value
Range | Chk Pass | | Elem
 Cd2288 | Co2286 | Cr2677 | Cu2247 | Fe2611 | K_7664 | Li6707 | | | Units | ppm | | Avg | . 05167 | . 20616 | . 51970 | . 51992 | 4.1155 | 52.112 | 1.0380 | | | Stddev | .00034 | .00049 | .00207 | .00151 | .0211 | .423 | .0033 | | | %RSD | .66614 | .23683 | .39771 | .28971 | .51207 | .81233 | .31526 | | | #1 | .05135 | .20560 | .52207 | .52060 | 4.0930 | 51.817 | 1.0374 | | | #2 | .05162 | .20645 | .51830 | .52097 | 4.1349 | 51.921 | 1.0351 | | | #3 | .05203 | .20644 | .51873 | .51819 | 4.1185 | 52.597 | 1.0416 | | | Check ?
Value
Range | Chk Pass | | Elem | Mg2790 | Mn2576 | Mo2020 | Na5895 | Ni2316 | P_2149 | Pb2203 | | | Units | ppm | | Avg | 10.196 | . 51675 | 1.0336 | 52.349 | . 52198 | 10.266 | . 51761 | | | Stddev | .100 | .00490 | .0008 | .385 | .00133 | .026 | .00778 | | | %RSD | .97927 | .94784 | .08192 | .73512 | .25536 | .24888 | 1.5030 | | | #1 | 10.160 | .51254 | 1.0329 | 52.077 | .52091 | 10.241 | .51652 | | | #2 | 10.119 | .51558 | 1.0334 | 52.180 | .52155 | 10.266 | .51044 | | | #3 | 10.309 | .52213 | 1.0345 | 52.789 | .52347 | 10.292 | .52588 | | | Check ?
Value
Range | Chk Pass | | Sample Nam
Method: ICP
User: JYH
Comment: | | | | LINES(v526) | ype: QC
) Mode:
tom ID3: | CONC (| Corr. Factor: | 1.00000(| |--|---|---|--|--|---|---|---|----------| | Elem
Units
Avg
Stddev
%RSD | Sb2068
ppm
1.2428
.0060
.48345 | Se1960
ppm
. 41949
.00185
.44083 | Si2124
ppm
5.1954
.0158
.30313 | Sn1899
ppm
1.0327
.0022
.21145 | Sr4077
ppm
1.0402
.0071
.67885 | Ti3372
ppm
1.0414
.0107
1.0282 | TI1908
ppm
. 52683
.00265
.50320 | | | #1
#2
#3 | 1.2404
1.2497
1.2384 | .41855
.42163
.41831 | 5.1799
5.1949
5.2114 | 1.0309
1.0322
1.0351 | 1.0340
1.0386
1.0479 | 1.0290
1.0480
1.0471 | .52521
.52538
.52989 | | | Check ?
Value
Range | Chk Pass | | Elem
Units
Avg
Stddev
%RSD | V_2924
ppm
1.0384
.0035
.33808 | Zn2062
ppm
1.0301
.0013
.12324 | Zr3391
ppm
F .52127
.06643
12.744 | | | | | | | #1
#2
#3 | 1.0424
1.0357
1.0372 | 1.0295
1.0293
1.0316 | .55641
.56277
.44465 | | | | | | | Check ?
Value
Range | Chk Pass | Chk Pass | Chk Fail
1.0000
-10.000% | | | | | | | Int. Std.
Units
Avg
Stddev
%RSD | Y_2243
Cts/S
11073.
4.
.03521 | Y_3600
Cts/S
93964.
209.
.22216 | Y_3774
Cts/S
4098.2
33.0
.80537 | | | | | | | #1
#2
#3 | 11069.
11076.
11073. | 93723.
94076.
94093. | 4109.6
4124.0
4061.0 | | | | | | | Sample Nam
Method: ICP-
User: JYH
Comment: | | | | LINES(v526) | ype: Blank
) Mode:
tom ID3: | CONC (| Corr. Factor: | 1.00000(| |---|----------------|----------------|----------------|----------------|-----------------------------------|----------------|----------------|----------| | Elem | Ag3280 | Al3082 | As1890 | B_2496 | Ba4554 | Be3131 | Ca4226 | | | Units | ppm | | Avg | . 00037 | . 00087 | 00162 | . 00278 | 00033 | .00001 | . 01159 | | | Stddev | .00045 | .00133 | .00102 | .00158 | .00040 | .00001 | .00482 | | | %RSD | 121.48 | 152.53 | 62.838 | 56.960 | 119.46 | 132.67 | 41.581 | | | #1 | .00084 | .00146 | 00259 | .00159 | 00041 | .00002 | .01121 | | | #2 | 00004 | .00180 | 00170 | .00216 | 00069 | .00002 | .01658 | | | #3 | .00030 | 00065 | 00056 | .00457 | .00010 | 00000 | .00697 | | | Check ?
High Limit
Low Limit | Chk Pass | | Elem | Cd2288 | Co2286 | Cr2677 | Cu2247 | Fe2611 | K_7664 | Li6707 | | | Units | ppm | | Avg | . 00015 | .00037 | 00029 | 00028 | 00476 | . 12490 | . 00404 | | | Stddev | .00013 | .00019 | .00046 | .00082 | .01872 | .06460 | .00343 | | | %RSD | 91.367 | 51.770 | 159.51 | 296.70 | 393.42 | 51.721 | 84.923 | | | #1 | .00018 | .00058 | 00083 | .00033 | 02145 | .06804 | .00061 | | | #2 | .00026 | .00031 | 00001 | 00121 | .01548 | .11152 | .00405 | | | #3 | 00000 | .00022 | 00004 | .00005 | 00831 | .19515 | .00747 | | | Check ?
High Limit
Low Limit | Chk Pass | | Elem | Mg2790 | Mn2576 | Mo2020 | Na5895 | Ni2316 | P_2149 | Pb2203 | | | Units | ppm | | Avg | . 04049 | . 00061 | . 00120 | . 05992 | . 00047 | 00081 | 00061 | | | Stddev | .03653 | .00033 | .00036 | .00548 | .00073 | .00507 | .00410 | | | %RSD | 90.219 | 54.211 | 30.220 | 9.1443 | 154.66 | 623.24 | 673.04 | | | #1 | .01125 | .00043 | .00162 | .06621 | 00033 | .00130 | 00025 | | | #2 | .08143 | .00041 | .00095 | .05728 | .00110 | .00286 | .00330 | | | #3 | .02878 | .00100 | .00104 | .05625 | .00064 | 00660 | 00487 | | | Check ?
High Limit
Low Limit | Chk Pass | | Sample Nam
Method: ICP
User: JYH
Comment: | ne: CCB /
-THERMO3_
Custom I | | | LINES(v526) | ype: Blank
) Mode:
tom ID3: | CONC (| Corr. Factor: | 1.00000(| |--|---|---|--|--|---|---|--|----------| | Elem
Units
Avg
Stddev
%RSD | Sb2068
ppm
. 00209
.00039
18.467 | Se1960
ppm
.00264
.00861
326.63 | Si2124
ppm
.00086
.00179
208.48 | Sn1899
ppm
00034
.00125
363.37 | Sr4077
ppm
. 00035
.00023
64.587 | Ti3372
ppm
. 00173
.00415
239.58 | TI1908
ppm
00046
.00289
632.60 | | | #1
#2
#3 | .00164
.00228
.00233 | .01051
00655
.00395 | 00062
.00034
.00284 | .00103
00141
00066 | .00042
.00010
.00053 | .00524
.00282
00285 | .00269
00106
00300 | | | Check ?
High Limit
Low Limit | Chk Pass | | Elem
Units
Avg
Stddev
%RSD | V_2924
ppm
.00005
.00048
999.12 | Zn2062
ppm
.00004
.00016
379.99 | Zr3391
ppm
F .09105
.03829
42.051 | | | | | | | #1
#2
#3 | 00050
.00029
.00036 | .00007
.00019
00013 | .08211
.05803
.13302 | | | | | | | Check ?
High Limit
Low Limit | Chk Pass | Chk Pass | Chk Fail
.04000
04000 | | | | | | | Int. Std.
Units
Avg
Stddev
%RSD | Y_2243
Cts/S
11230.
19.
.17298 | Y_3600
Cts/S
96718 .
258.
.26694 | Y_3774
Cts/S
4082.5
41.8
1.0241 | | | | | | | #1
#2
#3 | 11245.
11238.
11208. | 96510.
97007.
96636. | 4094.5
4117.0
4036.0 | | | | | | Sample Name: PBW X5 Acquired: 10/23/2015 11:00:07 Type: Unk Method: ICP-THERMO3 6010 200.7WATER 3YLINES(v526) Mode: CONC Corr. Factor: 1.000000 Custom ID1: Custom ID2: Custom ID3: Comment: WG543718-02 Elem Ag3280 AI3082 As1890 B 2496 Ba4554 Be3131 Ca4226 Cd2288 Units ppm ppm ppm ppm ppm ppm ppm ppm Avg -.00058 .01177 .00101 .00126 .00029 .00004 .02378 -.00001 Stddev .00019 .00840 .00218 .00121 .00045 .00004 .01235 .00036 %RSD 32.749 71.379 215.63 95.994 154.90 109.82 51.911 3331.6 #1 -.00039 .01112 -.00040 .00205 -.00020 .00003 .03794 .00038 #2 -.00058 .02048 -.00009 .00186 .00040 .00009 .01524 -.00033 #3 -.00077 .00371 .00351 -.00013 .00069 -.00000 .01817 -.00008 Check? Chk Pass **Chk Pass** High Limit Low Limit Elem Co2286 Cr2677 Cu2247 Fe2611 K 7664 Li6707 Mg2790 Mn2576 Units ppm ppm ppm ppm ppm ppm ppm ppm .00044 .00112 .00015 -.01299 .11814 .00022 -.09728 -.00061 Avg Stddev .00026 .00056 .08944 .00092 .00139 .01071 .03148 .00175 %RSD 59.405 49.973 946.70 82.441 75.707 420.63 32.359 286.81 #1 .00055 .00118 .00017 -.02405 .01582 -.00084 -.08690 .00053 #2 .00062 .00164 .00152 -.00267 .15716 .00067 -.07230 .00026 #3 .00014 .00053 -.00125 -.01226 .18145 .00083 -.13264 -.00262 Check? Chk Pass High Limit Low Limit Se1960 Mo2020 Na5895 Ni2316 P_2149 Pb2203 Sb2068 Si2124 Elem Units ppm ppm ppm ppm ppm ppm ppm ppm Avg .00057 .02089 .00010 -.00625 -.00254 .00153 .00165 .00738 Stddev .00027 .00574 .00052 .00402 .00070 .00330 .00650 .00456 %RSD 27.494 527.18 64.362 215.75 393.51 47.073 27.397 61.748 #1 -.00256 .00038 .02736 -.00015 -.00653 .00011 -.00415 .00387 -.00025 .00069 .01892 .01639 Approved: October 26, 2015 .00042 .00868 .00573 .01253 J'ye 1hu -.00209 -.01011 Chk Pass -.00184 -.00323 -.00083 .00530 #2 #3 Check? High Limit Low Limit .00088 .00045 Sample Name: PBW X5 Acquired: 10/23/2015 11:00:07 Type: Unk Method: ICP-THERMO3_6010_200.7WATER_3YLINES(v526) Mode: CONC Corr. Factor: 1.000000 Custom ID2: Custom ID1: Custom ID3: Comment: WG543718-02 Elem Sn1899 Sr4077 Ti3372 TI1908 V_2924 Zn2062 Zr3391 Units ppm ppm ppm ppm ppm ppm ppm Avg .00006 .00002 .00132 -.00209 -.00013 .00090 -.00610 Stddev .00096 .00014 .00331 .00351 .00039 .00002 .08719 299.11 %RSD 1509.3 851.02 250.31 168.32 2.4742 1430.1 #1 .00117 .00017 -.00246 -.00087 -.00049 .00092 .09128 #2 -.00053 -.00009 .00278 -.00604 .00029 .00091 -.07693 -.00045 -.00003 -.03264 #3 .00365 .00066 -.00019 .00088 Check? Chk Pass Chk Pass Chk Pass Chk Pass Chk Pass Chk Pass **High Limit** Low Limit Int. Std. Y 2243 Y 3600 Y 3774 Units Cts/S Cts/S Cts/S Avg 10856. 93721. 3963.4 Stddev 148. 14.1 19. Approved: October 26, 2015 J'ye 1hu %RSD #1 #2 #3 .17049 10836. 10861. 10872.
.15764 93606. 93670. 93888. .35498 3952.4 3958.5 3979.2 Method: ICP-THERMO3_6010_200.7WATER_3YLINES(v526) Mode: CONC Corr. Factor: 1.000000 Jser: JYH Custom ID1: Custom ID2: Custom ID3: Comment: WG543718-03 | Ag3280 | Al3082 | As1890 | B_2496 | Ba4554 | Be3131 | Ca4226 | Cd2288 | |--------|---|---|---|---|--|--|---| | ppm | .21646 | 5.4546 | .21352 | 1.0570 | .56371 | .02673 | 5.6000 | .02726 | | .00073 | .0121 | .00308 | .0010 | .00290 | .00005 | .0136 | .00010 | | .33729 | .22177 | 1.4416 | .09810 | .51455 | .19243 | .24305 | .37930 | | .21730 | 5.4620 | .21433 | 1.0575 | .56652 | .02670 | 5.6000 | .02717 | | .21595 | 5.4407 | .21611 | 1.0577 | .56073 | .02670 | 5.5864 | .02737 | | .21614 | 5.4612 | .21012 | 1.0558 | .56388 | .02679 | 5.6136 | .02724 | | | ppm
.21646
.00073
.33729
.21730
.21595 | ppm ppm .21646 5.4546 .00073 .0121 .33729 .22177 .21730 5.4620 .21595 5.4407 | ppm ppm ppm .21646 5.4546 .21352 .00073 .0121 .00308 .33729 .22177 1.4416 .21730 5.4620 .21433 .21595 5.4407 .21611 | ppm ppm ppm ppm .21646 5.4546 .21352 1.0570 .00073 .0121 .00308 .0010 .33729 .22177 1.4416 .09810 .21730 5.4620 .21433 1.0575 .21595 5.4407 .21611 1.0577 | ppm ppm ppm ppm ppm .21646 5.4546 .21352 1.0570 .56371 .00073 .0121 .00308 .0010 .00290 .33729 .22177 1.4416 .09810 .51455 .21730 5.4620 .21433 1.0575 .56652 .21595 5.4407 .21611 1.0577 .56073 | ppm <td>ppm ppm ppm</td> | ppm | Check? Chk Pass P | Elem | Co2286 | Cr2677 | Cu2247 | Fe2611 | K_7664 | Li6707 | Mg2790 | Mn2576 | |--------|----------------|----------------|----------------|--------|---------------|----------------|---------------|----------------| | Units | ppm | Avg | . 11059 | . 27644 | . 27773 | 2.2179 | 27.961 | . 56194 | 5.5055 | . 28034 | | Stddev | .00032 | .00023 | .00162 | .0179 | .120 | .00386 | .1190 | .00116 | | %RSD | .29190 | .08182 | .58327 | .80843 | .43076 | .68682 | 2.1605 | .41501 | | #1 | .11096 | .27667 | .27783 | 2.2371 | 28.078 | .56186 | 5.4277 | .28043 | | #2 | .11045 | .27644 | .27929 | 2.2151 | 27.837 | .55813 | 5.6424 | .27914 | | #3 | .11036 | .27622 | .27606 | 2.2016 | 27.967 | .56584 | 5.4463 | .28146 | Check? Chk Pass P | Elem | Mo2020 | Na5895 | Ni2316 | P_2149 | Pb2203 | Sb2068 | Se1960 | Si2124 | |--------|----------------|---------------|--------|---------------|----------------|----------------|----------------|---------------| | Units | ppm | Avg | . 55593 | 28.302 | .28010 | 5.3223 | . 27634 | . 65509 | . 21705 | 2.7846 | | Stddev | .00137 | .082 | .00083 | .0270 | .00120 | .00405 | .00327 | .0040 | | %RSD | .24560 | .28908 | .29691 | .50711 | .43316 | .61751 | 1.5077 | .14524 | | #1 | .55698 | 28.394 | .27914 | 5.3395 | .27559 | .65093 | .21625 | 2.7813 | | #2 | .55643 | 28.235 | .28051 | 5.3361 | .27571 | .65900 | .22065 | 2.7891 | | #3 | .55439 | 28.278 | .28065 | 5.2912 | .27772 | .65534 | .21426 | 2.7833 | Check? Chk Pass P Approved: October 26, 2015 J'ye lon Sample Name: LCSW X5 Acquired: 10/23/2015 11:04:14 Type: Unk Method: ICP-THERMO3_6010_200.7WATER_3YLINES(v526) Mode: CONC Corr. Factor: 1.000000 Jser: JYH Custom ID1: Custom ID2: Custom ID3: Comment: WG543718-03 | Elem | Sn1899 | Sr4077 | Ti3372 | TI1908 | V_2924 | Zn2062 | Zr3391 | |--------|----------------|----------------|----------------|----------------|----------------|----------------|----------------| | Units | ppm | Avg | . 55049 | . 55884 | . 55527 | . 28009 | . 55291 | . 54359 | . 43771 | | Stddev | .00253 | .00119 | .00782 | .00182 | .00078 | .00100 | .11818 | | %RSD | .46004 | .21263 | 1.4091 | .64860 | .14036 | .18421 | 26.999 | | #1 | .55016 | .55999 | .56068 | .27957 | .55356 | .54429 | .46043 | | #2 | .55317 | .55892 | .55885 | .28211 | .55313 | .54405 | .30983 | | #3 | .54814 | .55762 | .54630 | .27859 | .55205 | .54245 | .54289 | Check? Chk Pass P Low Limit | Int. Std. | Y_2243 | Y_3600 | Y_3774 | |-----------|--------|----------------|--------| | Units | Cts/S | Cts/S | Cts/S | | Avg | 10701. | 91754 . | 3935.6 | | Stddev | 25. | 328. | 4.2 | | %RSD | .23004 | .35792 | .10670 | | #1 | 10675. | 91542. | 3930.9 | | #2 | 10724. | 92133. | 3937.1 | | #3 | 10705. | 91588. | 3938.9 | Approved: October 26, 2015 J'ye lon Sample Name: L1510117701 Acquired: 10/23/2015 11:08:02 Type: Unk Method: ICP-THERMO3 6010 200.7WATER 3YLINES(v526) Mode: CONC Corr. Factor: 1.000000 Custom ID1: Custom ID2: Custom ID3: User: JYH Comment: WG543718-01 Elem Ag3280 AI3082 As1890 B 2496 Ba4554 Be3131 Ca4226 Cd2288 Units ppm ppm ppm ppm ppm ppm ppm ppm Avg -.00056 .05133 .00137 .08962 .17136 -.00001 47.519 -.00002 Stddev .00071 .00619 .00272 .00042 .00101 .00001 .160 .00013 %RSD 126.62 12.061 198.37 .46779 .59026 111.71 .33760 765.30 #1 .00003 .05785 .00425 .08914 .17027 -.00001 47.344 .00014 #2 -.00036 .04553 .00103 .08992 .17226 -.00002 47.555 -.00011 #3 -.00135 .05060 -.00116 .08980 .17156 -.00000 47.659 -.00008 Check? Chk Pass **Chk Pass** High Limit Low Limit Elem Co2286 Cr2677 Cu2247 Fe2611 K 7664 Li6707 Mg2790 Mn2576 Units ppm ppm ppm ppm ppm ppm ppm ppm .00099 .00107 .00768 .11981 1.3073 .00893 9.2450 .02088 Avg .00249 Stddev .00015 .00036 .00151 .00503 .0333 .0468 .00124 %RSD 14.727 33.358 19.666 4.2004 2.5434 27.854 .50616 5.9594 #1 .00088 .00074 .00925 .11638 1.3415 .01054 9.2284 .02048 #2 .00116 .00101 .00623 .11746 1.3053 .00606 9.2979 .01989 #3 .00094 .00145 .00757 .12558 1.2751
.01018 9.2089 .02228 Check? Chk Pass High Limit Low Limit Mo2020 Na5895 Ni2316 P_2149 Pb2203 Sb2068 Se1960 Si2124 Elem Units ppm ppm ppm ppm ppm ppm ppm ppm .00034 Avg .00136 47.855 .00133 .01944 .00253 -.00353 5.5144 Stddev .00042 .240 .00086 .00219 .00328 .00124 .00780 .0131 957.92 %RSD 30.641 .50086 64.528 11.269 49.029 220.58 .23814 #1 .00088 47.578 .00150 .02085 .00240 .00223 -.00170 5.5248 #2 48.003 .00040 .02054 .00207 .00147 5.5187 .00156 -.01208 #3 .00165 47.983 .00210 .01691 -.00344 .00389 .00318 5.4997 Chk Pass Check? **High Limit** Approved: October 26, 2015 Low Limit Sample Name: L1510117701 Acquired: 10/23/2015 11:08:02 Type: Unk Method: ICP-THERMO3_6010_200.7WATER_3YLINES(v526) Mode: CONC Corr. Factor: 1.000000 Custom ID2: User: JYH Custom ID1: Custom ID3: Comment: WG543718-01 Elem Sn1899 Sr4077 Ti3372 TI1908 V_2924 Zn2062 Zr3391 Units ppm ppm ppm ppm ppm ppm ppm Avg -.00002 .51548 -.00940 -.00368 -.00006 .00804 .02591 Stddev .00094 .00232 .00463 .00233 .00055 .00010 .14506 %RSD 4625.2 .45061 49.223 63.160 934.70 1.2740 559.80 #1 -.00000 .51282 -.00879 -.00167 -.00029 .00814 -.10447 #2 .00091 .51650 -.01430 -.00315 -.00045 .00805 .00003 .18218 #3 -.00097 .51711 -.00511 -.00623 .00057 .00793 Check? Chk Pass Chk Pass Chk Pass Chk Pass Chk Pass Chk Pass **High Limit** Low Limit Int. Std. Y 2243 Y 3600 Y 3774 Units Cts/S Cts/S Cts/S 10659. 91600. 3935.9 Avg Stddev 166. 14.8 16. %RSD .14998 .18116 .37508 #1 10649. 91529. 3934.1 #2 10651. 91482. 3922.2 Approved: October 26, 2015 #3 10678. 91790. 3951.5 | Method: IC
User: JYH | ame: L1510
P-THERMO
Custo
WG543718 | D3_6010_2
m ID1: | • | | | Mode: C | e: Unk
ONC C | Corr. Factor | : 1.00000(| |--|---|---|---|---|---|---|-----------------------|---|------------| | Elem
Units
Avg
Stddev
%RSD | Ag3280
ppm
. 21531
.00034
.15866 | Al3082
ppm
5.4220
.0104
.19212 | As1890
ppm
. 21639
.00368
1.6998 | B_2496
ppm
1.1502
.0051
.44197 | Ba4554
ppm
. 73401
.00077
.10513 | Be3131
ppm
. 02691
.00009
.35088 | 54.886
.165 | Cd2288
ppm
. 02677
.00050
1.8673 | | | #1
#2
#3 | .21534
.21563
.21495 | 5.4198
5.4334
5.4129 | .21249
.21980
.21686 | 1.1471
1.1560
1.1473 | .73382
.73486
.73336 | .02702
.02684
.02688 | 54.900 | .02707
.02704
.02619 | | | Check ?
High Limit
Low Limit | Chk Pass | | Elem
Units
Avg
Stddev
%RSD | Co2286
ppm
. 10778
.00035
.32125 | Cr2677
ppm
. 27758
.00088
.31596 | Cu2247
ppm
. 27727
.00138
.49815 | ppm | K_7664
ppm
29.112
.072
.24832 | Li6707
ppm
. 55940
.00351
.62761 | ppm | .29317 | | | #1
#2
#3 | .10810
.10741
.10783 | .27657
.27803
.27815 | .27756
.27577
.27849 | 2.3071
2.3077
2.3098 | 29.194
29.057
29.084 | .56033
.56235
.55551 | | .29346
.29079
.29525 | | | Check ?
High Limit
Low Limit | Chk Pass | | Elem
Units
Avg
Stddev
%RSD | Mo2020
ppm
. 55359
.00162
.29349 | Na5895
ppm
77.321
.134
.17273 | Ni2316
ppm
. 27331
.00051
.18829 | P_2149
ppm
5.3951
.0055
.10252 | Pb2203
ppm
. 26651
.00425
1.5944 | Sb2068
ppm
. 65612
.00322
.49086 | ppm
. 21866 | Si2124
ppm
8.5724
.0021
.02431 | | | #1
#2
#3 | .55519
.55365
.55194 | 77.429
77.364
77.172 | .27276
.27379
.27337 | 5.3971
5.3994
5.3889 | .26179
.26769
.27004 | .65809
.65788
.65241 | | 8.5743
8.5702
8.5726 | | | Check ?
High Limit
Low Limit | Chk Pass | Sample Name: L1510117701S Acquired: 10/23/2015 11:12:04 Type: Unk Method: ICP-THERMO3_6010_200.7WATER_3YLINES(v526) Mode: CONC User: JYH Custom ID1: Custom ID2: Custom ID3: Mode: CONC Corr. Factor: 1.000000 Comment: WG543718-04 WG543718-05 | Elem | Sn1899 | Sr4077 | Ti3372 | TI1908 | V_2924 | Zn2062 | Zr3391 | |--------|----------------|---------------|----------------|----------------|----------------|----------------|----------------| | Units | ppm | Avg | . 54572 | 1.0885 | . 54519 | . 27163 | . 55408 | . 53976 | . 45287 | | Stddev | .00055 | .0027 | .00756 | .00238 | .00042 | .00119 | .11751 | | %RSD | .10148 | .25161 | 1.3870 | .87566 | .07524 | .22049 | 25.948 | | #1 | .54635 | 1.0916 | .55008 | .26994 | .55380 | .54103 | .46953 | | #2 | .54550 | 1.0877 | .53648 | .27435 | .55456 | .53958 | .32792 | | #3 | .54531 | 1.0863 | .54901 | .27059 | .55388 | .53867 | .56117 | Check? Chk Pass P Low Limit | Int. Std. | Y_2243 | Y_3600 | Y_3774 | |-----------|--------|----------------|--------| | Units | Cts/S | Cts/S | Cts/S | | Avg | 10497. | 89535 . | 3914.1 | | Stddev | 14. | 155. | 13.9 | | %RSD | .13399 | .17261 | .35612 | | #1 | 10485. | 89446. | 3915.7 | | #2 | 10512. | 89445. | 3899.4 | | #3 | 10493. | 89713. | 3927.2 | Approved: October 26, 2015 | Method: IC
User: JYH | ame: L1510
P-THERMO
Custo
WG54371 8 | D3_6010_2
om ID1: | 200.7WATE
Custoi | | | Mode: C | oe: Unk
ONC C | Corr. Factor | : 1.00000(| |--|---|---|---|---|--|---|---------------------------------|---|------------| | Elem
Units
Avg
Stddev
%RSD | Ag3280
ppm
. 21438
.00052
.24212 | ppm
5.4259
.0115 | ppm
. 21783
.00296 | ppm
1.1583
.0044 | Ba4554
ppm
. 73358
.00486
.66262 | Be3131
ppm
. 02701
.00005
.17207 | 54.409
.294 | Cd2288
ppm
. 02719
.00019
.69531 | | | #1
#2
#3 | .21390
.21493
.21432 | 5.4371 | .21721
.22106
.21523 | 1.1533
1.1609
1.1608 | .73869
.73302
.72902 | .02706
.02702
.02697 | 54.438 | .02740
.02703
.02714 | | | Check ?
High Limit
Low Limit | Chk Pass | | Elem
Units
Avg
Stddev
%RSD
#1
#2 | Co2286
ppm
.10844
.00034
.31186
.10831
.10818
.10882 | ppm
. 27789
.00169
.60682
.27616 | ppm
. 27772
.00027
.09630
.27777
.27796 | ppm
2.3130
.0174
.74997 | K_7664
ppm
29.150
.115
.39540
29.165
29.258
29.029 | Li6707
ppm
. 55950
.00267
.47756
.55704
.56234
.55912 | ppm
14.998
.103
.68953 | .29792 | | | Check ?
High Limit
Low Limit | Chk Pass | | Elem
Units
Avg
Stddev
%RSD | Mo2020
ppm
. 55589
.00128
.22992 | ppm
76.854
.311 | ppm
. 27420
.00138 | ppm
5.4029 | Pb2203
ppm
. 26944
.00127
.47048 | Sb2068
ppm
. 65946
.00379
.57547 | ppm
. 21043
.00220 | Si2124
ppm
8.5394
.0128
.14937 | | | #1
#2
#3 | .55724
.55571
.55471 | 77.205
76.742
76.614 | .27519 | 5.3979
5.4156
5.3951 | .27045
.26802
.26984 | .65528
.66042
.66269 | .20986
.20856
.21286 | 8.5460
8.5475
8.5247 | | | Check ?
High Limit
Low Limit | Chk Pass | Sample Name: L1510117701SD Acquired: 10/23/2015 11:15:53 Type: Unk Method: ICP-THERMO3_6010_200.7WATER_3YLINES(v526) Mode: CONC Corr. Factor: 1.000000 User: JYH Custom ID1: Custom ID2: Custom ID3: Comment: WG543718-05 WG543718-06 | Elem | Sn1899 | Sr4077 | Ti3372 | TI1908 | V_2924 | Zn2062 | Zr3391 | |--------|----------------|---------------|----------------|----------------|----------------|----------------|----------------| | Units | ppm | Avg | . 54955 | 1.0854 | . 55044 | . 27210 | . 55605 | . 54186 | . 48096 | | Stddev | .00060 | .0062 | .01072 | .00059 | .00122 | .00136 | .15257 | | %RSD | .10953 | .56750 | 1.9483 | .21543 | .21935 | .25162 | 31.721 | | #1 | .55021 | 1.0917 | .54963 | .27277 | .55564 | .54080 | .42588 | | #2 | .54942 | 1.0851 | .54014 | .27187 | .55742 | .54340 | .36359 | | #3 | .54902 | 1.0794 | .56154 | .27167 | .55509 | .54138 | .65343 | Check? Chk Pass P Low Limit | Int. Std. | Y_2243 | Y_3600 | Y_3774 | |-----------|--------|----------------|--------| | Units | Cts/S | Cts/S | Cts/S | | Avg | 10471. | 89466 . | 3909.2 | | Stddev | 10. | 166. | 22.6 | | %RSD | .10007 | .18592 | .57685 | | #1 | 10459. | 89400. | 3883.9 | | #2 | 10475. | 89342. | 3916.6 | | #3 | 10478. | 89655. | 3927.1 | Approved: October 26, 2015 | Sample Name: L1510105501 | | | | | | | | | |------------------------------------|--------------------------|--------------------------|--------------------------|--------------------------|--------------------------|--------------------------|----------------------|-----------------------| | Method: ICF | -THERMO3 | _6010_200 | .7WATER_ | 3YLINES(v | 526) Mo | de: CONC | Corr. Fa | actor: 1.00000(| | User: JYH | Custom | ID1: | Custom ID |)2: (| Custom ID3 | i
i | | | | Comment: | Elem | Ag3280 | Al3082
 As1890 | B_2496 | Ba4554 | Be3131 | Ca4226 | Cd2288 | | Units
Avg | ppm
. 00039 | ppm
. 02673 | ppm
00305 | ppm
. 03068 | ppm
. 02725 | ppm
. 00002 | ppm
61.646 | ppm
. 00044 | | Stddev | .00055 | .00166 | .00123 | .00174 | .00080 | .00002 | .210 | .00031 | | %RSD | 141.16 | 6.2188 | 40.135 | 5.6665 | 2.9184 | 529.02 | .34052 | 70.961 | | #1 | .00028 | .02794 | 00168 | .02970 | .02817 | .00000 | 61.797 | .00076 | | #2 | 00009 | .02483 | 00404 | .03269 | .02688 | .00012 | 61.736 | .00013 | | #3 | .00100 | .02741 | 00345 | .02965 | .02671 | 00007 | 61.407 | .00043 | | Check ?
High Limit
Low Limit | Chk Pass | LOW LITTIC | | | | | | | | | | Elem | Co2286 | Cr2677 | Cu2247 | Fe2611 | K_7664 | Li6707 | Mg2790 | Mn2576 | | Units | ppm | ppm | ppm | ppm | ppm | ppm | ppm
46.247 | ppm
. 24960 | | Avg
Stddev | . 00230
.00009 | . 00165
.00053 | . 00138
.00039 | . 12519
.00803 | . 48046
.05158 | . 10878
.00308 | .105 | .00193 | | %RSD | 3.9245 | 32.306 | 28.507 | 6.4150 | 10.735 | 2.8313 | .22645 | .77377 | | #1 | .00228 | .00105 | .00094 | .11810 | .50402 | .10884 | 46.367 | .25180 | | #2 | .00223 | .00207 | .00151 | .12355 | .42131 | .10568 | 46.178 | .24822 | | #3 | .00240 | .00183 | .00169 | .13391 | .51605 | .11184 | 46.196 | .24877 | | Check ?
High Limit
Low Limit | Chk Pass | Elem | Mo2020 | Na5895 | Ni2316 | P_2149 | Pb2203 | Sb2068 | Se1960 | Si2124 | | Units | ppm | Avg | .00059 | 212.07 | .00573 | .11512 | 00063 | .00407 | .00412 | 24.133 | | Stddev
%RSD | .00009
15.419 | .96
.45148 | .00016
2.7198 | .00686
5.9587 | .00226
362.07 | .00322
79.210 | .00939
227.99 | .058
.24086 | | 701 (OD | 10.413 | .43140 | 2.7130 | 5.5567 | 302.07 | 73.210 | 227.33 | .24000 | | #1 | .00049 | 212.96 | .00589 | .11681 | 00059 | .00575 | 00362 | 24.180 | | #2 | .00067 | 212.18 | .00573 | .10758 | 00291 | .00611 | .00141 | 24.151 | | #3 | .00059 | 211.06 | .00558 | .12098 | .00162 | .00035 | .01456 | 24.068 | | Check ?
High Limit
Low Limit | Chk Pass | Sample Nan | | | cquired: 10/ | | | Type: Unk | | | |-------------|------------|------------|--------------|----------|------------|-----------|----------|----------------| | Method: ICF | | | _ | • | , | de: CONC | Corr. Fa | ctor: 1.00000(| | User: JYH | Custom | ID1: | Custom ID |)2: (| Custom ID3 | : | | | | Comment: | | | | | | | | | | Elem | Sn1899 | Sr4077 | Ti3372 | TI1908 | V_2924 | Zn2062 | Zr3391 | | | Units | ppm | | Avg | .00009 | 1.4918 | 01110 | 00397 | 00045 | .00460 | .19889 | | | Stddev | .00036 | .0042 | .00310 | .00316 | .00108 | .00016 | .09817 | | | %RSD | 375.87 | .28179 | 27.950 | 79.628 | 238.08 | 3.4794 | 49.356 | | | #1 | 00023 | 1.4937 | 01467 | 00041 | 00041 | .00443 | .26255 | | | #2 | .00005 | 1.4947 | 00915 | 00506 | 00155 | .00475 | .24829 | | | #3 | .00047 | 1.4870 | 00947 | 00645 | .00061 | .00460 | .08584 | | | Check? | Chk Pass | | High Limit | | | | | | | | | | Low Limit | | | | | | | | | | Int. Std. | Y 2243 | Y_3600 | Y_3774 | | | | | | | Units | _
Cts/S | _
Cts/S | _
Cts/S | | | | | | | Avg | 10378. | 88090. | 3911.6 | | | | | | | Stddev | 16. | 189. | 20.5 | | | | | | | %RSD | .15893 | .21456 | .52372 | | | | | | | #1 | 10360. | 87955. | 3891.3 | | | | | | | #2 | 10379. | 88306. | 3911.3 | | | | | | | #3 | 10393. | 88008. | 3932.3 | | | | | | Sample Name: L1510105501PS Acquired: 10/23/2015 11:23:33 Type: Unk Method: ICP-THERMO3_6010_200.7WATER_3YLINES(v526) Mode: CONC Corr. Factor: 1.000000 User: JYH Custom ID1: Custom ID2: Custom ID3: Comment: WG543782-03 Elem Ag3280 Al3082 As1890 B 2496 Ba4554 Be3131 Ca4226 Cd2288 Units ppm ppm ppm ppm ppm ppm ppm ppm Avg .21618 5.4096 .22463 1.1016 .58109 .02746 61.218 .02735 Stddev .00023 .0190 .00286 .0020 .00262 .00003 .232 .00030 .37938 %RSD .10742 .35099 1.2731 .18274 .45167 .12005 1.1064 #1 .21607 5.4126 .22277 1.1015 .58377 .02749 61.391 .02739 #2 .21645 5.3893 .22792 1.0996 .57852 .02742 60.954 .02702 #3 .21603 5.4270 .22319 1.1036 .58099 .02747 61.308 .02762 Check? Chk Pass **High Limit** Low Limit 6 n | Elem | Co2286 | Cr2677 | cu2247 | Fe2611 | K_7664 | Li6707 | Mg2790 | Mn2576 | |--------|--------|----------------|----------------|---------------|---------------|----------------|---------------|----------------| | Units | ppm | Avg | .10888 | . 27826 | . 26948 | 2.2803 | 28.335 | . 64894 | 47.118 | . 49931 | | Stddev | .00033 | .00072 | .00110 | .0265 | .022 | .00175 | .359 | .00323 | | %RSD | .30522 | .25751 | .40649 | 1.1635 | .07715 | .26907 | .76121 | .64696 | | #1 | .10854 | .27853 | .27060 | 2.3107 | 28.351 | .65054 | 47.370 | .50159 | | #2 | .10892 | .27745 | .26943 | 2.2619 | 28.310 | .64707 | 46.707 | .49561 | | #3 | .10920 | .27880 | .26841 | 2.2683 | 28.343 | .64921 | 47.277 | .50073 | Check? Chk Pass P | Elem | Mo2020 | Na5895 | Ni2316 | P_2149 | Pb2203 | Sb2068 | Se1960 | Si2124 | |--------|----------------|---------------|----------------|---------------|----------------|----------------|----------------|---------------| | Units | ppm | Avg | . 55194 | 218.53 | . 27541 | 5.5822 | . 26655 | . 66151 | . 21989 | 24.676 | | Stddev | .00193 | .88 | .00010 | .0150 | .00293 | .00260 | .00322 | .059 | | %RSD | .35044 | .40077 | .03698 | .26844 | 1.1006 | .39322 | 1.4630 | .23994 | | #1 | .55363 | 219.23 | .27543 | 5.5898 | .26975 | .66427 | .22352 | 24.733 | | #2 | .55235 | 217.54 | .27530 | 5.5920 | .26399 | .65910 | .21880 | 24.680 | | #3 | .54983 | 218.81 | .27550 | 5.5650 | .26591 | .66116 | .21737 | 24.614 | Check? Chk Pass P Method: ICP-THERMO3_6010_200.7WATER_3YLINES(v526) Mode: CONC Corr. Factor: 1.000000 User: JYH Custom ID1: Custom ID2: Custom ID3: Comment: WG543782-03 | Elem | Sn1899 | Sr4077 | Ti3372 | TI1908 | V_2924 | Zn2062 | Zr3391 | |--------|--------|--------|--------|--------|--------|--------|--------| | Units | ppm | Avg | .54584 | 1.9034 | .54780 | .26445 | .55893 | .54150 | .19399 | | Stddev | .00017 | .0073 | .00881 | .00115 | .00028 | .00189 | .09535 | | %RSD | .03136 | .38350 | 1.6084 | .43526 | .05099 | .34978 | 49.152 | | #1 | .54572 | 1.9095 | .55525 | .26359 | .55920 | .54236 | .09069 | | | | | | | .000_0 | | | | #2 | .54603 | 1.8953 | .53807 | .26400 | .55863 | .54281 | .27864 | | #3 | .54576 | 1.9055 | .55006 | .26576 | .55898 | .53933 | .21265 | Check? Chk Pass P Low Limit | Int. Std. | Y_2243 | Y_3600 | Y_3774 | |-----------|--------|----------------|--------| | Units | Cts/S | Cts/S | Cts/S | | Avg | 10328. | 87298 . | 3889.9 | | Stddev | 18. | 196. | 12.4 | | %RSD | .17639 | .22421 | .31917 | | #1 | 10306. | 87072. | 3876.0 | | #2 | 10337. | 87408. | 3899.9 | | #3 | 10339. | 87414. | 3893.7 | Approved: October 26, 2015 Sample Name: L1510105501SDL Acquired: 10/23/2015 11:27:24 Type: Unk Method: ICP-THERMO3_6010_200.7WATER_3YLINES(v526) Mode: CONC Corr. Factor: 1.000000 User: JYH Custom ID1: 5 Custom ID2: Custom ID3: Comment: WG543782-04 | Elem | Ag3280 | Al3082 | As1890 | B_2496 | Ba4554 | Be3131 | Ca4226 | Cd2288 | |------------------------------------|----------------|----------------|----------------|----------------|----------------|----------------|----------------|----------------| | Units | ppm | Avg | . 00112 | . 00436 | 00172 | . 01128 | . 00472 | 00001 | 11.684 | 00004 | | Stddev | .00029 | .00022 | .00462 | .00271 | .00027 | .00004 | .043 | .00007 | | %RSD | 26.224 | 5.0948 | 268.23 | 24.047 | 5.7141 | 440.74 | .37100 | 202.31 | | #1 | .00127 | .00433 | 00537 | .01319 | .00465 | 00000 | 11.693 | .00003 | | #2 | .00078 | .00416 | .00348 | .01248 | .00449 | 00005 | 11.637 | 00011 | | #3 | .00131 | .00460 | 00328 | .00818 | .00502 | .00003 | 11.723 | 00003 | | Check?
High Limit
Low Limit | Chk Pass | Elem | Co2286 | Cr2677 | Cu2247 | Fe2611 | K_7664 | Li6707 | Mg2790 | Mn2576 | | Units | ppm | Avg | .00086 | . 00050 | . 00024 | . 01040 | . 27181 | . 02244 | 8.6616 | . 04619 | | Stddev | .00033 | .00088 | .00058 | .01204 | .05541 | .00362 | .1013 | .00064 | | %RSD | 38.819 | 175.64 | 246.40 | 115.79 | 20.385 | 16.125 | 1.1696 | 1.3935 | | #1 | .00124 | .00130 | 00043 | .00375 | .30390 | .02609 | 8.5925 | .04570 | | #2 | .00072 | 00044 | .00064 | .00315 | .20783 | .01885 | 8.6144 | .04692 | | #3 | .00062 | .00064 | .00050 | .02430 | .30369 | .02239 | 8.7779 | .04596 | | Check?
High Limit
Low Limit | Chk Pass | Elem | Mo2020 | Na5895 | Ni2316 | P_2149 | Pb2203 | Sb2068 | Se1960 | Si2124 | | Units | ppm | Avg | . 00028 | 40.621 | .00169 | . 01920 | 00045 | . 00262 | . 00182 | 4.4777 | | Stddev | .00031 | .091 | .00033 | .00201 | .00538 | .00127 | .00329 | .0108 | | %RSD | 111.29 | .22395 | 19.719 | 10.443 | 1187.0 | 48.508 | 181.07 | .24119 | | #1 | .00007 | 40.592 | .00180 | .01689 | 00656 | .00267 | .00006 | 4.4742 | | #2 | .00063 | 40.549 | .00196 | .02039 | .00359 | .00387 | 00022 | 4.4899 | | #3 | .00013 | 40.723 | .00132 | .02033 | .00161 | .00133 | .00561 | 4.4691 | | Check ?
High Limit
Low Limit | Chk Pass Approved: October 26, 2015 Sample Name: L1510105501SDL Acquired: 10/23/2015 11:27:24 Type: Unk Method: ICP-THERMO3_6010_200.7WATER_3YLINES(v526) Mode: CONC Corr. Factor: 1.000000 Custom ID2: User: JYH Custom ID1: 5 Custom ID3: Comment: WG543782-04 Elem Sn1899 Sr4077 Ti3372 TI1908 V_2924 Zn2062 Zr3391 Units ppm ppm ppm ppm ppm ppm ppm Avg -.00082 .27676 -.00134 .00060 -.00044 .00130 .16588 Stddev .00056 .00078 .00208 .00124 .00040 .00018 .05620 %RSD 68.394 .28281 155.46 207.90 90.855 13.577 33.881 #1 -.00056 .27590 .00010 .00006 .00002 .00124 .16858 #2 -.00044 .27696 -.00039 .00201 -.00063 .00151 .10838 #3 -.00147 .27742 -.00373 -.00029 -.00072 .00117 .22068 Check? Chk Pass
Chk Pass Chk Pass Chk Pass Chk Pass Chk Pass **High Limit** Low Limit Int. Std. Y 2243 Y 3600 Y 3774 Units Cts/S Cts/S Cts/S 11592. 99038. 4237.5 Avg Stddev 19.9 5. 111. %RSD .04169 .11217 .47010 Approved: October 26, 2015 J. Je Ih #1 #2 #3 11592. 11588. 11597. 99164. 98957. 98991. 4255.0 4241.7 4215.8 Sample Name: L1510105501SDL Acquired: 10/23/2015 11:31:26 Type: Unk Method: ICP-THERMO3_6010_200.7WATER_3YLINES(v526) Mode: CONC Corr. Factor: 1.000000 User: JYH Custom ID1: 25 Custom ID2: Custom ID3: Comment: WG543782-04 | Elem | Ag3280 | Al3082 | As1890 | B_2496 | Ba4554 | Be3131 | Ca4226 | |------------------------------------|----------------|----------------|----------------|---------------|-----------------------------|----------------|----------------| | Units | ppm | Avg | . 00115 | .00423 | 00303 | .00385 | . 00085 | 00002 | 2.3073 | | Stddev | .00161 | .00183 | .00093 | .00160 | .00077 | .00006 | .0266 | | %RSD | 140.30 | 43.181 | 30.605 | 41.545 | 90.358 | 238.82 | 1.1508 | | #1 | 00042 | .00387 | 00334 | .00331 | .00045 | .00001 | 2.2772 | | #2 | .00107 | .00621 | 00199 | .00259 | .00174 | 00009 | 2.3173 | | #3 | .00279 | .00261 | 00377 | .00565 | .00037 | .00000 | 2.3273 | | Check ?
High Limit
Low Limit | Chk Pass | Elem | Cd2288 | Co2286 | Cr2677 | Cu2247 | Fe2611 | K_7664 | Li6707 | | Units | ppm | Avg | . 00002 | .00019 | 00015 | .00006 | F02167 | . 12989 | . 00589 | | Stddev | .00004 | .00004 | .00096 | .00121 | .00986 | .06572 | .00139 | | %RSD | 207.68 | 21.594 | 650.49 | 2055.5 | 45.480 | 50.596 | 23.652 | | #1 | 00000 | .00020 | 00046 | .00116 | 03304 | .08805 | .00525 | | #2 | .00006 | .00015 | 00091 | .00024 | 01551 | .09598 | .00749 | | #3 | 00000 | .00023 | .00093 | 00123 | 01647 | .20564 | .00493 | | Check ?
High Limit
Low Limit | Chk Pass | Chk Pass | Chk Pass | Chk Pass | Chk Fail
720.00
02000 | Chk Pass | Chk Pass | | Elem | Mg2790 | Mn2576 | Mo2020 | Na5895 | Ni2316 | P_2149 | Pb2203 | | Units | ppm | Avg | 1. 7153 | . 00759 | . 00033 | 8.0745 | .00039 | . 00230 | 00301 | | Stddev | .0485 | .00156 | .00029 | .0270 | .00011 | .00128 | .00291 | | %RSD | 2.8272 | 20.499 | 87.008 | .33477 | 28.909 | 55.739 | 96.809 | | #1 | 1.7392 | .00871 | .00049 | 8.0620 | .00029 | .00124 | 00608 | | #2 | 1.6595 | .00581 | .00050 | 8.0559 | .00051 | .00193 | 00266 | | #3 | 1.7472 | .00825 | 00000 | 8.1055 | .00038 | .00372 | 00029 | | Check ?
High Limit
Low Limit | Chk Pass Approved: October 26, 2015 Sample Name: L1510105501SDL Acquired: 10/23/2015 11:31:26 Type: Unk Method: ICP-THERMO3_6010_200.7WATER_3YLINES(v526) Mode: CONC Corr. Factor: 1.000000 User: JYH Custom ID1: 25 Custom ID2: Custom ID3: Comment: WG543782-04 | Elem
Units
Avg
Stddev
%RSD | Sb2068
ppm
00059
.00274
468.60 | Se1960
ppm
00263
.00770
293.16 | Si2124
ppm
. 91272
.01705
1.8683 | Sn1899
ppm
00025
.00059
236.24 | Sr4077
ppm
. 05392
.00035
.65353 | Ti3372
ppm
. 00066
.00120
183.56 | TI1908
ppm
00258
.00400
155.23 | |---|--|---|---|--|---|---|--| | #1
#2
#3 | 00373
.00129
.00069 | 00445
00926
.00582 | .89631
.91150
.93035 | 00093
00000
.00018 | .05383
.05362
.05431 | .00054
.00191
00048 | 00700
.00078
00151 | | Check ?
High Limit
Low Limit | Chk Pass | Elem
Units
Avg
Stddev
%RSD | V_2924
ppm
00024
.00004
18.085 | Zn2062
ppm
.00066
.00021
32.555 | Zr3391
ppm
. 09897
.09258
93.540 | | | | | | #1
#2
#3 | 00029
00021
00023 | .00074
.00041
.00082 | .08277
.01556
.19857 | | | | | | Check ?
High Limit
Low Limit | Chk Pass | Chk Pass | Chk Pass | | | | | | Int. Std.
Units
Avg
Stddev
%RSD | Y_2243
Cts/S
11830.
17.
.14492 | Y_3600
Cts/S
101240.
66.
.06565 | Y_3774
Cts/S
4267. 2
7.5
.17595 | | | | | | #1
#2
#3 | 11845.
11832.
11811. | 101210.
101320.
101190. | 4268.8
4273.9
4259.1 | | | | | Approved: October 26, 2015 | Sample Nam
Method: ICP
User: JYH
Comment: | | | | LINES(v526) | ype: QC
) Mode:
tom ID3: | CONC (| Corr. Factor: | 1.00000(| |--|----------------|----------------|----------------|----------------|--------------------------------|----------------|----------------|----------| | Elem | Ag3280 | Al3082 | As1890 | B_2496 | Ba4554 | Be3131 | Ca4226 | | | Units | ppm | | Avg | . 40816 | 10.316 | . 42490 | . 51532 | 1.0509 | . 05187 | 10.431 | | | Stddev | .00141 | .024 | .00447 | .00120 | .0044 | .00004 | .079 | | | %RSD | .34572 | .23330 | 1.0509 | .23209 | .42279 | .07769 | .75813 | | | #1 | .40899 | 10.344 | .42969 | .51448 | 1.0518 | .05190 | 10.393 | | | #2 | .40895 | 10.301 | .42416 | .51478 | 1.0461 | .05182 | 10.379 | | | #3 | .40653 | 10.303 | .42085 | .51669 | 1.0548 | .05189 | 10.522 | | | Check ?
Value
Range | Chk Pass | | Elem | Cd2288 | Co2286 | Cr2677 | Cu2247 | Fe2611 | K_7664 | Li6707 | | | Units | ppm | | Avg | . 05176 | . 20622 | . 52532 | . 52044 | 4.1542 | 52.407 | 1.0401 | | | Stddev | .00028 | .00044 | .00118 | .00260 | .0294 | .169 | .0084 | | | %RSD | .54246 | .21267 | .22416 | .49952 | .70845 | .32269 | .80927 | | | #1 | .05159 | .20673 | .52434 | .52294 | 4.1668 | 52.469 | 1.0382 | | | #2 | .05160 | .20596 | .52500 | .51775 | 4.1206 | 52.216 | 1.0329 | | | #3 | .05208 | .20598 | .52663 | .52064 | 4.1753 | 52.537 | 1.0494 | | | Check ?
Value
Range | Chk Pass | | Elem | Mg2790 | Mn2576 | Mo2020 | Na5895 | Ni2316 | P_2149 | Pb2203 | | | Units | ppm | | Avg | 10.228 | . 51837 | 1.0367 | 53.152 | . 52683 | 10.356 | . 52180 | | | Stddev | .250 | .00417 | .0024 | .214 | .00149 | .030 | .00142 | | | %RSD | 2.4421 | .80485 | .22814 | .40309 | .28280 | .29437 | .27293 | | | #1 | 10.316 | .51390 | 1.0394 | 53.178 | .52665 | 10.391 | .52328 | | | #2 | 9.9461 | .51903 | 1.0352 | 52.926 | .52840 | 10.339 | .52044 | | | #3 | 10.422 | .52216 | 1.0354 | 53.352 | .52543 | 10.337 | .52167 | | | Check ?
Value
Range | Chk Pass | | Sample Nam | -THERMO3_ | 6010_200.7 | | LINES(v526) | | CONC (| Corr. Factor: | 1.00000(| |---|---|---|---|--|---|---|---|----------| | User: JYH
Comment: | Custom I | DI: (| Custom ID2: | Cus | tom ID3: | | | | | Elem
Units
Avg
Stddev
%RSD | Sb2068
ppm
1.2634
.0026
.20404 | Se1960
ppm
. 42258
.00329
.77875 | Si2124
ppm
5.2645
.0072
.13757 | Sn1899
ppm
1.0337
.0022
.21698 | Sr4077
ppm
1.0515
.0038
.36147 | Ti3372
ppm
1.0514
.0043
.41365 | TI1908
ppm
. 53230
.00403
.75696 | | | #1
#2
#3 | 1.2625
1.2663
1.2614 | .42103
.42035
.42636 | 5.2612
5.2594
5.2728 | 1.0355
1.0343
1.0312 | 1.0536
1.0471
1.0537 | 1.0479
1.0502
1.0563 | .53454
.53472
.52765 | | | Check ?
Value
Range | Chk Pass | | Elem
Units
Avg
Stddev
%RSD | V_2924
ppm
1.0408
.0028
.26747 | Zn2062
ppm
1.0364
.0010
.09176 | Zr3391
ppm
F .38247
.11050
28.891 | | | | | | | #1
#2
#3 | 1.0426
1.0376
1.0422 | 1.0371
1.0353
1.0367 | .47945
.26218
.40578 | | | | | | | Check ?
Value
Range | Chk Pass | Chk Pass | Chk Fail
1.0000
-10.000% | | | | | | | Int. Std.
Units
Avg
Stddev
%RSD | Y_2243
Cts/S
11011.
19.
.17327 | Y_3600
Cts/S
93455 .
197.
.21028 | Y_3774
Cts/S
4071.0
21.4
.52649 | | | | | | | #1
#2
#3 | 10990.
11019.
11025. | 93279.
93667.
93419. | 4077.5
4088.5
4047.1 | | | | | | | Sample Nam
Method: ICP
User: JYH
Comment: | | | | LINES(v526) | ype: Blank
) Mode:
tom ID3: | CONC (| Corr. Factor: | 1.00000(| |--|----------------|----------------|----------------|----------------|-----------------------------------|----------------|----------------|----------| | Elem | Ag3280 | Al3082 | As1890 | B_2496 | Ba4554 | Be3131 | Ca4226 | | | Units | ppm | | Avg | . 00001 | . 00472 | 00436 | .00300 | 00025 | 00001 | . 01532 | | | Stddev | .00040 | .00207 | .00134 | .00312 | .00023 | .00003 | .01351 | | | %RSD | 3019.9 | 43.837 | 30.840 | 103.94 | 92.050 | 517.04 | 88.191 | | | #1 | 00042 | .00526 | 00591 | .00556 | 00049 | 00001 | .02945 | | | #2 | .00036 | .00646 | 00357 | .00392 | 00002 | .00002 | .00252 | | | #3 | .00009 | .00243 | 00359 | 00047 | 00026 | 00003 | .01400 | | | Check ?
High Limit
Low Limit | Chk Pass | | Elem | Cd2288 | Co2286 | Cr2677 | Cu2247 | Fe2611 | K_7664 | Li6707 | | | Units | ppm | | Avg | . 00002 | .00077 | 00039 | 00054 | .00693 | . 15303 | . 00461 | | | Stddev | .00006 | .00015 | .00044 | .00038 | .00579 | .05863 | .00589 | | | %RSD | 366.48 | 19.741 | 112.41 | 70.733 | 83.607 | 38.312 | 127.84 | | | #1 | 00005 | .00094 |
.00011 | 00053 | .00108 | .19777 | 00158 | | | #2 | .00006 | .00065 | 00060 | 00093 | .01266 | .08666 | .01015 | | | #3 | .00004 | .00072 | 00069 | 00016 | .00704 | .17467 | .00526 | | | Check ?
High Limit
Low Limit | Chk Pass | | Elem | Mg2790 | Mn2576 | Mo2020 | Na5895 | Ni2316 | P_2149 | Pb2203 | | | Units | ppm | | Avg | 06845 | . 00072 | . 00137 | . 04439 | .00007 | 00098 | 00388 | | | Stddev | .07314 | .00167 | .00036 | .00726 | .00101 | .00215 | .00148 | | | %RSD | 106.85 | 232.45 | 26.480 | 16.362 | 1485.9 | 219.28 | 38.161 | | | #1 | 06454 | .00165 | .00117 | .05138 | .00106 | 00341 | 00478 | | | #2 | .00265 | 00121 | .00115 | .04490 | .00010 | .00066 | 00217 | | | #3 | 14347 | .00172 | .00179 | .03688 | 00096 | 00019 | 00470 | | | Check ?
High Limit
Low Limit | Chk Pass | | Sample Nam
Method: ICP
User: JYH
Comment: | ne: CCB /
-THERMO3_
Custom I | 6010_200.7 | /23/2015 11:
WATER_3YI
Custom ID2: | LINES(v526) | ype: Blank
) Mode:
tom ID3: | CONC (| Corr. Factor: | 1.00000(| |--|---|--|---|---|---|---|---|----------| | Elem
Units
Avg
Stddev
%RSD | Sb2068
ppm
.00006
.00192
3173.5 | Se1960
ppm
.00157
.00256
162.81 | Si2124
ppm
.00511
.00260
50.826 | Sn1899
ppm
. 00037
.00017
45.412 | Sr4077
ppm
.00013
.00028
220.37 | Ti3372
ppm
. 00243
.00165
67.728 | TI1908
ppm
. 00007
.00283
4295.4 | | | #1
#2
#3 | 00075
.00226
00132 | .00436
.00104
00068 | .00730
.00224
.00580 | .00018
.00048
.00045 | 00019
.00023
.00034 | .00167
.00130
.00432 | 00306
.00245
.00081 | | | Check ?
High Limit
Low Limit | Chk Pass | | Elem
Units
Avg
Stddev
%RSD | V_2924
ppm
. 00018
.00035
197.76 | Zn2062
ppm
.00005
.00006
108.76 | Zr3391
ppm
F .04464
.16687
373.86 | | | | | | | #1
#2
#3 | .00053
00018
.00019 | .00007
.00010
00001 | 14804
.14285
.13909 | | | | | | | Check ?
High Limit
Low Limit | Chk Pass | Chk Pass | Chk Fail
.04000
04000 | | | | | | | Int. Std.
Units
Avg
Stddev
%RSD | Y_2243
Cts/S
11203.
13.
.11227 | Y_3600
Cts/S
9 6226 .
252.
.26214 | Y_3774
Cts/S
4070.0
5.7
.14097 | | | | | | | #1
#2
#3 | 11213.
11189.
11206. | 96204.
95986.
96489. | 4065.3
4076.4
4068.3 | | | | | | Sample Name: PBW 46 Acquired: 10/23/2015 11:43:21 Type: Unk Method: ICP-THERMO3_6010_200.7WATER_3YLINES(v526) Mode: CONC Corr. Factor: 1.000000 Custom ID1: Custom ID2: Custom ID3: Comment: WG543956-02 Elem Ag3280 AI3082 As1890 B 2496 Ba4554 Be3131 Ca4226 Cd2288 Units ppm ppm ppm ppm ppm ppm ppm ppm Avg .00116 .01234 -.00357 .00357 .00033 .00000 .00999 .00012 Stddev .00044 .00249 .00245 .00227 .00068 .00003 .01630 .00008 %RSD 37.816 20.182 68.663 63.599 206.55 561.82 163.25 69.650 #1 .00077 .01232 -.00074 .00535 .00049 -.00002 .02618 .00004 #2 .00107 .01484 -.00488 .00101 .00092 .00003 .01020 .00011 #3 .00164 .00986 -.00509 .00435 -.00042 .00000 -.00642 .00020 Check? Chk Pass Chk Pass Chk Pass Chk Pass Chk Pass Chk Pass High Limit Low Limit Elem Co2286 Cr2677 Cu2247 Fe2611 K 7664 Li6707 Mg2790 Mn2576 Units ppm ppm ppm ppm ppm ppm ppm ppm .00047 .00040 -.00035 -.01426 .12917 .00058 -.01388 -.00097 Avg Stddev 80000. .00090 .00445 .00031 .00584 .02151 .06884 .00155 %RSD 17.650 228.18 87.774 40.913 16.652 772.82 495.90 160.62 #1 .00038 .00143 -.00040 -.01324 .14969 .00140 .03714 .00051 #2 .00048 -.00002 -.00002 -.02054.10679 -.00423 .01339 -.00259 #3 .00054 -.00022 -.00063 -.00901 .13101 .00456 -.09218 -.00082 Chk Pass Chk Pass Chk Pass Check? Chk Pass Chk Pass Chk Pass Chk Pass High Limit Low Limit Na5895 Se1960 Mo2020 Ni2316 P_2149 Pb2203 Sb2068 Si2124 Elem Units ppm ppm ppm ppm ppm ppm ppm ppm Avg -.00003 .01576 .00226 .00517 -.00064 -.00273 .00555 .01752 .00196 35.386 .00631 .00702 .00332 .00129 7.3833 .01653 .01704 .01898 Approved: October 26, 2015 Stddev %RSD Check? High Limit Low Limit #1 #2 #3 .00004 162.39 -.00007 .00002 -.00004 .01344 85.257 .01032 .00590 .03107 .00024 10.598 .00239 .00199 .00241 .00410 79.289 .00102 .00527 .00922 Chk Pass .00248 387.73 -.00258 -.00149 .00216 .00190 69.564 -.00271 -.00084 -.00464 Sample Name: PBW 46 Acquired: 10/23/2015 11:43:21 Type: Unk Method: ICP-THERMO3_6010_200.7WATER_3YLINES(v526) Mode: CONC Corr. Factor: 1.000000 Custom ID2: Custom ID1: Custom ID3: Comment: WG543956-02 Elem Sn1899 Sr4077 Ti3372 TI1908 V_2924 Zn2062 Zr3391 Units ppm ppm ppm ppm ppm ppm ppm Avg .00037 .00012 -.00310 -.00441 -.00039 .00104 .01807 Stddev .00031 .00019 .00480 .00086 .00062 .00011 .10861 %RSD 84.238 150.97 154.92 19.520 157.34 11.035 601.12 #1 .00028 .00014 .00174 -.00344 -.00087 .00117 -.08622 #2 .00011 .00030 -.00785 -.00507 -.00060 .00099 .13054 -.00007 .00988 #3 .00071 -.00318 -.00471 .00030 .00096 Check? Chk Pass Chk Pass Chk Pass Chk Pass Chk Pass Chk Pass **High Limit** Low Limit Int. Std. Y 2243 Y 3600 Y 3774 Units Cts/S Cts/S Cts/S Avg 10832. 93967. 3947.4 Stddev 12. 248. 5.2 %RSD .11403 .26387 .13252 #1 3944.2 10830. 93723. Approved: October 26, 2015 J'ye lon #2 #3 10821. 10846. 94219. 93960. 3944.6 3953.5 Sample Name: LCSW 46 Acquired: 10/23/2015 11:47:27 Type: Unk Method: ICP-THERMO3_6010_200.7WATER_3YLINES(v526) Mode: CONC Corr. Factor: 1.000000 Jser: JYH Custom ID1: Custom ID2: Custom ID3: Comment: WG543956-03 #1 #2 #3 Low Limit .10835 .10853 .10862 .27407 .27468 .27488 .27260 .27464 .27255 | Elem | Ag3280 | Al3082 | As1890 | B_2496 | Ba4554 | Be3131 | Ca4226 | Cd2288 | |--|--|--|--|--|--|--|--|--| | Units | ppm | Avg | . 21259 | 5.3739 | . 21225 | 1.0442 | . 55532 | . 02648 | 5.4761 | . 02680 | | Stddev | .00076 | .0116 | .00246 | .0039 | .00228 | .00007 | .0162 | .00013 | | %RSD | .35671 | .21539 | 1.1570 | .37742 | .41122 | .28316 | .29495 | .48031 | | #1
#2
#3
Check?
High Limit | .21177
.21326
.21274
Chk Pass | 5.3833
5.3610
5.3773
Chk Pass | .21496
.21162
.21017
Chk Pass | 1.0486
1.0430
1.0411
Chk Pass | .55718
.55601
.55277
Chk Pass | .02653
.02653
.02640
Chk Pass | 5.4916
5.4775
5.4594
Chk Pass | .02667
.02681
.02693
Chk Pass | | Low Limit | 0-2220 | 0.2077 | 02247 | F-0011 | V 7004 | 1:0707 | M 2700 | M 0570 | | Elem | Co2286 | Cr2677 | Cu2247 | Fe2611 | K_7664 | Li6707 | Mg2790 | Mn2576 | | Units | ppm | Avg | . 10850 | . 27454 | . 27327 | 2.1971 | 27.535 | . 55161 | 5.2846 | . 27346 | | Stddev | .00014 | .00042 | .00119 | .0034 | .154 | .00313 | .0858 | .00135 | | %RSD | .12505 | .15382 | .43699 | .15679 | .55996 | .56786 | 1.6232 | .49485 | Check? Chk Pass P 2.1962 2.2009 2.1942 27.571 27.669 27.366 .54833 .55193 .55458 5.3740 5.2770 5.2029 .27216 .27486 .27337 | Elem | Mo2020 | Na5895 | Ni2316 | P_2149 | Pb2203 | Sb2068 | Se1960 | Si2124 | |--------|--------|--------|--------|--------|--------|--------|--------|--------| | Units | ppm | Avg | .54564 | 28.023 | .27643 | 5.2463 | .27180 | 64659 | .21210 | 2.7976 | | Stddev | .00139 | .147 | .00257 | .0123 | .00382 | .00581 | .00276 | .0102 | | %RSD | .25401 | .52537 | .93046 | .23378 | 1.4038 | .89844 | 1.3023 | .36414 | | | | | | | | | | | | #1 | .54677 | 28.005 | .27500 | 5.2486 | .27599 | .64335 | .21255 | 2.7916 | | #2 | .54604 | 28.179 | .27940 | 5.2572 | .27086 | .65329 | .21462 | 2.8093 | | #3 | .54409 | 27.886 | .27489 | 5.2330 | .26854 | .64311 | .20915 | 2.7918 | Check? Chk Pass P Sample Name: LCSW 46 Acquired: 10/23/2015 11:47:27 Type: Unk Method: ICP-THERMO3_6010_200.7WATER_3YLINES(v526) Mode: CONC Corr. Factor: 1.000000 Jser: JYH Custom ID1: Custom ID2: Custom ID3: Comment: WG543956-03 | Elem | Sn1899 | Sr4077 | Ti3372 | TI1908 | V_2924 | Zn2062 | Zr3391 | |--------|----------------|----------------|----------------|----------------|----------------|----------------|----------------| | Units | ppm | Avg | . 54090 | . 54970 | . 54767 | . 27883 | . 54650 | . 53515 | . 38459 | | Stddev | .00065 | .00308 | .00777 | .00464 | .00084 | .00129 | .11157 | | %RSD | .11993 | .55995 | 1.4186 | 1.6657 | .15392 | .24096 | 29.010 | | #1 | .54114 | .55034 | .54065 | .27347 | .54676 | .53486 | .51305 | | #2 | .54140 | .55241 | .55602 | .28142 | .54718 | .53656 | .31188 | | #3 | .54016 | .54635 | .54634 | .28160 | .54556 | .53403 | .32885 | Check? Chk Pass P Low Limit | Int. Std. | Y_2243 | Y_3600 | Y_3774 | |-----------|--------|----------------|--------| | Units | Cts/S | Cts/S | Cts/S | | Avg | 10643. | 91083 . | 3920.5 | | Stddev | 21. | 427. | 18.4 | | %RSD | .19285 | .46844 | .46929 | | #1 | 10629. | 90765. | 3924.0 | | #2 | 10634. | 90916. | 3900.7 | | #3 | 10666. | 91568. | 3937.0 | Approved: October 26, 2015 Sample Name: L1510126210 Acquired: 10/23/2015 11:51:17 Type: Unk Method: ICP-THERMO3 6010 200.7WATER 3YLINES(v526) Mode: CONC Corr. Factor: 1.000000 Custom ID1: Custom ID2: Custom ID3: User: JYH Comment: WG543956-01 Elem Ag3280 AI3082 As1890 B 2496 Ba4554 Be3131 Ca4226 Cd2288 Units ppm ppm ppm
ppm ppm ppm ppm ppm Avg .00029 .01606 -.00024 .01711 .03499 -.00001 73.201 .00027 .00057 Stddev .00039 .00411 .00091 .00077 .00004 .142 .00015 %RSD 133.24 25.604 233.35 5.2950 2.2080 540.16 .19335 54.230 #1 .00013 .01397 -.00068 .01777 .03498 -.00005 73.364 .00031 #2 .00073 .02080 .00040 .01608 .03422 .00000 73.112 .00011 #3 .00001 .01342 -.00045 .01748 .03576 .00002 73.126 .00039 Check? Chk Pass High Limit Low Limit Elem Co2286 Cr2677 Cu2247 Fe2611 K 7664 Li6707 Mg2790 Mn2576 Units ppm ppm ppm ppm ppm ppm ppm ppm .00027 .00109 .00456 -.00873 .98289 .00698 7.3037 .00021 Avg .03698 .00264 Stddev .00035 .00023 .00101 .01663 .1249 .00093 %RSD 132.63 20.781 22.153 190.40 3.7620 37.763 1.7106 453.48 #1 .00067 .00085 .00520 -.01940 .94937 .00394 7.1758 -.00044 #2 .00009 .00113 .00509 -.01722 .97673 .00842 7.4254 .00127 #3 .00004 .00129 .00340 .01042 1.0226 .00859 7.3100 -.00022 Check? Chk Pass High Limit Low Limit Se1960 Mo2020 Ni2316 P_2149 Sb2068 Si2124 Elem Na5895 Pb2203 Units ppm ppm ppm ppm ppm ppm ppm ppm 4.1259 Avg .00128 5.5667 .00086 .00114 -.00257 .00109 .00191 Stddev .00040 .0089 .00135 .00334 .00175 .00301 .00492 .0087 276.58 257.17 %RSD 30.937 .16024 156.53 292.81 68.056 .21109 #1 -.00160 -.00105 .00091 5.5690 -.00056 -.00212 -.00051 4.1354 #2 5.5569 .00103 .00098 -.00022 -.00132 .00170 -.00153 4.1242 #3 .00124 5.5743 .00211 .00456 -.00459 .00454 .00757 4.1183 Chk Pass Chk Pass Chk Pass Check? Chk Pass Chk Pass Chk Pass **High Limit** Approved: October 26, 2015 Low Limit Sample Name: L1510126210 Acquired: 10/23/2015 11:51:17 Type: Unk Method: ICP-THERMO3_6010_200.7WATER_3YLINES(v526) Mode: CONC Corr. Factor: 1.000000 User: JYH Custom ID1: Custom ID2: Custom ID3: Comment: WG543956-01 Elem Sn1899 Sr4077 Ti3372 TI1908 V_2924 Zn2062 Zr3391 Units ppm ppm ppm ppm ppm ppm ppm Avg -.00065 .18925 -.01238 -.00393 -.00085 .01034 .10831 Stddev .00047 .00019 .00313 .00215 .00132 .00014 .20776 %RSD 72.766 .09903 25.287 54.649 156.01 1.3547 191.83 #1 -.00074 .18944 -.01283 -.00641 -.00100 .01034 .25491 #2 -.00014 .18925 -.01525 -.00282 -.00208 .01048 -.12945 #3 -.00108 .18907 -.00904 -.00257 .00054 .01020 .19945 Check? Chk Pass Chk Pass Chk Pass Chk Pass Chk Pass Chk Pass **High Limit** Low Limit Int. Std. Y 2243 Y 3600 Y 3774 Units Cts/S Cts/S Cts/S 10672. 91697. 3949.2 Avg Stddev 14. 122. 11.8 %RSD .13195 .13256 .29896 #1 10680. 91585. 3940.2 #2 10681. 91827. 3944.8 #3 10656. 91680. 3962.5 Sample Name: L1510126210S Acquired: 10/23/2015 11:55:20 Type: Unk Method: ICP-THERMO3_6010_200.7WATER_3YLINES(v526) Mode: CONC Corr. Factor: 1.000000 Custom ID1: Custom ID2: Custom ID3: User: JYH Comment: WG543956-04 Elem Ag3280 Al3082 As1890 B 2496 Ba4554 Be3131 Ca4226 Cd2288 Units ppm ppm ppm ppm ppm ppm ppm ppm Avg .21410 5.3981 .21864 1.0741 .59140 .02684 78.929 .02684 Stddev .00142 .0066 .00267 .0028 .00240 .00009 .237 .00015 %RSD .66505 .12286 1.2218 .25768 .40592 .33263 .29968 .57199 #1 .21564 5.4004 .22170 1.0765 .59413 .02691 79.131 .02680 #2 .21382 5.4032 .21676 1.0746 .59046 .02687 78.987 .02701 .21284 #3 5.3906 .21747 1.0711 .58962 .02674 78.668 .02671 Check? Chk Pass High Limit Low Limit K_7664 Elem Co2286 Cr2677 Cu2247 Fe2611 Li6707 Mg2790 Mn2576 Units ppm ppm ppm ppm ppm ppm ppm ppm .10634 .27820 .27270 2.1964 28.882 .55618 12.650 .27469 Avg .00230 Stddev .00068 .00176 .0167 .049 .00337 .056 .00105 %RSD .63702 .82817 .64681 .76116 .17016 .60654 .44258 .38220 .27341 .27582 #1 .10575 .27564 2.2147 28.918 .55515 12.714 #2 .10708 .28010 .27399 2.1818 28.903 .55994 12.630 .27448 Check? Chk Pass P 2.1928 28.826 .55343 12.608 .27375 .27069 | Elem | Mo2020 | Na5895 | Ni2316 | P_2149 | Pb2203 | Sb2068 | Se1960 | Si2124 | |--------|----------------|---------------|----------------|---------------|----------------|----------------|----------------|---------------| | Units | ppm | Avg | . 55190 | 33.768 | . 27358 | 5.4102 | . 27168 | . 65791 | . 21789 | 7.0065 | | Stddev | .00183 | .061 | .00090 | .0165 | .00357 | .00225 | .00737 | .0137 | | %RSD | .33086 | .18054 | .32988 | .30500 | 1.3142 | .34220 | 3.3809 | .19586 | | #1 | .55134 | 33.825 | .27400 | 5.4292 | .26771 | .66030 | .22599 | 7.0221 | | #2 | .55394 | 33.775 | .27420 | 5.4016 | .27462 | .65760 | .21158 | 7.0005 | | #3 | .55042 | 33.704 | .27255 | 5.3998 | .27271 | .65583 | .21611 | 6.9967 | Check? Chk Pass P Approved: October 26, 2015 #3 .10620 .27886 Sample Name: L1510126210S Acquired: 10/23/2015 11:55:20 Type: Unk Method: ICP-THERMO3_6010_200.7WATER_3YLINES(v526) Mode: CONC Corr. Factor: 1.000000 User: JYH Custom ID1: Custom ID2: Custom ID3: Comment: WG543956-04 | Elem | Sn1899 | Sr4077 | Ti3372 | TI1908 | V_2924 | Zn2062 | Zr3391 | |--------|--------|--------|--------|--------|--------|--------|--------| | Units | ppm | Avg | .54360 | .74114 | .54643 | .27758 | .55297 | .54049 | .42667 | | Stddev | .00097 | .00145 | .00384 | .00063 | .00006 | .00087 | .11017 | | %RSD | .17851 | .19561 | .70298 | .22595 | .01125 | .16021 | 25.819 | | #1 | .54386 | .74233 | .54920 | .27697 | .55290 | .54126 | .54064 | | #2 | .54442 | .74157 | .54804 | .27754 | .55299 | .54066 | .32075 | | #3 | .54253 | .73953 | .54204 | .27823 | .55302 | .53955 | .41864 | Check? Chk Pass P Low Limit | Int. Std. | Y_2243 | Y_3600 | Y_3774 | |-----------|--------|----------------|--------| | Units | Cts/S | Cts/S | Cts/S | | Avg | 10497. | 89748 . | 3922.5 | | Stddev | 16. | 178. | 25.7 | | %RSD | .15155 | .19782 | .65534 | | #1 | 10479. | 89600. | 3893.5 | | #2 | 10507. | 89944. | 3931.6 | | #3 | 10506. | 89699. | 3942.4 | Approved: October 26, 2015 Sample Name: L1510126210SD Acquired: 10/23/2015 11:59:10 Type: Unk Method: ICP-THERMO3_6010_200.7WATER_3YLINES(v526) Mode: CONC Corr. Factor: 1.000000 User: JYH Custom ID1: Custom ID2: Custom ID3: Comment: WG543956-05 | Elem | Ag3280 | Al3082 | As1890 | B_2496 | Ba4554 | Be3131 | Ca4226 | Cd2288 | |------------------------------------|----------------|----------------|----------------|---------------|----------------|----------------|----------------|----------------| | Units | ppm | Avg | . 21127 | 5.3386 | . 21437 | 1.0611 | . 58455 | . 02639 | 77.571 | . 02668 | | Stddev | .00143 | .0130 | .00265 | .0016 | .00138 | .00003 | .098 | .00016 | | %RSD | .67459 | .24357 | 1.2353 | .15330 | .23600 | .13137 | .12677 | .59832 | | #1 | .21010 | 5.3472 | .21221 | 1.0593 | .58579 | .02637 | 77.679 | .02686 | | #2 | .21286 | 5.3449 | .21359 | 1.0623 | .58306 | .02637 | 77.486 | .02656 | | #3 | .21086 | 5.3236 | .21733 | 1.0617 | .58479 | .02643 | 77.548 | .02661 | | Check ?
High Limit
Low Limit | Chk Pass | Elem | Co2286 | Cr2677 | Cu2247 | Fe2611 | K_7664 | Li6707 | Mg2790 | Mn2576 | | Units | ppm | Avg | . 10542 | . 27289 | . 26998 | 2.1546 | 28.294 | . 55002 | 12.456 | . 27046 | | Stddev | .00022 | .00092 | .00113 | .0097 | .224 | .00112 | .100 | .00099 | | %RSD | .20700 | .33613 | .41792 | .44929 | .79223 | .20275 | .80622 | .36715 | | #1 | .10517 | .27263 | .27031 | 2.1657 | 28.282 | .54882 | 12.563 | .27044 | | #2 | .10557 | .27391 | .27090 | 2.1495 | 28.076 | .55103 | 12.439 | .26948 | | #3 | .10553 | .27214 | .26872 | 2.1485 | 28.524 | .55022 | 12.364 | .27147 | | Check ?
High Limit
Low Limit | Chk Pass | Elem | Mo2020 | Na5895 | Ni2316 | P_2149 | Pb2203 | Sb2068 | Se1960 | Si2124 | | Units | ppm | Avg | . 54589 | 33.312 | . 27037 | 5.3519 | . 27157 | . 65526 | . 22148 | 6.9204 | | Stddev | .00099 | .044 | .00267 | .0252 | .00145 | .00253 | .00439 | .0071 | | %RSD | .18189 | .13348 | .98862 | .47020 | .53252 | .38654 | 1.9815 | .10195 | | #1 | .54682 | 33.363 | .27345 | 5.3692 | .26990 | .65462 | .21671 | 6.9227 | | #2 | .54602 | 33.291 | .26875 | 5.3635 | .27241 | .65805 | .22534 | 6.9259 | | #3 | .54485 | 33.283 | .26891 | 5.3230 | .27239 | .65311 | .22241 | 6.9124 | | Check?
High Limit | Chk Pass | Approved: October 26, 2015 J'ye 1h Low Limit Sample Name: L1510126210SD Acquired: 10/23/2015 11:59:10 Type: Unk Method: ICP-THERMO3_6010_200.7WATER_3YLINES(v526) Mode: CONC Corr. Factor: 1.000000 User: JYH Custom ID1: Custom ID2: Custom ID3: Comment: WG543956-05 | Elem | Sn1899 | Sr4077 | Ti3372 | TI1908 | V_2924 | Zn2062 | Zr3391 | |--------|--------|--------|--------|--------|--------|--------|--------| | Units | ppm | Avg | .53603 | .72956 | .53637 | .27214 | .54509 | .53546 | .42488 | | Stddev | .00253 | .00120 | .00505 | .00176 | .00029 | .00083 | .11428 | | %RSD | .47192 | .16382 | .94182 | .64509 | .05257 | .15440 | 26.897 | | #1 | .53853 | .73053 | .54037 | .27351 | .54519 | .53632 | .54950 | | #2 | .53610 | .72823 | .53069 | .27016 | .54530 | .53539 | .32499 | | #3 | .53347 | .72994 | .53804 | .27275 | .54476 | .53467 | .40014 | Check? Chk Pass P Low Limit | Int. Std. | Y_2243 | Y_3600 | Y_3774 | |-----------|--------|----------------|---------------| | Units | Cts/S | Cts/S | Cts/S | | Avg | 10470. | 89850 . | 3922.3 | | Stddev | 6. | 150. | 2.2 | | %RSD | .05467 | .16691 | .05669 | | #1 | 10466. | 89677. | 3919.8 | | #2 | 10477. | 89936. | 3923.3 | | #3 | 10467. | 89937. | 3923.9 | Approved: October 26, 2015 | Sample Name: L1510119501 Acquired: 10/23/2015 Method: ICP-THERMO3_6010_200.7WATER_3YLINES User: JYH Custom ID1: Custom ID2: Comment: | | | | | | | | actor: 1.00000(| |--|---|---|---|--|--|---
---|--| | Elem
Units
Avg
Stddev
%RSD | Ag3280
ppm
00089
.00097
108.88 | Al3082
ppm
. 33781
.00174
.51614 | As1890
ppm
.00119
.00042
35.060 | B_2496
ppm
.03877
.00236
6.0926 | Ba4554
ppm
.13709
.00048
.35368 | Be3131
ppm
.00000
.00002
485.45 | Ca4226
ppm
81.022
.176
.21768 | Cd2288
ppm
. 00022
.00040
183.67 | | #1
#2
#3 | 00085
.00006
00189 | .33594
.33811
.33939 | .00107
.00084
.00165 | .04077
.03936
.03616 | .13677
.13685
.13764 | .00003
00000
00001 | 81.101
80.820
81.144 | .00042
.00048
00024 | | Check ?
High Limit
Low Limit | Chk Pass | Elem
Units
Avg
Stddev
%RSD
#1 | Co2286 ppm .00112 .00007 6.0055 .00104 .00116 | Cr2677
ppm
.00045
.00031
69.053
.00072
.00053 | Cu2247
ppm
.00330
.00067
20.199
.00390
.00340 | Fe2611
ppm
1.9186
.0060
.30987
1.9219
1.9221 | K_7664
ppm
2.1565
.0601
2.7851
2.2247
2.1118 | Li6707
ppm
.00757
.00344
45.455
.00885
.00367 | Mg2790
ppm
22.480
.084
.37355
22.427
22.435 | Mn2576
ppm
1.0856
.0020
.18390
1.0879
1.0842 | | #3
Check ?
High Limit
Low Limit | .00116
Chk Pass | .00011
Chk Pass | .00259
Chk Pass | 1.9117
Chk Pass | 2.1329
Chk Pass | .01018
Chk Pass | 22.576
Chk Pass | 1.0846
Chk Pass | | Elem
Units
Avg
Stddev
%RSD | Mo2020
ppm
. 00267
.00045
16.932 | Na5895
ppm
26.030
.022
.08614 | Ni2316
ppm
.00383
.00099
25.956 | P_2149
ppm
.03733
.00378
10.122 | Pb2203
ppm
00097
.00555
573.23 | Sb2068
ppm
. 00225
.00196
86.872 | Se1960
ppm
.00185
.00245
132.65 | Si2124
ppm
5.2619
.0224
.42534 | | #1
#2
#3 | .00231
.00252
.00318 | 26.056
26.018
26.017 | .00497
.00336
.00316 | .04126
.03701
.03372 | 00520
.00531
00301 | .00039
.00430
.00207 | .00025
.00467
.00062 | 5.2814
5.2669
5.2375 | | Check ?
High Limit
Low Limit | Chk Pass | Sample Name: L1510119501 | | | | | | | | | |------------------------------------|---------------------|-----------------------|---------------------|---------------------|-----------------------|-----------------------|-----------------------|---------| | User: JYH | | | Custom ID2: | | Custom ID3: | | 0011.10 | 1.00000 | | Comment: | | | | | | | | | | Elem | Sn1899 | Sr4077 | Ti3372 | TI1908 | V_2924 | Zn2062 | Zr3391 | | | Units | ppm
00074 | ppm
. 57410 | ppm
00506 | ppm
00402 | ppm
. 00005 | ppm
. 00802 | ppm
. 18223 | | | Avg
Stddev | .00106 | .00051 | .00478 | .00295 | .00037 | .00019 | .07874 | | | %RSD | 142.51 | .08922 | 94.362 | 73.434 | 679.78 | 2.3687 | 43.210 | | | #1 | 00115 | .57352 | 00201 | 00116 | 00027 | .00815 | .27010 | | | #2 | .00046 | .57429 | 01057 | 00705 | .00045 | .00810 | .11805 | | | #3 | 00154 | .57449 | 00262 | 00385 | 00002 | .00780 | .15855 | | | Check ?
High Limit
Low Limit | Chk Pass | | Int. Std. | Y_2243 | Y_3600 | Y_3774 | | | | | | | Units | Cts/S | Cts/S | Cts/S | | | | | | | Avg
Stddev | 10556.
13. | 90627.
184. | 3940.0
10.8 | | | | | | | %RSD | .11885 | .20347 | .27437 | | | | | | | #1 | 10551. | 90414. | 3927.8 | | | | | | | #2 | 10547. | 90730. | 3943.8 | | | | | | | #3 | 10571. | 90737. | 3948.4 | | | | | | | Sample Nan
Method: ICF
User: JYH
Comment: | | 3_6010_200 | Acquired: 10/23/2015 12:06:59 Type: Unk
0.7WATER_3YLINES(v526) Mode: CONC
Custom ID2: Custom ID3: | | | de: CONC | Corr. Factor: 1.000000 | | |--|----------------|----------------|---|----------------|----------|----------------|------------------------|----------------| | Elem | Ag3280 | Al3082 | As1890 | B_2496 | Ba4554 | Be3131 | Ca4226 | Cd2288 | | Units | ppm | Avg | 00015 | . 04681 | 00340 | . 03825 | .12821 | 00001 | 81.727 | . 00011 | | Stddev | .00113 | .00284 | .00201 | .00282 | .00084 | .00005 | .175 | .00023 | | %RSD | 737.32 | 6.0605 | 59.073 | 7.3676 | .65649 | 554.06 | .21370 | 207.42 | | #1 | 00125 | .04537 | 00173 | .04012 | .12774 | 00006 | 81.918 | .00032 | | #2 | .00102 | .04498 | 00563 | .03501 | .12771 | .00004 | 81.686 | 00014 | | #3 | 00023 | .05008 | 00285 | .03961 | .12918 | 00001 | 81.576 | .00016 | | Check ?
High Limit
Low Limit | Chk Pass | Elem | Co2286 | Cr2677 | Cu2247 | Fe2611 | K_7664 | Li6707 | Mg2790 | Mn2576 | | Units | ppm | Avg | .00095 | .00119 | .00216 | .30755 | 2.0646 | .01143 | 22.635 | . 92952 | | Stddev | .00057 | .00080 | .00187 | .02812 | .0284 | .00859 | .100 | .00154 | | %RSD | 59.752 | 66.962 | 86.573 | 9.1425 | 1.3736 | 75.116 | .44294 | .16593 | | #1 | .00051 | .00077 | .00304 | .33432 | 2.0494 | .02082 | 22.728 | .92973 | | #2 | .00074 | .00070 | .00001 | .31007 | 2.0973 | .00399 | 22.529 | .93094 | | #3 Check ? High Limit Low Limit | .00159 | .00211 | .00343 | .27825 | 2.0471 | .00947 | 22.649 | .92788 | | | Chk Pass | Elem | Mo2020 | Na5895 | Ni2316 | P_2149 | Pb2203 | Sb2068 | Se1960 | Si2124 | | Units | ppm | Avg | . 00246 | 26.317 | . 00137 | 00027 | 00208 | . 00199 | 00089 | 4.7893 | | Stddev | .00010 | .050 | .00097 | .00487 | .00307 | .00174 | .00795 | .0131 | | %RSD | 4.1136 | .18858 | 70.741 | 1771.7 | 147.42 | 87.092 | 892.09 | .27286 | | #1 | .00257 | 26.337 | .00159 | .00535 | 00470 | .00052 | .00702 | 4.7937 | | #2 | .00237 | 26.353 | .00222 | 00305 | .00130 | .00391 | 00887 | 4.7997 | | #3 | .00245 | 26.260 | .00031 | 00312 | 00285 | .00155 | 00082 | 4.7746 | | Check ?
High Limit
Low Limit | Chk Pass | Sample Nar | ne: L151011 | 19502 A | .cquired: 10/ | /23/2015 12 | :06:59 | Type: Unk | | | |------------------------------------|------------------------|--------------------------|------------------------|------------------------|------------------------|--------------------------|--------------------------|----------------| | Method: ICF | P-THERMO3 | 3_6010_200 | .7WATER_ | 3YLINES(v | 526) Mc | de: CONC | Corr. Fa | ctor: 1.000000 | | User: JYH | Custom | ID1: | Custom ID |)2: (| Custom ID3 | : | | | | Comment: | | | | | | | | | | Elem | Sn1899 | Sr4077 | Ti3372 | TI1908 | V_2924 | Zn2062 | Zr3391 | | | Units | ppm | | Avg
Stddev | 00031
.00052 | . 57888
.00088 | 01578
.00507 | 00241
.00160 | 00019
.00073 | . 00584
.00027 | . 03834
.13006 | | | %RSD | 168.72 | .15218 | 32.155 | 66.365 | 381.33 | 4.5714 | 339.21 | | | 701.102 | 100.72 | 110210 | 02.100 | 00.000 | 001.00 | | 000.21 | | | #1 | .00016 | .57987 | 01272 | 00130 | .00022 | .00584 | .08429 | | | #2 | 00087 | .57854 | 02163 | 00169 | .00024 | .00610 | 10846 | | | #3 | 00021 | .57821 | 01297 | 00424 | 00104 | .00557 | .13920 | | | Check ?
High Limit
Low Limit | Chk Pass | | Int. Std. | Y_2243 | Y_3600 | Y_3774 | | | | | | | Units | Cts/S | Cts/S | Cts/S | | | | | | | Avg | 10550.
34. | 90619.
152. | 3930.2
7.1 | | | | | | | Stddev
%RSD | .31849 | .16798 | .18037 | | | | | | | 701 (OD | .01040 | .10700 | .10007 | | | | | | | #1 | 10524. | 90459. | 3927.6 | | | | | | | #2 | 10538. | 90762. | 3938.2 | | | | | | | #3 | 10588. | 90636. | 3924.8 | | | | | | Sample Name: L1510119502PS Acquired: 10/23/2015 12:11:02 Type: Unk Method: ICP-THERMO3_6010_200.7WATER_3YLINES(v526) Mode: CONC Corr. Factor: 1.000000 Custom ID2: Custom ID3: User: JYH Custom ID1: Comment: WG544052-01 Elem Ag3280 Al3082 As1890 B 2496 Ba4554 Be3131 Ca4226 Cd2288 Units ppm ppm ppm ppm ppm ppm ppm ppm Avg .21707 5.4658 .21759 1.1094 .67423 .02715 78.995 .02770 Stddev .00054 .0097 .00268 8000. .00292 .00016 .269 .00023 %RSD .24671 .17823 1.2324 .07497 .43340 .60020 .34003 .83916 #1 .21741 5.4641 .22054 1.1097 .67736 .02707 79.304 .02795 .02748 #2 .21645 5.4570 .21530 1.1085 .67157 .02734 78.814 #3 .21735 5.4762 .21694 1.1101 .67375 .02704 78.868 .02767 Check? Chk Pass High Limit Low Limit Elem Co2286 Cr2677 Cu2247 Fe2611 K 7664 Li6707 Mg2790 Mn2576 Units ppm ppm ppm ppm ppm ppm ppm ppm .10769 .27773 .27096 2.4699 30.080 .56543 25.712 1.1158 Avg .00230 .00444 Stddev .00013 .00135 .0114 .070 .075 .0027 %RSD .11795 .82810 .49959 .45980 .23128 .78560 .29055 .24345 #1 .10755 .27671 .26941 2.4830 30.069 .56950 25.703 1.1189 #2 .10780 .28037 .27150 2.4639 30.016 .56610 25.791 1.1136 #3 .10772 .27613 .27195 2.4627 30.154 .56069 25.642 1.1150 Check? Chk Pass High Limit Low Limit Si2124 Mo2020 P_2149 Elem Na5895 Ni2316 Pb2203 Sb2068 Se1960 Units ppm ppm ppm ppm ppm ppm ppm ppm .55765 Avg 51.892 .27391 5.4852 .27225 .66969 .22215 7.1906 Stddev .00138 .133 .00120 .0132 .00033 .00486 .00258 .0068 %RSD .24688 .25654 .43822 .24128 .11962 .72580 1.1616 .09456 Check? Chk Pass P 5.4949 5.4701 5.4905 .27261 .27198 .27218 .67517 .66590 .66800 .27510 .27395 .27270 Approved: October 26, 2015 .22411 .22310 .21922 7.1953 7.1828 7.1938 #1 #2 #3 .55922 .55667 .55705 52.026 51.759 51.891 Method: ICP-THERMO3_6010_200.7WATER_3YLINES(v526) Mode: CONC Corr. Factor: 1.000000 User: JYH Custom ID1: Custom ID2: Custom ID3: Comment: WG544052-01 | Elem | Sn1899 | Sr4077 | Ti3372 | TI1908 | V_2924 | Zn2062 | Zr3391 | |--------|--------|--------|--------|--------|--------|--------|--------| | Units | ppm | Avg | .54715 | 1.0760 | .54483 | .27668 | .55786 | .54251 | .27946 | | Stddev | .00061 | .0045 | .00865 | .00306 | .00188 | .00050 | .10753 | | %RSD | .11136 | .41719 | 1.5881 | 1.1072 | .33736 | .09169 | 38.479
| | #1 | .54760 | 1.0805 | .55409 | .27680 | .55951 | .54297 | .30840 | | #2 | .54646 | 1.0715 | .53695 | .27968 | .55827 | .54198 | .36956 | | #3 | .54740 | 1.0759 | .54346 | .27356 | .55581 | .54258 | .16042 | Check? Chk Pass P Low Limit | Int. Std. | Y_2243 | Y_3600 | Y_3774 | |-----------|--------|----------------|--------| | Units | Cts/S | Cts/S | Cts/S | | Avg | 10435. | 89167 . | 3913.7 | | Stddev | 11. | 157. | 16.4 | | %RSD | .10076 | .17581 | .42003 | | #1 | 10439. | 89312. | 3906.6 | | #2 | 10423. | 89001. | 3902.0 | | #3 | 10443. | 89189. | 3932.5 | Approved: October 26, 2015 J'ye 1hu Type: Unk Sample Name: L1510119502SDL Acquired: 10/23/2015 12:14:39 Method: ICP-THERMO3_6010_200.7WATER_3YLINES(v526) Mode: CONC Corr. Factor: 1.000000 Custom ID2: User: JYH Custom ID1: 5 Custom ID3: Comment: WG544052-02 | Elem | Ag3280 | Al3082 | As1890 | B_2496 | Ba4554 | Be3131 | Ca4226 | Cd2288 | |------------------------------------|----------------|----------------|----------|----------------|----------------|----------------|----------------|----------------| | Units | ppm | Avg | 00003 | . 00888 | 00199 | . 01174 | . 02264 | 00004 | 15.455 | 00013 | | Stddev | .00052 | .00311 | .00174 | .00118 | .00075 | .00001 | .066 | .00010 | | %RSD | 1506.5 | 35.081 | 87.781 | 10.060 | 3.3309 | 21.758 | .42944 | 74.480 | | #1 | 00035 | .00634 | 00057 | .01286 | .02301 | 00003 | 15.462 | 00007 | | #2 | 00032 | .00794 | 00394 | .01050 | .02177 | 00005 | 15.386 | 00024 | | #3 | .00057 | .01235 | 00146 | .01186 | .02314 | 00004 | 15.518 | 00008 | | Check ?
High Limit
Low Limit | Chk Pass | Elem | Co2286 | Cr2677 | Cu2247 | Fe2611 | K_7664 | Li6707 | Mg2790 | Mn2576 | | Units | ppm | Avg | . 00035 | .00066 | .00001 | .06360 | . 53454 | . 00530 | 4.1985 | .1 7250 | | Stddev | .00035 | .00049 | .00203 | .02541 | .03009 | .00361 | .0882 | .00418 | | %RSD | 99.814 | 75.122 | 18329. | 39.952 | 5.6295 | 68.190 | 2.1011 | 2.4227 | | #1 | .00072 | .00022 | .00095 | .07877 | .55353 | .00717 | 4.1910 | .16792 | | #2 | .00004 | .00056 | .00140 | .03426 | .49985 | .00113 | 4.2902 | .17611 | | #3 | .00028 | .00119 | 00232 | .07775 | .55025 | .00759 | 4.1142 | .17346 | | Check ?
High Limit
Low Limit | Chk Pass | Elem | Mo2020 | Na5895 | Ni2316 | P_2149 | Pb2203 | Sb2068 | Se1960 | Si2124 | | Units | ppm | Avg | . 00093 | 4.8906 | .00157 | . 00529 | 00118 | . 00171 | . 00486 | . 88349 | | Stddev | .00040 | .0372 | .00066 | .00595 | .00257 | .00344 | .00205 | .00442 | | %RSD | 42.506 | .76055 | 42.218 | 112.58 | 216.97 | 201.18 | 42.141 | .50035 | | #1 | .00128 | 4.8783 | .00225 | .00014 | 00379 | .00074 | .00717 | .88782 | | #2 | .00050 | 4.8611 | .00093 | .00392 | 00109 | 00114 | .00416 | .88365 | | #3 | .00102 | 4.9324 | .00152 | .01180 | .00134 | .00552 | .00325 | .87898 | | Check ?
High Limit
Low Limit | Chk Pass Sample Name: L1510119502SDL Acquired: 10/23/2015 12:14:39 Type: Unk Method: ICP-THERMO3_6010_200.7WATER_3YLINES(v526) Mode: CONC Corr. Factor: 1.000000 User: JYH Custom ID1: 5 Custom ID2: Custom ID3: Comment: WG544052-02 | Elem
Units
Avg
Stddev
%RSD | Sn1899
ppm
00051
.00061
118.76 | Sr4077
ppm
. 10651
.00034
.31659 | Ti3372
ppm
00310
.00104
33.573 | TI1908
ppm
00169
.00146
86.395 | V_2924
ppm
00109
.00041
37.672 | Zn2062
ppm
.00174
.00016
8.9260 | Zr3391
ppm
.11292
.06419
56.842 | |---|--|---|--|--|--|---|---| | #1
#2
#3 | 00023
00009
00121 | .10628
.10637
.10690 | 00373
00190
00367 | 00153
00322
00031 | 00066
00113
00148 | .00187
.00177
.00157 | .10746
.05164
.17966 | | Check ?
High Limit
Low Limit | Chk Pass | Int. Std.
Units
Avg
Stddev
%RSD | Y_2243
Cts/S
11692.
15.
.13236 | Y_3600
Cts/S
100040.
59. | Y_3774
Cts/S
4251 .4
5.8
.13588 | | | | | | #1
#2
#3 | 11710.
11680.
11688. | 100010.
100000.
100110. | 4256.9
4251.9
4245.4 | | | | | Approved: October 26, 2015 J'ye 1hu Sample Name: L1510119502SDL Acquired: 10/23/2015 12:18:42 Type: Unk Method: ICP-THERMO3_6010_200.7WATER_3YLINES(v526) Mode: CONC Corr. Factor: 1.000000 User: JYH Custom ID1: 25 Custom ID2: Custom ID3: Comment: WG544052-02 | Elem | Ag3280 | Al3082 | As1890 | B_2496 | Ba4554 | Be3131 | Ca4226 | |------------------------------------|----------------|----------------|----------------|----------------|----------------|----------------|----------------| | Units | ppm | Avg | 00002 | . 00175 | 00280 | . 00434 | . 00434 | 00004 | 3.0904 | | Stddev | .00173 | .00464 | .00212 | .00124 | .00054 | .00002 | .0384 | | %RSD | 7371.0 | 265.36 | 75.499 | 28.524 | 12.381 | 44.528 | 1.2435 | | #1 | .00110 | .00023 | 00042 | .00574 | .00452 | 00004 | 3.0811 | | #2 | 00202 | .00695 | 00445 | .00338 | .00475 | 00002 | 3.0576 | | #3 | .00085 | 00194 | 00355 | .00391 | .00373 | 00005 | 3.1327 | | Check ?
High Limit
Low Limit | Chk Pass | Elem | Cd2288 | Co2286 | Cr2677 | Cu2247 | Fe2611 | K_7664 | Li6707 | | Units | ppm | Avg | 00023 | .00028 | 00012 | 00038 | .01053 | . 21820 | . 00145 | | Stddev | .00006 | .00029 | .00038 | .00063 | .00631 | .02773 | .00086 | | %RSD | 25.203 | 104.67 | 307.90 | 166.62 | 59.885 | 12.708 | 59.311 | | #1 | 00022 | .00060 | 00051 | .00022 | .01781 | .23698 | .00047 | | #2 | 00017 | .00006 | 00011 | 00032 | .00664 | .23128 | .00205 | | #3 | 00029 | .00016 | .00025 | 00103 | .00715 | .18635 | .00184 | | Check ?
High Limit
Low Limit | Chk Pass | Elem | Mg2790 | Mn2576 | Mo2020 | Na5895 | Ni2316 | P_2149 | Pb2203 | | Units | ppm | Avg | . 78826 | .03350 | . 00050 | . 99383 | 00034 | . 00298 | 00183 | | Stddev | .01841 | .00211 | .00019 | .03380 | .00039 | .00719 | .00182 | | %RSD | 2.3353 | 6.3034 | 37.056 | 3.4007 | 115.70 | 241.50 | 99.336 | | #1 | .80776 | .03388 | .00055 | 1.0320 | 00022 | .01103 | 00083 | | #2 | .78585 | .03123 | .00029 | .96764 | 00002 | 00283 | 00073 | | #3 | .77118 | .03540 | .00065 | .98188 | 00078 | .00074 | 00393 | | Check ?
High Limit
Low Limit | Chk Pass Approved: October 26, 2015 J'ye 1hi Sample Name: L1510119502SDL Acquired: 10/23/2015 12:18:42 Type: Unk Method: ICP-THERMO3_6010_200.7WATER_3YLINES(v526) Mode: CONC Corr. Factor: 1.000000 Custom ID2: User: JYH Custom ID1: 25 Custom ID3: Comment: WG544052-02 Elem Sb2068 Se1960 Si2124 Sn1899 Sr4077 Ti3372 TI1908 Units ppm ppm ppm ppm ppm ppm ppm Avg .00284 .00510 .17119 -.00045 .02161 -.00418 .00026 Stddev .00369 .00218 .00072 .00081 .00022 .00230 .00238 %RSD 129.84 42.696 .42042 180.56 1.0310 55.131 907.39 #1 .00454 .00302 .17050 -.00004 .02151 -.00197 .00192 #2 .00539 .00736 .17112 .00007 .02146 -.00657 -.00246 #3 -.00139 .00491 .17194 -.00138 .02187 -.00400 .00133 Check? **Chk Pass Chk Pass Chk Pass Chk Pass Chk Pass Chk Pass Chk Pass High Limit** Low Limit Elem V 2924 Zn2062 Zr3391 Units ppm ppm ppm -.00089 .00068 F-.04243 Avg Stddev .00065 .00013 .08059 %RSD 73.790 18.672 189.93 #1 -.00164 .00061 -.13024 #2 -.00050 .00060 -.02519 #3 -.00052 .00082 .02814 Check? **Chk Pass Chk Pass** Chk Fail **High Limit** 45.000 Low Limit -.04000 Int. Std. Y 2243 Y_3600 Y_3774 Units Cts/S Cts/S Cts/S Avg 11802. 100930. 4263.4 Stddev 12. 107. 13.3 %RSD .10272 .31104 .10649 Approved: October 26, 2015 #1 #2 #3 11795. 11795. 11816. 100880. 100850. 101050. 4266.2 4275.1 4249.0 | Elem | Ag3280 | Al3082 | As1890 | B_2496 | Ba4554 | Be3131 | Ca4226 | | |---------------------------|----------------|----------------|----------------|----------------|----------------|----------------|----------------|--| | Units | ppm | | Avg | . 40202 | 10.131 | . 41588 | . 50682 | 1.0342 | . 05098 | 10.282 | | | Stddev | .00158 | .012 | .00397 | .00107 | .0009 | .00009 | .009 | | | %RSD | .39265 | .11679 | .95364 | .21044 | .08464 | .17900 | .08452 | | | #1 | .40259 | 10.142 | .41297 | .50788 | 1.0346 | .05091 | 10.279 | | | #2 | .40323 | 10.133 | .41427 | .50574 | 1.0332 | .05095 | 10.275 | | | #3 | .40023 | 10.118 | .42039 | .50685 | 1.0348 | .05109 | 10.291 | | | Check ?
Value
Range | Chk Pass | | Elem | Cd2288 | Co2286 | Cr2677 | Cu2247 | Fe2611 | K_7664 | Li6707 | | | Units | ppm | | Avg | . 05091 | . 20234 | . 51694 | . 51243 | 4.0798 | 51.601 | 1.0251 | | | Stddev | .00029 | .00011 | .00082 | .00180 | .0186 | .163 | .0043 | | | %RSD | .56007 | .05208 | .15894 | .35051 | .45548 | .31518 | .42367 | | | #1 | .05058 | .20222 | .51632 | .51388 | 4.1013 | 51.511 | 1.0212 | | | #2 | .05112 | .20242 | .51663 | .51299 | 4.0692 | 51.502 | 1.0243 | | | #3 | .05101 | .20239 | .51787 | .51042 | 4.0690 | 51.788 | 1.0298 | | | Check ?
Value
Range | Chk Pass | | Elem | Mg2790 | Mn2576 | Mo2020 | Na5895 | Ni2316 | P_2149 | Pb2203 | | | Units | ppm | | Avg | 9.9024 | . 50732 | 1.0194 | 52.224 | . 51859 | 10.144 | . 51209 | | | Stddev | .1531 | .00406 | .0017 | .068 | .00148 | .013 | .00170 | | | %RSD | 1.5457 | .80068 | .16206 | .13065 | .28470 | .12445 | .33212 | | | #1 | 9.9653 | .50360 | 1.0197 | 52.214 | .51769 | 10.148 | .51404 | | | #2 | 9.7280 | .51165 | 1.0208 | 52.162 | .52029 | 10.155 | .51133 | | | #3 | 10.014 | .50671 | 1.0176 | 52.297 | .51779 | 10.130 | .51090 | | | Check ?
Value
Range | Chk Pass | | Sample Nam | | - | /23/2015 12: | | ype: QC
) Mode: | CONC (| Corr. Factor: | 1
000000 | |---|---|---|---|--|---|---|---|----------| | User: JYH
Comment: | Custom I | | Custom ID2: | ` ' | tom ID3: | 00110 | John Factor. | 1.000000 | | Elem
Units
Avg
Stddev
%RSD | Sb2068
ppm
1.2417
.0055
.44377 | Se1960
ppm
. 41760
.00684
1.6390 | Si2124
ppm
5.1900
.0126
.24260 | Sn1899
ppm
1.0148
.0012
.12037 | Sr4077
ppm
1.0323
.0007
.07023 | Ti3372
ppm
1.0383
.0059
.57183 | TI1908
ppm
. 52619
.00246
.46720 | | | #1
#2
#3 | 1.2355
1.2462
1.2432 | .41362
.42550
.41368 | 5.1770
5.1908
5.2022 | 1.0138
1.0144
1.0161 | 1.0326
1.0328
1.0315 | 1.0418
1.0315
1.0417 | .52751
.52335
.52770 | | | Check ?
Value
Range | Chk Pass | | Elem
Units
Avg
Stddev
%RSD | V_2924
ppm
1.0271
.0024
.23673 | Zn2062
ppm
1.0158
.0013
.12737 | Zr3391
ppm
F . 72736
.16513
22.702 | | | | | | | #1
#2
#3 | 1.0293
1.0277
1.0245 | 1.0158
1.0171
1.0145 | .64604
.91738
.61867 | | | | | | | Check ?
Value
Range | Chk Pass | Chk Pass | Chk Fail
1.0000
-10.000% | | | | | | | Int. Std.
Units
Avg
Stddev
%RSD | Y_2243
Cts/S
10967.
7.
.06662 | Y_3600
Cts/S
93311.
232.
.24902 | Y_3774
Cts/S
4075.5
14.6
.35762 | | | | | | | #1
#2
#3 | 10963.
10975.
10962. | 93328.
93070.
93534. | 4080.8
4086.7
4059.0 | | | | | | | Sample Nam
Method: ICP
User: JYH
Comment: | ne: CCB /
-THERMO3_
Custom I | _ | | LINES(v526) | ype: Blank
) Mode:
tom ID3: | CONC (| Corr. Factor: | 1.00000(| |--|------------------------------------|----------------|----------------|----------------|-----------------------------------|----------------|----------------|----------| | Elem | Ag3280 | Al3082 | As1890 | B_2496 | Ba4554 | Be3131 | Ca4226 | | | Units | ppm | | Avg | 00088 | . 00540 | 00318 | . 00236 | 00005 | 00000 | 00173 | | | Stddev | .00112 | .00491 | .00045 | .00201 | .00039 | .00005 | .03077 | | | %RSD | 127.24 | 90.964 | 14.259 | 85.375 | 765.30 | 1921.5 | 1783.4 | | | #1 | 00181 | .00507 | 00286 | .00468 | .00034 | 00006 | .00622 | | | #2 | 00118 | .00066 | 00297 | .00130 | 00045 | .00001 | .02429 | | | #3 | .00036 | .01047 | 00369 | .00109 | 00004 | .00004 | 03569 | | | Check ?
High Limit
Low Limit | Chk Pass | | Elem | Cd2288 | Co2286 | Cr2677 | Cu2247 | Fe2611 | K_7664 | Li6707 | | | Units | ppm | | Avg | 00012 | .00007 | 00010 | . 00037 | 00138 | . 13718 | . 00271 | | | Stddev | .00004 | .00014 | .00093 | .00108 | .01147 | .02678 | .00053 | | | %RSD | 33.035 | 180.41 | 946.68 | 287.99 | 832.24 | 19.521 | 19.661 | | | #1 | 00016 | .00018 | .00077 | 00074 | 01384 | .10626 | .00212 | | | #2 | 00013 | .00012 | 00109 | .00044 | .00874 | .15241 | .00314 | | | #3 | 00008 | 00008 | .00002 | .00142 | .00097 | .15288 | .00288 | | | Check ?
High Limit
Low Limit | Chk Pass | | Elem | Mg2790 | Mn2576 | Mo2020 | Na5895 | Ni2316 | P_2149 | Pb2203 | | | Units | ppm | | Avg | 08866 | 00146 | . 00138 | . 03444 | .00053 | 00034 | 00124 | | | Stddev | .01964 | .00114 | .00031 | .01894 | .00014 | .00313 | .00234 | | | %RSD | 22.156 | 78.032 | 22.701 | 55.002 | 25.570 | 920.00 | 189.31 | | | #1 | 11065 | 00158 | .00102 | .02627 | .00053 | 00343 | .00038 | | | #2 | 08248 | 00254 | .00162 | .02095 | .00039 | 00042 | 00392 | | | #3 | 07285 | 00027 | .00148 | .05609 | .00067 | .00283 | 00017 | | | Check ?
High Limit
Low Limit | Chk Pass | | Sample Nam
Method: ICP
User: JYH
Comment: | ne: CCB /
-THERMO3_
Custom I | 6010_200.7 | /23/2015 12:
WATER_3YI
Custom ID2: | LINES(v526) | ype: Blank
) Mode:
tom ID3: | CONC (| Corr. Factor: | 1.000000 | |--|--|---|---|----------------------------------|-----------------------------------|----------------------------------|---|----------| | Elem | Sb2068 | Se1960 | Si2124 | Sn1899 | Sr4077 | Ti3372 | TI1908 | | | Units
Avg
Stddev
%RSD | ppm
. 00200
.00222
111.40 | ppm
. 00479
.00470
98.015 | ppm
. 00627
.00107
17.106 | ppm
00003
.00055
1931.3 | ppm
.00031
.00018
58.991 | ppm
00155
.00820
529.46 | ppm
. 00101
.00312
309.75 | | | #1
#2
#3 | .00018
.00133
.00448 | .00925
00011
.00524 | .00660
.00507
.00714 | .00059
00022
00045 | .00050
.00028
.00014 | 01101
.00276
.00360 | 00254
.00224
.00332 | | | Check ?
High Limit
Low Limit | Chk Pass | | Elem
Units
Avg
Stddev
%RSD | V_2924
ppm
00074
.00024
31.854 | Zn2062
ppm
00009
.00016
188.90 | Zr3391
ppm
F .10063
.14465
143.75 | | | | | | | #1
#2
#3 | 00049
00096
00079 | 00011
00024
.00009 | .16168
.20475
06454 | | | | | | | Check ?
High Limit
Low Limit | Chk Pass | Chk Pass | Chk Fail
.04000
04000 | | | | | | | Int. Std.
Units
Avg
Stddev
%RSD | Y_2243
Cts/S
11157.
16.
.14480 | Y_3600
Cts/S
95920 .
189.
.19714 | Y_3774
Cts/S
4048.4
3.8
.09432 | | | | | | | #1
#2
#3 | 11142.
11174.
11156. | 95942.
96098.
95722. | 4050.8
4044.0
4050.5 | | | | | | Page 160 | Sample Name: L1510121501 Acquired: 10/23/2015 12:30:40 Type: Unk | | | | | | | | | |--|-----------------------|----------------------|-----------------------|-----------------------|-----------------|-----------------------|----------------|----------------------| | Method: ICP-THERMO3_6010_200.7WATER_3YLINES(v526) Mode: CONC Co | | | | | | | | actor: 1.000000 | | User: JYH | Custom ID | Custom ID3 | : | | | | | | | Comment: | Elem | Ag3280 | Al3082 | As1890 | B 2496 | Ba4554 | Be3131 | Ca4226 | Cd2288 | | Units | ppm | ppm | ppm | _ ppm | ppm | ppm | ppm | ppm | | Avg | 00144 | 1.3026 | 00036 | .03357 | .08794 | .00008 | 45.454 | .00014 | | Stddev | .00068 | .0046 | .00190 | .00168 | .00061 | .00004 | .266 | .00020 | | %RSD | 47.205 | .35203 | 520.98 | 5.0194 | .69565 | 47.989 | .58527 | 141.34 | | #1 | 00069 | 1.2991 | .00155 | .03185 | .08861 | .00010 | 45.711 | .00009 | | #2 | 00201 | 1.3078 | 00225 | .03363 | .08741 | .00009 | 45.471 | 00003 | | #3 | 00163 | 1.3010 | 00040 | .03522 | .08780 | .00003 | 45.180 | .00036 | | Oh a alc O | Ohli Daga | Chl. Doos | Ohly Doos | Chl. Daga | Chl. Daga | Ohly Dage | Chl. Daga | Chir Daga | | Check ?
High Limit | Chk Pass | Low Limit | Elem | Co2286 | Cr2677 | Cu2247 | Fe2611 | K_7664 | Li6707 | Mg2790 | Mn2576 | | Units | ppm | Avg | .00143 | .00354 | .00120 | 1.7225 | 1.9257 | .08204 | 25.559 | .05829 | | Stddev
%RSD | .00041
28.727 | .00067
19.062 | .00035
29.473 | .0056
.32351 | .0276
1.4318 | .00385
4.6965 | .068
.26659 | .00131
2.2462 | | 70113D | 20.727 | 13.002 | 23.473 | .32331 | 1.4310 | 4.0303 | .20039 | 2.2402 | | #1 | .00149 | .00279 | .00080 | 1.7288 | 1.9381 | .07887 | 25.630 | .05872 | | #2 | .00100 | .00373 | .00148 | 1.7183 | 1.9449 | .08633 | 25.494 | .05682 | | #3 | .00181 | .00410 | .00132 | 1.7203 | 1.8941 | .08092 | 25.552 | .05933 | | Check? | Chk Pass | High Limit | Clik i ass | Olik i dos | Clik i dos | Clik i doo | Clik i doo | Clik i doo | Clik i doo | Clik i dos | | Low Limit | Elem | Mo2020 | Na5895 | Ni2316 | P_2149 | Pb2203 | Sb2068 | Se1960 | Si2124 | | Units
Avg | ppm
. 00134 | ppm
123.40 | ppm
. 00337 | ppm
. 07999 | ppm
00332 | ppm
. 00173 | ppm
00008 | ppm
14.921 | | Stddev | .00134 | .61 | .00009 | .00320 | .00230 | .00173 | .00648 | .022 | | %RSD | 36.112 | .49273 | 2.7243 | 3.9949 | 69.275 | 156.67 | 7870.7 | .14768 | | | | | | | | | | | | #1 | .00156 | 124.09 | .00345 | .07696 | 00553 | 00117 | .00018 | 14.936 | | #2 | .00079 | 123.15 | .00339 | .08333 | 00094 | .00216 | .00626 | 14.931 | | #3 | .00168 | 122.96 | .00327 | .07968 | 00349 | .00419 | 00669 | 14.895 | | Check? | Chk Pass | High Limit | 21111 400 | 211111 400 | 211111 400 | 211111 400 | 211111 400 | 211111 400 | 211111 400 | 2 | | Low Limit | | | | | | | | | | Sample Nan | | | • | /23/2015 12 | | Type: Unk | 0 5 | | |---|---|---|---|--|---|---|---|----------------| | Method: ICP | | | _ | • | , | de: CONC | Corr. Fa | ctor: 1.00000(| | User: JYH | Custom | וטו: | Custom ID |)2: (| Custom ID3 | | | | | Comment: | | | | | | | | | | Elem
Units
Avg
Stddev
%RSD | Sn1899
ppm
. 00069
.00028
40.621 | Sr4077
ppm
1.0890
.0054
.49713 | Ti3372
ppm
. 02155
.00387
17.965 |
TI1908
ppm
00143
.00160
112.04 | V_2924
ppm
. 00331
.00072
21.858 | Zn2062
ppm
.03109
.00019
.62698 | Zr3391
ppm
. 52490
.06644
12.657 | | | #1
#2
#3 | .00083
.00036
.00086 | 1.0943
1.0892
1.0835 | .02346
.02410
.01710 | 00124
00312
.00007 | .00279
.00413
.00300 | .03087
.03124
.03115 | .45407
.58583
.53481 | | | Check ?
High Limit
Low Limit | Chk Pass | | Int. Std.
Units
Avg
Stddev
%RSD | Y_2243
Cts/S
10411.
23.
.21729 | Y_3600
Cts/S
88720 .
141.
.15850 | Y_3774
Cts/S
3919.5
7.3
.18745 | | | | | | | #1
#2
#3 | 10385.
10424.
10425. | 88623.
88656.
88881. | 3912.2
3919.3
3926.9 | | | | | | | Sample Nan | Sample Name: L1510121503 Acquired: 10/23/2015 12:34:31 Type: Unk | | | | | | | | |------------------------------------|--|--------------------------------|--------------------------|-----------------------|-----------------------|--------------------------|------------------------|--------------------------| | Method: ICF | P-THERMO3 | _6010_200 | .7WATER_ | 3YLINES(v | 526) Mo | de: CONC | Corr. Fa | actor: 1.00000(| | User: JYH | Custom | ID1: | Custom ID |)2: (| Custom ID3 | •
• | | | | Comment: | | | | | | | | | | | A =:2000 | A12002 | A - 1000 | D 0400 | D-4554 | D-0404 | 0-4000 | 04000 | | Elem
Units | Ag3280
ppm | Al3082
ppm | As1890
ppm | B_2496
ppm | Ba4554
ppm | Be3131
ppm | Ca4226
ppm | Cd2288
ppm | | Avg | 00105 | 14.091 | .00654 | .01221 | .34006 | .00163 | 3.2459 | .00061 | | Stddev | .00162 | .009 | .00122 | .00210 | .00062 | .00003 | .0186 | .00013 | | %RSD | 153.98 | .06096 | 18.721 | 17.185 | .18278 | 2.0808 | .57251 | 20.993 | | #1 | 00155 | 14.093 | .00752 | .01173 | .34075 | .00160 | 3.2574 | .00071 | | #2 | .00076 | 14.098 | .00693 | .01451 | .33954 | .00167 | 3.2557 | .00067 | | #3 | 00236 | 14.081 | .00517 | .01039 | .33989 | .00162 | 3.2244 | .00047 | | Check? | Chk Pass | High Limit | | | | | | | | | | Low Limit | | | | | | | | | | Elem | Co2286 | Cr2677 | Cu2247 | Fe2611 | K_7664 | Li6707 | Mg2790 | Mn2576 | | Units | ppm | Avg
Stddev | . 01082
.00026 | . <mark>02011</mark>
.00128 | . 01652
.00155 | 14.234
.084 | 1.2496 .0658 | . 01517
.00513 | 2.4406
.1117 | . 12001
.00304 | | %RSD | 2.4398 | 6.3793 | 9.3812 | .58685 | 5.2618 | 33.799 | 4.5781 | 2.5297 | | | 0.4050 | 2222 | 0.1750 | 44.040 | 4 0000 | 0.1000 | 0.5005 | 10005 | | #1
#2 | .01058
.01078 | .02027
.02131 | .01752
.01731 | 14.312
14.243 | 1.2098
1.3255 | .01803
.00925 | 2.5637
2.3456 | .12285
.11681 | | #2
#3 | .01078 | .02131 | .01731 | 14.243 | 1.2135 | .00923 | 2.3430 | .12038 | | | | | | | | | | | | Check? | Chk Pass | High Limit
Low Limit | Elem | Mo2020 | Na5895 | Ni2316 | P_2149 | Pb2203 | Sb2068 | Se1960 | Si2124 | | Units
Avg | ppm
. 00043 | ppm
20.589 | ppm
. 02285 | ppm
. 13858 | ppm
. 01200 | ppm
. 00273 | ppm
00325 | ppm
29.208 | | Stddev | .00043 | .080 | .00082 | .00224 | .00014 | .00273 | .00969 | .113 | | %RSD | 16.278 | .38959 | 3.5690 | 1.6163 | 1.1387 | 123.15 | 298.24 | .38779 | | #1 | .00037 | 20.682 | .02196 | .13902 | .01216 | 00115 | 01362 | 29.278 | | #2 | .00051 | 20.537 | .02357 | .14056 | .01193 | .00476 | 00169 | 29.268 | | #3 | .00042 | 20.549 | .02302 | .13615 | .01192 | .00457 | .00556 | 29.077 | | Check ?
High Limit
Low Limit | Chk Pass | Sample Nan | | | cquired: 10/ | | | Гуре: Unk | | | |---|--|---|--|----------|------------|-----------|----------|----------------| | Method: ICP | -THERMO3 | _6010_200 | _ | • | 526) Mo | de: CONC | Corr. Fa | ctor: 1.000000 | | User: JYH | Custom | ID1: | Custom ID |)2: (| Custom ID3 | • | | | | Comment: | | | | | | | | | | Elem | Sn1899 | Sr4077 | Ti3372 | TI1908 | V_2924 | Zn2062 | Zr3391 | | | Units | ppm | | Avg | .00196 | .08916 | .05417 | 00278 | .03360 | .94389 | .89210 | | | Stddev | .00076 | .00063 | .00443 | .00250 | .00037 | .00499 | .05566 | | | %RSD | 38.584 | .70393 | 8.1859 | 89.847 | 1.1047 | .52906 | 6.2387 | | | #1 | .00113 | .08952 | .05653 | 00388 | .03353 | .94703 | .92028 | | | #2 | .00261 | .08952 | .04906 | 00454 | .03400 | .94651 | .82799 | | | #3 | .00214 | .08844 | .05693 | .00008 | .03326 | .93813 | .92804 | | | Check ?
High Limit | Chk Pass | | Low Limit | | | | | | | | | | Int. Std.
Units
Avg
Stddev
%RSD | Y_2243
Cts/S
10918.
12.
.10666 | Y_3600
Cts/S
93614 .
144.
.15343 | Y_3774
Cts/S
4007.5
21.3
.53221 | | | | | | | #1
#2 | 10907.
10916. | 93727.
93452. | 3983.3
4023.6 | | | | | | | #3 | 10931. | 93663. | 4015.7 | | | | | | | Sample Name: L1510121504 | | | | | | | | | |------------------------------------|----------|----------|-----------|----------|------------|----------|----------|----------| | User: JYH | Custom | ID1: | Custom IE |)2: | Custom ID3 | •
• | | | | Comment: | | | | | | | | | | Elem | Ag3280 | Al3082 | As1890 | B 2496 | Ba4554 | Be3131 | Ca4226 | Cd2288 | | Units | ppm | ppm | ppm | _ ppm | ppm | ppm | ppm | ppm | | Avg | 00182 | .40636 | 00143 | .03753 | .07578 | .00000 | 5.1813 | .00027 | | Stddev | .00060 | .00151 | .00372 | .00228 | .00081 | .00003 | .0240 | .00013 | | %RSD | 33.094 | .37260 | 259.66 | 6.0878 | 1.0710 | 744.94 | .46273 | 47.016 | | #1 | 00217 | .40606 | 00568 | .03858 | .07630 | 00000 | 5.1727 | .00037 | | #2 | 00216 | .40801 | .00121 | .03490 | .07484 | .00004 | 5.1628 | .00031 | | #3 | 00112 | .40502 | .00018 | .03909 | .07619 | 00003 | 5.2084 | .00013 | | Check ?
High Limit
Low Limit | Chk Pass | Elem | Co2286 | Cr2677 | Cu2247 | Fe2611 | K_7664 | Li6707 | Mg2790 | Mn2576 | | Units | ppm | ppm | ppm | ppm | _
ppm | ppm | ppm | ppm | | Avg | .00071 | .00320 | .00137 | .40858 | 1.0678 | .01919 | 1.6760 | .00554 | | Stddev | .00025 | .00033 | .00084 | .01530 | .0716 | .00239 | .0245 | .00096 | | %RSD | 35.558 | 10.331 | 61.046 | 3.7456 | 6.7081 | 12.457 | 1.4630 | 17.333 | | #1 | .00084 | .00330 | .00206 | .41590 | 1.0441 | .01975 | 1.6702 | .00665 | | #2 | .00087 | .00347 | .00044 | .41886 | 1.0110 | .01657 | 1.6550 | .00490 | | #3 | .00042 | .00283 | .00162 | .39100 | 1.1482 | .02125 | 1.7030 | .00507 | | Check ?
High Limit
Low Limit | Chk Pass | Elem | Mo2020 | Na5895 | Ni2316 | P_2149 | Pb2203 | Sb2068 | Se1960 | Si2124 | | Units | ppm | Avg | .00075 | 46.169 | .00213 | .04994 | 00196 | .00318 | .01721 | 23.074 | | Stddev | .00036 | .181 | .00059 | .00340 | .00129 | .00787 | .00688 | .074 | | %RSD | 48.248 | .39209 | 27.692 | 6.8094 | 65.895 | 247.19 | 39.979 | .32117 | | #1 | .00068 | 46.373 | .00176 | .05386 | 00339 | 00444 | .02307 | 23.126 | | #2 | .00114 | 46.027 | .00281 | .04812 | 00156 | .01127 | .01894 | 23.106 | | #3 | .00043 | 46.107 | .00182 | .04783 | 00091 | .00272 | .00963 | 22.989 | | Check ?
High Limit
Low Limit | Chk Pass | Sample Name: L1510121504 | | | | | | | | | |------------------------------------|------------------------|--------------------------|--------------------------------|------------------------|--------------------------|--------------------------|--------------------------|----------------| | Method: ICF | P-THERMO3 | 3_6010_200 | .7WATER_ | 3YLINES(v | 526) Mc | de: CONC | Corr. Fa | ctor: 1.000000 | | User: JYH | Custom | ID1: | Custom ID |)2: (| Custom ID3 | : | | | | Comment: | | | | | | | | | | Elem | Sn1899 | Sr4077 | Ti3372 | TI1908 | V_2924 | Zn2062 | Zr3391 | | | Units | ppm | | Avg
Stddev | 00010
.00019 | . 10947
.00010 | . <mark>00764</mark>
.00267 | 00333
.00063 | . 00204
.00057 | . 00269
.00022 | . 40032
.07023 | | | %RSD | 186.37 | .09396 | 34.909 | 18.865 | 28.042 | 8.3597 | 17.542 | | | 701.102 | 100.07 | .00000 | 01.000 | 10.000 | 20.0.2 | 0.0007 | 17.012 | | | #1 | .00004 | .10954 | .00458 | 00298 | .00269 | .00256 | .43969 | | | #2 | 00031 | .10953 | .00946 | 00295 | .00180 | .00295 | .31924 | | | #3 | 00003 | .10935 | .00888 | 00405 | .00162 | .00256 | .44203 | | | Check ?
High Limit
Low Limit | Chk Pass | | Int. Std. | Y_2243 | Y_3600 | Y_3774 | | | | | | | Units | Cts/S | Cts/S | Cts/S | | | | | | | Avg | 10704. | 91710. | 3948.1 | | | | | | | Stddev
%RSD | 10.
.09703 | 158.
.17249 | 25.6
.64929 | | | | | | | 701 (OD | .03703 | .17243 | .04323 | | | | | | | #1 | 10693. | 91557. | 3918.6 | | | | | | | #2 | 10710. | 91873. | 3964.9 | | | | | | | #3 | 10711. | 91699. | 3960.8 | | | | | | | Sample Name: L1510121505 Acquired: 10/23/2015 12:42:33 Type: Unk | | | | | | | | | |--|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------| | Method: ICF | -THERMO3 | _6010_200 | .7WATER_ | 3YLINES(v | 526) Mc | de: CONC | Corr. Fa | actor: 1.00000(| | User: JYH | Custom | ID1: | Custom ID |)2: (| Custom ID3 | •
• | | | | Comment: | | | | | | | | | | Elem | Ag3280 | Al3082 | As1890 | B 2496 | Ba4554 | Be3131 | Ca4226 | Cd2288 | | Units | ppm | Avg | 00020 | .45853 | 00165 | .03637 | .07499 | .00003 | 5.2401 | .00021 | | Stddev | .00063 | .00967 | .00425 | .00138 | .00056 | .00005 | .0064 | .00023 | | %RSD | 317.54 | 2.1089 | 256.95 | 3.8021 | .74909 | 193.82 | .12230 | 111.47 | | #1 | 00067 | .44870 | .00323 | .03477 | .07547 | 00002 | 5.2378 |
.00001 | | #2 | 00045 | .46803 | 00368 | .03727 | .07513 | .00007 | 5.2352 | .00015 | | #3 | .00052 | .45886 | 00452 | .03705 | .07437 | .00002 | 5.2474 | .00047 | | Check ?
High Limit
Low Limit | Chk Pass | | | 0 0077 | 0 0047 | 5 0044 | 14 7004 | | | | | Elem | Co2286 | Cr2677 | Cu2247 | Fe2611 | K_7664 | Li6707 | Mg2790 | Mn2576 | | Units
Avg | ppm
. 00065 | ppm
. 00303 | ppm
. 00106 | ppm
. 43008 | ppm
. 97435 | ppm
. 01393 | ppm
1. 7133 | ppm
. 00565 | | Stddev | .00018 | .00078 | .00036 | .02408 | .08395 | .00321 | .0120 | .00159 | | %RSD | 27.279 | 25.681 | 33.950 | 5.5998 | 8.6162 | 23.040 | .70272 | 28.195 | | #1 | .00063 | .00348 | .00094 | .41990 | 1.0713 | .01099 | 1.6994 | .00416 | | #2 | .00084 | .00213 | .00078 | .45759 | .92428 | .01735 | 1.7208 | .00733 | | #3 | .00049 | .00349 | .00147 | .41277 | .92750 | .01345 | 1.7197 | .00547 | | Check?
High Limit
Low Limit | Chk Pass | Elem | Mo2020 | Na5895 | Ni2316 | P_2149 | Pb2203 | Sb2068 | Se1960 | Si2124 | | Units | ppm | Avg | .00043 | 46.601 | .00176 | .04508 | 00033 | .00050 | .02011 | 23.339 | | Stddev | .00010 | .049 | .00073 | .00513 | .00162 | .00370 | .00280 | .060 | | %RSD | 23.357 | .10616 | 41.548 | 11.374 | 486.63 | 744.79 | 13.923 | .25913 | | #1 | .00048 | 46.629 | .00260 | .03966 | 00133 | .00453 | .01772 | 23.381 | | #2 | .00031 | 46.544 | .00128 | .04985 | 00121 | 00030 | .01941 | 23.365 | | #3 | .00048 | 46.630 | .00140 | .04572 | .00154 | 00274 | .02319 | 23.270 | | Check ?
High Limit
Low Limit | Chk Pass | Sample Name: L1510121505 Acquired: 10/23/2015 12:42:33 Type: Unk | | | | | | | | | | |--|---|--|---|--|---|--|--|--|--| | P-THERMO3 | 3_6010_200 | .7WATER_ | 3YLINES(v | 526) Mo | de: CONC | Corr. Fa | ctor: 1.000000 | | | | Custom | ID1: | Custom ID |)2: (| Custom ID3 | : | Sn1899 | Sr4077 | Ti3372 | TI1908 | V 2924 | Zn2062 | Zr3391 | | | | | ppm | | | | .00010 | .11031 | .00834 | 00081 | .00171 | .00284 | .28406 | | | | | .00074 | .00055 | .00454 | .00137 | .00021 | .00010 | .05861 | | | | | 758.85 | .49732 | 54.425 | 169.43 | 12.501 | 3.3725 | 20.633 | | | | | 00000 | 11050 | 00000 | 00000 | 00104 | 00004 | 04050 | .00076 | .11000 | .01231 | .00004 | .00100 | .00234 | .23033 | | | | | Chk Pass | 14 00 40 | | \ | | | | | | | | | _ | | _ | 10679. | 91602. | 3942.1 | | | | | | | | | 10677. | 91914. | 3940.5 | | | | | | | | | 10688. | 91680. | 3952.6 | | | | | | | | | | Sn1899
ppm
.00010
.00074
758.85
.00020
00068
.00078
Chk Pass
Y_2243
Cts/S
10681.
6.
.05305 | P-THERMO3_6010_200 Custom ID1: Sn1899 | P-THERMO3_6010_200.7WATER_Custom ID1: Custom IE Sn1899 Sr4077 Ti3372 ppm ppm ppm ppm .00010 .11031 .00834 .00074 .00055 .00454 758.85 .49732 54.425 .00020 .11056 .0038300068 .10968 .00828 .00078 .11068 .01291 Chk Pass Chk Pass Chk Pass Y_2243 Y_3600 Y_3774 Cts/S Cts/S Cts/S 10681. 91732. 3945.1 6. 162. 6.6 .05305 .17712 .16703 10679. 91602. 3942.1 10677. 91914. 3940.5 | P-THERMO3_6010_200.7WATER_3YLINES(vstorm ID1: Custom ID2: I | P-THERMO3_6010_200.7WATER_3YLINES(v526) Mc Custom ID1: Custom ID2: Custom ID3 Sn1899 Sr4077 Ti3372 TI1908 V_2924 ppm ppm ppm ppm ppm ppm ppm .00010 .11031 .0083400081 .00171 .00074 .00055 .00454 .00137 .00021 758.85 .49732 54.425 169.43 12.501 .00020 .11056 .0038300239 .0019400068 .10968 .0082800008 .00151 .00078 .11068 .01291 .00004 .00168 Chk Pass Chk Pass Chk Pass Chk Pass Chk Pass Y_2243 Y_3600 Y_3774 Cts/S Cts/S Cts/S 10681. 91732. 3945.1 6. 162. 6.6 .05305 .17712 .16703 10679. 91602. 3942.1 10677. 91914. 3940.5 | P-THERMO3_6010_200.7WATER_3YLINES(v526) Mode: CONC Custom ID1: Custom ID2: Custom ID3: Sn1899 Sr4077 Ti3372 TI1908 V_2924 Zn2062 ppm ppm ppm ppm ppm ppm ppm ppm ppm pp | P-THERMO3_6010_200.7WATER_3YLINES(v526) Mode: CONC Corr. Fa Custom ID1: Custom ID2: Custom ID3: Sn1899 Sr4077 Ti3372 TI1908 V_2924 Zn2062 Zr3391 ppm ppm ppm ppm ppm ppm ppm ppm ppm pp | | | | Sample Nar | Sample Name: L1510121506 Acquired: 10/23/2015 12:46:36 Type: Unk | | | | | | | | | |-------------|--|------------------|------------------|------------------|-----------------|------------------|------------------|------------------|--| | Method: ICF | P-THERMO3 | 3_6010_200 | .7WATER_ | 3YLINES(v | 526) Mc | de: CONC | Corr. Fa | actor: 1.00000(| | | User: JYH | Custom | ID1: | Custom ID |)2: | Custom ID3 | : | | | | | Comment: | | | | | | | | | | | Goriii. | | | | | | | | | | | Elem | Ag3280 | Al3082 | As1890 | B 2496 | Ba4554 | Be3131 | Ca4226 | Cd2288 | | | Units | ppm | ppm | ppm | D_2490
ppm | ppm | ppm | ppm | ppm | | | Avg | .00029 | .05646 | .00003 | .31644 | .10966 | .00000 | 13.993 | 00001 | | | Stddev | .00049 | .00722 | .00277 | .00218 | .00079 | .00003 | .035 | .00023 | | | %RSD | 166.33 | 12.792 | 10954. | .68860 | .71748 | 1780.2 | .25074 | 2364.9 | | | | | | | | | | | | | | #1 | .00038 | .05471 | .00322 | .31403 | .10881 | .00002 | 13.964 | 00027 | | | #2 | .00073 | .05028 | 00167 | .31701 | .11036 | .00002 | 14.032 | .00010 | | | #3 | 00023 | .06440 | 00148 | .31828 | .10982 | 00004 | 13.983 | .00015 | | | Check? | Chk Pass | | High Limit | Office ass | Onk i doo | Onk i ass | Onk i ass | Olik i dos | Onk i ass | Onk i doo | Office ass | | | Low Limit | Elem | Co2286 | Cr2677 | Cu2247 | Fe2611 | K_7664 | Li6707 | Mg2790 | Mn2576 | | | Units | ppm | | Avg | .00083 | .00144 | .00050 | .06330 | 6.2043 | .03202 | 3.6103 | .01510 | | | Stddev | .00010 | .00122 | .00117 | .01590 | .0479 | .00176 | .1029 | .00262 | | | %RSD | 12.267 | 84.760 | 233.72 | 25.119 | .77231 | 5.4955 | 2.8500 | 17.326 | | | #1 | .00076 | .00040 | 00052 | .08091 | 6.1786 | .03054 | 3.4928 | .01733 | | | #2 | .00095 | .00114 | .00024 | .05000 | 6.1746 | .03397 | 3.6541 | .01574 | | | #3 | .00078 | .00278 | .00178 | .05898 | 6.2595 | .03156 | 3.6841 | .01222 | | | | | | | | | | | | | | Check? | Chk Pass | | High Limit | | | | | | | | | | | Low Limit | | | | | | | | | | | Elem | Mo2020 | Na5895 | Ni2316 | P 2149 | Pb2203 | Sb2068 | Se1960 | Si2124 | | | Units | ppm |
| Avg | .00315 | 146.55 | .00112 | .04787 | 00074 | .00431 | .00361 | 5.2801 | | | Stddev | .00018 | .24 | .00125 | .00614 | .00338 | .00339 | .00625 | .0108 | | | %RSD | 5.8105 | .16238 | 111.36 | 12.823 | 457.93 | 78.508 | 172.95 | .20464 | | | #1 | 00015 | 146.00 | 00004 | 04600 | 00007 | 00055 | 00140 | E 2012 | | | #1
#2 | .00315 | 146.33
146.80 | 00024 | .04603 | 00087 | .00655 | 00146 | 5.2913
5.2702 | | | #2
#3 | .00334
.00297 | 146.80 | .00221
.00138 | .04286
.05472 | 00406
.00271 | .00042
.00597 | .00171
.01059 | 5.2793
5.2697 | | | #3 | .00297 | 140.33 | .00136 | .03472 | .00271 | .00387 | .01039 | 3.2037 | | | Check? | Chk Pass | | High Limit | | | | | | | | | | | Low Limit | | | | | | | | | | | Sample Name: L1510121506 | | | | | | | | | |------------------------------------|------------------|------------------|------------------|------------------|------------------|------------------|------------------|----------------| | Method: ICF | P-THERMO3 | 3_6010_200 | .7WATER_ | 3YLINES(v | 526) Mc | de: CONC | Corr. Fa | ctor: 1.00000(| | User: JYH | Custom | ID1: | Custom ID |)2: (| Custom ID3 | • | | | | Comment: | | | | | | | | | | Elem | Sn1899 | Sr4077 | Ti3372 | TI1908 | V_2924 | Zn2062 | Zr3391 | | | Units | ppm | | Avg | .00001 | .78727 | 00063 | 00321 | 00017 | .00237 | .12135 | | | Stddev
%RSD | .00115
8289.9 | .00266
.33836 | .00054
84.897 | .00127
39.572 | .00043
244.11 | .00022
9.1758 | .09669
79.673 | | | /0N3D | 6269.9 | .55650 | 04.037 | 39.372 | 244.11 | 9.1750 | 79.073 | | | #1 | 00103 | .78828 | 00004 | 00278 | .00008 | .00252 | .02127 | | | #2 | .00124 | .78929 | 00077 | 00464 | 00067 | .00247 | .21424 | | | #3 | 00017 | .78425 | 00109 | 00222 | .00006 | .00212 | .12856 | | | Check ?
High Limit
Low Limit | Chk Pass | | Int. Std. | Y 2243 | Y_3600 | Y_3774 | | | | | | | Units | Cts/S | Cts/S | Cts/S | | | | | | | Avg | 10500. | 89272. | 3916.6 | | | | | | | Stddev
%RSD | 5.
.04792 | 48.
.05374 | 9.0
.22955 | | | | | | | 70113D | .04732 | .05574 | .22333 | | | | | | | #1 | 10503. | 89289. | 3927.0 | | | | | | | #2 | 10502. | 89309. | 3911.2 | | | | | | | #3 | 10494. | 89218. | 3911.7 | | | | | | | Sample Name: L1510121507 Acquired: 10/23/2015 12:50:38 Type: Unk | | | | | | | | | |--|------------------|------------------|------------------|------------------|-----------------|------------------|------------------|------------------| | Method: ICF | P-THERMO3 | 3_6010_200 | .7WATER_ | 3YLINES(v | 526) Mo | de: CONC | Corr. Fa | actor: 1.00000(| | User: JYH | Custom | ID1: | Custom ID |)2: (| Custom ID3 | | | | | Comment: | Elem | Ag3280 | Al3082 | As1890 | B 2496 | Ba4554 | Be3131 | Ca4226 | Cd2288 | | Units | ppm | ppm | ppm | ppm | ррт | ppm | ppm | ppm | | Avg | - 00098 | .52948 | 00163 | .03005 | .05609 | .00001 | 30.711 | .00030 | | Stddev | .00094 | .00218 | .00231 | .00215 | .00029 | .00004 | .132 | .00025 | | %RSD | 95.650 | .41143 | 142.11 | 7.1436 | .51293 | 337.08 | .43135 | 82.954 | | #1 | .00001 | .53133 | .00043 | .03060 | .05636 | 00000 | 30.845 | .00010 | | #2 | 00186 | .52708 | 00413 | .03187 | .05579 | 00002 | 30.708 | .00022 | | #3 | 00109 | .53003 | 00118 | .02769 | .05613 | .00005 | 30.580 | .00059 | | Check? | Chk Pass | High Limit | | | | | | | | | | Low Limit | | | | | | | | | | Elem | Co2286 | Cr2677 | Cu2247 | Fe2611 | K_7664 | Li6707 | Mg2790 | Mn2576 | | Units | ppm | Avg | .00028 | .00259 | 00017 | .17887 | 1.6215 | .03724 | 8.1559 | .00410 | | Stddev
%RSD | .00020
72.312 | .00100
38.626 | .00223
1321.3 | .01913
10.696 | .0416
2.5660 | .00298
8.0051 | .0771
.94575 | .00063
15.443 | | /0N3D | 72.312 | 36.020 | 1321.3 | 10.090 | 2.3000 | 0.0031 | .94373 | 13.443 | | #1 | .00009 | .00330 | .00156 | .16930 | 1.6363 | .04067 | 8.2239 | .00426 | | #2 | .00025 | .00304 | 00268 | .20090 | 1.6537 | .03532 | 8.1717 | .00463 | | #3 | .00049 | .00145 | .00061 | .16641 | 1.5745 | .03572 | 8.0721 | .00340 | | Check? | Chk Pass | High Limit | | | | | | | | | | Low Limit | | | | | | | | | | Elem | Mo2020 | Na5895 | Ni2316 | P_2149 | Pb2203 | Sb2068 | Se1960 | Si2124 | | Units | ppm | Avg | .00090 | 98.603 | .00196 | .10274 | 00114 | .00273 | .08145 | 16.751 | | Stddev | .00051 | .443
.44912 | .00117 | .00315
3.0693 | .00289 | .00191
70.026 | .00274
3.3700 | .037
.22231 | | %RSD | 56.841 | .44912 | 59.564 | 3.0093 | 254.25 | 70.026 | 3.3700 | .22231 | | #1 | .00148 | 98.943 | .00328 | .09988 | 00430 | .00490 | .08456 | 16.791 | | #2 | .00074 | 98.765 | .00106 | .10612 | 00051 | .00198 | .08042 | 16.746 | | #3 | .00049 | 98.102 | .00154 | .10223 | .00139 | .00131 | .07937 | 16.717 | | Check ?
High Limit
Low Limit | Chk Pass | Sample Name: L1510121507 Acquired: 10/23/2015 12:50:38 Type: Unk | | | | | | | | | | |--|------------------|------------------|------------------|-----------|------------|----------|----------|----------------|--| | Method: ICF | P-THERMO3 | 3_6010_200 | .7WATER_ | 3YLINES(v | 526) Mo | de: CONC | Corr. Fa | ctor: 1.000000 | | | User: JYH | Custom | ID1: | Custom ID |)2: (| Custom ID3 | : | | | | | Comment: | Elem | Sn1899 | Sr4077 | Ti3372 | TI1908 | V 2924 | Zn2062 | Zr3391 | | | | Units | ppm | | | Avg | 00020 | .54708 | 00311 | 00274 | .00246 | .00308 | .31355 | | | | Stddev | .00026 | .00280 | .00635 | .00366 | .00027 | .00019 | .16443 | | | | %RSD | 125.43 | .51270 | 204.11 | 133.73 | 11.094 | 6.1679 | 52.443 | | | | #1 | 00043 | .54990 | 00994 | 00478 | .00265 | .00316 | .45326 | | | | #1
#2 | .000043 | .54705 | .00261 | 00478 | .00205 | .00286 | .35504 | | | | #3 | 00026 | .54429 | 00201 | .00149 | .00259 | .00321 | .13234 | | | | • | .000_0 | | .00_00 | | .00200 | | | | | | Check? | Chk Pass | | | High Limit | | | | | | | | | | | Low Limit | | | | | | | | | | | Int. Std. | Y 2243 | Y 3600 | Y_3774 | | | | | | | | Units | Cts/S | Cts/S | 1_3774
Cts/S | | | | | | | | Avg | 10523. | 89954. | 3926.4 | | | | | | | | Stddev | 7. | 205. | 25.2 | | | | | | | | %RSD | .06521 | .22734 | .64080 | | | | | | | | 114 | 40500 | 00704 | 0011.0 | | | | | | | | #1
#2 | 10522. | 89724. | 3911.8 | | | | | | | | #2
#3 | 10517.
10530. | 90116.
90022. | 3912.0
3955.5 | | | | | | | | 11 0 | 10000. | JUUZZ. | 0000.0 | | | | | | | | Sample Name: L1510121509 Acquired: 10/23/2015 12:54:28 Type: Unk Method: ICP-THERMO3_6010_200.7WATER_3YLINES(v526) Mode: CONC User: JYH Custom ID1: Custom ID2: Custom ID3: Comment: | | | | | | Corr. Fa | actor: 1.00000(| | |--|----------------|----------------|----------------|----------------|----------------|----------------|-----------------|----------------| | Elem | Ag3280 | Al3082 | As1890 | B_2496 | Ba4554 | Be3131 | Ca4226 | Cd2288 | | Units | ppm | Avg | . 00004 | . 34161 | 00034 | . 02294 | . 06264 | .00031 | 1.2974 | . 00014 | | Stddev | .00134 | .00591 | .00072 | .00258 | .00027 | .00002 | .0024 | .00020 | | %RSD | 3461.8 | 1.7299 | 214.55 | 11.255 | .42916 | 6.1928 | .18862 | 143.72 | | #1 | 00032 | .33625 | 00115 | .02141 | .06294 | .00032 | 1.3002 | 00007 | | #2 | .00153 | .34062 | 00010 | .02149 | .06243 | .00028 | 1.2961 | .00016 | | #3 | 00109 | .34794 | .00024 | .02592 | .06254 | .00031 | 1.2959 | .00032 | | Check ?
High Limit
Low Limit | Chk Pass | Elem | Co2286 | Cr2677 | Cu2247 | Fe2611 | K_7664 | Li6707 | Mg2790 | Mn2576 | | Units | ppm | Avg | . 00326 | . 00260 | . 00145 | .36598 | . 52178 | . 02423 | . 57846 | . 03315 | | Stddev | .00030 | .00054 | .00153 | .01493 | .08042 | .00393 | .05897 | .00119 | | %RSD | 9.1475 | 20.944 | 105.80 | 4.0792 | 15.413 | 16.230 | 10.194 | 3.5850 | | #1 | .00320 | .00269 | .00215 | .35214 | .47498 | .01984 | .63804 | .03269 | | #2 | .00300 | .00309 | 00031 | .38180 | .47572 | .02544 | .57720 | .03450 | | #3 | .00359 | .00201 | .00250 | .36402 | .61464 | .02742 | .52013 | .03226 | | Check ?
High Limit
Low Limit | Chk Pass | Elem | Mo2020 | Na5895 | Ni2316 | P_2149 | Pb2203 | Sb2068 | Se1960 | Si2124 | | Units | ppm | Avg | . 00072 | 24.442 | . 00414 | . 06782 | 00165 | . 00488 | . 00068 | 25.257 | | Stddev | .00026 | .055 | .00031 | .00295 | .00298 | .00257 | .00652 | .056 | | %RSD | 36.654 | .22607 | 7.4087 | 4.3501 | 180.30 | 52.643 | 965.86 | .21989 | | #1 | .00070 | 24.418 | .00388 | .06601 | 00449 | .00784 | 00335 | 25.271 | | #2 | .00046 | 24.403 | .00407 | .07122 | .00145 | .00365 | .00820 | 25.303 | | #3 | .00098 | 24.505 | .00448 | .06622 | 00191 | .00316 | 00283 | 25.195 | | Check ?
High Limit
Low Limit | Chk Pass | Sample Name: L1510121509 Acquired: 10/23/2015 12:54:28 Type: Unk | | | | | | | | | |--|------------------------|--------------------------------|--------------------------------|------------------------|--------------------------|--------------------------|--------------------------|----------------| | Method: ICF | P-THERMO3 | 3_6010_200 | .7WATER_ | 3YLINES(v | 526) Mo | de: CONC | Corr. Fa | ctor: 1.00000(| | User: JYH | Custom | ID1: | Custom ID |)2: (| Custom ID3 | • | | | | Comment: | | | | | | | | | | Elem | Sn1899 | Sr4077 | Ti3372 | TI1908 | V_2924 | Zn2062 | Zr3391 | | | Units | ppm | | Avg | 00070
.00117 | . <mark>02808</mark>
.00037 | . <mark>00386</mark>
.00417 | 00078
.00075 | . 00034
.00069 | . 00544
.00015 | . 19407
.19617 | | | Stddev
%RSD |
166.99 | 1.3093 | 108.22 | 95.588 | 203.29 | 2.7474 | 101.08 | | | 701 (OD | 100.00 | 1.0000 | 100.22 | 00.000 | 200.20 | 2.777 | 101.00 | | | #1 | 00118 | .02775 | .00797 | 00131 | .00076 | .00556 | .10119 | | | #2 | 00155 | .02848 | .00397 | 00110 | .00072 | .00527 | .06159 | | | #3 | .00063 | .02801 | 00037 | .00007 | 00046 | .00550 | .41943 | | | Check ?
High Limit
Low Limit | Chk Pass | | Int. Std. | Y 2243 | Y_3600 | Y_3774 | | | | | | | Units | Cts/S | Cts/S | Cts/S | | | | | | | Avg | 10782. | 92987. | 3927.0 | | | | | | | Stddev
%RSD | 3.
.02508 | 107.
.11521 | 12.9
.32798 | | | | | | | 70113D | .02300 | .11321 | .52790 | | | | | | | #1 | 10786. | 92915. | 3912.5 | | | | | | | #2 | 10781. | 93110. | 3937.2 | | | | | | | #3 | 10781. | 92937. | 3931.3 | | | | | | | Sample Name: L1510121510 Acquired: 10/23/2015 12:58:32 Type: Unk Method: ICP-THERMO3_6010_200.7WATER_3YLINES(v526) Mode: CONC Co User: JYH Custom ID1: Custom ID2: Custom ID3: Comment: | | | | | | | Corr. Fa | actor: 1.00000(| |---|----------------|----------------|----------|----------------|----------------|----------------|----------------|-----------------| | Elem | Ag3280 | Al3082 | As1890 | B_2496 | Ba4554 | Be3131 | Ca4226 | Cd2288 | | Units | ppm | Avg | 00082 | . 01848 | .00011 | .02399 | . 04689 | 00000 | 13.209 | . 00028 | | Stddev | .00040 | .00225 | .00167 | .00081 | .00019 | .00003 | .063 | .00011 | | %RSD | 49.040 | 12.169 | 1524.1 | 3.3616 | .41341 | 2757.2 | .47541 | 37.882 | | #1 | 00120 | .01699 | 00105 | .02465 | .04709 | 00002 | 13.218 | .00018 | | #2 | 00040 | .02106 | .00202 | .02422 | .04689 | 00002 | 13.267 | .00028 | | #3 | 00087 | .01738 | 00064 | .02309 | .04670 | .00003 | 13.142 | .00039 | | Check ?
High Limit
Low Limit | Chk Pass | Elem | Co2286 | Cr2677 | Cu2247 | Fe2611 | K_7664 | Li6707 | Mg2790 | Mn2576 | | Units | ppm | Avg | . 00026 | . 00022 | .00069 | . 00938 | . 87106 | . 04479 | 6.5704 | . 02090 | | Stddev | .00018 | .00048 | .00125 | .01396 | .05451 | .00202 | .0399 | .00140 | | %RSD | 71.223 | 224.30 | 180.99 | 148.86 | 6.2579 | 4.5060 | .60774 | 6.7195 | | #1 | .00031 | .00013 | .00210 | .01306 | .87469 | .04657 | 6.6150 | .01984 | | #2 | .00041 | 00022 | 00030 | .02113 | .92367 | .04521 | 6.5579 | .02250 | | #3 | .00005 | .00073 | .00028 | 00605 | .81483 | .04260 | 6.5381 | .02038 | | Check ?
High Limit
Low Limit | Chk Pass | Elem | Mo2020 | Na5895 | Ni2316 | P_2149 | Pb2203 | Sb2068 | Se1960 | Si2124 | | Units | ppm | Avg | . 00051 | 79.775 | .00106 | . 04612 | 00104 | . 00688 | . 00359 | 14.905 | | Stddev | .00021 | .398 | .00156 | .00793 | .00400 | .00437 | .00341 | .032 | | %RSD | 41.787 | .49932 | 146.49 | 17.196 | 385.43 | 63.514 | 95.007 | .21676 | | #1 | .00074 | 79.932 | 00072 | .05489 | .00339 | .01175 | .00604 | 14.932 | | #2 | .00047 | 80.071 | .00174 | .04399 | 00440 | .00331 | .00505 | 14.913 | | #3 | .00032 | 79.322 | .00216 | .03947 | 00210 | .00558 | 00031 | 14.869 | | Check ?
High Limit
Low Limit | Chk Pass | Sample Nan | | | cquired: 10/ | | | Type: Unk | | | |---|---|---|---|----------|------------|-----------|----------|----------------| | Method: ICP | P-THERMO3 | _6010_200 | _ | • | , | de: CONC | Corr. Fa | ctor: 1.00000(| | User: JYH | Custom | ID1: | Custom ID |)2: (| Custom ID3 | • | | | | Comment: | | | | | | | | | | Elem | Sn1899 | Sr4077 | Ti3372 | TI1908 | V_2924 | Zn2062 | Zr3391 | | | Units | ppm | | Avg | .00017 | .43317 | 00196 | 00282 | 00032 | .00172 | .11218 | | | Stddev | .00050 | .00309 | .00690 | .00125 | .00077 | .00007 | .07770 | | | %RSD | 296.29 | .71420 | 351.88 | 44.306 | 241.44 | 3.8629 | 69.263 | | | #1 | .00052 | .43604 | 00345 | 00336 | 00108 | .00176 | .02540 | | | #2 | .00039 | .43359 | 00799 | 00372 | .00045 | .00164 | .13584 | | | #3 | 00041 | .42989 | .00556 | 00139 | 00031 | .00176 | .17531 | | | Check ?
High Limit | Chk Pass | | Low Limit | | | | | | | | | | Int. Std.
Units
Avg
Stddev
%RSD | Y_2243
Cts/S
10608.
7.
.06253 | Y_3600
Cts/S
90614 .
184.
.20323 | Y_3774
Cts/S
3941 .1
31.1
.78788 | | | | | | | #1
#2 | 10612.
10601. | 90411.
90771. | 3929.7
3917.3 | | | | | | | #3 | 10612. | 90659. | 3976.2 | | | | | | | Sample Name: L1510126201 Acquired: 10/23/2015 13:02:34 Type: Unk Method: ICP-THERMO3_6010_200.7WATER_3YLINES(v526) Mode: CONC User: JYH Custom ID1: Custom ID2: Custom ID3: | | | | | | Corr. Factor: 1.00000(| | | |---|----------------|----------------|----------|----------------|---------------|------------------------|---------------|----------------| | Comment: | | | | | | | | | | Elem | Ag3280 | Al3082 | As1890 | B_2496 | Ba4554 | Be3131 | Ca4226 | Cd2288 | | Units | ppm | Avg | . 00001 | . 01199 | .00037 | . 02271 | .03749 | 00001 | 62.120 | 00016 | | Stddev | .00126 | .00401 | .00315 | .00116 | .00050 | .00008 | .020 | .00026 | | %RSD | 9287.9 | 33.453 | 843.76 | 5.1253 | 1.3426 | 896.81 | .03293 | 161.59 | | #1 | 00008 | .01625 | 00268 | .02363 | .03761 | .00006 | 62.102 | 00029 | | #2 | 00119 | .01145 | .00362 | .02310 | .03693 | 00010 | 62.142 | 00033 | | #3 | .00132 | .00829 | .00018 | .02140 | .03792 | .00002 | 62.117 | .00014 | | Check ?
High Limit
Low Limit | Chk Pass | Elem | Co2286 | Cr2677 | Cu2247 | Fe2611 | K_7664 | Li6707 | Mg2790 | Mn2576 | | Units | ppm | Avg | .00056 | . 00064 | 00036 | .09152 | 3.1293 | .01142 | 8.5141 | . 03087 | | Stddev | .00050 | .00059 | .00094 | .00732 | .0146 | .00200 | .1830 | .00073 | | %RSD | 89.523 | 92.165 | 261.11 | 7.9938 | .46670 | 17.507 | 2.1499 | 2.3524 | | #1 | .00105 | .00055 | 00145 | .09126 | 3.1125 | .00937 | 8.7245 | .03169 | | #2 | .00005 | .00128 | .00028 | .08435 | 3.1363 | .01336 | 8.3915 | .03033 | | #3 | .00058 | .00010 | .00008 | .09897 | 3.1391 | .01153 | 8.4263 | .03059 | | Check ?
High Limit
Low Limit | Chk Pass | Elem | Mo2020 | Na5895 | Ni2316 | P_2149 | Pb2203 | Sb2068 | Se1960 | Si2124 | | Units | ppm | Avg | . 00073 | 3.4726 | .00100 | . 22464 | 00260 | . 00099 | .00225 | 6.7000 | | Stddev | .00014 | .0189 | .00058 | .00550 | .00036 | .00356 | .00176 | .0254 | | %RSD | 18.759 | .54477 | 57.275 | 2.4487 | 13.689 | 359.37 | 78.387 | .37916 | | #1 | .00057 | 3.4927 | .00040 | .22384 | 00287 | 00309 | .00108 | 6.7191 | | #2 | .00081 | 3.4701 | .00107 | .23050 | 00220 | .00257 | .00139 | 6.7098 | | #3 | .00082 | 3.4551 | .00154 | .21959 | 00275 | .00348 | .00427 | 6.6712 | | Check ?
High Limit
Low Limit | Chk Pass | Sample Nan | ne: L151012 | :6201 A | cquired: 10/ | /23/2015 13 | :02:34 | Type: Unk | | | |------------------------------------|------------------------|------------------|------------------|------------------|------------------|------------------|------------------|----------------| | Method: ICP | -THERMO3 | _6010_200 | .7WATER_ | 3YLINES(v | 526) Mo | de: CONC | Corr. Fa | ctor: 1.00000(| | User: JYH | Custom | ID1: | Custom ID |)2: (| Custom ID3 | : | | | | Comment: | | | | | | | | | | Elem | Sn1899 | Sr4077 | Ti3372 | TI1908 | V_2924 | Zn2062 | Zr3391 | | | Units | ppm | | Avg | 00081
.00100 | .16089 | 01040 | 00416 | 00064 | .00178 | .12588 | | | Stddev
%RSD | 123.60 | .00022
.13716 | .00260
25.017 | .00103
24.684 | .00086
135.40 | .00006
3.5126 | .06302
50.060 | | | 701 (OD | 123.00 | .13710 | 25.017 | 24.004 | 155.40 | 5.5120 | 30.000 | | | #1 | .00020 | .16113 | 00750 | 00298 | .00033 | .00172 | .19861 | | | #2 | 00082 | .16084 | 01114 | 00468 | 00092 | .00178 | .08740 | | | #3 | 00180 | .16070 | 01254 | 00482 | 00132 | .00185 | .09165 | | | Check ?
High Limit
Low Limit | Chk Pass | | | V 0040 | V 0000 | \ | | | | | | | Int. Std.
Units | Y_2243
Cts/S | Y_3600
Cts/S | Y_3774
Cts/S | | | | | | | Avg | 10655. | 91504. | 3919.2 | | | | | | | Stddev | 6. | 292. | 3.7 | | | | | | | %RSD | .05190 | .31881 | .09343 | | | | | | | #1 | 10649. | 91169. | 3920.2 | | | | | | | #2 | 10656. | 91643. | 3915.2 | | | | | | | #3 | 10660. | 91701. | 3922.3 | | | | | | | Sample Name: L1510126202 Acquired: 10/23/2015 13:06:36 Type: Unk Method: ICP-THERMO3_6010_200.7WATER_3YLINES(v526) Mode: CONC User: JYH Custom ID1: Custom ID2: Custom ID3: Comment: | | | | | de: CONC | Corr. Factor: 1.000000 | | | |--|---|---|---|---|---|---|---|---| | Elem
Units
Avg
Stddev
%RSD | Ag3280
ppm
. 00047
.00050
105.91 | Al3082
ppm
. 01418
.00277
19.568 | As1890
ppm
00159
.00372
233.81 | B_2496
ppm
. 02418
.00215
8.8766 | Ba4554
ppm
. 07660
.00025
.32920 | Be3131
ppm
.00001
.00003
301.63 |
Ca4226
ppm
63.719
.216
.33954 | Cd2288
ppm
. 00001
.00014
1145.8 | | #1
#2
#3 | .00099
.00044
00001 | .01461
.01122
.01672 | 00106
.00183
00555 | .02179
.02481
.02594 | .07646
.07689
.07644 | 00003
.00003
.00003 | 63.772
63.904
63.481 | 00008
.00017
00005 | | Check ?
High Limit
Low Limit | Chk Pass | Elem
Units
Avg
Stddev
%RSD | Co2286
ppm
.00009
.00023
241.97 | Cr2677
ppm
.00055
.00062
112.94 | Cu2247
ppm
.01117
.00091
8.1725 | Fe2611
ppm
00004
.00576
14399. | K_7664
ppm
1.0843
.0326
3.0022 | Li6707
ppm
.01238
.00279
22.554 | Mg2790
ppm
13.835
.067
.48384
13.869 | Mn2576
ppm
.00018
.00058
322.77 | | #2
#3 | 00032
00013
.00010 | .00067 | .01119 | 00541
00076 | 1.1212
1.0595 | .01001
.01546 | 13.878
13.758 | 0003
00035
.00080 | | Check ?
High Limit
Low Limit | Chk Pass | Elem
Units
Avg
Stddev
%RSD | Mo2020
ppm
. 00079
.00020
24.789 | Na5895
ppm
8.3854
.0265
.31639 | Ni2316
ppm
.00117
.00132
113.08 | P_2149
ppm
. 00791
.00410
51.815 | Pb2203
ppm
. 00267
.00480
179.62 | Sb2068
ppm
. 00362
.00036
9.8601 | Se1960
ppm
. 00719
.00318
44.269 | Si2124
ppm
4.3853
.0150
.34212 | | #1
#2
#3 | .00057
.00093
.00088 | 8.3952
8.4056
8.3553 | 00035
.00186
.00199 | .00428
.01235
.00710 | .00255
00207
.00754 | .00367
.00394
.00324 | .01077
.00465
.00616 | 4.3861
4.3999
4.3700 | | Check ?
High Limit
Low Limit | Chk Pass | Sample Nar | ne: L151012 | 26202 A | .cquired: 10/ | /23/2015 13 | :06:36 | Type: Unk | | | |------------------------------------|---------------|----------------|----------------|-------------|------------|-----------|-----------|----------------| | Method: ICF | P-THERMO3 | 3_6010_200 | .7WATER_ | 3YLINES(v | 526) Mc | de: CONC | Corr. Fac | ctor: 1.000000 | | User: JYH | Custom | ID1: | Custom ID |)2: (| Custom ID3 | • | | | | Comment: | | | | | | | | | | Elem | Sn1899 | Sr4077 | Ti3372 | TI1908 | V_2924 | Zn2062 | Zr3391 | | | Units | ppm | | Avg | .00024 | .29413 | 01310 | 00213 | .00021 | .02568 | 03215 | | | Stddev
%RSD | .00121 | .00106 | .00159 | .00246 | .00073 | .00009 | .07237 | | | %K3D | 514.08 | .36196 | 12.168 | 115.51 | 341.62 | .36804 | 225.07 | | | #1 | 00096 | .29521 | 01318 | .00066 | .00081 | .02571 | .01099 | | | #2 | .00146 | .29409 | 01466 | 00400 | .00043 | .02576 | 11571 | | | #3 | .00021 | .29309 | 01147 | 00305 | 00060 | .02557 | .00826 | | | Check ?
High Limit
Low Limit | Chk Pass | | Int. Std. | Y_2243 | Y_3600 | Y_3774 | | | | | | | Units | Cts/S | Cts/S | Cts/S | | | | | | | Avg | 10633. | 91459. | 3931.3 | | | | | | | Stddev
%RSD | 19.
.17419 | 182.
.19854 | 11.7
.29661 | | | | | | | 70113D | .17413 | .13034 | .23001 | | | | | | | #1 | 10651. | 91280. | 3919.2 | | | | | | | #2 | 10614. | 91643. | 3932.2 | | | | | | | #3 | 10633. | 91456. | 3942.5 | | | | | | | Sample Nam
Method: ICP-
User: JYH
Comment: | | | | LINES(v526) | ype: QC
) Mode:
tom ID3: | CONC (| Corr. Factor: | 1.000000 | |---|----------------|----------------|----------------|----------------|--------------------------------|---------------|----------------|----------| | Elem | Ag3280 | Al3082 | As1890 | B_2496 | Ba4554 | Be3131 | Ca4226 | | | Units | ppm | | Avg | . 39896 | 10.084 | .41004 | . 49902 | 1.0318 | .05081 | 10.199 | | | Stddev | .00049 | .010 | .00211 | .00249 | .0068 | .00002 | .059 | | | %RSD | .12187 | .10198 | .51396 | .49885 | .66123 | .04034 | .57761 | | | #1 | .39946 | 10.091 | .41207 | .49910 | 1.0383 | .05083 | 10.263 | | | #2 | .39849 | 10.088 | .40786 | .50146 | 1.0247 | .05079 | 10.147 | | | #3 | .39894 | 10.072 | .41019 | .49649 | 1.0324 | .05082 | 10.187 | | | Check ?
Value
Range | Chk Pass | | Elem | Cd2288 | Co2286 | Cr2677 | Cu2247 | Fe2611 | K_7664 | Li6707 | | | Units | ppm | | Avg | . 05090 | . 20160 | . 51292 | . 50671 | 4.0546 | 51.793 | 1.0179 | | | Stddev | .00021 | .00017 | .00150 | .00096 | .0342 | .396 | .0075 | | | %RSD | .40489 | .08307 | .29151 | .18941 | .84329 | .76413 | .74124 | | | #1 | .05104 | .20176 | .51196 | .50739 | 4.0624 | 52.201 | 1.0264 | | | #2 | .05066 | .20143 | .51464 | .50714 | 4.0172 | 51.410 | 1.0120 | | | #3 | .05099 | .20162 | .51216 | .50561 | 4.0843 | 51.769 | 1.0153 | | | Check ?
Value
Range | Chk Pass | | Elem | Mg2790 | Mn2576 | Mo2020 | Na5895 | Ni2316 | P_2149 | Pb2203 | | | Units | ppm | | Avg | 9.8518 | . 50713 | 1.0107 | 52.048 | . 51144 | 10.007 | . 50592 | | | Stddev | .0444 | .00485 | .0013 | .315 | .00083 | .010 | .00405 | | | %RSD | .45080 | .95623 | .12951 | .60532 | .16257 | .09983 | .79989 | | | #1 | 9.8898 | .51228 | 1.0117 | 52.350 | .51240 | 10.008 | .50822 | | | #2 | 9.8030 | .50265 | 1.0112 | 51.721 | .51090 | 9.9962 | .50124 | | | #3 | 9.8626 | .50646 | 1.0092 | 52.073 | .51103 | 10.016 | .50828 | | | Check ?
Value
Range | Chk Pass | | Sample Nam
Method: ICP
User: JYH
Comment: | | 6010_200.7 | /23/2015 13:
WATER_3YI
Custom ID2: | LINES(v526) | ype: QC
) Mode:
tom ID3: | CONC (| Corr. Factor: ⁻ | 1.00000(| |--|--|--|--|--|---|---|---|----------| | Elem
Units
Avg
Stddev
%RSD | Sb2068
ppm
1.2223
.0022
.18131 | Se1960
ppm
. 40716
.00327
.80418 | Si2124
ppm
5.1161
.0095
.18598 | Sn1899
ppm
1.0090
.0024
.24253 | Sr4077
ppm
1.0295
.0060
.58803 | Ti3372
ppm
1.0270
.0109
1.0572 | TI1908
ppm
. 51749
.00203
.39308 | | | #1
#2
#3 | 1.2222
1.2201
1.2246 | .41040
.40724
.40385 | 5.1060
5.1175
5.1249 | 1.0077
1.0076
1.0119 | 1.0333
1.0225
1.0327 | 1.0356
1.0148
1.0306 | .51751
.51951
.51545 | | | Check ?
Value
Range | Chk Pass | | Elem
Units
Avg
Stddev
%RSD | V_2924
ppm
1.0242
.0029
.27878 | Zn2062
ppm
1.0032
.0006
.05544 | Zr3391
ppm
F .80453
.04389
5.4551 | | | | | | | #1
#2
#3 | 1.0243
1.0270
1.0213 | 1.0037
1.0026
1.0034 | .78502
.85479
.77378 | | | | | | | Check ?
Value
Range | Chk Pass | Chk Pass | Chk Fail
1.0000
-10.000% | | | | | | | Int. Std.
Units
Avg
Stddev
%RSD | Y_2243
Cts/S
11033.
17.
.15525 | Y_3600
Cts/S
9 3685 .
179.
.19105 | Y_3774
Cts/S
4079.5
28.6
.70039 | | | | | | | #1
#2
#3 | 11052.
11030.
11018. | 93479.
93779.
93799. | 4047.0
4090.8
4100.8 | | | | | | | Sample Nam
Method: ICP
User: JYH
Comment: | | | | LINES(v526 | ype: Blank
) Mode:
tom ID3: | CONC (| Corr. Factor: | 1.00000(| |--|----------------|----------------|----------------|----------------|-----------------------------------|----------------|----------------|----------| | Elem | Ag3280 | Al3082 | As1890 | B_2496 | Ba4554 | Be3131 | Ca4226 | | | Units | ppm | | Avg | . 00083 | . 00433 | 00023 | . 00184 | 00045 | .00002 | . 01157 | | | Stddev | .00075 | .00375 | .00587 | .00091 | .00067 | .00007 | .00673 | | | %RSD | 90.397 | 86.639 | 2589.7 | 49.257 | 148.79 | 370.14 | 58.194 | | | #1 | .00050 | .00038 | .00641 | .00278 | 00122 | .00010 | .00480 | | | #2 | .00030 | .00476 | 00234 | .00097 | .00002 | 00000 | .01164 | | | #3 | .00169 | .00785 | 00475 | .00177 | 00015 | 00004 | .01827 | | | Check ?
High Limit
Low Limit | Chk Pass | | Elem | Cd2288 | Co2286 | Cr2677 | Cu2247 | Fe2611 | K_7664 | Li6707 | | | Units | ppm | | Avg | 00006 | . 00070 | 00021 | 00068 | .00198 | . 13693 | . 00408 | | | Stddev | .00005 | .00034 | .00103 | .00126 | .01683 | .08274 | .00123 | | | %RSD | 79.508 | 48.880 | 487.72 | 184.48 | 851.30 | 60.422 | 30.259 | | | #1 | 00010 | .00107 | 00137 | 00201 | .01293 | .11737 | .00372 | | | #2 | 00001 | .00041 | .00013 | 00054 | 01740 | .22770 | .00545 | | | #3 | 00007 | .00060 | .00060 | .00050 | .01040 | .06573 | .00306 | | | Check ?
High Limit
Low Limit | Chk Pass | | Elem | Mg2790 | Mn2576 | Mo2020 | Na5895 | Ni2316 | P_2149 | Pb2203 | | | Units | ppm | | Avg | . 00429 | . 00004 | . 00110 | . 02798 | .00092 | . 00312 | . 00157 | | | Stddev | .05652 | .00051 | .00011 | .01717 | .00022 | .00897 | .00508 | | | %RSD | 1317.7 | 1362.8 | 9.6594 | 61.368 | 24.052 | 287.94 | 324.32 | | | #1 | 02671 | 00052 | .00119 | .02458 | .00107 | .01335 | .00739 | | | #2 | 02995 | .00017 | .00098 | .04659 | .00103 | 00338 | 00189 | | | #3 | .06953 | .00047 | .00112 | .01276 | .00067 | 00062 | 00081 | | | Check ?
High Limit
Low Limit | Chk Pass | | Sample Nam
Method: ICP
User: JYH | ne: CCB /
-THERMO3_
Custom I | | | LINES(v526) | ype: Blank) Mode: tom ID3: | CONC | Corr. Factor: | 1.00000(| |---|---|---|---|--
---|--|--|----------| | Comment: | Customi | D1. (| Sustoili ib2. | Cus | tom ibs. | | | | | Elem
Units
Avg
Stddev
%RSD | Sb2068
ppm
. 00317
.00311
98.229 | Se1960
ppm
.00479
.00618
128.81 | Si2124
ppm
. 00620
.00140
22.499 | Sn1899
ppm
00022
.00049
221.61 | Sr4077
ppm
. 00043
.00014
32.057 | Ti3372
ppm
00339
.00184
54.243 | TI1908
ppm
00294
.00205
69.810 | | | #1
#2
#3 | .00168
.00108
.00674 | .01185
.00036
.00218 | .00535
.00781
.00544 | 00024
00071
.00028 | .00057
.00044
.00030 | 00499
00380
00138 | 00107
00261
00514 | | | Check ?
High Limit
Low Limit | Chk Pass | | Elem
Units
Avg
Stddev
%RSD | V_2924
ppm
00050
.00051
101.60 | Zn2062
ppm
00001
.00028
2218.4 | Zr3391
ppm
F .21162
.17783
84.032 | | | | | | | #1
#2
#3 | 00040
00106
00005 | 00027
00005
.00028 | .01942
.24512
.37031 | | | | | | | Check ?
High Limit
Low Limit | Chk Pass | Chk Pass | Chk Fail
.04000
04000 | | | | | | | Int. Std.
Units
Avg
Stddev
%RSD | Y_2243
Cts/S
11200.
14.
.12147 | Y_3600
Cts/S
96410 .
134.
.13848 | Y_3774
Cts/S
4057.8
10.8
.26502 | | | | | | | #1
#2
#3 | 11200.
11186.
11213. | 96257.
96504.
96469. | 4045.8
4066.6
4061.0 | | | | | | | Sample Name: L1510126203 Acquired: 10/23/2015 13:18:30 Type: Unk Method: ICP-THERMO3_6010_200.7WATER_3YLINES(v526) Mode: CONC User: JYH Custom ID1: Custom ID2: Custom ID3: Comment: | | | | | | Corr. Fa | actor: 1.00000(| | |--|----------------|----------------|----------------|----------------|----------------|----------------|-----------------|----------------| | Elem | Ag3280 | Al3082 | As1890 | B_2496 | Ba4554 | Be3131 | Ca4226 | Cd2288 | | Units | ppm | Avg | 00042 | . 08442 | 00058 | . 01391 | . 09021 | 00003 | 46.800 | . 00011 | | Stddev | .00058 | .00637 | .00087 | .00118 | .00099 | .00004 | .056 | .00009 | | %RSD | 136.06 | 7.5507 | 149.77 | 8.4653 | 1.0973 | 124.77 | .11983 | 78.798 | | #1 | .00019 | .08928 | 00099 | .01404 | .08955 | 00002 | 46.743 | .00020 | | #2 | 00050 | .07720 | 00117 | .01502 | .08972 | 00000 | 46.855 | .00011 | | #3 | 00096 | .08678 | .00042 | .01267 | .09134 | 00008 | 46.802 | .00003 | | Check?
High Limit
Low Limit | Chk Pass | Elem | Co2286 | Cr2677 | Cu2247 | Fe2611 | K_7664 | Li6707 | Mg2790 | Mn2576 | | Units | ppm | Avg | .00001 | . 00096 | 00081 | .08669 | 1.3200 | . 00215 | 6.5236 | . 01137 | | Stddev | .00031 | .00064 | .00065 | .01984 | .0321 | .00276 | .1040 | .00222 | | %RSD | 2323.4 | 66.509 | 80.001 | 22.882 | 2.4292 | 128.33 | 1.5943 | 19.475 | | #1 | 00006 | .00054 | 00120 | .10597 | 1.2951 | 00062 | 6.4199 | .01212 | | #2 | .00035 | .00170 | 00006 | .06634 | 1.3562 | .00217 | 6.6279 | .00888 | | #3 | 00025 | .00065 | 00117 | .08775 | 1.3086 | .00491 | 6.5230 | .01312 | | Check?
High Limit
Low Limit | Chk Pass | Elem | Mo2020 | Na5895 | Ni2316 | P_2149 | Pb2203 | Sb2068 | Se1960 | Si2124 | | Units | ppm | Avg | . 00097 | 4.5034 | . 00113 | . 02246 | 00373 | . 00340 | . 00145 | 4.5546 | | Stddev | .00030 | .0523 | .00006 | .00620 | .00592 | .00125 | .00236 | .0124 | | %RSD | 31.468 | 1.1608 | 5.1504 | 27.590 | 158.99 | 36.816 | 163.30 | .27146 | | #1 | .00132 | 4.4673 | .00119 | .02309 | 00185 | .00199 | 00099 | 4.5596 | | #2 | .00082 | 4.5633 | .00112 | .01597 | .00104 | .00438 | .00374 | 4.5637 | | #3 | .00077 | 4.4795 | .00107 | .02832 | 01036 | .00381 | .00159 | 4.5405 | | Check ?
High Limit
Low Limit | Chk Pass | Sample Nan | | | cquired: 10/ | | | Type: Unk | | | |------------------------------------|------------------|------------------|------------------|------------------|------------------|------------------|------------------|----------------| | Method: ICP | P-THERMO3 | _6010_200 | _ | • | , | de: CONC | Corr. Fa | ctor: 1.00000(| | User: JYH | Custom | ID1: | Custom ID |)2: (| Custom ID3 | • | | | | Comment: | | | | | | | | | | Elem | Sn1899 | Sr4077 | Ti3372 | TI1908 | V_2924 | Zn2062 | Zr3391 | | | Units | ppm | | Avg | .00023 | .16394 | 00570 | 00070 | 00034 | .00206 | .12650 | | | Stddev
%RSD | .00091
400.69 | .00046
.28286 | .00198
34.634 | .00332
472.52 | .00034
100.06 | .00015
7.5004 | .12849
101.57 | | | 701 (OD | 400.03 | .20200 | 34.034 | 472.52 | 100.00 | 7.5004 | 101.57 | | | #1 | .00085 | .16412 | 00792 | .00266 | .00003 | .00191 | 00066 | | | #2 | .00064 | .16428 | 00413 | 00398 | 00065 | .00222 | .12389 | | | #3 | 00081 | .16341 | 00507 | 00079 | 00041 | .00207 | .25627 | | | Check ?
High Limit
Low Limit | Chk Pass | | Int. Std. | Y 2243 | Y_3600 | Y_3774 | | | | | | | Units | Cts/S | Cts/S | Cts/S | | | | | | | Avg | 10629. | 91412. | 3913.3 | | | | | | | Stddev | 4. | 189. | 3.1 | | | | | | | %RSD | .03810 | .20700 | .08000 | | | | | | | #1 | 10633. | 91608. | 3916.9 | | | | | | | #2 | 10629. | 91231. | 3911.1 | | | | | | | #3 | 10625. | 91398. | 3911.9 | | | | | | | Sample Name: L1510126204 | | | | | | | | | |--------------------------|--------------------------|--------------------------------|--------------------------|--------------------------|-------------------------|--------------------------|------------------------|--------------------------| | Method: ICF | P-THERMO3 | 3_6010_200 | .7WATER_ | 3YLINES(v | 526) Mo | de: CONC | Corr. Fa | actor: 1.000000 | | User: JYH | Custom | ID1: | Custom ID |)2: (| Custom ID3 | • | | | | Comment: | Elem | Ag3280 | Al3082 | As1890 | B_2496 | Ba4554 | Be3131 | Ca4226 | Cd2288 | | Units | ppm | Avg | .00006 | .08016 | 00184 | .01523 | .10887 | 00002 | 69.451 | .00010 | | Stddev | .00040 | .00824 | .00207 | .00108 | .00057 | .00003 | .308 | .00013 | | %RSD | 663.59 | 10.281 | 112.26 | 7.0915 | .52326 | 135.42 | .44334 | 131.46 | | #1 | .00044 | .07106 | .00053 | .01624 | .10854 | 00006 | 69.457 | 00005 | | #2 | 00035 | .08229 | 00283 | .01537 | .10953 | 00001 | 69.755 | .00014 | | #3 | .00009 | .08713 | 00322 | .01409 | .10855 | 00000 | 69.140 | .00021 | | Chook 2 | Chl. Doos | Chl. Doos | Chl. Doos | Chl. Doos | Chk Doos | Chl. Doos | Chl. Doos | Chle Doon | | Check ?
High Limit | Chk Pass | Low Limit | Elem | Co2286 | Cr2677 | Cu2247 | Fe2611 | K_7664 | Li6707 | Mg2790 | Mn2576 | | Units | ppm | Avg
Stddev | . 00014
.00035 | . <mark>00141</mark>
.00031 | . 00025
.00045 | . 14211
.01876 | 1. 0832
.0401 | . 01436
.00498 | 9.0803
.1101 | . 02618
.00088 | | %RSD | 250.68 | 22.207 | 177.86 | 13.203 | 3.7015 | 34.651 | 1.2129 | 3.3639 | | 701 (OD | 250.00 | 22.207 | 177.00 | 10.200 | 3.7013 | 04.001 | 1.2125 | 0.0000 | | #1 | 00014 | .00107 | .00033 | .15623 | 1.1146 | .01145 | 9.0345 | .02568 | | #2 | .00003 | .00148 | 00023 | .12082 | 1.0381 | .01152 | 9.0004 | .02720 | | #3 | .00053 | .00169 | .00066 | .14927 | 1.0970 | .02010 | 9.2059 | .02567 | | Check? | Chk Pass | High Limit | Onici doo | OTIL T GOO | OTILCT GOO | OTHER GOO | OTHER GOO | OTILCT GOO | OTHER GOO | OTIKT GOO | | Low Limit | | | | | | | | | | - 1 | M . 0000 | N. FOOF | NIGOTO | D 0440 | DI 0000 | 01.0000 | 0.4000 | 0:0404 | | Elem
Units | Mo2020
ppm | Na5895
ppm | Ni2316
ppm | P_2149
ppm | Pb2203
ppm | Sb2068
ppm | Se1960
ppm | Si2124
ppm | | Avg | . 00055 | 4. 7547 | .00084 | .011 79 | 00418 | .00620 | .00489 | 4.1 24 1 | | Stddev | .00017 | .0161 | .00062 | .00806 | .00182 | .00135 | .00522 | .0187 | | %RSD | 31.032 | .33879 | 74.203 | 68.407 | 43.520 | 21.786 | 106.72 | .45211 | | #1 | 00020 | 4 7400 | 00010 | 00704 | 00000 | 00760 | 00110 | 4 1202 | | #1
#2 | .00036 | 4.7498
4.7726 | .00016 | .00794
.02105 | 00330
00296 | .00763
.00494 | 00112
.00750 | 4.1362
4.1334 | | #2
#3 | .00068 | 4.7720 | .00139 | .00637 | 00290 | .00494 | .00730 | 4.1026 | | • | | | .50.00 | | .50020 | .50002 | | 323 | | Check? | Chk Pass | High Limit | | | | | | | | | | Low Limit | | | | | | | | | | Sample Name: L1510126204 | | | | | | | | | |------------------------------------|------------------------|--------------------------|------------------------|------------------------|------------------------|--------------------------|--------------------------|----------------| | Method: ICF | P-THERMO3 | 3_6010_200 | .7WATER_ | 3YLINES(v | 526) Mc | de: CONC | Corr. Fa | ctor: 1.00000(| | User: JYH | Custom | ID1: | Custom ID |)2: (| Custom ID3 | : | | | | Comment: | | | | | | | | | | Elem | Sn1899 | Sr4077 | Ti3372 | TI1908 | V_2924 | Zn2062 | Zr3391 | | | Units | ppm | | Avg
Stddev | 00082
.00054 | . 31635
.00147 | 01197
.00228 | 00134
.00362 | 00049
.00067 | . 00227
.00035 | . 01052
.10407 | | | %RSD | 65.841 | .46615 | 19.044 | 269.87 | 135.57 | 15.388 | 989.28 | | | 701.102 | 00.011 | 110010 | 10.011 | 200.07 | 100.07 | 10.000 | 000.20 | | | #1 | 00068 | .31644 | 01069 | 00141 | .00027 | .00252 | 08792 | | | #2 | 00036 | .31779 | 01460 | 00492 | 00078 | .00243 | .11943 | | | #3 | 00142 | .31484 | 01061 | .00231 | 00096 | .00187 | .00005 | | | Check ?
High Limit
Low Limit | Chk Pass | | Int. Std. | Y_2243 | Y_3600 | Y_3774 | | | | | | | Units | Cts/S | Cts/S | Cts/S | | | | | | | Avg | 10614. | 91163.
| 3892.5 | | | | | | | Stddev
%RSD | 13.
.11800 | 118.
.12917 | 31.3
.80392 | | | | | | | 701 (OD | .11000 | .12317 | .00332 | | | | | | | #1 | 10602. | 91278. | 3877.8 | | | | | | | #2 | 10612. | 91043. | 3871.3 | | | | | | | #3 | 10627. | 91169. | 3928.5 | | | | | | | Sample Name: L1510126205 | | | | | | | actor: 1.00000(| | |------------------------------------|------------------------|-----------------------|---------------------|-----------------------|-----------------------|------------------------|----------------------|--------------------------| | User: JYH | Custom | ID1: | Custom IE |)2: | Custom ID3 | •
• | | | | Comment: | | | | | | | | | | Elem | Ag3280 | Al3082 | As1890 | B_2496 | Ba4554 | Be3131 | Ca4226 | Cd2288 | | Units | ppm | ppm
. 24831 | ppm
00092 | ppm
. 01644 | ppm
. 07599 | ppm | ppm
61.903 | ppm | | Avg
Stddev | 00009
.00166 | .00513 | .00393 | .00180 | .00093 | 00001
.00002 | .066 | . 00002
.00004 | | %RSD | 1896.5 | 2.0664 | 427.44 | 10.959 | 1.2249 | 201.18 | .10655 | 224.10 | | #1 | .00006 | .24411 | 00545 | .01506 | .07561 | .00001 | 61.890 | .00002 | | #2 | 00182 | .25403 | .00159 | .01848 | .07532 | 00002 | 61.845 | 00002 | | #3 | .00149 | .24680 | .00110 | .01577 | .07706 | 00002 | 61.975 | .00006 | | Check ?
High Limit
Low Limit | Chk Pass | Elem | Co2286 | Cr2677 | Cu2247 | Fe2611 | K_7664 | Li6707 | Mg2790 | Mn2576 | | Units | ppm | ppm | ppm | ppm | _ ppm | ppm | ppm | ppm | | Avg | .00063 | .00080 | .00003 | .23985 | 1.2025 | .01090 | 9.0766 | .04050 | | Stddev | .00048 | .00015 | .00117 | .01009 | .0719 | .00319 | .1974 | .00166 | | %RSD | 76.206 | 18.337 | 4190.9 | 4.2074 | 5.9766 | 29.277 | 2.1746 | 4.0964 | | #1 | .00012 | .00064 | .00073 | .22822 | 1.2104 | .01111 | 8.8698 | .03884 | | #2 | .00107 | .00092 | 00132 | .24637 | 1.1270 | .01398 | 9.2629 | .04049 | | #3 | .00068 | .00085 | .00068 | .24495 | 1.2700 | .00761 | 9.0973 | .04216 | | Check ?
High Limit
Low Limit | Chk Pass | Elem | Mo2020 | Na5895 | Ni2316 | P_2149 | Pb2203 | Sb2068 | Se1960 | Si2124 | | Units | ppm | Avg | .00060 | 4.5060 | .00065 | .02249 | 00442 | .00486 | .00464 | 4.2853 | | Stddev | .00029 | .0182 | .00102 | .00563 | .00029 | .00322 | .00369 | .0080 | | %RSD | 48.764 | .40367 | 157.52 | 25.011 | 6.6167 | 66.135 | 79.491 | .18713 | | #1 | .00040 | 4.5269 | .00146 | .02812 | 00409 | .00275 | .00482 | 4.2945 | | #2 | .00093 | 4.4971 | .00098 | .01687 | 00464 | .00327 | .00087 | 4.2818 | | #3 | .00046 | 4.4939 | 00050 | .02249 | 00454 | .00857 | .00824 | 4.2796 | | Check ?
High Limit
Low Limit | Chk Pass | Sample Nan | | | • | /23/2015 13 | | Type: Unk | | | |------------------------------------|------------------------|--------------------------|------------------------|------------------------|------------------------|--------------------------|--------------------------|----------------| | Method: ICF | P-THERMO3 | _6010_200 | .7WATER_ | 3YLINES(v | 526) Mc | de: CONC | Corr. Fa | ctor: 1.00000(| | User: JYH | Custom | ID1: | Custom ID |)2: (| Custom ID3 | • | | | | Comment: | | | | | | | | | | Elem | Sn1899 | Sr4077 | Ti3372 | TI1908 | V_2924 | Zn2062 | Zr3391 | | | Units | ppm | | Avg
Stddev | 00043
.00015 | . 25605
.00068 | 00427
.00590 | 00372
.00061 | 00025
.00043 | . 00165
.00021 | . 00968
.10527 | | | %RSD | 35,568 | .26602 | 138.20 | 16.518 | 169.83 | 12.689 | 1088.0 | | | 701 (OD | 33.300 | .20002 | 150.20 | 10.510 | 100.00 | 12.000 | 1000.0 | | | #1 | 00026 | .25562 | .00213 | 00334 | 00004 | .00158 | .11010 | | | #2 | 00050 | .25570 | 00545 | 00340 | .00003 | .00188 | 09986 | | | #3 | 00055 | .25684 | 00948 | 00443 | 00074 | .00147 | .01879 | | | Check ?
High Limit
Low Limit | Chk Pass | | Int. Std. | Y 2243 | Y_3600 | Y_3774 | | | | | | | Units | _Cts/S | Cts/S | Cts/S | | | | | | | Avg | 10628. | 91514. | 3934.8 | | | | | | | Stddev | 21. | 308. | 10.4 | | | | | | | %RSD | .19819 | .33617 | .26505 | | | | | | | #1 | 10622. | 91298. | 3944.4 | | | | | | | #2 | 10611. | 91866. | 3936.3 | | | | | | | #3 | 10652. | 91379. | 3923.7 | | | | | | | Sample Name: L1510126206 Acquired: 10/23/2015 13:30:36 Type: Unk | | | | | | | | | |--|------------|-----------|-----------|-----------|------------|------------|------------|-----------------| | Method: ICF | -THERMO3 | _6010_200 | .7WATER_ | 3YLINES(v | 526) Mo | de: CONC | Corr. Fa | actor: 1.00000(| | User: JYH | Custom | ID1: | Custom ID |)2: (| Custom ID3 | | | | | Comment: | Elem | Ag3280 | Al3082 | As1890 | B 2496 | Ba4554 | Be3131 | Ca4226 | Cd2288 | | Units | ppm | ppm | ppm | ppm | ррт | ppm | ppm | ppm | | Avg | 00020 | 2.7764 | 00262 | .01705 | .10767 | .00010 | 61.711 | .00026 | | Stddev | .00209 | .0042 | .00157 | .00063 | .00010 | .00005 | .100 | .00027 | | %RSD | 1021.1 | .15229 | 59.992 | 3.7142 | .09335 | 47.818 | .16133 | 104.64 | | | | | | | | | | | | #1 | .00153 | 2.7808 | 00096 | .01632 | .10758 | .00015 | 61.597 | .00030 | | #2 | .00037 | 2.7762 | 00408 | .01742 | .10766 | .00009 | 61.779 | 00003 | | #3 | 00252 | 2.7723 | 00281 | .01741 | .10778 | .00006 | 61.757 | .00051 | | Check? | Chk Pass | High Limit | Onic r doo | Omer add | Onk i doo | OTIKT GOO | OTIK I GOO | OTIK I GOO | OTIK I GOO | Onk i doo | | Low Limit | Elem | Co2286 | Cr2677 | Cu2247 | Fe2611 | K_7664 | Li6707 | Mg2790 | Mn2576 | | Units | ppm | Avg | .00166 | .00413 | .00261 | 2.7377 | 2.6594 | .01595 | 9.1356 | .09433 | | Stddev | .00017 | .00043 | .00082 | .0102 | .0293 | .00357 | .0526 | .00087 | | %RSD | 10.173 | 10.376 | 31.551 | .37335 | 1.1019 | 22.364 | .57571 | .92471 | | #1 | .00159 | .00380 | .00188 | 2.7377 | 2.6384 | .01310 | 9.1622 | .09350 | | #2 | .00153 | .00461 | .00246 | 2.7480 | 2.6469 | .01481 | 9.0750 | .09425 | | #3 | .00185 | .00396 | .00350 | 2.7275 | 2.6929 | .01995 | 9.1696 | .09524 | | | | | | | | | | | | Check? | Chk Pass | High Limit | | | | | | | | | | Low Limit | | | | | | | | | | Elem | Mo2020 | Na5895 | Ni2316 | P_2149 | Pb2203 | Sb2068 | Se1960 | Si2124 | | Units | ppm | Avg | .00112 | 4.4599 | .00381 | .11261 | 00196 | .00518 | .00336 | 7.9804 | | Stddev | .00015 | .0141 | .00081 | .00520 | .00047 | .00514 | .00361 | .0158 | | %RSD | 13.101 | .31712 | 21.177 | 4.6136 | 23.894 | 99.186 | 107.23 | .19804 | | | | | | | | | | | | #1 | .00126 | 4.4609 | .00363 | .11221 | 00235 | .00334 | .00448 | 7.9903 | | #2 | .00097 | 4.4736 | .00469 | .10763 | 00144 | .00121 | .00628 | 7.9887 | | #3 | .00112 | 4.4453 | .00311 | .11800 | 00209 | .01098 | 00067 | 7.9622 | | Check? | Chk Pass | High Limit | JIIK I das | OHN I dos | OHN I dos | OHN I dos | OHKT 033 | OHN I dos | OTIN I dos | OTIK I doo | | Low Limit | Sample Nar | Sample Name: L1510126206 Acquired: 10/23/2015 13:30:36 Type: Unk | | | | | | | | | | |-------------|--|------------------|-----------------|----------------|------------|----------|------------------|----------------|--|--| | Method: ICF | P-THERMO3 | 3_6010_200 | .7WATER_ | 3YLINES(v | 526) Mo | de: CONC | Corr. Fa | ctor: 1.00000(| | | | User: JYH | Custom | ID1: | Custom ID |)2: (| Custom ID3 | : | | | | | | Comment: | Elem | Sn1899 | Sr4077 | Ti3372 | TI1908 | V 2924 | Zn2062 | Zr3391 | | | | | Units | ppm | | | | Avg | .00027 | .25150 | .01975 | 00304 | .00383 | .03366 | .30063 | | | | | Stddev | .00051 | .00059 | .00284 | .00181 | .00035 | .00010 | .32831 | | | | | %RSD | 189.72 | .23585 | 14.392 | 59.619 | 9.1136 | .28912 | 109.21 | | | | | #1 | .00081 | 25144 | .02185 | 00000 | 00410 | 02277 | EE206 | | | | | #1
#2 | 00021 | .25144
.25212 | .02183 | 00208
00191 | .00418 | .03377 | .55396
.41822 | | | | | #2
#3 | .00021 | .25094 | .01651 | 00514 | .00340 | .03359 | 07028 | | | | | 0 | .00020 | .2000 ! | .0.001 | .00011 | .00001 | .00000 | .07020 | | | | | Check? | Chk Pass | | | | High Limit | | | | | | | | | | | | Low Limit | | | | | | | | | | | | Int. Std. | Y 2243 | Y 3600 | Y 3774 | | | | | | | | | Units | 1_2243
Cts/S | 1_3000
Cts/S | 1_3774
Cts/S | | | | | | | | | Avg | 10650. | 91583. | 3932.0 | | | | | | | | | Stddev | 14. | 98. | 7.9 | | | | | | | | | %RSD | .12883 | .10701 | .20182 | #1 | 10645. | 91473. | 3932.0 | | | | | | | | | #2
#2 | 10640. | 91618. | 3939.9 | | | | | | | | | #3 | 10666. | 91659. | 3924.0 | | | | | | | | | Sample Name: L1510126207 Acquired: 10/23/2015 13:34:38 Type: Unk Method: ICP-THERMO3_6010_200.7WATER_3YLINES(v526) Mode: CONC Corr. Factor: 1.0 User: JYH Custom ID1: Custom ID2: Custom ID3: Comment: | | | | | | | actor: 1.00000(| | |---|----------------|----------------|----------------|----------------|----------------|----------------|-----------------|----------------| | Elem | Ag3280 | Al3082 | As1890 | B_2496 | Ba4554 | Be3131 | Ca4226 | Cd2288 | | Units | ppm | Avg | 00013 | . 07553 | 00145 | . 02737 | . 08647 | 00002 | 59.132 | . 00013 | | Stddev | .00112 | .00640 | .00348 | .00122 | .00102 | .00000 | .103 | .00037 | | %RSD | 874.14 | 8.4721 | 240.31 | 4.4465 | 1.1828 | 17.828 | .17403 | 285.83 | | #1 | 00140 | .07924 | 00161 | .02657 | .08762 | 00002 | 59.157 | 00018 | | #2 | .00029 | .07920 | .00211 | .02676 | .08610 | 00002 | 59.221 | .00002 | | #3 | .00072 | .06814 | 00485 | .02877 | .08568 | 00002 | 59.019 | .00055 | | Check ?
High Limit
Low Limit | Chk Pass | Elem |
Co2286 | Cr2677 | Cu2247 | Fe2611 | K_7664 | Li6707 | Mg2790 | Mn2576 | | Units | ppm | Avg | . 00030 | . 00232 | . 00344 | . 03471 | 1.2244 | . 01056 | 7.5203 | 00062 | | Stddev | .00029 | .00062 | .00037 | .01244 | .0196 | .00318 | .0904 | .00100 | | %RSD | 96.167 | 26.897 | 10.851 | 35.858 | 1.5979 | 30.126 | 1.2014 | 159.45 | | #1 | 00003 | .00164 | .00301 | .04692 | 1.2247 | .01382 | 7.4372 | 00082 | | #2 | .00046 | .00246 | .00370 | .02204 | 1.2438 | .00746 | 7.5071 | .00046 | | #3 | .00046 | .00286 | .00361 | .03516 | 1.2047 | .01040 | 7.6165 | 00151 | | Check ?
High Limit
Low Limit | Chk Pass | Elem | Mo2020 | Na5895 | Ni2316 | P_2149 | Pb2203 | Sb2068 | Se1960 | Si2124 | | Units | ppm | Avg | . 00116 | 16.178 | .00083 | . 01890 | . 00176 | . 00537 | . 00121 | 3.6568 | | Stddev | .00013 | .035 | .00286 | .00590 | .00111 | .00556 | .00381 | .0077 | | %RSD | 10.800 | .21647 | 343.61 | 31.210 | 63.185 | 103.53 | 314.59 | .21094 | | #1 | .00108 | 16.216 | 00035 | .01787 | .00085 | .01136 | 00319 | 3.6643 | | #2 | .00109 | 16.146 | .00410 | .01358 | .00144 | .00037 | .00348 | 3.6571 | | #3 | .00130 | 16.173 | 00125 | .02524 | .00300 | .00439 | .00335 | 3.6489 | | Check ?
High Limit
Low Limit | Chk Pass | Sample Nam | | | • | /23/2015 13 | | Гуре: Unk | | | |---|--|---|---|------------------|------------------|------------------|------------------|----------------| | Method: ICP | | | _ | • | , | de: CONC | Corr. Fa | ctor: 1.00000(| | User: JYH | Custom | ID1: | Custom ID |)2: (| Custom ID3 | • | | | | Comment: | | | | | | | | | | Elem | Sn1899 | Sr4077 | Ti3372 | TI1908 | V_2924 | Zn2062 | Zr3391 | | | Units | ppm | | Avg | 00027 | .22027 | 01265 | 00392 | 00052 | .00228 | .11338 | | | Stddev
%RSD | .00123
449.72 | .00042
.19038 | .00197
15.591 | .00171
43.710 | .00092
177.75 | .00031
13.475 | .07549
66.583 | | | 701 (SD | 443.72 | .13030 | 10.001 | 43.710 | 177.73 | 13.473 | 00.505 | | | #1 | 00147 | .22009 | 01241 | 00326 | 00157 | .00261 | .13066 | | | #2 | .00098 | .22075 | 01080 | 00264 | .00004 | .00222 | .17873 | | | #3 | 00033 | .21996 | 01472 | 00587 | 00002 | .00200 | .03075 | | | Check ?
High Limit
Low Limit | Chk Pass | | | | | | | | | | | | Int. Std.
Units
Avg
Stddev
%RSD | Y_2243
Cts/S
10594.
17.
.15772 | Y_3600
Cts/S
91102 .
182.
.19988 | Y_3774
Cts/S
3898.0
19.1
.49109 | | | | | | | #1
#2 | 10591.
10579. | 90941.
91300. | 3876.2
3906.0 | | | | | | | #2
#3 | 10579. | 91064. | 3911.9 | | | | | | | Sample Name: L1510126208 | | | | | | | | | |--------------------------|-----------|------------|-----------|-----------|------------|----------|----------|-----------------| | Method: ICF | P-THERMO3 | 3_6010_200 | .7WATER_ | 3YLINES(v | 526) Mc | de: CONC | Corr. Fa | actor: 1.00000(| | User: JYH | Custom | ID1: | Custom ID |)2: (| Custom ID3 | : | | | | Comment: | Elem | Ag3280 | Al3082 | As1890 | B 2496 | Ba4554 | Be3131 | Ca4226 | Cd2288 | | Units | ppm | Avg | .00020 | .03587 | 00554 | .01329 | .05516 | .00001 | 54.781 | .00014 | | Stddev | .00118 | .00831 | .00482 | .00068 | .00124 | .00002 | .091 | .00021 | | %RSD | 604.05 | 23.161 | 86.972 | 5.0978 | 2.2434 | 127.36 | .16637 | 149.38 | | #1 | 00010 | .03222 | 00641 | .01395 | .05654 | .00002 | 54.791 | 00006 | | #1
#2 | 00010 | .03222 | 00041 | .01333 | .05479 | 00002 | 54.867 | .00036 | | #2
#3 | .00150 | .03002 | 00337 | .01260 | .05415 | .00003 | 54.685 | .00012 | | ,,, | .00100 | .00002 | .00000 | .01200 | .00110 | .00000 | 01.000 | .00012 | | Check? | Chk Pass | High Limit | | | | | | | | | | Low Limit | | | | | | | | | | Elem | Co2286 | Cr2677 | Cu2247 | Fe2611 | K_7664 | Li6707 | Mg2790 | Mn2576 | | Units | ppm | Avg | .00015 | .00133 | .00066 | 00356 | .66384 | .00382 | 3.3978 | 00143 | | Stddev | .00035 | .00088 | .00095 | .01852 | .04359 | .00382 | .0288 | .00083 | | %RSD | 225.14 | 66.184 | 143.75 | 520.68 | 6.5664 | 99.824 | .84688 | 58.152 | | #1 | .00013 | .00060 | 00026 | .01503 | .61457 | .00281 | 3.3697 | 00239 | | #1
#2 | 00013 | .00108 | .00165 | 02201 | .69740 | .00281 | 3.3963 | 00239 | | #2
#3 | .00010 | .00231 | .00060 | 00370 | .67954 | .00061 | 3.4272 | 00094 | | ,, 0 | .00001 | .00201 | .00000 | .00070 | .07001 | .00001 | 0.1272 | .00001 | | Check? | Chk Pass | High Limit | | | | | | | | | | Low Limit | | | | | | | | | | Elem | Mo2020 | Na5895 | Ni2316 | P_2149 | Pb2203 | Sb2068 | Se1960 | Si2124 | | Units | ppm | Avg | .00120 | 4.6918 | .00137 | .02435 | 00182 | .00122 | .00555 | 3.7186 | | Stddev | .00035 | .0145 | .00053 | .00573 | .00282 | .00538 | .00549 | .0121 | | %RSD | 29.216 | .30935 | 38.471 | 23.541 | 155.50 | 440.74 | 98.866 | .32451 | | #1 | .00108 | 4.7080 | .00160 | .02861 | .00143 | .00288 | .00592 | 3.7318 | | #2 | .00108 | 4.7080 | .00100 | .02801 | 00321 | .00288 | .00392 | 3.7157 | | #3 | .00159 | 4.6799 | .00076 | .02661 | 00367 | 00479 | 00011 | 3.7082 | | | 130.00 | | | | | | | | | Check ?
High Limit | Chk Pass | Low Limit | | | | | | | | | | Sample Name: L1510126208 | | | | | | | | | |------------------------------------|------------------------|--------------------------|------------------------|------------------------|------------------------|--------------------------------|--------------------------|----------------| | Method: ICF | P-THERMO3 | 3_6010_200 | .7WATER_ | 3YLINES(v | 526) Mo | de: CONC | Corr. Fa | ctor: 1.000000 | | User: JYH | Custom | ID1: | Custom ID |)2: (| Custom ID3 | : | | | | Comment: | | | | | | | | | | Elem | Sn1899 | Sr4077 | Ti3372 | TI1908 | V_2924 | Zn2062 | Zr3391 | | | Units | ppm | | Avg
Stddev | 00016
.00117 | . 14905
.00097 | 00287
.00281 | 00262
.00151 | 00049
.00061 | . <mark>00126</mark>
.00011 | . 09029
.02364 | | | %RSD | 737.77 | .65129 | 98.001 | 57.593 | 124.64 | 9.0957 | 26.178 | | | 70.102 | | | | 07.1000 | | 0.0007 | _00 | | | #1 | 00134 | .14909 | 00052 | 00197 | 00087 | .00135 | .10262 | | | #2 | .00100 | .15000 | 00210 | 00435 | .00021 | .00113 | .06304 | | | #3 | 00014 | .14806 | 00598 | 00155 | 00082 | .00129 | .10522 | | | Check ?
High Limit
Low Limit | Chk Pass | | Int. Std. | Y 2243 | Y_3600 | Y_3774 | | | | | | | Units | Cts/S | Cts/S | Cts/S | | | | | | | Avg | 10673. | 91955. | 3914.7 | | | | | | | Stddev
%RSD | 15.
.14067 | 122.
.13234 | 10.2
.26090 | | | | | | | 701 (OD | .14007 | .10204 | .20030 | | | | | | | #1 | 10664. | 91846. | 3917.7 | | | | | | | #2 | 10664. | 91932. | 3903.3 | | | | | | | #3 | 10690. | 92086. | 3923.1 | | | | | | | Sample Name: L1510126209 | | | | | | | Corr. Fa | actor: 1.00000(| |------------------------------------|----------|----------|-----------|----------|------------|----------|----------|-----------------| | User: JYH | Custom | ID1: | Custom II |)2: (| Custom ID3 | : | | | | Comment: | | | | | | | | | | Elem | Ag3280 | Al3082 | As1890 | B_2496 | Ba4554 | Be3131 | Ca4226 | Cd2288 | | Units | ppm | Avg | .00010 | .09824 | 00127 | .04671 | .11351 | .00003 | 56.422 | .00001 | | Stddev | .00087 | .00577 | .00137 | .00109 | .00139 | .00004 | .356 | .00003 | | %RSD | 889.98 | 5.8752 | 108.42 | 2.3388 | 1.2233 | 157.37 | .63009 | 481.43 | | #1 | .00068 | .10407 | 00080 | .04770 | .11510 | .00007 | 56.794 | .00004 | | #2 | 00090 | .09253 | 00281 | .04554 | .11285 | .00000 | 56.085 | 00001 | | #3 | .00051 | .09813 | 00019 | .04689 | .11256 | .00000 | 56.388 | 00002 | | Check? | Chk Pass | High Limit
Low Limit | | | | | | | | | | LOW LITTIE | | | | | | | | | | Elem | Co2286 | Cr2677 | Cu2247 | Fe2611 | K_7664 | Li6707 | Mg2790 | Mn2576 | | Units | ppm | Avg | .00031 | .00213 | .00523 | .89100 | 2.1433 | .00711 | 8.1689 | .22323 | | Stddev | .00046 | .00017 | .00048 | .01866 | .0210 | .00161 | .1613 | .00306 | | %RSD | 145.11 | 8.1771 | 9.2633 | 2.0941 | .98111 | 22.670 | 1.9748 | 1.3729 | | #1 | .00031 | .00196 | .00467 | .87625 | 2.1636 | .00551 | 8.3108 | .22592 | | #2 | .00077 | .00231 | .00557 | .88477 | 2.1217 | .00873 | 8.2024 | .21989 | | #3 | 00014 | .00212 | .00544 | .91197 | 2.1447 | .00708 | 7.9934 | .22388 | | Check? | Chk Pass | High Limit | | | | | | | | | | Low Limit | | | | | | | | | | Elem | Mo2020 | Na5895 | Ni2316 | P_2149 | Pb2203 | Sb2068 | Se1960 | Si2124 | | Units | ppm | Avg | .00186 | 53.413 | .00121 | .05690 | 00141 | 00116 | .00565 | 3.8504 | | Stddev | .00017 | .299 | .00135 | .00372 | .00333 | .00265 | .00313 | .0044 | | %RSD | 8.9498 | .55968 | 111.33 | 6.5367 | 236.45 | 227.84 | 55.320 | .11378 | | #1 | .00168 | 53.695 | 00021 | .05396 | .00224 | 00420 | .00323 | 3.8547 | | #2 | .00201 | 53.100 | .00136 | .06108 | 00218 | .00014 | .00455 | 3.8506 | | #3 | .00188 | 53.444 | .00247 | .05565 | 00429 | .00059 | .00919 | 3.8459 | | Check ?
High Limit
Low Limit | Chk Pass | Sample Name: L1510126209 Acquired: 10/23/2015 13:42:42 Type: Unk | | | | | | | | | | |--|--------------------------|--------------------------|------------------------|------------------------|------------------------|--------------------------|--------------------------|----------------|--| | Method: ICF | P-THERMO3 | 3_6010_200 | .7WATER_ | 3YLINES(v | 526) Mc | de: CONC | Corr. Fa | ctor: 1.000000 | | | User: JYH | Custom | ID1: | Custom ID |)2: (| Custom ID3 | : | | | | | Comment: | | | | | | | | | | | Elem | Sn1899 | Sr4077 | Ti3372 | TI1908 | V_2924 | Zn2062 | Zr3391 | | | | Units | ppm | | | Avg
Stddev | . 00092
.00015 | . 33587
.00235 | 00873
.00466 |
00324
.00105 | 00066
.00113 | . 01928
.00001 | . 07731
.16172 | | | | %RSD | 15.732 | .69824 | 53.329 | 32.293 | 169.54 | .03776 | 209.18 | | | | 701.102 | 10.702 | .00021 | 00.020 | 02.200 | 100.01 | .00770 | 200.10 | | | | #1 | .00076 | .33810 | 01311 | 00214 | 00195 | .01927 | 06206 | | | | #2 | .00103 | .33343 | 00923 | 00335 | 00017 | .01928 | .25464 | | | | #3 | .00099 | .33610 | 00384 | 00422 | .00013 | .01928 | .03936 | | | | Check ?
High Limit
Low Limit | Chk Pass | | | Int. Std. | Y_2243 | Y_3600 | Y_3774 | | | | | | | | Units | Cts/S | Cts/S | Cts/S | | | | | | | | Avg | 10555. | 90663. | 3933.2 | | | | | | | | Stddev
%RSD | 6.
.05785 | 131.
.14417 | 21.4
.54485 | | | | | | | | 701 (OD | .00700 | .17717 | .54465 | | | | | | | | #1 | 10562. | 90635. | 3908.5 | | | | | | | | #2 | 10552. | 90547. | 3944.3 | | | | | | | | #3 | 10552. | 90805. | 3946.7 | | | | | | | | Sample Name: L1510121503 | | | | | | | | | | |--------------------------|--------------------------|---------------------|--------------------------|--------------------------|------------------------|--------------------------------|--------------------------|------------------------|--| | Method: ICF | P-THERMO3 | 3_6010_200 | .7WATER_ | 3YLINES(v | 526) Mo | de: CONC | Corr. Fa | actor: 1.000000 | | | User: JYH | Custom | ID1: 10 | Custom | ID2: | Custom ID | 3: | | | | | Comment: | Elem | Ag3280 | Al3082 | As1890 | B_2496 | Ba4554 | Be3131 | Ca4226 | Cd2288 | | | Units | ppm | | Avg | .00134 | 1.3576 | 00268 | .00178 | .03110 | .00016 | .29914 | 00014 | | | Stddev | .00115 | .0060 | .00140 | .00259 | .00043 | .00003 | .01278 | .00019 | | | %RSD | 85.679 | .44587 | 52.168 | 145.74 | 1.3791 | 16.665 | 4.2732 | 137.04 | | | #1 | .00031 | 1.3510 | 00113 | .00057 | .03157 | .00015 | .30074 | 00023 | | | #2 | .00257 | 1.3629 | 00305 | .00002 | .03099 | .00019 | .28563 | .00008 | | | #3 | .00113 | 1.3588 | 00385 | .00475 | .03073 | .00014 | .31104 | 00026 | | | Oh a alc O | Ohli Daga | Chk Pass | Ohly Doos | Chl. Daga | Ohli Daga | Chk Pass | Ohli Daga | Chir Daga | | | Check ?
High Limit | Chk Pass | Clik Pass | Chk Pass | Chk Pass | Chk Pass | Clik Pass | Chk Pass | Chk Pass | | | Low Limit | Elem | Co2286 | Cr2677 | Cu2247 | Fe2611 | K_7664 | Li6707 | Mg2790 | Mn2576 | | | Units | ppm | | Avg | .00143 | .00066 | .00068 | 1.2938 | .19570 | .00812 | .21001 | .01067 | | | Stddev
%RSD | .00022
15.702 | .00054
81.741 | .00051
75.418 | .0114
.88214 | .06582
33.635 | .00062
7.6528 | .09826
46.789 | .00076
7.1201 | | | /0N3D | 13.702 | 01.741 | 73.410 | .00214 | 33.033 | 7.0320 | 40.769 | 7.1201 | | | #1 | .00134 | .00105 | .00109 | 1.2818 | .12870 | .00863 | .32054 | .01017 | | | #2 | .00125 | .00089 | .00010 | 1.2951 | .19812 | .00831 | .13256 | .01029 | | | #3 | .00168 | .00004 | .00085 | 1.3045 | .26028 | .00743 | .17693 | .01154 | | | Check? | Chk Pass | | High Limit | Clik F ass | Clik F ass | Clik F ass | Clik Fass | CHK F ass | Clik Fass | Clik F ass | Clik F d55 | | | Low Limit | Elem | Mo2020 | Na5895 | Ni2316 | P_2149 | Pb2203 | Sb2068 | Se1960 | Si2124 | | | Units | ppm | ppm | ppm | ppm | ppm | ppm | ppm
000F1 | ppm | | | Avg
Stddev | . 00032
.00037 | 1.8787 .0043 | . 00244
.00062 | . 01609
.00698 | 00101
.00043 | . <mark>00106</mark>
.00181 | . 00051
.00368 | 2.7075
.0104 | | | %RSD | 113.42 | .22622 | 25.497 | 43.373 | 42.335 | 171.00 | 723.76 | .38458 | | | 70.102 | | | 20.107 | 10.070 | 12.000 | 171.00 | , 20., 0 | .00100 | | | #1 | .00052 | 1.8783 | .00298 | .02410 | 00052 | .00194 | 00052 | 2.6956 | | | #2 | .00056 | 1.8747 | .00257 | .01292 | 00120 | .00227 | .00459 | 2.7117 | | | #3 | 00010 | 1.8832 | .00176 | .01127 | 00131 | 00103 | 00255 | 2.7151 | | | Check? | Chk Pass | | High Limit | OTIN I GOS | Onk i doo | Jim i uss | JIIK I UJJ | JIIK I UJJ | JIIK I UJJ | JIIK I UJJ | Olik i doo | | | Low Limit | | | | | | | | | | | Sample Name: L1510121503 Acquired: 10/23/2015 13:46:45 Type: Unk Method: ICP-THERMO3_6010_200.7WATER_3YLINES(v526) Mode: CONC Corr. Factor: 1.000000 User: JYH Custom ID1: 10 Custom ID2: Custom ID3: | | | | | | | | | | |---|---|---|---|--|---|---|---|--|--| | Comment: | Custom | 101.10 | Custom | IDZ. | Custom iD | J. | | | | | Elem
Units
Avg
Stddev
%RSD | Sn1899
ppm
. 00027
.00068
248.46 | Sr4077
ppm
. 00821
.00004
.54126 | Ti3372
ppm
00029
.00372
1263.6 | TI1908
ppm
00111
.00117
105.09 | V_2924
ppm
.00218
.00063
28.948 | Zn2062
ppm
.09066
.00023
.25686 | Zr3391
ppm
.12704
.17492
137.69 | | | | #1
#2
#3 | 00000
00023
.00105 | .00822
.00825
.00816 | .00399
00274
00214 | 00181
00177
.00024 | .00286
.00208
.00161 | .09051
.09092
.09053 | .26693
06908
.18326 | | | | Check ?
High Limit
Low Limit | Chk Pass | | | Int. Std.
Units
Avg
Stddev
%RSD | Y_2243
Cts/S
11926.
18.
.15038 | Y_3600
Cts/S
102050.
58.
.05693 | Y_3774
Cts/S
4276.5
6.5
.15156 | | | | | | | | #1
#2
#3 | 11914.
11946.
11917. | 101990.
102110.
102060. | 4279.5
4280.9
4269.1 | | | | | | | Page 200 | • | | | | | | | | | | | |---------------------------|----------------|----------------|----------------|----------------|----------------|----------------|----------------|--|--|--| | Elem | Ag3280 | Al3082 | As1890 | B_2496 | Ba4554 | Be3131 | Ca4226 | | | | | Units | ppm | | | | Avg | . 39811 | 10.061 | . 40441 | . 49591 | 1.0337 | . 05082 | 10.245 | | | | | Stddev | .00095 | .018 | .00130 | .00063 | .0052 | .00006 | .061 | | | | | %RSD | .23882 | .17559 | .32109 | .12743 | .50008 | .12651 | .59404 | | | | | #1 | .39886 | 10.054 | .40416 | .49561 | 1.0391 | .05083 | 10.304 | | | | | #2 | .39704 | 10.081 | .40325 | .49549 | 1.0289 | .05088 | 10.182 | | | | | #3 | .39841 | 10.048 | .40581 | .49664 | 1.0330 | .05075 | 10.250 | | | | | Check ?
Value
Range | Chk Pass | | | | Elem | Cd2288 | Co2286 | Cr2677 | Cu2247 | Fe2611 | K_7664 | Li6707 | | | | | Units | ppm | | | | Avg | . 05068 | .20205 | . 51013 | . 50517 | 4.0513 | 51.951 | 1.0270 | | | | | Stddev | .00025 | .00049 | .00207 | .00080 | .0215 | .160 | .0060 | | | | | %RSD | .50041 | .24033 | .40518 | .15766 | .53152 | .30731 | .58182 | | | | | #1 | .05048 | .20236 | .50775 | .50567 | 4.0702 | 52.135 | 1.0339 | | | | | #2 | .05097 | .20230 | .51144 | .50425 | 4.0278 | 51.860 | 1.0232 | | | | | #3 | .05061 | .20149 | .51121 | .50558 | 4.0559 | 51.857 | 1.0239 | | | | | Check ?
Value
Range | Chk Pass | | | | Elem | Mg2790 | Mn2576 | Mo2020 | Na5895 | Ni2316 | P_2149 | Pb2203 | | | | | Units | ppm | | | | Avg | 10.017 | . 50929 | 1.0108 | 51.940 | . 50970 | 9.9977 | . 50787 | | | | | Stddev | .061 | .00398 | .0023 | .256 | .00074 | .0490 | .00420 | | | | | %RSD | .60872 | .78195 | .22375 | .49344 | .14596 | .49051 | .82687 | | | | | #1 | 10.059 | .51386 | 1.0123 | 52.231 | .50948 | 10.029 | .50581 | | | | | #2 | 10.045 | .50740 | 1.0118 | 51.748 | .51053 | 10.023 | .51270 | | | | | #3 | 9.9474 | .50660 | 1.0082 | 51.840 | .50909 | 9.9412 | .50509 | | | | | Check ?
Value
Range | Chk Pass | | | | Sample Name: CCV Acquired: 10/23/2015 13:50:49 Type: QC Method: ICP-THERMO3_6010_200.7WATER_3YLINES(v526) Mode: CONC Corr. Factor: 1.000000 User: JYH Custom ID1: Custom ID2: Custom ID3: Comment: | | | | | | | | | | |---|---|--|---|--|---|--|---|--|--| | Elem
Units
Avg
Stddev
%RSD | Sb2068
ppm
1.2175
.0056
.45761 | Se1960
ppm
. 40777
.00217
.53160 | Si2124
ppm
5.0884
.0067
.13102 | Sn1899
ppm
1.0145
.0031
.30212 | Sr4077
ppm
1.0324
.0045
.43845 | Ti3372
ppm
1.0379
.0036
.35086 | TI1908
ppm
. 51248
.00281
.54880 | | | | #1
#2
#3 | 1.2167
1.2124
1.2234 | .40754
.40572
.41004 | 5.0910
5.0933
5.0808 | 1.0163
1.0163
1.0110 | 1.0376
1.0304
1.0292 | 1.0412
1.0384
1.0340 | .51449
.51369
.50927 | | | | Check ?
Value
Range | Chk Pass | | | Elem
Units
Avg
Stddev
%RSD | V_2924
ppm
1.0224
.0012
.11621 | Zn2062
ppm
1.0003
.0014
.14170 | Zr3391
ppm
F .59524
.06784
11.398 | | | | | | | | #1
#2
#3 | 1.0227
1.0211
1.0234 | 1.0018
1.0002
.99901 | .52380
.60312
.65881 | | | | | | | | Check ?
Value
Range | Chk Pass | Chk Pass | Chk Fail
1.0000
-10.000% | | | | | | | | Int.
Std.
Units
Avg
Stddev
%RSD | Y_2243
Cts/S
11036.
15.
.13200 | Y_3600
Cts/S
9 3928 .
251.
.26671 | Y_3774
Cts/S
4065.1
8.3
.20363 | | | | | | | | #1
#2
#3 | 11029.
11027.
11053. | 93674.
93935.
94174. | 4056.6
4073.2
4065.6 | | | | | | | | • | | | | | | | | | | | |------------------------------------|----------------|----------------|----------------|----------------|----------------|----------------|----------------|--|--|--| | Elem | Ag3280 | Al3082 | As1890 | B_2496 | Ba4554 | Be3131 | Ca4226 | | | | | Units | ppm | | | | Avg | . 00034 | . 00494 | 00094 | .00393 | . 00046 | .00005 | .00520 | | | | | Stddev | .00079 | .00559 | .00229 | .00099 | .00052 | .00005 | .01882 | | | | | %RSD | 230.42 | 113.19 | 244.89 | 25.245 | 111.72 | 103.48 | 362.06 | | | | | #1 | .00002 | .01021 | 00245 | .00300 | .00102 | .00001 | .00867 | | | | | #2 | .00124 | 00092 | .00170 | .00498 | .00037 | .00003 | .02204 | | | | | #3 | 00024 | .00553 | 00206 | .00381 | 00000 | .00010 | 01511 | | | | | Check ?
High Limit
Low Limit | Chk Pass | | | | Elem | Cd2288 | Co2286 | Cr2677 | Cu2247 | Fe2611 | K_7664 | Li6707 | | | | | Units | ppm | | | | Avg | . 00009 | .00050 | .00056 | . 00067 | .00130 | . 21957 | . 00439 | | | | | Stddev | .00014 | .00043 | .00076 | .00060 | .01958 | .10779 | .00247 | | | | | %RSD | 161.26 | 85.605 | 135.33 | 88.683 | 1507.2 | 49.091 | 56.202 | | | | | #1 | .00016 | .00026 | .00092 | .00042 | .02088 | .10523 | .00708 | | | | | #2 | 00008 | .00099 | 00031 | .00025 | 01828 | .23416 | .00387 | | | | | #3 | .00019 | .00024 | .00108 | .00136 | .00130 | .31933 | .00223 | | | | | Check ?
High Limit
Low Limit | Chk Pass | | | | Elem | Mg2790 | Mn2576 | Mo2020 | Na5895 | Ni2316 | P_2149 | Pb2203 | | | | | Units | ppm | | | | Avg | 03271 | . 00087 | . 00140 | .03818 | .00071 | 00163 | 00271 | | | | | Stddev | .02373 | .00267 | .00010 | .02091 | .00093 | .00285 | .00179 | | | | | %RSD | 72.543 | 307.74 | 6.8760 | 54.772 | 130.81 | 174.30 | 66.043 | | | | | #1 | 01259 | .00038 | .00151 | .02111 | .00116 | 00428 | 00317 | | | | | #2 | 02666 | 00152 | .00132 | .03192 | 00036 | .00138 | 00422 | | | | | #3 | 05888 | .00374 | .00139 | .06151 | .00134 | 00201 | 00073 | | | | | Check ?
High Limit
Low Limit | Chk Pass | | | | • | | | | | | | | | | | |---|---|---|--|--|---|--|--|--|--|--| | Elem
Units
Avg
Stddev
%RSD | Sb2068
ppm
. 00029
.00141
488.47 | Se1960
ppm
.00301
.00342
113.47 | Si2124
ppm
.00564
.00148
26.296 | Sn1899
ppm
00038
.00022
58.189 | Sr4077
ppm
.00036
.00008
22.814 | Ti3372
ppm
00037
.00698
1911.2 | TI1908
ppm
00249
.00252
101.31 | | | | | #1
#2
#3 | .00191
00061
00043 | .00595
.00382
00074 | .00704
.00579
.00408 | 00030
00064
00021 | .00027
.00038
.00044 | .00713
00156
00667 | 00327
00453
.00033 | | | | | Check ?
High Limit
Low Limit | Chk Pass | | | | Elem
Units
Avg
Stddev
%RSD | V_2924
ppm
00058
.00040
69.333 | Zn2062
ppm
00001
.00016
1281.8 | Zr3391
ppm
F .19952
.11246
56.364 | | | | | | | | | #1
#2
#3 | 00046
00102
00025 | .00010
00020
.00006 | .07119
.28085
.24653 | | | | | | | | | Check ?
High Limit
Low Limit | Chk Pass | Chk Pass | Chk Fail
.04000
04000 | | | | | | | | | Int. Std.
Units
Avg
Stddev
%RSD | Y_2243
Cts/S
11246.
17.
.15324 | Y_3600
Cts/S
96817 .
223.
.23017 | Y_3774
Cts/S
4071.5
10.4
.25567 | | | | | | | | | #1
#2
#3 | 11265.
11233.
11239. | 96560.
96945.
96947. | 4081.9
4061.1
4071.6 | | | | | | | | | Elem
Units
Avg
Stddev
%RSD | Ag3280
ppm
. 00937
.00091
9.7366 | Al3082
ppm
. 17300
.00230
1.3307 | As1890
ppm
. 00609
.00210
34.554 | ppm
. 07955
.00127 | Ba4554
ppm
. 00846
.00033
3.9089 | Be3131
ppm
. 00163
.00005
3.1153 | . 40806
.01417 | Cd2288
ppm
. 00061
.00034
55.059 | | | | | |--|---|---|---|---------------------------------|---|---|---------------------------------|---|--|--|--|--| | #1
#2
#3 | .00844
.00941
.01026 | .17566
.17166
.17168 | .00404
.00598
.00824 | | .00871
.00808
.00858 | .00168
.00158
.00163 | .39253
.41137
.42028 | .00090
.00070
.00024 | | | | | | Check ?
High Limit
Low Limit | Chk Pass | | | | | Elem
Units
Avg
Stddev
%RSD | Co2286
ppm
. 00450
.00008
1.7782 | Cr2677
ppm
. 00414
.00026
6.3281 | Cu2247
ppm
. 00334
.00056
16.809 | ppm
. 08460 | K_7664
ppm
. 93676
.07206
7.6921 | Li6707
ppm
. 08757
.00419
4.7886 | ppm
. 38902
.02354 | Mn2576
ppm
. 00691
.00024
3.4704 | | | | | | #1
#2
#3 | .00441
.00452
.00457 | .00444
.00397
.00400 | .00280
.00392
.00331 | | .93575
.86521
1.0093 | .08554
.08479
.09240 | .40574 | .00698
.00710
.00664 | | | | | | Check ?
High Limit
Low Limit | Chk Pass | | | | | Elem
Units
Avg
Stddev
%RSD | Mo2020
ppm
. 00794
.00004
.45962 | Na5895
ppm
. 46855
.02688
5.7374 | Ni2316
ppm
. 01700
.00042
2.4515 | _ ppm | Pb2203
ppm
. 00747
.00258
34.569 | Sb2068
ppm
. 07608
.00402
5.2846 | ppm
. 01748 | Si2124
ppm
. 80142
.00160
.19917 | | | | | | #1
#2
#3 | .00795
.00790
.00797 | .44246
.49616
.46702 | .01719
.01653
.01730 | .77843
.78284
.76158 | .01002
.00754
.00486 | .08046
.07256
.07521 | .01895
.01380
.01969 | .80102
.80006
.80318 | | | | | | Check ?
High Limit
Low Limit | Chk Pass | | | | Sample Name: LLCCV Acquired: 10/23/2015 13:58:41 Type: Unk Method: ICP-THERMO3_6010_200.7WATER_3YLINES(v526) Mode: CONC Corr. Factor: 1.000000 Custom ID1: User: JYH Custom ID2: Custom ID3: Comment: Elem Sn1899 Sr4077 Ti3372 TI1908 V_2924 Zn2062 Zr3391 Units ppm ppm ppm ppm ppm ppm ppm Avg .41136 .04161 .02439 .17093 .00771 .01714 17.529 Stddev .00153 .00064 .00127 .00299 .00039 .00021 .327 %RSD .37235 1.5354 5.2146 1.7506 5.0819 1.2509 1.8648 #1 .41178 .04180 .02353 .16751 .00784 .01722 17.906 #2 .41263 .04090 .02379 .17219 .00803 .01730 17.357 .02585 .17308 #3 .40966 .04214 .00728 .01689 17.324 Check? Chk Pass Chk Pass Chk Pass Chk Pass Chk Pass Chk Pass **High Limit** Low Limit Int. Std. Y 2243 Y 3600 Y_3774 Cts/S Units Cts/S Cts/S 11335. 97183. 4095.3 Avg Stddev 148. 26.8 10. %RSD .09234 .15261 .65561 #1 11327. 97045. 4064.4 #2 11347. 97340. 4109.0 #3 11331. 97166. 4112.7 Approved: October 26, 2015 J'ye 1hu | Elem
Units
Avg
Stddev
%RSD | Ag3280
ppm
. 00871
.00103
11.871 | Al3082
ppm
. 17896
.00257
1.4380 | | ppm
. 08035
.00069 | Ba4554
ppm
. 00916
.00025
2.6809 | Be3131
ppm
. 00859
.00006
.75155 | . 40600
.01209 | Cd2288
ppm
. 00862
.00003
.31189 | | | | | |--|---|---|---|---------------------------------|---|---|---------------------------------|---|--|--|--|--| | #1
#2
#3 | .00921
.00941
.00752 | .17704
.17796
.18189 | .01558
.01937
.01266 | | .00944
.00899
.00905 | .00861
.00852
.00864 | .40924
.39262
.41613 | .00864
.00862
.00859 | | | | | | Check ?
High Limit
Low Limit | Chk Pass | | | | | Elem
Units
Avg
Stddev
%RSD | Co2286
ppm
. 00890
.00032
3.5440 | Cr2677
ppm
. 01667
.00077
4.6453 | Cu2247
ppm
. 01756
.00082
4.6933 | ppm
. 08005
.01842 | K_7664
ppm
. 99088
.10409
10.505 | Li6707
ppm
. 08754
.00455
5.2005 | ppm
. 31085
.02886 | Mn2576
ppm
. 00826
.00221
26.754 | | | | | | #1
#2
#3 | .00879
.00925
.00865 | .01740
.01586
.01674 | .01851
.01718
.01700 | .06109
.09788
.08119 | 1.0310
.87269
1.0689 | .09266
.08601
.08395 | .31540 | .01044
.00602
.00833 | | | | | | Check ?
High Limit
Low Limit | Chk Pass | | | | | Elem
Units
Avg
Stddev
%RSD | Mo2020
ppm
. 04769
.00021
.43707 | Na5895
ppm
. 44898
.01496
3.3330 | Ni2316
ppm
. 03456
.00114
3.2984 | ppm
. 00489 | Pb2203
ppm
. 01555
.00234
15.055 | Sb2068
ppm
. 01449
.00437
30.137 | ppm
. 01801 | Si2124
ppm
.
00015
.00198
1274.5 | | | | | | #1
#2
#3 | .04789
.04747
.04770 | .44897
.46394
.43401 | .03324
.03525
.03518 | 00462
.00248
.01681 | .01364
.01816
.01484 | .01161
.01951
.01234 | .02042
.01700
.01661 | 00175
.00219
.00003 | | | | | | Check ?
High Limit
Low Limit | Chk Pass | | | | Page 207 Sample Name: LLCCV Acquired: 10/23/2015 14:02:46 Type: Unk Method: ICP-THERMO3_6010_200.7WATER_3YLINES(v526) Mode: CONC Corr. Factor: 1.000000 Custom ID1: User: JYH Custom ID2: Custom ID3: Comment: Elem Sn1899 Sr4077 Ti3372 TI1908 V_2924 Zn2062 Zr3391 Units ppm ppm ppm ppm ppm ppm ppm Avg .08246 .00917 .02248 .08696 .00797 .01765 .26696 Stddev .00025 .00010 .00177 .00040 .00048 .00006 .07911 %RSD .30477 1.0424 7.8825 .45630 6.0570 .36336 29.632 #1 .08273 .00922 .02076 .08663 .00849 .01772 .17569 #2 .08241 .00906 .02238 .08683 .00753 .01760 .31565 .08224 .02430 #3 .00922 .08740 .00789 .01762 .30955 Check? Chk Pass Chk Pass Chk Pass Chk Pass Chk Pass Chk Pass **High Limit** Low Limit Int. Std. Y_2243 Y 3600 Y_3774 Cts/S Units Cts/S Cts/S 11285. 96800. 4071.7 Avg Stddev 5. 176. 14.2 %RSD .04184 .18219 .34797 #1 11287. 96596. 4056.4 #2 11280. 96898. 4074.1 #3 11289. 96905. 4084.5 Approved: October 26, 2015 J'ye 1hu Sample Name: PBW 94 Acquired: 10/23/2015 14:06:50 Type: Unk Method: ICP-THERMO3_6010_200.7WATER_3YLINES(v526) Mode: CONC Corr. Factor: 1.000000 Custom ID1: Custom ID2: Custom ID3: Comment: WG543739-02 Elem Ag3280 AI3082 As1890 B 2496 Ba4554 Be3131 Ca4226 Cd2288 Units ppm ppm ppm ppm ppm ppm ppm ppm Avg -.00081 .01532 -.00004 .00225 -.00061 .00007 .02725 -.00022 Stddev .00029 .00492 .00154 .00160 .00023 .00003 .01925 .00024 %RSD 35.648 32.135 3638.4 71.144 38.281 48.840 70.638 107.86 #1 -.00096 .02087 -.00016 .00071 -.00035 .00004 .04799 -.00011 #2 -.00048 .01361 -.00152 .00390 -.00069 .00006 .00995 -.00006 #3 -.00099 .01148 .00156 .00213 -.00080 .00011 .02382 -.00050 Check? Chk Pass **Chk Pass** High Limit Low Limit Elem Co2286 Cr2677 Cu2247 Fe2611 K 7664 Li6707 Mg2790 Mn2576 Units ppm ppm ppm ppm ppm ppm ppm ppm .00025 -.00044 -.00011 -.00828 .13621 .00345 -.02424 -.00127 Avg .09908 .00320 .07005 Stddev .00033 .00154 .00101 .00924 .00129 %RSD 131.37 346.53 943.78 111.65 72.743 92.677 289.00 101.09 #1 .00050 -.00074 .00104 -.01889 .24556 .00142 -.01253 -.00124 #2 .00037 -.00181 -.00049 -.00202 .05241 .00180 -.09940 -.00258 #3 -.00012 .00122 -.00087 -.00392 .11064 .00715 .03922 -.00000 Check? Chk Pass High Limit Low Limit Na5895 Se1960 Mo2020 Ni2316 P_2149 Pb2203 Sb2068 Si2124 Elem Units ppm ppm ppm ppm ppm ppm ppm ppm Avg .00047 .02485 .00086 .00746 -.00132 .00405 .00629 .01510 Stddev .00010 .01740 .00142 .00042 .00314 .00157 .00459 .00243 70.025 165.60 238.54 38.813 73.003 %RSD 21.123 5.6556 16.111 .00245 .00504 .01137 .01535 .01740 .01255 .00498 .00223 .00493 Approved: October 26, 2015 #1 #2 #3 Check? High Limit Low Limit .00053 .00036 .00054 .03343 .00483 .03629 .00131 -.00073 .00199 .00768 .00698 .00773 Chk Pass -.00316 -.00310 .00231 Sample Name: PBW 94 Acquired: 10/23/2015 14:06:50 Type: Unk Method: ICP-THERMO3_6010_200.7WATER_3YLINES(v526) Mode: CONC Corr. Factor: 1.000000 Custom ID2: Custom ID1: Custom ID3: Comment: WG543739-02 Elem Sn1899 Sr4077 Ti3372 TI1908 V_2924 Zn2062 Zr3391 Units ppm ppm ppm ppm ppm ppm ppm Avg -.00045 .00052 .00049 -.00350 -.00091 .00104 -.03378 Stddev .00068 .00008 .00622 .00239 .00052 .00023 .12223 %RSD 150.04 15.848 1262.6 68.303 57.141 21.825 361.86 #1 .00021 .00043 .00686 -.00592 -.00138 .00098 -.01416 #2 -.00115 .00058 -.00556 -.00345 -.00035 .00085 .07745 -.00041 .00055 #3 .00018 -.00114 -.00099 .00129 -.16463 Check? Chk Pass Chk Pass Chk Pass Chk Pass Chk Pass Chk Pass **High Limit** Low Limit Int. Std. Y 2243 Y 3600 Y 3774 Units Cts/S Cts/S Cts/S Avg 10597. 93317. 3902.6 Stddev 83. 21.8 14. %RSD .12786 .08906 .55862 Approved: October 26, 2015 J'ye 1hu #1 #2 #3 10588. 10591. 10613. 93400. 93234. 93317. 3884.8 3896.0 3926.9 Sample Name: LCSW 94 Acquired: 10/23/2015 14:10:55 Type: Unk Method: ICP-THERMO3_6010_200.7WATER_3YLINES(v526) Mode: CONC Corr. Factor: 1.000000 Jser: JYH Custom ID1: Custom ID2: Custom ID3: Comment: WG543739-03 | Elem | Ag3280 | Al3082 | As1890 | B_2496 | Ba4554 | Be3131 | Ca4226 | Cd2288 | |--------|----------------|---------------|----------------|--------|----------------|----------------|---------------|----------------| | Units | ppm | Avg | . 21942 | 5.5851 | . 21809 | 1.0762 | . 58022 | . 02760 | 5.7544 | . 02779 | | Stddev | .00038 | .0072 | .00176 | .0057 | .00374 | .00001 | .0378 | .00025 | | %RSD | .17261 | .12919 | .80614 | .52873 | .64496 | .02530 | .65694 | .90192 | | #1 | .21937 | 5.5934 | .21900 | 1.0697 | .58409 | .02760 | 5.7688 | .02807 | | #2 | .21983 | 5.5815 | .21921 | 1.0801 | .57662 | .02759 | 5.7115 | .02773 | | #3 | .21908 | 5.5804 | .21607 | 1.0788 | .57996 | .02760 | 5.7828 | .02757 | Check? Chk Pass P | Elem | Co2286 | Cr2677 | Cu2247 | Fe2611 | K_7664 | Li6707 | Mg2790 | Mn2576 | |--------|--------|----------------|----------------|---------------|---------------|----------------|---------------|----------------| | Units | ppm | Avg | .11381 | . 28677 | . 28410 | 2.2590 | 28.969 | . 57401 | 5.5405 | . 28710 | | Stddev | .00055 | .00038 | .00148 | .0319 | .107 | .00519 | .0453 | .00373 | | %RSD | .48008 | .13186 | .52270 | 1.4106 | .36790 | .90443 | .81758 | 1.2985 | | #1 | .11443 | .28711 | .28521 | 2.2940 | 29.092 | .57968 | 5.5876 | .29018 | | #2 | .11338 | .28636 | .28241 | 2.2318 | 28.911 | .56949 | 5.4973 | .28296 | | #3 | .11362 | .28683 | .28467 | 2.2511 | 28.903 | .57285 | 5.5365 | .28817 | Check? Chk Pass P | Elem | Mo2020 | Na5895 | Ni2316 | P_2149 | Pb2203 | Sb2068 | Se1960 | Si2124 | |--------|----------------|---------------|----------------|---------------|----------------|----------------|----------------|---------------| | Units | ppm | Avg | . 56732 | 29.021 | . 28411 | 5.4116 | . 28156 | . 66926 | . 22254 | 2.8445 | | Stddev | .00089 | .168 | .00217 | .0170 | .00113 | .00360 | .00621 | .0069 | | %RSD | .15623 | .57945 | .76545 | .31453 | .40051 | .53835 | 2.7918 | .24372 | | #1 | .56808 | 29.188 | .28660 | 5.4311 | .28059 | .66932 | .21569 | 2.8500 | | #2 | .56752 | 28.852 | .28317 | 5.4000 | .28280 | .67283 | .22413 | 2.8367 | | #3 | .56635 | 29.023 | .28257 | 5.4037 | .28128 | .66563 | .22781 | 2.8469 | Check? Chk Pass P Sample Name: LCSW 94 Acquired: 10/23/2015 14:10:55 Type: Unk Method: ICP-THERMO3_6010_200.7WATER_3YLINES(v526) Mode: CONC Corr. Factor: 1.000000 Jser: JYH Custom ID1: Custom ID2: Custom ID3: Comment: WG543739-03 | Elem | Sn1899 | Sr4077 | Ti3372 | TI1908 | V_2924 | Zn2062 | Zr3391 | |--------|--------|--------|--------|--------|--------|--------|--------| | Units | ppm | Avg | .56560 | .57495 | .57485 | .28432 | .56999 | .55188 | 1.1596 | | Stddev | .00029 | .00489 | .00840 | .00195 | .00041 | .00061 | .1431 | | %RSD | .05129 | .85073 | 1.4616 | .68633 | .07200 | .11103 | 12.343 | | #1 | .56527 | .57934 | .58417 | .28300 | .57018 | .55233 | 1.0515 | | #2 | .56578 | .56968 | .56787 | .28339 | .57027 | .55118 | 1.1053 | | #3 | .56575 | .57584 | .57251 | .28656 | .56952 | .55212 | 1.3219 | Check? Chk Pass P Low Limit | Int. Std. | Y_2243 | Y_3600 | Y_3774 | |-----------|--------|----------------|---------------| | Units | Cts/S | Cts/S | Cts/S | | Avg | 10477. | 89773 . | 3867.8 | | Stddev | 11. | 268. | 25.7 | | %RSD | .10664 | .29813 | .66557 | | #1 | 10465. | 89477. | 3840.9 | | #2 | 10479. | 89843. | 3892.2 | | #3 | 10488. | 89999. | 3870.3 | Approved: October 26, 2015 J'ye lhu Sample Name: L1510114805 Acquired: 10/23/2015 14:14:45 Type: Unk Method: ICP-THERMO3 6010 200.7WATER 3YLINES(v526) Mode: CONC Corr. Factor: 1.000000 Custom ID1: Custom ID2: Custom ID3: User: JYH Comment: WG543739-01 Elem Ag3280 AI3082 As1890 B 2496 Ba4554 Be3131 Ca4226 Cd2288 Units ppm ppm ppm ppm ppm ppm ppm ppm Avg -.00136 .10340 -.00114 .04929 .07537 .00003 20.770 .00027 Stddev .00101 .00079 .00265 .00111 .00063 .00004 .165 .00011 %RSD 74.125 .76185 231.71 2.2553 .82974 150.03 .79240 41.659 #1 -.00039 .10405 .00056 .05038 .07601 .00007 20.928 .00039 #2 -.00240 .10253 .00021 .04931 .07535 .00000 20.783 .00017 20.599 #3 -.00129 .10364 -.00420 .04816 .07476 .00001 .00024 Check? Chk Pass High Limit Low Limit Elem Co2286 Cr2677 Cu2247 Fe2611 K 7664 Li6707 Mg2790 Mn2576 Units ppm ppm ppm ppm ppm ppm ppm ppm .00810 .00049 .00097 .40966 1.4075 .07056 12.253 .21009 Avg .00445 Stddev .00042 .00040 .00124 .00603 .0615 .148 .00331 %RSD 5.1525 82.111 128.79 1.4710 4.3692 6.3010 1.2090 1.5763 .21391 #1 .00828 .00083 .00050 .41573 1.4633 .06669 12.147 #2 .00762 .00005 .00002 .40956 1.3416 .07541 12.423 .20831 #3 .00840 .00060 .00238 .40368 1.4176 .06957 12.190 .20805 Check? Chk Pass High Limit Low Limit Se1960 Mo2020 Na5895 Ni2316 P_2149 Sb2068 Si2124 Elem Pb2203 Units ppm ppm ppm ppm ppm ppm ppm ppm Avg .00120 66.524 .00292 .13912 -.00218 -.00021 .00021 20.339 Stddev .00025 .445 .00017 .00965 .00137 .00443 .00390 .041 1856.3 %RSD 21.170 .66864 5.7894 6.9334 62.803 2113.1 .20196 #1 -.00177 -.00302 .00091 66.957 .00297 .13048 .00445 20.380 #2 66.548 .00274 .13736 -.00106 -.00252 -.00060 .00131 20.339 #3 .00138 66.068 .00307 .14953 -.00370 .00490 -.00322 20.298 Chk Pass Chk Pass Chk Pass Check? Chk Pass Chk Pass Chk Pass **High Limit** Approved: October 26, 2015 Low Limit Sample Name: L1510114805 Acquired: 10/23/2015 14:14:45 Type: Unk Method: ICP-THERMO3_6010_200.7WATER_3YLINES(v526) Mode: CONC Corr. Factor: 1.000000 User: JYH Custom ID1: Custom ID2: Custom ID3: Comment: WG543739-01 Elem Sn1899 Sr4077 Ti3372 TI1908 V_2924 Zn2062 Zr3391 Units ppm ppm ppm ppm ppm ppm ppm Avg -.00011 .56949 .00397 -.00146 .00036 .00341 .17018 Stddev .00062 .00383 .00347 .00106 .00106 .00013 .14601 %RSD 571.24
.67322 87.450 72.157 295.91 3.6658 85.794 #1 .00044 .57337 .00380 -.00185 .00129 .00339 .06644 #2 .00001 .56937 .00751 -.00228 -.00080 .00355 .10696 #3 -.00077 .56571 .00058 -.00027 .00059 .00331 .33714 Check? Chk Pass Chk Pass Chk Pass Chk Pass Chk Pass Chk Pass **High Limit** Low Limit Int. Std. Y 2243 Y 3600 Y 3774 Units Cts/S Cts/S Cts/S 10447. 89281. 3866.4 Avg Stddev 113. 28.6 6. %RSD .05324 .12638 .73945 #1 10444. 89306. 3838.9 #2 10442. 89158. 3864.2 #3 10453. 89380. 3896.0 Sample Name: L1510114806S Acquired: 10/23/2015 14:18:47 Type: Unk Method: ICP-THERMO3_6010_200.7WATER_3YLINES(v526) Mode: CONC Corr. Factor: 1.000000 User: JYH Custom ID1: Custom ID2: Custom ID3: Comment: WG543739-04 Elem Ag3280 Al3082 As1890 B 2496 Ba4554 Be3131 Ca4226 Cd2288 Units ppm ppm ppm ppm ppm ppm ppm ppm Avg .22105 5.6589 .22354 1.1419 .65383 .02822 25.983 .02811 Stddev .00140 .0047 .00049 .0051 .00295 .00012 .039 .00007 .15012 %RSD .63261 .08372 .22117 .44305 .45131 .42331 .25470 #1 .22126 5.6587 .22300 1.1473 .65719 .02832 26.027 .02819 #2 .21956 5.6638 .22366 1.1372 .65263 .02809 25.952 .02810 .22233 #3 5.6543 .22397 1.1413 .65166 .02825 25.969 .02804 Check? Chk Pass **High Limit** Low Limit | Elem | Co2286 | Cr2677 | Cu2247 | Fe2611 | K_7664 | Li6707 | Mg2790 | Mn2576 | |--------|--------|--------|--------|--------|--------|--------|--------|--------| | Units | ppm | Avg | .12077 | .28572 | .28424 | 2.6286 | 30.446 | .64118 | 17.391 | .48593 | | Stddev | .00029 | .00032 | .00024 | .0223 | .185 | .00479 | .052 | .00144 | | %RSD | .23714 | .11281 | .08491 | .85022 | .60692 | .74781 | .29761 | .29690 | | #1 | .12110 | .28606 | .28450 | 2.6202 | 30.657 | .64524 | 17.446 | .48683 | | #2 | .12058 | .28569 | .28419 | 2.6540 | 30.312 | .63589 | 17.385 | .48426 | | #3 | .12064 | .28542 | .28402 | 2.6117 | 30.370 | .64243 | 17.343 | .48668 | Check? Chk Pass P | Elem | Mo2020 | Na5895 | Ni2316 | P_2149 | Pb2203 | Sb2068 | Se1960 | Si2124 | |--------|----------------|---------------|--------|---------------|----------------|----------------|----------------|---------------| | Units | ppm | Avg | . 57018 | 93.213 | .28509 | 5.6576 | . 27801 | . 68024 | . 22101 | 22.866 | | Stddev | .00155 | .373 | .00086 | .0137 | .00316 | .00672 | .00105 | .073 | | %RSD | .27218 | .40008 | .30245 | .24173 | 1.1365 | .98809 | .47380 | .31882 | | #1 | .57142 | 93.636 | .28417 | 5.6661 | .28086 | .68730 | .21989 | 22.939 | | #2 | .57069 | 92.931 | .28587 | 5.6650 | .27856 | .67951 | .22196 | 22.865 | | #3 | .56844 | 93.073 | .28523 | 5.6419 | .27462 | .67392 | .22119 | 22.793 | Check? Chk Pass P Sample Name: L1510114806S Acquired: 10/23/2015 14:18:47 Type: Unk Method: ICP-THERMO3_6010_200.7WATER_3YLINES(v526) Mode: CONC Corr. Factor: 1.000000 User: JYH Custom ID1: Custom ID2: Custom ID3: Comment: WG543739-04 | Elem | Sn1899 | Sr4077 | Ti3372 | TI1908 | V_2924 | Zn2062 | Zr3391 | |--------|--------|--------|--------|--------|--------|--------|--------| | Units | ppm | Avg | .57042 | 1.1296 | .58438 | .27983 | .57914 | .55809 | .64021 | | Stddev | .00115 | .0029 | .00474 | .00184 | .00160 | .00155 | .21725 | | %RSD | .20081 | .25272 | .81196 | .65887 | .27679 | .27826 | 33.935 | | #1 | .57157 | 1.1329 | .58775 | .27788 | .58096 | .55977 | .57406 | | #2 | .56928 | 1.1280 | .58644 | .28154 | .57794 | .55777 | .46372 | | #3 | .57042 | 1.1279 | .57896 | .28007 | .57852 | .55672 | .88285 | Check? Chk Pass P Low Limit | Int. Std. | Y_2243 | Y_3600 | Y_3774 | |-----------|--------|----------------|--------| | Units | Cts/S | Cts/S | Cts/S | | Avg | 10315. | 87924 . | 3857.5 | | Stddev | 20. | 205. | 25.2 | | %RSD | .19357 | .23320 | .65239 | | #1 | 10295. | 87708. | 3832.7 | | #2 | 10335. | 87947. | 3856.9 | | #3 | 10315. | 88116. | 3883.0 | Approved: October 26, 2015 J'ye 1hu Sample Name: L1510114807SD Acquired: 10/23/2015 14:22:36 Type: Unk Method: ICP-THERMO3_6010_200.7WATER_3YLINES(v526) Mode: CONC Corr. Factor: 1.000000 Custom ID2: Custom ID3: User: JYH Custom ID1: Comment: WG543739-05 Elem Ag3280 Al3082 As1890 B 2496 Ba4554 Be3131 Ca4226 Cd2288 Units ppm ppm ppm ppm ppm ppm ppm ppm Avg .22069 5.6353 .22293 1.1379 .65429 .02818 25.917 .02790 Stddev .00100 .0192 .00244 .0016 .00296 .00002 .061 .00022 %RSD .45423 .34133 1.0928 .13986 .45248 .07480 .23546 .80470 #1 .22018 5.6466 .22511 1.1373 .65766 .02820 25.968 .02787 #2 .22004 5.6462 .22030 1.1397 .65212 .02816 25.849 .02814 #3 .22184 5.6131 .22337 1.1367 .65309 .02817 25.933 .02769 Check? Chk Pass High Limit Low Limit Elem Co2286 Cr2677 Cu2247 Fe2611 K 7664 Li6707 Mg2790 Mn2576 Units ppm ppm ppm ppm ppm ppm ppm ppm .11989 .28522 .28191 2.6180 30.331 .63239 17.563 .48580 Avg .00137 Stddev .00049 .00132 .0237 .100 .00322 .135 .00074 %RSD .40468 .48050 .46798 .90351 .33106 .50920 .76620 .15251 Check? Chk Pass P 2.6428 2.6154 2.5957 30.444 30.301 30.250 .62877 .63347 .63494 17.628 17.653 17.408 .48522 .48556 .48664 | Elem | Mo2020 | Na5895 | Ni2316 | P_2149 | Pb2203 | Sb2068 | Se1960 | Si2124 | |--------|----------------|---------------|--------|---------------|----------------|----------------|----------------|---------------| | Units | ppm | Avg | . 56761 | 93.439 | .28258 | 5.6237 | . 27360 | . 67328 | . 21805 | 22.842 | | Stddev | .00130 | .299 | .00153 | .0215 | .00229 | .00542 | .00194 | .045 | | %RSD | .22954 | .32024 | .54258 | .38264 | .83648 | .80445 | .88929 | .19667 | | #1 | .56908 | 93.640 | .28287 | 5.6407 | .27465 | .67801 | .21584 | 22.867 | | #2 | .56711 | 93.095 | .28394 | 5.6310 | .27097 | .66737 | .21947 | 22.869 | | #3 | .56663 | 93.582 | .28092 | 5.5995 | .27517 | .67445 | .21884 | 22.790 | Check? Chk Pass P Approved: October 26, 2015 #1 #2 #3 .12043 .11951 .11972 .28671 .28493 .28402 .28043 .28297 .28232 Sample Name: L1510114807SD Acquired: 10/23/2015 14:22:36 Type: Unk Method: ICP-THERMO3_6010_200.7WATER_3YLINES(v526) Mode: CONC Corr. Factor: 1.000000 User: JYH Custom ID1: Custom ID2: Custom ID3: Comment: WG543739-05 | Elem | Sn1899 | Sr4077 | Ti3372 | TI1908 | V_2924 | Zn2062 | Zr3391 | |--------|--------|--------|--------|--------|--------|--------|--------| | Units | ppm | Avg | .56612 | 1.1297 | .58171 | .27532 | .57654 | .55373 | .39935 | | Stddev | .00258 | .0027 | .00842 | .00103 | .00021 | .00195 | .07390 | | %RSD | .45486 | .23830 | 1.4469 | .37236 | .03642 | .35172 | 18.506 | | #1 | .56730 | 1.1326 | .58572 | .27417 | .57678 | .55570 | .36967 | | #2 | .56790 | 1.1273 | .57204 | .27566 | .57647 | .55368 | .34491 | | #3 | .56317 | 1.1292 | .58737 | .27613 | .57638 | .55180 | .48349 | Check? Chk Pass P Low Limit | Int. Std. | Y_2243 | Y_3600 | Y_3774 | |-----------|--------|----------------|--------| | Units | Cts/S | Cts/S | Cts/S | | Avg | 10311. | 87758 . | 3839.3 | | Stddev | 4. | 104. | 9.4 | | %RSD | .03851 | .11864 | .24608 | | #1 | 10307. | 87638. | 3829.2 | | #2 | 10315. | 87815. | 3848.0 | | #3 | 10311. | 87821. | 3840.6 | Approved: October 26, 2015 J'ye lon | Sample Name: L1510114802 | | | | | | | | | | |--------------------------|-----------|------------|-----------|-----------|------------|----------|----------|------------------------|--| | Method: ICF | P-THERMO3 | 3_6010_200 | .7WATER_ | 3YLINES(v | 526) Mo | de: CONC | Corr. Fa | Corr. Factor: 1.00000(| | | User: JYH | Custom | ID1: | Custom IE |)2: | Custom ID3 | • | | | | | Comment: | Elem | Ag3280 | Al3082 | As1890 | B 2496 | Ba4554 | Be3131 | Ca4226 | Cd2288 | | | Units | ppm | ppm | ppm | _ ppm | ppm | ppm | ppm | ppm | | | Avg | .00064 | .02516 | 00276 | .04384 | .05529 | .00004 | 11.473 | .00043 | | | Stddev | .00144 | .00516 | .00234 | .00214 | .00029 | .00004 | .035 | .00006 | | | %RSD | 224.10 | 20.514 | 84.915 | 4.8756 | .51642 | 107.22 | .30392 | 14.771 | | | #1 | .00230 | .02978 | 00047 | .04137 | .05556 | .00003 | 11.445 | .00036 | | | #2 | 00007 | .02611 | 00515 | .04518 | .05532 | .00008 | 11.462 | .00045 | | | #3 | 00030 | .01959 | 00265 | .04496 | .05499 | .00000 | 11.512 | .00049 | | | | | | | | | | | | | | Check? | Chk Pass | | High Limit
Low Limit | | | | | | | | | | | LOW LITTIL | | | | | | | | | | | Elem | Co2286 | Cr2677 | Cu2247 | Fe2611 | K_7664 | Li6707 | Mg2790 | Mn2576 | | | Units | ppm | ppm | ppm | ppm | _
ppm | ppm | ppm | ppm | | | Avg | .00087 | .00044 | .00288 | .44165 | 1.3483 | .03365 | 6.1751 | .04727 | | | Stddev | .00031 | .00045 | .00120 | .00867 | .0503 | .00333 | .0224 | .00073 | | | %RSD | 35.133 | 102.14 | 41.842 | 1.9621 | 3.7320 | 9.8904 | .36325 | 1.5517 | | | #1 | .00115 | .00008 | .00149 | .43310 | 1.3998 | .03370 | 6.1574 | .04802 | | | #2 | .00091 | .00030 | .00356 | .45043 | 1.3460 | .03029 | 6.1677 | .04656 | | | #3 | .00054 | .00094 | .00358 | .44143 | 1.2992 | .03695 | 6.2003 | .04724 | | | | | | | | | | | | | | Check? | Chk Pass | | High Limit
Low Limit | | | | | | | | | | | LOW LITTIL | | | | | | | | | | | Elem | Mo2020 | Na5895 | Ni2316 | P 2149 | Pb2203 | Sb2068 | Se1960 | Si2124 | | | Units | ppm | ppm | ppm | _ ppm | ppm | ppm | ppm | ppm | | | Avg | .00053 | 47.698 | .00138 | .06896 | 00399 | 00046 | .00234 | 19.573 | | | Stddev | .00032 | .139 | .00024 | .01143 | .00127 | .00246 | .00201 | .019 | | | %RSD | 60.326 | .29038 | 17.196 | 16.577 | 31.778 | 538.49 | 85.814 | .09753 | | | #1 | .00018 | 47.770 | .00112 | .05834 | 00545 | .00027 | .00012 | 19.594 | | | #2 | .00018 | 47.538 | .00112 | .06749 | 00344 | 00320 | .00403 | 19.556 | | | #3 | .00080 | 47.785 | .00158 | .08106 | 00309 | .00156 | .00288 | 19.570 | | | | | | | | | | | | | | Check? | Chk Pass | | High Limit | | | | | | | | | | | Low Limit | | | | | | | | | | | Sample Name: L1510114802 | | | | | | | | | |------------------------------------|------------------|------------------|------------------|------------------|------------------|------------------|------------------|--| | User: JYH | Custom | | Custom IE | , | Custom
ID3 | | | | | Comment: | | | | | | | | | | Elem | Sn1899 | Sr4077 | Ti3372 | TI1908 | V_2924 | Zn2062 | Zr3391 | | | Units | ppm | | Avg | .00084 | .41736 | 00116 | 00005 | 00019 | .01006 | .13712 | | | Stddev
%RSD | .00039
46.014 | .00166
.39742 | .00411
353.09 | .00245
4880.7 | .00113
593.11 | .00033
3.2963 | .12658
92.310 | | | /01\GD | 40.014 | .53742 | 333.09 | 4000.7 | 393.11 | 3.2903 | 92.510 | | | #1 | .00063 | .41783 | 00548 | .00240 | 00147 | .01045 | .12870 | | | #2 | .00129 | .41552 | .00270 | 00250 | .00021 | .00985 | .01497 | | | #3 | .00061 | .41873 | 00070 | 00005 | .00069 | .00989 | .26770 | | | Check ?
High Limit
Low Limit | Chk Pass | | Int. Std. | Y 2243 | Y_3600 | Y_3774 | | | | | | | Units | Cts/S | Cts/S | Cts/S | | | | | | | Avg | 10532. | 90222. | 3883.8 | | | | | | | Stddev
%RSD | 10.
.09571 | 32.
.03597 | 13.7
.35206 | | | | | | | /0N3D | .09571 | .03397 | .55200 | | | | | | | #1 | 10531. | 90248. | 3868.6 | | | | | | | #2 | 10542. | 90186. | 3888.0 | | | | | | | #3 | 10522. | 90233. | 3894.9 | | | | | | | Sample Name: L1510114803 | | | | | | | | | | |------------------------------------|--------------------------|--------------------------------|--------------------------|-----------------------|-----------------------|--------------------------|----------------------|--------------------------|--| | Method: ICF | | | _ | , | , | de: CONC | Corr. Fa | actor: 1.00000(| | | User: JYH | Custom | ID1: | Custom ID |)2: (| Custom ID3 | | | | | | Comment: | Elem
Units | Ag3280 | Al3082 | As1890 | B_2496 | Ba4554 | Be3131 | Ca4226 | Cd2288 | | | Avg | ppm
. 00056 | ppm
. 03016 | ppm
00027 | ppm
. 07235 | ppm
. 05274 | ppm
. 00003 | ppm
53.282 | ppm
. 00031 | | | Stddev | .00072 | .00995 | .00152 | .00099 | .00016 | .00007 | .141 | .00023 | | | %RSD | 128.89 | 32.999 | 568.26 | 1.3690 | .30453 | 226.27 | .26492 | 76.022 | | | #1 | .00070 | .03225 | .00120 | .07121 | .05256 | .00010 | 53.439 | .00023 | | | #2 | .00120 | .03890 | 00016 | .07293 | .05278 | 00003 | 53.243 | .00057 | | | #3 | 00022 | .01933 | 00184 | .07292 | .05287 | .00002 | 53.165 | .00012 | | | Check ?
High Limit
Low Limit | Chk Pass | | LOW LITTIC | | | | | | | | | | | Elem | Co2286 | Cr2677 | Cu2247 | Fe2611 | K_7664 | Li6707 | Mg2790 | Mn2576 | | | Units | ppm | | Avg
Stddev | . 00169
.00025 | . <mark>00105</mark>
.00038 | . 00025
.00254 | 2.0557 .0235 | 2.2645 .0990 | . 06580
.00362 | 16.569 .054 | . 13418
.00313 | | | %RSD | 14.814 | 36.499 | 1011.4 | 1.1447 | 4.3739 | 5.4955 | .32886 | 2.3307 | | | 701102 | 1 | 00.100 | | | 1.0700 | 0000 | .02000 | 2.0007 | | | #1 | .00157 | .00111 | .00215 | 2.0469 | 2.3597 | .06465 | 16.590 | .13255 | | | #2 | .00197 | .00140 | .00123 | 2.0379 | 2.2719 | .06985 | 16.507 | .13778 | | | #3 | .00151 | .00064 | 00263 | 2.0824 | 2.1620 | .06289 | 16.609 | .13220 | | | Check ?
High Limit
Low Limit | Chk Pass | | Elem | Mo2020 | Na5895 | Ni2316 | P_2149 | Pb2203 | Sb2068 | Se1960 | Si2124 | | | Units | ppm | ppm | ppm | _ ppm | ppm | ppm | ppm | ppm | | | Avg | .00061 | 143.01 | .00097 | .01971 | 00105 | 00285 | .00316 | 9.3975 | | | Stddev
%RSD | .00009
14.740 | .47
.33112 | .00021
21.692 | .00686
34.790 | .00331
315.58 | .00167
58.548 | .00376
118.80 | .0227
.24203 | | | 70 N ろD | 14.740 | .33112 | 21.092 | 34.790 | 313.36 | 30.340 | 110.00 | .24203 | | | #1 | .00061 | 143.55 | .00105 | .02012 | .00243 | 00442 | .00247 | 9.4122 | | | #2 | .00070 | 142.66 | .00113 | .02634 | 00142 | 00305 | 00020 | 9.4090 | | | #3 | .00052 | 142.82 | .00073 | .01265 | 00416 | 00109 | .00721 | 9.3713 | | | Check ?
High Limit
Low Limit | Chk Pass | | Sample Nan | ne: L151011 | 4803 A | .cquired: 10 | /23/2015 14 | :30:18 | Type: Unk | | | |---|---|--|--|--|--|---|---|----------------| | Method: ICP | -THERMO3 | _6010_200 | .7WATER_ | 3YLINES(v | 526) Mc | de: CONC | Corr. Fac | ctor: 1.000000 | | User: JYH | Custom | ID1: | Custom ID |)2: (| Custom ID3 | : | | | | Comment: | | | | | | | | | | Elem
Units
Avg
Stddev
%RSD | Sn1899
ppm
. 00035
.00125
352.21 | Sr4077
ppm
1.7139
.0052
.30552 | Ti3372
ppm
00670
.00590
88.146 | TI1908
ppm
00142
.00114
80.480 | V_2924
ppm
00091
.00053
58.304 | Zn2062
ppm
.00459
.00011
2.4507 | Zr3391
ppm
. 11448
.14451
126.23 | | | #1
#2
#3 | .00174
.00001
00068 | 1.7181
1.7080
1.7155 | 01238
00059
00712 | 00203
00010
00212 | 00114
00030
00128 | .00471
.00449
.00456 | .06024
.00494
.27827 | | | Check ?
High Limit
Low Limit | Chk Pass | | Int. Std.
Units
Avg
Stddev
%RSD | Y_2243
Cts/S
10277 .
9.
.08434 | Y_3600
Cts/S
87304 .
31.
.03575 | Y_3774
Cts/S
380 9.5
9.3
.24300 | | | | | | | #1
#2
#3 | 10268.
10279.
10285. | 87273.
87336.
87304. | 3802.8
3820.0
3805.6 | | | | | | | Method: IC
User: JYH | Sample Name: L1510114803PS | | | | | | | | | | | |--|---|---|---|-------------------------------|---|---|----------------------------|---------------------------------|--|--|--| | Elem
Units
Avg
Stddev
%RSD | Ag3280
ppm
. 21852
.00008
.03434 | Al3082
ppm
5.5217
.0123
.22290 | As1890
ppm
. 22516
.00561
2.4930 | 1.1548 .0034 | Ba4554
ppm
. 61391
.00357
.58213 | Be3131
ppm
. 02789
.00008
.29144 | 53.186 .409 | ppm
. 02750
.00009 | | | | | #1
#2
#3 | .21860
.21849
.21846 | 5.5312
5.5078
5.5262 | .22424
.23117
.22006 | 1.1574
1.1561
1.1510 | .61429
.61728
.61016 | .02797
.02781
.02791 | 53.396
53.448
52.715 | .02740 | | | | | Check ?
High Limit
Low Limit | Chk Pass | | | | Elem
Units
Avg
Stddev
%RSD | Co2286
ppm
. 11132
.00006
.04974 | Cr2677
ppm
. 27947
.00043
.15208 | Cu2247
ppm
. 27618
.00065
.23557 | ppm
4.0581
.0060 | K_7664
ppm
30.456
.178
.58609 | Li6707
ppm
. 61372
.00400
.65171 | ppm
20.337 | ppm
. 39845
.00140 | | | | | #1
#2
#3 | .11137
.11126
.11133 | .27990
.27905
.27946 | .27619
.27682
.27552 | 4.0519 | 30.437
30.643
30.287 | .61157
.61834
.61126 | | | | | | | Check ?
High Limit
Low Limit | Chk Pass | | | | Elem
Units
Avg
Stddev
%RSD | Mo2020
ppm
. 56210
.00246
.43826 | Na5895
ppm
154.74
1.10
.70995 | Ni2316
ppm
. 27632
.00047
.17069 | ppm
5.5245 | Pb2203
ppm
. 26670
.00490
1.8365 | Sb2068
ppm
. 67097
.00444
.66218 | ppm | ppm
11.351 | | | | | #1
#2
#3 | .56442
.56235
.55952 | 155.21
155.53
153.49 | .27632
.27584
.27679 | 5.5489
5.5399
5.4846 | .26499
.27222
.26288 | .67482
.66611
.67197 | .23053
.20756
.22347 | | | | | | Check ?
High Limit
Low Limit | Chk Pass | | | Sample Name: L1510114803PS Acquired: 10/23/2015 14:34:20 Type: Unk Method: ICP-THERMO3_6010_200.7WATER_3YLINES(v526) Mode: CONC Corr. Factor: 1.000000 User: JYH Custom ID1: Custom ID2: Custom ID3: Comment: WG543739-01 WG543824-01 | Elem | Sn1899 | Sr4077 | Ti3372 | TI1908 | V_2924 | Zn2062 | Zr3391 | |--------|----------------|---------------|----------------|----------------|----------------|----------------|----------------| | Units | ppm | Avg | . 55961 | 2.0941 | . 56939 | . 26986 | . 57004 | . 54696 | . 47099 | | Stddev | .00099 | .0124 | .00949 | .00179 | .00149 | .00207 | .07137 | | %RSD | .17768 | .59182 | 1.6660 | .66208 | .26158 | .37909 | 15.153 | | #1 | .56047 | 2.0995 | .57063 | .27147 | .57157 | .54780 | .40286 | | #2 | .55985 | 2.1030 | .57820 | .26794 | .56859 | .54849 | .54520 | | #3 | .55852 | 2.0800 | .55935 | .27017 | .56995 | .54460 | .46491 | Check? Chk Pass P Low Limit | Int. Std. | Y_2243 | Y_3600 | Y_3774 | |-----------|--------|----------------|--------| | Units | Cts/S | Cts/S | Cts/S | | Avg | 10198. | 86733 . | 3855.4 | | Stddev | 9. | 225. | 37.7 | | %RSD | .08646 | .25946 | .97744 | | #1 | 10194. | 86508. | 3840.6 | | #2 | 10208. | 86958. | 3827.4 | | #3 | 10192. | 86732. | 3898.3 | Approved: October 26, 2015 J'ye 1hu Sample Name: L1510114803SDL Acquired: 10/23/2015 14:38:10 Type: Unk Method: ICP-THERMO3_6010_200.7WATER_3YLINES(v526) Mode: CONC Corr. Factor: 1.000000 Custom ID2: Custom ID3: User: JYH Custom ID1: 5 Comment: WG543739-02 WG543824-02 Elem Ag3280 AI3082 As1890 B 2496 Ba4554 Be3131 Ca4226 Cd2288 Units ppm ppm ppm ppm ppm ppm ppm ppm Avg .00128 .00882 -.00287 .01775 .00966 -.00000 10.097 .00002 Stddev .00100 .00362 .00444 .00192 .00039 .00007 .064 .00010 %RSD 78.305 40.997 154.57 10.817 4.0492 10115. .63338 427.47 #1 .00106 .00530 -.00261 .01553 .00969 .00003 10.120 .00013 #2 .00040 .00864 .00143
.01878 .01004 .00004 10.025 .00002 #3 .00236 .01253 -.00743 .01893 .00926 -.00008 10.147 -.00008 Check? Chk Pass **Chk Pass** High Limit Low Limit Elem Co2286 Cr2677 Cu2247 Fe2611 K 7664 Li6707 Mg2790 Mn2576 Units ppm ppm ppm ppm ppm ppm ppm ppm .00100 .00016 -.00019 .37726 .55903 .01698 3.1511 .02465 Avg Stddev .00019 .00141 .00083 .01167 .04133 .00316 .0646 .00196 %RSD 18.895 855.82 433.09 3.0927 7.3929 18.608 2.0496 7.9485 #1 .00092 .00083 -.00109 .38438 .60597 .01374 3.2181 .02239 #2 .00088 -.00145 -.00002 .36380 .54303 .01713 3.0892 .02578 #3 .00122 .00112 .00054 .38361 .52810 .02006 3.1461 .02579 Check? Chk Pass High Limit Low Limit Mo2020 Na5895 Ni2316 P_2149 Sb2068 Se1960 Si2124 Elem Pb2203 Units ppm ppm ppm ppm ppm ppm ppm ppm 1.7408 Avg .00057 27.204 -.00058 .00275 -.00105 .00088 .00058 Stddev .00034 .092 .00071 .00319 .00258 .00403 .00596 .0032 121.97 1035.6 %RSD 59.994 .33894 115.94 246.41 460.19 .18161 #1 .00083 27.282 .00022 -.00090 .00051 -.00284 .00741 1.7373 #2 27.103 -.00085 .00416 .00515 -.00357 .00069 -.00403 1.7420 .00037 #3 .00018 27.228 -.00111 .00501 .00031 -.00211 1.7432 Check? Chk Pass **High Limit** Low Limit Sample Name: L1510114803SDL Acquired: 10/23/2015 14:38:10 Type: Unk Method: ICP-THERMO3_6010_200.7WATER_3YLINES(v526) Mode: CONC Corr. Factor: 1.000000 User: JYH Custom ID1: 5 Custom ID2: Custom ID3: WG543824-02 Comment: WG543739-02 Elem Sn1899 Sr4077 Ti3372 TI1908 V_2924 Zn2062 Zr3391 Units ppm ppm ppm ppm ppm ppm ppm Avg -.00051 .32012 -.00234 -.00171 -.00052 .00130 .06513 Stddev .00049 .00180 .00554 .00186 .00009 .00011 .12270 %RSD 96.830 .56345 237.37 108.97 17.716 8.1307 188.40 #1 -.00070 .32119 .00066 -.00062 -.00048 .00129 .18618 #2 -.00087 .31804 -.00873 -.00065 -.00045 .00141 -.05917 #3 .00005 .32114 .00107 -.00385 -.00062 .00120 .06838 Check? Chk Pass Chk Pass Chk Pass Chk Pass Chk Pass Chk Pass **High Limit** Low Limit Int. Std. Y 2243 Y 3600 Y 3774 Units Cts/S Cts/S Cts/S 11390. 97184. 4135.4 Avg Stddev 21. 108. 12.6 %RSD .18629 .11140 .30356 #1 11414. 97288. 4137.2 #2 11374. 97192. 4147.0 #3 11382. 97072. 4122.0 | Method: ICF
User: JYH | Sample Name: L1510114803SDL | | | | | | | | | |------------------------------------|-----------------------------|----------------|----------|----------------|----------------|----------------|----------------|----------------|--| | Elem | Ag3280 | Al3082 | As1890 | B_2496 | Ba4554 | Be3131 | Ca4226 | Cd2288 | | | Units | ppm | | Avg | . 00035 | . 00235 | 00144 | . 00442 | . 00176 | .00003 | 1.9550 | 00001 | | | Stddev | .00064 | .00538 | .00107 | .00097 | .00036 | .00002 | .0194 | .00005 | | | %RSD | 184.68 | 228.53 | 74.583 | 21.920 | 20.480 | 52.406 | .99093 | 517.40 | | | #1 | .00095 | .00855 | 00021 | .00357 | .00215 | .00004 | 1.9328 | 00002 | | | #2 | 00033 | 00041 | 00193 | .00548 | .00145 | .00001 | 1.9636 | 00006 | | | #3 | .00042 | 00108 | 00217 | .00421 | .00166 | .00005 | 1.9685 | .00005 | | | Check?
High Limit
Low Limit | Chk Pass | | Elem | Co2286 | Cr2677 | Cu2247 | Fe2611 | K_7664 | Li6707 | Mg2790 | Mn2576 | | | Units | ppm | | Avg | . 00046 | 00056 | .00043 | .06558 | .16836 | . 00718 | . 58507 | . 00442 | | | Stddev | .00026 | .00045 | .00103 | .01047 | .08114 | .00227 | .08047 | .00091 | | | %RSD | 55.562 | 80.590 | 242.10 | 15.958 | 48.194 | 31.641 | 13.754 | 20.557 | | | #1 | .00017 | 00052 | .00161 | .06628 | .19298 | .00847 | .59213 | .00522 | | | #2 | .00062 | 00103 | 00006 | .05478 | .23433 | .00456 | .66178 | .00343 | | | #3 | .00060 | 00013 | 00027 | .07568 | .07776 | .00852 | .50131 | .00461 | | | Check ?
High Limit
Low Limit | Chk Pass | | Elem | Mo2020 | Na5895 | Ni2316 | P_2149 | Pb2203 | Sb2068 | Se1960 | Si2124 | | | Units | ppm | | Avg | . 00047 | 5.3430 | .00060 | 00059 | 00193 | . 00062 | . 00247 | . 33910 | | | Stddev | .00032 | .0028 | .00102 | .00334 | .00095 | .00267 | .00137 | .00305 | | | %RSD | 67.663 | .05264 | 169.44 | 567.15 | 48.918 | 429.97 | 55.261 | .90012 | | | #1 | .00011 | 5.3444 | .00053 | .00046 | 00162 | .00342 | .00252 | .33576 | | | #2 | .00058 | 5.3398 | 00038 | 00433 | 00299 | .00033 | .00381 | .33982 | | | #3 | .00073 | 5.3449 | .00166 | .00210 | 00118 | 00189 | .00108 | .34174 | | | Check ?
High Limit
Low Limit | Chk Pass | | Sample Name: L1510114803SDL | | | | | | | | | |---|--|---|---|--|--|---|---|--| | User: JYH | | ID1: 25 | Custom | • | Custom ID | | | | | Elem
Units
Avg
Stddev
%RSD | Sn1899
ppm
00042
.00048
116.45 | Sr4077
ppm
. 06191
.00025
.40635 | Ti3372
ppm
. 00137
.00250
182.74 | TI1908
ppm
00043
.00131
303.42 | V_2924
ppm
00091
.00030
33.353 | Zn2062
ppm
. 00065
.00006
9.2948 | Zr3391
ppm
. 16153
.02344
14.513 | | | #1
#2
#3 | 00010
00017
00097 | .06162
.06201
.06210 | 00107
.00125
.00392 | .00054
00192
.00008 | 00077
00071
00126 | .00058
.00065
.00070 | .18781
.15402
.14276 | | | Check ?
High Limit
Low Limit | Chk Pass | | Int. Std.
Units
Avg
Stddev
%RSD | Y_2243
Cts/S
11 755 .
6.
.05354 | Y_3600
Cts/S
100780.
136.
.13456 | Y_3774
Cts/S
4217.5
4.4
.10467 | | | | | | | #1
#2
#3 | 11755.
11749.
11762. | 100690.
100930.
100710. | 4222.6
4215.4
4214.6 | | | | | | | • | | | | | | | | | |---------------------------|----------------|----------------|----------------|----------------|----------------|----------------|----------------|--| | Elem | Ag3280 | Al3082 | As1890 | B_2496 | Ba4554 | Be3131 | Ca4226 | | | Units | ppm | | Avg | . 42304 | 10.675 | . 42901 | . 52804 | 1.0991 | . 05377 | 10.848 | | | Stddev | .00108 | .020 | .00219 | .00449 | .0039 | .00006 | .058 | | | %RSD | .25451 | .18976 | .51115 | .84948 | .35732 | .10730 | .53352 | | | #1 | .42381 | 10.685 | .42782 | .52890 | 1.1035 | .05383 | 10.888 | | | #2 | .42181 | 10.688 | .43154 | .53203 | 1.0960 | .05377 | 10.781 | | | #3 | .42350 | 10.652 | .42767 | .52319 | 1.0978 | .05372 | 10.874 | | | Check ?
Value
Range | Chk Pass | | Elem | Cd2288 | Co2286 | Cr2677 | Cu2247 | Fe2611 | K_7664 | Li6707 | | | Units | ppm | | Avg | . 05325 | . 21526 | . 53537 | . 53596 | 4.2898 | 54.966 | 1.0918 | | | Stddev | .00030 | .00049 | .00048 | .00068 | .0302 | .130 | .0081 | | | %RSD | .56137 | .22569 | .08916 | .12741 | .70409 | .23716 | .73927 | | | #1 | .05359 | .21565 | .53591 | .53673 | 4.3184 | 55.100 | 1.0998 | | | #2 | .05315 | .21540 | .53501 | .53571 | 4.2582 | 54.840 | 1.0836 | | | #3 | .05302 | .21471 | .53520 | .53544 | 4.2929 | 54.959 | 1.0920 | | | Check ?
Value
Range | Chk Pass | | Elem | Mg2790 | Mn2576 | Mo2020 | Na5895 | Ni2316 | P_2149 | Pb2203 | | | Units | ppm | | Avg | 10.735 | . 54382 | 1.0690 | 54.841 | . 53582 | 10.529 | . 53025 | | | Stddev | .098 | .00108 | .0024 | .197 | .00264 | .017 | .00416 | | | %RSD | .91414 | .19816 | .22665 | .35839 | .49278 | .15752 | .78475 | | | #1 | 10.848 | .54404 | 1.0708 | 55.058 | .53846 | 10.548 | .52588 | | | #2 | 10.673 | .54265 | 1.0700 | 54.675 | .53318 | 10.517 | .53073 | | | #3 | 10.684 | .54477 | 1.0662 | 54.790 | .53583 | 10.524 | .53416 | | | Check ?
Value
Range | Chk Pass | | Sample Nam | | - | /23/2015 14: | | ype: QC | 2010 | o | 1 000001 | |---|---|---|---|---|---|---|---|----------| | Method: ICP
User: JYH
Comment: | -THERMO3_
Custom I | | WATER_3YI
Custom ID2: | |) Mode:
tom ID3: | CONC (| Corr. Factor: | 1.000000 | | Elem
Units
Avg
Stddev
%RSD | Sb2068
ppm
1.2815
.0037
.28668 | Se1960
ppm
. 42580
.00526
1.2348 | Si2124
ppm
5.3464
.0083
.15529 | Sn1899
ppm
1.0761
.0021
.19900 | Sr4077
ppm
1.0974
.0043
.38745 | Ti3372
ppm
1.0984
.0155
1.4071 | TI1908
ppm
. 53646
.00352
.65636 | | | #1
#2
#3 | 1.2844
1.2826
1.2774 | .42478
.42113
.43149 | 5.3478
5.3375
5.3540 | 1.0777
1.0770
1.0737 | 1.1023
1.0945
1.0954 | 1.1154
1.0947
1.0851 | .54047
.53385
.53507 | | | Check ?
Value
Range | Chk Pass | | Elem
Units
Avg
Stddev
%RSD | V_2924
ppm
1.0785
.0018
.16225 | Zn2062
ppm
1.0557
.0017
.15862 | Zr3391
ppm
F .51871
.14872
28.672 | | | | | | | #1
#2
#3 | 1.0801
1.0766
1.0788 | 1.0576
1.0545
1.0550 | .35286
.56304
.64022 | | | | | | | Check ?
Value
Range | Chk Pass | Chk Pass | Chk Fail
1.0000
-10.000% | | | | | | | Int. Std.
Units
Avg
Stddev
%RSD | Y_2243
Cts/S
10608.
12.
.11753 | Y_3600
Cts/S
90217 .
79.
.08719 | Y_3774
Cts/S
3898.3
16.9
.43395 | | | | | | | #1
#2
#3 | 10599.
10604.
10623. | 90126.
90257.
90267. | 3884.4
3917.2
3893.3 | | | | | | | • | | | | | | | | | | |------------------------------------
----------------|----------------|----------------|----------------|----------|----------------|----------------|--|--| | Elem | Ag3280 | Al3082 | As1890 | B_2496 | Ba4554 | Be3131 | Ca4226 | | | | Units | ppm | | | Avg | . 00021 | . 00634 | 00174 | .00361 | .00065 | .00005 | 00052 | | | | Stddev | .00119 | .00412 | .00140 | .00065 | .00020 | .00004 | .00587 | | | | %RSD | 568.06 | 64.997 | 80.222 | 18.055 | 30.623 | 80.348 | 1126.5 | | | | #1 | .00148 | .00194 | 00266 | .00367 | .00083 | .00010 | .00419 | | | | #2 | 00086 | .00697 | 00013 | .00423 | .00070 | .00004 | .00135 | | | | #3 | .00000 | .01011 | 00243 | .00293 | .00044 | .00002 | 00710 | | | | Check ?
High Limit
Low Limit | Chk Pass | | | Elem | Cd2288 | Co2286 | Cr2677 | Cu2247 | Fe2611 | K_7664 | Li6707 | | | | Units | ppm | | | Avg | . 00002 | . 00024 | . 00015 | . 00030 | .00389 | . 21045 | . 00648 | | | | Stddev | .00005 | .00012 | .00044 | .00020 | .01876 | .08015 | .00198 | | | | %RSD | 288.36 | 49.576 | 287.18 | 64.934 | 482.39 | 38.087 | 30.542 | | | | #1 | .00002 | .00013 | .00014 | .00035 | .02369 | .21017 | .00431 | | | | #2 | 00003 | .00023 | .00060 | .00047 | .00159 | .29074 | .00695 | | | | #3 | .00007 | .00037 | 00028 | .00009 | 01362 | .13044 | .00819 | | | | Check ?
High Limit
Low Limit | Chk Pass | | | Elem | Mg2790 | Mn2576 | Mo2020 | Na5895 | Ni2316 | P_2149 | Pb2203 | | | | Units | ppm | | | Avg | 01197 | . 00075 | . 00141 | . 05223 | .00039 | 00163 | 00140 | | | | Stddev | .02176 | .00139 | .00047 | .02208 | .00029 | .00500 | .00072 | | | | %RSD | 181.78 | 184.85 | 33.057 | 42.266 | 75.143 | 306.80 | 51.778 | | | | #1 | .01015 | .00035 | .00186 | .06738 | .00005 | 00736 | 00064 | | | | #2 | 01272 | 00039 | .00093 | .06241 | .00053 | .00062 | 00208 | | | | #3 | 03335 | .00230 | .00144 | .02690 | .00058 | .00186 | 00148 | | | | Check ?
High Limit
Low Limit | Chk Pass | | | • | Sample Name: CCB Acquired: 10/23/2015 14:49:53 Type: Blank Method: ICP-THERMO3_6010_200.7WATER_3YLINES(v526) Mode: CONC Corr. Factor: 1.000000 | | | | | | | | | | |---|--|---|---|--|---|--|--|--|--|--| | User: JYH
Comment: | Custom I | D1: (| Custom ID2: | Cus | tom ID3: | | | | | | | Elem
Units
Avg
Stddev
%RSD | Sb2068
ppm
00174
.00230
132.16 | Se1960
ppm
. 00273
.00273
99.975 | Si2124
ppm
.00717
.00057
7.9148 | Sn1899
ppm
00006
.00065
1013.7 | Sr4077
ppm
. 00020
.00039
196.88 | Ti3372
ppm
00280
.00499
178.32 | TI1908
ppm
00252
.00059
23.546 | | | | | #1
#2
#3 | 00121
.00025
00426 | 00034
.00490
.00364 | .00684
.00684
.00783 | 00079
.00047
.00012 | .00047
.00037
00025 | .00286
00467
00659 | 00192
00254
00310 | | | | | Check ?
High Limit
Low Limit | Chk Pass | | | | Elem
Units
Avg
Stddev
%RSD | V_2924
ppm
00062
.00033
52.248 | Zn2062
ppm
.00005
.00018
344.66 | Zr3391
ppm
F .12898
.08146
63.154 | | | | | | | | | #1
#2
#3 | 00093
00028
00065 | .00015
.00016
00016 | .13949
.04277
.20466 | | | | | | | | | Check ?
High Limit
Low Limit | Chk Pass | Chk Pass | Chk Fail
.04000
04000 | | | | | | | | | Int. Std.
Units
Avg
Stddev
%RSD | Y_2243
Cts/S
10840.
31.
.28586 | Y_3600
Cts/S
93063 .
302.
.32429 | Y_3774
Cts/S
3901.4
15.2
.38864 | | | | | | | | | #1
#2
#3 | 10811.
10836.
10873. | 92729.
93315.
93146. | 3903.1
3915.6
3885.4 | | | | | | | | | Sample Name: L1510114804 | | | | | | | | | | |--------------------------|-----------------------|----------------------|-----------------------|-----------------------|---------------------|-----------------------|-----------------------|----------------------|--| | Method: ICF | Corr. Fa | actor: 1.00000(| | | | | | | | | User: JYH | Custom | ID1: | Custom ID |)2: (| Custom ID3 | | | | | | Comment: | Elem | Ag3280 | Al3082 | As1890 | B 2496 | Ba4554 | Be3131 | Ca4226 | Cd2288 | | | Units | ppm | ppm | ppm | ppm | ррт | ppm | ppm | ppm | | | Avg | 00083 | .02925 | 00064 | .07015 | .05318 | .00002 | 53.026 | .00018 | | | Stddev | .00088 | .00265 | .00195 | .00168 | .00069 | .00009 | .090 | .00015 | | | %RSD | 106.16 | 9.0570 | 306.54 | 2.3937 | 1.2944 | 562.82 | .16921 | 82.729 | | | | | | | | | | | | | | #1 | 00151 | .02707 | 00244 | .07199 | .05322 | .00012 | 52.922 | .00034 | | | #2 | .00017 | .03220 | .00144 | .06870 | .05248 | 00004 | 53.072 | .00005 | | | #3 | 00115 | .02849 | 00091 | .06976 | .05385 | 00004 | 53.083 | .00015 | | | Check? | Chk Pass | | High Limit | Clik i dasa | CIRT d33 | CIIK I d33 | CIIK I dos | Clik i ass | CIIK I dasa | Clik i ass | Clik i dasa | | | Low Limit | Elem | Co2286 | Cr2677 | Cu2247 | Fe2611 | K_7664 | Li6707 | Mg2790 | Mn2576 | | | Units | ppm | | Avg | .00173 | .00061 | .00119 | 2.0523 | 2.1723 | .06065 | 16.250 | .13885 | | | Stddev | .00031 | .00107 | .00100 | .0073 | .0734 | .00231 | .103 | .00433 | | | %RSD | 17.936 | 174.53 | 83.734 | .35588 | 3.3772 | 3.8106 | .63477 | 3.1167 | | | #1 | .00187 | .00137 | .00085 | 2.0531 | 2.0886 | .06077 | 16.146 | .14125 | | | #2 | .00137 | .00137 | .00232 | 2.0593 | 2.2257 | .06290 | 16.253 | .13386 | | | #3 | .00194 | 00061 | .00232 | 2.0447 | 2.2025 | .05829 | 16.352 | .14145 | | | | .00.01 | .00001 | .00011 | 2.0117 | 2.2020 | .00020 | 10.002 | | | | Check? | Chk Pass | | High Limit | | | | | | | | | | | Low Limit | | | | | | | | | | | | | N. 5005 | NUODAO | D 0440 | DI 0000 | 01.0000 | 0 4000 | 0:0404 | | | Elem | Mo2020 | Na5895 | Ni2316 | P_2149 | Pb2203 | Sb2068 | Se1960 | Si2124 | | | Units | ppm
. 00072 | ppm
139.56 | ppm
. 00086 | ppm
. 01394 | ppm
00216 | ppm
. 00409 | ppm
. 00472 | ppm
9.1185 | | | Avg
Stddev | .00072 | .28 | .00086 | .00639 | .00218 | .00409 | .00472 | .0379 | | | %RSD | 65.680 | .20173 | 133.88 | 45.842 | 124.36 | 69.909 | 110.21 | .41581 | | | 701 (OD | 00.000 | .20173 | 100.00 | 40.04Z | 124.00 | 03.303 | 110.21 | .41001 | | | #1 | .00125 | 139.26 | .00024 | .01616 | 00495 | .00580 | .00978 | 9.1525 | | | #2 | .00060 | 139.63 | .00218 | .01892 | .00040 | .00079 | .00501 | 9.1254 | | | #3 | .00032 | 139.81 | .00015 | .00673 | 00193 | .00569 | 00062 | 9.0776 | | | | | | | | | | | | | | Check? | Chk Pass | | High Limit | | | | | | | | | | | Low Limit | | | | | | | | | | | Sample Nan | | | cquired: 10/ | | | Type: Unk | | | |-----------------------------------|--------------------------|---------------------|------------------------|--------------------------------|------------------------|--------------------------|--------------------------|----------------| | Method: ICF | | | _ | • | , | de: CONC | Corr. Fa | ctor: 1.00000(| | User: JYH | Custom | ID1: | Custom ID |)2: (| Custom ID3 | • | | | | Comment: | | | | | | | | | | Elem | Sn1899 | Sr4077 | Ti3372 | TI1908 | V_2924 | Zn2062 | Zr3391 | | | Units | ppm | | Avg
Stddev | . 00007
.00100 | 1.6685 .0034 | 00625
.00288 | . <mark>00129</mark>
.00314 | 00065
.00116 | . 00404
.00016 | . 03907
.05220 | | | %RSD | 1399.5 | .20704 | 46.033 | 244.06 | 179.11 | 4.0575 | 133.60 | | | 701102 | 1000.0 | .20701 | 10.000 | 211.00 | ., | 1.0070 | 100.00 | | | #1 | 00108 | 1.6646 | 00778 | .00076 | 00036 | .00416 | .02281 | | | #2 | .00075 | 1.6710 | 00804 | .00465 | .00034 | .00410 | .09746 | | | #3 | .00054 | 1.6700 | 00293 | 00156 | 00192 | .00385 | 00307 | | | Check?
High Limit
Low Limit | Chk Pass | | Int. Std. | Y 2243 | Y_3600 | Y_3774 | | | | | | | Units | _Cts/S | Cts/S | Cts/S | | | | | | | Avg | 10267. | 87400. | 3840.7 | | | | | | | Stddev
%RSD | 12.
.12146 | 126.
.14383 | 8.1
.20999 | | | | | | | /0K3D | .12140 | . 14363 | .20999 | | | | | | | #1 | 10256. | 87255. | 3848.9 | | | | | | | #2 | 10263. | 87457. | 3840.4 | | | | | | | #3 | 10281. | 87486. | 3832.8 | | | | | | | Sample Name: L1510114809 | | | | | | | | | | |------------------------------------|------------------|------------------|---------------------|------------------|------------------|------------------|------------------------|------------------|--| | Method: ICF | P-THERMO3 | 3_6010_200 | .7WATER_ | 3YLINES(v | 526) Mo | de: CONC | Corr. Factor: 1.000000 | | | | User: JYH | Custom | ID1: | Custom ID |)2: (| Custom ID3 | •
• | | | | | Comment: | Elem | Ag3280 | Al3082 | As1890 | B_2496 | Ba4554 | Be3131 | Ca4226 | Cd2288 | | | Units | ppm | | Avg | 00065 | .03141 | 00025 .00373 | .02261 | .04161 | 80000. | 4.4130 | .00025 | | | Stddev
%RSD | .00029
44.024 | .00680
21.650 | 1515.0 | .00133
5.8928 | .00022
.53542 | .00003
29.799 | .0335
.75996 | .00021
83.798 | | | 701 (OD | 77.027 | 21.000 | 1010.0 | 0.0020 | .000+2 | 20.700 | .70000 | 00.700 | | | #1 | 00034 | .03422 | .00404 | .02135 | .04176 | .00011 | 4.4439 | .00041 | | | #2 | 00072 | .03636 | 00202 | .02248 | .04135 | .00006 | 4.4178 | .00001 | | | #3 | 00090 | .02366 | 00276 | .02401 | .04172 | .00009 | 4.3773 | .00032 | | | Check? | Chk Pass | | High Limit | J | | | | | J | | J | | | Low Limit | | | | | | | | | | | Clam | Co2286 | Cr2677 | Cu2247 |
Fe2611 | V 7664 | 1:6707 | Ma2700 | Mn2576 | | | Elem
Units | D02280 | ppm | ppm | ppm | K_7664
ppm | Li6707
ppm | Mg2790
ppm | Mn2576
ppm | | | Avg | .00014 | . 00147 | . 00216 | .01 545 | . 77881 | .03163 | 2.3341 | 00088 | | | Stddev | .00025 | .00090 | .00072 | .00377 | .03811 | .00157 | .1600 | .00184 | | | %RSD | 177.66 | 60.839 | 33.457 | 24.403 | 4.8934 | 4.9742 | 6.8552 | 207.95 | | | #1 | .00028 | 00063 | .00295 | 01716 | 01220 | .03342 | 2 2025 | .00085 | | | #1
#2 | .00028 | .00062 | .00295 | .01716
.01113 | .81329
.78524 | .03098 | 2.2035
2.5126 | 00069 | | | #3 | 00015 | .00133 | .00203 | .01806 | .73789 | .03049 | 2.2863 | 00281 | | | | | | | | | | | | | | Check? | Chk Pass | | High Limit | | | | | | | | | | | Low Limit | | | | | | | | | | | Elem | Mo2020 | Na5895 | Ni2316 | P 2149 | Pb2203 | Sb2068 | Se1960 | Si2124 | | | Units | ppm | ppm | ppm | _ ppm | ppm | ppm | ppm | ppm | | | Avg | .00069 | 50.371 | .00021 | .06336 | 00143 | .00247 | 00046 | 22.742 | | | Stddev | .00004 | .203 | .00038 | .00741 | .00345 | .00159 | .00747 | .061 | | | %RSD | 6.5390 | .40210 | 178.47 | 11.695 | 241.30 | 64.401 | 1621.4 | .27025 | | | #1 | .00069 | 50.599 | .00011 | .06890 | 00399 | .00115 | .00074 | 22.784 | | | #2 | .00064 | 50.302 | 00011 | .05495 | 00280 | .00424 | 00846 | 22.771 | | | #3 | .00073 | 50.212 | .00063 | .06624 | .00250 | .00203 | .00634 | 22.672 | | | Check ?
High Limit
Low Limit | Chk Pass | | Sample Name: L1510114809 Acquired: 10/23/2015 14:58:03 Type: Unk | | | | | | | | | | |--|-----------------|------------------|-----------------|-----------|-----------------|------------------|-----------------|----------------|--| | Method: ICF | P-THERMO3 | 3_6010_200 | .7WATER_ | 3YLINES(v | 526) Mo | de: CONC | Corr. Fa | ctor: 1.000000 | | | User: JYH | Custom | ID1: | Custom ID |)2: (| Custom ID3 | : | | | | | Comment: | Elem | Sn1899 | Sr4077 | Ti3372 | TI1908 | V 2924 | Zn2062 | Zr3391 | | | | Units | ppm | | | Avg | 00001 | .13912 | 00264 | 00233 | .00031 | .00688 | .16399 | | | | Stddev | .00118 | .00082 | .00256 | .00275 | .00052 | .00020 | .22531 | | | | %RSD | 8919.6 | .58593 | 96.891 | 118.03 | 167.22 | 2.9778 | 137.39 | | | | #1 | 00117 | 14005 | 00402 | 00000 | 00016 | 00672 | 09720 | | | | #1
#2 | .00117 | .14005
.13878 | 00403
.00031 | .00002 | 00016
.00022 | .00672
.00711 | 08739
.23164 | | | | #2
#3 | 000120 | .13853 | 00420 | 00535 | .00022 | .00680 | .34773 | | | | 0 | .00001 | | .00.120 | .00000 | .00007 | .00000 | .01770 | | | | Check? | Chk Pass | | | High Limit | | | | | | | | | | | Low Limit | | | | | | | | | | | Int. Std. | Y 2243 | Y 3600 | V 2774 | | | | | | | | Units | 1_2243
Cts/S | 1_3000
Cts/S | Y_3774
Cts/S | | | | | | | | Avg | 10557. | 90363. | 3851.6 | | | | | | | | Stddev | 14. | 152. | 12.9 | | | | | | | | %RSD | .12800 | .16817 | .33427 | | | | | | | | | | | | | | | | | | | #1 | 10571. | 90188. | 3837.0 | | | | | | | | #2
#2 | 10544. | 90465. | 3861.3 | | | | | | | | #3 | 10556. | 90435. | 3856.5 | | | | | | | | Sample Name: L1510114811 Acquired: 10/23/2015 15:02:06 Type: Unk Method: ICP-THERMO3_6010_200.7WATER_3YLINES(v526) Mode: CONC Corr. Factor: 1.000000 User: JYH Custom ID1: Custom ID2: Custom ID3: Comment: | | | | | | | | | | |--|----------------|----------------|----------|----------------|----------------|----------------|---------------|----------------|--| | Elem | Ag3280 | Al3082 | As1890 | B_2496 | Ba4554 | Be3131 | Ca4226 | Cd2288 | | | Units | ppm | | Avg | . 00009 | . 02989 | 00355 | . 01748 | . 07522 | .00006 | 13.588 | 00003 | | | Stddev | .00082 | .00674 | .00223 | .00274 | .00037 | .00002 | .039 | .00014 | | | %RSD | 920.16 | 22.560 | 62.926 | 15.693 | .49417 | 35.320 | .28459 | 481.75 | | | #1 | 00084 | .03708 | 00559 | .01762 | .07542 | .00008 | 13.553 | 00003 | | | #2 | .00070 | .02891 | 00390 | .01468 | .07480 | .00006 | 13.580 | 00016 | | | #3 | .00041 | .02370 | 00116 | .02016 | .07546 | .00004 | 13.629 | .00011 | | | Check ?
High Limit
Low Limit | Chk Pass | | Elem | Co2286 | Cr2677 | Cu2247 | Fe2611 | K_7664 | Li6707 | Mg2790 | Mn2576 | | | Units | ppm | | Avg | .00056 | . 00076 | .00110 | . 01372 | . 68921 | . 04212 | 7.0694 | . 00523 | | | Stddev | .00030 | .00087 | .00099 | .00697 | .06888 | .00269 | .0580 | .00273 | | | %RSD | 52.790 | 114.19 | 90.220 | 50.794 | 9.9941 | 6.3976 | .81967 | 52.125 | | | #1 | .00075 | .00034 | .00016 | .02097 | .73240 | .04273 | 7.1356 | .00227 | | | #2 | .00022 | .00019 | .00100 | .01310 | .60977 | .03917 | 7.0278 | .00578 | | | #3 | .00072 | .00176 | .00214 | .00708 | .72545 | .04446 | 7.0447 | .00764 | | | Check ?
High Limit
Low Limit | Chk Pass | | Elem | Mo2020 | Na5895 | Ni2316 | P_2149 | Pb2203 | Sb2068 | Se1960 | Si2124 | | | Units | ppm | | Avg | . 00064 | 60.243 | .00095 | . 04975 | 00174 | . 00213 | 00189 | 18.726 | | | Stddev | .00024 | .245 | .00091 | .00301 | .00149 | .00069 | .00690 | .031 | | | %RSD | 37.084 | .40624 | 95.422 | 6.0463 | 85.582 | 32.638 | 365.98 | .16528 | | | #1 | .00081 | 60.388 | .00074 | .04723 | 00333 | .00238 | .00065 | 18.743 | | | #2 | .00037 | 59.961 | .00195 | .05308 | 00037 | .00134 | .00339 | 18.744 | | | #3 | .00074 | 60.381 | .00017 | .04894 | 00152 | .00266 | 00969 | 18.690 | | | Check ?
High Limit
Low Limit | Chk Pass | | Sample Nan | | | cquired: 10/ | | | Type: Unk | 0 5 | | |-------------|------------|------------|--------------|----------|------------|-----------|----------|----------------| | Method: ICP | | | _ | • | , | de: CONC | Corr. Fa | ctor: 1.00000(| | User: JYH | Custom | ID1: | Custom ID |)2: (| Custom ID3 | : | | | | Comment: | | | | | | | | | | Elem | Sn1899 | Sr4077 | Ti3372 | TI1908 | V_2924 | Zn2062 | Zr3391 | | | Units | ppm | | Avg | 00080 | .40275 | 00298 | 00334 | .00026 | .00223 | .18317 | | | Stddev | .00105 | .00154 | .00180 | .00139 | .00079 | .00005 | .15033 | | | %RSD | 131.57 | .38189 | 60.410 | 41.723 | 306.24 | 2.4235 | 82.071 | | | #1 | 00189 | .40387 | 00456 | 00484 | .00089 | .00228 | .27693 | | | #2 | .00020 | .40099 | 00102 | 00210 | 00063 | .00224 | .00978 | | | #3 | 00071 | .40338 | 00334 | 00307 | .00051 | .00217 | .26280 | | | Check? | Chk Pass | | High Limit | | | | | | | | | | Low Limit | | | | | | | | | | Int. Std. | Y 2243 | Y_3600 | Y_3774 | | | | | | | Units | _
Cts/S | _
Cts/S | _
Cts/S | | | | | | | Avg | 10511. | 89903. | 3834.4 | | | | | | | Stddev | 23. | 96. | 20.4 | | | | | | | %RSD | .21768 | .10689 | .53245 | | | | | | | #1 | 10505. | 89956. | 3821.5 | | | | | | | #2 | 10492. | 89792. | 3858.0 | | | | | | | #3 | 10537. | 89961. | 3823.9 | | | | | | | Sample Name: L1510114812 | | | | | | | | | | | |------------------------------------|-----------|------------|-----------|------------------|------------|----------|----------|-----------------|--|--| | Method: ICF | P-THERMO3 | 3_6010_200 | .7WATER_ | 3YLINES(v | 526) Mc | de: CONC | Corr. Fa | actor: 1.00000(| | | | User: JYH | Custom | ID1: | Custom ID |)2: (| Custom ID3 | : | | | | | | Comment: | Elem | Ag3280 | Al3082 | As1890 | B 2496 | Ba4554 | Be3131 | Ca4226 | Cd2288 | | | | Units | ppm | | | Avg | .00009 | .06813 | 00382 | .04003 | 03925 | .00004 | 32.193 | .00039 | | | | Stddev | .00077 | .00604 | .00461 | .00145 | .00043 | .00002 | .046 | .00003 | | | | %RSD | 829.25 | 8.8712 | 120.81 | 3.6129 | 1.0937 | 60.996 | .14336 | 8.8072 | | | | #1 | .00025 | .07494 | 00716 | 02057 | .03906 | .00006 | 32.184 | .00043 | | | | #1
#2 | .00025 | .06604 | .00716 | .03957
.04166 | .03895 | .00003 | 32.164 | .00043 | | | | #2
#3 | 00077 | .06340 | 00573 | .03888 | .03974 | .00003 | 32.242 | .00037 | | | | #0 | 00073 | .00040 | 00070 | .00000 | .00074 | .00002 | JZ.Z4Z | .00000 | | | | Check? | Chk Pass | | | High Limit | | | | | | | | | | | | Low Limit | | | | | | | | | | | | Elem | Co2286 | Cr2677 | Cu2247 | Fe2611 | K 7664 | Li6707 | Mg2790 | Mn2576 | | | | Units | ppm | | | Avg | .00093 | .00048 | .00011 | .14738 | 1.4855 | .05772 | 17.528 | .12685 | | | | Stddev | .00052 | .00138 | .00102 | .01250 | .1033 | .00271 | .112 | .00361 | | | | %RSD | 55.996 | 284.31 | 962.86 | 8.4803 | 6.9534 | 4.6984 | .63971 | 2.8481 | | | | | | | | | | | | | | | | #1 | .00143 | .00153 | 00024 | .13320 | 1.5938 | .05817 | 17.502 | .13077 | | | | #2 | .00039 | 00107 | 00070 | .15214 | 1.3881 | .05482 | 17.431 | .12366 | | | | #3 | .00097 | .00099 | .00126 | .15681 | 1.4745 | .06019 | 17.651 | .12612 | | | | Check? | Chk Pass | | | High Limit | | | | | | | | | | | | Low Limit | | | | | | | | | | | | Elem | Mo2020 | Na5895 | Ni2316 | P_2149 | Pb2203 | Sb2068 | Se1960 | Si2124 | | | | Units | ppm | | | Avg | .00063 | 124.53 | .00096 | .08210 | 00437 | .00460 | .00252 | 13.776 | | | | Stddev | .00024 | .25 | .00075 | .00528 | .00358 | .00384 | .00805 | .040 | | | | %RSD | 37.756 | .20105 | 77.690 | 6.4267 | 81.938 | 83.448 | 319.31 | .29125 | | | | | | | | | | | | 40 -00 | | | | #1
#2 | .00052 | 124.49 | .00015 | .07923 | 00078 | .00022 | .00296 | 13.798 | | | | #2
#2 | .00046 | 124.30 | .00112 | .08819 | 00439 | .00738 | .01034 | 13.800 | | | | #3 | .00090 | 124.80 | .00161 | .07888 | 00794 | .00620 | 00574 | 13.729 | | | | Check ?
High Limit
Low Limit | Chk Pass | | | LOW LITTIL | | | | | | | | | | | | Sample Name: L1510114812 | | | | | | | | | | |--------------------------|-----------------|-----------------|-----------------|-----------|----------------|----------
------------------|----------------|--| | Method: ICF | P-THERMO3 | 3_6010_200 | .7WATER_ | 3YLINES(v | 526) Mc | de: CONC | Corr. Fa | ctor: 1.000000 | | | User: JYH | Custom | ID1: | Custom ID |)2: (| Custom ID3 | · | | | | | Comment: | Elem | Sn1899 | Sr4077 | Ti3372 | TI1908 | V 2924 | Zn2062 | Zr3391 | | | | Units | ppm | | | Avg | 00024 | 1.0280 | 00359 | 00290 | 00047 | .00193 | .17967 | | | | Stddev | .00105 | .0036 | .00298 | .00322 | .00037 | .00019 | .09412 | | | | %RSD | 432.37 | .34535 | 83.090 | 110.94 | 79.230 | 9.8604 | 52.384 | | | | #1 | .00069 | 1.0273 | 00120 | .00056 | 00000 | 00214 | 20025 | | | | #1
#2 | 00138 | 1.0273 | 00138
00698 | 00579 | 00089
00030 | .00214 | .28835
.12504 | | | | #2
#3 | 00004 | 1.0243 | 00240 | 00373 | 00030 | .00107 | .12562 | | | | 0 | .0000. | | .002.10 | 100017 | .0002. | 100177 | 2002 | | | | Check? | Chk Pass | | | High Limit | | | | | | | | | | | Low Limit | | | | | | | | | | | Int. Std. | Y 2243 | Y 3600 | Y 3774 | | | | | | | | Units | 1_2243
Cts/S | 1_3000
Cts/S | 1_3774
Cts/S | | | | | | | | Avg | 10359. | 88010. | 3848.4 | | | | | | | | Stddev | 17. | 103. | 19.9 | | | | | | | | %RSD | .16303 | .11731 | .51604 | | | | | | | | | | | | | | | | | | | #1 | 10339. | 88130. | 3865.9 | | | | | | | | #2
#2 | 10368. | 87951. | 3852.4 | | | | | | | | #3 | 10369. | 87950. | 3826.8 | | | | | | | | • | | | | | | | | | | |---------------------------|----------------|----------------|----------------|----------------|----------------|----------------|----------------|--|--| | Elem | Ag3280 | Al3082 | As1890 | B_2496 | Ba4554 | Be3131 | Ca4226 | | | | Units | ppm | | | Avg | . 41932 | 10.614 | . 42121 | . 52124 | 1.0915 | . 05360 | 10.794 | | | | Stddev | .00185 | .032 | .00269 | .00144 | .0055 | .00008 | .042 | | | | %RSD | .44136 | .30276 | .63876 | .27716 | .50783 | .14393 | .39327 | | | | #1 | .41967 | 10.647 | .42134 | .52074 | 1.0978 | .05352 | 10.841 | | | | #2 | .41732 | 10.583 | .42384 | .52011 | 1.0876 | .05368 | 10.759 | | | | #3 | .42097 | 10.612 | .41846 | .52287 | 1.0890 | .05361 | 10.782 | | | | Check ?
Value
Range | Chk Pass | | | Elem | Cd2288 | Co2286 | Cr2677 | Cu2247 | Fe2611 | K_7664 | Li6707 | | | | Units | ppm | | | Avg | . 05327 | . 21334 | . 53394 | . 53224 | 4.3073 | 54.745 | 1.0816 | | | | Stddev | .00011 | .00055 | .00101 | .00171 | .0455 | .454 | .0089 | | | | %RSD | .19772 | .25644 | .18926 | .32163 | 1.0559 | .82893 | .81787 | | | | #1 | .05325 | .21349 | .53284 | .53258 | 4.3594 | 55.256 | 1.0905 | | | | #2 | .05317 | .21380 | .53413 | .53376 | 4.2760 | 54.389 | 1.0813 | | | | #3 | .05338 | .21274 | .53483 | .53038 | 4.2864 | 54.590 | 1.0728 | | | | Check ?
Value
Range | Chk Pass | | | Elem | Mg2790 | Mn2576 | Mo2020 | Na5895 | Ni2316 | P_2149 | Pb2203 | | | | Units | ppm | | | Avg | 10.520 | . 53979 | 1.0603 | 54.202 | . 53143 | 10.402 | . 52514 | | | | Stddev | .027 | .00170 | .0024 | .409 | .00159 | .031 | .00878 | | | | %RSD | .25874 | .31419 | .22145 | .75482 | .29966 | .29784 | 1.6711 | | | | #1 | 10.536 | .54147 | 1.0613 | 54.673 | .53318 | 10.431 | .52518 | | | | #2 | 10.535 | .53981 | 1.0621 | 53.942 | .53006 | 10.405 | .53390 | | | | #3 | 10.488 | .53808 | 1.0577 | 53.990 | .53106 | 10.369 | .51635 | | | | Check ?
Value
Range | Chk Pass | | | • | | | | | | | | | | |---|---|---|--|--|---|--|---|--|--| | Elem
Units
Avg
Stddev
%RSD | Sb2068
ppm
1.2685
.0097
.76630 | Se1960
ppm
. 42534
.00390
.91763 | Si2124
ppm
5.2897
.0087
.16390 | Sn1899
ppm
1.0683
.0011
.10318 | Sr4077
ppm
1.0887
.0068
.62627 | Ti3372
ppm
1.0971
.0002
.01916 | TI1908
ppm
. 52822
.00161
.30531 | | | | #1
#2
#3 | 1.2789
1.2672
1.2596 | .42514
.42154
.42934 | 5.2800
5.2967
5.2924 | 1.0690
1.0670
1.0689 | 1.0965
1.0848
1.0846 | 1.0972
1.0971
1.0968 | .52770
.52694
.53003 | | | | Check ?
Value
Range | Chk Pass | | | Elem
Units
Avg
Stddev
%RSD | V_2924
ppm
1.0774
.0010
.09591 | Zn2062
ppm
1.0472
.0011
.10278 | Zr3391
ppm
F .71149
.14664
20.610 | | | | | | | | #1
#2
#3 | 1.0786
1.0767
1.0768 | 1.0484
1.0463
1.0468 | .54217
.79536
.79695 | | | | | | | | Check ?
Value
Range | Chk Pass | Chk Pass | Chk Fail
1.0000
-10.000% | | | | | | | | Int. Std.
Units
Avg
Stddev
%RSD | Y_2243
Cts/S
10743.
9.
.08150 | Y_3600
Cts/S
91202.
50.
.05464 | Y_3774
Cts/S
3924.7
30.4
.77542 | | | | | | | | #1
#2
#3 | 10754.
10737.
10739. | 91145.
91240.
91219. | 3889.6
3941.1
3943.6 | | | | | | | | • | | | | | | | | | | |------------------------------------|----------------|----------|----------------|----------------|----------------|----------------|----------------|--|--| | Elem | Ag3280 | Al3082 | As1890 | B_2496 | Ba4554 | Be3131 | Ca4226 | | | | Units | ppm | | | Avg | . 00109 | .00864 | 00057 | .00338 | . 00037 | .00002 | 00029 | | | | Stddev | .00096 | .00313 | .00414 | .00048 | .00077 | .00004 | .00858 | | | | %RSD | 88.141 | 36.280 | 732.14 | 14.235 | 205.42 | 239.18 | 2946.6 | | | | #1 | .00190 | .01223 | .00199 | .00335 | .00124 | 00003 | 00894 | | | | #2 | .00134 | .00725 | 00534 | .00291 | 00021 | .00006 | 00014 | | | | #3 | .00003 | .00644 | .00165 | .00387 | .00009 | .00003 | .00821 | | | | Check ?
High Limit
Low Limit | Chk Pass | | | Elem | Cd2288 | Co2286 | Cr2677 | Cu2247 | Fe2611 | K_7664 | Li6707 | | | | Units | ppm | | | Avg | . 00004 | .00031 | . 00011 | . 00049 | . 00569 | . 17331 | . 00855 | | | | Stddev | .00012 | .00009 | .00091 | .00083 | .00971 | .07792 | .00114 | | | | %RSD | 329.63 | 29.798 | 836.71 | 170.58 | 170.74 | 44.960 | 13.339 | | | | #1 | .00003 | .00040 | .00098 | 00047 | 00546 | .25277 | .00775 | | | | #2 | .00016 | .00032 | .00019 | .00090 | .01228 | .17014 | .00805 | | | | #3 | 00008 | .00021 | 00084 | .00104 | .01024 | .09703 | .00986 | | | | Check ?
High Limit
Low Limit | Chk Pass | | | Elem | Mg2790 | Mn2576 | Mo2020 | Na5895 | Ni2316 | P_2149 | Pb2203 | | | | Units | ppm | | | Avg | 05296 | 00179 | .00138 | . 02600 | .00095 | 00010 | 00302 | | | | Stddev | .08611 | .00220 | .00024 | .02553 | .00074 | .00645 | .00231 | | | | %RSD | 162.58 | 122.36 | 17.249 | 98.190 | 77.041 | 6548.7 | 76.655 | | | | #1 | 11039 | 00251 | .00116 | .02502 | .00180 | .00688 | 00057 | | | | #2 | 09454 | .00067 | .00164 | .05200 | .00063 | 00583 | 00517 | | | | #3 | .04604 | 00354 | .00134 | .00097 | .00044 | 00135 | 00332 | | | | Check ?
High Limit
Low Limit | Chk Pass | | | • | | | | | | | | | | |---|---|---|---|--|---|--|--|--|--| | Elem
Units
Avg
Stddev
%RSD | Sb2068
ppm
. 00051
.00375
736.69 | Se1960
ppm
.00425
.01060
249.35 | Si2124
ppm
.00772
.00206
26.737 | Sn1899
ppm
00016
.00038
247.44 | Sr4077
ppm
. 00020
.00010
49.852 | Ti3372
ppm
00217
.00281
129.19 | TI1908
ppm
00406
.00309
76.175 | | | | #1
#2
#3 | .00408
.00085
00340 | .01646
00107
00264 | .00533
.00892
.00889 | 00059
.00013
.00000 | .00030
.00018
.00011 | 00196
00508
.00052 | 00516
00057
00646 | | | | Check ?
High Limit
Low Limit | Chk Pass | | | Elem
Units
Avg
Stddev
%RSD | V_2924
ppm
00072
.00080
111.21 | Zn2062
ppm
.00003
.00015
469.96 | Zr3391
ppm
F .12012
.09708
80.824 | | | | | | | | #1
#2
#3 | .00011
00149
00079 | .00012
.00011
00014 | .18367
.00837
.16832 | | | | | | | | Check ?
High Limit
Low Limit | Chk Pass | Chk Pass | Chk Fail
.04000
04000 | | | | | | | | Int. Std.
Units
Avg
Stddev
%RSD | Y_2243
Cts/S
10916.
18.
.16425 | Y_3600
Cts/S
93601.
137.
.14606 | Y_3774
Cts/S
3934.2
13.6
.34481 | | | | | | | | #1
#2
#3 | 10908.
10937.
10904. | 93665.
93694.
93444. | 3918.8
3944.5
3939.3 | | | | | | | | Sample Name: LLCCV Acquired: 10/23/2015 15:18:47 Type: Unk Method: ICP-THERMO3_6010_200.7WATER_3YLINES(v526) Mode: CONC Corr. Factor: 1.000000 User: JYH Custom ID1: Custom ID2: Custom ID3: Comment: | | | | | | | | | | |--|---|---|---------------------------------------|---------------------------------|---|---|---------------------------------|---|--| | Elem
Units
Avg
Stddev
%RSD
 Ag3280
ppm
. 00917
.00051
5.5970 | Al3082
ppm
. 17858
.00684
3.8323 | ppm
. <mark>00690</mark>
.00179 | ppm
. 08357
.00053 | Ba4554
ppm
. 00962
.00067
6.9774 | Be3131
ppm
. 00171
.00003
1.7034 | . 44835
.02189 | Cd2288
ppm
. 00081
.00006
7.1841 | | | #1
#2
#3 | .00929
.00861
.00962 | .17839
.18551
.17182 | .00896 | .08416 | .01017
.00887
.00981 | .00173
.00173
.00168 | .47352
.43784
.43370 | .00077
.00087
.00078 | | | Check?
High Limit
Low Limit | Chk Pass | | Elem
Units
Avg
Stddev
%RSD | Co2286
ppm
. 00448
.00017
3.8564 | Cr2677
ppm
. 00431
.00066
15.194 | ppm
. 00462
.00075 | ppm
. 07781
.02393 | K_7664
ppm
1.1066
.0301
2.7164 | Li6707
ppm
. 09293
.00148
1.5928 | ppm
. 43197
.01878 | Mn2576
ppm
. 00896
.00127
14.165 | | | #1
#2
#3 | .00462
.00452
.00428 | .00490
.00361
.00444 | .00505
.00376
.00505 | .05109 | 1.0912
1.0875
1.1413 | .09170
.09458
.09252 | .42699
.45273
.41618 | .00826
.01042
.00819 | | | Check ?
High Limit
Low Limit | Chk Pass | | Elem
Units
Avg
Stddev
%RSD | Mo2020
ppm
. 00861
.00053
6.1098 | Na5895
ppm
. 45563
.02028
4.4500 | ppm
. 01710 | —
ppm
. 79892 | Pb2203
ppm
. 00560
.00367
65.522 | Sb2068
ppm
. 08010
.00184
2.2956 | ppm
. 01940 | Si2124
ppm
. 82216
.00107
.12974 | | | #1
#2
#3 | .00824
.00921
.00838 | .45475
.47634
.43581 | .01680
.01687
.01764 | .80089
.79837
.79750 | .00257
.00968
.00456 | .08186
.07820
.08025 | .01632
.02114
.02073 | .82339
.82160
.82148 | | | Check ?
High Limit
Low Limit | Chk Pass | Sample Name: LLCCV Acquired: 10/23/2015 15:18:47 Type: Unk Method: ICP-THERMO3_6010_200.7WATER_3YLINES(v526) Mode: CONC Corr. Factor: 1.000000 Custom ID1: User: JYH Custom ID2: Custom ID3: Comment: Elem Sn1899 Sr4077 Ti3372 TI1908 V_2924 Zn2062 Zr3391 Units ppm ppm ppm ppm ppm ppm ppm Avg .42962 .04368 .02479 .17558 .00780 .01786 18.293 Stddev .00186 .00011 .00295 .00242 .00109 .00013 .050 %RSD .43183 .25779 11.892 1.3769 13.914 .74653 .27482 #1 .43053 .04373 .02576 .17612 .00662 .01774 18.289 #2 .43084 .04376 .02148 .17768 .00876 .01800 18.245 .42748 .17293 .00802 #3 .04355 .02714 .01782 18.345 Check? Chk Pass Chk Pass Chk Pass Chk Pass Chk Pass Chk Pass **High Limit** Low Limit Int. Std. Y_2243 Y 3600 Y_3774 Cts/S Units Cts/S Cts/S 11030. 94539. 3966.0 Avg Stddev 129. 37.4 8. %RSD .07438 .13629 .94194 #1 11024. 94392. 3922.9 #2 11040. 94632. 3985.9 #3 11027. 94593. 3989.3 Approved: October 26, 2015 J'ye 1hu | Elem
Units
Avg
Stddev
%RSD | Ag3280
ppm
. 00967
.00153
15.822 | Al3082
ppm
. 18741
.00498
2.6546 | ppm
. 01667
.00134 | ppm
. 08440
.00071 | Ba4554
ppm
. 01003
.00072
7.1715 | Be3131
ppm
. 00897
.00002
.17492 | . 42920
.00841 | Cd2288
ppm
. 00907
.00036
4.0018 | | | | |--|---|---|---|---------------------------------|---|---|---------------------------------|---|--|--|--| | #1
#2
#3 | .01055
.00791
.01056 | .19043
.18167
.19013 | .01760
.01514
.01729 | | .01082
.00941
.00986 | .00898
.00898
.00895 | .42467
.42403
.43890 | .00868
.00912
.00940 | | | | | Check ?
High Limit
Low Limit | Chk Pass | | | | Elem
Units
Avg
Stddev
%RSD | Co2286
ppm
. 00970
.00052
5.3116 | Cr2677
ppm
. 01700
.00041
2.4124 | Cu2247
ppm
. 01847
.00012
.64961 | ppm
. 07368 | K_7664
ppm
1.0420
.0295
2.8282 | Li6707
ppm
. 09519
.00263
2.7610 | ppm
. 41059
.09464 | Mn2576
ppm
. 01036
.00166
16.036 | | | | | #1
#2
#3 | .01025
.00965
.00922 | .01674
.01679
.01748 | .01851
.01856
.01833 | .06241
.06150
.09712 | 1.0429
1.0711
1.0121 | .09605
.09223
.09727 | .38653 | .01189
.01060
.00860 | | | | | Check ?
High Limit
Low Limit | Chk Pass | | | | Elem
Units
Avg
Stddev
%RSD | Mo2020
ppm
. 04986
.00036
.71327 | Na5895
ppm
. 45950
.04211
9.1640 | ppm | | Pb2203
ppm
. 01674
.00515
30.764 | Sb2068
ppm
. 01755
.00349
19.875 | | Si2124
ppm
. 00175
.00319
182.34 | | | | | #1
#2
#3 | .05018
.04947
.04991 | .41962
.50353
.45534 | .03564
.03549
.03673 | 00019
.01289
.00710 | .02223
.01201
.01599 | .01382
.02073
.01809 | .02223
.01314
.01509 | 00006
00013
.00544 | | | | | Check ?
High Limit
Low Limit | Chk Pass | | | Sample Name: LLCCV Acquired: 10/23/2015 15:22:52 Type: Unk Method: ICP-THERMO3_6010_200.7WATER_3YLINES(v526) Mode: CONC Corr. Factor: 1.000000 Custom ID1: User: JYH Custom ID2: Custom ID3: Comment: Elem Sn1899 Sr4077 Ti3372 TI1908 V_2924 Zn2062 Zr3391 Units ppm ppm ppm ppm ppm ppm ppm Avg .08641 .00959 .02934 .08720 .00846 .01832 .26831 Stddev .00054 .00010 .00387 .00402 .00015 .00017 .09570 %RSD .62314 1.0558 13.187 4.6048 1.7452 .93462 35.666 #1 .08695 .00957 .02663 .08371 .00830 .01812 .24220 #2 .08587 .00970 .02761 .08631 .00858 .01844 .18838 .08642 .00950 #3 .03377 .09159 .00851 .01839 .37435 Check? Chk Pass Chk Pass Chk Pass Chk Pass Chk Pass Chk Pass **High Limit** Low Limit Int. Std. Y 2243 Y 3600 Y_3774 Units Cts/S Cts/S Cts/S 10979. 94190. 3964.4 Avg Stddev 22. 182. 22.2 %RSD .20215 .19341 .56014 #1 94044. 10954. 3947.8 #2 10987. 94394. 3989.6 #3 10996. 94132. 3955.7 Approved: October 26, 2015 J'ye 1hu | Sample Name
Method: ICP-T
User: JYH
Comment: | |)10_200.7W <i>A</i> | ed: 10/23/20
ATER_3YLIN
stom ID2: | | Type: Unk
Mode: CONC
ID3: | C Corr. F | Factor: 1.00000(| |---|----------------|---------------------|---|-----------------------------|---------------------------------|----------------|------------------| | Elem | Ag3280 | Al3082 | As1890 | B_2496 | Ba4554 | Be3131 | Ca4226 | | Units | ppm | Avg | 00124 | . 03057 | .00387 | . 07362 | . 02705 | .00002 | 256.52 | | Stddev | .00142 | .00413 | .00028 | .00124 | .00040 | .00004 | .75 | | %RSD | 114.18 | 13.505 | 7.2509 | 1.6794 | 1.4774 | 258.58 | .29211 | | #1 | 00158 | .03089 | .00366 | .07492 | .02696 | 00003 | 255.68 | | #2 | .00031 | .02628 | .00419 | .07246 | .02749 | .00005 | 256.75 | | #3 | 00247 | .03452 | .00377 | .07346 | .02671 | .00002 | 257.12 | | Check ?
High Limit
Low Limit | Chk Pass | Elem | Cd2288 | Co2286 | Cr2677 | Cu2247 | Fe2611 | K_7664 | Li6707 | | Units | ppm | Avg | . 00059 | .00956 | . 00213 | . 00262 | . 10417 | 3.0793 | . 03287 | | Stddev | .00032 | .00004 | .00045 | .00125 | .00899 | .0266 | .00545 | | %RSD | 55.087 | .45956 | 21.041 | 47.600 | 8.6327 | .86442 | 16.591 | | #1 | .00057 | .00958 | .00261 | .00144 | .11305 | 3.0486 | .03886 | | #2 | .00093 | .00958 | .00173 | .00249 | .09507 | 3.0938 | .03154 | | #3 | .00028 | .00951 | .00205 | .00392 | .10441 | 3.0955 | .02820 | | Check ?
High Limit
Low Limit | Chk Pass | Elem | Mg2790 | Mn2576 | Mo2020 | Na5895 | Ni2316 | P_2149 | Pb2203 | | Units | ppm | Avg | 54.813 | 1.2987 | . 03838 | F 292.31 | . 01798 | . 00373 | 00233 | | Stddev | .226 | .0050 | .00033 | .05 | .00109 | .00183 | .00196 | | %RSD | .41238 | .38491 | .87015 | .01686 | 6.0565 | 49.033 | 84.389 | | #1 | 54.555 | 1.2929 | .03799 | 292.26 | .01675 | .00523 | 00095 | | #2 | 54.912 | 1.3023 | .03860 | 292.30 | .01836 | .00428 | 00458 | | #3 | 54.973 | 1.3008 | .03853 | 292.36 | .01882 | .00169 | 00145 | | Check ?
High Limit
Low Limit | Chk Pass | Chk Pass | Chk Pass | Chk Fail
270.00
50000 | Chk Pass | Chk Pass | Chk Pass | | Sample Name: L1510074918 Acquired: 10/23/2015 15:: Method: ICP-THERMO3_6010_200.7WATER_3YLINES(v52) User: JYH Custom ID1: Custom ID2: C Comment: | | | | | Type: Unk
Mode: CON
ID3: | | Factor: 1.00000(| |---|---|---|--|--|---|---|--| | Elem
Units
Avg
Stddev
%RSD | Sb2068
ppm
. 00755
.00088
11.662 | Se1960
ppm
00190
.00898
472.98 | Si2124
ppm
35.543
.118
.33132 | Sn1899
ppm
00076
.00077
101.92 | Sr4077
ppm
. 29201
.00097
.33102 | Ti3372
ppm
F04341
.00222
5.1252 | TI1908
ppm
00063
.00189
299.51 | | #1
#2
#3 | .00809
.00802
.00653 | .00240
01222
.00413 | 35.626
35.594
35.408 | .00010
00097
00140 | .29128
.29311
.29164 | 04353
04113
04557 | 00144
.00153
00199 | | Check ?
High
Limit
Low Limit | Chk Pass | Chk Pass | Chk Pass | Chk Pass | Chk Pass | Chk Fail
36.000
03000 | Chk Pass | | Elem
Units
Avg
Stddev
%RSD | V_2924
ppm
00035
.00062
178.89 | Zn2062
ppm
. 01474
.00045
3.0450 | Zr3391
ppm
.3 7570
.13105
34.882 | | | | | | #1
#2
#3 | 00102
.00021
00024 | .01449
.01526
.01446 | .41023
.48603
.23084 | | | | | | Check ?
High Limit
Low Limit | Chk Pass | Chk Pass | Chk Pass | | | | | | Int. Std.
Units
Avg
Stddev
%RSD | Y_2243
Cts/S
9849.9
13.5
.13683 | Y_3600
Cts/S
83715 .
105.
.12539 | Y_3774
Cts/S
3 796 .6
11.0
.28975 | | | | | | #1
#2
#3 | 9839.8
9844.7
9865.2 | 83670.
83640.
83835. | 3789.2
3791.4
3809.3 | | | | | | Sample Name
Method: ICP-T
User: JYH
Comment: | | 010_200.7WA | red: 10/23/20
ATER_3YLIN
stom ID2: | | Type: Unk
Mode: CONO
ID3: | | Factor: 1.00000(| |---|----------------|----------------|--|----------------|---------------------------------|----------------|------------------| | Elem | Ag3280 | Al3082 | As1890 | B_2496 | Ba4554 | Be3131 | Ca4226 | | Units | ppm | Avg | 00055 | . 02728 | . 00560 | . 04466 | . 06062 | .00002 | 228.65 | | Stddev | .00181 | .00279 | .00166 | .00141 | .00107 | .00003 | .50 | | %RSD | 326.70 | 10.232 | 29.664 | 3.1475 | 1.7570 | 127.02 | .22081 | | #1 | .00061 | .03023 | .00751 | .04312 | .06184 | .00001 | 229.07 | | #2 | 00263 | .02468 | .00453 | .04587 | .06015 | .00006 | 228.09 | | #3 | .00037 | .02693 | .00474 | .04498 | .05987 | .00001 | 228.81 | | Check ?
High Limit
Low Limit | Chk Pass | Elem | Cd2288 | Co2286 | Cr2677 | Cu2247 | Fe2611 | K_7664 | Li6707 | | Units | ppm | Avg | . 00051 | . 00105 | . 00169 | . 00102 | . 06689 | 3.0362 | . 04450 | | Stddev | .00008 | .00039 | .00047 | .00116 | .01375 | .0670 | .00273 | | %RSD | 16.578 | 36.915 | 28.000 | 114.25 | 20.559 | 2.2054 | 6.1273 | | #1 | .00050 | .00140 | .00210 | 00015 | .07441 | 3.0705 | .04765 | | #2 | .00060 | .00063 | .00117 | .00103 | .05101 | 2.9590 | .04290 | | #3 | .00043 | .00113 | .00178 | .00218 | .07523 | 3.0790 | .04295 | | Check ?
High Limit
Low Limit | Chk Pass | Elem | Mg2790 | Mn2576 | Mo2020 | Na5895 | Ni2316 | P_2149 | Pb2203 | | Units | ppm | Avg | 95.398 | . 12706 | . 02683 | 133.93 | . 05583 | . 00310 | 00129 | | Stddev | .211 | .00031 | .00046 | .36 | .00110 | .00641 | .00337 | | %RSD | .22103 | .24531 | 1.7036 | .26807 | 1.9756 | 206.69 | 260.06 | | #1 | 95.583 | .12711 | .02701 | 134.19 | .05709 | 00398 | .00001 | | #2 | 95.168 | .12735 | .02717 | 133.52 | .05507 | .00851 | 00512 | | #3 | 95.443 | .12673 | .02631 | 134.07 | .05531 | .00476 | .00123 | | Check ?
High Limit
Low Limit | Chk Pass | Sample Name: L1510074920 Acquired: 10/23/2015 19 Method: ICP-THERMO3_6010_200.7WATER_3YLINES(v User: JYH Custom ID1: Custom ID2: Comment: | | | | | Type: Unl
Mode: CON
ID3: | | Factor: 1.00000(| |---|---|---|---|---|---|---|--| | Elem
Units
Avg
Stddev
%RSD | Sb2068
ppm
. 00058
.00624
1068.2 | Se1960
ppm
00292
.00678
232.20 | Si2124
ppm
9. 5189
.0176
.18458 | Sn1899
ppm
. 00096
.00056
58.291 | Sr4077
ppm
. 58482
.00117
.19970 | Ti3372
ppm
F03618
.00589
16.274 | TI1908
ppm
00121
.00252
207.86 | | #1
#2
#3 | .00777
00256
00345 | 00019
01063
.00207 | 9.5267
9.5313
9.4988 | .00054
.00159
.00075 | .58585
.58355
.58505 | 03304
03253
04297 | 00407
.00064
00019 | | Check ?
High Limit
Low Limit | Chk Pass | Chk Pass | Chk Pass | Chk Pass | Chk Pass | Chk Fail
36.000
03000 | Chk Pass | | Elem
Units
Avg
Stddev
%RSD | V_2924
ppm
00017
.00038
218.73 | Zn2062
ppm
. 00268
.00020
7.4374 | Zr3391
ppm
. 42255
.10403
24.620 | | | | | | #1
#2
#3 | 00002
00061
.00011 | .00282
.00276
.00245 | .31774
.42412
.52578 | | | | | | Check ?
High Limit
Low Limit | Chk Pass | Chk Pass | Chk Pass | | | | | | Int. Std.
Units
Avg
Stddev
%RSD | Y_2243
Cts/S
9979.0
22.7
.22699 | Y_3600
Cts/S
85146 .
186.
.21868 | Y_3774
Cts/S
3816 .1
23.5
.61542 | | | | | | #1
#2
#3 | 9994.1
9989.9
9953.0 | 85002.
85081.
85356. | 3802.2
3843.2
3802.9 | | | | | | Sample Name: L1510074922 Acquired: 10/23/2015 15:34:49 Type: Unk | | | | | | | | | |--|--------------------------|-----------------------|--------------------------|--------------------------------|------------------------|------------------------|--------------------------|------------------------| | Method: ICP-THERMO3_6010_200.7WATER_3YLINES(v526) Mode: CONC | | | | | | | Corr. Fa | actor: 1.00000(| | User: JYH | Custom | ID1: | Custom ID |)2: (| Custom ID3 | : | | | | Comment: | Elem | Ag3280 | Al3082 | As1890 | B 2496 | Ba4554 | Be3131 | Ca4226 | Cd2288 | | Units | ppm | Avg | 00089 | .02101 | .00143 | .03330 | .02631 | .00001 | 114.12 | .00009 | | Stddev | .00028 | .00081 | .00341 | .00099 | .00053 | .00009 | .36 | .00009 | | %RSD | 31.506 | 3.8442 | 237.66 | 2.9880 | 1.9980 | 1295.6 | .31822 | 106.20 | | #1 | 00121 | .02037 | 00118 | .03443 | .02572 | 00009 | 114.53 | 00000 | | #2 | 00072 | .02192 | .00529 | .03288 | .02648 | .00005 | 113.85 | .00018 | | #3 | 00073 | .02074 | .00020 | .03258 | .02673 | .00007 | 113.97 | .00008 | | | | | | | | | | | | Check? | Chk Pass | High Limit | | | | | | | | | | Low Limit | | | | | | | | | | Elem | Co2286 | Cr2677 | Cu2247 | Fe2611 | K_7664 | Li6707 | Mg2790 | Mn2576 | | Units | ppm | Avg | .00052 | .00182 | .00180 | .00859 | 2.3817 | .02907 | 52.801 | .04941 | | Stddev | .00016 | .00086 | .00091 | .01729 | .1193 | .00113 | .337 | .00236 | | %RSD | 31.096 | 47.114 | 50.894 | 201.24 | 5.0083 | 3.8950 | .63858 | 4.7832 | | #1 | .00070 | .00187 | .00268 | 00239 | 2.5117 | .02778 | 53.168 | .05192 | | #2 | .00039 | .00094 | .00085 | 00035 | 2.2774 | .02956 | 52.729 | .04723 | | #3 | .00046 | .00266 | .00186 | .02852 | 2.3558 | .02989 | 52.506 | .04908 | | Check? | Chk Pass | High Limit | Clik F ass | CIIK F ass | CIIK F ass | Clik Fass | Clik F d55 | Clik Fass | Clik Fass | Clik F d55 | | Low Limit | Elem | Mo2020 | Na5895 | Ni2316 | P_2149 | Pb2203 | Sb2068 | Se1960 | Si2124 | | Units | ppm | Avg
Stddev | . 04974
.00042 | 19.470
.071 | . 00480
.00090 | . <mark>00394</mark>
.00516 | 00440
.00186 | 00061
.00489 | . 00539
.00571 | 7.5507
.0068 | | %RSD | .84886 | .36552 | 18.667 | 131.05 | 42.278 | 802.60 | 106.04 | .09017 | | 701 (SD | .04000 | .50552 | 10.007 | 101.00 | 42.270 | 002.00 | 100.04 | .03017 | | #1 | .04927 | 19.552 | .00377 | .00262 | 00477 | .00488 | .00377 | 7.5433 | | #2 | .05009 | 19.426 | .00521 | .00962 | 00238 | 00449 | .00066 | 7.5522 | | #3 | .04986 | 19.432 | .00541 | 00044 | 00604 | 00222 | .01174 | 7.5567 | | Check ?
High Limit
Low Limit | Chk Pass | Sample Name: L1510074922 | | | | | | | | | |------------------------------------|------------------------|--------------------------|------------------------|------------------------|------------------------|--------------------------|--------------------------|--| | User: JYH | Custom | | Custom IE | , | Custom ID3 | | | | | Comment: | | | | | | | | | | Elem | Sn1899 | Sr4077 | Ti3372 | TI1908 | V_2924 | Zn2062 | Zr3391 | | | Units | ppm | | Avg
Stddev | 00025
.00044 | . 23501
.00028 | 02209
.00803 | 00210
.00401 | 00153
.00041 | . 00419
.00013 | . 49019
.11660 | | | %RSD | 176.54 | .12069 | 36.348 | 190.98 | 26.844 | 3.1761 | 23.788 | | | | | | | | | | | | | #1 | 00074 | .23533 | 03135 | 00050 | 00192 | .00424 | .53351 | | | #2 | 00011 | .23494 | 01702 | 00667 | 00158 | .00429 | .57893 | | | #3 | .00010 | .23477 | 01790 | .00087 | 00110 | .00404 | .35812 | | | Check ?
High Limit
Low Limit | Chk Pass | | Int. Std. | Y 2243 | Y_3600 | Y_3774 | | | | | | | Units | Cts/S | Cts/S | Cts/S | | | | | | | Avg | 10282. | 88111. | 3826.2 | | | | | | | Stddev | 4. | 77. | 12.5 | | | | | | | %RSD | .03787 | .08722 | .32685 | | | | | | | #1 | 10280. | 88029. | 3812.5 | | | | | | | #2 | 10286. | 88121. | 3837.1 | | | | | | | #3 | 10279. | 88182. | 3828.9 | | | | | | | Sample Name: L1510074924 Acquired: 10/23/2015 15:38:50 Type: Unk | | | | | | | | | |--|--------------------------|-----------------------|--------------------------|--------------------------|------------------------|--------------------------------|--------------------------|------------------------| | Method: ICP-THERMO3_6010_200.7WATER_3YLINES(v526) | | | | | | | | actor: 1.00000(| | User: JYH | Custom | ID1: | Custom ID |)2: (| Custom ID3 | • | | | | Comment: | Elem | Ag3280 | Al3082 | As1890 | B_2496 | Ba4554 | Be3131 | Ca4226 | Cd2288
| | Units | ppm
00082 | ppm
. 02048 | ppm
. 00078 | ppm
. 10455 | ppm
. 09057 | ppm
. 00004 | ppm
86.393 | ppm
. 00015 | | Avg
Stddev | .00082 | .02048 | .00526 | .00099 | .00044 | .00004 | .150 | .00015 | | %RSD | 99.525 | 16.105 | 674.20 | .94490 | .48458 | 162.49 | .17314 | 75.525 | | | | | | | | | | | | #1 | 00128 | .02415 | 00016 | .10548 | .09098 | .00008 | 86.563 | .00011 | | #2
#3 | .00012 | .01776
.01954 | 00394
.00644 | .10352
.10466 | .09011
.09062 | .00007 | 86.283
86.333 | .00027
.00006 | | #3 | 00130 | .01934 | .00044 | .10400 | .09002 | 00003 | 00.333 | .00000 | | Check? | Chk Pass | High Limit | | | | | | | | | | Low Limit | | | | | | | | | | Elem | Co2286 | Cr2677 | Cu2247 | Fe2611 | K_7664 | Li6707 | Mg2790 | Mn2576 | | Units | ppm | Avg | .00040 | .00073 | .00000 | .01243 | 1.2821 | .01799 | 29.265 | .10388 | | Stddev | .00019 | .00049 | .00035 | .00540 | .0470 | .00293 | .131 | .00046 | | %RSD | 47.578 | 67.143 | 294350. | 43.428 | 3.6684 | 16.277 | .44908 | .44727 | | #1 | .00055 | .00129 | .00009 | .01124 | 1.3160 | .02090 | 29.130 | .10369 | | #2 | .00019 | .00041 | 00038 | .00773 | 1.3018 | .01504 | 29.393 | .10354 | | #3 | .00046 | .00049 | .00030 | .01832 | 1.2284 | .01802 | 29.272 | .10441 | | Observation O | Ohli Dasa | Ohli Dasa | Ohli Dasa | Ohli Daaa | Ohli Daaa | Ohli Dasa | Ohli Daaa | Ohla Dana | | Check ?
High Limit | Chk Pass | Low Limit | Elem | Mo2020 | Na5895 | Ni2316 | P_2149 | Pb2203 | Sb2068 | Se1960 | Si2124 | | Units | ppm | Avg
Stddev | . 01250
.00016 | 6.9093 .0139 | . 00133
.00038 | . 00366
.00460 | 00358
.00587 | . <mark>00417</mark>
.00284 | . 00035
.00717 | 6.6678
.0228 | | %RSD | 1.2995 | .20063 | 28.991 | 125.90 | 163.72 | 68.165 | 2066.1 | .34246 | | | | | | | | | | | | #1 | .01233 | 6.9248 | .00146 | .00040 | .00319 | .00286 | 00229 | 6.6889 | | #2 | .01266 | 6.9049 | .00089 | .00892 | 00681 | .00222 | 00513 | 6.6709 | | #3 | .01251 | 6.8982 | .00162 | .00164 | 00713 | .00743 | .00846 | 6.6435 | | Check?
High Limit
Low Limit | Chk Pass | Sample Nar | ne: L151007 | '4924 A | cquired: 10/ | 23/2015 15 | :38:50 | Type: Unk | | | |------------------------------------|------------------------|--------------------------|------------------------|------------------------|------------------------|--------------------------------|--------------------------|----------------| | Method: ICF | P-THERMO3 | 3_6010_200 | .7WATER_ | 3YLINES(v | 526) Mc | de: CONC | Corr. Fa | ctor: 1.00000(| | User: JYH | Custom | ID1: | Custom ID |)2: (| Custom ID3 | : | | | | Comment: | | | | | | | | | | Elem | Sn1899 | Sr4077 | Ti3372 | TI1908 | V_2924 | Zn2062 | Zr3391 | | | Units | ppm | | Avg
Stddev | 00009
.00043 | . 10935
.00026 | 01359
.00140 | 00107
.00033 | 00139
.00087 | . <mark>00163</mark>
.00014 | . 19623
.08809 | | | %RSD | 476.71 | .23740 | 10.320 | 30.790 | 62.393 | 8.8288 | 44.890 | | | | | | | | | | | | | #1 | 00026 | .10960 | 01388 | 00132 | 00122 | .00149 | .15681 | | | #2 | 00042 | .10908 | 01483 | 00119 | 00062 | .00164 | .13473 | | | #3 | .00040 | .10937 | 01207 | 00070 | 00234 | .00178 | .29714 | | | Check ?
High Limit
Low Limit | Chk Pass | | Int. Std. | Y_2243 | Y_3600 | Y_3774 | | | | | | | Units | Cts/S | Cts/S | Cts/S | | | | | | | Avg | 10368.
23. | 89130 . 167. | 3848.1
9.5 | | | | | | | Stddev
%RSD | .22156 | .18681 | 9.5
.24787 | | | | | | | 701 (OD | .22100 | .10001 | .24707 | | | | | | | #1 | 10389. | 89012. | 3858.7 | | | | | | | #2 | 10372. | 89320. | 3840.2 | | | | | | | #3 | 10343. | 89057. | 3845.3 | | | | | | | Sample Name
Method: ICP-T
User: JYH
Comment: | |)10_200.7W <i>A</i> | ed: 10/23/20
ATER_3YLIN
stom ID2: | | Type: Unk
Mode: CONC
ID3: | C Corr. F | factor: 1.00000(| |---|----------------|---------------------|---|----------------|---------------------------------|----------------|-----------------------------| | Elem | Ag3280 | Al3082 | As1890 | B_2496 | Ba4554 | Be3131 | Ca4226 | | Units | ppm | Avg | . 00035 | . 02657 | 00110 | . 06099 | . 01755 | 00001 | F 342.70 | | Stddev | .00034 | .00506 | .00140 | .00276 | .00132 | .00002 | 1.28 | | %RSD | 96.087 | 19.036 | 127.35 | 4.5269 | 7.5311 | 408.55 | .37474 | | #1 | .00060 | .03233 | 00271 | .06147 | .01816 | .00001 | 342.38 | | #2 | 00003 | .02450 | 00035 | .05803 | .01603 | 00003 | 341.60 | | #3 | .00048 | .02287 | 00024 | .06349 | .01846 | .00001 | 344.11 | | Check ?
High Limit
Low Limit | Chk Pass | Chk Pass | Chk Pass | Chk Pass | Chk Pass | Chk Pass | Chk Fail
270.00
10000 | | Elem | Cd2288 | Co2286 | Cr2677 | Cu2247 | Fe2611 | K_7664 | Li6707 | | Units | ppm | Avg | . 00044 | .01155 | .00132 | .00094 | 1.5219 | 5.0046 | . 03805 | | Stddev | .00034 | .00025 | .00029 | .00189 | .0146 | .0455 | .00132 | | %RSD | 76.511 | 2.1900 | 21.940 | 200.24 | .95721 | .90970 | 3.4646 | | #1 | .00006 | .01180 | .00141 | .00030 | 1.5171 | 4.9831 | .03956 | | #2 | .00070 | .01156 | .00100 | 00054 | 1.5103 | 5.0569 | .03709 | | #3 | .00057 | .01130 | .00155 | .00307 | 1.5383 | 4.9737 | .03751 | | Check ?
High Limit
Low Limit | Chk Pass | Elem | Mg2790 | Mn2576 | Mo2020 | Na5895 | Ni2316 | P_2149 | Pb2203 | | Units | ppm | Avg | 61.226 | 2.2888 | . 00689 | 105.76 | . 02744 | . 00445 | 00143 | | Stddev | .281 | .0089 | .00084 | .35 | .00115 | .00190 | .00334 | | %RSD | .45866 | .39091 | 12.228 | .32704 | 4.1748 | 42.585 | 234.60 | | #1 | 60.971 | 2.2832 | .00722 | 105.36 | .02818 | .00647 | 00500 | | #2 | 61.527 | 2.2991 | .00594 | 105.95 | .02802 | .00418 | .00162 | | #3 | 61.180 | 2.2840 | .00752 | 105.96 | .02612 | .00271 | 00089 | | Check ?
High Limit
Low Limit | Chk Pass | Sample Name:
Method: ICP-T
User: JYH
Comment: | |)10_200.7W <i>A</i> | red: 10/23/20 ⁻
ATER_3YLINI
stom ID2: | | Type: Unk
Mode: CON
ID3: | | Factor: 1.00000(| |--|---|--|--|--|---|---|--| | Elem
Units
Avg
Stddev
%RSD | Sb2068
ppm
. 00643
.00604
93.953 | Se1960
ppm
00071
.00189
267.26 | Si2124
ppm
13.194
.031
.23348 | Sn1899
ppm
00034
.00100
293.52 | Sr4077
ppm
. 65201
.00302
.46277 | Ti3372
ppm
F05013
.00582
11.613 | TI1908
ppm
00206
.00295
142.85 | | #1
#2
#3 | .01037
00053
.00945 | .00132
00241
00104 | 13.222
13.198
13.161 | 00013
.00053
00142 | .64853
.65399
.65350 | 04642
04713
05684 | 00258
.00111
00472 | | Check ?
High Limit
Low Limit | Chk Pass | Chk Pass | Chk Pass | Chk Pass | Chk Pass | Chk Fail
36.000
03000 | Chk Pass | | Elem
Units
Avg
Stddev
%RSD | V_2924
ppm
00155
.00024
15.415 | Zn2062
ppm
.02332
.00010
.44528 | Zr3391
ppm
. 10960
.18379
167.69 | | | | | | #1
#2
#3 | 00158
00177
00130 | .02321
.02335
.02341 | .01006
.32168
00295 | | | | | | Check ?
High Limit
Low Limit | Chk Pass | Chk Pass | Chk Pass | | | | | | Int. Std.
Units
Avg
Stddev
%RSD | Y_2243
Cts/S
9924.3
10.2
.10237 | Y_3600
Cts/S
84417 .
44.
.05261 | Y_3774
Cts/S
3800.2
13.0
.34154 | | | | | | #1
#2
#3 | 9925.4
9933.8
9913.6 | 84422.
84371.
84459. | 3813.4
3787.5
3799.6 | | | | | | Sample Nar | Sample Name: L1510081208 | | | | | | | | | |------------------------------------|--------------------------|----------------------|-----------------------|-----------------------|---------------------|-----------------------|--------------|----------------------|--| | Method: ICF | P-THERMO3 | 3_6010_200 | .7WATER_ | 3YLINES(v | 526) Mc | de: CONC | Corr. Fa | actor: 1.00000(| | | User: JYH | Custom | ID1: | Custom IE |)2: (| Custom ID3 | : | | | | | Comment: | Elem | Ag3280 | Al3082 | As1890 | B 2496 | Ba4554 | Be3131 | Ca4226 | Cd2288 | | | Units | ppm | | Avg | 00003 | .02321 | 00280 | .04291 | .07568 | 00000 | 108.63 | .00017 | | | Stddev | .00050 | .00907 | .00190 | .00054 | .00025 | .00004 | .18 | .00026 | | | %RSD | 1751.5 | 39.084 | 67.733 | 1.2621 | .32827 | 1073.3 | .16138 | 159.17 | | | #1 | 00034 | .01629 | 00490 | .04232 | .07552 | .00004 | 108.71 | .00046 | | | #1
#2 | .00055 | .01029 | 00489
00120 | .04232 | .07556 | 00005 | 108.71 | 00046 | | | #2
#3 | 00029 | .03347 | 00120 | .04303 | .07597 | 00003 | 108.73 | .00004 | | | #0 | 00023 | .00047 | 00250 | .04000 | .07007 | 00001 | 100.40 | .00007 | | | Check? | Chk Pass | | High Limit | | | | | | | | | | | Low Limit | | | | | | | | | | | Elem | Co2286 | Cr2677 | Cu2247 | Fe2611 | K 7664 | Li6707 | Mg2790 | Mn2576 | | | Units | ppm | | Avg | .00049 | .00280 | .00551 | 01354 | 2.5939 | .01536 | 19.598 | .03063 | | | Stddev | .00044 | .00072 | .00054 | .01135 | .0707 | .00274 | .090 | .00076 | | | %RSD | 90.551 | 25.622 | 9.7427 | 83.885 | 2.7276 | 17.854 | .45677 | 2.4788 | | | | | | | | | | | | | | #1 | .00075 | .00359 | .00601 | 00055 | 2.5622 | .01686 | 19.501 | .03134 | | | #2 | 00002 | .00219 | .00494 | 01844 | 2.5445 | .01702 | 19.676 | .02983 | | | #3 | .00073 | .00262 | .00559
| 02161 | 2.6749 | .01219 | 19.618 | .03070 | | | Check? | Chk Pass | | High Limit | | | | | | | | | | | Low Limit | | | | | | | | | | | Поло | M-2020 | N-E00E | NI:001C | D 0140 | Pb2203 | Sb2068 | 0-1000 | 0:0104 | | | Elem
Units | Mo2020 | Na5895 | Ni2316 | P_2149 | | | Se1960 | Si2124 | | | Avg | ppm
. 01525 | ppm
69.874 | ppm
. 00349 | ppm
. 01159 | ppm
00228 | ppm
. 00370 | ppm
00041 | ppm
18.173 | | | Stddev | .00050 | .134 | .00135 | .00362 | .00147 | .00133 | .00803 | .022 | | | %RSD | 3.2693 | .19118 | 38.538 | 31.239 | 64.332 | 35.875 | 1979.0 | .11972 | | | | | | | | | | | | | | #1 | .01582 | 69.817 | .00216 | .01126 | 00254 | .00224 | 00940 | 18.197 | | | #2 | .01491 | 70.026 | .00485 | .00815 | 00360 | .00404 | .00605 | 18.165 | | | #3 | .01502 | 69.778 | .00347 | .01537 | 00070 | .00483 | .00213 | 18.156 | | | Check ?
High Limit
Low Limit | Chk Pass | | • | Sample Name: L1510081208 | | | | | | | | | |------------------------------------|--------------------------|--------------------------|------------------------|------------------------|------------------------|--------------------------|--------------------------|----------------|--| | | | | _ | • | , | de: CONC | Corr. Fa | ctor: 1.00000(| | | User: JYH | Custom | ID1: | Custom ID |)2: (| Custom ID3 | • | | | | | Comment: | | | | | | | | | | | Elem | Sn1899 | Sr4077 | Ti3372 | TI1908 | V_2924 | Zn2062 | Zr3391 | | | | Units | ppm | | | Avg
Stddev | 00053
.00038 | . 28128
.00032 | 01479
.00344 | 00100
.00356 | 00070
.00112 | . 00329
.00011 | . 13168
.09768 | | | | %RSD | 71.316 | .11466 | 23.282 | 356.63 | 160.64 | 3.3946 | 74.175 | | | | | | | | | | | | | | | #1 | 00087 | .28158 | 01783 | 00424 | .00003 | .00325 | .06599 | | | | #2 | 00013 | .28131 | 01105 | 00156 | 00199 | .00321 | .08513 | | | | #3 | 00057 | .28094 | 01550 | .00281 | 00013 | .00342 | .24393 | | | | Check ?
High Limit
Low Limit | Chk Pass | | | Int. Std. | Y 2243 | Y_3600 | Y_3774 | | | | | | | | Units | _Cts/S | Cts/S | Cts/S | | | | | | | | Avg | 10287. | 88035. | 3869.3 | | | | | | | | Stddev
%RSD | 10.
.10014 | 10.
.01191 | 15.3
.39483 | | | | | | | | /0N3D | . 100 14 | .01191 | .59465 | | | | | | | | #1 | 10275. | 88027. | 3855.4 | | | | | | | | #2 | 10289. | 88030. | 3866.7 | | | | | | | | #3 | 10295. | 88047. | 3885.7 | | | | | | | | • | Sample Name: L1510101601 | | | | | | | | |-----------------------------------|--------------------------|----------|-----------|----------|-----------------------|----------|----------|-----------------| | | | | | • | 526) Mc
Custom ID3 | de: CONC | Corr. Fa | actor: 1.00000(| | User: JYH
Comment: | Custom | וטו. | Custom II | J2. | Custom iD3 | | | | | Comment. | | | | | | | | | | Elem | Ag3280 | Al3082 | As1890 | B_2496 | Ba4554 | Be3131 | Ca4226 | Cd2288 | | Units | ppm | Avg | .00084 | .05624 | .00044 | .01982 | .20312 | .00006 | 25.234 | 00005 | | Stddev | .00056 | .00808 | .00120 | .00135 | .00102 | .00006 | .056 | .00017 | | %RSD | 66.854 | 14.363 | 274.20 | 6.7938 | .50082 | 99.102 | .22317 | 348.11 | | #1 | .00055 | .05972 | .00114 | .01942 | .20425 | .00006 | 25.298 | 00002 | | #2 | .00149 | .06199 | .00112 | .01872 | .20284 | .00012 | 25.191 | 00023 | | #3 | .00048 | .04700 | 00095 | .02132 | .20228 | .00000 | 25.214 | .00011 | | Check? | Chk Pass | High Limit | | | | | | | | | | Low Limit | | | | | | | | | | Elem | Co2286 | Cr2677 | Cu2247 | Fe2611 | K_7664 | Li6707 | Mg2790 | Mn2576 | | Units | ppm | Avg | .00053 | .00077 | .00054 | 1.8096 | 1.7348 | .00647 | 6.7792 | .16756 | | Stddev | .00022 | .00011 | .00089 | .0321 | .0519 | .00272 | .0633 | .00133 | | %RSD | 40.751 | 14.739 | 164.06 | 1.7761 | 2.9906 | 41.991 | .93429 | .79502 | | #1 | .00060 | .00066 | 00040 | 1.8261 | 1.7876 | .00368 | 6.7554 | .16776 | | #2 | .00071 | .00076 | .00066 | 1.7725 | 1.7328 | .00664 | 6.7312 | .16614 | | #3 | .00029 | .00089 | .00137 | 1.8300 | 1.6839 | .00911 | 6.8510 | .16879 | | Check? | Chk Pass | High Limit | | | | | | | | | | Low Limit | | | | | | | | | | Elem | Mo2020 | Na5895 | Ni2316 | P_2149 | Pb2203 | Sb2068 | Se1960 | Si2124 | | Units | ppm | Avg | .00169 | 17.026 | .00407 | .00751 | 00017 | 00254 | .00385 | .56524 | | Stddev | .00033 | .057 | .00089 | .00663 | .00559 | .00398 | .00108 | .00189 | | %RSD | 19.829 | .33189 | 21.958 | 88.300 | 3283.4 | 156.82 | 28.089 | .33433 | | #1 | .00191 | 17.075 | .00505 | .00130 | 00378 | 00518 | .00267 | .56331 | | #2 | .00185 | 17.039 | .00387 | .00673 | .00627 | 00447 | .00410 | .56533 | | #3 | .00130 | 16.964 | .00330 | .01449 | 00300 | .00204 | .00478 | .56709 | | Check?
High Limit
Low Limit | Chk Pass | Sample Na | Sample Name: L1510101601 Acquired: 10/23/2015 15:50:55 Type: Unk | | | | | | | | | |---------------|--|------------------|-------------------------|-----------------|----------------|----------|------------------|----------------|--| | Method: IC | P-THERMO3 | 3_6010_200 | .7WATER_ | 3YLINES(v | 526) Mc | de: CONC | Corr. Fa | ctor: 1.000000 | | | User: JYH | Custom | ID1: | Custom ID |)2: (| Custom ID3 | : | | | | | Comment: | Elem | Sn1899 | Sr4077 | Ti3372 | TI1908 | V 2924 | Zn2062 | Zr3391 | | | | Units | ppm | | | Avg | 00015 | .25685 | 00541 | 00199 | 00090 | .00211 | .07300 | | | | Stddev | .00053 | .00100 | .00441 | .00349 | .00029 | .00027 | .09166 | | | | %RSD | 349.54 | .38923 | 81.513 | 175.48 | 32.405 | 12.727 | 125.57 | | | | 114 | 00050 | 05000 | 00000 | 00050 | 00444 | 00000 | 00000 | | | | #1
#2 | 00052 | .25800 | 00993 | 00056 | 00111 | .00209 | 02996 | | | | #2
#3 | .00046 | .25627
.25627 | 00518
00112 | 00597
.00056 | 00057
00103 | .00239 | .10321
.14574 | | | | #5 | 00040 | .23027 | 00112 | .00030 | 00103 | .00103 | .14374 | | | | Check? | Chk Pass | | | High Limit | | | | | | | | | | | Low Limit | Int. Std. | Y_2243 | Y_3600 | Y_3774 | | | | | | | | Units | Cts/S
10576 . | Cts/S
91089. | Cts/S
3859 .9 | | | | | | | | Avg
Stddev | 7. | 334. | 19.7 | | | | | | | | %RSD | .06275 | .36716 | .50997 | | | | | | | | 701 102 | .00270 | .007.10 | .00007 | | | | | | | | #1 | 10570. | 91156. | 3839.2 | | | | | | | | #2 | 10576. | 90727. | 3861.9 | | | | | | | | #3 | 10583. | 91385. | 3878.5 | | | | | | | | | | | | | | | | | | | Sample Nam
Method: ICP
User: JYH
Comment: | | | | LINES(v526) | ype: QC
) Mode:
tom ID3: | CONC (| Corr. Factor: | 1.00000(| |--|----------------|----------------|----------------|----------------|--------------------------------|----------------|----------------|----------| | Elem | Ag3280 | Al3082 | As1890 | B_2496 | Ba4554 | Be3131 | Ca4226 | | | Units | ppm | | Avg | . 41476 | 10.470 | . 42171 | . 51236 | 1.0720 | . 05275 | 10.616 | | | Stddev | .00104 | .010 | .00198 | .00199 | .0036 | .00012 | .094 | | | %RSD | .25113 | .09998 | .46996 | .38775 | .33485 | .22211 | .88838 | | | #1 | .41575 | 10.473 | .42375 | .51412 | 1.0760 | .05282 | 10.722 | | | #2 | .41486 | 10.459 | .41980 | .51020 | 1.0690 | .05262 | 10.585 | | | #3 | .41367 | 10.480 | .42159 | .51276 | 1.0709 | .05282 | 10.541 | | | Check ?
Value
Range | Chk Pass | | Elem | Cd2288 | Co2286 | Cr2677 | Cu2247 | Fe2611 | K_7664 | Li6707 | | | Units | ppm | | Avg | . 05245 | . 21121 | . 52602 | . 52558 | 4.2239 | 53.863 | 1.0597 | | | Stddev | .00016 | .00026 | .00032 | .00062 | .0262 | .210 | .0074 | | | %RSD | .31324 | .12100 | .06128 | .11840 | .61987 | .38983 | .70215 | | | #1 | .05239 | .21139 | .52572 | .52628 | 4.2537 | 53.978 | 1.0672 | | | #2 | .05264 | .21133 | .52636 | .52509 | 4.2044 | 53.620 | 1.0594 | | | #3 | .05233 | .21092 | .52599 | .52537 | 4.2136 | 53.990 | 1.0524 | | | Check ?
Value
Range | Chk Pass | | Elem | Mg2790 | Mn2576 | Mo2020 | Na5895 | Ni2316 | P_2149 | Pb2203 | | | Units | ppm | | Avg | 10.482 | . 53090 | 1.0478 | 53.386 | . 52302 | 10.297 | . 51838 | | | Stddev | .051 | .00435 | .0007 | .213 | .00157 | .013 | .00196 | | | %RSD | .48729 | .82009 | .06821 | .39813 | .29990 | .13094 | .37789 | | | #1 | 10.439 | .53180 | 1.0483 | 53.608 | .52274 | 10.281 | .51986 | | | #2 | 10.539 | .52616 | 1.0481 | 53.185 | .52472 | 10.307 | .51616 | | | #3 | 10.470 | .53473 | 1.0470 | 53.366 | .52162 | 10.302 | .51911 | | | Check ?
Value
Range | Chk Pass | | Method: ICP | Sample Name: CCV Acquired: 10/23/2015 15:54:59 Type: QC Method: ICP-THERMO3_6010_200.7WATER_3YLINES(v526) Mode: CONC Corr. Factor: 1.000000 User: JYH Custom ID1: Custom ID2: Custom ID3: | | | | | | | | |---|---|---|---|---|---|---|---|--| | Comment: | | | 0 4010111 10 21 | Out | | | | | | Elem
Units
Avg
Stddev
%RSD | Sb2068
ppm
1.2548
.0049
.39179 | Se1960
ppm
. 42364
.00470
1.1090 | Si2124
ppm
5.2213
.0037
.07173 | Sn1899
ppm
1.0578
.0016
.14769 | Sr4077
ppm
1.0712
.0030
.28051 | Ti3372
ppm
1.0777
.0014
.13285 | TI1908
ppm
. 52321
.00323
.61643 | |
 #1
#2
#3 | 1.2498
1.2596
1.2549 | .42700
.42566
.41827 | 5.2254
5.2180
5.2206 | 1.0587
1.0560
1.0588 | 1.0744
1.0684
1.0709 | 1.0791
1.0775
1.0763 | .52273
.52026
.52665 | | | Check ?
Value
Range | Chk Pass | | Elem
Units
Avg
Stddev
%RSD | V_2924
ppm
1.0571
.0006
.05372 | Zn2062
ppm
1.0357
.0023
.22068 | Zr3391
ppm
F . 70168
.07543
10.749 | | | | | | | #1
#2
#3 | 1.0570
1.0566
1.0577 | 1.0380
1.0356
1.0334 | .76342
.61761
.72402 | | | | | | | Check ?
Value
Range | Chk Pass | Chk Pass | Chk Fail
1.0000
-10.000% | | | | | | | Int. Std.
Units
Avg
Stddev
%RSD | Y_2243
Cts/S
10783.
13.
.12140 | Y_3600
Cts/S
91676.
259.
.28285 | Y_3774
Cts/S
3963.7
27.3
.68862 | | | | | | | #1
#2
#3 | 10768.
10793.
10787. | 91494.
91973.
91561. | 3932.6
3984.0
3974.4 | | | | | | | Sample Nam
Method: ICP
User: JYH
Comment: | | _ | | LINES(v526) | ype: Blank
) Mode:
tom ID3: | CONC (| Corr. Factor: | 1.00000(| |--|----------------|----------|----------------|----------------|-----------------------------------|----------------|----------------|----------| | Elem | Ag3280 | Al3082 | As1890 | B_2496 | Ba4554 | Be3131 | Ca4226 | | | Units | ppm | | Avg | . 00045 | .00800 | 00170 | . 00355 | . 00127 | .00006 | 00453 | | | Stddev | .00079 | .00272 | .00093 | .00213 | .00051 | .00005 | .00724 | | | %RSD | 174.97 | 33.971 | 54.511 | 59.950 | 40.208 | 84.424 | 160.02 | | | #1 | .00006 | .00744 | 00269 | .00278 | .00178 | .00005 | 00973 | | | #2 | .00137 | .00560 | 00085 | .00192 | .00076 | .00011 | 00759 | | | #3 | 00007 | .01094 | 00157 | .00596 | .00126 | .00001 | .00375 | | | Check ?
High Limit
Low Limit | Chk Pass | | Elem | Cd2288 | Co2286 | Cr2677 | Cu2247 | Fe2611 | K_7664 | Li6707 | | | Units | ppm | | Avg | . 00024 | .00016 | . 00046 | . 00024 | 00675 | . 14620 | . 00333 | | | Stddev | .00010 | .00027 | .00095 | .00048 | .01471 | .10887 | .00289 | | | %RSD | 41.047 | 170.66 | 208.89 | 198.18 | 217.88 | 74.463 | 86.783 | | | #1 | .00030 | .00048 | .00116 | 00031 | 02210 | .02109 | 00001 | | | #2 | .00013 | 00001 | 00063 | .00058 | 00537 | .19814 | .00491 | | | #3 | .00030 | .00001 | .00084 | .00045 | .00722 | .21938 | .00508 | | | Check ?
High Limit
Low Limit | Chk Pass | | Elem | Mg2790 | Mn2576 | Mo2020 | Na5895 | Ni2316 | P_2149 | Pb2203 | | | Units | ppm | | Avg | 04660 | 00064 | . 00140 | . 03898 | .00062 | . 00293 | 00448 | | | Stddev | .09268 | .00139 | .00050 | .01800 | .00023 | .00768 | .00180 | | | %RSD | 198.89 | 217.86 | 35.519 | 46.191 | 38.041 | 262.02 | 40.085 | | | #1 | 08859 | .00054 | .00125 | .04388 | .00082 | 00578 | 00561 | | | #2 | 11084 | 00217 | .00195 | .05402 | .00068 | .00586 | 00241 | | | #3 | .05965 | 00029 | .00099 | .01903 | .00036 | .00871 | 00543 | | | Check ?
High Limit
Low Limit | Chk Pass | | Sample Nam
Method: ICP
User: JYH
Comment: | ne: CCB /
-THERMO3_
Custom I | 6010_200.7 | /23/2015 15:
WATER_3YI
Custom ID2: | LINES(v526) | ype: Blank
) Mode:
tom ID3: | CONC (| Corr. Factor: | 1.00000(| |--|---|---|--|---|---|--|--|----------| | Elem
Units
Avg
Stddev
%RSD | Sb2068
ppm
. 00155
.00217
139.84 | Se1960
ppm
.00264
.00485
183.77 | Si2124
ppm
.00525
.00140
26.595 | Sn1899
ppm
. 00003
.00099
3086.1 | Sr4077
ppm
. 00047
.00015
31.678 | Ti3372
ppm
00353
.00240
67.958 | TI1908
ppm
00236
.00107
45.488 | | | #1
#2
#3 | .00009
.00053
.00405 | .00529
.00559
00296 | .00503
.00674
.00397 | 00101
.00095
.00016 | .00045
.00033
.00063 | 00582
00104
00372 | 00124
00337
00246 | | | Check ?
High Limit
Low Limit | Chk Pass | | Elem
Units
Avg
Stddev
%RSD | V_2924
ppm
00067
.00130
193.63 | Zn2062
ppm
.00018
.00013
73.260 | Zr3391
ppm
F .07873
.22210
282.10 | | | | | | | #1
#2
#3 | 00155
00128
.00082 | .00024
.00003
.00026 | .00007
.32946
09333 | | | | | | | Check ?
High Limit
Low Limit | Chk Pass | Chk Pass | Chk Fail
.04000
04000 | | | | | | | Int. Std.
Units
Avg
Stddev
%RSD | Y_2243
Cts/S
10963.
10.
.09349 | Y_3600
Cts/S
94374.
26.
.02743 | Y_3774
Cts/S
3962.7
26.2
.66190 | | | | | | | #1
#2
#3 | 10951.
10968.
10970. | 94399.
94374.
94347. | 3947.6
3993.0
3947.4 | | | | | | | Sample Nar | Sample Name: L1510074928 Acquired: 10/23/2015 16:02:50 Type: Unk | | | | | | | | | |----------------------|--|-----------------------|-----------------------|-----------------------|----------------------|-----------------------|----------------------|------------------------|--| | Method: ICF | P-THERMO3 | 3_6010_200 | .7WATER_ | 3YLINES(v | 526) Mo | de: CONC | Corr. Fa | Corr. Factor: 1.00000(| | | User: JYH | Custom | ID1: | Custom IE |)2: (| Custom ID3 | • | | | | | Comment: | Elem | Ag3280 | Al3082 | As1890 | B 2496 | Ba4554 | Be3131 | Ca4226 | Cd2288 | | | Units | ppm | ppm | ppm | _ ppm | ppm | ppm | ppm | ppm | | | Avg | 00167 | .02183 | .00050 | .03022 | .07711 | .00004 | 94.279 | .00017 | | | Stddev | .00042 | .00120 | .00403 | .00452 | .00102 | .00005 | .344 | .00016 | | | %RSD | 25.167 | 5.4938 | 813.74 | 14.960 | 1.3205 | 113.92 | .36440 | 94.937 | | | #1 | 00149 | .02049 | .00368 | .03362 | .07827 | .00001 | 93.891 | 00001 | | | #2 | 00137 | .02282 | 00404 | .02509 | .07640 | .00010 | 94.401 | .00029 | | | #3 | 00215 | .02217 | .00184 | .03195 | .07665 | .00001 | 94.544 | .00022 | | | Check? | Chk Pass | | High Limit | Clik i doo | Olik i dos | Clik i dos | Clik i dos | Clik i doo | Clik i doo | Clik i dos | Clik i dos | | | Low Limit | Elem | Co2286 | Cr2677 | Cu2247 | Fe2611 | K_7664 | Li6707 | Mg2790 | Mn2576 | | | Units | ppm
. 00058 | ppm
. 00199 | ppm
. 00164 | ppm
. 01670 | ppm
2.0631 | ppm
. 01303 | ppm
26.755 | ppm
. 00916 | | | Avg
Stddev | .00038 | .00133 | .00104 | .01851 | .0197 | .00116 | .094 | .00910 | | | %RSD | 63.037 | 16.015 | 58.655 | 110.85 | .95438 | 8.8684 | .35211 | 23.400 | | | | | | | | | | | | | | #1 | .00062 | .00228 | .00253 | 00418 | 2.0690 | .01177 | 26.835 | .01017 | | | #2 | .00019 | .00165 | .00176 | .02319 | 2.0792 | .01404 | 26.651 | .00670 | | | #3 | .00092 | .00204 | .00062 | .03108 | 2.0412 | .01327 | 26.778 | .01062 | | | Check? | Chk Pass | | High Limit | | | | | | | | | | | Low Limit | | | | | | | | | | | Elem | Mo2020 | Na5895 | Ni2316 | P_2149 | Pb2203 | Sb2068 | Se1960 | Si2124 | | | Units | ppm | | Avg | .02627 | 15.717 | .00398 | .01461 | - 00337 | .00306 | .00434 | 6.8368 | | | Stddev | .00057 | .056 | .00101 | .00697 | .00239 | .00151 | .00379 | .0215 | | | %RSD | 2.1851 | .35558 | 25.477 | 47.730 | 70.829 | 49.332 | 87.293 | .31495 | | | #1 | .02576 | 15.683 | .00372 | .00872 | 00105 | .00327 | .00620 | 6.8611 | | | #2 | .02689 | 15.686 | .00512 | .01280 | 00325 | .00327 | 00020 | 6.8294 | | | #3 | .02616 | 15.781 | .00312 | .02231 | 00582 | .00146 | .00684 | 6.8200 | | | | 01.1.= | 01.1.= | 01.1.= | 01.1.= | 01.1.5 | 01.1.= | 01.1.= | 01.1.5 | | | Check?
High Limit | Chk Pass | | Low Limit | Sample Nan | | | • | /23/2015 16 | | Type: Unk | | | |------------------------------------|------------------|------------------|------------------|------------------|------------------|------------------|------------------|----------------| | Method: ICF | | | _ | • | , | de: CONC | Corr. Fa | ctor: 1.00000(| | User: JYH | Custom | ID1: | Custom ID |)2: (| Custom ID3 | • | | | | Comment: | | | | | | | | | | Elem | Sn1899 | Sr4077 | Ti3372 | TI1908 | V_2924 | Zn2062 | Zr3391 | | | Units | ppm | | Avg | .00001 | .15132 | 01675 | 00426 | 00045 | .00413 | .15460 | | | Stddev
%RSD | .00030
3124.9 | .00038
.25442 | .00095
5.6464 | .00171
40.228 | .00024
53.683 | .00016
3.8008 | .08815
57.017 | | | /0N3D | 3124.9 | .23442 | 3.0404 | 40.226 | 33.063 | 3.8008 | 37.017 | | | #1 | 00010 | .15140 | 01721 | 00283 | 00041 | .00427 | .16894 | | | #2 | .00035 | .15090 | 01738 | 00616 | 00024 | .00417 | .06016 | | | #3 | 00022 | .15166 | 01566 | 00379 | 00072 | .00396 | .23471 | | | Check ?
High Limit
Low Limit | Chk Pass | | Int. Std. | Y 2243 | Y_3600 | Y_3774 | | | | | | | Units | _Cts/S | _Cts/S | Cts/S | | | | | | | Avg | 10387. | 88976. | 3848.2 | | | | | | | Stddev | 28. | 186. | 4.3 | | | | | | | %RSD | .27111 | .20889 | .11107 | | | | | | | #1 | 10354. | 88824. | 3850.2 | | | | | | | #2 | 10406. | 88922. | 3843.2 | | | | | | | #3 | 10400. | 89183. | 3851.0 | | | | | | | Sample Name:
Method: ICP-T
User: JYH
Comment: | | 10_200.7W <i>A</i> | Acquired: 10/23/2015 16:06:53
0_200.7WATER_3YLINES(v526)
Custom ID2: Custon | | | C Corr. F | Factor: 1.00000(| |--|----------------|--------------------|---|-----------------------------
----------------|----------------|-----------------------------| | Elem | Ag3280 | Al3082 | As1890 | B_2496 | Ba4554 | Be3131 | Ca4226 | | Units | ppm | Avg | 00244 | . 05611 | .00062 | .06818 | . 01658 | 00000 | F 392.82 | | Stddev | .00093 | .00993 | .00197 | .00143 | .00113 | .00004 | 1.94 | | %RSD | 38.146 | 17.703 | 321.04 | 2.0917 | 6.8062 | 816.43 | .49436 | | #1 | 00324 | .06622 | .00122 | .06963 | .01655 | .00003 | 391.57 | | #2 | 00142 | .04636 | 00159 | .06678 | .01546 | 00004 | 391.83 | | #3 | 00265 | .05577 | .00222 | .06812 | .01772 | 00001 | 395.05 | | Check ?
High Limit
Low Limit | Chk Pass | Chk Pass | Chk Pass | Chk Pass | Chk Pass | Chk Pass | Chk Fail
270.00
10000 | | Elem | Cd2288 | Co2286 | Cr2677 | Cu2247 | Fe2611 | K_7664 | Li6707 | | Units | ppm | Avg | . 00076 | .00322 | . 00224 | . 00440 | 11.661 | 10.665 | . 10112 | | Stddev | .00037 | .00028 | .00103 | .00039 | .150 | .216 | .00192 | | %RSD | 48.511 | 8.6846 | 45.826 | 8.8923 | 1.2845 | 2.0268 | 1.8942 | | #1 | .00090 | .00348 | .00120 | .00437 | 11.597 | 10.485 | .09928 | | #2 | .00034 | .00292 | .00227 | .00403 | 11.554 | 10.605 | .10098 | | #3 | .00104 | .00327 | .00326 | .00481 | 11.832 | 10.905 | .10311 | | Check ?
High Limit
Low Limit | Chk Pass | Elem | Mg2790 | Mn2576 | Mo2020 | Na5895 | Ni2316 | P_2149 | Pb2203 | | Units | ppm | Avg | 271.88 | . 31492 | . 01535 | F 1468.7 | . 60537 | . 03487 | F00737 | | Stddev | 2.95 | .00442 | .00047 | 14.4 | .00488 | .00494 | .00056 | | %RSD | 1.0837 | 1.4037 | 3.0616 | .97772 | .80661 | 14.167 | 7.6309 | | #1 | 269.43 | .31436 | .01567 | 1479.9 | .60778 | .03510 | 00750 | | #2 | 271.07 | .31081 | .01481 | 1452.5 | .60858 | .03969 | 00676 | | #3 | 275.15 | .31960 | .01556 | 1473.8 | .59975 | .02982 | 00786 | | Check ?
High Limit
Low Limit | Chk Pass | Chk Pass | Chk Pass | Chk Fail
270.00
50000 | Chk Pass | Chk Pass | Chk Fail
225.00
00500 | | Sample Name
Method: ICP-T
User: JYH
Comment: | |)10_200.7W <i>A</i> | ed: 10/23/20
ATER_3YLIN
stom ID2: | | Type: Unl
Mode: CON
ID3: | | Factor: 1.00000(| |---|---|---|--|--|---|---|--| | Elem
Units
Avg
Stddev
%RSD | Sb2068
ppm
. 00631
.00106
16.800 | Se1960
ppm
.00082
.00134
164.37 | Si2124
ppm
10.396
.038
.36232 | Sn1899
ppm
00063
.00031
50.305 | Sr4077
ppm
. 80805
.00600
.74288 | Ti3372
ppm
F06277
.00166
2.6452 | TI1908
ppm
00276
.00233
84.431 | | #1
#2
#3 | .00713
.00511
.00670 | .00150
.00168
00073 | 10.417
10.418
10.352 | 00098
00039
00050 | .80354
.80575
.81487 | 06369
06377
06085 | 00008
00389
00430 | | Check ?
High Limit
Low Limit | Chk Pass | Chk Pass | Chk Pass | Chk Pass | Chk Pass | Chk Fail
36.000
03000 | Chk Pass | | Elem
Units
Avg
Stddev
%RSD | V_2924
ppm
. 01999
.00056
2.8069 | Zn2062
ppm
.00371
.00008
2.0319 | Zr3391
ppm
17.378
.080
.46085 | | | | | | #1
#2
#3 | .02060
.01949
.01988 | .00366
.00367
.00380 | 17.294
17.388
17.453 | | | | | | Check ?
High Limit
Low Limit | Chk Pass | Chk Pass | Chk Pass | | | | | | Int. Std.
Units
Avg
Stddev
%RSD | Y_2243
Cts/S
8786.7
47.0
.53462 | Y_3600
Cts/S
73332.
144.
.19583 | Y_3774
Cts/S
3679.5
27.4
.74506 | | | | | | #1
#2
#3 | 8746.0
8776.0
8838.1 | 73192.
73324.
73479. | 3701.9
3687.6
3648.9 | | | | | | Sample Name: L1510074930 Acquired: 10/23/2015 16:11:03 Type: Unk | | | | | | | | | | |---|--------------------------|-----------------------|--------------------------|--------------------------|------------------------|--------------------------------|--------------------------|------------------------|--| | Method: ICP-THERMO3_6010_200.7WATER_3YLINES(v526) Mode: CONC Corr. Factor: 1.000000 | | | | | | | | | | | User: JYH | Custom | ID1: | Custom ID |)2: (| Custom ID3 | • | | | | | Comment: | Elem | Ag3280 | Al3082 | As1890 | B_2496 | Ba4554 | Be3131 | Ca4226 | Cd2288 | | | Units | ppm
00141 | ppm
. 30644 | ppm
00163 | ppm
. 06923 | ppm
. 18023 | ppm
. 00001 | ppm
127.75 | ppm
. 00028 | | | Avg
Stddev | .00141 | .00597 | .00409 | .00309 | .00089 | .00001 | .27 | .00028 | | | %RSD | 71.138 | 1.9467 | 251.36 | 4.4698 | .49171 | 760.22 | .20960 | 56.199 | | | | | | | | | | | | | | #1 | 00255 | .30599 | .00295 | .07183 | .18043 | 00004 | 127.99 | .00023 | | | #2
#3 | 00069
00098 | .31262
.30071 | 00494
00289 | .07005
.06580 | .17926
.18099 | .00007
00001 | 127.80
127.46 | .00045
.00015 | | | #3 | 00096 | .30071 | 00209 | .00560 | .10099 | 00001 | 127.40 | .00015 | | | Check? | Chk Pass | | High Limit | | | | | | | | | | | Low Limit | | | | | | | | | | | Elem | Co2286 | Cr2677 | Cu2247 | Fe2611 | K_7664 | Li6707 | Mg2790 | Mn2576 | | | Units | ppm | | Avg | .00102 | .00444 | .00364 | .80622 | 4.6145 | .02084 | 31.488 | .06005 | | | Stddev | .00017 | .00082 | .00117 | .02534 | .0826 | .00296 | .070 | .00010 | | | %RSD | 16.640 | 18.550 | 32.095 | 3.1426 | 1.7907 | 14.227 | .22142 | .16363 | | | #1 | .00084 | .00354 | .00481 | .80662 | 4.5548 | .02382 | 31.535 | .05995 | | | #2 | .00104 | .00514 | .00365 | .78069 | 4.5799 | .01789 | 31.521 | .06014 | | | #3 | .00117 | .00465 | .00247 | .83135 | 4.7088 | .02080 | 31.408 | .06005 | | | Observation O | Ohli Dasa | Ohli Dasa | Ohli Dasa | Ohli Daaa | Ohli Daaa | Ohli Dasa | Ohli Daaa | Ohla Dana | | | Check ?
High Limit | Chk Pass | | Low Limit | Elem | Mo2020 | Na5895 | Ni2316 | P_2149 | Pb2203 | Sb2068 | Se1960 | Si2124 | | | Units | ppm | | Avg
Stddev | . 01705
.00027 | 20.122 .082 | . 00782
.00086 | . 01803
.00475 | 00031
.00419 | . <mark>00025</mark>
.00707 | . 00250
.01096 | 9.0340
.0235 | | | %RSD | 1.5850 | .40647 | 10.955 | 26.344 | 1336.5 | 2809.1 | 438.74 | .26015 | | | | | | | | | | | | | | #1 | .01731 | 20.200 | .00802 | .01656 | 00224 | .00051 | .01049 | 9.0376 | | | #2 | .01706 | 20.130 | .00688 | .02335 | 00319 | 00694 | 01000 | 9.0555 | | | #3 | .01677 | 20.037 | .00856 | .01419 | .00450 | .00719 | .00701 | 9.0089 | | | Check?
High Limit
Low Limit | Chk Pass | | Sample Nan | | | • | /23/2015 16 | | Type: Unk | 0 | -t 1 00000(| |---|---|---|---|--|---|---|---|----------------| | Method: ICP
User: JYH | Custom | | ./vvATER
Custom ID | • | Custom ID3 | de: CONC | Corr. Fa | ctor: 1.00000(| | Comment: | | | | | | | | | | Elem
Units
Avg
Stddev
%RSD | Sn1899
ppm
00001
.00056
5667.4 | Sr4077
ppm
. 20930
.00029
.13853 | Ti3372
ppm
01667
.00151
9.0869 | TI1908
ppm
00203
.00123
60.567 | V_2924
ppm
.00176
.00053
30.279 | Zn2062
ppm
.00791
.00016
2.0163 | Zr3391
ppm
. 31234
.03045
9.7479 | | | #1
#2
#3 | .00037
.00026
00066 | .20897
.20943
.20951 | 01508
01682
01810 | 00215
00319
00074 | .00165
.00129
.00234 | .00775
.00791
.00807 | .34714
.29929
.29059 | | | Check ?
High Limit
Low Limit | Chk Pass | | Int. Std.
Units
Avg
Stddev
%RSD | Y_2243
Cts/S
10405 .
8.
.07573 | Y_3600
Cts/S
89137 .
424.
.47531 | Y_3774
Cts/S
3862.3
5.5
.14334 | | | | | | | #1
#2
#3 | 10410.
10409.
10396. | 88656.
89298.
89456. | 3856.7
3867.8
3862.5 | | | | | | | Sample Name: L1510074931 Acquired: 10/23/2015 16:15:04 Type: Unk Method: ICP-THERMO3_6010_200.7WATER_3YLINES(v526) Mode: CONC Corr. Factor: 1.000000 | | | | | | | | | |--|-----------------------|-----------------------|-----------------------|-----------------------|----------------------|-----------------------|----------------------|-----------------------| | User: JYH
Comment: | Custom | וטו: | Custom IE | J2: (| Custom ID3 | : | | | | Elem | Ag3280 | Al3082 | As1890 | B_2496 | Ba4554 | Be3131 | Ca4226 | Cd2288 | | Units | ppm | Avg | .00088 | .02269 | 00159 | .06784 | .16469 | .00003 | 126.27 | .00038 | | Stddev | .00137 | .00858 | .00200 | .00414 | .00074 | .00005 | .26 | .00012 | | %RSD | 156.19 | 37.832 | 126.00 | 6.1007 | .45082 | 177.30 | .20516 | 32.059 | | #1 | .00148 | .02699 | 00008 | .06366 | .16390 | .00008 | 126.45 | .00030 | | #2 | .00184 | .02827 | 00386 | .07194 | .16537 | 00000 | 126.39 | .00053 | | #3 | 00069 | .01281 | 00083 | .06791 | .16480 | .00000 | 125.98 | .00033 | | Check ?
High Limit
Low Limit | Chk Pass | | 0.0000 | 0.0077 | 0.0047 | E : 0044 | I/ 7004 | 1:0707 | M. 0700 | M 0570 | |
Elem | Co2286 | Cr2677 | Cu2247 | Fe2611 | K_7664 | Li6707 | Mg2790 | Mn2576 | | Units
Avg | ppm
. 00061 | ppm
. 00173 | ppm
. 00204 | ppm
. 00161 | ppm
4.3728 | ppm
. 01677 | ppm
30.394 | ppm
. 01495 | | Stddev | .00022 | .00173 | .00204 | .03472 | .0424 | .00149 | .220 | .00098 | | %RSD | 36.973 | 14.197 | 98.527 | 2162.7 | .96988 | 8.8868 | .72533 | 6.5576 | | #1 | .00077 | .00201 | .00302 | 02856 | 4.3238 | .01631 | 30.562 | .01487 | | #1
#2 | .00077 | .00201 | 00027 | .03956 | 4.3236 | .01844 | 30.475 | .01487 | | #2
#3 | .00033 | .00154 | .00338 | 00618 | 4.3984 | .01557 | 30.144 | .01402 | | | | | | | | | | | | Check ?
High Limit
Low Limit | Chk Pass | Elem | Mo2020 | Na5895 | Ni2316 | P_2149 | Pb2203 | Sb2068 | Se1960 | Si2124 | | Units | ppm | Avg | .01830 | 20.206 | .00588 | .01154 | 00110 | 00009 | .00206 | 8.6453 | | Stddev | .00013 | .041 | .00059 | .00522 | .00111 | .00149 | .00696 | .0217 | | %RSD | .72111 | .20410 | 10.062 | 45.284 | 100.64 | 1676.2 | 337.87 | .25139 | | #1 | .01836 | 20.253 | .00655 | .01733 | 00168 | 00163 | .00142 | 8.6672 | | #2 | .01838 | 20.188 | .00566 | .01010 | .00018 | .00002 | .00932 | 8.6448 | | #3 | .01814 | 20.176 | .00542 | .00718 | 00181 | .00134 | 00456 | 8.6237 | | Check ?
High Limit
Low Limit | Chk Pass | Sample Nar | ne: L151007 | '4931 A | cquired: 10/ | 23/2015 16 | :15:04 | Type: Unk | | | |------------------------------------|------------------|-----------------------|---------------------|---------------------|---------------------|-----------------------|-----------------------|----------------| | Method: ICF | P-THERMO3 | 3_6010_200 | .7WATER_ | 3YLINES(v | 526) Mc | de: CONC | Corr. Fa | ctor: 1.00000(| | User: JYH | Custom | ID1: | Custom ID |)2: (| Custom ID3 | : | | | | Comment: | | | | | | | | | | Elem | Sn1899 | Sr4077 | Ti3372 | TI1908 | V_2924 | Zn2062 | Zr3391 | | | Units | ppm
00034 | ppm
. 20982 | ppm
02245 | ppm
00140 | ppm
00051 | ppm
. 00365 | ppm
. 09441 | | | Avg
Stddev | .00005 | .00146 | .00556 | .00140 | .00051 | .00303 | .06060 | | | %RSD | 15.457 | .69492 | 24.774 | 132.77 | 110.12 | 6.3197 | 64.184 | | | | 2222 | 04440 | 20070 | 00040 | | 00044 | 45000 | | | #1
#2 | 00036
00028 | .21113
.21009 | 02873
01812 | .00043 | 00093
00071 | .00341 | .15020
.10310 | | | #2
#3 | 00028 | .20825 | 02051 | 00329 | .00071 | .00368 | .02994 | | | • | | | .0200. | | | | .0200 | | | Check ?
High Limit
Low Limit | Chk Pass | | Int. Std. | Y_2243 | Y_3600 | Y_3774 | | | | | | | Units | Cts/S | Cts/S | Cts/S | | | | | | | Avg | 10376. | 89038. | 3891.4 | | | | | | | Stddev
%RSD | 24.
.23298 | 241.
.27024 | 7.0
.18116 | | | | | | | 701102 | .20200 | .27021 | .10110 | | | | | | | #1 | 10359. | 88760. | 3883.4 | | | | | | | #2
#3 | 10365.
10403. | 89179.
89175. | 3893.9
3896.8 | | | | | | | #3 | 10403. | 03173. | 5090.0 | | | | | | | Sample Name
Method: ICP-T
User: JYH
Comment: | |)10_200.7W <i>A</i> | ed: 10/23/20
ATER_3YLIN
stom ID2: | | Type: Unk
Mode: CONC
ID3: | | Corr. Factor: 1.00000(| | |---|---------------|---------------------|---|-----------------------------|---------------------------------|----------------|------------------------|--| | Elem | Ag3280 | Al3082 | As1890 | B_2496 | Ba4554 | Be3131 | Ca4226 | | | Units | ppm | | Avg | 00062 | . 04402 | 00511 | . 07227 | . 01819 | .00002 | 257.31 | | | Stddev | .00145 | .00269 | .00314 | .00305 | .00058 | .00004 | .22 | | | %RSD | 233.65 | 6.1134 | 61.352 | 4.2179 | 3.1756 | 170.83 | .08539 | | | #1 | .00021 | .04150 | 00149 | .07554 | .01762 | .00001 | 257.12 | | | #2 | .00022 | .04370 | 00692 | .07174 | .01816 | 00001 | 257.27 | | | #3 | 00230 | .04685 | 00693 | .06952 | .01878 | .00007 | 257.55 | | | Check ?
High Limit
Low Limit | Chk Pass | | Elem | Cd2288 | Co2286 | Cr2677 | Cu2247 | Fe2611 | K_7664 | Li6707 | | | Units | ppm | | Avg | .00047 | .00536 | .00215 | .00294 | 2.9432 | 5.0335 | .04371 | | | Stddev | .00031 | .00031 | .00052 | .00078 | .0279 | .0283 | .00087 | | | %RSD | 66.662 | 5.7669 | 24.183 | 26.414 | .94644 | .56192 | 1.9900 | | | #1 | .00039 | .00572 | .00234 | .00283 | 2.9221 | 5.0308 | .04276 | | | #2 | .00020 | .00519 | .00254 | .00222 | 2.9748 | 5.0631 | .04447 | | | #3 Check ? High Limit Low Limit | .00081 | .00518 | .00156 | .00376 | 2.9328 | 5.0067 | .04391 | | | | Chk Pass | | Elem | Mg2790 | Mn2576 | Mo2020 | Na5895 | Ni2316 | P_2149 | Pb2203 | | | Units | ppm | | Avg | 78.407 | 1.0639 | . 00573 | F 549.52 | .01086 | . 02185 | 00385 | | | Stddev | .214 | .0061 | .00019 | 4.41 | .00036 | .01125 | .00213 | | | %RSD | .27331 | .57087 | 3.3676 | .80234 | 3.2858 | 51.471 | 55.409 | | | #1 | 78.481 | 1.0572 | .00567 | 549.14 | .01124 | .02482 | 00615 | | | #2 | 78.166 | 1.0689 | .00558 | 554.11 | .01053 | .03132 | 00345 | | | #3 | 78.575 | 1.0657 | .00595 | 545.32 | .01080 | .00942 | 00194 | | | Check ?
High Limit
Low Limit | Chk Pass | Chk Pass | Chk Pass | Chk Fail
270.00
50000 | Chk Pass | Chk Pass | Chk Pass | | | Sample Name
Method: ICP-1
User: JYH
Comment: | |)10_200.7W <i>A</i> | red: 10/23/20
ATER_3YLIN
stom ID2: | | Type: Unl
Mode: CON
ID3: | | Factor: 1.00000(| |---|---|---|---|--|---|---|--| | Elem
Units
Avg
Stddev
%RSD | Sb2068
ppm
. 00148
.00264
178.16 | Se1960
ppm
. 00682
.00993
145.62 | Si2124
ppm
15.494
.047
.30568 | Sn1899
ppm
00095
.00108
114.04 | Sr4077
ppm
. 29998
.00061
.20464 | Ti3372
ppm
F03845
.00222
5.7795 | TI1908
ppm
00051
.00100
194.57 | | #1
#2
#3 | .00417
.00139
00111 | 00458
.01145
.01358 | 15.531
15.509
15.441 | 00219
00019
00047 | .29956
.30068
.29969 | 03679
03758
04097 | 00167
.00006
.00006 | | Check ?
High Limit
Low Limit | Chk Pass | Chk Pass | Chk Pass | Chk Pass | Chk Pass | Chk Fail
36.000
03000 | Chk Pass | | Elem
Units
Avg
Stddev
%RSD | V_2924
ppm
00063
.00046
73.172 | Zn2062
ppm
. 00544
.00019
3.5439 | Zr3391
ppm
. 27550
.09316
33.816 | | | | | | #1
#2
#3 | 00010
00089
00091 | .00561
.00548
.00523 | .26429
.37377
.18845 | | | | | | Check ?
High Limit
Low Limit | Chk Pass | Chk Pass | Chk Pass | | | | | | Int. Std.
Units
Avg
Stddev
%RSD | Y_2243
Cts/S
9 725.7
19.4
.19902 | Y_3600
Cts/S
81967 .
190.
.23127 | Y_3774
Cts/S
3808.4
4.7
.12347 | | | | | | #1
#2
#3 | 9746.9
9709.1
9721.0 | 81783.
81955.
82162. | 3804.5
3807.1
3813.6 | | | | | | Sample Name: L1510074933 Acquired: 10/23/2015 16:23:18 Type: Unk Method: ICP-THERMO3_6010_200.7WATER_3YLINES(v526) Mode: CONC Corr. Factor: 1.00 User: JYH Custom ID1: Custom ID2: Custom ID3: Comment: | | | | | | | actor: 1.000000 | |---|----------------|----------------|----------------|-----------------------------|----------------|----------------|-----------------------------| | Elem | Ag3280 | Al3082 | As1890 | B_2496 | Ba4554 | Be3131 | Ca4226 | | Units | ppm | Avg | 00119 | . 15117 | 00439 | . 19982 | . 04354 | .00000 | F 361.85 | | Stddev | .00036 | .00398 | .00323 | .00116 | .00089 | .00002 | 1.56 | | %RSD | 30.371 | 2.6296 | 73.411 | .58145 | 2.0381 | 719.38 | .43063 | | #1 | 00150 | .14801 | 00770 | .19885 | .04251 | 00002 | 360.52 | | #2 | 00079 | .14986 | 00422 | .19951 | .04402 | .00003 | 363.56 | | #3 | 00127 | .15563 | 00126 | .20111 | .04407 | 00000 | 361.46 | | Check ?
High Limit
Low Limit | Chk Pass | Chk Pass | Chk Pass | Chk Pass | Chk Pass | Chk Pass | Chk Fail
270.00
10000 | | Elem | Cd2288 | Co2286 | Cr2677 | Cu2247 | Fe2611 | K_7664 | Li6707 | | Units | ppm | Avg | . 00184 | .01201 | . 00238 | . 00642 | .21398 | 5.1921 | . 07389 | | Stddev | .00029 | .00057 | .00118 | .00224 | .02575 | .0234 | .00362 | | %RSD | 15.596 | 4.7653 | 49.624 | 34.948 | 12.035 | .44997 | 4.8956 | | #1 | .00161 | .01168 | .00128 | .00385 | .18432 | 5.1737 | .07705 | | #2 | .00216 | .01267 | .00224 | .00798 | .22702 | 5.1842 | .07468 | | #3 | .00174 | .01167 | .00363 | .00743 | .23060 | 5.2184 | .06995 | | Check ?
High Limit
Low Limit | Chk Pass | Elem | Mg2790 | Mn2576 | Mo2020 | Na5895 | Ni2316 | P_2149 | Pb2203 | | Units | ppm | Avg | 100.98 | 1.6194 | . 01804 | F 483.47 | . 03113 | . 03640 | 00055 | | Stddev | .50 | .0082 | .00061 | 5.71 | .00169 | .00562 | .00247 | | %RSD | .49562 | .50732 | 3.4015 | 1.1803 | 5.4379 | 15.428 | 452.73 | | #1 | 100.51 | 1.6099 | .01828 | 477.84 | .03279 | .04150 | 00329 | | #2 | 101.50 | 1.6242 | .01850 | 489.25 | .02941 | .03733 | .00151 | | #3 | 100.92 | 1.6240 | .01734 | 483.31 | .03120 | .03038 | .00014 | | Check ?
High Limit
Low Limit | Chk Pass | Chk Pass | Chk Pass | Chk Fail
270.00
50000 | Chk Pass | Chk Pass | Chk Pass | | Sample Name: L1510074933 Acquired: 10/23/2015 1 Method:
ICP-THERMO3_6010_200.7WATER_3YLINES(v User: JYH Custom ID1: Custom ID2: Comment: | | | | | Type: Unk
Mode: CON
ID3: | | Factor: 1.00000(| |--|---|---|---|--|---|---|---| | Elem
Units
Avg
Stddev
%RSD | Sb2068
ppm
. 00684
.00378
55.197 | Se1960
ppm
00179
.00434
242.34 | Si2124
ppm
29.573
.101
.34124 | Sn1899
ppm
00056
.00052
92.219 | Sr4077
ppm
. 34008
.00103
.30432 | Ti3372
ppm
F05314
.00208
3.9086 | TI1908
ppm
. 00132
.00179
136.14 | | #1
#2
#3 | .00468
.01120
.00464 | 00667
00033
.00163 | 29.623
29.640
29.457 | 00112
00009
00049 | .33907
.34114
.34003 | 05554
05186
05202 | 00006
.00067
.00335 | | Check ?
High Limit
Low Limit | Chk Pass | Chk Pass | Chk Pass | Chk Pass | Chk Pass | Chk Fail
36.000
03000 | Chk Pass | | Elem
Units
Avg
Stddev
%RSD | V_2924
ppm
00130
.00152
116.76 | Zn2062
ppm
.01392
.00025
1.7687 | Zr3391
ppm
. 32688
.10014
30.635 | | | | | | #1
#2
#3 | 00243
.00043
00191 | .01404
.01409
.01364 | .43297
.23400
.31367 | | | | | | Check ?
High Limit
Low Limit | Chk Pass | Chk Pass | Chk Pass | | | | | | Int. Std.
Units
Avg
Stddev
%RSD | Y_2243
Cts/S
9614.6
18.6
.19372 | Y_3600
Cts/S
81495.
310.
.38075 | Y_3774
Cts/S
3780.1
17.4
.45909 | | | | | | #1
#2
#3 | 9624.4
9626.2
9593.1 | 81736.
81603.
81145. | 3800.1
3770.2
3770.0 | | | | | | Sample Name
Method: ICP-T
User: JYH
Comment: | |)10_200.7W <i>A</i> | ed: 10/23/20
ATER_3YLIN
stom ID2: | | Mode: CONC | Type: Unk
Mode: CONC Corr. F
D3: | | |---|----------------|---------------------|---|-----------------------------|----------------|--|-----------------------------| | Elem | Ag3280 | Al3082 | As1890 | B_2496 | Ba4554 | Be3131 | Ca4226 | | Units | ppm | Avg | 00176 | . 0754 1 | .00169 | .10498 | .01813 | .00001 | F 322.94 | | Stddev | .00078 | .00294 | .00413 | .00170 | .00036 | .00002 | 1.71 | | %RSD | 44.349 | 3.9036 | 245.34 | 1.6212 | 1.9847 | 217.12 | .52989 | | #1 | 00136 | .07446 | .00185 | .10679 | .01775 | 00001 | 321.95 | | #2 | 00126 | .07871 | 00253 | .10341 | .01847 | .00004 | 324.91 | | #3 | 00265 | .07306 | .00574 | .10475 | .01817 | .00001 | 321.95 | | Check ?
High Limit
Low Limit | Chk Pass | Chk Pass | Chk Pass | Chk Pass | Chk Pass | Chk Pass | Chk Fail
270.00
10000 | | Elem | Cd2288 | Co2286 | Cr2677 | Cu2247 | Fe2611 | K_7664 | Li6707 | | Units | ppm | Avg | . 00126 | . 05730 | . 00203 | .00880 | 24.937 | 14.289 | . 07931 | | Stddev | .00022 | .00015 | .00100 | .00128 | .057 | .094 | .00241 | | %RSD | 17.365 | .25992 | 49.237 | 14.498 | .22950 | .65752 | 3.0418 | | #1 | .00111 | .05713 | .00303 | .01026 | 24.904 | 14.199 | .08046 | | #2 | .00151 | .05741 | .00104 | .00825 | 25.003 | 14.280 | .07654 | | #3 | .00116 | .05735 | .00201 | .00789 | 24.903 | 14.387 | .08093 | | Check ?
High Limit
Low Limit | Chk Pass | Elem | Mg2790 | Mn2576 | Mo2020 | Na5895 | Ni2316 | P_2149 | Pb2203 | | Units | ppm | Avg | 102.97 | 1.2573 | . 00756 | F 1455.1 | . 90984 | . 01759 | . 05989 | | Stddev | .58 | .0058 | .00016 | 24.2 | .00305 | .00591 | .00172 | | %RSD | .56721 | .46426 | 2.1037 | 1.6607 | .33474 | 33.634 | 2.8676 | | #1 | 102.55 | 1.2534 | .00739 | 1481.3 | .91283 | .02191 | .05791 | | #2 | 103.64 | 1.2640 | .00759 | 1450.2 | .90996 | .01084 | .06093 | | #3 | 102.72 | 1.2545 | .00771 | 1433.8 | .90674 | .02001 | .06082 | | Check ?
High Limit
Low Limit | Chk Pass | Chk Pass | Chk Pass | Chk Fail
270.00
50000 | Chk Pass | Chk Pass | Chk Pass | | Sample Name
Method: ICP-1
User: JYH
Comment: | |)10_200.7W <i>A</i> | ed: 10/23/20
ATER_3YLIN
stom ID2: | | Type: Unk
Mode: CON
ID3: | | Factor: 1.00000(| |---|---|---|--|--|---|---|---| | Elem
Units
Avg
Stddev
%RSD | Sb2068
ppm
. 00417
.00345
82.705 | Se1960
ppm
.00377
.00821
217.61 | Si2124
ppm
14.451
.026
.17993 | Sn1899
ppm
00046
.00053
115.92 | Sr4077
ppm
. 88233
.00452
.51219 | Ti3372
ppm
F03952
.00076
1.9182 | TI1908
ppm
00124
.00161
129.35 | | #1
#2
#3 | .00046
.00727
.00478 | .00913
00568
.00787 | 14.467
14.465
14.421 | 00088
.00014
00063 | .87944
.88754
.88001 | 04036
03929
03889 | .00002
00070
00306 | | Check ?
High Limit
Low Limit | Chk Pass | Chk Pass | Chk Pass | Chk Pass | Chk Pass | Chk Fail
36.000
03000 | Chk Pass | | Elem
Units
Avg
Stddev
%RSD | V_2924
ppm
. 02533
.00030
1.1760 | Zn2062
ppm
. 12693
.00010
.07559 | Zr3391
ppm
6.6679
.0328
.49134 | | | | | | #1
#2
#3 | .02500
.02543
.02557 | .12702
.12683
.12696 | 6.6301
6.6872
6.6865 | | | | | | Check ?
High Limit
Low Limit | Chk Pass | Chk Pass | Chk Pass | | | | | | Int. Std.
Units
Avg
Stddev
%RSD | Y_2243
Cts/S
8959.3
14.9
.16600 | Y_3600
Cts/S
74314 .
79.
.10667 | Y_3774
Cts/S
3683.9
14.4
.39022 | | | | | | #1
#2
#3 | 8966.9
8968.9
8942.2 | 74263.
74405.
74273. | 3697.8
3669.1
3684.7 | | | | | | Sample Name:
Method: ICP-T
User: JYH
Comment: | |)10_200.7W <i>A</i> | ed: 10/23/20 ⁻
ATER_3YLINI
stom ID2: | | Type: Unk
Mode: CONC
ID3: | C Corr. F | factor: 1.00000(| |--|----------------|---------------------|---|-----------------------------|---------------------------------|----------------|-----------------------------| | Elem | Ag3280 | Al3082 | As1890 | B_2496 | Ba4554 | Be3131 | Ca4226 | | Units | ppm | Avg | 00153 | .03357 | . 00521 | . 11646 | . 01264 | 00004 | F 318.93 | | Stddev | .00143 | .01121 | .00383 | .00101 | .00050 | .00005 | .96 | | %RSD | 93.570 | 33.401 | 73.460 | .86811 | 3.9184 | 119.09 | .30248 | | #1 | 00138 | .02684 | .00090 | .11674 | .01233 | .00002 | 319.33 | | #2 | 00303 | .02735 | .00822 | .11730 | .01321 | 00007 | 319.63 | | #3 | 00018 | .04651 | .00650 | .11534 | .01237 | 00008 | 317.83 | | Check ?
High Limit
Low Limit | Chk Pass | Chk Pass | Chk Pass | Chk Pass | Chk Pass | Chk Pass | Chk Fail
270.00
10000 | | Elem | Cd2288 | Co2286 | Cr2677 | Cu2247 | Fe2611 | K_7664 | Li6707 | | Units | ppm | Avg | . 00118 | . 05714 | . 00286 | . 00539 | 5.1930 | 14.626 | . 08509 | | Stddev | .00006 | .00094 | .00046 | .00173 | .0312 | .019 | .00301 | | %RSD | 4.9927 | 1.6431 | 16.105 | 32.066 | .60066 | .12808 | 3.5316 | | #1 | .00116 | .05611 | .00316 | .00620 | 5.1570 | 14.609 | .08212 | | #2 | .00113 | .05736 | .00233 | .00656 | 5.2120 | 14.646 | .08813 | | #3 | .00124 | .05795 | .00308 | .00340 | 5.2100 | 14.621 | .08502 | | Check ?
High Limit
Low Limit | Chk Pass | Elem | Mg2790 | Mn2576 | Mo2020 | Na5895 | Ni2316 | P_2149 | Pb2203 | | Units | ppm | Avg | 104.35 | 1.2257 | . 00752 | F 1459.3 | . 91507 | . 00677 | 00124 | | Stddev | .38 | .0032 | .00041 | 6.7 | .00299 | .00255 | .00269 | | %RSD | .36373 | .26204 | 5.4665 | .45679 | .32685 | 37.719 | 216.88 | | #1 | 104.55 | 1.2288 | .00738 | 1464.8 | .91435 | .00932 | .00178 | | #2 | 104.58 | 1.2258 | .00799 | 1461.2 | .91835 | .00678 | 00338 | | #3 | 103.91 | 1.2224 | .00720 | 1451.9 | .91250 | .00421 | 00211 | | Check ?
High Limit
Low Limit | Chk Pass | Chk Pass | Chk Pass | Chk Fail
270.00
50000 | Chk Pass | Chk Pass | Chk Pass | | Sample Name
Method: ICP-T
User: JYH
Comment: | |)10_200.7W <i>A</i> | ed: 10/23/20
ATER_3YLIN
stom ID2: | | Type: Unk
Mode: CONC Corr. Factor: 1.0000
i ID3: | | | | |---|---|---|---|--|--|---|--|--| | Elem
Units
Avg
Stddev
%RSD | Sb2068
ppm
. 00613
.00395
64.381 | Se1960
ppm
00094
.00464
492.80 | Si2124
ppm
13.869
.037
.26515 | Sn1899
ppm
00177
.00114
64.578 | Sr4077
ppm
. 87890
.00148
.16876 | Ti3372
ppm
F05165
.00261
5.0606 | TI1908
ppm
00178
.00261
146.26 | | | #1
#2
#3 | .00529
.01042
.00267 | 00120
.00382
00545 |
13.890
13.891
13.827 | 00117
00105
00309 | .88053
.87856
.87762 | 05444
04926
05124 | .00112
00394
00253 | | | Check ?
High Limit
Low Limit | Chk Pass | Chk Pass | Chk Pass | Chk Pass | Chk Pass | Chk Fail
36.000
03000 | Chk Pass | | | Elem
Units
Avg
Stddev
%RSD | V_2924
ppm
. 01197
.00056
4.7142 | Zn2062
ppm
.12307
.00046
.37442 | Zr3391
ppm
6.5512
.2179
3.3262 | | | | | | | #1
#2
#3 | .01132
.01233
.01225 | .12338
.12328
.12254 | 6.7639
6.5614
6.3285 | | | | | | | Check ?
High Limit
Low Limit | Chk Pass | Chk Pass | Chk Pass | | | | | | | Int. Std.
Units
Avg
Stddev
%RSD | Y_2243
Cts/S
8876.3
15.9
.17953 | Y_3600
Cts/S
73818 .
197.
.26682 | Y_3774
Cts/S
3673.5
18.0
.48874 | | | | | | | #1
#2
#3 | 8887.4
8883.5
8858.0 | 73866.
73601.
73986. | 3683.7
3652.8
3684.1 | | | | | | | • | | | | | | | | | | |------------------------------------|----------------|----------------|----------------|-----------------------------|---------------|----------------|----------------|--|--| | Elem | Ag3280 | Al3082 | As1890 | B_2496 | Ba4554 | Be3131 | Ca4226 | | | | Units | ppm | | | Avg | 00156 | . 04029 | .02180 | . 06085 | .06898 | .00003 | 184.34 | | | | Stddev | .00095 | .00530 | .00244 | .00108 | .00056 | .00005 | 1.00 | | | | %RSD | 60.671 | 13.167 | 11.205 | 1.7807 | .80578 | 185.35 | .54263 | | | | #1 | 00238 | .04600 | .02224 | .06080 | .06841 | 00003 | 183.55 | | | | #2 | 00052 | .03551 | .02399 | .06196 | .06902 | .00006 | 185.46 | | | | #3 | 00178 | .03935 | .01917 | .05980 | .06952 | .00005 | 184.00 | | | | Check ?
High Limit
Low Limit | Chk Pass | | | Elem | Cd2288 | Co2286 | Cr2677 | Cu2247 | Fe2611 | K_7664 | Li6707 | | | | Units | ppm | | | Avg | . 00018 | .00350 | . 00148 | . 00215 | 8.4419 | 7.1466 | . 05673 | | | | Stddev | .00011 | .00013 | .00125 | .00041 | .0505 | .0183 | .00398 | | | | %RSD | 60.833 | 3.6362 | 84.627 | 19.153 | .59789 | .25611 | 7.0185 | | | | #1 | .00026 | .00364 | .00143 | .00178 | 8.3870 | 7.1617 | .05407 | | | | #2 | .00022 | .00345 | .00025 | .00259 | 8.4862 | 7.1262 | .06131 | | | | #3 | .00006 | .00340 | .00276 | .00206 | 8.4525 | 7.1519 | .05481 | | | | Check ?
High Limit
Low Limit | Chk Pass | | | Elem | Mg2790 | Mn2576 | Mo2020 | Na5895 | Ni2316 | P_2149 | Pb2203 | | | | Units | ppm | | | Avg | 93.849 | . 51229 | . 04023 | F 1106.4 | .14179 | . 02944 | 00322 | | | | Stddev | .888 | .00258 | .00057 | 18.1 | .00085 | .00884 | .00640 | | | | %RSD | .94573 | .50323 | 1.4106 | 1.6336 | .60129 | 30.035 | 198.84 | | | | #1 | 93.041 | .50937 | .04054 | 1093.0 | .14188 | .03725 | 00506 | | | | #2 | 94.799 | .51329 | .04058 | 1127.0 | .14259 | .03122 | .00390 | | | | #3 | 93.708 | .51422 | .03958 | 1099.3 | .14089 | .01984 | 00850 | | | | Check ?
High Limit
Low Limit | Chk Pass | Chk Pass | Chk Pass | Chk Fail
270.00
50000 | Chk Pass | Chk Pass | Chk Pass | | | | • | | | | | | | | | | |---|---|---|--|--|---|--|--|--|--| | Elem
Units
Avg
Stddev
%RSD | Sb2068
ppm
. 00421
.00154
36.501 | Se1960
ppm
. 00250
.00394
157.87 | Si2124
ppm
12.165
.046
.37656 | Sn1899
ppm
00094
.00119
126.73 | Sr4077
ppm
. 73871
.00350
.47411 | Ti3372
ppm
02666
.00330
12.364 | TI1908
ppm
00134
.00177
132.92 | | | | #1
#2
#3 | .00595
.00362
.00305 | 00205
.00496
.00459 | 12.190
12.192
12.112 | 00147
.00042
00177 | .73534
.74233
.73846 | 02818
02287
02892 | 00111
.00032
00321 | | | | Check ?
High Limit
Low Limit | Chk Pass | | | Elem
Units
Avg
Stddev
%RSD | V_2924
ppm
. 00062
.00060
96.019 | Zn2062
ppm
.00348
.00012
3.3163 | Zr3391
ppm
13.634
.011
.08221 | | | | | | | | #1
#2
#3 | .00065
.00120
.00001 | .00354
.00335
.00356 | 13.645
13.633
13.623 | | | | | | | | Check ?
High Limit
Low Limit | Chk Pass | Chk Pass | Chk Pass | | | | | | | | Int. Std.
Units
Avg
Stddev
%RSD | Y_2243
Cts/S
9239.3
11.2
.12140 | Y_3600
Cts/S
77298 .
159.
.20567 | Y_3774
Cts/S
3712.5
18.6
.50074 | | | | | | | | #1
#2
#3 | 9233.7
9232.0
9252.3 | 77115.
77375.
77403. | 3726.2
3691.4
3720.0 | | | | | | | | Sample Name
Method: ICP-T
User: JYH
Comment: | | 10_200.7WA | 10_200.7WATER_3YLINES(v526) | | | C Corr. F | Factor: 1.00000(| |---|----------------|----------------|-----------------------------|-----------------------------|----------------|----------------|-----------------------------| | Elem | Ag3280 | Al3082 | As1890 | B_2496 | Ba4554 | Be3131 | Ca4226 | | Units | ppm | Avg | 00010 | . 06486 | . 00298 | . 07352 | . 01859 | 00003 | 261.09 | | Stddev | .00086 | .00635 | .00443 | .00252 | .00003 | .00011 | .72 | | %RSD | 863.06 | 9.7867 | 148.61 | 3.4223 | .16494 | 355.21 | .27762 | | #1 | .00062 | .07034 | 00213 | .07081 | .01856 | .00004 | 260.64 | | #2 | .00013 | .06635 | .00569 | .07398 | .01860 | .00002 | 261.93 | | #3 | 00105 | .05790 | .00538 | .07578 | .01861 | 00015 | 260.71 | | Check ?
High Limit
Low Limit | Chk Pass | Elem | Cd2288 | Co2286 | Cr2677 | Cu2247 | Fe2611 | K_7664 | Li6707 | | Units | ppm | Avg | . 00052 | .00540 | . 00199 | . 00332 | 3.0696 | 5.3033 | . 04227 | | Stddev | .00016 | .00040 | .00116 | .00173 | .0589 | .0690 | .00190 | | %RSD | 30.808 | 7.3123 | 58.081 | 51.915 | 1.9174 | 1.3007 | 4.4870 | | #1 | .00033 | .00531 | .00067 | .00515 | 3.0078 | 5.2915 | .04270 | | #2 | .00060 | .00583 | .00248 | .00172 | 3.1250 | 5.3773 | .04391 | | #3 | .00062 | .00506 | .00282 | .00310 | 3.0760 | 5.2409 | .04019 | | Check ?
High Limit
Low Limit | Chk Pass | Elem | Mg2790 | Mn2576 | Mo2020 | Na5895 | Ni2316 | P_2149 | Pb2203 | | Units | ppm | Avg | 80.275 | 1.0812 | . 00571 | F 555.69 | . 01282 | . 03281 | F00620 | | Stddev | .336 | .0051 | .00028 | 6.69 | .00020 | .00827 | .00213 | | %RSD | .41910 | .46927 | 4.9623 | 1.2036 | 1.5857 | 25.189 | 34.343 | | #1 | 80.397 | 1.0819 | .00604 | 559.35 | .01264 | .03529 | 00493 | | #2 | 80.534 | 1.0859 | .00557 | 559.75 | .01280 | .03956 | 00501 | | #3 | 79.895 | 1.0758 | .00552 | 547.97 | .01304 | .02359 | 00866 | | Check ?
High Limit
Low Limit | Chk Pass | Chk Pass | Chk Pass | Chk Fail
270.00
50000 | Chk Pass | Chk Pass | Chk Fail
225.00
00500 | | Sample Name
Method: ICP-1
User: JYH
Comment: | |)10_200.7W | Acquired: 10/23/2015 16:39:52
0_200.7WATER_3YLINES(v526)
Custom ID2: Custom I | | | Type: Unk Mode: CONC Corr. Factor: 1.000000 ID3: | | | | |---|---|---|---|---|---|--|--|--|--| | Elem
Units
Avg
Stddev
%RSD | Sb2068
ppm
. 00249
.00585
234.39 | Se1960
ppm
. 00144
.01098
761.81 | Si2124
ppm
15.872
.045
.28660 | Sn1899
ppm
. 00009
.00079
836.80 | Sr4077
ppm
. 30521
.00060
.19789 | Ti3372
ppm
F03865
.00622
16.083 | TI1908
ppm
00320
.00035
10.795 | | | | #1
#2
#3 | .00170
.00869
00292 | .01279
00913
.00067 | 15.896
15.901
15.820 | 00051
.00099
00020 | .30456
.30533
.30575 | 03889
03232
04475 | 00294
00359
00306 | | | | Check ?
High Limit
Low Limit | Chk Pass | Chk Pass | Chk Pass | Chk Pass | Chk Pass | Chk Fail
36.000
03000 | Chk Pass | | | | Elem
Units
Avg
Stddev
%RSD | V_2924
ppm
00097
.00035
35.868 | Zn2062
ppm
. 00597
.00014
2.2948 | Zr3391
ppm
. 40582
.14805
36.480 | | | | | | | | #1
#2
#3 | 00088
00135
00067 | .00587
.00613
.00593 | .25031
.54505
.42211 | | | | | | | | Check ?
High Limit
Low Limit | Chk Pass | Chk Pass | Chk Pass | | | | | | | | Int. Std.
Units
Avg
Stddev
%RSD | Y_2243
Cts/S
9551.1
14.0
.14653 | Y_3600
Cts/S
8065 9.
226.
.27981 | Y_3774
Cts/S
3 739 .7
23.3
.62420 | | | | | | | | #1
#2
#3 | 9557.7
9535.0
9560.6 | 80769.
80400.
80809. | 3735.4
3718.7
3764.8 | | | | | | | | • | | | | | | | | | |---------------------------|----------------|----------------|----------------|----------------|----------------|----------------|----------------|--| | Elem | Ag3280 | Al3082 | As1890 | B_2496 | Ba4554 | Be3131 | Ca4226 | | | Units | ppm | | Avg | . 41501 | 10.505 | . 42330 | . 51791 | 1.0735 | . 05284 | 10.636 | | | Stddev | .00253 | .017 | .00040 | .00119 | .0038 | .00011 | .040 | | | %RSD | .61044 | .16303 | .09558 | .22966 | .35275 | .20456 | .37669 | | | #1 | .41373 | 10.524 | .42375 | .51785 | 1.0774 |
.05295 | 10.666 | | | #2 | .41793 | 10.491 | .42297 | .51912 | 1.0699 | .05285 | 10.591 | | | #3 | .41337 | 10.499 | .42319 | .51675 | 1.0731 | .05273 | 10.651 | | | Check ?
Value
Range | Chk Pass | | Elem | Cd2288 | Co2286 | Cr2677 | Cu2247 | Fe2611 | K_7664 | Li6707 | | | Units | ppm | | Avg | . 05241 | . 21162 | . 52358 | . 52794 | 4.2010 | 53.903 | 1.0616 | | | Stddev | .00037 | .00055 | .00133 | .00086 | .0239 | .076 | .0011 | | | %RSD | .70551 | .26093 | .25432 | .16311 | .56808 | .14185 | .09968 | | | #1 | .05284 | .21225 | .52512 | .52893 | 4.2284 | 53.983 | 1.0628 | | | #2 | .05221 | .21131 | .52275 | .52739 | 4.1903 | 53.894 | 1.0608 | | | #3 | .05218 | .21129 | .52288 | .52750 | 4.1844 | 53.831 | 1.0612 | | | Check ?
Value
Range | Chk Pass | | Elem | Mg2790 | Mn2576 | Mo2020 | Na5895 | Ni2316 | P_2149 | Pb2203 | | | Units | ppm | | Avg | 10.470 | . 53319 | 1.0491 | 52.611 | . 52415 | 10.303 | . 51861 | | | Stddev | .071 | .00168 | .0035 | .223 | .00116 | .004 | .00599 | | | %RSD | .68185 | .31466 | .33274 | .42299 | .22077 | .03994 | 1.1546 | | | #1 | 10.553 | .53349 | 1.0523 | 52.865 | .52477 | 10.307 | .52467 | | | #2 | 10.430 | .53470 | 1.0495 | 52.450 | .52282 | 10.299 | .51270 | | | #3 | 10.428 | .53139 | 1.0454 | 52.519 | .52487 | 10.304 | .51847 | | | Check ?
Value
Range | Chk Pass | | Sample Name: CCV Acquired: 10/23/2015 16:44:01 Type: QC Method: ICP-THERMO3_6010_200.7WATER_3YLINES(v526) Mode: CONC Corr. Factor: 1.000000 User: JYH Custom ID1: Custom ID2: Custom ID3: Comment: | | | | | | | | | |---|---|---|---|---|---|---|---|--| | Elem
Units
Avg
Stddev
%RSD | Sb2068
ppm
1.2477
.0030
.24164 | Se1960
ppm
. 42345
.00404
.95410 | Si2124
ppm
5.2114
.0042
.07957 | Sn1899
ppm
1.0589
.0030
.28117 | Sr4077
ppm
1.0720
.0016
.15289 | Ti3372
ppm
1.0727
.0044
.40667 | TI1908
ppm
. 52009
.00342
.65770 | | | #1
#2
#3 | 1.2498
1.2442
1.2491 | .42468
.42673
.41893 | 5.2093
5.2162
5.2087 | 1.0583
1.0622
1.0563 | 1.0738
1.0707
1.0715 | 1.0705
1.0778
1.0699 | .52355
.51999
.51672 | | | Check ?
Value
Range | Chk Pass | | Elem
Units
Avg
Stddev
%RSD | V_2924
ppm
1.0621
.0055
.51518 | Zn2062
ppm
1.0344
.0008
.07762 | Zr3391
ppm
F .81662
.17518
21.452 | | | | | | | #1
#2
#3 | 1.0683
1.0596
1.0582 | 1.0351
1.0347
1.0335 | .91149
.92390
.61446 | | | | | | | Check ?
Value
Range | Chk Pass | Chk Pass | Chk Fail
1.0000
-10.000% | | | | | | | Int. Std.
Units
Avg
Stddev
%RSD | Y_2243
Cts/S
10701.
18.
.17226 | Y_3600
Cts/S
91236.
284.
.31181 | Y_3774
Cts/S
3933.5
12.2
.31007 | | | | | | | #1
#2
#3 | 10701.
10683.
10720. | 90909.
91418.
91383. | 3923.4
3947.1
3930.0 | | | | | | | • | | | | | | | | | | |------------------------------------|----------------|----------------|----------|----------------|----------------|----------------|----------------|--|--| | Elem | Ag3280 | Al3082 | As1890 | B_2496 | Ba4554 | Be3131 | Ca4226 | | | | Units | ppm | | | Avg | . 00052 | . 00698 | 00008 | . 00145 | . 00104 | .00004 | 00349 | | | | Stddev | .00094 | .00293 | .00060 | .00132 | .00024 | .00007 | .00524 | | | | %RSD | 180.66 | 41.982 | 789.44 | 90.943 | 22.782 | 175.08 | 150.01 | | | | #1 | 00040 | .00469 | 00012 | .00197 | .00077 | .00001 | 00052 | | | | #2 | .00148 | .00597 | .00054 | 00005 | .00118 | 00001 | 00041 | | | | #3 | .00049 | .01028 | 00065 | .00242 | .00118 | .00013 | 00954 | | | | Check ?
High Limit
Low Limit | Chk Pass | | | Elem | Cd2288 | Co2286 | Cr2677 | Cu2247 | Fe2611 | K_7664 | Li6707 | | | | Units | ppm | | | Avg | 00038 | .00062 | 00011 | .00024 | .00521 | . 28431 | . 00674 | | | | Stddev | .00020 | .00024 | .00072 | .00048 | .01071 | .06509 | .00295 | | | | %RSD | 51.983 | 37.860 | 630.26 | 201.71 | 205.82 | 22.894 | 43.783 | | | | #1 | 00059 | .00048 | 00057 | .00067 | 00704 | .31998 | .00700 | | | | #2 | 00020 | .00089 | 00050 | .00033 | .01287 | .20919 | .00367 | | | | #3 | 00036 | .00049 | .00072 | 00028 | .00978 | .32378 | .00955 | | | | Check ?
High Limit
Low Limit | Chk Pass | | | Elem | Mg2790 | Mn2576 | Mo2020 | Na5895 | Ni2316 | P_2149 | Pb2203 | | | | Units | ppm | | | Avg | . 10058 | 00084 | .00117 | . 21276 | .00062 | 00097 | 00197 | | | | Stddev | .01955 | .00156 | .00038 | .00924 | .00041 | .00362 | .00170 | | | | %RSD | 19.441 | 185.18 | 32.201 | 4.3429 | 65.827 | 372.59 | 86.170 | | | | #1 | .08791 | 00070 | .00143 | .20642 | .00075 | 00480 | 00061 | | | | #2 | .09074 | .00064 | .00074 | .22336 | .00016 | .00240 | 00388 | | | | #3 | .12310 | 00246 | .00134 | .20851 | .00095 | 00052 | 00143 | | | | Check ?
High Limit
Low Limit | Chk Pass | | | Sample Nam
Method: ICP
User: JYH
Comment: | ne: CCB /
-THERMO3_
Custom I | 6010_200.7 | /23/2015 16:
WATER_3YI
Custom ID2: | LINES(v526) | ype: Blank
) Mode:
tom ID3: | CONC (| Corr. Factor: | 1.00000(| |--|---|---|---|---|---|--|--|----------| | Elem
Units
Avg
Stddev
%RSD | Sb2068
ppm
. 00386
.00391
101.31 | Se1960
ppm
.00134
.00451
336.16 | Si2124
ppm
.00363
.00114
31.440 | Sn1899
ppm
. 00020
.00046
232.37 | Sr4077
ppm
. 00014
.00027
192.16 | Ti3372
ppm
00207
.00228
109.84 | TI1908
ppm
00134
.00229
171.30 | | | #1
#2
#3 | .00541
00059
.00676 | .00495
.00279
00371 | .00422
.00231
.00435 | .00022
.00064
00027 | 00002
00001
.00046 | .00004
00178
00449 | .00048
00058
00391 | | | Check ?
High Limit
Low Limit | Chk Pass | | Elem
Units
Avg
Stddev
%RSD | V_2924
ppm
00012
.00066
528.83 | Zn2062
ppm
.00004
.00013
301.91 | Zr3391
ppm
F .14290
.18773
131.37 | | | | | | | #1
#2
#3 | .00060
00030
00067 | .00017
00009
.00005 | .33767
03689
.12793 | | | | | | | Check ?
High Limit
Low Limit | Chk Pass | Chk Pass | Chk Fail
.04000
04000 | | | | | | | Int. Std.
Units
Avg
Stddev
%RSD | Y_2243
Cts/S
10967.
5.
.04789 | Y_3600
Cts/S
94371.
283.
.30021 | Y_3774
Cts/S
3956.0
21.4
.54209 | | | | | | | #1
#2
#3 | 10974.
10965.
10964. | 94526.
94544.
94044. | 3931.3
3968.0
3968.8 | | | | | | Sample Name: PBW 99 Acquired: 10/23/2015 16:51:53 Type: Unk Method: ICP-THERMO3_6010_200.7WATER_3YLINES(v526) Mode: CONC Corr. Factor: 1.000000 Custom ID1: Custom ID2: Custom ID3: Comment: WG544044-02 Elem Ag3280 AI3082 As1890 B 2496 Ba4554 Be3131 Ca4226 Cd2288 Units ppm ppm ppm ppm ppm ppm ppm ppm Avg .00026 .01078 -.00346 .00182 .00200 .00006 .01583 -.00001 Stddev .00018 .00429 .00469 .00190 .00053 .00006 .02454 .00020 %RSD 70.224 39.823 135.26 104.39 26.395 99.702 155.07 1338.0 #1 .00008 .00931 -.00162 .00051 .00204 .00013 -.00509 -.00000 #2 .00024 .00741 .00002 .00095 .00250 -.00000 .00973 -.00022 #3 .00045 .01561 -.00879 .00399 .00145 .00007 .04285 .00018 Check? Chk Pass **Chk Pass** High Limit Low Limit Elem Co2286 Cr2677 Cu2247 Fe2611 K 7664 Li6707 Mg2790 Mn2576 Units ppm ppm ppm ppm ppm ppm ppm ppm .23117 .00055 .00064 .00022 .00126 .00406 .05764 -.00015 Avg .07962 .00385 .06884 Stddev .00026 .00043 .00105 .02530 .00248 %RSD 48.110 67.354 482.76 2003.7 34.441 94.812 119.43 1700.3 #1 .00025 .00035 -.00069 -.02055 .31668 .00794 .04268 .00191 #2 .00076 .00114 .00136 .02900 .21766 .00399 -.00250 -.00290 #3 .00063 .00044 -.00002 -.00467 .15917 .00024 .13272 .00055 Check? Chk Pass High Limit Low Limit Se1960 Mo2020 Na5895 Ni2316 P_2149 Pb2203 Sb2068 Si2124 Elem Units ppm ppm ppm ppm ppm ppm ppm ppm Avg .00040 .10219 .00057 .00186 -.00374 .00208 .00018 .00806 Stddev .00014 .00922 .00169 .00848 .00357 .00233 .00209 .00402 %RSD 35.716 9.0189 293.73 455.21 95.552 111.71 1169.6 49.841 .00259 -.00107 -.00098 .01251 .00469 .00699 Approved: October 26, 2015 -.00557 -.00601 .00038 .00410 .00260 -.00046 .00388 -.00744 .00914 Chk Pass #1 #2 #3 Check? High Limit Low Limit .00053 .00024 .00044 .09791 .11276 .09588 .00136 -.00136 .00172 Sample Name: PBW 99 Acquired: 10/23/2015 16:51:53 Type: Unk Method: ICP-THERMO3_6010_200.7WATER_3YLINES(v526) Mode: CONC Corr. Factor: 1.000000 Custom ID2: Custom ID1: Custom ID3: Comment: WG544044-02 Elem Sn1899 Sr4077 Ti3372 TI1908 V_2924 Zn2062 Zr3391 Units ppm ppm ppm ppm ppm ppm ppm Avg .00046 .00033 .00066 -.00172 .00006 .00116 -.03866 Stddev .00084 .00012 .00398 .00246 .00054 .00013 .10102 %RSD 183.18 37.515 603.29 143.25 901.44 10.999 261.29 #1 .00092 .00044 .00327 -.00456 .00043 .00131 -.12942 #2 -.00051 .00033 -.00392 -.00012 -.00056 .00107 .07018 .00096 .00020 #3 .00263 -.00049 .00031 .00110 -.05676 Check?
Chk Pass Chk Pass Chk Pass Chk Pass Chk Pass Chk Pass **High Limit** Low Limit Int. Std. Y 2243 Y 3600 Y 3774 Units Cts/S Cts/S Cts/S Avg 10563. 91154. 3802.4 Stddev 28. 79. 15.2 %RSD .26087 .08677 .40013 Approved: October 26, 2015 J'ye 1hu #1 #2 #3 10534. 10566. 10589. 91077. 91235. 91152. 3787.8 3818.2 3801.3 Sample Name: LCSW 99 Acquired: 10/23/2015 16:55:59 Type: Unk Method: ICP-THERMO3_6010_200.7WATER_3YLINES(v526) Mode: CONC Corr. Factor: 1.000000 User: JYH Custom ID1: Custom ID2: Custom ID3: Comment: WG544044-03 | Elem | Ag3280 | Al3082 | As1890 | B_2496 | Ba4554 | Be3131 | Ca4226 | Cd2288 | |--------|--------|--------|--------|--------|--------|--------|--------|--------| | Units | ppm | Avg | .22009 | 5.5862 | .21776 | 1.0783 | .58052 | .02766 | 5.7216 | .02767 | | Stddev | .00120 | .0065 | .00310 | .0037 | .00276 | .00002 | .0431 | .00014 | | %RSD | .54626 | .11631 | 1.4234 | .34498 | .47530 | .07583 | .75302 | .51965 | | #1 | .21999 | 5.5861 | .21427 | 1.0826 | .58302 | .02764 | 5.7524 | .02750 | | #2 | .22133 | 5.5928 | .21883 | 1.0760 | .57756 | .02767 | 5.7399 | .02777 | | #3 | .21894 | 5.5798 | .22018 | 1.0763 | .58100 | .02768 | 5.6723 | .02773 | Check? Chk Pass P | Elem | Co2286 | Cr2677 | Cu2247 | Fe2611 | K_7664 | Li6707 | Mg2790 | Mn2576 | |--------|----------------|----------------|----------------|---------------|---------------|----------------|---------------|----------------| | Units | ppm | Avg | . 11323 | . 28106 | . 28340 | 2.2855 | 29.109 | . 57487 | 5.5879 | . 28819 | | Stddev | .00034 | .00094 | .00156 | .0296 | .197 | .00150 | .1161 | .00318 | | %RSD | .30216 | .33290 | .55109 | 1.2938 | .67780 | .26060 | 2.0779 | 1.1045 | | #1 | .11357 | .28123 | .28466 | 2.2901 | 29.335 | .57656 | 5.6888 | .29032 | | #2 | .11325 | .28189 | .28389 | 2.3126 | 28.971 | .57372 | 5.6139 | .28453 | | #3 | .11288 | .28004 | .28165 | 2.2540 | 29.021 | .57432 | 5.4610 | .28973 | Check? Chk Pass P | Elem | Mo2020 | Na5895 | Ni2316 | P_2149 | Pb2203 | Sb2068 | Se1960 | Si2124 | |--------|----------------|---------------|--------|---------------|----------------|----------------|--------|---------------| | Units | ppm | Avg | . 56435 | 28.759 | .28305 | 5.4104 | . 28373 | . 66534 | .21878 | 2.7957 | | Stddev | .00150 | .137 | .00093 | .0108 | .00127 | .00416 | .00224 | .0062 | | %RSD | .26638 | .47805 | .32873 | .19922 | .44813 | .62580 | 1.0223 | .22317 | | #1 | .56429 | 28.918 | .28406 | 5.4199 | .28489 | .66053 | .22081 | 2.7941 | | #2 | .56589 | 28.685 | .28287 | 5.4127 | .28237 | .66768 | .21914 | 2.8026 | | #3 | .56288 | 28.674 | .28222 | 5.3987 | .28393 | .66780 | .21638 | 2.7904 | Check? Chk Pass P Approved: October 26, 2015 J'ye 1hi Sample Name: LCSW 99 Acquired: 10/23/2015 16:55:59 Type: Unk Method: ICP-THERMO3_6010_200.7WATER_3YLINES(v526) Mode: CONC Corr. Factor: 1.000000 Jser: JYH Custom ID1: Custom ID2: Custom ID3: Comment: WG544044-03 | Elem | Sn1899 | Sr4077 | Ti3372 | TI1908 | V_2924 | Zn2062 | Zr3391 | |--------|----------------|----------------|----------------|----------------|----------------|----------------|----------------| | Units | ppm | Avg | . 56644 | . 57407 | . 58091 | . 28295 | . 56956 | . 56539 | . 55631 | | Stddev | .00104 | .00358 | .00494 | .00216 | .00265 | .00137 | .15632 | | %RSD | .18289 | .62442 | .85093 | .76364 | .46463 | .24256 | 28.099 | | #1 | .56554 | .57817 | .58656 | .28046 | .56670 | .56578 | .46698 | | #2 | .56757 | .57253 | .57881 | .28435 | .57006 | .56653 | .46515 | | #3 | .56621 | .57152 | .57737 | .28403 | .57192 | .56387 | .73682 | Check? Chk Pass P Low Limit | Int. Std. | Y_2243 | Y_3600 | Y_3774 | |-----------|--------|----------------|---------------| | Units | Cts/S | Cts/S | Cts/S | | Avg | 10429. | 89528 . | 3848.8 | | Stddev | 26. | 181. | 24.6 | | %RSD | .24674 | .20240 | .63791 | | #1 | 10403. | 89575. | 3821.0 | | #2 | 10431. | 89328. | 3867.6 | | #3 | 10454. | 89681. | 3857.8 | Approved: October 26, 2015 J'ye lh Sample Name: F BLANK Acquired: 10/23/2015 16:59:48 Type: Unk Method: ICP-THERMO3_6010_200.7WATER_3YLINES(v526) Mode: CONC Corr. Factor: 1.000000 Custom ID1: Custom ID2: Custom ID3: Comment: WG543982-01 Elem Ag3280 AI3082 As1890 B 2496 Ba4554 Be3131 Ca4226 Cd2288 Units ppm ppm ppm ppm ppm ppm ppm ppm Avg -.00181 .02178 -.00083 .00347 .00067 .00009 .01319 .00029 Stddev .00052 .00740 .00216 .00043 .00014 .00002 .02388 .00012 %RSD 28.608 33.965 258.92 12.308 21.486 17.800 181.01 42.283 #1 -.00170 .02159 -.00163 .00394 .00052 80000. .01543 .00042 #2 -.00237 .01448 .00161 .00335 .00069 .00009 .03588 .00017 #3 -.00136 .02927 -.00249 .00312 .00081 .00011 -.01173 .00029 Check? Chk Pass High Limit Low Limit Elem Co2286 Cr2677 Cu2247 Fe2611 K 7664 Li6707 Mg2790 Mn2576 Units ppm ppm ppm ppm ppm ppm ppm ppm .00126 -.00034 .00129 .00071 .22874 .00245 -.02180 -.00044 Avg .09610 .00113 Stddev .00040 .00087 .00112 .00511 .08132 .00143 %RSD 31.821 257.36 87.068 717.61 42.014 46.142 373.13 326.35 #1 .00147 -.00019 .00002 -.00209 .29676 .00154 -.11414 .00070 #2 .00152 -.00127 .00169 .00662 .27066 .00371 .00961 .00003 #3 .00080 .00045 .00215 -.00238 .11880 .00209 .03915 -.00204 Chk Pass Chk Pass Chk Pass Check? Chk Pass Chk Pass Chk Pass Chk Pass High Limit Low Limit Na5895 Mo2020 Ni2316 P_2149 Sb2068 Se1960 Si2124 Elem Pb2203 Units ppm ppm ppm ppm ppm ppm ppm ppm Avg .00087 175.86 .00084 .00228 -.00305 .00007 -.00372 .01157 Stddev .00042 .50 .00038 .00599 .00203 .00365 .00920 .00180 5127.9 247.66 15.542 %RSD 48.038 .28458 45.375 262.19 66.326 #1 -.00091 .00041 176.14 .00053 .00376 -.00392 -.00955 .01354 #2 .00097 176.15 .00073 -.00430 -.00494 .00091 -.00849 .01116 #3 .00123 175.28 .00739 -.00331 .00322 .00689 .01002 .00127 Chk Pass Chk Pass Chk Pass Check? Chk Pass Chk Pass Chk Pass **High Limit** Approved: October 26, 2015 Low Limit Sample Name: F BLANK Acquired: 10/23/2015 16:59:48 Type: Unk Method: ICP-THERMO3_6010_200.7WATER_3YLINES(v526) Mode: CONC Corr. Factor: 1.000000 Custom ID2: Custom ID1: Custom ID3: Comment: WG543982-01 Elem Sn1899 Sr4077 Ti3372 TI1908 V_2924 Zn2062 Zr3391 Units ppm ppm ppm ppm ppm ppm ppm Avg -.00043 .00054 -.00523 -.00216 -.00012 .00327 .05632 Stddev .00088 .00027 .00575 .00225 .00084 .00031 .21261 377.51 %RSD 202.78 51.098 109.95 104.10 719.24 9.5382 #1 -.00037 .00038 -.00616 -.00455 -.00017 .00352 -.16550 #2 -.00134 .00085 -.01047 -.00183 .00074 .00292 .25834 .00038 #3 .00041 .00093 -.00010 -.00093 .00336 .07612 Check? Chk Pass Chk Pass Chk Pass Chk Pass Chk Pass Chk Pass **High Limit** Low Limit Int. Std. Y 2243 Y 3600 Y 3774 Units Cts/S Cts/S Cts/S Avg 10366. 87900. 3859.9 Stddev 30. 221. 16.6 %RSD .29183 .25168 .42993 #1 10332. 87757. 3858.0 #2 10377. 87788. 3844.3 #3 10390. 88155. 3877.4 Sample Name: F BLAN Acquired: 10/23/2015 17:03:53 Type: Unk Method: ICP-THERMO3_6010_200.7WATER_3YLINES(v526) Mode: CONC Corr. Factor: 1.000000 Custom ID1: Custom ID2: Custom ID3: Comment: WG543982-02 Elem Ag3280 AI3082 As1890 B 2496 Ba4554 Be3131 Ca4226 Cd2288 Units ppm ppm ppm ppm ppm ppm ppm ppm Avg .00055 .01262 .00035 .00326 .00026 .00007 .01024 .00007 Stddev .00154 .00581 .00117 .00010 .00013 .00006 .00713 .00012 %RSD 279.33 46.072 336.02 3.1576 50.887 80.686 69.601 173.85 #1 -.00103 .01782 -.00087 .00337 .00039 .00006 .01801 .00021 #2 .00064 .01371 .00047 .00316 .00013 .00002 .00871 .00004 #3 .00204 .00634 .00145 .00326 .00024 .00013 .00401 -.00003 Check? Chk Pass Chk Pass Chk Pass Chk Pass Chk Pass Chk Pass **Chk Pass** High Limit Low Limit Elem Co2286 Cr2677 Cu2247 Fe2611 K 7664 Li6707 Mg2790 Mn2576 Units ppm ppm ppm ppm ppm ppm ppm ppm .00031 .00089 .00065 .00362 .14716 .00205 -.00059 -.00054 Avg .00619 Stddev .00020 .00039 .00202 .03373 .09580 .00766 .00147 %RSD 64.195 43.950 308.13 930.99 65.097 301.35 1299.7 270.72 #1 .00029 .00049 -.00024 .03877 .25778 .00911 .00691 -.00180 #2 .00051 .00090 -.00076 -.02848 .09276 -.00248 -.00841 .00107 #3 .00011 .00128 .00297 .00058 .09095 -.00046 -.00027 -.00090 Check? Chk Pass High Limit Low Limit Na5895 Se1960 Mo2020 Ni2316 P_2149 Pb2203 Sb2068 Si2124 Elem Units ppm ppm ppm ppm ppm ppm ppm ppm Avg .00039 .09454 -.00003 .01022 -.00083 .00168 .00445 .01616 Stddev .00043 .01723 .00100 .00170 .00398 .00384 .00148 .00393 %RSD 18.224 228.43 33.348 111.06 2969.3 16.593 482.72 24.342 #1 .10218 .01228 .00072 .00020 .01157 .00195 -.00269 .00377 #2 -.00010 .07481 .00083 .01078 -.00539 .00451 .00615 .01606 #3 .00055 .10663 -.00112 .00832 .00096 .00321 .00342 .02015 Chk Pass Check? Approved: October 26, 2015 High Limit Low Limit Sample Name: F BLAN Acquired: 10/23/2015 17:03:53 Type: Unk Method: ICP-THERMO3_6010_200.7WATER_3YLINES(v526) Mode: CONC Corr. Factor: 1.000000 Custom ID2: Custom ID1: Custom ID3: Comment: WG543982-02 Elem Sn1899 Sr4077 Ti3372 TI1908 V_2924 Zn2062 Zr3391 Units ppm ppm ppm ppm ppm ppm ppm Avg .00035 .00014 -.00452 -.00327 -.00041 .00332 .03129 Stddev .00057 .00027 .00237 .00163 .00043 .00005 .15651 %RSD 165.30 185.59 52.450 49.807 103.60 1.4095 500.23 #1 .00067 .00030 -.00221 -.00485 -.00083 .00329 -.07524 #2 -.00031 .00029 -.00439 -.00160 .00003 .00330 .21097 -.00016 -.00694 -.04187 #3 .00068 -.00337 -.00044 .00338 Check? Chk Pass Chk Pass Chk Pass Chk Pass Chk Pass Chk Pass **High Limit** Low Limit Int. Std. Y 2243 Y 3600 Y 3774 Units Cts/S Cts/S Cts/S 10652. 92443. 3867.6 Avg Stddev 7. 149. 20.8 %RSD .06610 .16101 .53879 #1 10645. 92272. 3877.5 #2 10659. 92543. 3843.7 #3 10651. 92515. 3881.7 Sample Name: L1510122701 Acquired: 10/23/2015 17:07:59 Type: Unk Method: ICP-THERMO3_6010_200.7WATER_3YLINES(v526) Mode: CONC Corr. Factor: 1.000000 User: JYH Custom ID1: Custom ID2: Custom ID3: Comment: WG544044-01 | Elem | Ag3280 | Al3082 | As1890 | B_2496 | Ba4554 | Be3131 | Ca4226 | |------------------------------------|----------------|----------------|----------------|----------------|----------------
----------------|----------------| | Units | ppm | Avg | 00057 | . 04088 | . 00640 | . 02781 | . 10957 | .00003 | 182.30 | | Stddev | .00069 | .00339 | .00285 | .00055 | .00100 | .00005 | .23 | | %RSD | 119.88 | 8.2926 | 44.538 | 1.9628 | .91066 | 136.16 | .12613 | | #1 | 00038 | .03729 | .00342 | .02738 | .10855 | .00008 | 182.12 | | #2 | 00134 | .04133 | .00666 | .02762 | .10961 | 00002 | 182.22 | | #3 | 00000 | .04402 | .00910 | .02842 | .11054 | .00004 | 182.56 | | Check ?
High Limit
Low Limit | Chk Pass | Elem | Cd2288 | Co2286 | Cr2677 | Cu2247 | Fe2611 | K_7664 | Li6707 | | Units | ppm | Avg | . 01040 | . 00067 | . 00107 | . 66401 | . 00427 | 4.9096 | . 01979 | | Stddev | .00004 | .00024 | .00053 | .00202 | .00178 | .0831 | .00214 | | %RSD | .41232 | 35.917 | 49.675 | .30423 | 41.691 | 1.6921 | 10.814 | | #1 | .01041 | .00061 | .00074 | .66558 | .00627 | 4.8200 | .01738 | | #2 | .01044 | .00094 | .00078 | .66473 | .00365 | 4.9841 | .02148 | | #3 | .01036 | .00046 | .00168 | .66173 | .00288 | 4.9246 | .02049 | | Check ?
High Limit
Low Limit | Chk Pass | Elem | Mg2790 | Mn2576 | Mo2020 | Na5895 | Ni2316 | P_2149 | Pb2203 | | Units | ppm | Avg | 3.9410 | . 14180 | . 00099 | 2.1761 | .00282 | . 56217 | . 00392 | | Stddev | .0969 | .00085 | .00062 | .0325 | .00118 | .00776 | .00135 | | %RSD | 2.4581 | .60086 | 62.544 | 1.4947 | 41.731 | 1.3800 | 34.516 | | #1 | 3.8423 | .14172 | .00069 | 2.1433 | .00160 | .56024 | .00260 | | #2 | 3.9449 | .14100 | .00057 | 2.1766 | .00396 | .57070 | .00530 | | #3 | 4.0359 | .14269 | .00170 | 2.2083 | .00291 | .55555 | .00386 | | Check ?
High Limit
Low Limit | Chk Pass Approved: October 26, 2015 J'ye 1hu Sample Name: L1510122701 Acquired: 10/23/2015 17:07:59 Type: Unk Method: ICP-THERMO3_6010_200.7WATER_3YLINES(v526) Mode: CONC Corr. Factor: 1.000000 User: JYH Custom ID1: Custom ID2: Custom ID3: Comment: WG544044-01 Elem Sb2068 Se1960 Si2124 Sn1899 Sr4077 Ti3372 TI1908 Units ppm ppm ppm ppm ppm ppm ppm Avg .00119 .00705 .87242 -.00029 .65515 F-.03069 -.00228 Stddev .00756 .00339 .00447 .00040 .00119 .00149 .00369 %RSD 637.40 48.095 .51280 136.81 .18216 4.8471 161.66 #1 .00105 .00948 .87625 .00014 .65512 -.02912 -.00599 #2 .00881 .00849 .87351 -.00065 .65635 -.03207 -.00224 #3 -.00630 .00318 .86750 -.00037 .65397 -.03088 .00139 Check? **Chk Pass Chk Pass Chk Pass Chk Pass Chk Pass** Chk Fail **Chk Pass High Limit** 36.000 Low Limit -.03000 Elem V 2924 Zn2062 Zr3391 Units ppm ppm ppm .00070 .11976 .10420 Avg Stddev .00100 .11358 .00059 %RSD 143.50 .49611 109.01 #1 -.00039 .12044 .14298 #2 .11938 .00091 .19331 #3 .00157 .11945 -.02370 Check? **Chk Pass Chk Pass Chk Pass High Limit** Low Limit Int. Std. Y 2243 Y_3600 Y_3774 Units Cts/S Cts/S Cts/S Avg 10333. 88922. 3882.1 Stddev 7. 170. 4.2 %RSD .10899 .06867 .19071 #1 10327. 88842. 3878.0 #2 10331. 88888. 3881.9 Approved: October 26, 2015 #3 10341. 89117. 3886.4 Sample Name: L1510122701S Acquired: 10/23/2015 17:12:00 Type: Unk Method: ICP-THERMO3_6010_200.7WATER_3YLINES(v526) Mode: CONC Corr. Factor: 1.000000 Custom ID2: Custom ID3: User: JYH Custom ID1: Comment: WG544044-04 Elem Ag3280 Al3082 As1890 B 2496 Ba4554 Be3131 Ca4226 Cd2288 Units ppm ppm ppm ppm ppm ppm ppm ppm Avg .21908 5.5156 .22402 1.0888 .67218 .02729 186.01 .03802 Stddev .00080 .0357 .00331 .0026 .00114 .00013 .50 .00012 %RSD .36338 .64733 1.4778 .24041 .16925 .47198 .27146 .31914 #1 .21934 5.5568 .22386 1.0904 .67287 .02739 186.40 .03805 #2 .21972 5.4930 .22740 1.0902 .67279 .02715 186.19 .03812 #3 .21819 5.4971 .22079 1.0857 .67086 .02735 185.44 .03788 Check? Chk Pass High Limit Low Limit Elem Co2286 Cr2677 Cu2247 Fe2611 K 7664 Li6707 Mg2790 Mn2576 Units ppm ppm ppm ppm ppm ppm ppm ppm .10884 .27731 .93044 2.1955 33.291 .57919 9.3737 .41509 Avg .00225 Stddev .00063 .00158 .00167 .0263 .029 .00102 .0816 %RSD .58104 .56857 .17924 1.2001 .08742 .17610 .87097 .54212 #1 .10813 .27827 .93225 2.2024 33.324 .57935 9.2893 .41392 #2 .10936 .27549 .92897 2.1664 33.269 .58011 9.4523 .41366 #3 .10902 .27816 .93009 2.2177 33.281 .57810 9.3793 .41768 Check? Chk Pass High Limit Low Limit Si2124 Mo2020 P 2149 Elem Na5895 Ni2316 Pb2203 Sb2068 Se1960 Units ppm ppm ppm ppm ppm ppm ppm ppm Avg .55756 30.468 .27221 6.0492 .27787 .65709 .22271 3.6925 Chk Pass .0021 .03440 6.0472 6.0514 6.0489 .00243 .87327 .28067 .27655 .27639 .00877 1.3340 .65551 .66654 .64922 .00574 2.5762 .21885 .21997 .22930 .0035 .09463 3.6904 3.6966 3.6907 Approved: October 26, 2015 ye lon Stddev %RSD Check? High Limit Low Limit #1 #2 #3 .00180 .32355 .55888 .55829 .55550 .074 .24283 30.553 30.434 30.418 .00150 .55185 .27386 .27185 .27092 Sample Name: L1510122701S Acquired: 10/23/2015 17:12:00 Type: Unk Method: ICP-THERMO3_6010_200.7WATER_3YLINES(v526) Mode: CONC Corr. Factor: 1.000000 User: JYH Custom ID1: Custom ID2: Custom ID3: Comment: WG544044-04 | Elem | Sn1899 | Sr4077 | Ti3372 | TI1908 | V_2924 | Zn2062 | Zr3391 | |--------|--------|--------|--------|--------|--------|--------|--------| | Units | ppm | Avg | .55200 | 1.2111 | .53520 | .26762 | .56328 | .64911 | .48504 | | Stddev | .00145 | .0034 | .01152 | .00326 | .00099 | .00093 | .10737 | | %RSD | .26331 | .27868 | 2.1527 | 1.2175 | .17544 | .14277 | 22.135 | | #1 | .55169 | 1.2146 | .54018 | .27106 | .56395 | .64990 | .36243 | | #2 | .55358 | 1.2108 | .54340 | .26458 | .56214 | .64934 | .56224 | | #3 | .55072 | 1.2079 | .52203 | .26720 | .56374 | .64809 | .53046 | Check? Chk Pass P Low Limit | Int. Std. | Y_2243 | Y_3600 | Y_3774 | |-----------|--------|----------------|--------| | Units | Cts/S | Cts/S | Cts/S | | Avg | 10191. | 87294 . | 3843.0 | | Stddev | 20. | 214. | 5.6 | | %RSD | .19523 | .24555 | .14659 | | #1 | 10170. | 87048. | 3836.9 | | #2 | 10194. | 87438. | 3848.0 | | #3 | 10210. | 87397. | 3844.1 | Approved: October 26, 2015 J'ye lhu Sample Name: L1510122701SD Acquired: 10/23/2015 17:15:47 Type: Unk Method: ICP-THERMO3_6010_200.7WATER_3YLINES(v526) Mode: CONC Corr. Factor: 1.000000 User: JYH Custom ID1: Custom ID2: Custom ID3: Comment: WG544044-05 Elem Ag3280 Al3082 As1890 B 2496 Ba4554 Be3131 Ca4226 Cd2288 Units ppm ppm ppm ppm ppm ppm ppm ppm Avg .21730 5.4404 .22307 1.0775 .66499 .02678 185.41 .03750 Stddev .00085 .0111 .00392 .0034 .00249 .00007 .30 .00055 %RSD .39289 .20472 1.7561 .31528 .37383 .27475 .16011 1.4690 #1 .21713 5.4410 .22635 1.0804 .66657 .02683 185.58 .03691 #2 .21654 5.4290 .21873 1.0738 .66628 .02669 185.59 .03801 #3 .21823 5.4512 .22413 1.0783 .66212 .02681 185.07 .03757 Check? Chk Pass **High Limit** Low Limit | Elem | Co2286 | Cr2677 | Cu2247 | Fe2611 | K_7664 | Li6707 | Mg2790 | Mn2576 | |--------|--------|--------|--------|--------|--------|--------|--------|--------| | Units | ppm | Avg | .10741 | .27117 | .93052 | 2.1597 | 32.899 | .56952 | 9.0917 | .40836 | | Stddev | .00047 | .00011 | .00255 | .0292 | .072 | .00137 | .1047 | .00212 | | %RSD | .43625 | .04058 | .27429 | 1.3517 | .21820 | .23988 | 1.1517 | .52000 | | #1 | .10707 | .27110 | .93252 | 2.1774 | 32.895 | .57106 | 9.0171 | .40790 | | #2 | .10723 | .27113 | .93139 | 2.1758 | 32.973 | .56847 | 9.0466 | .41068 | | #3 | .10795 | .27130 | .92764 | 2.1260 | 32.830 | .56901 | 9.2114 | .40650 | Check? Chk Pass **High Limit** Low Limit | Elem | Mo2020 | Na5895 | Ni2316 | P_2149 | Pb2203 | Sb2068 | Se1960 | Si2124 | |--------|----------------|---------------|----------------|---------------|----------------|----------------|----------------|---------------| | Units | ppm | Avg | . 55081 | 29.985 | . 26895 | 5.9942 | . 27542 | . 65312 | . 21847 | 3.6682 | | Stddev | .00086 | .088 | .00133 | .0059 | .00282 | .00530 | .01230 | .0066 | | %RSD | .15645 | .29415 | .49548 | .09759 | 1.0226 | .81177 | 5.6283 | .17985 | | #1 | .55178 | 30.069 | .26749 | 5.9992 | .27317 | .65761 | .22027 | 3.6611 | | #2 | .55051 | 29.993 | .26929 | 5.9878 | .27451 | .64727 | .20537 | 3.6741 | | #3 | .55014 | 29.893 | .27009 | 5.9956 | .27858 | .65449 | .22977 | 3.6696 | Check? Chk Pass **High Limit** Low Limit Sample Name: L1510122701SD Acquired: 10/23/2015 17:15:47 Type: Unk Method: ICP-THERMO3_6010_200.7WATER_3YLINES(v526) Mode: CONC Corr. Factor: 1.000000 User: JYH Custom ID1: Custom ID2: Custom ID3: Comment: WG544044-05 | Elem | Sn1899 | Sr4077 | Ti3372 | TI1908 | V_2924 | Zn2062 | Zr3391 | |--------|--------|--------|--------|--------|--------|--------|--------| | Units | ppm | Avg | .54169 | 1.2016 | .53116 | .26432 | .55304 | .64144 | .55796 | | Stddev | .00084 | .0016 | .01215 | .00431 | .00073 | .00017 | .08275 | | %RSD | .15506 | .13094 | 2.2876 | 1.6303 | .13150 | .02624 | 14.831 | | #1 | .54107 | 1.2028 | .54342 | .26848 | .55268 | .64127 | .51073 | | #2 | .54135 | 1.2023 | .51912 | .26460 | .55387 | .64160 | .65351 | | #3 | .54265 | 1.1999 | .53094 | .25988 | .55256 | .64147 | .50964 | Check? Chk Pass P Low Limit | Int. Std. | Y_2243 | Y_3600 | Y_3774 | |-----------|--------|----------------|---------------| | Units | Cts/S | Cts/S | Cts/S | | Avg | 10232. | 8798 1. | 3873.6 | | Stddev | 19. | 173. | 13.6 | | %RSD | .18518 | .19700 | .35059 | | #1 | 10254. | 87877. | 3867.8 | | #2 | 10227. | 88181. | 3863.8 | | #3 | 10217. | 87885. | 3889.1 | Approved: October 26, 2015 J'ye lon | • | | | | | | | | | | |--|---|---|---|--|---|---|---|--|--| | Elem
Units
Avg
Stddev
%RSD | Ag3280
ppm
00088
.00072
82.638 | Al3082
ppm
.
54737
.00717
1.3108 | As1890
ppm
00200
.00379
189.43 | B_2496
ppm
.13450
.00316
2.3483 | Ba4554
ppm
. 04368
.00050
1.1392 | Be3131
ppm
.00006
.00006
88.003 | Ca4226
ppm
6.1596
.0317
.51511 | | | | #1
#2
#3 | 00004
00134
00124 | .55435
.54001
.54777 | .00167
00178
00589 | .13138
.13443
.13770 | .04376
.04413
.04315 | .00001
.00007
.00012 | 6.1910
6.1275
6.1605 | | | | Check ?
High Limit
Low Limit | Chk Pass | | | Elem
Units
Avg
Stddev
%RSD | Cd2288
ppm
. 00014
.00029
211.23 | Co2286
ppm
.00186
.00009
4.5815 | Cr2677
ppm
00001
.00130
16727.
00079 | Cu2247
ppm
.00168
.00035
21.151 | Fe2611
ppm
00779
.01638
210.34
01163 | K_7664
ppm
308.71
.58
.18755 | Li6707
ppm
. 01290
.00098
7.6308 | | | | #2
#3
Check ?
High Limit | 00011
.00046
Chk Pass | .00178
.00185
Chk Pass | .00150
00073
Chk Pass | .00164
.00205
Chk Pass | 02191
.01018
Chk Pass | 308.54
308.23
Chk Pass | .01290
.01192
Chk Pass | | | | Elem
Units
Avg
Stddev
%RSD | Mg2790
ppm
19.518
.042
.21280 | Mn2576
ppm
. 01754
.00098
5.6130 | Mo2020
ppm
.00152
.00042
27.810 | Na5895
ppm
F 561.05
1.11
.19866 | Ni2316
ppm
00038
.00078
203.72 | P_2149
ppm
. 61507
.00227
.36843 | Pb2203
ppm
00303
.00285
93.991 | | | | #1
#2
#3 | 19.486
19.504
19.565 | .01660
.01746
.01857 | .00116
.00198
.00141 | 559.77
561.65
561.74 | 00086
00080
.00052 | .61346
.61408
.61766 | 00571
00333
00004 | | | | Check ?
High Limit
Low Limit | Chk Pass | Chk Pass | Chk Pass | Chk Fail
270.00
50000 | Chk Pass | Chk Pass | Chk Pass | | | | Sample Name: L1510110201 Acquired: 10/23/2015 17:19:36 Type: Unk Method: ICP-THERMO3_6010_200.7WATER_3YLINES(v526) Mode: CONC Corr. Factor: 1.000000 User: JYH Custom ID1: Custom ID2: Custom ID3: Comment: | | | | | | | | | |--|---|---|---|---|---|---|--|--| | Elem
Units
Avg
Stddev
%RSD | Sb2068
ppm
. 00299
.00155
51.960 | Se1960
ppm
.00742
.00837
112.83 | Si2124
ppm
1.3136
.0072
.54919 | Sn1899
ppm
.00010
.00014
147.00 | Sr4077
ppm
. 11081
.00032
.28920 | Ti3372
ppm
00260
.00485
186.26 | TI1908
ppm
00337
.00162
47.947 | | | #1
#2
#3 | .00135
.00319
.00444 | .01412
.01010
00196 | 1.3218
1.3111
1.3080 | .00001
.00026
.00002 | .11109
.11046
.11087 | .00299
00525
00555 | 00267
00522
00222 | | | Check ?
High Limit
Low Limit | Chk Pass | | Elem
Units
Avg
Stddev
%RSD | V_2924
ppm
. 00024
.00104
427.24 | Zn2062
ppm
.00341
.00015
4.3738 | Zr3391
ppm
.22899
.11153
48.704 | | | | | | | #1
#2
#3 | 00078
.00130
.00021 | .00324
.00346
.00352 | .22865
.34068
.11763 | | | | | | | Check ?
High Limit
Low Limit | Chk Pass | Chk Pass | Chk Pass | | | | | | | Int. Std.
Units
Avg
Stddev
%RSD | Y_2243
Cts/S
9874.2
4.0
.04049 | Y_3600
Cts/S
82562 .
197.
.23860 | Y_3774
Cts/S
3823.2
12.0
.31262 | | | | | | | #1
#2
#3 | 9872.0
9878.8
9871.8 | 82718.
82341.
82628. | 3809.4
3829.8
3830.4 | | | | | | Method: ICP-THERMO3_6010_200.7WATER_3YLINES(v526) Mode: CONC Corr. Factor: 1.000000 User: JYH Custom ID1: Custom ID2: Custom ID3: Comment: WG544079-01 | Elem | Ag3280 | Al3082 | As1890 | B_2496 | Ba4554 | Be3131 | Ca4226 | | |------------------------------------|----------------|----------------|----------------|-----------------------------|----------------|---------------|----------------|--| | Units | ppm | | Avg | . 22378 | 5.9715 | .22326 | 1.2200 | . 60533 | .02828 | 11.174 | | | Stddev | .00146 | .0124 | .00249 | .0045 | .00505 | .00008 | .033 | | | %RSD | .65282 | .20781 | 1.1136 | .37039 | .83344 | .28234 | .29284 | | | #1 | .22546 | 5.9808 | .22561 | 1.2252 | .60386 | .02837 | 11.201 | | | #2 | .22279 | 5.9763 | .22066 | 1.2176 | .61095 | .02822 | 11.138 | | | #3 | .22309 | 5.9574 | .22350 | 1.2171 | .60119 | .02825 | 11.184 | | | Check ?
High Limit
Low Limit | Chk Pass | | Elem | Cd2288 | Co2286 | Cr2677 | Cu2247 | Fe2611 | K_7664 | Li6707 | | | Units | ppm | | Avg | . 02766 | .10984 | . 27836 | . 27161 | 2.2100 | 303.44 | . 56883 | | | Stddev | .00003 | .00059 | .00139 | .00272 | .0237 | 1.19 | .00240 | | | %RSD | .12427 | .54007 | .49831 | 1.0023 | 1.0732 | .39157 | .42141 | | | #1 | .02764 | .10999 | .27683 | .27302 | 2.2142 | 304.57 | .56686 | | | #2 | .02770 | .11034 | .27954 | .27334 | 2.1845 | 303.54 | .57150 | | | #3 | .02764 | .10918 | .27870 | .26847 | 2.2313 | 302.20 | .56814 | | | Check ?
High Limit
Low Limit | Chk Pass | | Elem | Mg2790 | Mn2576 | Mo2020 | Na5895 | Ni2316 | P_2149 | Pb2203 | | | Units | ppm | | Avg | 23.020 | . 29273 | . 55815 | F 532.82 | . 26963 | 6.1545 | . 26534 | | | Stddev | .104 | .00356 | .00159 | 5.05 | .00163 | .0256 | .00301 | | | %RSD | .45170 | 1.2177 | .28525 | .94720 | .60624 | .41584 | 1.1327 | | | #1 | 22.999 | .29579 | .55931 | 529.86 | .27146 | 6.1764 | .26641 | | | #2 | 23.133 | .29358 | .55881 | 538.65 | .26913 | 6.1607 | .26767 | | | #3 | 22.929 | .28881 | .55634 | 529.95 | .26831 | 6.1263 | .26195 | | | Check ?
High Limit
Low Limit | Chk Pass | Chk Pass | Chk Pass | Chk Fail
270.00
50000 | Chk Pass | Chk Pass | Chk Pass | | Approved: October 26, 2015 J'ye 1hu Sample Name: L1510110201PS Acquired: 10/23/2015 17:23:46 Type: Unk Method: ICP-THERMO3_6010_200.7WATER_3YLINES(v526) Mode: CONC Corr. Factor: 1.000000 Custom ID1: User: JYH Custom ID2: Custom ID3: Comment: WG544079-01 Elem Sb2068 Se1960 Si2124 Sn1899 Sr4077 Ti3372 TI1908 Units ppm ppm ppm ppm ppm ppm ppm Avg .66684 .23412 4.2051 .54980 .65694 .56647 .25536 Stddev .00176 .00191 .0192 .00240 .00200 .00438 .00407 %RSD .26418 .81686 .45613 .43673 .30421 .77323 1.5929 #1 .66874 .23568 4.2093 .55162 .65798 .56457 .25106 #2 .66650 .23198 4.2219 .55071 .65820 .57148 .25914 #3 .66527 .23469 4.1842 .54708 .65463 .56337 .25588 Check? **Chk Pass** Chk Pass Chk Pass Chk Pass Chk Pass Chk Pass **Chk Pass High Limit** Low Limit Elem V 2924 Zn2062 Zr3391 Units ppm ppm ppm .57387 .54850 .42856 Avg Stddev .00218 .00126 .08392 %RSD .21952 .39750 19.582 #1 .57245 .55059 .51326 #2 .57486 .54867 .42699 #3 .57429 .54624 .34544 Check? Chk Pass **Chk Pass Chk Pass** High Limit Low Limit Int. Std. Y_2243 Y_3600 Y_3774 Units Cts/S Cts/S Cts/S Avg 9844.1 82413. 3822.1 Stddev 19.6 102. 6.7 %RSD .19883 .12347 .17631 #1 9821.6 82351. 3816.5 #2 9853.7 3820.3 82531. #3 9857.1 82358. 3829.6 Sample Name: L1510110201SDL Acquired: 10/23/2015 17:27:45 Type: Unk Method: ICP-THERMO3_6010_200.7WATER_3YLINES(v526) Mode: CONC Corr. Factor: 1.000000 User: JYH Custom ID1: 5 Custom ID2: Custom ID3: Comment: WG544079-02 | Elem | Ag3280 | Al3082 | As1890 | B_2496 | Ba4554 | Be3131 | Ca4226 | Cd2288 | |------------------------------------|----------------|----------|----------|----------------|---------------|----------------|----------------|----------------| | Units | ppm | Avg | . 00104 | .10389 | 00238 | . 02844 | .00774 | .00005 | 1.0526 | 00006 | | Stddev | .00041 | .00116 | .00374 | .00075 | .00038 | .00009 | .0054 | .00027 | | %RSD | 39.315 | 1.1122 | 156.73 | 2.6478 | 4.9002 | 164.12 | .50984 | 422.11 | | #1 | .00151 | .10377 | 00670 | .02863 | .00794 | 00005 | 1.0507 | 00014 | | #2 | .00078 | .10510 | 00030 | .02908 | .00799 | .00009 | 1.0485 | 00028 | | #3 | .00082 | .10280 | 00015 | .02761 | .00731 | .00012 | 1.0587 | .00024 | | Check ?
High Limit
Low Limit | Chk Pass | Elem | Co2286 | Cr2677 | Cu2247 | Fe2611 | K_7664 | Li6707 | Mg2790 | Mn2576 | | Units | ppm | Avg | .00081 | .00032 | 00048 | .00279 | 57.883 | . 00167 | 3.3673 | . 00211 | | Stddev | .00031 | .00094 | .00084 | .00754 | .870 | .00055 | .1066 | .00180 | | %RSD | 38.509 | 292.86 | 174.58 | 270.38 | 1.5025 | 32.854 | 3.1670 | 85.144 | | #1 | .00069 | .00112 | 00085 | 00389 | 57.237 | .00142 | 3.2593 | .00419 | | #2 | .00058 | .00055 | 00107 | .00129 | 57.541 | .00130 | 3.3700 | .00102 | | #3 | .00116 | 00071 | .00048 | .01096 | 58.872 | .00231 | 3.4726 | .00113 | | Check ?
High Limit
Low Limit | Chk Pass | Elem | Mo2020 | Na5895 | Ni2316 | P_2149 | Pb2203 | Sb2068 | Se1960 | Si2124 | | Units | ppm | Avg | . 00041 | 110.56 | .00028 | . 11590 | 00343 | . 00284 | . 00230 | . 31032 | | Stddev | .00036 | 1.54 | .00074 | .00600 | .00209 | .00158 | .00899 | .00644 | | %RSD | 89.160 | 1.3965 | 267.45 | 5.1745 | 61.053 | 55.483 | 391.03 | 2.0753 | | #1 | 00001 | 109.34 | 00024 | .11838 | 00247 | .00410 | .00637 | .30350 | | #2 | .00062 | 110.05 | .00113 | .10906 | 00198 | .00334 | .00853 | .31117 | | #3 | .00062 | 112.30 | 00005 | .12025 | 00583 | .00107 | 00800 | .31629 | | Check ?
High Limit
Low Limit | Chk Pass Sample Name: L1510110201SDL Acquired: 10/23/2015 17:27:45 Type: Unk Method:
ICP-THERMO3_6010_200.7WATER_3YLINES(v526) Mode: CONC Corr. Factor: 1.000000 Custom ID2: User: JYH Custom ID1: 5 Custom ID3: Comment: WG544079-02 Elem Sn1899 Sr4077 Ti3372 TI1908 V_2924 Zn2062 Zr3391 Units ppm ppm ppm ppm ppm ppm ppm Avg .00025 .01908 .00069 -.00036 -.00056 .00136 .11572 Stddev .00034 .00038 .00198 .00041 .00046 .00014 .18854 %RSD 136.19 1.9739 285.21 116.58 81.706 10.489 162.93 #1 .00061 .01865 .00274 -.00047 -.00021 .00135 .13414 #2 .00017 .01926 -.00122 .00010 -.00108 .00151 .29438 #3 -.00005 .01934 .00056 -.00070 -.00040 .00123 -.08135 Check? Chk Pass Chk Pass Chk Pass Chk Pass Chk Pass Chk Pass **High Limit** Low Limit Y_3774 Int. Std. Y 2243 Y 3600 Units Cts/S Cts/S Cts/S 11365. 96369. 4179.2 Avg Stddev 22. 288. 6.7 %RSD .19513 .29919 .15992 Approved: October 26, 2015 J'ye 1hu #1 #2 #3 11390. 11358. 11347. 96702. 96191. 96214. 4182.3 4183.7 4171.5 | • | | | | | | | | | |---------------------------|----------------|----------------|----------------|----------------|----------------|----------------|----------------|--| | Elem | Ag3280 | Al3082 | As1890 | B_2496 | Ba4554 | Be3131 | Ca4226 | | | Units | ppm | | Avg | . 40412 | 10.255 | . 41101 | . 50664 | 1.0476 | . 05168 | 10.339 | | | Stddev | .00068 | .012 | .00296 | .00227 | .0048 | .00005 | .028 | | | %RSD | .16800 | .11852 | .71950 | .44823 | .45747 | .09405 | .27152 | | | #1 | .40482 | 10.251 | .41334 | .50699 | 1.0423 | .05163 | 10.313 | | | #2 | .40409 | 10.246 | .40768 | .50421 | 1.0492 | .05168 | 10.369 | | | #3 | .40346 | 10.269 | .41200 | .50871 | 1.0515 | .05172 | 10.336 | | | Check ?
Value
Range | Chk Pass | | Elem | Cd2288 | Co2286 | Cr2677 | Cu2247 | Fe2611 | K_7664 | Li6707 | | | Units | ppm | | Avg | . 05152 | . 20604 | . 51301 | . 51469 | 4.1320 | 52.528 | 1.0387 | | | Stddev | .00015 | .00021 | .00114 | .00229 | .0149 | .118 | .0053 | | | %RSD | .29492 | .10241 | .22190 | .44531 | .35997 | .22526 | .50522 | | | #1 | .05167 | .20628 | .51238 | .51733 | 4.1202 | 52.393 | 1.0331 | | | #2 | .05151 | .20590 | .51233 | .51356 | 4.1487 | 52.577 | 1.0394 | | | #3 | .05137 | .20594 | .51433 | .51318 | 4.1270 | 52.614 | 1.0436 | | | Check ?
Value
Range | Chk Pass | | Elem | Mg2790 | Mn2576 | Mo2020 | Na5895 | Ni2316 | P_2149 | Pb2203 | | | Units | ppm | | Avg | 10.205 | . 52061 | 1.0256 | 51.931 | . 51554 | 10.125 | . 51125 | | | Stddev | .016 | .00567 | .0012 | .247 | .00209 | .022 | .00417 | | | %RSD | .15378 | 1.0882 | .11615 | .47534 | .40635 | .22015 | .81620 | | | #1 | 10.190 | .51407 | 1.0270 | 51.652 | .51775 | 10.145 | .50780 | | | #2 | 10.221 | .52366 | 1.0250 | 52.121 | .51358 | 10.131 | .51589 | | | #3 | 10.202 | .52409 | 1.0249 | 52.021 | .51529 | 10.101 | .51006 | | | Check ?
Value
Range | Chk Pass | | Sample Name: CCV Acquired: 10/23/2015 17:31:51 Type: QC Method: ICP-THERMO3_6010_200.7WATER_3YLINES(v526) Mode: CONC Corr. Factor: 1.000000 | | | | | | | | | |--|---|--|---|--|---|---|---|--| | User: JYH
Comment: | Custom I | D1: (| Custom ID2: | Cus | tom ID3: | | | | | Elem
Units
Avg
Stddev
%RSD | Sb2068
ppm
1.2280
.0053
.43597 | Se1960
ppm
. 40881
.00346
.84553 | Si2124
ppm
5.1312
.0020
.03865 | Sn1899
ppm
1.0325
.0014
.14051 | Sr4077
ppm
1.0457
.0030
.28494 | Ti3372
ppm
1.0528
.0065
.61779 | TI1908
ppm
. 51307
.00429
.83609 | | | #1
#2
#3 | 1.2296
1.2324
1.2221 | .41137
.41019
.40488 | 5.1291
5.1331
5.1312 | 1.0322
1.0312
1.0341 | 1.0422
1.0472
1.0476 | 1.0467
1.0520
1.0596 | .51687
.51393
.50842 | | | Check ?
Value
Range | Chk Pass | | Elem
Units
Avg
Stddev
%RSD | V_2924
ppm
1.0395
.0026
.25061 | Zn2062
ppm
1.0144
.0015
.14352 | Zr3391
ppm
F .44434
.10488
23.603 | | | | | | | #1
#2
#3 | 1.0411
1.0365
1.0410 | 1.0158
1.0147
1.0129 | .42130
.55882
.35289 | | | | | | | Check ?
Value
Range | Chk Pass | Chk Pass | Chk Fail
1.0000
-10.000% | | | | | | | Int. Std.
Units
Avg
Stddev
%RSD | Y_2243
Cts/S
10791.
17.
.15604 | Y_3600
Cts/S
9 1587 .
170.
.18543 | Y_3774
Cts/S
3993.2
16.4
.40963 | | | | | | | #1
#2
#3 | 10784.
10810.
10779. | 91547.
91773.
91440. | 4002.5
3974.3
4002.8 | | | | | | | Elem | Ag3280 | Al3082 | As1890 | B_2496 | Ba4554 | Be3131 | Ca4226 | | | |------------------------------------|----------------|----------------|----------------|----------------|----------------|----------------|----------------|--|--| | Units | ppm | | | Avg | 00055 | . 01202 | 00175 | .00529 | . 00049 | .00005 | 00054 | | | | Stddev | .00048 | .00781 | .00136 | .00166 | .00034 | .00003 | .00691 | | | | %RSD | 88.027 | 64.935 | 77.449 | 31.427 | 68.260 | 56.731 | 1273.9 | | | | #1 | 00021 | .00849 | 00289 | .00659 | .00081 | .00008 | 00309 | | | | #2 | 00034 | .02097 | 00212 | .00342 | .00054 | .00002 | 00582 | | | | #3 | 00111 | .00661 | 00025 | .00588 | .00014 | .00006 | .00728 | | | | Check ?
High Limit
Low Limit | Chk Pass | | | Elem | Cd2288 | Co2286 | Cr2677 | Cu2247 | Fe2611 | K_7664 | Li6707 | | | | Units | ppm | | | Avg | . 00008 | .00037 | .00016 | . 00056 | 00353 | . 24455 | . 00285 | | | | Stddev | .00024 | .00016 | .00114 | .00059 | .00512 | .09890 | .00209 | | | | %RSD | 293.36 | 42.894 | 734.21 | 105.01 | 145.20 | 40.441 | 73.313 | | | | #1 | .00008 | .00022 | .00041 | .00036 | .00238 | .21084 | .00360 | | | | #2 | 00016 | .00035 | 00110 | .00122 | 00618 | .16692 | .00448 | | | | #3 | .00032 | .00053 | .00115 | .00009 | 00678 | .35590 | .00049 | | | | Check ?
High Limit
Low Limit | Chk Pass | | | Elem | Mg2790 | Mn2576 | Mo2020 | Na5895 | Ni2316 | P_2149 | Pb2203 | | | | Units | ppm | | | Avg | . 00855 | . 00096 | . 00139 | . 09697 | .00122 | 00560 | 00458 | | | | Stddev | .04959 | .00063 | .00019 | .02965 | .00114 | .00057 | .00353 | | | | %RSD | 579.90 | 66.069 | 13.796 | 30.582 | 93.971 | 10.115 | 77.089 | | | | #1 | .05244 | .00161 | .00121 | .07950 | .00141 | 00603 | 00376 | | | | #2 | .01846 | .00035 | .00138 | .13121 | .00225 | 00496 | 00153 | | | | #3 | 04525 | .00090 | .00159 | .08020 | 00001 | 00580 | 00845 | | | | Check ?
High Limit
Low Limit | Chk Pass | | | • | | | | | | | | | | |---|---|---|--|--|---|--|--|--|--| | Elem
Units
Avg
Stddev
%RSD | Sb2068
ppm
. 00264
.00478
180.95 | Se1960
ppm
.00272
.00595
218.28 | Si2124
ppm
.00638
.00234
36.732 | Sn1899
ppm
00011
.00064
586.85 | Sr4077
ppm
. 00052
.00007
13.461 | Ti3372
ppm
00095
.00554
582.05 | TI1908
ppm
00034
.00182
532.19 | | | | #1
#2
#3 | .00814
.00028
00050 | .00413
.00784
00380 | .00802
.00742
.00370 | .00049
00077
00004 | .00050
.00059
.00045 | 00006
.00409
00688 | .00167
00081
00189 | | | | Check ?
High Limit
Low Limit | Chk Pass | | | Elem
Units
Avg
Stddev
%RSD | V_2924
ppm
00046
.00063
138.49 | Zn2062
ppm
.00012
.00035
289.64 | Zr3391
ppm
F .05603
.11849
211.49 | | | | | | | | #1
#2
#3 | 00076
00088
.00027 | .00051
.00002
00016 | .19055
03285
.01038 | | | | | | | | Check ?
High Limit
Low Limit | Chk Pass | Chk Pass | Chk Fail
.04000
04000 | | | | | | | | Int. Std.
Units
Avg
Stddev
%RSD | Y_2243
Cts/S
11001.
9.
.08254 | Y_3600
Cts/S
94181.
129.
.13737 | Y_3774
Cts/S
3955.4
15.8
.40015 | | | | | | | | #1
#2
#3 | 11001.
11011.
10993. | 94274.
94235.
94033. | 3949.7
3973.3
3943.3 | | | | | | | | Sample Name
Method: ICP-T
User: JYH
Comment: | |)10_200.7W <i>A</i> | Acquired: 10/23/2015 17:39:43 Type: Unk D.7WATER_3YLINES(v526) Mode: CONC Custom ID2: Custom ID3: | | | | Corr. Factor: 1.000000 | | | |---|----------|---------------------|---|-----------------------------|----------------|----------------|-----------------------------|--|--| | Elem | Ag3280 | Al3082 | As1890 | B_2496 | Ba4554 | Be3131 | Ca4226 | | | | Units | ppm | | | Avg | 00033 | 11.200 | 00043 | .01592 | . 35114 | 00005 | F 338.63 | | | | Stddev | .00083 | .011 | .00242 | .00203 | .00091 | .00002 | .01 | | | | %RSD | 255.38 | .10049 | 556.38 | 12.718 | .26051 | 34.361 | .00411 | | | | #1 | 00115 | 11.210 | 00173 | .01366 | .35171 | 00005 | 338.61 | | | | #2 | 00034 | 11.203 | 00193 | .01756 | .35162 | 00003 | 338.62 | | | | #3 | .00052 | 11.188 | .00235 | .01656 | .35008 | 00007 | 338.64 | | | | Check ?
High Limit
Low Limit | Chk Pass | Chk Pass | Chk Pass | Chk Pass | Chk Pass | Chk Pass |
Chk Fail
270.00
10000 | | | | Elem | Cd2288 | Co2286 | Cr2677 | Cu2247 | Fe2611 | K_7664 | Li6707 | | | | Units | ppm | | | Avg | .00028 | .00094 | . 00219 | .01558 | 00493 | 248.67 | . 03748 | | | | Stddev | .00012 | .00040 | .00074 | .00209 | .00999 | .42 | .00159 | | | | %RSD | 40.557 | 43.018 | 33.950 | 13.403 | 202.66 | .16910 | 4.2305 | | | | #1 | .00040 | .00078 | .00189 | .01358 | .00037 | 249.15 | .03920 | | | | #2 | .00017 | .00063 | .00165 | .01774 | .00129 | 248.35 | .03718 | | | | #3 | .00028 | .00140 | .00304 | .01542 | 01645 | 248.52 | .03607 | | | | Check ?
High Limit
Low Limit | Chk Pass | | | Elem | Mg2790 | Mn2576 | Mo2020 | Na5895 | Ni2316 | P_2149 | Pb2203 | | | | Units | ppm | | | Avg | 08159 | 00032 | . 00914 | F 328.01 | . 00063 | . 03429 | 00381 | | | | Stddev | .03346 | .00266 | .00068 | .56 | .00140 | .00491 | .00319 | | | | %RSD | 41.014 | 843.17 | 7.4942 | .17039 | 221.99 | 14.325 | 83.778 | | | | #1 | 06430 | 00321 | .00843 | 328.65 | .00222 | .02901 | 00501 | | | | #2 | 12017 | .00203 | .00980 | 327.61 | 00043 | .03513 | 00019 | | | | #3 | 06031 | .00023 | .00918 | 327.78 | .00010 | .03872 | 00622 | | | | Check ?
High Limit
Low Limit | Chk Pass | Chk Pass | Chk Pass | Chk Fail
270.00
50000 | Chk Pass | Chk Pass | Chk Pass | | | | Sample Name
Method: ICP-1
User: JYH
Comment: | |)10_200.7W <i>A</i> | ed: 10/23/20
ATER_3YLIN
stom ID2: | | Type: Unl
Mode: CON
ID3: | | Corr. Factor: 1.000000 | | | |---|---|---|---|---|---|---|--|--|--| | Elem
Units
Avg
Stddev
%RSD | Sb2068
ppm
. 00527
.00625
118.62 | Se1960
ppm
. 00594
.00381
64.208 | Si2124
ppm
. 67964
.00277
.40750 | Sn1899
ppm
. 00044
.00105
238.17 | Sr4077
ppm
1.0187
.0004
.03845 | Ti3372
ppm
F05563
.00651
11.706 | TI1908
ppm
00037
.00031
82.720 | | | | #1
#2
#3 | .00328
.00026
.01227 | .00154
.00794
.00833 | .67714
.67917
.68262 | .00051
00064
.00146 | 1.0183
1.0189
1.0190 | 05972
04812
05904 | 00002
00049
00060 | | | | Check ?
High Limit
Low Limit | Chk Pass | Chk Pass | Chk Pass | Chk Pass | Chk Pass | Chk Fail
36.000
03000 | Chk Pass | | | | Elem
Units
Avg
Stddev
%RSD | V_2924
ppm
00034
.00077
229.27 | Zn2062
ppm
. 00379
.00026
6.8291 | Zr3391
ppm
. 26819
.22146
82.577 | | | | | | | | #1
#2
#3 | 00089
.00054
00066 | .00357
.00407
.00372 | .01304
.38091
.41061 | | | | | | | | Check ?
High Limit
Low Limit | Chk Pass | Chk Pass | Chk Pass | | | | | | | | Int. Std.
Units
Avg
Stddev
%RSD | Y_2243
Cts/S
9 750.6
10.6
.10883 | Y_3600
Cts/S
8243 0.
192.
.23330 | Y_3774
Cts/S
3813.0
11.2
.29393 | | | | | | | | #1
#2
#3 | 9742.1
9747.3
9762.5 | 82371.
82274.
82645. | 3802.8
3825.0
3811.3 | | | | | | | | Elem | Ag3280 | Al3082 | As1890 | B_2496 | Ba4554 | Be3131 | Ca4226 | | | |------------------------------------|----------------|----------------|----------------|-----------------------------|---------------|----------------|----------------|--|--| | Units | ppm | | | Avg | . 00026 | 38.025 | 00251 | . 34259 | 1.4118 | .00170 | 30.696 | | | | Stddev | .00080 | .059 | .00336 | .00217 | .0049 | .00005 | .074 | | | | %RSD | 305.91 | .15480 | 133.81 | .63352 | .34478 | 3.1377 | .24017 | | | | #1 | .00043 | 38.071 | .00133 | .34361 | 1.4079 | .00168 | 30.663 | | | | #2 | 00061 | 38.045 | 00393 | .34405 | 1.4172 | .00166 | 30.780 | | | | #3 | .00096 | 37.959 | 00492 | .34009 | 1.4102 | .00176 | 30.644 | | | | Check ?
High Limit
Low Limit | Chk Pass | | | Elem | Cd2288 | Co2286 | Cr2677 | Cu2247 | Fe2611 | K_7664 | Li6707 | | | | Units | ppm | | | Avg | . 00287 | . 02042 | . 03017 | .11532 | .28400 | 426.43 | 3.7996 | | | | Stddev | .00027 | .00023 | .00151 | .00130 | .01737 | 1.46 | .0120 | | | | %RSD | 9.3051 | 1.1119 | 5.0202 | 1.1283 | 6.1172 | .34245 | .31517 | | | | #1 | .00299 | .02064 | .03185 | .11383 | .29404 | 425.60 | 3.7877 | | | | #2 | .00257 | .02044 | .02891 | .11620 | .26394 | 428.11 | 3.8116 | | | | #3 | .00307 | .02018 | .02974 | .11594 | .29403 | 425.57 | 3.7995 | | | | Check ?
High Limit
Low Limit | Chk Pass | | | Elem | Mg2790 | Mn2576 | Mo2020 | Na5895 | Ni2316 | P_2149 | Pb2203 | | | | Units | ppm | | | Avg | 23.971 | 1.8029 | . 00087 | F 489.65 | .13487 | . 07203 | . 04152 | | | | Stddev | .113 | .0014 | .00011 | 5.06 | .00168 | .00569 | .00425 | | | | %RSD | .47181 | .07713 | 12.389 | 1.0337 | 1.2426 | 7.9022 | 10.226 | | | | #1 | 23.849 | 1.8028 | .00078 | 485.44 | .13365 | .06677 | .03807 | | | | #2 | 24.073 | 1.8016 | .00085 | 495.27 | .13678 | .07807 | .04024 | | | | #3 | 23.990 | 1.8044 | .00099 | 488.25 | .13419 | .07125 | .04626 | | | | Check ?
High Limit
Low Limit | Chk Pass | Chk Pass | Chk Pass | Chk Fail
270.00
50000 | Chk Pass | Chk Pass | Chk Pass | | | | • | | | | | | | | | |---|---|---|---|---|---|---|--|--| | Elem
Units
Avg
Stddev
%RSD | Sb2068
ppm
. 01107
.00454
40.993 | Se1960
ppm
.00819
.00695
84.842 | Si2124
ppm
3.0516
.0255
.83676 | Sn1899
ppm
. 00237
.00052
22.054 | Sr4077
ppm
. 70254
.00190
.27107 | Ti3372
ppm
. 01062
.00306
28.836 | TI1908
ppm
00294
.00349
118.56 | | | #1
#2
#3 | .00882
.01629
.00809 | .01523
.00798
.00135 | 3.0415
3.0806
3.0327 | .00295
.00222
.00194 | .70040
.70406
.70315 | .01260
.01217
.00709 | 00349
.00079
00613 | | | Check ?
High Limit
Low Limit | Chk Pass | | Elem
Units
Avg
Stddev
%RSD | V_2924
ppm
. 00004
.00047
1073.8 | Zn2062
ppm
17.265
.070
.40820 | Zr3391
ppm
. 21683
.10318
47.584 | | | | | | | #1
#2
#3 | .00047
.00013
00047 | 17.314
17.297
17.184 | .22236
.31713
.11100 | | | | | | | Check ?
High Limit
Low Limit | Chk Pass | Chk Pass | Chk Pass | | | | | | | Int. Std.
Units
Avg
Stddev
%RSD | Y_2243
Cts/S
9924.0
13.9
.14031 | Y_3600
Cts/S
82995 .
202.
.24398 | Y_3774
Cts/S
3851.6
10.8
.27997 | | | | | | | #1
#2
#3 | 9916.2
9915.7
9940.1 | 82765.
83074.
83146. | 3860.3
3839.5
3855.0 | | | | | | | • | | | | | | | | | | |------------------------------------|----------------|----------------|----------------|-----------------------------|----------------|-----------------------------|---------------|--|--| | Elem | Ag3280 | Al3082 | As1890 | B_2496 | Ba4554 | Be3131 | Ca4226 | | | | Units | ppm | | | Avg | 00092 | . 12880 | 00144 | . 21254 | . 52072 | .00009 | 11.694 | | | | Stddev | .00093 | .00294 | .00113 | .00177 | .00163 | .00004 | .037 | | | | %RSD | 100.22 | 2.2821 | 78.182 | .83164 | .31314 | 44.797 | .31600 | | | | #1 | .00014 | .12645 | 00029 | .21451 | .52240 | .00005 | 11.736 | | | | #2 | 00155 | .13209 | 00254 | .21202 | .52062 | .00013 | 11.683 | | | | #3 | 00136 | .12785 | 00149 | .21109 | .51914 | .00009 | 11.665 | | | | Check ?
High Limit
Low Limit | Chk Pass | | | Elem | Cd2288 | Co2286 | Cr2677 | Cu2247 | Fe2611 | K_7664 | Li6707 | | | | Units | ppm | | | Avg | . 00096 | . 00273 | . 00037 | .00211 | 00230 | F 468.22 | 1.8340 | | | | Stddev | .00030 | .00002 | .00055 | .00035 | .02102 | 2.72 | .0094 | | | | %RSD | 31.114 | .62822 | 149.74 | 16.646 | 915.49 | .58106 | .51036 | | | | #1 | .00107 | .00273 | 00017 | .00172 | 01613 | 471.19 | 1.8448 | | | | #2 | .00117 | .00275 | .00093 | .00239 | .02189 | 467.64 | 1.8293 | | | | #3 | .00062 | .00272 | .00034 | .00224 | 01265 | 465.84 | 1.8279 | | | | Check ?
High Limit
Low Limit | Chk Pass | Chk Pass | Chk Pass | Chk Pass | Chk Pass | Chk Fail
450.00
50000 | Chk Pass | | | | Elem | Mg2790 | Mn2576 | Mo2020 | Na5895 | Ni2316 | P_2149 | Pb2203 | | | | Units | ppm | | | Avg | 12.088 | . 06904 | . 00665 | F 631.72 | .00109 | . 09019 | 00198 | | | | Stddev | .120 | .00117 | .00036 | 7.27 | .00161 | .00665 | .00239 | | | | %RSD | .99531 | 1.6882 | 5.4498 | 1.1513 | 146.94 | 7.3691 | 120.47 | | | | #1 | 12.142 | .06861 | .00705 | 640.11 | .00087 | .09344 | 00271 | | | | #2 | 12.172 | .06815 | .00634 | 627.23 | 00039 | .08254 | .00068 | | | | #3 | 11.950 | .07036 | .00656 | 627.81 | .00280 | .09459 | 00392 | | | | Check ?
High Limit
Low Limit | Chk Pass | Chk Pass | Chk Pass | Chk Fail
270.00
50000 | Chk Pass | Chk Pass | Chk Pass | | | | • | | | | | | | | | | |---|---|---|---
--|---|--|--|--|--| | Elem
Units
Avg
Stddev
%RSD | Sb2068
ppm
. 01466
.00299
20.373 | Se1960
ppm
. 00607
.00593
97.626 | Si2124
ppm
. 89963
.00462
.51311 | Sn1899
ppm
00031
.00084
269.53 | Sr4077
ppm
. 58544
.00096
.16420 | Ti3372
ppm
00254
.00133
52.328 | TI1908
ppm
00479
.00302
62.991 | | | | #1
#2
#3 | .01773
.01176
.01450 | .01186
.00635
.00001 | .90088
.89451
.90349 | .00052
00116
00030 | .58655
.58487
.58491 | 00184
00407
00170 | 00154
00751
00532 | | | | Check ?
High Limit
Low Limit | Chk Pass | | | Elem
Units
Avg
Stddev
%RSD | V_2924
ppm
00023
.00062
269.55 | Zn2062
ppm
.00308
.00002
.71481 | Zr3391
ppm
.10803
.10486
97.060 | | | | | | | | #1
#2
#3 | 00090
.00032
00011 | .00307
.00310
.00306 | .17146
.16564
01300 | | | | | | | | Check ?
High Limit
Low Limit | Chk Pass | Chk Pass | Chk Pass | | | | | | | | Int. Std.
Units
Avg
Stddev
%RSD | Y_2243
Cts/S
9730.3
8.9
.09177 | Y_3600
Cts/S
81137.
145.
.17850 | Y_3774
Cts/S
3808.3
14.4
.37702 | | | | | | | | #1
#2
#3 | 9724.0
9740.5
9726.4 | 81252.
80974.
81184. | 3791.8
3818.2
3814.8 | | | | | | | | • | | | | | | | | | | |--|------------------------------|------------------------------|------------------------------|------------------------------|------------------------------|------------------------------|------------------------------|--|--| | Elem | Ag3280 | Al3082 | As1890 | B_2496 | Ba4554 | Be3131 | Ca4226 | | | | Units | ppm | | | Avg | 00098 | . 06727 | .00353 | .16349 | 2.9786 | .00002 | 56.046 | | | | Stddev | .00053 | .00341 | .00086 | .00097 | .0055 | .00003 | .143 | | | | %RSD | 54.323 | 5.0687 | 24.359 | .59218 | .18431 | 167.51 | .25534 | | | | #1 | 00148 | .06982 | .00411 | .16397 | 2.9760 | 00000 | 55.905 | | | | #2 | 00105 | .06860 | .00254 | .16238 | 2.9849 | .00000 | 56.191 | | | | #3 | 00042 | .06340 | .00394 | .16413 | 2.9749 | .00005 | 56.043 | | | | Check ?
High Limit
Low Limit | Chk Pass | | | Elem | Cd2288 | Co2286 | Cr2677 | Cu2247 | Fe2611 | K_7664 | Li6707 | | | | Units | ppm | | | Avg | .00035 | .00155 | .00158 | .00144 | . 67184 | 3.3962 | . 20285 | | | | Stddev | .00022 | .00052 | .00035 | .00123 | .02604 | .1145 | .00194 | | | | %RSD | 63.271 | 33.791 | 22.086 | 85.229 | 3.8759 | 3.3700 | .95610 | | | | #2
#3
Check ?
High Limit
Low Limit | .00031
.00015
Chk Pass | .00095
.00190
Chk Pass | .00120
.00167
Chk Pass | .00023
.00268
Chk Pass | .65396
.70171
Chk Pass | 3.4576
3.2642
Chk Pass | .20438
.20067
Chk Pass | | | | Elem | Mg2790 | Mn2576 | Mo2020 | Na5895 | Ni2316 | P_2149 | Pb2203 | | | | Units | ppm | | | Avg | 5.8367 | .08380 | . 00070 | F 273.36 | .00507 | . 05353 | 00226 | | | | Stddev | .0536 | .00008 | .00040 | .70 | .00073 | .00395 | .00371 | | | | %RSD | .91851 | .09122 | 57.950 | .25743 | 14.401 | 7.3730 | 164.65 | | | | #1 | 5.7872 | .08384 | .00042 | 273.42 | .00470 | .05671 | 00630 | | | | #2 | 5.8291 | .08371 | .00116 | 274.03 | .00591 | .04911 | .00100 | | | | #3 | 5.8937 | .08384 | .00051 | 272.63 | .00459 | .05478 | 00147 | | | | Check ?
High Limit
Low Limit | Chk Pass | Chk Pass | Chk Pass | Chk Fail
270.00
50000 | Chk Pass | Chk Pass | Chk Pass | | | | • | ne: L1510110
-THERMO3_
Custom I | 6010_200.7 | juired: 10/23
WATER_3YI
Custom ID2: | LINES(v526) | | e: Unk
CONC | Corr. Factor: | 1.00000(| |---|---|---|---|--|---|--|--|----------| | Elem
Units
Avg
Stddev
%RSD | Sb2068
ppm
. 00088
.00251
284.58 | Se1960
ppm
. 00394
.00370
94.026 | Si2124
ppm
.28895
.00128
.44243 | Sn1899
ppm
00046
.00086
184.97 | Sr4077
ppm
8.3674
.0193
.23131 | Ti3372
ppm
00609
.00200
32.905 | TI1908
ppm
00036
.00272
750.10 | | | #1
#2
#3 | .00105
.00331
00171 | .00803
.00084
.00294 | .28764
.28901
.29019 | 00133
.00038
00044 | 8.3587
8.3895
8.3538 | 00786
00391
00650 | .00219
00004
00323 | | | Check ?
High Limit
Low Limit | Chk Pass | | Elem
Units
Avg
Stddev
%RSD | V_2924
ppm
.00000
.00093
34098. | Zn2062
ppm
.32349
.00115
.35449 | Zr3391
ppm
01620
.03506
216.38 | | | | | | | #1
#2
#3 | 00104
.00031
.00074 | .32450
.32372
.32224 | .02387
03126
04122 | | | | | | | Check ?
High Limit
Low Limit | Chk Pass | Chk Pass | Chk Pass | | | | | | | Int. Std.
Units
Avg
Stddev
%RSD | Y_2243
Cts/S
10210.
21.
.20177 | Y_3600
Cts/S
86417 .
211.
.24467 | Y_3774
Cts/S
3855.0
9.9
.25616 | | | | | | | #1
#2
#3 | 10187.
10227.
10216. | 86202.
86423.
86625. | 3843.6
3860.1
3861.2 | | | | | | | Sample Name: L1510110402 Acquired: 10/23/2015 17:56:10 Type: Unk Method: ICP-THERMO3_6010_200.7WATER_3YLINES(v526) Mode: CONC Corr. Factor: 1.000000 User: JYH Custom ID1: Custom ID2: Custom ID3: Comment: | | | | | | | | | | |--|---------------|----------------|----------------|-----------------------------|------------------|------------------|----------------|--|--| | Elem | Ag3280 | Al3082 | As1890 | B_2496 | Ba4554 | Be3131 | Ca4226 | | | | Units | ppm | | | Avg | 00101 | . 08524 | .03812 | . 31797 | 5.3032 | .00008 | 71.562 | | | | Stddev | .00099 | .00531 | .00212 | .00138 | .0335 | .00001 | .474 | | | | %RSD | 97.703 | 6.2297 | 5.5696 | .43335 | .63210 | 17.603 | .66257 | | | | #1 | 00006 | .08564 | .03573 | .31924 | 5.2830 | .00008 | 71.260 | | | | #2 | 00203 | .07975 | .03980 | .31651 | 5.3419 | .00010 | 72.109 | | | | #3 | 00095 | .09035 | .03882 | .31817 | 5.2847 | .00007 | 71.318 | | | | Check ?
High Limit
Low Limit | Chk Pass | | | Elem | Cd2288 | Co2286 | Cr2677 | Cu2247 | Fe2611 | K_7664 | Li6707 | | | | Units | ppm | | | Avg | .00009 | .00325 | .00255 | .00141 | 2.0644 | 3.5922 | . 20963 | | | | Stddev | .00006 | .00020 | .00028 | .00034 | .0043 | .0733 | .00577 | | | | %RSD | 72.278 | 6.0354 | 10.893 | 24.262 | .20857 | 2.0395 | 2.7511 | | | | #2
#3 | .00012 | .00324 | .00247 | .00179 | 2.0595
2.0666 | 3.5844
3.6691 | .20343 | | | | Check ?
High Limit
Low Limit | Chk Pass | | | Elem | Mg2790 | Mn2576 | Mo2020 | Na5895 | Ni2316 | P_2149 | Pb2203 | | | | Units | ppm | | | Avg | 9.1181 | . 21643 | . 00048 | F 308.65 | .01537 | . 02002 | . 00048 | | | | Stddev | .1612 | .00202 | .00026 | 1.99 | .00130 | .00173 | .00097 | | | | %RSD | 1.7681 | .93351 | 53.197 | .64445 | 8.4231 | 8.6198 | 201.04 | | | | #1 | 8.9479 | .21779 | .00069 | 307.31 | .01682 | .01868 | 00061 | | | | #2 | 9.2685 | .21740 | .00057 | 310.94 | .01497 | .02197 | .00083 | | | | #3 | 9.1378 | .21411 | .00019 | 307.71 | .01433 | .01941 | .00123 | | | | Check ?
High Limit
Low Limit | Chk Pass | Chk Pass | Chk Pass | Chk Fail
270.00
50000 | Chk Pass | Chk Pass | Chk Pass | | | | Sample Name: L1510110402 Acquired: 10/23/2015 17:56:10 Type: Unk Method: ICP-THERMO3_6010_200.7WATER_3YLINES(v526) Mode: CONC Corr. Factor: 1.000000 User: JYH Custom ID1: Custom ID2: Custom ID3: Comment: | | | | | | | | | | |--|--|---|---|---|---|--|--|--|--| | Elem
Units
Avg
Stddev
%RSD | Sb2068
ppm
00049
.00282
577.78 | Se1960
ppm
. 00451
.00779
172.70 | Si2124
ppm
. 91592
.00020
.02145 | Sn1899
ppm
. 00029
.00132
455.99 | Sr4077
ppm
F 9.3065
.0583
.62666 | Ti3372
ppm
01070
.00585
54.616 | TI1908
ppm
00170
.00049
28.590 | | | | #1
#2
#3 | .00270
00264
00153 | 00424
.01069
.00708 | .91610
.91571
.91596 | 00068
.00179
00024 | 9.2645
9.3731
9.2819 | 01736
00641
00834 | 00126
00162
00222 | | | | Check ?
High Limit
Low Limit | Chk Pass | Chk Pass | Chk Pass | Chk Pass | Chk Fail
9.0000
01000 | Chk Pass | Chk Pass | | | | Elem
Units
Avg
Stddev
%RSD | V_2924
ppm
00003
.00081
2763.5 | Zn2062
ppm
.23859
.00078
.32625 | Zr3391
ppm
. 02341
.10573
451.64 | | | | | | | | #1
#2
#3 | .00071
.00010
00090 | .23911
.23897
.23770 | 05565
.14351
01763 | | | | | | | |
Check ?
High Limit
Low Limit | Chk Pass | Chk Pass | Chk Pass | | | | | | | | Int. Std.
Units
Avg
Stddev
%RSD | Y_2243
Cts/S
10176.
20.
.19464 | Y_3600
Cts/S
86201 .
104.
.12083 | Y_3774
Cts/S
3854.2
20.1
.52070 | | | | | | | | #1
#2
#3 | 10157.
10173.
10197. | 86237.
86282.
86084. | 3870.8
3831.9
3860.0 | | | | | | | | Sample Name: L1510110403 Acquired: 10/23/2015 18:00:11 Type: Unk Method: ICP-THERMO3_6010_200.7WATER_3YLINES(v526) Mode: CONC Corr. Factor: 1.000000 User: JYH Custom ID1: Custom ID2: Custom ID3: Comment: | | | | | | | | | | | |--|----------------|----------------|----------------|-----------------------------|---------------|----------------|----------------|--|--|--| | Elem | Ag3280 | Al3082 | As1890 | B_2496 | Ba4554 | Be3131 | Ca4226 | | | | | Units | ppm | | | | Avg | . 00052 | . 05167 | . 00465 | . 42287 | 10.122 | .00003 | 92.586 | | | | | Stddev | .00089 | .00406 | .00275 | .00104 | .035 | .00008 | .391 | | | | | %RSD | 172.35 | 7.8646 | 59.242 | .24605 | .34911 | 249.83 | .42240 | | | | | #1 | .00012 | .05057 | .00709 | .42259 | 10.150 | .00012 | 92.983 | | | | | #2 | 00011 | .05617 | .00166 | .42199 | 10.135 | 00001 | 92.572 | | | | | #3 | .00153 | .04827 | .00520 | .42402 | 10.082 | 00002 | 92.202 | | | | | Check ?
High Limit
Low Limit | Chk Pass | | | | Elem | Cd2288 | Co2286 | Cr2677 | Cu2247 | Fe2611 | K_7664 | Li6707 | | | | | Units | ppm | | | | Avg | . 00062 | . 00243 | .00341 | .00082 | 1.5818 | 3.5737 | . 29988 | | | | | Stddev | .00025 | .00021 | .00083 | .00062 | .0199 | .0826 | .00352 | | | | | %RSD | 40.198 | 8.6012 | 24.289 | 75.241 | 1.2609 | 2.3114 | 1.1739 | | | | | #1 | .00041 | .00222 | .00269 | .00115 | 1.5893 | 3.5080 | .30130 | | | | | #2 | .00055 | .00263 | .00431 | .00011 | 1.5970 | 3.6665 | .30248 | | | | | #3 | .00090 | .00245 | .00322 | .00121 | 1.5592 | 3.5467 | .29587 | | | | | Check ?
High Limit
Low Limit | Chk Pass | | | | Elem | Mg2790 | Mn2576 | Mo2020 | Na5895 | Ni2316 | P_2149 | Pb2203 | | | | | Units | ppm | | | | Avg | 8.4313 | . 22628 | . 00023 | F 333.78 | .01058 | . 08626 | 00182 | | | | | Stddev | .0862 | .00256 | .00037 | 1.42 | .00036 | .00778 | .00343 | | | | | %RSD | 1.0226 | 1.1305 | 160.84 | .42557 | 3.4154 | 9.0195 | 188.40 | | | | | #1 | 8.5130 | .22776 | .00009 | 335.18 | .01099 | .09479 | .00196 | | | | | #2 | 8.4397 | .22775 | .00065 | 333.83 | .01042 | .08442 | 00268 | | | | | #3 | 8.3412 | .22332 | 00005 | 332.34 | .01033 | .07956 | 00474 | | | | | Check ?
High Limit
Low Limit | Chk Pass | Chk Pass | Chk Pass | Chk Fail
270.00
50000 | Chk Pass | Chk Pass | Chk Pass | | | | | Sample Name: L1510110403 Acquired: 10/23/2015 18:00:11 Type: Unk Method: ICP-THERMO3_6010_200.7WATER_3YLINES(v526) Mode: CONC Corr. Factor: 1.000000 User: JYH Custom ID1: Custom ID2: Custom ID3: Comment: | | | | | | | | | | |--|---|---|--|--|---|--|---|--|--| | Elem
Units
Avg
Stddev
%RSD | Sb2068
ppm
. 00319
.00179
56.267 | Se1960
ppm
. 00613
.00414
67.579 | Si2124
ppm
1.2246
.0043
.35070 | Sn1899
ppm
00016
.00077
473.67 | Sr4077
ppm
F 13.299
.045
.33546 | Ti3372
ppm
01544
.00785
50.809 | TI1908
ppm
. 00067
.00151
224.49 | | | | #1
#2
#3 | .00526
.00210
.00220 | .00535
.01061
.00243 | 1.2251
1.2286
1.2201 | 00028
00087
.00066 | 13.336
13.311
13.249 | 01781
02183
00668 | 00030
.00241
00010 | | | | Check ?
High Limit
Low Limit | Chk Pass | Chk Pass | Chk Pass | Chk Pass | Chk Fail
9.0000
01000 | Chk Pass | Chk Pass | | | | Elem
Units
Avg
Stddev
%RSD | V_2924
ppm
00004
.00058
1409.0 | Zn2062
ppm
.13637
.00009
.06823 | Zr3391
ppm
01921
.08344
434.41 | | | | | | | | #1
#2
#3 | .00043
00068
.00013 | .13647
.13635
.13629 | .05842
00860
10745 | | | | | | | | Check ?
High Limit
Low Limit | Chk Pass | Chk Pass | Chk Pass | | | | | | | | Int. Std.
Units
Avg
Stddev
%RSD | Y_2243
Cts/S
10134 .
8.
.07717 | Y_3600
Cts/S
85734 .
149.
.17389 | Y_3774
Cts/S
3839.3
7.3
.19132 | | | | | | | | #1
#2
#3 | 10142.
10135.
10126. | 85637.
85660.
85906. | 3841.4
3831.1
3845.3 | | | | | | | | Sample Name: L1510112001 Acquired: 10/23/2015 18:04:13 Type: Unk | | | | | | | | | | |--|------------------|------------------|------------------|------------------|------------------|------------------|------------------------|------------------|--| | Method: ICP-THERMO3_6010_200.7WATER_3YLINES(v526) Mode: CONC | | | | | | | Corr. Factor: 1.000000 | | | | User: JYH | Custom | ID1: | Custom ID |)2: (| Custom ID3 | | | | | | Comment: | Elem | Ag3280 | Al3082 | As1890 | B_2496 | Ba4554 | Be3131 | Ca4226 | Cd2288 | | | Units | ppm | | Avg | 00145 | .03488 | 00125 | .03505 | .01989 | .00004 | 23.486 | 00001 | | | Stddev
%RSD | .00088
60.485 | .00433
12.416 | .00102
81.307 | .00313
8.9197 | .00054
2.7287 | .00004
102.32 | .018
.07464 | .00009
672.51 | | | 70113D | 00.403 | 12.410 | 01.507 | 0.3137 | 2.7207 | 102.32 | .07404 | 072.31 | | | #1 | 00084 | .03002 | 00241 | .03521 | .02006 | .00001 | 23.506 | .00005 | | | #2 | 00105 | .03629 | 00055 | .03185 | .02033 | .00008 | 23.481 | .00002 | | | #3 | 00245 | .03833 | 00078 | .03810 | .01928 | .00002 | 23.472 | 00011 | | | Check? | Chk Pass | | High Limit | | | | | | | | | | | Low Limit | | | | | | | | | | | Elem | Co2286 | Cr2677 | Cu2247 | Fe2611 | K_7664 | Li6707 | Mg2790 | Mn2576 | | | Units | ppm | | Avg | .00181 | .00053 | .00128 | .01942 | .43030 | .00115 | 5.5792 | .16267 | | | Stddev | .00003 | .00076 | .00054 | .01911 | .05803 | .00422 | .0991 | .00247 | | | %RSD | 1.9063 | 144.22 | 42.012 | 98.393 | 13.485 | 368.07 | 1.7767 | 1.5191 | | | #1 | .00177 | 00034 | .00094 | 00264 | .37173 | 00198 | 5.4668 | .16120 | | | #2 | .00184 | .00083 | .00100 | .03040 | .48777 | 00052 | 5.6541 | .16129 | | | #3 | .00182 | .00110 | .00190 | .03050 | .43140 | .00595 | 5.6166 | .16553 | | | Check? | Chk Pass | | High Limit | | | | | | | | | | | Low Limit | | | | | | | | | | | Elem | Mo2020 | Na5895 | Ni2316 | P_2149 | Pb2203 | Sb2068 | Se1960 | Si2124 | | | Units | ppm | | Avg | .00006 | 173.81 | .00062 | .00248 | 00269 | 00189 | .00619 | .63912 | | | Stddev | .00014 | .03 | .00030 | .00643 | .00421 | .00379 | .00655 | .00287 | | | %RSD | 238.65 | .01547 | 47.615 | 258.96 | 156.73 | 201.08 | 105.81 | .44973 | | | #1 | .00009 | 173.83 | .00046 | .00951 | .00108 | .00187 | 00057 | .63858 | | | #2 | .00018 | 173.83 | .00044 | .00105 | 00190 | 00571 | .01251 | .64222 | | | #3 | 00010 | 173.78 | .00096 | 00311 | 00724 | 00182 | .00664 | .63655 | | | Check ?
High Limit
Low Limit | Chk Pass | | Sample Name: L1510112001 | | | | | | | | | | |------------------------------------|------------------|------------------|------------------|------------------|------------------|------------------|------------------|----------------|--| | Method: ICF | P-THERMO3 | 3_6010_200 | .7WATER_ | 3YLINES(v | 526) Mc | de: CONC | Corr. Fa | ctor: 1.000000 | | | User: JYH | Custom | ID1: | Custom ID |)2: (| Custom ID3 | • | | | | | Comment: | | | | | | | | | | | Elem | Sn1899 | Sr4077 | Ti3372 | TI1908 | V_2924 | Zn2062 | Zr3391 | | | | Units | ppm | | | Avg | 00040 | .14268 | 00582 | 00088 | 00016 | .01318 | .01272 | | | | Stddev
%RSD | .00115
289.02 | .00079
.55548 | .00414
71.126 | .00123
140.66 | .00069
416.30 | .00009
.71979 | .11660
916.54 | | | | 70113D | 209.02 | .55546 | 71.120 | 140.00 | 410.50 | .71373 | 310.54 | | | | #1 | 00147 | .14350 | 00391 | 00033 | 00021 | .01320 | .14395 | | | | #2 | 00053 | .14263 | 01058 | 00229 | 00083 | .01325 | 02679 | | | | #3 | .00081 | .14191 | 00299 | 00001 | .00054 | .01307 | 07899 | | | | Check ?
High Limit
Low Limit | Chk Pass | | | Int. Std. | Y 2243 | Y_3600 | Y_3774 | | | | | | | | Units | Cts/S | Cts/S | Cts/S | | | | | | | | Avg | 10362. | 88434. | 3853.6 | | | | | | | | Stddev
%RSD | 14.
.13204 | 181.
.20521 | 21.8
.56699 | | | | | | | | %K3D | .13204 | .20521 | .50099 | | | | | | | | #1 | 10370. | 88382. | 3860.1 | | | | | | | | #2 | 10371. | 88636. | 3871.5 | | | | | | | | #3 | 10346. | 88284. | 3829.2 | | | | | | | | Sample Name: L1510118401 Acquired: 10/23/2015 18:08:17 Type: Unk Method: ICP-THERMO3_6010_200.7WATER_3YLINES(v526) Mode: CONC User: JYH Custom ID1: Custom ID2: Custom ID3: Comment: | | | | | | | Corr. Factor: 1.00000(| | |--|----------------|---------------|----------------|-----------------------------|----------------|----------------|-----------------------------|--| | Elem | Ag3280 | Al3082 |
As1890 | B_2496 | Ba4554 | Be3131 | Ca4226 | | | Units | ppm | | Avg | 00157 | 5.3364 | 00292 | . 02316 | . 67716 | .00000 | F 281.18 | | | Stddev | .00140 | .0159 | .00220 | .00238 | .00429 | .00007 | 1.12 | | | %RSD | 89.162 | .29828 | 75.379 | 10.259 | .63422 | 2191.3 | .39946 | | | #1 | 00258 | 5.3313 | 00176 | .02365 | .67690 | .00008 | 281.56 | | | #2 | .00003 | 5.3543 | 00545 | .02057 | .67300 | 00006 | 279.91 | | | #3 | 00215 | 5.3237 | 00154 | .02525 | .68158 | 00001 | 282.06 | | | Check ?
High Limit
Low Limit | Chk Pass | Chk Pass | Chk Pass | Chk Pass | Chk Pass | Chk Pass | Chk Fail
270.00
10000 | | | Elem | Cd2288 | Co2286 | Cr2677 | Cu2247 | Fe2611 | K_7664 | Li6707 | | | Units | ppm | | Avg | . 00028 | .00138 | . 00227 | .01836 | 00262 | 329.26 | . 05819 | | | Stddev | .00023 | .00002 | .00091 | .00066 | .01308 | .94 | .00407 | | | %RSD | 83.976 | 1.7587 | 40.179 | 3.6142 | 499.02 | .28694 | 6.9907 | | | #1 | .00036 | .00140 | .00183 | .01765 | 01535 | 329.62 | .06181 | | | #2 | .00001 | .00139 | .00332 | .01897 | 00330 | 328.19 | .05897 | | | #3 | .00045 | .00135 | .00166 | .01846 | .01079 | 329.98 | .05379 | | | Check ?
High Limit
Low Limit | Chk Pass | | Elem | Mg2790 | Mn2576 | Mo2020 | Na5895 | Ni2316 | P_2149 | Pb2203 | | | Units | ppm | | Avg | 00715 | .00091 | . 01518 | F 402.67 | . 00150 | . 03988 | 00083 | | | Stddev | .05618 | .00130 | .00028 | 1.05 | .00095 | .00862 | .00220 | | | %RSD | 785.70 | 143.12 | 1.8700 | .26123 | 62.942 | 21.624 | 265.94 | | | #1 | .05771 | 00046 | .01546 | 403.36 | .00181 | .04966 | 00187 | | | #2 | 04065 | .00211 | .01489 | 401.46 | .00044 | .03662 | .00170 | | | #3 | 03851 | .00107 | .01520 | 403.19 | .00226 | .03337 | 00232 | | | Check ?
High Limit
Low Limit | Chk Pass | Chk Pass | Chk Pass | Chk Fail
270.00
50000 | Chk Pass | Chk Pass | Chk Pass | | | Sample Name
Method: ICP-1
User: JYH
Comment: | |)10_200.7W <i>A</i> | ed: 10/23/20
ATER_3YLINI
stom ID2: | | Type: Unl
Mode: CON
ID3: | | Corr. Factor: 1.00000(| | | |---|--|---|---|--|---|---|--|--|--| | Elem
Units
Avg
Stddev
%RSD | Sb2068
ppm
. 00756
.00223
29.450 | Se1960
ppm
.01162
.01036
89.167 | Si2124
ppm
. 43285
.00516
1.1921 | Sn1899
ppm
00070
.00050
70.773 | Sr4077
ppm
1.0637
.0042
.39461 | Ti3372
ppm
F04592
.00489
10.640 | TI1908
ppm
00228
.00238
104.52 | | | | #1
#2
#3 | .01012
.00640
.00615 | .00802
.02331
.00354 | .42700
.43482
.43674 | 00063
00025
00123 | 1.0635
1.0596
1.0680 | 04872
04028
04875 | 00502
00090
00090 | | | | Check ?
High Limit
Low Limit | Chk Pass | Chk Pass | Chk Pass | Chk Pass | Chk Pass | Chk Fail
36.000
03000 | Chk Pass | | | | Elem
Units
Avg
Stddev
%RSD | V_2924
ppm
. 00014
.00053
388.65 | Zn2062
ppm
. 00694
.00021
3.0373 | Zr3391
ppm
. 13159
.08222
62.483 | | | | | | | | #1
#2
#3 | 00016
00018
.00075 | .00709
.00704
.00670 | .19683
.15871
.03924 | | | | | | | | Check ?
High Limit
Low Limit | Chk Pass | Chk Pass | Chk Pass | | | | | | | | Int. Std.
Units
Avg
Stddev
%RSD | Y_2243
Cts/S
9 757. 5
14.5
.14826 | Y_3600
Cts/S
82099 .
18.
.02213 | Y_3774
Cts/S
3800.8
7.4
.19428 | | | | | | | | #1
#2
#3 | 9771.2
9742.4
9759.0 | 82117.
82081.
82098. | 3793.0
3807.7
3801.8 | | | | | | | | Sample Name: L1510118501 Acquired: 10/23/2015 18:12:20 Type: Unk Method: ICP-THERMO3_6010_200.7WATER_3YLINES(v526) Mode: CONC Corr. Factor: User: JYH Custom ID1: Custom ID2: Custom ID3: Comment: | | | | | | | | |--|----------------|----------------|----------------|-----------------------------|----------------|----------------|-----------------------------| | Elem | Ag3280 | Al3082 | As1890 | B_2496 | Ba4554 | Be3131 | Ca4226 | | Units | ppm | Avg | 00043 | .03655 | .00029 | . 01275 | . 37491 | .00003 | F 309.19 | | Stddev | .00083 | .01149 | .00185 | .00215 | .00083 | .00003 | .44 | | %RSD | 190.36 | 31.432 | 629.78 | 16.865 | .22244 | 114.73 | .14335 | | #1 | 00117 | .04877 | .00136 | .01036 | .37431 | .00004 | 308.74 | | #2 | .00046 | .02596 | 00185 | .01452 | .37586 | .00005 | 309.22 | | #3 | 00059 | .03492 | .00137 | .01338 | .37455 | 00001 | 309.62 | | Check ?
High Limit
Low Limit | Chk Pass | Chk Pass | Chk Pass | Chk Pass | Chk Pass | Chk Pass | Chk Fail
270.00
10000 | | Elem | Cd2288 | Co2286 | Cr2677 | Cu2247 | Fe2611 | K_7664 | Li6707 | | Units | ppm | Avg | . 00011 | . 00157 | . 00203 | . 01769 | 01459 | 326.26 | . 06979 | | Stddev | .00014 | .00027 | .00091 | .00104 | .00612 | .59 | .00293 | | %RSD | 129.86 | 16.980 | 44.765 | 5.8785 | 41.935 | .17986 | 4.1932 | | #1 | .00015 | .00139 | .00291 | .01837 | 00885 | 325.86 | .07022 | | #2 | 00005 | .00187 | .00207 | .01649 | 01388 | 326.94 | .07247 | | #3 | .00022 | .00143 | .00110 | .01820 | 02102 | 325.99 | .06667 | | Check ?
High Limit
Low Limit | Chk Pass | Elem | Mg2790 | Mn2576 | Mo2020 | Na5895 | Ni2316 | P_2149 | Pb2203 | | Units | ppm | Avg | 05903 | 00207 | . 00869 | F 430.11 | . 00157 | . 03508 | . 14874 | | Stddev | .01340 | .00305 | .00063 | .68 | .00064 | .01340 | .00199 | | %RSD | 22.697 | 147.45 | 7.2104 | .15804 | 40.991 | 38.204 | 1.3398 | | #1 | 06311 | 00197 | .00800 | 429.92 | .00198 | .03092 | .14996 | | #2 | 04407 | .00093 | .00921 | 430.86 | .00083 | .02426 | .14981 | | #3 | 06993 | 00516 | .00887 | 429.54 | .00191 | .05008 | .14644 | | Check ?
High Limit
Low Limit | Chk Pass | Chk Pass | Chk Pass | Chk Fail
270.00
50000 | Chk Pass | Chk Pass | Chk Pass | | Sample Name
Method: ICP-T
User: JYH
Comment: | |)10_200.7W <i>A</i> | ed: 10/23/20
ATER_3YLIN
stom ID2: | | Type: Unk Mode: CONC Corr. Factor: 1.00000 ID3: | | | | |---|---|--|--|---|---|---|--|--| | Elem
Units
Avg
Stddev
%RSD | Sb2068
ppm
. 00673
.00172
25.608 | Se1960
ppm
.01431
.00618
43.186 | Si2124
ppm
.17588
.00371
2.1111 | Sn1899
ppm
. 00029
.00076
256.69 | Sr4077
ppm
. 49068
.00093
.18905 | Ti3372
ppm
F04896
.00206
4.1994 | TI1908
ppm
00023
.00401
1740.0 | | | #1
#2
#3 | .00863
.00527
.00629 | .00761
.01979
.01552 | .17977
.17549
.17237 | .00114
00031
.00005 | .49009
.49175
.49020 | 05003
04659
05026 | 00198
00306
.00436 | | | Check ?
High Limit
Low Limit | Chk Pass | Chk Pass | Chk Pass | Chk Pass | Chk Pass | Chk Fail
36.000
03000 | Chk Pass | | | Elem
Units
Avg
Stddev
%RSD | V_2924
ppm
00001
.00026
4698.0 | Zn2062
ppm
.13741
.00036
.25974 | Zr3391
ppm
. 13273
.14347
108.09 | | | | | | | #1
#2
#3 | .00022
.00005
00029 | .13779
.13734
.13708 | .29741
.03474
.06605 | | | | | | | Check ?
High Limit
Low Limit | Chk Pass | Chk Pass | Chk Pass | | | | | | | Int. Std.
Units
Avg
Stddev
%RSD | Y_2243
Cts/S
9723.0
19.1
.19592 | Y_3600
Cts/S
82049 .
36.
.04404 | Y_3774
Cts/S
3 784 .3
16.8
.44277 | | | | | | | #1
#2
#3 | 9739.6
9702.2
9727.2 | 82065.
82008.
82075. | 3785.1
3767.1
3800.6 | | | | | | | Sample Name: L1510121101 Acquired: 10/23/2015 18:16:23 Type: Unk Method: ICP-THERMO3_6010_200.7WATER_3YLINES(v526) Mode: CONC Corr User: JYH Custom ID1: Custom ID2: Custom ID3: Comment: | | | | | | | factor: 1.00000(| |---|---------------|----------------|----------------|----------------|----------------|----------------|------------------| | Elem | Ag3280 | Al3082 | As1890 | B_2496 | Ba4554 | Be3131 | Ca4226 | | Units | ppm | Avg | 00086 | .14066 | .00181 | . 00458 | . 04889 | . 00007 | 33.004 | | Stddev | .00108 | .00315 | .00311 | .00350 | .00036 | .00003 | .125 | | %RSD | 125.96 | 2.2374 | 171.84 | 76.487 | .73483 | 43.477 | .37904 | | #1 | .00039 | .14074 | 00068 | .00078 | .04848 | .00007 | 32.861 | | #2 | 00157 | .14376 | .00082 | .00527 | .04914 | .00009 | 33.060 | | #3 | 00140 | .13747 | .00530 | .00768 | .04905 | .00004 | 33.091 | | Check ?
High Limit
Low Limit | Chk Pass | Elem | Cd2288 | Co2286 | Cr2677 | Cu2247 | Fe2611 | K_7664 | Li6707 | | Units | ppm | Avg | 00007 | .00312 | . 15952 | . 00437 | 11.138 | 1.3136 | . 00678 | | Stddev | .00013 | .00041 | .00147 | .00129 | .053 | .1039 | .00439 | | %RSD | 189.31 |
13.095 | .92382 | 29.507 | .47538 | 7.9055 | 64.824 | | #1 | 00021 | .00268 | .16011 | .00547 | 11.082 | 1.3768 | .00178 | | #2 | .00003 | .00320 | .15785 | .00469 | 11.145 | 1.3702 | .01005 | | #3 | 00002 | .00349 | .16061 | .00295 | 11.187 | 1.1937 | .00851 | | Check ?
High Limit
Low Limit | Chk Pass | Elem | Mg2790 | Mn2576 | Mo2020 | Na5895 | Ni2316 | P_2149 | Pb2203 | | Units | ppm | Avg | 1.2028 | . 11175 | . 00042 | 173.26 | . 01475 | . 00535 | 00149 | | Stddev | .1000 | .00309 | .00008 | .56 | .00119 | .00470 | .00159 | | %RSD | 8.3137 | 2.7680 | 19.911 | .32064 | 8.0792 | 87.769 | 106.07 | | #1 | 1.0918 | .11532 | .00037 | 172.64 | .01397 | .00632 | 00053 | | #2 | 1.2309 | .11013 | .00038 | 173.42 | .01612 | .00949 | 00332 | | #3 | 1.2857 | .10980 | .00052 | 173.71 | .01415 | .00025 | 00063 | | Check ?
High Limit
Low Limit | Chk Pass | Sample Name
Method: ICP-T
User: JYH
Comment: | |)10_200.7W <i>A</i> | 15 18:16:23
ES(v526)
Custom | Type: Unk
Mode: CONC
ID3: | | Factor: 1.00000(| | |---|---|---|--|--|---|---|--| | Elem
Units
Avg
Stddev
%RSD | Sb2068
ppm
. 00236
.00512
217.06 | Se1960
ppm
.00784
.01014
129.36 | Si2124
ppm
1.9700
.0058
.29655 | Sn1899
ppm
00007
.00060
840.51 | Sr4077
ppm
. 05088
.00015
.28673 | Ti3372
ppm
. 00361
.00356
98.536 | TI1908
ppm
00301
.00281
93.327 | | #1
#2
#3 | .00576
00353
.00484 | .01093
.01608
00349 | 1.9718
1.9748
1.9635 | .00051
00002
00070 | .05075
.05084
.05104 | 00023
.00425
.00680 | 00460
00465
.00023 | | Check ?
High Limit
Low Limit | Chk Pass | Elem
Units
Avg
Stddev
%RSD | V_2924
ppm
. 00097
.00065
66.872 | Zn2062
ppm
. 92156
.00257
.27838 | Zr3391
ppm
F07397
.02792
37.739 | | | | | | #1
#2
#3 | .00027
.00154
.00109 | .92305
.92304
.91860 | 05122
10512
06557 | | | | | | Check ?
High Limit
Low Limit | Chk Pass | Chk Pass | Chk Fail
45.000
04000 | | | | | | Int. Std.
Units
Avg
Stddev
%RSD | Y_2243
Cts/S
10399.
28.
.26841 | Y_3600
Cts/S
88203 .
147.
.16690 | Y_3774
Cts/S
3866.5
17.6
.45632 | | | | | | #1
#2
#3 | 10367.
10412.
10418. | 88077.
88365.
88167. | 3877.1
3876.3
3846.1 | | | | | | Sample Nam
Method: ICP
User: JYH
Comment: | | | | LINES(v526) | ype: QC
) Mode:
tom ID3: | CONC (| Corr. Factor: | 1.00000(| |--|----------------|----------------|----------------|----------------|--------------------------------|----------------|----------------|----------| | Elem | Ag3280 | Al3082 | As1890 | B_2496 | Ba4554 | Be3131 | Ca4226 | | | Units | ppm | | Avg | . 39902 | 10.074 | . 40192 | . 49470 | 1.0324 | . 05097 | 10.225 | | | Stddev | .00097 | .004 | .00254 | .00335 | .0037 | .00003 | .028 | | | %RSD | .24384 | .04377 | .63253 | .67769 | .35366 | .06318 | .26908 | | | #1 | .40004 | 10.071 | .40359 | .49830 | 1.0365 | .05099 | 10.239 | | | #2 | .39811 | 10.073 | .40317 | .49411 | 1.0294 | .05093 | 10.244 | | | #3 | .39890 | 10.080 | .39899 | .49168 | 1.0314 | .05098 | 10.194 | | | Check ?
Value
Range | Chk Pass | | Elem | Cd2288 | Co2286 | Cr2677 | Cu2247 | Fe2611 | K_7664 | Li6707 | | | Units | ppm | | Avg | . 05053 | . 20346 | . 50655 | . 50780 | 4.0930 | 52.049 | 1.0285 | | | Stddev | .00041 | .00075 | .00258 | .00061 | .0296 | .262 | .0010 | | | %RSD | .80296 | .36852 | .50871 | .12079 | .72293 | .50339 | .09385 | | | #1 | .05098 | .20407 | .50709 | .50730 | 4.0907 | 52.296 | 1.0287 | | | #2 | .05019 | .20369 | .50374 | .50849 | 4.1236 | 51.774 | 1.0293 | | | #3 | .05043 | .20262 | .50881 | .50762 | 4.0646 | 52.077 | 1.0274 | | | Check ?
Value
Range | Chk Pass | | Elem | Mg2790 | Mn2576 | Mo2020 | Na5895 | Ni2316 | P_2149 | Pb2203 | | | Units | ppm | | Avg | 10.157 | . 51448 | 1.0114 | 51.330 | . 50755 | 9.9193 | . 50345 | | | Stddev | .128 | .00097 | .0014 | .182 | .00148 | .0273 | .00127 | | | %RSD | 1.2607 | .18831 | .14217 | .35446 | .29171 | .27545 | .25308 | | | #1 | 10.264 | .51382 | 1.0126 | 51.511 | .50772 | 9.9168 | .50295 | | | #2 | 10.015 | .51403 | 1.0118 | 51.147 | .50893 | 9.9478 | .50249 | | | #3 | 10.191 | .51559 | 1.0099 | 51.331 | .50599 | 9.8933 | .50489 | | | Check ?
Value
Range | Chk Pass | | • | Sample Name: CCV Acquired: 10/23/2015 18:20:24 Type: QC Method: ICP-THERMO3_6010_200.7WATER_3YLINES(v526) Mode: CONC Corr. Factor: 1.000000 | | | | | | | | | | |---|--|---|---|--|---|---|---|--|--|--| | User: JYH
Comment: | Custom I | D1: (| Custom ID2: | Cus | tom ID3: | | | | | | | Elem
Units
Avg
Stddev
%RSD | Sb2068
ppm
1.2029
.0052
.43516 | Se1960
ppm
. 40218
.00662
1.6454 | Si2124
ppm
5.0123
.0060
.11963 | Sn1899
ppm
1.0236
.0020
.19289 | Sr4077
ppm
1.0344
.0041
.39707 | Ti3372
ppm
1.0363
.0073
.70928 | TI1908
ppm
. 50609
.00213
.42020 | | | | | #1
#2
#3 | 1.2088
1.2012
1.1987 | .40917
.39601
.40137 | 5.0169
5.0144
5.0055 | 1.0255
1.0237
1.0216 | 1.0392
1.0320
1.0322 | 1.0396
1.0278
1.0414 | .50520
.50852
.50455 | | | | | Check ?
Value
Range | Chk Pass | | | | Elem
Units
Avg
Stddev
%RSD | V_2924
ppm
1.0230
.0010
.09921 | Zn2062
ppm
. 99864
.00159
.15909 | Zr3391
ppm
F .55365
.06745
12.183 | | | | | | | | | #1
#2
#3 | 1.0239
1.0233
1.0219 | .99905
.99999
.99689 | .57888
.60486
.47722 | | | | | | | | | Check ?
Value
Range | Chk Pass | Chk Pass | Chk Fail
1.0000
-10.000% | | | | | | | | | Int. Std.
Units
Avg
Stddev
%RSD | Y_2243
Cts/S
10967.
5.
.04326 | Y_3600
Cts/S
93138.
184.
.19778 | Y_3774
Cts/S
3995.8
18.7
.46872 | | | | | | | | | #1
#2
#3 | 10962.
10967.
10971. | 92985.
93342.
93086. | 3978.5
4015.7
3993.1 | | | | | | | | | • | | | | | | | | | | |------------------------------------|----------|----------|----------------|----------------|----------------|----------------|----------------|--|--| | Elem | Ag3280 | Al3082 | As1890 | B_2496 | Ba4554 | Be3131 | Ca4226 | | | | Units | ppm | | | Avg | .00001 | 00105 | 00227 | .00418 | .00084 | .00008 | 00596 | | | | Stddev | .00006 | .00529 | .00172 | .00211 | .00022 | .00008 | .00868 | | | | %RSD | 430.32 | 506.66 | 75.801 | 50.598 | 26.173 | 104.70 | 145.58 | | | | #1 | 00005 | .00287 | 00028 | .00295 | .00061 | .00002 | 01218 | | | | #2 | .00003 | 00707 | 00328 | .00662 | .00105 | .00017 | 00965 | | | | #3 | .00006 | .00106 | 00324 | .00297 | .00086 | .00005 | .00395 | | | | Check ?
High Limit
Low Limit | Chk Pass | | | Elem | Cd2288 | Co2286 | Cr2677 | Cu2247 | Fe2611 | K_7664 | Li6707 | | | | Units | ppm | | | Avg | .00000 | .00023 | . 00069 | .00018 | 01204 | . 32507 | . 00290 | | | | Stddev | .00023 | .00038 | .00077 | .00076 | .00769 | .02953 | .00559 | | | | %RSD | 26327. | 165.37 | 110.25 | 413.13 | 63.849 | 9.0834 | 192.45 | | | | #1 | .00026 | .00051 | .00098 | .00040 | 01269 | .29422 | 00297 | | | | #2 | 00010 | .00037 | 00017 | 00066 | 00405 | .35307 | .00816 | | | | #3 | 00016 | 00020 | .00128 | .00081 | 01938 | .32791 | .00352 | | | | Check ?
High Limit
Low Limit | Chk Pass | | | Elem | Mg2790 | Mn2576 | Mo2020 | Na5895 | Ni2316 | P_2149 | Pb2203 | | | | Units | ppm | | | Avg | 08865 | 00056 | . 00132 | . 14275 | . 00048 | . 00603 | 00129 | | | | Stddev | .06363 | .00176 | .00027 | .02233 | .00089 | .00514 | .00604 | | | | %RSD | 71.774 | 314.81 | 20.172 | 15.644 | 184.64 | 85.273 | 468.70 | | | | #1 | 08501 | .00039 | .00110 | .12432 | .00150 | .01040 | .00011 | | | | #2 | 15403 | 00259 | .00125 | .16759 | 00016 | .00036 | .00393 | | | | #3 | 02692 | .00052 | .00162 | .13634 | .00011 | .00733 | 00791 | | | | Check ?
High Limit
Low Limit | Chk Pass | | | Sample Nam
Method: ICP
User: JYH
Comment: | ne: CCB
-THERMO3_
Custom I | 6010_200.7 | /23/2015 18:
WATER_3YI
Custom ID2: | LINES(v526) | ype: Blank
) Mode:
tom ID3: | CONC (| Corr. Factor: | 1.000000 | |--|---|--|---|---|---|--|--|----------| | Elem
Units
Avg
Stddev
%RSD | Sb2068
ppm
. 00482
.00479
99.209 |
Se1960
ppm
.00075
.00472
630.99 | Si2124
ppm
. 00464
.00148
31.906 | Sn1899
ppm
. 00079
.00049
61.637 | Sr4077
ppm
. 00032
.00018
58.162 | Ti3372
ppm
00111
.00324
292.88 | TI1908
ppm
00283
.00095
33.743 | | | #1
#2
#3 | .01032
.00258
.00157 | .00258
00462
.00429 | .00567
.00294
.00530 | .00134
.00044
.00058 | .00028
.00052
.00015 | 00474
00005
.00147 | 00352
00322
00174 | | | Check ?
High Limit
Low Limit | Chk Pass | | Elem
Units
Avg
Stddev
%RSD | V_2924
ppm
. 00027
.00039
144.87 | Zn2062
ppm
.00002
.00013
603.41 | Zr3391
ppm
F .16576
.14628
88.248 | | | | | | | #1
#2
#3 | 00009
.00068
.00021 | 00012
.00012
.00007 | .31299
.02044
.16385 | | | | | | | Check ?
High Limit
Low Limit | Chk Pass | Chk Pass | Chk Fail
.04000
04000 | | | | | | | Int. Std.
Units
Avg
Stddev
%RSD | Y_2243
Cts/S
11160.
20.
.18208 | Y_3600
Cts/S
9 5931 .
208.
.21726 | Y_3774
Cts/S
3979.6
17.9
.45031 | | | | | | | #1
#2
#3 | 11159.
11140.
11180. | 95691.
96069.
96034. | 4000.3
3969.9
3968.6 | | | | | | | Sample Name: L1510121102 | | | | | | | | | |--------------------------|---------------------------------------|--------------------------|------------------------|--------------------------------|--------------------------|--------------------------------|----------------------|--------------------------| | Method: ICF | P-THERMO3 | 3_6010_200 | .7WATER_ | 3YLINES(v | 526) Mc | de: CONC | Corr. Fa | actor: 1.00000(| | User: JYH | Custom | ID1: | Custom ID |)2: (| Custom ID3 | : | | | | Comment: | Elem | Ag3280 | Al3082 | As1890 | B_2496 | Ba4554 | Be3131 | Ca4226 | Cd2288 | | Units | ppm | Avg
Stddev | 00015
.00137 | . 63159
.00193 | 00321
.00086 | . <mark>02057</mark>
.00128 | . 06829
.00164 | . <mark>00012</mark>
.00001 | 162.03
.01 | . 00033
.00038 | | %RSD | 911.30 | .30498 | 26.876 | 6.2404 | 2.3944 | 10.852 | .00577 | 115.23 | | 70.102 | 011.00 | 100 100 | 20.070 | 0.2.0. | 2.0011 | 10.002 | 100077 | 1.0.20 | | #1 | .00096 | .63287 | 00404 | .01911 | .06734 | .00014 | 162.04 | 00007 | | #2 | 00168 | .62938 | 00232 | .02106 | .07017 | .00012 | 162.03 | .00036 | | #3 | .00027 | .63253 | 00328 | .02154 | .06734 | .00011 | 162.02 | .00069 | | Check? | Chk Pass | High Limit | · · · · · · · · · · · · · · · · · · · | | | | | | | J | | Low Limit | | | | | | | | | | - | 0-0000 | 0::0077 | 00047 | E-0011 | IZ 7004 | 1:0707 | M0700 | M0570 | | Elem
Units | Co2286 | Cr2677 | Cu2247 | Fe2611 | K_7664 | Li6707 | Mg2790 | Mn2576 | | Avg | ppm
. 00318 | ppm
. 01015 | ppm
. 01576 | ppm
5.8164 | ppm
3.8911 | ppm
. 02147 | ppm
5.6721 | ppm
. 28146 | | Stddev | .00031 | .00106 | .00046 | .0157 | .0411 | .00431 | .1010 | .00212 | | %RSD | 9.7131 | 10.433 | 2.9471 | .26996 | 1.0558 | 20.055 | 1.7800 | .75356 | | | | | | | | | | | | #1 | .00284 | .00999 | .01586 | 5.8159 | 3.9136 | .02178 | 5.7134 | .27992 | | #2 | .00328 | .00918 | .01617 | 5.8009 | 3.8437 | .01701 | 5.7458 | .28388 | | #3 | .00343 | .01128 | .01526 | 5.8323 | 3.9160 | .02561 | 5.5570 | .28058 | | Check? | Chk Pass | High Limit | | | | | | | | | | Low Limit | | | | | | | | | | Elom | Mo2020 | Na5895 | Ni2316 | P 2149 | Pb2203 | Sb2068 | Se1960 | Si2124 | | Elem
Units | ppm | ppm | ppm | P_2149 | ppm | ppm | ppm | ppm | | Avg | .00167 | 3.5783 | . 02771 | .02330 | .00847 | .00842 | .00628 | 7.2016 | | Stddev | .00016 | .0075 | .00190 | .00941 | .00170 | .00350 | .00193 | .0063 | | %RSD | 9.4432 | .21049 | 6.8613 | 40.388 | 20.030 | 41.543 | 30.718 | .08695 | | #1 | 00155 | 2 5000 | 02002 | 01215 | 00720 | 00606 | 00546 | 7 2062 | | #1
#2 | .00155
.00162 | 3.5800
3.5849 | .02982
.02718 | .01315
.03174 | .00728
.00771 | .00626
.00655 | .00546
.00849 | 7.2063
7.2039 | | #2
#3 | .00102 | 3.5701 | .02718 | .02501 | .01041 | .01246 | .00490 | 7.1945 | | • | .50.00 | 2.0701 | .525.6 | .52001 | .5.10.11 | .5.2.0 | .50.00 | | | Check? | Chk Pass | High Limit | | | | | | | | | | Low Limit | | | | | | | | | | Sample Nan | | | • | /23/2015 18 | | Type: Unk | | | |------------------------------------|------------------|------------------|------------------|------------------|------------------|----------------|------------------|----------------| | Method: ICP | | | _ | • | , | de: CONC | Corr. Fa | ctor: 1.00000(| | User: JYH | Custom | ID1: | Custom ID |)2: (| Custom ID3 | • | | | | Comment: | | | | | | | | | | Elem | Sn1899 | Sr4077 | Ti3372 | TI1908 | V_2924 | Zn2062 | Zr3391 | | | Units | ppm | | Avg | .00070 | .25291 | 00994 | 00534 | .00610 | 11.964 | .25758 | | | Stddev
%RSD | .00090
128.88 | .00160
.63085 | .00533
53.660 | .00251
46.936 | .00045
7.4285 | .024
.20172 | .12528
48.637 | | | /01\GD | 120.00 | .03063 | 33.000 | 40.330 | 7.4203 | .20172 | 40.037 | | | #1 | .00072 | .25173 | 01218 | 00273 | .00655 | 11.987 | .21167 | | | #2 | .00160 | .25473 | 01378 | 00773 | .00612 | 11.966 | .16173 | | | #3 | 00021 | .25228 | 00385 | 00556 | .00564 | 11.939 | .39934 | | | Check ?
High Limit
Low Limit | Chk Pass | | Int. Std. | Y 2243 | Y_3600 | Y_3774 | | | | | | | Units | Cts/S | Cts/S | Cts/S | | | | | | | Avg | 10431. | 89487. | 3840.7 | | | | | | | Stddev | 26. | 106. | 11.4 | | | | | | | %RSD | .24828 | .11838 | .29603 | | | | | | | #1 | 10405. | 89471. | 3827.6 | | | | | | | #2 | 10456. | 89599. | 3846.9 | | | | | | | #3 | 10433. | 89389. | 3847.6 | | | | | | | Sample Name: L1510124901 Acquired: 10/23/2015 18:32:15 Type: Unk Method: ICP-THERMO3_6010_200.7WATER_3YLINES(v526) Mode: CONC Corr. Factor: 1.000000 User: JYH Custom ID1: Custom ID2: Custom ID3: Comment: | | | | | | | | | |--|----------------|----------------|----------------|----------------|----------------|----------------|----------------|----------------| | Elem | Ag3280 | Al3082 | As1890 | B_2496 | Ba4554 | Be3131 | Ca4226 | Cd2288 | | Units | ppm | Avg | 00063 | . 08249 | .00171 | . 00683 | . 06243 | .00006 | 173.88 | . 00042 | | Stddev | .00103 | .00484 | .00246 | .00007 | .00075 | .00001 | .20 | .00005 | | %RSD | 161.85 | 5.8671 | 143.72 | 1.0695 | 1.2092 | 22.739 | .11553 | 12.839 | | #1 | 00021 | .08805 | 00010 | .00691 | .06313 | .00004 | 174.04 | .00045 | | #2 | 00180 | .08022 | .00451 | .00681 | .06253 | .00006 | 173.65 | .00046 | | #3 | .00011 | .07920 | .00073 | .00677 | .06163 | .00007 | 173.94 | .00036 | | Check ?
High Limit
Low Limit | Chk Pass | Elem | Co2286 | Cr2677 | Cu2247 | Fe2611 | K_7664 | Li6707 | Mg2790 | Mn2576 | | Units | ppm | Avg | .01159 | . 00270 | . 00024 | 7.2931 | . 27189 | . 02288 | 4.8743 | . 73273 | | Stddev | .00024 | .00018 | .00118 | .0393 | .14555 | .00236 | .1498 | .00330 | | %RSD | 2.0831 | 6.6697 | 496.37 | .53850 | 53.533 | 10.312 | 3.0737 | .45023 | | #1 | .01185 | .00291 | .00160 | 7.3075 | .11011 | .02080 | 5.0431 | .73413 | | #2 | .01156 | .00260 | 00036 | 7.2487 | .31332 | .02241 | 4.7570 | .73511 | | #3 | .01137 | .00260 | 00053 | 7.3232 | .39222 | .02544 | 4.8229 | .72897 | | Check ?
High Limit
Low Limit | Chk Pass | Elem | Mo2020 | Na5895 | Ni2316 | P_2149 | Pb2203 | Sb2068 | Se1960 | Si2124 | | Units | ppm | Avg | . 00060 | 2.5414 | . 01460 | . 00748 | . 00075 | . 00358 | . 00765 | . 38532 | | Stddev | .00025 | .0126 | .00057 | .00512 | .00386 | .00241 | .00738 | .00252 | | %RSD | 41.435 | .49515 | 3.9275 | 68.476 | 511.33 | 67.409 | 96.441 | .65278 | | #1 | .00037 | 2.5375 | .01478 | .01230 | 00367 | .00081 | .00119 | .38335 | | #2 | .00086 | 2.5312 | .01506 | .00210 | .00250 | .00524 | .01569 | .38816 | | #3 | .00056 | 2.5555 | .01396 | .00805 | .00343 | .00469 | .00606 | .38447 | | Check ?
High Limit
Low Limit | Chk Pass | Sample Name: L1510124901 Acquired: 10/23/2015 18:32:15 Type: Unk | | | | | | | | | |--|------------------------|--------------------------|------------------------|------------------------|------------------------|--------------------------|------------------------|----------------| | Method: ICF | P-THERMO3 | 3_6010_200 | .7WATER_ | 3YLINES(v | 526) Mc | de: CONC | Corr. Fa | ctor: 1.00000(| | User: JYH | Custom | ID1: | Custom ID |)2: (| Custom ID3 | : | | | | Comment: | | | | | | | | | | Elem | Sn1899 | Sr4077 | Ti3372 | TI1908 | V_2924 | Zn2062 | Zr3391 | | | Units | ppm | | Avg
Stddev | 00087
.00036 | . 53983
.00071 | 02422
.00310 | 00185
.00268 | 00027
.00146 | . 42078
.00066 | 02640
.11420 | | | %RSD | 41.399 | .13145 | 12.799 | 144.56 | 544.85 | .15612 | 432.59 | | | 701102 | 11.000 | .10110 | 12.700 | 111.00 | 011.00 | .10012 | 102.00 | | | #1 | 00087 | .53944 | 02542 | 00407 | 00154 | .42079 | 01821 | | | #2 | 00124 | .53939 | 02654 | .00112 | 00059 | .42143 | .08348 | | | #3 | 00051 | .54065 | 02070 | 00261 | .00132 | .42011 | 14447 | | | Check ?
High Limit
Low Limit | Chk Pass | | Int. Std.
Units | Y_2243
Cts/S | Y_3600
Cts/S | Y_3774
Cts/S | | | | | | | Avg | 10474. | 89709. | 3864.9 | | | | | | | Stddev | 9. | 100.
.11137 | 4.8
.12378 | | | | | | | %RSD | .08468 | .11137 | .12376 | | | | | | | #1 | 10482. | 89731. | 3861.6 | | | | | | | #2 | 10476. |
89796. | 3870.4 | | | | | | | #3 | 10464. | 89600. | 3862.8 | | | | | | | Sample Nar
Method: ICF
User: JYH
Comment: | | 3_6010_200 | .7WATER_ | ired: 10/23/2015 18:36:17 Type: Unk
/ATER_3YLINES(v526) Mode: CONC Corr. Fac
ustom ID2: Custom ID3: | | | | | |--|----------------|----------------|----------------|---|----------------|----------------|---------------|----------------| | Elem | Ag3280 | Al3082 | As1890 | B_2496 | Ba4554 | Be3131 | Ca4226 | Cd2288 | | Units | ppm | Avg | 00015 | . 05760 | 00119 | . 10585 | . 06090 | .00005 | 69.864 | . 00008 | | Stddev | .00108 | .00127 | .00324 | .00127 | .00063 | .00011 | .378 | .00029 | | %RSD | 742.57 | 2.2057 | 271.91 | 1.2044 | 1.0398 | 203.06 | .54071 | 361.79 | | #1 | .00104 | .05728 | 00448 | .10444 | .06047 | .00011 | 69.433 | 00011 | | #2 | 00105 | .05900 | 00109 | .10618 | .06060 | 00007 | 70.021 | .00042 | | #3 | 00043 | .05652 | .00199 | .10692 | .06162 | .00012 | 70.138 | 00007 | | Check ?
High Limit
Low Limit | Chk Pass | Elem | Co2286 | Cr2677 | Cu2247 | Fe2611 | K_7664 | Li6707 | Mg2790 | Mn2576 | | Units | ppm | Avg | . 00036 | .00158 | . 00127 | .08789 | 2.3977 | . 01585 | 22.908 | . 02731 | | Stddev | .00021 | .00013 | .00049 | .01385 | .0307 | .00257 | .135 | .00244 | | %RSD | 56.375 | 8.1151 | 38.153 | 15.762 | 1.2783 | 16.192 | .59009 | 8.9440 | | #1 | .00017 | .00156 | .00108 | .08462 | 2.4331 | .01292 | 22.819 | .02486 | | #2 | .00034 | .00147 | .00092 | .10309 | 2.3810 | .01693 | 22.842 | .02974 | | #3 | .00058 | .00172 | .00183 | .07596 | 2.3791 | .01769 | 23.064 | .02732 | | Check ?
High Limit
Low Limit | Chk Pass | Elem | Mo2020 | Na5895 | Ni2316 | P_2149 | Pb2203 | Sb2068 | Se1960 | Si2124 | | Units | ppm | Avg | . 00469 | 13.415 | .00161 | . 01553 | . 00065 | . 00230 | .00005 | 3.1487 | | Stddev | .00049 | .088 | .00020 | .00398 | .00061 | .00308 | .00513 | .0152 | | %RSD | 10.550 | .65588 | 12.205 | 25.631 | 94.474 | 133.92 | 10100. | .48103 | | #1 | .00449 | 13.316 | .00183 | .01589 | .00059 | .00109 | 00163 | 3.1615 | | #2 | .00433 | 13.444 | .00146 | .01932 | .00128 | .00001 | .00581 | 3.1525 | | #3 | .00525 | 13.485 | .00154 | .01138 | .00006 | .00579 | 00403 | 3.1320 | | Check ?
High Limit
Low Limit | Chk Pass | Sample Name: L1510134201 Acquired: 10/23/2015 18:36:17 Type: Unk | | | | | | | | | |--|------------------------|--------------------------|------------------------|------------------------|------------------------|--------------------------|--------------------------|----------------| | Method: ICF | P-THERMO3 | 3_6010_200 | .7WATER_ | 3YLINES(v | 526) Mc | de: CONC | Corr. Fa | ctor: 1.000000 | | User: JYH | Custom | ID1: | Custom ID |)2: (| Custom ID3 | : | | | | Comment: | | | | | | | | | | Elem | Sn1899 | Sr4077 | Ti3372 | TI1908 | V_2924 | Zn2062 | Zr3391 | | | Units | ppm | | Avg
Stddev | 00038
.00075 | . 44512
.00216 | 01191
.00381 | 00325
.00088 | 00006
.00040 | . 00133
.00012 | . 21676
.13704 | | | %RSD | 196.55 | .48614 | 31.967 | 27.024 | 710.64 | 8.8692 | 63.219 | | | 701 (OD | 150.55 | .+1001- | 31.307 | 27.024 | 710.04 | 0.0032 | 03.213 | | | #1 | 00018 | .44312 | 01452 | 00231 | .00028 | .00146 | .19052 | | | #2 | 00121 | .44741 | 01366 | 00405 | .00005 | .00127 | .36502 | | | #3 | .00025 | .44483 | 00754 | 00339 | 00050 | .00125 | .09475 | | | Check ?
High Limit
Low Limit | Chk Pass | | Int. Std. | Y_2243 | Y_3600 | Y_3774 | | | | | | | Units | Cts/S | Cts/S | Cts/S | | | | | | | Avg | 10469. | 89357. | 3842.1 | | | | | | | Stddev
%RSD | 5.
.04381 | 43.
.04803 | 24.6
.64021 | | | | | | | 70113D | .04361 | .04003 | .04021 | | | | | | | #1 | 10474. | 89401. | 3868.1 | | | | | | | #2 | 10467. | 89355. | 3839.0 | | | | | | | #3 | 10466. | 89315. | 3819.2 | | | | | | | Method: ICP- | -THERMO3 | 6010 200 | 7\A/ATED | OVE INITION | -OC) NA- | de: CONC | Corr Co | | | | |------------------------------------|---------------------|-----------------------|-----------------------|-----------------------|------------------|-----------------------|-----------------------|-----------------------|--|--| | Mictilioa. 101 | | _0010_200 | ./ WAILD_ | STLINES(V | 026) IVIO | de. CONC | Corr. Factor: 1.00000 | | | | | User: JYH | Custom | ID1: | Custom ID |)2: (| Custom ID3 | •
• | | | | | | Comment: | Elem | Ag3280 | Al3082 | As1890 | B_2496 | Ba4554 | Be3131 | Ca4226 | Cd2288 | | | | Units | ppm | | | Avg | 00002 | .04313 | 00181 | .20558 | .05780 | .00005 | 66.391 .204 | .00003 | | | | Stddev
%RSD | .00057
3571.7 | .00750
17.380 | .00365
201.71 | .00087
.42182 | .00071
1.2210 | .00004
72.199 | .30794 | .00008
290.68 | | | | 701 (OB | 3371.7 | 17.500 | 201.71 | .42 102 | 1.2210 | 72.100 | .50754 | 250.00 | | | | #1 | 00026 | .04752 | 00560 | .20614 | .05744 | .00002 | 66.162 | 00004 | | | | #2 | 00042 | .03448 | .00169 | .20458 | .05734 | .00009 | 66.457 | .00000 | | | | #3 | .00063 | .04740 | 00153 | .20602 | .05861 | .00004 | 66.555 | .00011 | | | | Check? | Chk Pass | | | High Limit | Onici doo | OTIKT GOO | OTILL T GOO | OTIKT GOO | OTIKT GOO | OTIKT GOO | OTILCT GOO | OTILL T GOO | | | | Low Limit | | | | | | | | | | | | - 1 | 0-0000 | 0-0077 | 00047 | E-0011 | I/ 7004 | 1:0707 | M=0700 | M0570 | | | | Elem
Units | Co2286 | Cr2677 | Cu2247 | Fe2611 | K_7664 | Li6707 | Mg2790 | Mn2576 | | | | Avg | ppm
00015 | ppm
. 00271 | ppm
. 00041 | ppm
. 06620 | ppm
2.3425 | ppm
. 01007 | ppm
22.140 | ppm
. 02103 | | | | Stddev | .00031 | .00069 | .00082 | .01274 | .1088 | .00489 | .181 | .00176 | | | | %RSD | 203.18 | 25.335 | 200.96 | 19.241 | 4.6432 | 48.527 | .81960 | 8.3765 | | | | 114 | 00000 | 00400 | 00400 | 00050 | 0.0470 | 04.405 | 04.000 | 00004 | | | | #1
#2 | .00020 | .00192 | .00132 | .06258
.05566 | 2.2170
2.4083 | .01425
.01126 | 21.932
22.224 | .02221
.02188 | | | | #2
#3 | 00033 | .00309 | 00020 | .08035 | 2.4083 | .00470 | 22.224 | .02188 | | | | #3 | 00034 | .00511 | 00023 | .00055 | 2.4022 | .00470 | 22.200 | .01301 | | | | Check? | Chk Pass | | | High Limit | | | | | | | | | | | | Low Limit | | | | | | | | | | | | Elem | Mo2020 | Na5895 | Ni2316 | P_2149 | Pb2203 | Sb2068 | Se1960 | Si2124 | | | | Units | ppm | | | Avg | .00491 | 14.258 | .00111 | .01322 | 00375 | .00221 | .00398 | 2.9754 | | | | Stddev | .00009 | .040 | .00079 | .00465 | .00331 | .00564 | .00610 | .0030 | | | | %RSD | 1.8194 | .28288 | 71.115 | 35.210 | 88.350 | 255.47 | 153.24 | .10216 | | | | #1 | .00501 | 14.238 | .00152 | .00815 | 00082 | .00852 | 00261 | 2.9761 | | | | #2 | .00484 | 14.305 | .00161 | .01730 | 00309 | .00045 | .00943 | 2.9780 | | | | #3 | .00488 | 14.232 | .00020 | .01420 | 00735 | 00235 | .00512 | 2.9721 | | | | Check ?
High Limit
Low Limit | Chk Pass | | | Sample Name: L1510134202 Acquired: 10/23/2015 18:40:19 Type: Unk | | | | | | | | | |--|------------------------|--------------------------|------------------------|------------------------|------------------------|--------------------------|--------------------------|----------------| | Method: ICF | P-THERMO3 | 3_6010_200 | .7WATER_ | 3YLINES(v | 526) Mc | de: CONC | Corr. Fa | ctor: 1.00000(| | User: JYH | Custom | ID1: | Custom ID |)2: (| Custom ID3 | : | | | | Comment: | | | | | | | | | | Elem | Sn1899 | Sr4077 | Ti3372 | TI1908 | V_2924 | Zn2062 | Zr3391 | | | Units | ppm | | Avg
Stddev | 00021
.00060 | . 42468
.00152 | 01493
.00481 | 00145
.00174 | 00038
.00080 | . 00220
.00008 | . 06430
.07771 | | | %RSD | 290.26 | .35845 | 32.185 | 119.93 | 209.78 | 3.4462 | 120.85 | | | 701.102 | 200.20 | 100010 | 02.100 | 110.00 | 200.70 | 0.1.02 | 120.00 | | | #1 | .00037 | .42292 | 01848 | 00171 | 00082 | .00211 | .13957 | | | #2 | 00016 | .42552 | 01685 | 00305 | 00087 | .00222 | 01564 | | | #3 | 00083 | .42559 | 00946 | .00040 | .00054 | .00226 | .06898 | | | Check ?
High Limit
Low Limit | Chk Pass | | Int. Std. | Y_2243 | Y_3600 | Y_3774 | | | | | | | Units | Cts/S | Cts/S | Cts/S | | | | | | | Avg | 10474. | 894 74 . | 3815.6 | | | | | | | Stddev
%RSD | 11.
.10216 | 57.
.06392 | 2.5
.06511 | | | | | | | 701 (OD | .10210 | .00332 | .00511 | | | | | | | #1 | 10462. | 89411. | 3817.9 | | | | | | | #2 | 10483. | 89487. | 3815.9 | | | | | | | #3 | 10476. | 89523. | 3813.0 | | | | | | | · | | | | | | Type: Unk
ode: CONC
: | Corr. Fa | actor: 1.00000(| |------------------------------------|----------------|----------------|----------|----------------|----------------|-----------------------------|----------------|-----------------| | Elem | Ag3280 | Al3082 | As1890 | B_2496 | Ba4554 | Be3131 | Ca4226 | Cd2288 | | Units | ppm | Avg | 00013 | . 05840 | 00185 | . 20794 | . 05925 | .00004 | 68.400 | . 00033 | | Stddev | .00007 | .00559 | .00106 | .00212 | .00008 | .00005 | .114 | .00019 | | %RSD | 55.987 | 9.5801 | 57.075 | 1.0203 | .12739 | 123.51 | .16654 | 58.211 | | #1 | 00021 | .05345 | 00076 | .20841 | .05916 | .00003 | 68.444 | .00025 | | #2 | 00014 | .05728 | 00287 | .20978 | .05930 | 00001 | 68.270 | .00054 | | #3 | 00006 | .06447 | 00194 | .20562 | .05929 | .00009 | 68.485 | .00019 | | Check?
High Limit
Low Limit | Chk Pass | Elem | Co2286 | Cr2677 | Cu2247 | Fe2611 | K_7664 | Li6707 | Mg2790 | Mn2576 | | Units | ppm | Avg |
.00035 | .00098 | .00072 | . 07323 | 2.3229 | . 01061 | 22.871 | . 01959 | | Stddev | .00019 | .00058 | .00083 | .02170 | .0386 | .00399 | .096 | .00337 | | %RSD | 56.135 | 59.640 | 115.22 | 29.633 | 1.6596 | 37.616 | .42132 | 17.179 | | #1 | .00040 | .00163 | 00023 | .09612 | 2.3544 | .01127 | 22.789 | .02167 | | #2 | .00013 | .00081 | .00110 | .05295 | 2.3343 | .01423 | 22.847 | .01571 | | #3 | .00051 | .00050 | .00130 | .07064 | 2.2799 | .00633 | 22.977 | .02139 | | Check ?
High Limit
Low Limit | Chk Pass | Elem | Mo2020 | Na5895 | Ni2316 | P_2149 | Pb2203 | Sb2068 | Se1960 | Si2124 | | Units | ppm | Avg | . 00476 | 14.660 | .00092 | . 01598 | 00144 | . 00167 | . 00766 | 3.0821 | | Stddev | .00060 | .063 | .00039 | .00314 | .00303 | .00453 | .00587 | .0108 | | %RSD | 12.649 | .43024 | 42.600 | 19.661 | 210.80 | 271.09 | 76.674 | .35014 | | #1 | .00545 | 14.730 | .00133 | .01521 | 00469 | 00150 | .00898 | 3.0881 | | #2 | .00437 | 14.609 | .00087 | .01329 | .00130 | .00685 | .01276 | 3.0885 | | #3 | .00446 | 14.640 | .00055 | .01944 | 00092 | 00035 | .00124 | 3.0696 | | Check ?
High Limit
Low Limit | Chk Pass | Sample Nan | | | • | /23/2015 18 | | Type: Unk | | | |-------------------------|------------------------|--------------------------|------------------------|------------------------|------------------------------|--------------------------------|--------------------------|----------------| | Method: ICP | | | _ | • | , | de: CONC | Corr. Fa | ctor: 1.00000(| | User: JYH | Custom | ID1: | Custom ID | 02: (| Custom ID3 | • | | | | Comment: | | | | | | | | | | Elem | Sn1899 | Sr4077 | Ti3372 | TI1908 | V_2924 | Zn2062 | Zr3391 | | | Units | ppm | | Avg
Stddev | 00097
.00066 | . 43601
.00155 | 01285
.00547 | 00284
.00129 | <mark>00034</mark>
.00108 | . <mark>00189</mark>
.00015 | . 05583
.12863 | | | %RSD | 67.820 | .35487 | 42.531 | 45.370 | 315.19 | 7.8313 | 230.39 | | | 701 (OD | 07.020 | .55407 | 72.001 | 40.070 | 010.10 | 7.0010 | 200.00 | | | #1 | 00106 | .43736 | 01438 | 00205 | 00132 | .00182 | .05332 | | | #2 | 00027 | .43432 | 00678 | 00214 | 00053 | .00206 | .18570 | | | #3 | 00158 | .43636 | 01739 | 00432 | .00082 | .00180 | 07153 | | | Check? | Chk Pass | | High Limit
Low Limit | | | | | | | | | | Int. Std. | Y 2243 | Y_3600 | Y_3774 | | | | | | | Units | Cts/S | Cts/S | Cts/S | | | | | | | Avg | 10465. | 89795. | 3829.0 | | | | | | | Stddev | 18. | 289. | 18.8 | | | | | | | %RSD | .17338 | .32234 | .48987 | | | | | | | #1 | 10466. | 89594. | 3809.3 | | | | | | | #2 | 10447. | 89663. | 3846.6 | | | | | | | #3 | 10483. | 90127. | 3831.2 | | | | | | | • | | | | | | Type: Unk
ode: CONC
: | Corr. Fa | actor: 1.00000(| |------------------------------------|----------------|----------------|----------|----------------|----------------|-----------------------------|---------------|-----------------| | Elem | Ag3280 | Al3082 | As1890 | B_2496 | Ba4554 | Be3131 | Ca4226 | Cd2288 | | Units | ppm | Avg | . 00073 | . 04201 | 00100 | . 03643 | . 06129 | .00002 | 69.946 | . 00009 | | Stddev | .00182 | .00142 | .00078 | .00530 | .00060 | .00002 | .205 | .00008 | | %RSD | 250.46 | 3.3695 | 78.076 | 14.549 | .98219 | 82.301 | .29375 | 93.448 | | #1 | .00214 | .04342 | 00184 | .03088 | .06072 | .00002 | 69.742 | .00013 | | #2 | .00138 | .04204 | 00089 | .04143 | .06123 | .00001 | 69.943 | 00001 | | #3 | 00133 | .04058 | 00028 | .03699 | .06192 | .00005 | 70.153 | .00015 | | Check ?
High Limit
Low Limit | Chk Pass | Elem | Co2286 | Cr2677 | Cu2247 | Fe2611 | K_7664 | Li6707 | Mg2790 | Mn2576 | | Units | ppm | Avg | . 00026 | . 00121 | .00119 | . 11333 | 2.3996 | . 01116 | 22.252 | . 06576 | | Stddev | .00029 | .00084 | .00226 | .01562 | .0094 | .00254 | .159 | .00161 | | %RSD | 111.90 | 69.500 | 190.30 | 13.787 | .39262 | 22.798 | .71530 | 2.4508 | | #1 | .00060 | .00187 | 00085 | .09618 | 2.4001 | .00842 | 22.071 | .06731 | | #2 | .00014 | .00026 | .00080 | .11703 | 2.3899 | .01345 | 22.371 | .06587 | | #3 | .00005 | .00149 | .00361 | .12677 | 2.4087 | .01159 | 22.314 | .06409 | | Check ?
High Limit
Low Limit | Chk Pass | Elem | Mo2020 | Na5895 | Ni2316 | P_2149 | Pb2203 | Sb2068 | Se1960 | Si2124 | | Units | ppm | Avg | . 00443 | 13.495 | .00071 | . 00692 | 00232 | . 00268 | .00193 | 3.2199 | | Stddev | .00049 | .050 | .00038 | .00542 | .00218 | .00343 | .00774 | .0173 | | %RSD | 10.975 | .37204 | 52.738 | 78.350 | 93.799 | 128.14 | 401.12 | .53852 | | #1 | .00485 | 13.437 | .00039 | .00425 | .00019 | .00643 | .00590 | 3.2260 | | #2 | .00389 | 13.530 | .00062 | .01315 | 00369 | .00191 | 00699 | 3.2333 | | #3 | .00454 | 13.517 | .00113 | .00335 | 00347 | 00030 | .00688 | 3.2003 | | Check ?
High Limit
Low Limit | Chk Pass | Sample Nan | | | cquired: 10/ | | | Type: Unk | | | |-------------------------|----------|----------|--------------|----------|------------|-----------|----------|----------------| | Method: ICF | | | _ | • | , | de: CONC | Corr. Fa | ctor: 1.00000(| | User: JYH | Custom | ID1: | Custom ID |)2: (| Custom ID3 | • | | | | Comment: | | | | | | | | | | Elem | Sn1899 | Sr4077 | Ti3372 | TI1908 | V_2924 | Zn2062 | Zr3391 | | | Units | ppm | | Avg | 00077 | .43915 | 00924 | 00155 | .00025 | .00165 | .05733 | | | Stddev | .00021 | .00204 | .00533 | .00101 | .00046 | .00008 | .15159 | | | %RSD | 27.621 | .46543 | 57.709 | 65.241 | 186.81 | 4.9444 | 264.42 | | | #1 | 00099 | .43828 | 00338 | 00271 | .00017 | .00157 | .01632 | | | #2 | 00057 | .44149 | 01380 | 00098 | .00074 | .00166 | 06954 | | | #3 | 00076 | .43769 | 01054 | 00095 | 00017 | .00173 | .22521 | | | Check? | Chk Pass | | High Limit
Low Limit | | | | | | | | | | Int. Std. | Y 2243 | Y_3600 | Y_3774 | | | | | | | Units | Cts/S | Cts/S | Cts/S | | | | | | | Avg | 10447. | 89693. | 3820.6 | | | | | | | Stddev | 8. | 99. | 7.9 | | | | | | | %RSD | .07649 | .11078 | .20564 | | | | | | | #1 | 10439. | 89807. | 3828.8 | | | | | | | #2 | 10455. | 89637. | 3819.9 | | | | | | | #3 | 10447. | 89634. | 3813.1 | | | | | | | Sample Name: CCV Acquired: 10/23/2015 18:52:27 Type: QC Method: ICP-THERMO3_6010_200.7WATER_3YLINES(v526) Mode: CONC Corr. Factor: 1.000000 User: JYH Custom ID1: Custom ID2: Custom ID3: Comment: | | | | | | | | | |---|----------------|----------------|----------------|----------------|----------------|----------------|----------------|--| | Elem | Ag3280 | Al3082 | As1890 | B_2496 | Ba4554 | Be3131 | Ca4226 | | | Units | ppm | | Avg | . 40006 | 10.097 | . 40693 | . 49757 | 1.0326 | . 05101 | 10.204 | | | Stddev | .00050 | .014 | .00348 | .00202 | .0002 | .00009 | .015 | | | %RSD | .12441 | .13369 | .85489 | .40545 | .02199 | .18361 | .14812 | | | #1 | .40011 | 10.111 | .40714 | .49580 | 1.0324 | .05091 | 10.194 | | | #2 | .40053 | 10.084 | .41030 | .49977 | 1.0325 | .05102 | 10.198 | | | #3 | .39954 | 10.097 | .40335 | .49715 | 1.0328 | .05109 | 10.222 | | | Check ?
Value
Range | Chk Pass | | Elem | Cd2288 | Co2286 | Cr2677 | Cu2247 | Fe2611 | K_7664 | Li6707 | | | Units | ppm | | Avg | . 05054 | . 20420 | . 50567 | . 50990 | 4.0522 | 51.813 | 1.0255 | | | Stddev | .00023 | .00027 | .00087 | .00210 | .0116 | .096 | .0040 | | | %RSD | .44703 | .13366 | .17229 | .41210 | .28558 | .18460 | .39533 | | | #1 | .05042 | .20451 | .50623 | .50869 | 4.0469 | 51.832 | 1.0250 | | | #2 | .05080 | .20399 | .50467 | .51232 | 4.0442 | 51.709 | 1.0297 | | | #3 | .05039 | .20410 | .50611 | .50868 | 4.0655 | 51.897 | 1.0216 | | | Check ?
Value
Range | Chk Pass | | Elem | Mg2790 | Mn2576 | Mo2020 | Na5895 | Ni2316 | P_2149 | Pb2203 | | | Units | ppm | | Avg | 10.068 | . 51427 | 1.0115 | 51.140 | . 50941 | 9.9670 | . 50555 | | | Stddev | .145 | .00129 | .0022 | .109 | .00028 | .0080 | .00370 | | | %RSD | 1.4427 | .25178 | .21762 | .21270 | .05405 | .08056 | .73197 | | | #1 | 9.9316 | .51453 | 1.0132 | 51.118 | .50957 | 9.9701 | .50876 | | | #2 | 10.221 | .51287 | 1.0122 | 51.043 | .50956 | 9.9579 | .50151 | | | #3 | 10.051 | .51542 | 1.0090 | 51.258 | .50909 | 9.9730 | .50639 | | | Check ?
Value
Range | Chk Pass | | Sample Nam
Method: ICP
User: JYH
Comment: | | | | LINES(v526 | ype: QC
) Mode:
tom ID3: | CONC (| Corr. Factor: 1.00000(| |--|---|---|--|--|---|---|---| | Elem
Units
Avg
Stddev
%RSD | Sb2068
ppm
1.2088
.0039
.32580 | Se1960
ppm
. 40666
.00452
1.1109 | Si2124
ppm
5.0359
.0013
.02495 | Sn1899
ppm
1.0265
.0009
.09096 | Sr4077
ppm
1.0303
.0012
.11503 | Ti3372
ppm
1.0415
.0015
.14492 | TI1908
ppm
. 50564
.00316
.62443 | | #1
#2
#3 | 1.2126
1.2047
1.2091 | .40155
.41012
.40832 | 5.0357
5.0373
5.0349 | 1.0259
1.0276
1.0261 | 1.0300
1.0292
1.0315 | 1.0398
1.0426
1.0421 | .50887
.50256
.50548 | | Check ?
Value
Range | Chk Pass | Elem
Units
Avg
Stddev
%RSD | V_2924
ppm
1.0227
.0021
.20719 |
Zn2062
ppm
1.0028
.0012
.11486 | Zr3391
ppm
F .66612
.18907
28.384 | | | | | | #1
#2
#3 | 1.0244
1.0235
1.0203 | 1.0041
1.0023
1.0020 | .62782
.49914
.87142 | | | | | | Check ?
Value
Range | Chk Pass | Chk Pass | Chk Fail
1.0000
-10.000% | | | | | | Int. Std.
Units
Avg
Stddev
%RSD | Y_2243
Cts/S
11036.
13.
.12163 | Y_3600
Cts/S
93549.
144.
.15351 | Y_3774
Cts/S
4008.2
19.5
.48679 | | | | | | #1
#2
#3 | 11021.
11041.
11046. | 93478.
93714.
93455. | 3991.1
4029.4
4003.9 | | | | | | Elem | Ag3280 | Al3082 | As1890 | B_2496 | Ba4554 | Be3131 | Ca4226 | | | | |------------------------------------|----------------|----------------|----------|----------------|----------|----------------|----------------|--|--|--| | Units | ppm | | | | Avg | . 00070 | . 00591 | 00098 | . 00457 | .00056 | .00004 | . 02148 | | | | | Stddev | .00180 | .00476 | .00277 | .00156 | .00032 | .00004 | .01790 | | | | | %RSD | 255.99 | 80.617 | 281.58 | 34.039 | 56.900 | 110.34 | 83.321 | | | | | #1 | .00012 | .01136 | .00170 | .00361 | .00031 | .00007 | .00106 | | | | | #2 | .00273 | .00376 | 00384 | .00374 | .00092 | .00005 | .03444 | | | | | #3 | 00073 | .00259 | 00082 | .00637 | .00046 | 00001 | .02894 | | | | | Check ?
High Limit
Low Limit | Chk Pass | | | | Elem | Cd2288 | Co2286 | Cr2677 | Cu2247 | Fe2611 | K_7664 | Li6707 | | | | | Units | ppm | | | | Avg | 00016 | .00041 | 00047 | .00032 | 00095 | . 32625 | . 00571 | | | | | Stddev | .00024 | .00035 | .00083 | .00098 | .01088 | .06479 | .00124 | | | | | %RSD | 144.02 | 86.615 | 176.53 | 309.83 | 1145.6 | 19.860 | 21.755 | | | | | #1 | 00043 | .00065 | 00034 | .00132 | 01064 | .27457 | .00428 | | | | | #2 | 00006 | .00056 | 00135 | 00063 | 00303 | .39894 | .00628 | | | | | #3 | .00000 | .00000 | .00029 | .00025 | .01081 | .30525 | .00656 | | | | | Check ?
High Limit
Low Limit | Chk Pass | | | | Elem | Mg2790 | Mn2576 | Mo2020 | Na5895 | Ni2316 | P_2149 | Pb2203 | | | | | Units | ppm | | | | Avg | 07753 | 00079 | .00111 | . 05514 | .00033 | 00172 | 00313 | | | | | Stddev | .07062 | .00102 | .00028 | .01165 | .00091 | .00345 | .00120 | | | | | %RSD | 91.099 | 129.84 | 24.752 | 21.128 | 275.91 | 200.87 | 38.334 | | | | | #1 | 08759 | .00009 | .00141 | .06384 | .00052 | .00205 | 00304 | | | | | #2 | 14258 | 00191 | .00087 | .04191 | .00113 | 00474 | 00198 | | | | | #3 | 00241 | 00054 | .00107 | .05969 | 00066 | 00247 | 00437 | | | | | Check ?
High Limit
Low Limit | Chk Pass | | | | Sample Nam
Method: ICP
User: JYH
Comment: | ne: CCB
-THERMO3_
Custom I | 6010_200.7 | /23/2015 18:
WATER_3YI
Custom ID2: | LINES(v526) | ype: Blank
) Mode:
tom ID3: | CONC (| Corr. Factor: | 1.00000(| |--|---|---|---|--|---|--|--|----------| | Elem
Units
Avg
Stddev
%RSD | Sb2068
ppm
. 00263
.00311
118.03 | Se1960
ppm
.00753
.00136
18.112 | Si2124
ppm
.00250
.00190
76.020 | Sn1899
ppm
00031
.00043
138.50 | Sr4077
ppm
. 00017
.00004
21.649 | Ti3372
ppm
00316
.00126
39.897 | TI1908
ppm
00190
.00169
88.867 | | | #1
#2
#3 | 00017
.00597
.00210 | .00607
.00774
.00877 | .00463
.00188
.00098 | 00075
00030
.00011 | .00021
.00014
.00014 | 00266
00223
00460 | 00086
00384
00098 | | | Check ?
High Limit
Low Limit | Chk Pass | | Elem
Units
Avg
Stddev
%RSD | V_2924
ppm
00076
.00062
82.087 | Zn2062
ppm
00002
.00018
776.11 | Zr3391
ppm
F .09956
.10223
102.68 | | | | | | | #1
#2
#3 | 00132
00086
00009 | 00023
.00006
.00010 | .16991
01771
.14647 | | | | | | | Check ?
High Limit
Low Limit | Chk Pass | Chk Pass | Chk Fail
.04000
04000 | | | | | | | Int. Std.
Units
Avg
Stddev
%RSD | Y_2243
Cts/S
11214.
7.
.06670 | Y_3600
Cts/S
95656 .
100.
.10476 | Y_3774
Cts/S
3997.3
5.9
.14650 | | | | | | | #1
#2
#3 | 11205.
11219.
11217. | 95702.
95725.
95541. | 4004.0
3993.0
3995.0 | | | | | | | • | nme: LLCC\
P-THERM(
Custo | • | | | - | /pe: Unk
Mode: C
1 ID3: | ONC C | Corr. Factor | : 1.00000(| |--|---|---|---|---------------------------------|---|---|---------------------------------|---|------------| | Elem
Units
Avg
Stddev
%RSD | Ag3280
ppm
. 00896
.00070
7.7930 | Al3082
ppm
. 17504
.00437
2.4961 | | ppm
. 07761
.00170 | Ba4554
ppm
. 00896
.00053
5.9086 | Be3131
ppm
. 00168
.00001
.30523 | . 41421
.04244 | Cd2288
ppm
.00071
.00006
8.2367 | | | #1
#2
#3 | .00832
.00887
.00970 | .17956
.17473
.17084 | .00595
.00596
.00644 | .07863 | .00839
.00943
.00906 | .00167
.00168
.00168 | .37923
.40199
.46142 | .00067
.00078
.00069 | | | Check?
High Limit
Low Limit | Chk Pass | | Elem
Units
Avg
Stddev
%RSD | Co2286
ppm
. 00478
.00028
5.7935 | Cr2677
ppm
. 00417
.00049
11.837 | ppm
. 00474
.00090 | ppm
. 08214
.00485 | K_7664
ppm
1.0873
.1529
14.059 | Li6707
ppm
. 08659
.00257
2.9732 | ppm
. 50435
.03529 | Mn2576
ppm
. 00764
.00046
6.0854 | | | #1
#2
#3 | .00493
.00494
.00446 | .00381
.00396
.00473 | .00554
.00492
.00376 | .08680 | 1.2265
.92372
1.1116 | .08682
.08904
.08390 | .54250
.49767
.47287 | .00812
.00760
.00720 | | | Check?
High Limit
Low Limit | Chk Pass | | Elem
Units
Avg
Stddev
%RSD | Mo2020
ppm
. 00812
.00024
2.9333 | Na5895
ppm
. 48791
.01608
3.2956 | Ni2316
ppm
. 01749
.00040
2.2677 | —
ppm
. 77947 | Pb2203
ppm
. 00661
.00324
48.983 | Sb2068
ppm
. 07519
.00249
3.3174 | ppm
. 02034 | Si2124
ppm
. 79045
.00229
.28954 | | | #1
#2
#3 | .00823
.00785
.00829 | .48136
.47613
.50623 | | .78385
.78745
.76712 | .01024
.00401
.00559 | .07751
.07550
.07255 | .02518
.01859
.01727 | .79308
.78927
.78898 | | | Check ?
High Limit
Low Limit | Chk Pass | | Method: IC | me: LLCC\ |)3_6010_2 | | R_3YLINE | S(v526) | /pe: Unk
Mode: C | ONC C | Corr. Factor: 1.000000 | |---|---|---|---|---|----------------------------|---|--|------------------------| | User: JYH
Comment: | Custo | m ID1: | Custor | n IDZ: | Custon | ו וט3: | | | | Elem
Units
Avg
Stddev
%RSD | Sn1899
ppm
. 41641
.00161
.38709 | Sr4077
ppm
. 04159
.00013
.31998 | Ti3372
ppm
. 02145
.00395
18.394 | TI1908
ppm
. 16585
.00225
1.3548 | | Zn2062
ppm
. 01797
.00024
1.3551 | Zr3391
ppm
17.871
.143
.79864 | | | #1
#2
#3 | .41801
.41645
.41478 | .04149
.04174
.04153 | .02320
.02421
.01693 | .16600
.16354
.16802 | .00762
.00610
.00760 | .01796
.01822
.01773 | 17.911
17.713
17.990 | | | Check?
High Limit
Low Limit | Chk Pass | | Int. Std.
Units
Avg
Stddev
%RSD | Y_2243
Cts/S
11293.
17.
.14993 | Y_3600
Cts/S
96598 .
216.
.22388 | Y_3774
Cts/S
4031 .1
22.9
.56837 | | | | | | | #1
#2
#3 | 11290.
11278.
11311. | 96477.
96469.
96848. | 4004.6
4043.6
4045.0 | | | | | | | Sample Name: LLCCV Acquired: 10/23/2015 19:04:10 Type: Unk | | | | | | | | | | |--|--|--------------------------|--------------------------------|--------------------------------|--------------------------|--------------------------------|--------------------------|--------------------------|--| | Method: ICF | ethod: ICP-THERMO3_6010_200.7WATER_3YLINES(v526) | | | | | de: CONC | Corr. Factor: 1.000000 | | | | User: JYH | Custom | ID1: | Custom ID |)2: (| Custom ID3 | | | | | | Comment: | Elem
Units | Ag3280 | Al3082 | As1890 | B_2496 | Ba4554 | Be3131 | Ca4226 | Cd2288 | | | Avg | ppm
. 01135 | ppm
. 00430 | ppm
. 09876 | ppm
. 00117 | ppm
. 01215 | ppm
. 01130 | ppm
00276 | ppm
. 01154 | | | Stddev | .00194 | .00141 | .00422 | .00199 | .00074 | .00008 | .01340 | .00039 | | | %RSD | 17.088 | 32.699 | 4.2742 | 169.70 | 6.1306 | .67907 | 485.33 | 3.3410 | | | #1 | .01322 |
.00375 | .10336 | .00313 | .01136 | .01139 | .00718 | .01118 | | | #2 | .01149 | .00589 | .09507 | 00085 | .01223 | .01127 | 01801 | .01195 | | | #3 | .00935 | .00325 | .09785 | .00124 | .01285 | .01125 | .00255 | .01151 | | | Check? | Chk Pass | | High Limit
Low Limit | | | | | | | | | | | LOW LITTIL | | | | | | | | | | | Elem | Co2286 | Cr2677 | Cu2247 | Fe2611 | K_7664 | Li6707 | Mg2790 | Mn2576 | | | Units | ppm | | Avg
Stddev | . <mark>00014</mark>
.00028 | . 02148
.00011 | . <mark>02344</mark>
.00118 | 00743
.02011 | . 15460
.04748 | . <mark>00585</mark>
.00261 | 02029
.06217 | 00117
.00018 | | | %RSD | 203.57 | .53359 | 5.0341 | 270.46 | 30.714 | 44.519 | 306.37 | 15.209 | | | | | | | | | | | | | | #1 | 00012 | .02142 | .02216 | 00287 | .17349 | .00531 | .02430 | 00120 | | | #2
#3 | .00010 | .02141
.02161 | .02369
.02448 | 02943
.01000 | .18973
.10058 | .00356 | .00613
09131 | 00133
00098 | | | #3 | .00043 | .02101 | .02440 | .01000 | .10036 | .00009 | 09131 | 00096 | | | Check? | Chk Pass | | High Limit
Low Limit | | | | | | | | | | | LOW LITTIL | | | | | | | | | | | Elem | Mo2020 | Na5895 | Ni2316 | P_2149 | Pb2203 | Sb2068 | Se1960 | Si2124 | | | Units | ppm | | Avg
Stddev | . 00033
.00044 | . 05191
.01462 | . 04348
.00060 | . <mark>00604</mark>
.00421 | . 10495
.00426 | . 19321
.00352 | . 08814
.00096 | . 00025
.00258 | | | %RSD | 134.81 | 28.165 | 1.3825 | 69.603 | 4.0619 | 1.8211 | 1.0843 | 1050.9 | | | | | | | | | | | | | | #1
#2 | 00006 | .05718 | .04405 | .00228 | .10985 | .19599 | .08828 | .00308 | | | #2
#3 | .00080 | .06317
.03539 | .04353
.04286 | .01058
.00526 | .10290
.10209 | .18925
.19438 | .08712
.08902 | 00196
00038 | | | Ir O | .00023 | .00000 | .04200 | .00020 | .10203 | .13430 | .00002 | 00000 | | | Check ?
High Limit
Low Limit | Chk Pass | | Sample Nar | ne: LLCCV | Acquire | d: 10/23/20 ⁻ | 15 19:04:10 | Type: l | Jnk | | | |------------------------------------|------------------------|--------------------------------|--------------------------|--------------------------|------------------------|--------------------------|--------------------------|----------------| | Method: ICF | P-THERMO3 | 3_6010_200 | .7WATER_ | 3YLINES(v | 526) Mc | de: CONC | Corr. Fa | ctor: 1.000000 | | User: JYH | Custom | ID1: | Custom ID |)2: (| Custom ID3 | : | | | | Comment: | | | | | | | | | | Elem | Sn1899 | Sr4077 | Ti3372 | TI1908 | V_2924 | Zn2062 | Zr3391 | | | Units | ppm | | Avg
Stddev | 00006
.00104 | . <mark>00019</mark>
.00012 | 00099
.00101 | . 10694
.00114 | 00020
.00048 | . 02168
.00013 | . 17220
.29480 | | | %RSD | 1623.4 | 64.724 | 101.76 | 1.0633 | 246.60 | .60572 | 171.20 | | | | | | | | | | | | | #1 | 00117 | .00008 | 00003 | .10572 | 00072 | .02158 | .29487 | | | #2
#2 | .00090 | .00016 | 00090 | .10714 | 00009 | .02163 | .38586 | | | #3 | .00007 | .00032 | 00205 | .10797 | .00023 | .02183 | 16413 | | | Check ?
High Limit
Low Limit | Chk Pass | | Int. Std. | Y 2243 | Y_3600 | Y_3774 | | | | | | | Units | _Cts/S | Cts/S | Cts/S | | | | | | | Avg | 11381. | 97935. | 4062.8 | | | | | | | Stddev
%RSD | 32.
.28506 | 134.
.13643 | 1.1
.02710 | | | | | | | 701 (OD | .20000 | .10040 | .02710 | | | | | | | #1 | 11385. | 97865. | 4063.6 | | | | | | | #2 | 11411. | 97851. | 4063.3 | | | | | | | #3 | 11347. | 98089. | 4061.5 | | | | | | Page 358 ### 2.1.2 Metals ICP-MS Data ### 2.1.2.1 Summary Data Lab Project #: 2551.096 Project Name: Longhorn Army Ammunition Lab Contact: Stephanie Mossburg Certificate of Analysis Sample #: L15101055-01 PrePrep Method: N/A Instrument: ICP-MS2 Client ID: 35AWW13F-101515 Prep Method: 3015 Prep Date: 10/19/2015 13:28 Matrix: Water Analytical Method: 6020A Cal Date: 10/27/2015 13:15 Workgroup #: WG543486 Analyst: BKT Run Date: 10/27/2015 13:57 **Collect Date:** 10/15/2015 14:00 **Dilution:** 1 **File ID:** NI.102715.135713 Sample Tag: 01 Units: mg/L | Analyte | CAS# | Result | Qual | LOQ | LOD | DL | |-----------------|-----------|----------|------|----------|----------|----------| | Antimony, Total | 7440-36-0 | 0.00607 | | 0.00200 | 0.00100 | 0.000500 | | Arsenic, Total | 7440-38-2 | 0.00170 | J | 0.00200 | 0.00100 | 0.000500 | | Barium, Total | 7440-39-3 | 0.0317 | | 0.00600 | 0.00300 | 0.00150 | | Cadmium, Total | 7440-43-9 | 0.000585 | J | 0.00120 | 0.000600 | 0.000300 | | Chromium, Total | 7440-47-3 | 0.00357 | J | 0.00400 | 0.00200 | 0.00100 | | Cobalt, Total | 7440-48-4 | 0.00465 | | 0.00200 | 0.00100 | 0.000500 | | Copper, Total | 7440-50-8 | 0.0116 | | 0.00400 | 0.00200 | 0.00100 | | Lead, Total | 7439-92-1 | 0.00139 | J | 0.00200 | 0.00100 | 0.000500 | | Nickel, Total | 7440-02-0 | 0.0849 | | 0.00800 | 0.00400 | 0.00200 | | Silver, Total | 7440-22-4 | 0.00100 | U | 0.00200 | 0.00100 | 0.000500 | | Thallium, Total | 7440-28-0 | 0.000200 | U | 0.000400 | 0.000200 | 0.000100 | | Vanadium, Total | 7440-62-2 | 0.00110 | J | 0.00200 | 0.00100 | 0.000500 | | Zinc, Total | 7440-66-6 | 0.116 | | 0.0500 | 0.0250 | 0.0125 | | J | Estimated value; the analyte concentration was less than the LOQ. | |---|---| | J | Estimated value ; the analyte concentration was greater than the highest standard | | U | Analyte was not detected. The concentration is below the reported LOD. | Page 1 of 3 Generated at Oct 30, 2015 10:22 Lab Project #: 2551.096 Project Name: Longhorn Army Ammunition Lab Contact: Stephanie Mossburg ### Certificate of Analysis Sample #: L15101055-01 PrePrep Method: N/A Instrument: ICP-MS2 Client ID: 35AWW13F-101515 Prep Method: 3015 Prep Date: 10/19/2015 13:28 Matrix: Water Analytical Method: 6020A Cal Date: 10/27/2015 13:15 Workgroup #: WG543486 Analyst: BKT Run Date: 10/27/2015 14:03 Collect Date: 10/15/2015 14:00 Dilution: 5 File ID: NI.102715.140335 Sample Tag: DL01 Units: mg/L | Analyte | CAS# | Result | Qual | LOQ | LOD | DL | |------------------|-----------|--------|------|--------|--------|---------| | Manganese, Total | 7439-96-5 | 0.708 | | 0.0200 | 0.0100 | 0.00500 | | J | Estimated value ; the analyte concentration was less than the LOQ. | |---|--| | U | Analyte was not detected. The concentration is below the reported LOD. | Lab Project #: 2551.096 Project Name: Longhorn Army Ammunition Lab Contact: Stephanie Mossburg Page 3 of 3 Generated at Oct 30, 2015 10:22 # 2.1.2.2 QC Summary Data #### Example 6020 Calculations Perkin Elmer NexION 300X #### 1.0 Initial Calibration (ICAL) Parameters The system performs linear regression from data consisting of a blank and three standards. # 2.0 Calculating the concentration (C) of an element in water using data from prep log, run log, and quantitation report (note:the data system performs this calculation automatically when correction factors have been entered): $$Cx = Cs \times \frac{Vf}{Vi} \times D$$ | Where: | Example: | |---|----------| | Cs = Concentration computed by the data system (ug/L) | 0.1 | | Vf = Final volume | 100 | | Vi = Initial volume | 40 | | D = Dilution factor as a multiplier (10X = 10) | 1 | | Cx = Concentration of element in (ug/L) | 0.25 | ## 3.0 Calculating the concentration (C) of an element in soil using data from prep log, run log, and quantitation report (note: the data system performs this calculation automatically when correction factors have been entered): $$Cx = Cs \times \frac{Vf}{Vi} \times D$$ | Where: | Example: | |---|----------| | Cs = Concentration computed by the data system (ug/L) | 0.1 | | Vf = Final volume | 200 | | Vi = Initial volume | 0.5 | | D = Dilution factor as a multiplier (10X = 10) | 1 | | | | | Cx = Concentration of element in (ug/kg) | 40 | ### 4.0 Adjusting the concentration to dry weight: $$Cdry = \frac{Cx \times 100}{Px}$$ | Where: | Example: | |---|----------| | Cx = Concentration calculated as received (wet basis) | 40 | | Px = Percent solids of sample (%wt) | 80 | | | | | Cdry = Concentration calculated as dry weight (ug/kg) | 50 | #### 50 ug/kg = 0.050 mg/kg ## **Perkin Elmer NexION ICP/MS** STANDARDS KEY QC Std 1 - ICV QC Std 2 - ICB QC Std 3 - LLICV QC Std 4 - ICSA QC Std 5 - ICSAB QC Std 6 - CCV QC Std 7 - CCB QC Std 8 - LLCCV ## **Calibration Solutions** | Analyte | Stock Conc. (mg/L) | S1 (mg/L) | S2 (mg/L) | S3 (mg/L) | S4 (mg/L) | |---------|--------------------|-----------|-----------|-----------|-----------| | Al | 10 | 0 | 0.00005 | 0.05 | 0.1 | | Sb | 10 | 0 | 0.00005 | 0.05 | 0.1 | | As | 10 | 0 | 0.00005 | 0.05 | 0.1 | | Ba | 10 | 0 | 0.00005 | 0.05 | 0.1 | | Be | 10 | 0 | 0.00005 | 0.05 | 0.1 | | Ca | 1000 | 0 | 0.005 | 5 | 10 | | Cd | 10 | 0 | 0.0005 | 0.05 | 0.1 | | Cr | 10 | 0 | 0.0005 | 0.05 | 0.1 | | Со | 10 | 0 | 0.0005 | 0.05 | 0.1 | | Cu | 10 | 0 | 0.0005 | 0.05 | 0.1 | | Fe | 1000 | 0 | 0.005 | 5 | 10 | | Pb | 10 | 0 | 0.00005 | 0.05 | 0.1 | | Mg | 1000 | 0 | 0.005 | 5 | 10 | | Mn | 10 | 0 | 0.00005 | 0.05 | 0.1 | | Ni | 10 | 0 | 0.00005 | 0.05 | 0.1 | | K | 1000 | 0 | 0.005 | 5 | 10 | | Se | 10 | 0 | 0.00005 | 0.05 | 0.1 | | Ag | 10 | 0 | 0.00005 | 0.05 | 0.1 | | Na | 1000 | 0 | 0.005 | 5 | 10 | | Tl | 10 | 0 | 0.00005 | 0.05 | 0.1 | | V | 10 | 0 | 0.00005 | 0.05 | 0.1 | | U | 1000 | 0 | 0.00005 | 0.05 | 0.1 | | Zn | 10 | 0 | 0.00005 | 0.05 | 0.1 | Workgroup: WG543446 Analyst: VC Spike Analyst: VC Method: 3015 Balance: BAL016 Instrument: MW-3 Instrument Start: 10/19/2015 12:51 SOP: ME407 Revison 18 Spike Solution: STD71855 Spike Witness: ERP Run Date: 10/19/2015 12:48 40 & 50 ML. DIGESTION TUCOA18222 HNO3 Lot #: COA18442 MS
Filters- fisher-Lot#rRGT32947 | | SAMPLE # | Туре | Matrix | Initial Amount | Final Volume | Initial Vessel Wt | Final Vessel Wt | Spike Amount | Due Date | |----|--------------|---------|--------|----------------|--------------|-------------------|-----------------|--------------|----------| | 1 | WG543446-02 | BLANK | 1 | 20 mL | 50 mL | 182.82 g | 182.817 g | | | | 2 | WG543446-04 | FLT_BLK | 1 | 20 mL | 50 mL | 181.992 g | 181.977 g | | | | 3 | WG543446-03 | LCS | 1 | 20 mL | 50 mL | 184.478 g | 184.481 g | .25 mL | | | 4 | L15100882-01 | SAMP | 1 | 20 mL | 50 mL | 182.113 g | 182.101 g | | 10/26/15 | | 5 | L15100882-02 | SAMP | 1 | 20 mL | 50 mL | 182.53 g | 182.502 g | | 10/26/15 | | 6 | L15100882-03 | SAMP | 1 | 20 mL | 50 mL | 182.235 g | 182.211 g | | 10/26/15 | | 7 | L15100882-04 | SAMP | 1 | 20 mL | 50 mL | 184.776 g | 184.766 g | | 10/26/15 | | 8 | L15100882-05 | SAMP | 1 | 20 mL | 50 mL | 183.835 g | 183.819 g | | 10/26/15 | | 9 | L15100942-01 | SAMP | 2 | 20 mL | 50 mL | 184.318 g | 184.315 g | | 10/22/15 | | 10 | L15101031-01 | SAMP | 2 | 20 mL | 50 mL | 182.339 g | 182.31 g | | 10/23/15 | | 11 | L15101055-01 | SAMP | 1 | 20 mL | 50 mL | 184.613 g | 184.611 g | | 10/27/15 | | 12 | L15101056-01 | SAMP | 2 | 20 mL | 50 mL | 183.088 g | 183.041 g | | 10/23/15 | | 13 | L15101086-02 | SAMP | 2 | 20 mL | 50 mL | 181.084 g | 181.037 g | | 10/23/15 | | 14 | L15101089-01 | SAMP | 2 | 20 mL | 50 mL | 182.537 g | 182.521 g | | 10/23/15 | | 15 | WG543446-01 | REF | 2 | 20 mL | 50 mL | 183.119 g | 183.082 g | | | | 16 | L15101090-01 | SAMP | 2 | 20 mL | 50 mL | 183.119 g | 183.082 g | | 10/23/15 | | 17 | WG543446-05 | DUP | 1 | 20 mL | 50 mL | 181.707 g | 181.692 g | | | | 18 | WG543446-06 | MS | 1 | 20 mL | 50 mL | 185.048 g | 185.028 g | .25 mL | | | 19 | WG543446-07 | MSD | 1 | 20 mL | 50 mL | 181.622 g | 181.614 g | .25 mL | | L15101056-01 FILTERED DIGESTATE Analyst: Vul Collen Reviewer: Eun Poten MW_DIG - Modified 09/30/2009 PDF ID: 4449868 Report generated: 10/19/2015 13:57 Microbac Instrument Run Log | Instrument: | ICP-MS2 | _ Dataset: | 102715A.REP | | |-------------|------------------|------------|-------------|--------| | Analyst1: | BKT | Analyst2: | N/A | _ | | Method: | 6020/6020A/200.8 | SOP: | ME700A | Rev: 2 | Maintenance Log ID: __ Calibration Std: STD72938 ICV Std: STD72939 Post Spike: STD69341 ICSA: STD72742 ICSAB: STD72743 Int. Std: RGT31676 CCV: STD72848 LLCCV: STD73228 Tuning Sol: STD72923 Stannous : _____ Hydroxylamine : ____ Workgroups: <u>543486,544124,544216,544595</u> Comments: | Seq. | File ID | Sample | ID | Prep | Dil | Reference | Date/Time | |------|------------------|--------------|----------------------------------|-------|-----|--------------|----------------| | 1 | NI.102715.130254 | Blank | Blank | | 1 | | 10/27/15 13:02 | | 2 | NI.102715.130605 | WG544562-01 | Calibration Point | | 1 | | 10/27/15 13:06 | | 3 | NI.102715.130917 | WG544562-02 | Calibration Point | | 1 | | 10/27/15 13:09 | | 4 | NI.102715.131228 | WG544562-03 | Calibration Point | | 1 | | 10/27/15 13:12 | | 5 | NI.102715.131540 | WG544562-04 | Calibration Point | | 1 | | 10/27/15 13:15 | | 6 | NI.102715.131853 | WG544562-05 | Initial Calibration Verification | | 1 | | 10/27/15 13:18 | | 7 | NI.102715.132205 | WG544562-06 | Initial Calib Blank | | 1 | | 10/27/15 13:22 | | 8 | NI.102715.132518 | WG544562-07 | Low Level Initial Calibration V | | 1 | | 10/27/15 13:25 | | 9 | NI.102715.132829 | WG544562-08 | Interference Check | | 1 | | 10/27/15 13:28 | | 10 | NI.102715.133140 | WG544562-09 | Interference Check | | 1 | | 10/27/15 13:31 | | 11 | NI.102715.133453 | WG544562-10 | CCV | | 1 | | 10/27/15 13:34 | | 12 | NI.102715.133804 | WG544562-11 | ССВ | | 1 | | 10/27/15 13:38 | | 13 | NI.102715.134116 | WG543446-02 | Method/Prep Blank | 20/50 | 1 | | 10/27/15 13:41 | | 14 | NI.102715.134427 | WG543446-03 | Laboratory Control S | 20/50 | 1 | | 10/27/15 13:44 | | 15 | NI.102715.134738 | WG543446-01 | Reference Sample | | 5 | L15101090-01 | 10/27/15 13:47 | | 16 | NI.102715.135049 | WG543446-06 | Matrix Spike | 20/50 | 5 | L15101090-01 | 10/27/15 13:50 | | 17 | NI.102715.135401 | WG543446-07 | Matrix Spike Duplica | 20/50 | 5 | L15101090-01 | 10/27/15 13:54 | | 18 | NI.102715.135713 | L15101055-01 | 35AWW13F-101515 | 20/50 | 1 | | 10/27/15 13:57 | | 19 | NI.102715.140024 | WG543486-03 | Post Digestion Spike | | 1 | L15101055-01 | 10/27/15 14:00 | | 20 | NI.102715.140335 | WG543486-04 | Serial Dilution | | 5 | L15101055-01 | 10/27/15 14:03 | | 21 | NI.102715.140647 | WG543486-04 | Serial Dilution | | 25 | L15101055-01 | 10/27/15 14:06 | | 22 | NI.102715.140957 | WG543486-04 | Serial Dilution | | 125 | L15101055-01 | 10/27/15 14:09 | | 23 | NI.102715.141311 | WG544562-12 | CCV | | 1 | | 10/27/15 14:13 | | 24 | NI.102715.141623 | WG544562-13 | ССВ | | 1 | | 10/27/15 14:16 | | 25 | NI.102715.144129 | WG544562-14 | Low Level Continuing Calibra | | 1 | | 10/27/15 14:41 | | 26 | NI.102715.151622 | L15101352-02 | 8912L | 20/50 | 1 | | 10/27/15 15:16 | | 27 | NI.102715.151934 | L15101148-09 | 35BWW04F-101915 | 20/50 | 1 | | 10/27/15 15:19 | | 28 | NI.102715.152245 | L15101148-11 | 35BWW12F-101915 | 20/50 | 1 | | 10/27/15 15:22 | | 29 | NI.102715.152556 | L15101148-02 | 35BWW05F-101915 | 20/50 | 5 | | 10/27/15 15:25 | | 30 | NI.102715.152908 | L15101148-03 | 35BWW06-101915 | 20/50 | 5 | | 10/27/15 15:29 | | 31 | NI.102715.153219 | L15101148-04 | 35BWW06FD-101915 | 20/50 | 5 | | 10/27/15 15:32 | | 32 | NI.102715.153531 | L15101148-12 | 35BWW09-101915 | 20/50 | 5 | | 10/27/15 15:35 | | 33 | NI.102715.153844 | WG544562-15 | CCV | | 1 | | 10/27/15 15:38 | | 34 | NI.102715.154155 | WG544562-16 | ССВ | | 1 | | 10/27/15 15:41 | Page: 1 Approved: October 29, 2015 Maren Beery Instrument Run Log | Instrument: | ICP-MS2 | Dataset: | 102715A.REP | | |---------------------|------------------|-----------|-------------|--------| | Analyst1: | BKT | Analyst2: | N/A | | | Method: | 6020/6020A/200.8 | SOP: | ME700A | Rev: 2 | | Maintenance Log ID: | | | | | Calibration Std: STD72938 ICV Std: STD72939 Post Spike: STD69341 ICSA: STD72742 ICSAB: STD72743 Int. Std: RGT31676 CCV: STD72848 LLCCV: STD73228 Tuning Sol: STD72923 Stannous : _____ Hydroxylamine : ____ Workgroups: 543486,544124,544216,544595 Comments: | Seq. | File ID | Sample | ID | Prep | Dil | Reference | Date/Time | |------|------------------|--------------|------------------------------|-------|-----|--------------|----------------| | 35 | NI.102715.154613 | WG544562-17 | Low Level Continuing Calibra | | 1 | | 10/27/15 15:46 | | 36 | NI.102715.161039 | WG544075-03 | Method/Prep Blank | 20/50 | 1 | | 10/27/15 16:10 | | 37 | NI.102715.161351 | WG544075-04 | Laboratory Control S | 20/50 | 1 | | 10/27/15 16:13 | | 38 | NI.102715.161702 | WG544075-01 | Reference Sample | | 5 | L15101215-10 | 10/27/15 16:17 | | 39 | NI.102715.162014 | WG544075-06 | Matrix Spike | 20/50 | 5 | L15101215-10 | 10/27/15 16:20 | | 40 | NI.102715.162325 | WG544075-07 | Matrix Spike Duplica | 20/50 | 5 | L15101215-10 | 10/27/15 16:23 | | 41 | NI.102715.162637 | L15101213-01 | FLUME | | 1 | | 10/27/15 16:26 | | 42 | NI.102715.163642 | L15101215-01 | 35BWW07-102015 | 20/50 | 5 | | 10/27/15 16:36 | | 43 | NI.102715.164341 | WG544216-05 | Post Digestion Spike | | 5 | L15101215-01 | 10/27/15 16:43 | | 44 | NI.102715.164653 | WG544216-06 | Serial Dilution | | 25 | L15101215-01 | 10/27/15 16:46 | | 45 | NI.102715.165006 | WG544562-18 | CCV | | 1 | | 10/27/15 16:50 | | 46 | NI.102715.165317 | WG544562-19 | ССВ | | 1 | | 10/27/15 16:53 | | 47 | NI.102715.170925 | L15101215-03 | 35BWW01F-102015 | 20/50 | 5 | | 10/27/15 17:09 | | 48 | NI.102715.171236 | L15101215-04 | LHSMW58-102015 | 20/50 | 5 | | 10/27/15 17:12 | | 49 | NI.102715.171547 | L15101215-05 | LHSMW58FD-102015 | 20/50 | 5 | | 10/27/15 17:15 | | 50 | NI.102715.171859 | L15101215-06 | 35BWW03-102015 | 20/50 | 5 | | 10/27/15 17:18 | | 51 | NI.102715.172210 | L15101215-07 | 35BWW08-102015 | 20/50 | 5 | | 10/27/15 17:22 | | 52 | NI.102715.172521 | L15101215-09 | 35BWW13F-102015 | 20/50 | 5 | | 10/27/15 17:25 | | 53 | NI.102715.173351 | L15101215-04 | LHSMW58-102015 | 20/50 | 1 | | 10/27/15 17:33 | | 54 | NI.102715.173702 | L15101215-05 | LHSMW58FD-102015 | 20/50 | 1 | | 10/27/15 17:37 | | 55 | NI.102715.174013 | L15101215-07 | 35BWW08-102015 | 20/50 | 1 | | 10/27/15 17:40 | | 56 | NI.102715.174554 | WG544075-05 | Filter Blank | | 1 | | 10/27/15 17:45 | | 57 | NI.102715.174907 | WG544562-20 | CCV | | 1 | | 10/27/15 17:49 | | 58 | NI.102715.175218 | WG544562-21 | ССВ | | 1 | | 10/27/15 17:52 | | 59 | NI.102715.175624 | WG544562-22 | Low Level Continuing Calibra | | 1 | | 10/27/15 17:56 | | 60 | NI.102715.180210 | L15101213-01 | FLUME | 20/50 | 10 | | 10/27/15 18:02 | | 61 | NI.102715.180520 | L15101213-02 | FLUME | 20/50 | 10 | | 10/27/15 18:05 | | 62 | NI.102715.180832 | L15101213-03 | 201 EFF | 20/50 | 10 | | 10/27/15 18:08 | | 63 | NI.102715.181144 | L15101213-04 | 201 EFF | 20/50 | 10 | | 10/27/15 18:11 | | 64 | NI.102715.181456 | L15101213-05 | 202 EFF | 20/50 | 10 | | 10/27/15 18:14 | | 65 | NI.102715.181807 | L15101213-06 | 202 EFF | 20/50 | 10 | | 10/27/15 18:18 | | 66 | NI.102715.182119 | L15101213-07 | EMERGENCY BASIN | 20/50 | 10 | | 10/27/15 18:21 | | 67 | NI.102715.182430 | L15101213-08 | EMERGENCY BASIN | 20/50 | 10 | | 10/27/15 18:24 | | 68 | NI.102715.182742 | WG544562-23 | CCV | | 1 | | 10/27/15 18:27 | | | | | 1 | | | | | Page: 2 Approved: October 29, 2015 Maren Beery Microbac Instrument Run Log | Instrument: | ICP-MS2 | Dataset: | 102715A.REP | | |----------------------|------------------|-------------|-------------|----------------------| | Analyst1: | BKT | Analyst2: | N/A | | | Method: | 6020/6020A/200.8 | SOP: | ME700A | Rev: 2 | | Maintenance Log ID: | | - | | | | Calibration Std: STD | 172938 | ICV Std: ST | D72939 | Post Snike: STD69341 | ICSA: STD72742 ICSAB: STD72743 Int. Std: RGT31676 CCV: STD72848 LLCCV: STD73228 Tuning Sol: STD72923
Stannous : ____ Hydroxylamine : ____ Workgroups: <u>543486,544124,544216,544595</u> Comments: | Seq. | File ID | Sample | ID | Prep | Dil | Reference | Date/Time | |------|------------------|--------------|----------------------|-------|-----|--------------|----------------| | 69 | NI.102715.183054 | WG544562-24 | ССВ | | 1 | | 10/27/15 18:30 | | 70 | NI.102715.184709 | WG544285-02 | Method/Prep Blank | 20/50 | 1 | | 10/27/15 18:47 | | 71 | NI.102715.185021 | WG544285-03 | Laboratory Control S | 20/50 | 1 | | 10/27/15 18:50 | | 72 | NI.102715.185332 | L15101224-10 | MW 5 | | 1 | WG544285-01 | 10/27/15 18:53 | | 73 | NI.102715.185642 | WG544285-04 | Duplicate | 20/50 | 1 | L15101224-10 | 10/27/15 18:56 | | 74 | NI.102715.185953 | WG544285-05 | Matrix Spike | 20/50 | 1 | L15101224-10 | 10/27/15 18:59 | | 75 | NI.102715.190305 | WG544285-06 | Matrix Spike Duplica | 20/50 | 1 | L15101224-10 | 10/27/15 19:03 | | 76 | NI.102715.190616 | L15101224-02 | MW 1 | 20/50 | 1 | | 10/27/15 19:06 | | 77 | NI.102715.190927 | WG544595-01 | Post Digestion Spike | | 1 | L15101224-02 | 10/27/15 19:09 | | 78 | NI.102715.191239 | WG544595-02 | Serial Dilution | | 5 | L15101224-02 | 10/27/15 19:12 | | 79 | NI.102715.191550 | WG544595-02 | Serial Dilution | | 25 | L15101224-02 | 10/27/15 19:15 | | 80 | NI.102715.191903 | WG544562-25 | CCV | | 1 | | 10/27/15 19:19 | | 81 | NI.102715.192214 | WG544562-26 | ССВ | | 1 | | 10/27/15 19:22 | | 82 | NI.102715.192527 | L15101224-04 | MW 2 | 20/50 | 1 | | 10/27/15 19:25 | | 83 | NI.102715.192838 | L15101224-06 | MW 3 | 20/50 | 1 | | 10/27/15 19:28 | | 84 | NI.102715.193150 | L15101224-08 | MW 4 | 20/50 | 1 | | 10/27/15 19:31 | | 85 | NI.102715.193501 | L15101224-12 | MW 6 | 20/50 | 1 | | 10/27/15 19:35 | | 86 | NI.102715.193812 | L15101224-14 | MW 7 | 20/50 | 1 | | 10/27/15 19:38 | | 87 | NI.102715.194123 | L15101224-16 | MW 8 | 20/50 | 1 | | 10/27/15 19:41 | | 88 | NI.102715.194435 | L15101224-18 | DUPLICATE | 20/50 | 1 | | 10/27/15 19:44 | | 89 | NI.102715.194746 | L15101224-20 | FIELD BLANK | 20/50 | 1 | | 10/27/15 19:47 | | 90 | NI.102715.195100 | WG544562-27 | CCV | | 1 | | 10/27/15 19:51 | | 91 | NI.102715.195411 | WG544562-28 | ССВ | | 1 | | 10/27/15 19:54 | | 92 | NI.102715.195724 | L15101339-01 | LEACHATE | 20/50 | 50 | | 10/27/15 19:57 | | 93 | NI.102715.200035 | L15101413-01 | 15J1230-01 | 20/50 | 1 | | 10/27/15 20:00 | | 94 | NI.102715.200346 | L15101423-01 | J5J0452-01 | 20/50 | 1 | | 10/27/15 20:03 | | 95 | NI.102715.200658 | L15101429-01 | V5J0336-02 | 20/50 | 1 | | 10/27/15 20:06 | | 96 | NI.102715.201009 | L15101430-01 | V5J0337-02 | 20/50 | 1 | | 10/27/15 20:10 | | 97 | NI.102715.201320 | L15101431-01 | V5J0340-02 | 20/50 | 5 | | 10/27/15 20:13 | | 98 | NI.102715.201632 | L15101432-01 | V5J0357-01 | 20/50 | 5 | | 10/27/15 20:16 | | 99 | NI.102715.201943 | L15101434-01 | V5J0341-02 | 20/50 | 1 | | 10/27/15 20:19 | | 100 | NI.102715.202254 | L15101441-01 | V5J0338-02 | 20/50 | 1 | | 10/27/15 20:22 | | 101 | NI.102715.202608 | WG544562-29 | CCV | | 1 | | 10/27/15 20:26 | | 102 | NI.102715.202919 | WG544562-30 | ССВ | | 1 | | 10/27/15 20:29 | | | | 1 | 1 | | | 1 | | Page: 3 Approved: October 29, 2015 Maren Beery Checklist ID: 107678894233 ## Microbac Laboratories Inc. ### Data Checklist Date: 27-OCT-2015 Analyst: BKT Analyst: NA Method: 6020/6020A/200.8 Instrument: ICP-MS2 Curve Workgroup: 544562 Runlog ID: 71315 Analytical Workgroups: 543486,544124,544216,544595 | Calibration/Linearity | X | |--|----------------| | ICV/CCV | X | | ICV RSD < 3% (EPA 200.7 only) | | | ICB/CCB | X | | ICSA/ICSAB | X | | CRI | | | Blank/LCS | X | | MS/MSD | X | | Post Spike/Serial Dilution | X | | Upload Results | X | | Data Qualifiers | X | | Generate PDF Instrument Data | X | | Sign/Annotate PDF Data | X | | Upload Curve Data | X | | Workgroup Forms | X | | Case Narrative | X | | Client Forms | X | | Level X | | | Level 3 | | | Level 4 | 1055,1148,1215 | | Check for compliance with method and project specific requirements | X | | Check the completeness of reported information | X | | Check the information for the report narrative | X | | Primary Reviewer | BKT | | Secondary Reviewer | MMB | | | | | Comments | | Primary Reviewer: 28-OCT-2015 Secondary Reviewer: 29-OCT-2015 Buch Tun Maren Beery CHECKLIST1 - Modified 03/05/2008 Generated: OCT-29-2015 13:43:27 Microbac ## HOLDING TIMES EQUIVALENT TO AFCEE FORM 9 00894234 Analytical Method: 6020A Login Number:L15101055 | AAB#: | WG543486 | |-------|----------| | | | | Client ID | ID | Date
Collected | TCLP
Date | Time
Held | Max
Hold | Q | Extract
Date | Time
Held | Max
Hold | Q | Run
Date | Time
Held | Max
Hold | Q | |-----------------|----|-------------------|--------------|--------------|-------------|---|-----------------|--------------|-------------|---|-------------|--------------|-------------|---| | 35AWW13F-101515 | 01 | 10/15/15 | | | | | 10/19/2015 | 4 | 180 | | 10/27/15 | 12 | 180 | | | 35AWW13F-101515 | 01 | 10/15/15 | | | | | L0/19/2015 | 4 | 180 | | 10/27/15 | 12 | 180 | | * = SEE PROJECT QAPP REQUIREMENTS HOLD_TIMES - Modified 03/06/2008 PDF File ID: 4464728 Report generated 10/27/2015 15:00 Page 372 ### METHOD BLANK SUMMARY Login Number:L15101055 Blank File ID:NI.102715.134116 Prep Date:10/19/15 12:48 Analyzed Date:10/27/15 13:41 Work Group: WG543486 Blank Sample ID: WG543446-02 Instrument ID: ICP-MS2 Method: 6020A Analyst:BKT ### This Method Blank Applies To The Following Samples: | Client ID | Lab Sample ID | Lab File ID | Time Analyzed | TAG | |-----------------|---------------|------------------|----------------|------| | LCS | WG543446-03 | NI.101915.162931 | 10/19/15 16:29 | 01 | | DUP | WG543446-05 | NI.101915.163555 | 10/19/15 16:35 | 01 | | FLT_BLK | WG543446-04 | NI.101915.173446 | 10/19/15 17:34 | 01 | | LCS | WG543446-03 | NI.102715.134427 | 10/27/15 13:44 | 02 | | 35AWW13F-101515 | L15101055-01 | NI.102715.135713 | 10/27/15 13:57 | 01 | | 35AWW13F-101515 | L15101055-01 | NI.102715.140335 | 10/27/15 14:03 | DL01 | Report Name: BLANK_SUMMARY PDF File ID: 4464729 Report generated 10/27/2015 15:00 # Microbac Laboratories Inc. METHOD BLANK REPORT | Login Number: L15101055 | Prep Date: 10/19/15 12:48 | Sample ID: WG543446-02 | |---------------------------|---------------------------|------------------------| | Instrument ID: ICP-MS2 | Run Date: 10/27/15 13:41 | Prep Method: 3015 | | File ID:NI.102715.134116 | Analyst:BKT | Method: 6020A | | Workgroup (AAB#):WG543486 | Matrix: Water | Units:mg/L | | Contract #: | Cal ID:ICP-M | S - 27-OCT-15 | | Analytes | DL | LOQ | Concentration | Dilution | Qualifier | |------------------|----------|----------|---------------|----------|-----------| | Antimony, Total | 0.000500 | 0.00200 | 0.000500 | 1 | Ū | | Arsenic, Total | 0.000500 | 0.00200 | 0.000500 | 1 | Ū | | Barium, Total | 0.00150 | 0.00600 | 0.00150 | 1 | Ū | | Cadmium, Total | 0.000300 | 0.00120 | 0.000300 | 1 | Ū | | Chromium, Total | 0.00100 | 0.00400 | 0.00100 | 1 | Ū | | Cobalt, Total | 0.000500 | 0.00200 | 0.000500 | 1 | Ū | | Copper, Total | 0.00100 | 0.00400 | 0.00100 | 1 | Ū | | Lead, Total | 0.000500 | 0.00200 | 0.000500 | 1 | Ū | | Manganese, Total | 0.00100 | 0.00400 | 0.00100 | 1 | Ū | | Nickel, Total | 0.00200 | 0.00800 | 0.00200 | 1 | Ū | | Silver, Total | 0.000500 | 0.00200 | 0.000500 | 1 | Ū | | Thallium, Total | 0.000100 | 0.000400 | 0.000100 | 1 | Ū | | Vanadium, Total | 0.000500 | 0.00200 | 0.000500 | 1 | Ū | | Zinc, Total | 0.0125 | 0.0500 | 0.0125 | 1 | Ū | DL Method Detection Limit LOQ Reporting/Practical Quantitation Limit ND Analyte Not detected at or above reporting limit * |Analyte concentration| > 1/2 RL Report Name:BLANK PDF ID: 4464730 27-OCT-2015 15:00 # Microbac Laboratories Inc. LABORATORY CONTROL SAMPLE (LCS) Login Number: L15101055 Run Date: 10/27/2015 Sample ID: WG543446-03 Instrument ID: ICP-MS2 Run Time: 13:44 Prep Method: 3015 File ID: NI.102715.134427 Analyst: BKT Method: 6020A Workgroup (AAB#): WG543486 Matrix: Water Units: mg/L QC Key:DOD4 Lot#:STD71855 Cal ID:ICP-MS-27-OCT-15 | Analytes | Expected | Found | % Rec | LCS | Lim | its | Q | |------------------|----------|-------|-------|-----|-----|-----|---| | Antimony, Total | 0.125 | 0.121 | 97.1 | 80 | - | 120 | | | Arsenic, Total | 0.125 | 0.127 | 102 | 80 | - | 120 | | | Barium, Total | 0.125 | 0.122 | 97.5 | 80 | - | 120 | | | Cadmium, Total | 0.125 | 0.124 | 99.3 | 80 | - | 120 | | | Chromium, Total | 0.125 | 0.126 | 101 | 80 | - | 120 | | | Cobalt, Total | 0.125 | 0.127 | 102 | 80 | - | 120 | | | Copper, Total | 0.125 | 0.127 | 102 | 80 | - | 120 | | | Lead, Total | 0.125 | 0.124 | 98.8 | 80 | - | 120 | | | Manganese, Total | 0.125 | 0.128 | 102 | 80 | - | 120 | | | Nickel, Total | 0.125 | 0.126 | 101 | 80 | - | 120 | | | Silver, Total | 0.125 | 0.125 | 99.8 | 80 | - | 120 | | | Thallium, Total | 0.125 | 0.124 | 99.0 | 80 | - | 120 | | | Vanadium, Total | 0.125 | 0.126 | 101 | 80 | - | 120 | | | Zinc, Total | 0.125 | 0.127 | 101 | 80 | - | 120 | | LCS - Modified 03/06/2008 PDF File ID: 4464731 Report generated: 10/27/2015 15:00 Microbac # Microbac Laboratories Inc. MATRIX SPIKE AND MATRIX SPIKE DUP (MS/MSD) Loginnum: L15101055 Cal ID: ICP-MS2 Worknum: WG543486 Instrument ID: ICP-MS2 Contract #: Method: 6020A Parent ID: WG543446-01 File ID: NI.102715.134738 Dil: 5 Matrix: WATER Sample ID: WG543446-06 MS File ID: NI.102715.135049 Dil: 5 Units: mg/L Sample ID: WG543446-07 MSD File ID: NI.102715.135401 Dil: 5 Dil: 5 | Analyte | Parent | MS
Spiked | MS
Found | MS
%Rec | MSD
Spiked | MSD
Found | MSD
%Rec | %RPD | %Rec
Limits | RPD
Limit | Q | |-----------|---------|--------------|-------------|------------|---------------|--------------|-------------|--------|----------------|--------------|---| | Antimony | 0.00206 | 0.125 | 0.115 | 90.0 | 0.125 | 0.118 | 92.6 | 2.77 | 80 - 120 | 20 | | | Arsenic | 0.00295 | 0.125 |
0.128 | 99.7 | 0.125 | 0.129 | 101 | 0.984 | 80 - 120 | 20 | | | Barium | 0.0789 | 0.125 | 0.196 | 93.7 | 0.125 | 0.191 | 89.6 | 2.67 | 80 - 120 | 20 | | | Cadmium | 0.00170 | 0.125 | 0.120 | 94.5 | 0.125 | 0.123 | 97.3 | 2.92 | 80 - 120 | 20 | | | Chromium | 0.00119 | 0.125 | 0.126 | 100 | 0.125 | 0.127 | 101 | 0.734 | 80 - 120 | 20 | | | Cobalt | 0.00197 | 0.125 | 0.124 | 97.8 | 0.125 | 0.128 | 100 | 2.62 | 80 - 120 | 20 | | | Copper | 0.0183 | 0.125 | 0.138 | 95.9 | 0.125 | 0.139 | 96.3 | 0.348 | 80 - 120 | 20 | | | Lead | 0.00388 | 0.125 | 0.123 | 95.2 | 0.125 | 0.124 | 96.2 | 1.03 | 80 - 120 | 20 | | | Manganese | 0.0103 | 0.125 | 0.133 | 98.3 | 0.125 | 0.137 | 101 | 2.52 | 80 - 120 | 20 | | | Nickel | 0.00442 | 0.125 | 0.126 | 97.3 | 0.125 | 0.128 | 98.7 | 1.33 | 80 - 120 | 20 | | | Silver | 0.00139 | 0.125 | 0.121 | 95.4 | 0.125 | 0.122 | 96.6 | 1.23 | 80 - 120 | 20 | | | Thallium | 0.00146 | 0.125 | 0.122 | 96.2 | 0.125 | 0.122 | 96.2 | 0.0329 | 80 - 120 | 20 | | | Vanadium | 0.00120 | 0.125 | 0.123 | 97.6 | 0.125 | 0.126 | 99.9 | 2.30 | 80 - 120 | 20 | | | Zinc | 0.0516 | 0.125 | 0.173 | 97.4 | 0.125 | 0.167 | 92.0 | 3.96 | 80 - 120 | 20 | | | | | | 1 | | | | | 1 | | | | ^{*} FAILS %REC LIMIT NOTE: This is an internal quality control sample. WG_MS_MSD_DRYWT - Modified 05/26/2011 PDF File ID: 4464732 Report generated 10/27/2015 15:00 [#] FAILS RPD LIMIT Serial Dilution Report Login: L15101055 Worknum: WG543486 Instrument: ICP-MS2 Method: 6020A Serial Dil: WG543486-04 File ID: NI.102715.140647 Dil: 25 Units: ug/L Sample:L15101055-01 File ID: NI.102715.140335 Dil: 5 | Analyte | Sample | Qual | Serial Dil | Qual | % Diff | Q | |-----------|--------|------|------------|------|--------|---| | Antimony | 2.85 | F | ND | Ū | | | | Arsenic | 1.07 | F | ND | U | | | | Barium | 12.3 | Х | ND | U | | | | Cadmium | ND | U | ND | U | | | | Chromium | ND | U | ND | U | | | | Cobalt | 1.93 | F | ND | U | | | | Copper | 4.69 | F | ND | U | | | | Lead | ND | U | ND | U | | | | Manganese | 283 | | 279 | | 1.42 | | | Nickel | 34.5 | Х | 33.4 | F | 3.15 | | | Silver | ND | U | ND | U | | | | Thallium | ND | U | ND | U | | | | Vanadium | ND | U | ND | U | | | | Zinc | 51.4 | F | ND | U | | | - U = Result is below MDL. - F = Result is greater than or equal to MDL and less than the RL. - X = Result is greater than or equal to RL and less than 100 times the MDL. - ${\tt E}$ = %D exceeds control limit of 10% and initial sample result is greater than or equal to 100 times the MDL. SERIAL_DIL - Modified 09/22/2008 PDF File ID: 4464726 10/27/2015 15:00 Serial Dilution Report Login: L15101055 Worknum: WG543486 Instrument: ICP-MS2 Method: 6020A Serial Dil: WG543486-04 File ID: NI.102715.140335 Dil: 5 Units: ug/L Serial Dil: WG543486-04 File ID: NI.102715.140335 Dil: 5 Sample: L15101055-01 File ID: NI.102715.135713 Dil: 1 | Analyte | Sample | Qual | Serial Dil | Qual | % Diff | Q | |-----------|--------|------|------------|------|--------|---| | Antimony | 2.43 | Х | 2.85 | F | 17.30 | | | Arsenic | 0.681 | F | 1.07 | F | 57.60 | | | Barium | 12.7 | Х | 12.3 | Х | 2.77 | | | Cadmium | 0.234 | F | ND | U | | | | Chromium | 1.43 | F | ND | U | | | | Cobalt | 1.86 | Х | 1.93 | F | 3.62 | | | Copper | 4.63 | Х | 4.69 | F | 1.45 | | | Lead | 0.557 | F | ND | U | | | | Manganese | 278 | | 283 | | 1.76 | | | Nickel | 34.0 | Х | 34.5 | Х | 1.68 | | | Silver | ND | U | ND | Ū | | | | Thallium | ND | U | ND | U | | | | Vanadium | 0.440 | F | ND | Ū | | | | Zinc | 46.5 | Х | 51.4 | F | 10.40 | | - U = Result is below MDL. - F = Result is greater than or equal to MDL and less than the RL. - X = Result is greater than or equal to RL and less than 100 times the MDL. - ${\tt E}$ = %D exceeds control limit of 10% and initial sample result is greater than or equal to 100 times the MDL. SERIAL_DIL - Modified 09/22/2008 PDF File ID: 4464726 10/27/2015 15:00 # Microbac Laboratories Inc. POST SPIKE REPORT Sample Login ID: L15101055 Worknum: WG543486 Instrument ID: ICP-MS2 Method: 6020A Post Spike ID: WG543486-03 File ID:NI.102715.140024 Dil:1 Units: ug/L Sample ID: L15101055-01 File ID:NI.102715.135713 Dil:1 Matrix: Water | Analyte | Post Spike
Result | С | Sample
Result | С | Spike
Added(SA) | % R | Control
Limit %R | Q | |-----------|----------------------|---|------------------|---|--------------------|-------|---------------------|---| | ANTIMONY | 56.0 | | 2.43 | | 50 | 107.1 | 75 - 125 | | | ARSENIC | 57.6 | | 0.681 | F | 50 | 113.9 | 75 - 125 | | | BARIUM | 66.9 | | 12.7 | | 50 | 108.4 | 75 - 125 | | | CADMIUM | 55.4 | | 0.234 | F | 50 | 110.3 | 75 - 125 | | | CHROMIUM | 54.8 | | 1.43 | F | 50 | 106.8 | 75 - 125 | | | COBALT | 58.0 | | 1.86 | | 50 | 112.2 | 75 - 125 | | | COPPER | 58.1 | | 4.63 | | 50 | 106.9 | 75 - 125 | | | LEAD | 55.1 | | 0.557 | F | 50 | 109.1 | 75 - 125 | | | MANGANESE | 345 | | 278 | | 50 | 133.6 | 75 - 125 | N | | NICKEL | 87.7 | | 34.0 | | 50 | 107.6 | 75 - 125 | | | SILVER | 50.1 | | 0 | U | 50 | 100.2 | 75 - 125 | | | THALLIUM | 54.3 | | 0 | U | 50 | 108.5 | 75 - 125 | | | VANADIUM | 54.7 | | 0.440 | F | 50 | 108.5 | 75 - 125 | | | ZINC | 103 | | 46.5 | | 50 | 112.7 | 75 - 125 | | N = % Recovery exceeds control limits F = Result is between MDL and RL U = Sample result is below MDL. A value of zero is used in the calculation Microbac ### Microbac Laboratories Inc. Initial Calibration Summary Login: L15101055 Workgroup (AAB#): WG543486 Analytical Method: 6020A Instrument ID: ICP-MS2 ICAL Worknum: WG544562 Initial Calibration Date: 27-OCT-2015 13:15 | | WG544 | 562-01 | WG544 | 562-02 | WG544 | 562-03 | WG544562-04 | |] | | |-----------|-------|--------|-------|----------|-------|--------|-------------|---------|---------|---| | | Conc | INT | Conc | INT | Conc | INT | Conc | INT | R | Q | | ANTIMONY | 0 | 32.7 | .4 | 223 | 50 | 182000 | 100 | 366000 | .999851 | | | ARSENIC | 0 | -41.4 | .4 | -19.7 | 50 | 34500 | 100 | 70400 | .999883 | | | BARIUM | 0 | 12.0 | .4 | 115 | 50 | 77400 | 100 | 155000 | .999859 | | | CADMIUM | 0 | 8.30 | .4 | 77.0 | 50 | 67800 | 100 | 136000 | .999865 | | | CHROMIUM | 0 | 5630 | .4 | 5720 | 50 | 216000 | 100 | 429000 | .999951 | | | COBALT | 0 | 131 | .4 | 299 | 50 | 156000 | 100 | 314000 | .999958 | | | COPPER | 0 | 148 | .4 | 249 | 50 | 54500 | 100 | 110000 | .999935 | | | LEAD | 0 | 493 | .4 | 1460 | 50 | 683000 | 100 | 1380000 | .999661 | | | MANGANESE | 0 | 666 | .4 | 1320 | 50 | 164000 | 100 | 331000 | .999925 | | | NICKEL | 0 | 221 | .4 | 308 | 50 | 55900 | 100 | 112000 | .999951 | | | SILVER | 0 | 60.0 | .4 | 280 | 50 | 226000 | 100 | 452000 | .999876 | | | THALLIUM | 0 | 17.0 | .4 | 333 | 50 | 309000 | 100 | 620000 | .999764 | | | VANADIUM | 0 | 829 | .4 | 1050 | 50 | 170000 | 100 | 345000 | .999893 | | | ZINC | 0 | 175 | .4 | 436 | 50 | 32400 | 100 | 65300 | .999928 | | | | 1 | | | <u> </u> | | 1 | | 1 | | | INT = Instrument intensity R = Coefficient of correlation Q = Data Qualifier * = Out of Compliance; R < 0.995</pre> INT_CAL_ICP - Modified 03/06/2008 PDF File I D: 4464735 Report generated: 27-0CT-2015 15:00 Microbac ### Microbac Laboratories Inc. INITIAL CALIBRATION BLANK (ICB) Login Number: L15101055 Run Date: 10/27/2015 Sample ID: WG544562-06 Instrument ID: ICP-MS2 Run Time: 13:22 Method: 6020A File ID: NI.102715.132205 Analyst: BKT Units: ug/L Matrix:WATER | Analytes | MDL | RDL | Concentration | Qualifier | |-----------|-----|-----|---------------|-----------| | SILVER | .2 | .8 | .2 | Ū | | ARSENIC | .2 | .8 | .2 | υ | | BARIUM | .6 | 2.4 | .6 | Ū | | CADMIUM | .12 | .48 | .12 | υ | | COBALT | .2 | .8 | .2 | Ŭ | | CHROMIUM | .4 | 1.6 | .4 | Ū | | COPPER | .4 | 1.6 | .4 | Ŭ | | MANGANESE | .4 | 1.6 | .4 | Ŭ | | NICKEL | .8 | 3.2 | .8 | υ | | LEAD | .2 | .8 | .2 | Ū | | ANTIMONY | .2 | .8 | .201 | F | | THALLIUM | .04 | .16 | .04 | Ŭ | | VANADIUM | .2 | .8 | .2 | Ū | | ZINC | 5 | 20 | 5 | Ū | U = Result is less than 2 x MDL F = Result is between MDL and 2 x MDL * = Result is above 2 x MDL ICB - Modified 07/14/2009 PDF File ID: 4464737 Report generated 10/27/2015 15:00 # Microbac Laboratories Inc. CONTINUING CALIBRATION BLANK (CCB) Login Number: L15101055 Run Date: 10/27/2015 Sample ID: WG544562-11 Instrument ID: ICP-MS2 Run Time: 13:38 Method: 6020A File ID: NI.102715.133804 Analyst: BKT Units: ug/L | Analytes | MDL | RDL | Concentration | Qualifier | |-----------|--------|-------|---------------|-----------| | Antimony | 0.200 | 0.800 | 0.200 | υ | | Arsenic | 0.200 | 0.800 | 0.200 | υ | | Barium | 0.600 | 2.40 | 0.600 | υ | | Cadmium | 0.120 | 0.480 | 0.120 | υ | | Chromium | 0.400 | 1.60 | 0.400 | υ | | Cobalt | 0.200 | 0.800 | 0.200 | υ | | Copper | 0.400 | 1.60 | 0.400 | υ | | Lead | 0.200 | 0.800 | 0.200 | υ | | Manganese | 0.400 | 1.60 | 0.400 | υ | | Nickel | 0.800 | 3.20 | 0.800 | υ | | Silver | 0.200 | 0.800 | 0.200 | υ | | Thallium | 0.0400 | 0.160 | 0.0468 | F | | Vanadium | 0.200 | 0.800 | 0.200 | υ | | Zinc | 5.00 | 20.0 | 5.00 | υ | U = Result is less than MDL. CCB - Modified 03/05/2008 PDF File ID: 4464740 Report generated 10/27/2015 15:00 F = Result is between MDL and RL. ^{* =} Result is above RL. # Microbac Laboratories Inc. CONTINUING CALIBRATION BLANK (CCB) Login Number: L15101055 Run Date: 10/27/2015 Sample ID: WG544562-13 Instrument ID: ICP-MS2 Run Time: 14:16 Method: 6020A File ID: NII.102715.141623 Analyst: BKT Units: ug/L Workgroup (AAB#):WG543486 Cal ID:ICP-MS - 27-OCT-15 Matrix:WATER QAPP:DOD4 | MDL | RDL | Concentration | Qualifier | |--------|--|--
--| | 0.200 | 0.800 | 0.200 | U | | 0.200 | 0.800 | 0.200 | U | | 0.600 | 2.40 | 0.600 | υ | | 0.120 | 0.480 | 0.120 | U | | 0.400 | 1.60 | 0.400 | υ | | 0.200 | 0.800 | 0.200 | υ | | 0.400 | 1.60 | 0.400 | υ | | 0.200 | 0.800 | 0.200 | υ | | 0.400 | 1.60 | 0.400 | υ | | 0.800 | 3.20 | 0.800 | υ | | 0.200 | 0.800 | 0.200 | υ | | 0.0400 | 0.160 | 0.0400 | U | | 0.200 | 0.800 | 0.200 | Ū | | 5.00 | 20.0 | 5.00 | υ | | | 0.200
0.200
0.600
0.120
0.400
0.200
0.400
0.200
0.400
0.800
0.200
0.0400
0.200 | 0.200 0.800 0.200 0.800 0.600 2.40 0.120 0.480 0.400 1.60 0.200 0.800 0.400 1.60 0.200 0.800 0.400 1.60 0.200 0.800 0.400 1.60 0.800 3.20 0.200 0.800 0.0400 0.160 0.200 0.800 | 0.200 0.800 0.200 0.200 0.800 0.200 0.600 2.40 0.600 0.120 0.480 0.120 0.400 1.60 0.400 0.200 0.800 0.200 0.400 1.60 0.400 0.200 0.800 0.200 0.400 1.60 0.400 0.800 3.20 0.800 0.200 0.800 0.200 0.0400 0.160 0.0400 0.200 0.800 0.200 | U = Result is less than MDL. CCB - Modified 03/05/2008 PDF File ID: 4464740 Report generated 10/27/2015 15:00 F = Result is between MDL and RL. ^{* =} Result is above RL. # Microbac Laboratories Inc. INITIAL CALIBRATION VERIFICATION (ICV) (Alternate Source) Login Number: L15101055 Run Date: 10/27/2015 Sample ID: WG544562-05 Instrument ID: ICP-MS2 Run Time: 13:18 Method: 6020A File ID: NI.102715.131853 Analyst: BKT Units: ug/L Workgroup (AAB#):WG543486 Cal ID:ICP-MS - 27-OCT-15 QC Key: DOD4 | Analyte | Expected | Found | %REC | LIMITS | Q | |-----------|----------|-------|------|----------|---| | Antimony | 50 | 46.7 | 93.4 | 90 - 110 | | | Arsenic | 50 | 50.1 | 100 | 90 - 110 | | | Barium | 50 | 49.2 | 98.4 | 90 - 110 | | | Cadmium | 50 | 48.9 | 97.9 | 90 - 110 | | | Chromium | 50 | 49.2 | 98.5 | 90 - 110 | | | Cobalt | 50 | 49.5 | 99.1 | 90 - 110 | | | Copper | 50 | 49.5 | 99.0 | 90 - 110 | | | Lead | 50 | 48.6 | 97.3 | 90 - 110 | | | Manganese | 50 | 49.4 | 98.9 | 90 - 110 | | | Nickel | 50 | 49.5 | 99.0 | 90 - 110 | | | Silver | 50 | 48.8 | 97.5 | 90 - 110 | | | Thallium | 50 | 48.8 | 97.7 | 90 - 110 | | | Vanadium | 50 | 48.6 | 97.2 | 90 - 110 | | | Zinc | 50 | 50.8 | 102 | 90 - 110 | | ^{*} Exceeds LIMITS Limit ICV - Modified 03/06/2008 PDF File ID: 4464736 Report generated 10/27/2015 15:00 # Microbac Laboratories Inc. CONTINUING CALIBRATION VERIFICATION (CCV) Login Number: L15101055 Run Date: 10/27/2015 Sample ID: WG544562-10 Instrument ID: ICP-MS2 Run Time: 13:34 Method: 6020A File ID: NI.102715.133453 Analyst: BKT QC Key: DOD4 Workgroup (AAB#):WG543486 Cal ID:ICP-MS - 27-OCT-15 Matrix:WATER | Analyte | | Expected | Found | UNITS | %REC | LIMITS | Q | |-----------|--|----------|--------|-------|------|----------|---| | Antimony | | 0.0500 | 0.0477 | mg/L | 95.3 | 90 - 110 | | | Arsenic | | 0.0500 | 0.0501 | mg/L | 100 | 90 - 110 | | | Barium | | 0.0500 | 0.0474 | mg/L | 94.8 | 90 - 110 | | | Cadmium | | 0.0500 | 0.0485 | mg/L | 96.9 | 90 - 110 | | | Chromium | | 0.0500 | 0.0494 | mg/L | 98.8 | 90 - 110 | | | Cobalt | | 0.0500 | 0.0512 | mg/L | 102 | 90 - 110 | | | Copper | | 0.0500 | 0.0492 | mg/L | 98.3 | 90 - 110 | | | Lead | | 0.0500 | 0.0493 | mg/L | 98.6 | 90 - 110 | | | Manganese | | 0.0500 | 0.0507 | mg/L | 101 | 90 - 110 | | | Nickel | | 0.0500 | 0.0492 | mg/L | 98.4 | 90 - 110 | | | Silver | | 0.0500 | 0.0482 | mg/L | 96.3 | 90 - 110 | | | Thallium | | 0.0500 | 0.0489 | mg/L | 97.9 | 90 - 110 | | | Vanadium | | 0.0500 | 0.0503 | mg/L | 101 | 90 - 110 | | | Zinc | | 0.0500 | 0.0492 | mg/L | 98.4 | 90 - 110 | | ^{*} Exceeds LIMITS Criteria CCV - Modified 03/05/2008 PDF File ID: 4464739 Report generated 10/27/2015 15:00 # Microbac Laboratories Inc. CONTINUING CALIBRATION VERIFICATION (CCV) Login Number: L15101055 Run Date: 10/27/2015 Sample ID: WG544562-12 Instrument ID: ICP-MS2 Run Time: 14:13 Method: 6020A File ID: NI.102715.141311 Analyst: BKT QC Key: DOD4 Workgroup (AAB#): WG543486 Cal ID: ICP-MS - 27-OCT-15 Matrix:WATER | Analyte | Expected | Found | UNITS | %REC | LIMITS | Q | |-----------|----------|--------|-------|------|----------|---| | Antimony | 0.0500 | 0.0489 | mg/L | 97.7 | 90 - 110 | | | Arsenic | 0.0500 | 0.0507 | mg/L | 101 | 90 - 110 | | | Barium | 0.0500 | 0.0491 | mg/L | 98.2 | 90 - 110 | | | Cadmium | 0.0500 | 0.0499 | mg/L | 99.8 | 90 - 110 | | | Chromium | 0.0500 | 0.0503 | mg/L | 101 | 90 - 110 | | | Cobalt | 0.0500 | 0.0520 | mg/L | 104 | 90 - 110 | | | Copper | 0.0500 | 0.0503 | mg/L | 101 | 90 - 110 | | | Lead | 0.0500 | 0.0497 | mg/L | 99.4 | 90 - 110 | | | Manganese | 0.0500 | 0.0512 | mg/L | 102 | 90 - 110 | | | Nickel | 0.0500 | 0.0499 | mg/L | 99.7 | 90 - 110 | | | Silver | 0.0500 | 0.0494 | mg/L | 98.8 | 90 - 110 | | | Thallium | 0.0500 | 0.0491 | mg/L | 98.2 | 90 - 110 | | | Vanadium | 0.0500 | 0.0509 | mg/L | 102 | 90 - 110 | | | Zinc | 0.0500 | 0.0499 | mg/L | 99.9 | 90 - 110 | | ^{*} Exceeds LIMITS Criteria CCV - Modified 03/05/2008 PDF File ID: 4464739 Report generated 10/27/2015 15:00 ### Microbac Laboratories Inc. LOW LEVEL CALIBRATION VERIFICATION Login Number: <u>L15101055</u> Run Date: <u>10/27/2015</u> Sample ID: <u>WG544562-07</u> Workgroup (AAB#): WG543486 Cal ID: ICP-MS - 27-OCT-15 Matrix:WATER | Analyte | Expected | Found | UNITS | %REC | LIMITS | Q | |-----------|----------|--------|-------|------|----------|---| | Antimony | 0.400 | 0.405 | ug/L | 101 | 70 - 130 | | | Arsenic | 0.400 | 0.416 | ug/L | 104 | 70 - 130 | | | Barium | 0.750 | 0.701 | ug/L | 93.5 | 70 - 130 | | | Cadmium | 0.240 | 0.252 | ug/L | 105 | 70 - 130 | | | Chromium | 0.800 | 0.700 | ug/L | 87.6 | 70 - 130 | | | Cobalt | 0.400 | 0.406 | ug/L | 101 | 70 - 130 | | | Copper | 0.800 | 0.829 | ug/L | 104 | 70 - 130 | | | Lead | 0.200 | 0.184 | ug/L | 92.1 | 70 - 130 | | | Manganese | 0.500 | 0.359 | ug/L | 71.7 | 70 - 130 | | | Nickel | 1.60 | 1.57 | ug/L | 97.8 | 70 - 130 | | | Silver | 0.400 | 0.404 | ug/L | 101 | 70 - 130 | | | Thallium | 0.0800 | 0.0844 | ug/L | 106 | 70 - 130 | | | Vanadium | 0.400 | 0.343 | ug/L | 85.8 | 70 - 130 | | | Zinc | 6.25 | 6.81 | ug/L | 109 | 70 - 130 | | ^{*} Exceeds LIMITS Criteria LLCCV - Modified 1/7/2010 PDF File ID: 4464741 Report generated 10/27/2015 15:00 # Microbac Laboratories Inc. LOW LEVEL CALIBRATION VERIFICATION Login Number: L15101055 Run Date: 10/27/2015 Sample ID: WG544562-14 Instrument ID: ICP-MS2 Run Time: 14:41 Method: 6020A File ID: NII.102715.144129 Analyst: BKT QC Key: DOD4 Workgroup (AAB#):WG543486 Cal ID:ICP-MS - 27-OCT-15 Matrix:WATER | Analyte | | Expected | Found | UNITS | %REC | LIMITS | Q | |-----------|--|----------|--------|-------|------|----------|---| | Antimony | | 0.400 | 0.382 | ug/L | 95.5 | 70 - 130 | | | Arsenic | | 0.400 | 0.425 | ug/L | 106 | 70 - 130 | | | Barium | | 0.750 | 0.674 | ug/L | 89.8 | 70 - 130 | | | Cadmium | | 0.240 | 0.234 | ug/L | 97.6 | 70 - 130 | | | Chromium | | 0.800 | 0.876 | ug/L | 109 | 70 - 130 | | | Cobalt | | 0.400 | 0.396 | ug/L | 99.1 | 70 - 130 | | | Copper | | 0.800 | 0.730 | ug/L | 91.2 | 70 - 130 | | | Lead | | 0.200 | 0.173 | ug/L | 86.5 | 70 - 130 | | | Manganese | | 0.500 | 0.366 | ug/L | 73.2 | 70 - 130 | | | Nickel | | 1.60 | 1.53 | ug/L | 95.7 | 70 - 130 | | | Silver | | 0.400 | 0.384 | ug/L | 96.1 | 70 - 130 | | | Thallium | | 0.0800 | 0.0734 | ug/L | 91.8 | 70 - 130 | | | Vanadium | | 0.400 | 0.413 | ug/L | 103 | 70 - 130 | | | Zinc | | 6.25 | 6.57 | ug/L | 105 | 70 - 130 | | ^{*} Exceeds LIMITS Criteria LLCCV - Modified 1/7/2010 PDF File ID: 4464741 Report generated 10/27/2015 15:00 Login number: L15101055 Workgroup (AAB#): WG543486 Instrument ID: ICP-MS2 Method: 6020A File ID: NI.102715.132829 Sol. A:WG544562-08 Units:uq/L **Sol. AB:** WG544562-09 File ID: NI.102715.133140 Matrix: Water | | | Sol. A | | | Sol. AB | | | |-----------|------|----------|-----------|------|---------|-----------|---| | ANALYTE | True | Found | %Recovery | True | Found | %Recovery | Q | | Antimony | NS | 0.00800 | NS | 100 | 95.5 | 95.5 | | | Arsenic | NS | -0.0401 | NS | 100 | 104 | 104 | | | Barium | NS | 0.0224 | NS | 100 | 96.6 | 96.6 | | | Cadmium | NS | -0.0636 | NS | 100 | 98.2 | 98.2 | | | Chromium | NS | -0.293 | NS | 100 | 99.0 | 99.0 | | | Cobalt | NS | 0.0226 | NS | 100 | 102 | 102 | | | Copper | NS | 0.175 | NS | 100 | 99.3 | 99.3 | | | Lead | NS | 0.000300 | NS | 100 | 96.6 | 96.6 | | | Manganese | NS | -0.179 | NS | 100 | 103 | 103 | | | Nickel | NS | 0.171 | NS | 100 | 97.9 | 97.9 | | | Silver | NS | 0.00110 | NS | 100 | 87.6 | 87.6 | | | Thallium | NS | 0.0148 | NS | 100 | 97.3 | 97.3 | | | Vanadium | NS | -0.0885 | NS | 100 | 98.9 | 98.9 | | | Zinc | NS | 0.492 | NS | 100 | 102 | 102 | | #### NS = Not spiked - * = Recovery of spiked element is outside acceptance limit of 80% 120% of true value. - # = Result for unspiked element is outside the acceptance limits of (+/-) the project reporting limit (RL). - + = Result for unspiked element is outside the acceptance limits of (+/-) 2 times the project method detection limit (MDL). This criteria is only applicable to specific QAPPs. ICS - Modified 03/06/2008 PDF File ID: 4464738 Report generated 10/27/2015 15:00 ### INTERNAL STANDARD REPORT Login: L15101055 Analytical Method: 6020 Analytical Workgroup: WG543486 Matrix:1 Instrument: ICP-MS2 Analyst: BKT ICAL Date: 27-OCT-2015 13:06 | | | | BISMUTH | GERMANIUM | INDIUM | |--------------|--------|-------------------|---------|-----------|---------| | Sample | Туре | Run Date | % Rec | % Rec | % Rec |
 L15101055-01 | SAMP | 27-OCT-2015 13:57 | 100.666 | 104.188 | 103.118 | | L15101055-01 | SAMP | 27-OCT-2015 14:03 | 103.041 | 102.219 | 105.058 | | WG543446-02 | BLANK | 27-OCT-2015 13:41 | 106.092 | 105.931 | 107.603 | | WG543446-03 | LCS | 27-OCT-2015 13:44 | 105.226 | 104.363 | 105.545 | | WG543486-03 | PSPK | 27-OCT-2015 14:00 | 94.806 | 99.172 | 98.13 | | WG543486-04 | SERIAL | 27-OCT-2015 14:03 | 103.041 | 102.219 | 105.058 | | WG543486-04 | SERIAL | 27-OCT-2015 14:06 | 102.937 | 103.244 | 103.314 | | WG544562-05 | ICV | 27-OCT-2015 13:18 | 100.253 | 103.075 | 100.716 | | WG544562-06 | ICB | 27-OCT-2015 13:22 | 101.008 | 102.316 | 101.887 | | WG544562-07 | LLICV | 27-OCT-2015 13:25 | 97.231 | 97.54 | 97.888 | | WG544562-08 | ICS | 27-OCT-2015 13:28 | 91.359 | 89.87 | 88.801 | | WG544562-09 | ICS | 27-OCT-2015 13:31 | 104.804 | 102.714 | 104.771 | | WG544562-10 | CCV | 27-OCT-2015 13:34 | 101.892 | 101.318 | 103.803 | | WG544562-11 | ССВ | 27-OCT-2015 13:38 | 102.266 | 101.794 | 102.154 | | WG544562-12 | CCV | 27-OCT-2015 14:13 | 100.386 | 101.147 | 101.331 | | WG544562-13 | ССВ | 27-OCT-2015 14:16 | 101.922 | 101.062 | 101.327 | | WG544562-14 | LLCCV | 27-OCT-2015 14:41 | 101.937 | 101.982 | 102.435 | Acceptance criteria: 30% - 120% Underlined recoveries are out of range Acceptance criteria for CCVs and CCBs for method SW846-6020: 80% - 120% ### Microbac Laboratories Inc. LINEAR RANGE (QUARTERLY) Login Number: L15101055 Date: 10/12/2015 Insturment ID: ICP-MS2 Method: 6020A | | Integration Time | Concentration | |-----------|------------------|---------------| | Analyte | (Sec.) | (ug/L) | | Antimony | 1.00 | 100.0 | | Arsenic | 1.00 | 100.0 | | Barium | 1.00 | 100.0 | | Cadmium | 1.00 | 100.0 | | Chromium | 1.00 | 100.0 | | Cobalt | 1.00 | 100.0 | | Copper | 1.00 | 100.0 | | Lead | 1.00 | 100.0 | | Manganese | 1.00 | 100.0 | | Nickel | 1.00 | 100.0 | | Selenium | 1.00 | 100.0 | | Silver | 1.00 | 100.0 | | Thallium | 1.00 | 100.0 | | Uranium | 1.00 | 100.0 | | Vanadium | 1.00 | 100.0 | | Zinc | 1.00 | 100.0 | ### Comments: All analytes passed acceptance criteria at the specified concentration. LINEAR_RANGE - Modified 03/06/2008 PDF File ID: 4464733 Report generated: 10/27/2015 15:00 # **2.1.2.3** Raw Data ## MassCal File Name Mass Calibration File Name Default.tun MassCal File Path C:\NexIONData\MassCal\Default.tun Peak Search Window: 1.00 ## **Sample Information** Sample Date/Time: Tuesday, October 27, 2015 12:23:18 ## **Mass Calibration and Resolution** | Analyte | E Mass N | leas Mass | Mass C DAC Val | Res DAC Value M | eas Peak WCustom Res | |---------|----------|-----------|----------------|-----------------|----------------------| | Li | 7.016 | 7.025 | 1349 | 2025 | 0.696 | | Mg | 23.985 | 23.975 | 4498 | 2019 | 0.708 | | Co | 58.933 | 58.925 | 11690 | 2021 | 0.702 | | In | 114.904 | 114.925 | 22863 | 2028 | 0.699 | | U | 238.050 | 238.025 | 47451 | 2042 | 0.702 | ## Relative Std. Dev. | Mass | Meas. Intens. RSD | |-------|-------------------| | 5.525 | 3.721 | | 5.575 | 5.102 | | 5.625 | 2.882 | | 5.675 | 1.511 | | 5.725 | 2.763 | | 5.775 | 4.731 | | 5.825 | 3.021 | | 5.875 | 2.840 | | 5.925 | 2.730 | | 5.975 | 2.560 | | 6.025 | 6.053 | | 6.075 | 1.747 | | 6.125 | 8.581 | | 6.175 | 50.000 | | 6.225 | 70.711 | | 6.275 | 34.233 | | 6.325 | 67.420 | | 6.375 | 75.000 | | 6.425 | 25.003 | | 6.475 | 7.201 | | 6.525 | 4.254 | | 6.575 | 1.835 | | 6.625 | 3.570 | | 6.675 | 5.434 | | 6.725 | 5.478 | | 6.775 | 3.025 | | 6.825 | 2.563 | | | | Report Date/Time: Tuesday, October 27, 2015 15:49:25 Page 1 | 6.875 | 2.365 | |--------|---------| | 6.925 | 2.193 | | 6.975 | 2.348 | | 7.025 | 0.709 | | | | | 7.075 | 1.695 | | 7.125 | 3.035 | | 7.175 | 3.670 | | | | | 7.225 | 15.600 | | 7.275 | 0.000 | | 7.325 | 50.000 | | 7.375 | 100.000 | | 7.425 | | | | 69.722 | | 7.475 | 69.722 | | 7.525 | 99.381 | | 7.575 | 108.653 | | 7.625 | 104.583 | | | | | 7.675 | 69.722 | | 7.725 | 91.287 | | 7.775 | 136.931 | | 7.825 | 72.436 | | 7.875 | 63.191 | | | | | 7.925 | 50.000 | | 7.975 | 70.711 | | 8.025 | 81.441 | | 8.075 | 37.268 | | | | | 8.125 | 70.711 | | 8.175 | 38.030 | | 8.225 | 100.000 | | 8.275 | 91.287 | | | | | 8.325 | 70.711 | | 8.375 | 94.786 | | 8.425 | 122.475 | | 8.475 | 103.652 | | 22.525 | 223.607 | | | | | 22.575 | 81.312 | | 22.625 | 75.691 | | 22.675 | 31.419 | | 22.725 | 61.443 | | 22.775 | 74.244 | | | | | 22.825 | 66.295 | | 22.875 | 17.275 | | 22.925 | 31.672 | | 22.975 | 67.219 | | | | | 23.025 | 73.023 | | 23.075 | 22.612 | | 23.125 | 23.452 | | 23.175 | 29.315 | | 23.173 | 29.313 | | 23.225 | 28.022 | |--------|--------| | | | | 23.275 | 37.268 | | 23.325 | 38.401 | | | | | 23.375 | 43.853 | | 23.425 | 49.215 | | | | | 23.475 | 11.050 | | 23.525 | 6.006 | | 23.575 | 1.112 | | | | | 23.625 | 2.066 | | 23.675 | 1.333 | | | | | 23.725 | 0.621 | | 23.775 | 1.061 | | 23.825 | 1.167 | | | | | 23.875 | 1.019 | | 23.925 | 1.592 | | | | | 23.975 | 1.975 | | 24.025 | 0.832 | | 24.075 | 0.592 | | | | | 24.125 | 0.941 | | 24.175 | 1.151 | | 24.225 | 1.158 | | | | | 24.275 | 3.171 | | 24.325 | 13.671 | | | | | 24.375 | 64.358 | | 24.425 | 74.154 | | 24.475 | 17.705 | | | | | 24.525 | 8.355 | | 24.575 | 2.173 | | 24.625 | 1.308 | | | | | 24.675 | 2.168 | | 24.725 | 1.983 | | | | | 24.775 | 0.938 | | 24.825 | 1.520 | | 24.875 | 0.753 | | | | | 24.925 | 1.322 | | 24.975 | 1.485 | | 25.025 | 1.053 | | | | | 25.075 | 1.405 | | 25.125 | 2.954 | | | | | 25.175 | 1.810 | | 25.225 | 2.371 | | 25.275 | 17.796 | | | | | 25.325 | 86.402 | | 25.375 | 29.881 | | 25.425 | 46.481 | | | | | 25.475 | 39.381 | | 57.525 | 5.139 | | | 000 | | 57.575 | 2.848 | |--------|--------| | | | | 57.625 | 4.330 | | 57.675 | 1.936 | | 57.725 | | | | 3.460 | | 57.775 | 3.340 | | 57.825 | 2.454 | | | | | 57.875 | 1.618 | | 57.925 | 3.543 | | 57.975 | 1.827 | | | | | 58.025 | 3.224 | | 58.075 | 1.264 | | 58.125 | 2.553 | | | | | 58.175 | 2.170 | | 58.225 | 3.387 | | 58.275 | 9.753 | | | | | 58.325 | 47.628 | | 58.375 | 43.006 | | 58.425 | 18.566 | | | | | 58.475 | 9.025 | | 58.525 | 4.255 | | 58.575 | 5.177 | | | | | 58.625 | 3.431 | | 58.675 | 3.046 | | 58.725 | 2.033 | | 58.775 | 2.377 | | | | | 58.825 | 2.195 | | 58.875 | 0.661 | | 58.925 | 2.406 | | | | | 58.975 | 2.084 | | 59.025 | 1.820 | | 59.075 | 2.200 | | | | | 59.125 | 2.203 | | 59.175 | 2.175 | | 59.225 | 3.462 | | | | | 59.275 | 21.326 | | 59.325 | 58.330 | | 59.375 | 50.000 | | | | | 59.425 | 40.505 | | 59.475 | 15.623 | | 59.525 | 6.908 | | | | | 59.575 | 7.922 | | 59.625 | 4.497 | | 59.675 | 3.455 | | | | | 59.725 | 4.133 | | 59.775 | 5.024 | | 59.825 | 2.929 | | 59.875 | 4.765 | | 39.073 | 4.700 | | | | | 59.925 | 4.559 | |---------|--------| | 59.975 | 4.362 | | | | | 60.025 | 4.208 | | 60.075 | 2.190 | | 60.125 | 2.099 | | | | | 60.175 | 2.248 | | 60.225 | 14.247 | | 60.275 | | | | 34.401 | | 60.325 | 46.481 | | 60.375 | 20.328 | | 60.425 | 71.261 | | | | | 60.475 | 47.128 | | 113.525 | 12.987 | | 113.575 | 6.406 | | | | | 113.625 | 2.488 | | 113.675 | 4.650 | | 113.725 | 2.256 | | | | | 113.775 | 0.984 | | 113.825 | 1.366 | | 113.875 | 1.226 | | | 1.756 | | 113.925 | | | 113.975 | 1.597 | | 114.025 | 1.032 | | 114.075 | 3.816 | | | | | 114.125 | 3.230 | | 114.175 | 4.197 | | 114.225 | 3.696 | | | | | 114.275 | 7.826 | | 114.325 | 25.471 | | 114.375 | 45.079 | | 114.425 | 24.341 | | | | | 114.475 | 9.740 | | 114.525 | 1.806 | | 114.575 | 2.254 | | | | | 114.625 | 1.155 | | 114.675 | 2.887 | | 114.725 | 2.209 | | 114.775 | 3.058 | | | | | 114.825 | 1.846 | | 114.875 | 0.888 | | 114.925 | 1.627 | | | | | 114.975 | 1.450 | | 115.025 | 0.850 | | 115.075 | 2.379 | | 115.125 | 2.694 | | | | | 115.175 | 3.011 | | 115.225 | 1.239 | | | | | 115.275 | 10.350 | |--------------------|------------------| | 115.325 | 9.064 | | 115.375 | 40.000 | | 115.425 | 61.629 | | 115.475 | 16.424 | | 115.525 | 29.123 | | 115.575
115.625 | 11.541
7.813 | | 115.675 | 1.769 | | 115.725 | 2.622 | | 115.775 | 3.201 | | 115.825 | 2.723 | | 115.875 | 6.272 | | 115.925 | 2.506 | | 115.975 | 3.799 | | 116.025 | 2.336 | | 116.075 | 0.996 | | 116.125
116.175 | 7.335
3.084 | | 116.175 | 11.631 | | 116.275 | 21.023 | | 116.325 | 20.963 | | 116.375 | 26.146 | | 116.425 | 50.000 | | 116.475 | 60.858 | | 236.525 | | | 236.575 | 23.981 | | 236.625 | 32.589 | | 236.675
236.725 | 43.376
61.435 | | 236.775 | 19.325 | | 236.825 | 27.741 | | 236.875 | 32.443 | | 236.925 | 38.030 | | 236.975 | 25.650 | | 237.025 | 41.650 | | 237.075 | 36.780 | | 237.125 | 27.794 | | 237.175
237.225 | 31.672
31.869 | | 237.275 | 37.171 | | 237.325 | 25.074 | | 237.375 | 28.464 | | 237.425 | 17.568 | | 237.475 | 19.563 | | 237.525 | 14.907 | | 237.575 | 17.220 | | 237.625 | 4.343 | |---------|--------| | 237.675 | 3.447 | | 237.725 | 2.478 | | 237.775 | 2.339 | | 237.825 | 1.949 | | 237.875 | 1.782 | | 237.925 | 1.023 | | 237.975 | 0.970 | | 238.025 | 0.880 | | 238.075 | 1.650 | | 238.125 | 1.131 | | 238.175 | 1.374 | | 238.225 | 0.985 | | 238.275 | 2.010 | | 238.325 | 3.176 | | 238.375 | 3.032 | | 238.425 | 3.431 | | 238.475 | 5.495 | | 238.525 | 8.979 | | 238.575 | 28.074 | | 238.625 | 38.079 | | 238.675 | 21.858 | | 238.725 | 29.186 | | 238.775 | 35.761 | | 238.825 | 43.745 | | 238.875 | 26.716 | | 238.925 | 42.304 | | 238.975 | 38.887 | | 239.025 | 36.617 | | 239.075 | 23.111 | | 239.125 | 50.933 | | 239.175 | 33.026 | | 239.225 | 37.769 | | 239.275 | 35.110 | | 239.325 | 30.110 | | 239.375 | 22.934 | | 239.425 | 38.065 | | 239.475 | 36.422 | Approved: October 28, 2015 Page 399 ### SmartTune Wizard - Summary Optimization Summary SmartTune file: C:\NexIONData\Wizard\SmartTune\ESI SmartTune Fullmicrobac.swz Start Time: 10/27/2015 12:30:42 PM End Time: 10/27/2015 12:33:04 PM Daily Performance Check - [Passed] Optimum value(s): N/A Obtained Intensity (Be 9.0122): 2862.00 Obtained Intensity (Mg 23.985): 123277.03 Obtained Intensity (In 114.904): 50786.64 Obtained Intensity (U 238.05): 54908.45 Obtained Intensity (Bkgd
220): 2.20 Obtained Formula (Ceo 155.9 / Ce 139.905): 0.022 (=4477.59 / 203201.16) Obtained Formula (Ce++ 69.9527 / Ce 139.905): 0.003 (=620.88 / 203201.16) Report Date/Time: Tuesday, October 27, 2015 12:33:04 Page 1 Approved: October 28, 2015 Page 400 ### SmartTune Wizard - Details Optimization Details SmartTune file: C:\NexIONData\Wizard\SmartTune\ESI SmartTune Fullmicrobac.swz Optimization Status Start Time: 10/27/2015 12:30:42 PM Daily Performance Check Optimization Settings: Method: C:\NexIONData\Method\ESI Daily Performance.mth. Intensity Criterion: Be 9.0122 > 2000Intensity Criterion: Mg 23.985 > 15000 Intensity Criterion: In 114.904 > 40000Intensity Criterion: U 238.05 > 30000 Intensity Criterion: Bkgd 220 <= 5</pre> Formula Criterion: CeO 155.9 / Ce 139.905 <= 0.025 Formula Criterion: Ce++ 69.9527 / Ce 139.905 <= 0.03 Optimization Results: Initial Try Obtained Intensity (Be 9.0122): 2862.00 Obtained Intensity (Mg 23.985): 123277.03 Obtained Intensity (In 114.904): 50786.64 Obtained Intensity (U 238.05): 54908.45 Obtained Intensity (Bkgd 220): 2.20 Obtained Formula (CeO 155.9 / Ce 139.905): 0.022 (=4477.59 / 203201.16) Obtained Formula (Ce++ 69.9527 / Ce 139.905): 0.003 (=620.88 / 203201.16) [Passed] Optimum value(s): N/A End Time: 10/27/2015 12:33:04 PM Report Date/Time: Tuesday, October 27, 2015 12:33:04 Page 2 Sample ID: Blank Sample Date/Time: Tuesday, October 27, 2015 13:02:54 Number of Replicates: 3 Autosampler Position: 1 Sample Description: Method File: C:\NexIONData\Method\6020a.mth Aliquot Volume (mL): Diluted to Volume (mL): User Name: BKT Nexion300X Cumulative Autodilution Factor: 1 Nexion-ICP 200.8\6020 #### **Concentration Results** | | | | | | Concentiati | 1011 11030 | iilo | | | | |----|--------|---------------|-----------|-------|-------------|------------|------|-------|---------------|----------| | IS | Analyt | e Mass | Intensity | RSD | Conc. | SD | RSD | Units | Blank Intens. | Mode | | Γ> | Li | 6 | 26269.7 | 12.4 | | | | ug/L | | Standard | | | Be | 9 | 1.7 | 173.2 | | | | ug/L | | Standard | | L | ΑI | 27 | 403.3 | 9.0 | | | | ug/L | | Standard | | Γ | Sc | 45 | 14523.7 | 8.5 | | | | ug/L | | Standard | | | Ti | 47 | 364.7 | 5.9 | | | | ug/L | | Standard | | | V | 51 | 804.6 | 8.0 | | | | ug/L | | Standard | | | Cr | 52 | 5481.3 | 2.8 | | | | ug/L | | Standard | | | Cr | 53 | 268.3 | 28.0 | | | | ug/L | | Standard | | | Mn | 55 | 670.3 | 1.2 | | | | ug/L | | Standard | | | Co | 59 | 145.7 | 12.8 | | | | ug/L | | Standard | | | Ni | 60 | 220.3 | 5.1 | | | | ug/L | | Standard | | | Cu | 65 | 146.7 | 7.2 | | | | ug/L | | Standard | | | Zn | 66 | 211.3 | 12.6 | | | | ug/L | | Standard | | > | Ge | 72 | 210598.8 | 12.8 | | | | ug/L | | Standard | | | As | 75 | -47.2 | 43.7 | | | | ug/L | | Standard | | | Se | 82 | 14.8 | 18.2 | | | | ug/L | | Standard | | L | Se-1 | 77 | 64.7 | 21.0 | | | | ug/L | | Standard | | Γ> | Ga | 71 | 26.7 | 96.2 | | | | mg/L | | Standard | | L | Rb | 85 | 16.7 | 69.3 | | | | ug/L | | Standard | | Γ | Υ | 89 | 216672.4 | 15.4 | | | | ug/L | | Standard | | L> | Rh | 103 | 18.3 | 41.7 | | | | ug/L | | Standard | | Γ | Мо | 98 | 11.3 | 36.2 | | | | ug/L | | Standard | | | Ag | 107 | 54.7 | 25.0 | | | | ug/L | | Standard | | | Cd | 111 | 6.6 | 22.9 | | | | mg/L | | Standard | | | Cd | 114 | 4.1 | 321.7 | | | | ug/L | | Standard | | > | In | 115 | 322524.6 | 13.3 | | | | ug/L | | Standard | | | Sn | 118 | 345.0 | 10.9 | | | | ug/L | | Standard | | | Sb | 123 | 87.9 | 38.1 | | | | ug/L | | Standard | | Ē | Ва | 135 | 12.3 | 40.8 | | | | ug/L | | Standard | | ļ | Ce | 140 | 36.7 | 28.4 | | | | ug/L | | Standard | | Ĺ> | Tb | 159 | 631826.4 | 12.7 | | | | ug/L | | Standard | | ļ | Но | 165 | 3.3 | 173.2 | | | | ug/L | | Standard | | ļ | TI | 203 | 7.0 | 51.5 | | | | ug/L | | Standard | | ļ | TI | 205 | 6.7 | 43.3 | | | | ug/L | | Standard | | ļ | Pb | 206 | 158.7 | 7.3 | | | | ug/L | | Standard | | ļ | Pb | 207 | 120.3 | 10.5 | | | | ug/L | | Standard | | ļ | Pb | 208 | 503.0 | 10.0 | | | | ug/L | | Standard | | ļ | U | 238 | 5.3 | 28.6 | | | | ug/L | | Standard | | L> | Bi | 209 | 333509.3 | 13.2 | | | | ug/L | | Standard | Sample ID: Blank Report Date/Time: Tuesday, October 27, 2015 13:05:11 Page 1 Approved: October 28, 2015 | _ | | | | | | | |----|------|-----|---------|-------|------|----------| | | Na | 23 | 0.0 | | mg/L | Standard | | | Mg | 24 | 10.0 | | mg/L | Standard | | | K | 39 | 31.7 | 9.1 | mg/L | Standard | | | Ca | 43 | 85.0 | 27.0 | mg/L | Standard | | | Fe | 54 | 82.3 | 9.5 | mg/L | Standard | | | Fe | 57 | 216.7 | 32.3 | mg/L | Standard | | L> | Sc-1 | 45 | 14523.7 | 8.5 | mg/L | Standard | | | CI | 35 | 53192.6 | 2.5 | ug/L | Standard | | | Kr | 83 | 3.0 | 57.7 | ug/L | Standard | | | Br | 81 | 326.7 | 6.4 | ug/L | Standard | | | Р | 31 | 13329.2 | 2.9 | ug/L | Standard | | | S | 34 | 3233.7 | 4.6 | ug/L | Standard | | | Sr | 88 | 86.7 | 8.8 | ug/L | Standard | | | С | 12 | 103.3 | 49.7 | mg/L | Standard | | | N | 14 | 0.0 | | mg/L | Standard | | | Hg | 202 | 3.3 | 173.2 | mg/L | Standard | | | Dy | 164 | 9.7 | 105.8 | mg/L | Standard | | | Ho-1 | 165 | 3.3 | 173.2 | mg/L | Standard | | | Er | 166 | 6.7 | 86.6 | mg/L | Standard | | | 1 | 127 | 3612.1 | 5.6 | mg/L | Standard | | | | | | | | | | Analyte | Mass | QC Std % Recovery | Int Std % Recovery | Spike % Recovery | |--------------|------|-------------------|--------------------|------------------| | 「> Li | 6 | | | | | Be | 9 | | | | | L AI | 27 | | | | | 「 Sc | 45 | | | | | Ti | 47 | | | | | V | 51 | | | | | Cr | 52 | | | | | Cr | 53 | | | | | Mn | 55 | | | | | Co | 59 | | | | | Ni | 60 | | | | | Cu | 65 | | | | | Zn | 66 | | | | | > Ge | 72 | | | | | As | 75 | | | | | Se | 82 | | | | | ∟ Se-1 | 77 | | | | | 「> Ga | 71 | | | | Sample ID: Blank Report Date/Time: Tuesday, October 27, 2015 13:05:11 Page 2 Approved: October 28, 2015 ``` Rb 85 Υ 89 | > Rh 103 Мо 98 107 Ag Cd 111 Cd 114 | > In 115 Sn 118 123 Sb Ва 135 140 Ce Tb 159 Но 165 ΤI 203 ΤI 205 Pb 206 Pb 207 208 Pb U 238 209 L> Bi Na 23 Mg 24 39 Κ Ca 43 Fe 54 Fe 57 45 |> Sc-1 CI 35 \operatorname{Kr} 83 Br 81 Ρ 31 S 34 Sr 88 С 12 Ν 14 202 Hg Dy 164 Ho-1 165 166 Er 127 ``` ## **QC Out of Limits** Measurement Type Analyte Mass Out of Limits Message Sample ID: Blank Report Date/Time: Tuesday, October 27, 2015 13:05:11 Page 3 Sample ID: Standard 1 Sample Date/Time: Tuesday, October 27, 2015 13:06:05 Number of Replicates: 3 Autosampler Position: 1 Sample Description: Method File: C:\NexIONData\Method\6020a.mth Aliquot Volume (mL): Diluted to Volume (mL): User Name: BKT Nexion300X Cumulative Autodilution Factor: 1 Nexion-ICP 200.8\6020 ### **Concentration Results** | S Analyte Mass | | | | | | Concentration | on Resi | uits | | | | |---|----|--------|--------|-----------|-------|---------------|---------|------|------|---------------|----------| | Be 9 | IS | Analyt | e Mass | Intensity | RSD | Conc. | SD | RSD | | Blank Intens. | Mode | | Be 9 | Γ> | Li | 6 | 25850.5 | 7.6 | | | | ug/L | 26270 | Standard | | Sc | | Be | 9 | 6.7 | 114.6 | | | | | 2 | Standard | | Ti 47 351.0 6.7 ug/L 365 Standard V 51 829.4 9.5 ug/L 805 Standard Cr 52 5625.0 2.7 ug/L 268 Standard Mn 55 665.7 2.7 ug/L 670 Standard Ni 60 221.3 2.5 ug/L 146 Standard Ni 60 221.3 2.5 ug/L 220 Standard Ni 60 221.3 2.5 ug/L 146 Standard Ni 60 221.3 2.5 ug/L 147 Standard Zr 66 174.7 4.1 ug/L 211 Standard Se 72 209057.9 2.2 ug/L 47 Standard Se 82 16.0 26.7 ug/L 47 Standard Se 82 16.0 26.7 ug/L 15 Sta | L | ΑI | 27 | 398.3 | 13.8 | | | | ug/L | 403 | Standard | | V 51 829.4 9.5 ug/L 805 Standard Cr 52 5625.0 2.7 ug/L 5481 Standard Cr 53 280.0 14.6 ug/L 268 Standard Mn 55 665.7 2.7 ug/L 160 Standard Co 59 130.7 8.8 ug/L 146 Standard Ni 60 221.3 2.5 ug/L 120 Standard Cu 65 148.3 11.5 ug/L 147 Standard Zn 66 174.7 4.1 ug/L 211 Standard As 75 44.4 26.5 ug/L 47 Standard Se 82 16.0 26.7 ug/L 15 Standard Se-1 77 55.3 24.7 ug/L 65 Standard Rb 85 8.3 34.6 ug/L 15 Sta | Γ | Sc |
45 | 13624.5 | 1.1 | | | | ug/L | 14524 | Standard | | Cr 52 5625.0 2.7 ug/L 5481 Standard Cr 53 280.0 14.6 ug/L 268 Standard Mn 55 665.7 2.7 ug/L 670 Standard Co 59 130.7 8.8 ug/L 146 Standard Ni 60 221.3 2.5 ug/L 220 Standard Ni 60 221.3 2.5 ug/L 147 Standard Zn 66 174.7 4.1 ug/L 211 Standard Zn 66 174.7 4.1 ug/L 211 Standard Sa Zn 210599 Standard Zn 66 26.7 ug/L 240599 Standard Sa 25 ug/L 210599 Standard Zn 25 ug/L 210599 Standard Zn 25 ug/L 210599 Standard Zn 25 ug/L 210599 Standard Zn 25 ug/L 210599 Standard Zn 25 ug/L 210599 Standard Zn 25 ug/L 27 Standard Zn 27 Ug/L 27 Standard Zn 27 Ug/L 27 Standard Zn 27 Ug/L 27 Standard Zn 27 Ug/L 27 Standard Zn | | Ti | 47 | 351.0 | 6.7 | | | | ug/L | 365 | Standard | | Cr 53 280.0 14.6 ug/L 268 Standard Mn 55 665.7 2.7 ug/L 670 Standard Ni 60 221.3 2.5 ug/L 146 Standard Ni 60 221.3 2.5 ug/L 147 Standard Cu 65 148.3 11.5 ug/L 147 Standard Zn 66 174.7 4.1 ug/L 211 Standard As 75 -41.4 26.5 ug/L -47 Standard Se 82 16.0 26.7 ug/L 15 Standard Se 82 16.0 26.7 ug/L 15 Standard L Se1 77 55.3 24.7 ug/L 15 Standard L Rb 85 8.3 34.6 ug/L 17 Standard L Rb 103 10.0 100.0 | | V | 51 | 829.4 | 9.5 | | | | ug/L | 805 | Standard | | Mn 55 | | Cr | 52 | 5625.0 | 2.7 | | | | ug/L | 5481 | Standard | | Co 59 | | Cr | 53 | 280.0 | 14.6 | | | | ug/L | 268 | Standard | | Ni | | Mn | 55 | 665.7 | | | | | ug/L | 670 | Standard | | Cu 65 148.3 11.5 ug/L 147 Standard Zn 66 174.7 4.1 ug/L 211 Standard Se 72 209057.9 2.2 ug/L 210599 Standard As 75 -41.4 26.5 ug/L -47 Standard Se 82 16.0 26.7 ug/L 15 Standard Se-1 77 55.3 24.7 ug/L 65 Standard Pac 71 15.0 57.7 mg/L 27 Standard Rb 85 8.3 34.6 ug/L 17 Standard N 89 218509.6 1.7 ug/L 216672 Standard N 89 218509.6 1.7 ug/L 216672 Standard N 80 98 4.9 51.1 ug/L 18 Standard Mo 98 4.9 51.1 ug/L | | Co | 59 | | | | | | ug/L | 146 | Standard | | Zn 66 174.7 4.1 ug/L 211 Standard > Ge 72 209057.9 2.2 ug/L 210599 Standard As 75 -41.4 26.5 ug/L 47 Standard Se 82 16.0 26.7 ug/L 15 Standard Se-1 77 55.3 24.7 ug/L 65 Standard Post 85 8.3 34.6 ug/L 17 Standard Post 85 8.3 34.6 ug/L 17 Standard Post 85 8.3 34.6 ug/L 17 Standard Post 89 218509.6 1.7 ug/L 17 Standard No 98 4.9 51.1 ug/L 18 Standard Ag 107 60.0 14.2 ug/L 15 Standard Cd 111 8.3 69.5 mg/L 7 | | Ni | | | | | | | ug/L | | Standard | | Se | | Cu | | | | | | | | | Standard | | As 75 | | Zn | | | | | | | | | Standard | | Se 82 16.0 26.7 ug/L 15 Standard L Se-1 77 55.3 24.7 ug/L 65 Standard P Ga 71 15.0 57.7 mg/L 27 Standard Rb 85 8.3 34.6 ug/L 17 Standard L Rb 85 8.3 34.6 ug/L 216672 Standard L Rh 103 10.0 100.0 ug/L 18 Standard Mo 98 4.9 51.1 ug/L 11 Standard Mo 98 4.9 51.1 ug/L 11 Standard Cd 111 8.3 69.5 mg/L 7 Standard Cd 114 6.2 221.2 ug/L 4 Standard In 115 321279.0 1.2 ug/L 325255 Standard Sh 123 32.7 | > | Ge | | | | | | | | | | | Se-1 77 55.3 24.7 ug/L 65 Standard S Ga 71 15.0 57.7 mg/L 27 Standard R Rb 85 8.3 34.6 ug/L 17 Standard Y 89 218509.6 1.7 ug/L 216672 Standard L> Rh 103 10.0 100.0 ug/L 18 Standard Mo 98 4.9 51.1 ug/L 11 Standard Mo 98 4.9 51.1 ug/L 11 Standard Cd 111 8.3 69.5 mg/L 7 Standard Cd 114 6.2 221.2 ug/L 4 Standard N 115 321279.0 1.2 ug/L 322525 Standard Sh 118 326.7 14.2 ug/L 345 Standard L 8h 123 32.7 43.5 ug/L | | As | | | | | | | ug/L | | | | S Ga 71 15.0 57.7 mg/L 27 Standard L Rb 85 8.3 34.6 ug/L 17 Standard Y 89 218509.6 1.7 ug/L 216672 Standard No 98 4.9 51.1 ug/L 11 Standard Ag 107 60.0 14.2 ug/L 55 Standard Cd 111 8.3 69.5 mg/L 7 Standard Cd 114 6.2 221.2 ug/L 4 Standard In 115 321279.0 1.2 ug/L 32525 Standard Sn 118 326.7 14.2 ug/L 345 Standard Sb 123 32.7 43.5 ug/L 38 Standard Ba 135 12.0 38.2 ug/L 37 Standard > Tb 159 614157.2 0.9 ug/L 33 | | Se | | | | | | | | | | | Rb 85 8.3 34.6 ug/L 17 Standard Y 89 218509.6 1.7 ug/L 216672 Standard No 98 4.9 51.1 ug/L 11 Standard Ag 107 60.0 14.2 ug/L 55 Standard Cd 111 8.3 69.5 mg/L 7 Standard Cd 114 6.2 221.2 ug/L 4 Standard In 115 321279.0 1.2 ug/L 322525 Standard Sn 118 326.7 14.2 ug/L 345 Standard Sb 123 32.7 43.5 ug/L 8 Standard Ba 135 12.0 38.2 ug/L 37 Standard ▶ Tb 159 614157.2 0.9 ug/L 37 Standard ▶ Tb 159 614157.2 0.9 ug/L 3 | L | Se-1 | | | | | | | | | Standard | | Y 89 218509.6 1.7 ug/L 216672 Standard No 98 4.9 51.1 ug/L 11 Standard Mo 98 4.9 51.1 ug/L 11 Standard Ag 107 60.0 14.2 ug/L 55 Standard Cd 111 8.3 69.5 mg/L 7 Standard Cd 114 6.2 221.2 ug/L 4 Standard In 115 321279.0 1.2 ug/L 345 Standard Sn 118 326.7 14.2 ug/L 345 Standard Sb 123 32.7 43.5 ug/L 88 Standard Ba 135 12.0 38.2 ug/L 37 Standard L> Tb 159 614157.2 0.9 ug/L 631826 Standard L> Tb 159 614157.2 0.9 ug/L 3 </th <th>Γ></th> <th>Ga</th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th>mg/L</th> <th>27</th> <th>Standard</th> | Γ> | Ga | | | | | | | mg/L | 27 | Standard | | No | L | | | | | | | | | | | | Mo 98 4.9 51.1 ug/L 11 Standard Ag 107 60.0 14.2 ug/L 55 Standard Cd 111 8.3 69.5 mg/L 7 Standard Cd 114 6.2 221.2 ug/L 4 Standard In 115 321279.0 1.2 ug/L 32525 Standard Sn 118 326.7 14.2 ug/L 345 Standard Sb 123 32.7 43.5 ug/L 88 Standard L Ba 135 12.0 38.2 ug/L 12 Standard L> Tb 159 614157.2 0.9 ug/L 37 Standard L> Tb 159 614157.2 0.9 ug/L 631826 Standard TI 203 17.0 112.7 ug/L 3 Standard TI 203 17.0 | Γ | Υ | | | | | | | ug/L | | | | Ag 107 60.0 14.2 ug/L 55 Standard Cd 111 8.3 69.5 mg/L 7 Standard Cd 114 6.2 221.2 ug/L 4 Standard In 115 321279.0 1.2 ug/L 322525 Standard Sn 118 326.7 14.2 ug/L 345 Standard Sb 123 32.7 43.5 ug/L 88 Standard Ba 135 12.0 38.2 ug/L 12 Standard Ce 140 95.0 114.7 ug/L 37 Standard N 159 614157.2 0.9 ug/L 631826 Standard N 159 614157.2 0.9 ug/L 3 Standard N 17 203 17.0 112.7 ug/L 7 Standard N 17 203 17.0 112.7 | L> | | | | | | | | | | | | Cd 111 8.3 69.5 mg/L 7 Standard Cd 114 6.2 221.2 ug/L 4 Standard In 115 321279.0 1.2 ug/L 322525 Standard Sn 118 326.7 14.2 ug/L 345 Standard Sb 123 32.7 43.5 ug/L 88 Standard L Ba 135 12.0 38.2 ug/L 12 Standard Ce 140 95.0 114.7 ug/L 37 Standard N 159 614157.2 0.9 ug/L 631826 Standard N 159 614157.2 0.9 ug/L 3 Standard N 159 614157.2 0.9 ug/L 3 Standard N 17 203 17.0 112.7 ug/L 7 Standard N 11 203 17.0 | Γ | Мо | | | | | | | | | | | Cd 114 6.2 221.2 ug/L 4 Standard > In 115 321279.0 1.2 ug/L 322525 Standard Sn 118 326.7 14.2 ug/L 345 Standard Sb 123 32.7 43.5 ug/L 88 Standard Ba 135 12.0 38.2 ug/L 12 Standard Ce 140 95.0 114.7 ug/L 37 Standard > Tb 159 614157.2 0.9 ug/L 631826 Standard Ti 203 17.0 112.7 ug/L 3 Standard Ti 203 17.0 112.7 ug/L 7 Standard Pb 206 149.0 16.6 ug/L 159 Standard Pb 207 125.3 2.4 ug/L 120 Standard Pb 208 492.7 5.4 u | | | | | | | | | | | | | No. | | | | | | | | | | | | | Sn 118 326.7 14.2 ug/L 345 Standard Sb 123 32.7 43.5 ug/L 88 Standard L Ba 135 12.0 38.2 ug/L 12 Standard Ce 140 95.0 114.7 ug/L 37 Standard L> Tb 159 614157.2 0.9 ug/L 631826 Standard Ho 165 13.3 21.7 ug/L 3 Standard TI 203 17.0 112.7 ug/L 7 Standard TI 205 5.0 100.0 ug/L 7 Standard Pb 206 149.0 16.6 ug/L 159 Standard Pb 207 125.3 2.4 ug/L 503 Standard Pb 208 492.7 5.4 ug/L 503 Standard U 238 3.3 45.8 | | | | | | | | | | | | | Sb 123 32.7 43.5 ug/L 88 Standard L Ba 135 12.0 38.2 ug/L 12 Standard Ce 140 95.0 114.7 ug/L 37 Standard L> Tb 159 614157.2 0.9 ug/L 631826 Standard F Ho 165 13.3 21.7 ug/L 3 Standard TI 203 17.0 112.7 ug/L 7 Standard TI 205 5.0 100.0 ug/L 7 Standard Pb 206 149.0 16.6 ug/L 159 Standard Pb 207 125.3 2.4 ug/L 120 Standard Pb 208 492.7 5.4 ug/L 503 Standard U 238 3.3 45.8 ug/L 5 Standard | > | | | | | | | | - | | | | Ba 135 12.0 38.2 ug/L 12 Standard Ce 140 95.0 114.7 ug/L 37 Standard L> Tb 159 614157.2 0.9 ug/L 631826 Standard F Ho 165 13.3 21.7 ug/L 3 Standard I TI 203 17.0 112.7 ug/L 7 Standard I TI 205 5.0 100.0 ug/L 7 Standard I Pb 206 149.0 16.6 ug/L 159 Standard I Pb 207 125.3 2.4 ug/L 120 Standard I Pb 208 492.7 5.4 ug/L 503 Standard I U 238 3.3 45.8 ug/L 5 Standard | | | | | | | | | - | | | | Ce 140 95.0 114.7 ug/L 37 Standard Joseph Standard Standard Ug/L 631826 Standard Standard Ho 165 13.3 21.7 ug/L 3 Standard TI 203 17.0 112.7 ug/L 7 Standard Pb 206 149.0 16.6 ug/L 159 Standard Pb 207 125.3 2.4 ug/L 120 Standard Pb 208 492.7 5.4 ug/L 503 Standard U 238 3.3 45.8 ug/L 5 Standard | ļ | | | | | | | | - | | | | Tb | Ē | | | | | | | | | | | | Ho 165 13.3 21.7 ug/L 3 Standard TI 203 17.0 112.7 ug/L 7 Standard TI 205 5.0 100.0 ug/L 7 Standard Pb 206 149.0 16.6 ug/L 159 Standard Pb 207 125.3 2.4 ug/L 120 Standard Pb 208 492.7 5.4 ug/L 503 Standard U 238 3.3 45.8 ug/L 5 Standard Standard Standard U 238 3.3 45.8 ug/L 5 | ļ | | | | | | | | - | | | | Ti 203 17.0 112.7 ug/L 7 Standard Ti 205 5.0 100.0 ug/L 7 Standard Pb 206 149.0 16.6 ug/L 159 Standard Pb 207 125.3 2.4 ug/L 120 Standard Pb 208 492.7 5.4 ug/L 503 Standard U 238 3.3 45.8 ug/L 5 Standard | Ľ> | | | | | | | | - | | | | Ti 205 5.0 100.0 | ļ | | | | | | | | - | | | | Pb 206 149.0 16.6 ug/L 159 Standard Pb 207 125.3 2.4 ug/L 120 Standard Pb 208 492.7 5.4 ug/L 503 Standard U 238 3.3 45.8 ug/L 5 Standard | ļ | | | | | | | | - | | | | Pb 207 | ļ | | | | | | | | | | | | Pb 208 492.7 5.4 ug/L 503 Standard U 238 3.3 45.8 ug/L 5 Standard | ! | | | | | | | | | | | | U 238 3.3 45.8 ug/L 5 Standard | - | | | | | | | | - | | | | · · | - | | | | | | | | - | | | | L> BI 209 32/810.6 0.5 ug/L 333509 Standard | | | | | | | | | - | | | | | L> | Ві | 209 | 32/810.6 | 0.5 | | | | ug/L | 333509 | Standard | Sample ID: Standard 1 Report Date/Time: Tuesday, October 27, 2015 13:08:22 Page 1 Approved: October 28, 2015 | Γ | Na | 23 | 1.7 | 173.2 | mg/L 0 | Standard | |----|------|-----|---------|-------|------------|----------| | | Mg | 24 | 16.7 | 34.6 | mg/L 10 | Standard | | | K | 39 | 23.3 | 44.6 | mg/L 32 | Standard | | | Ca | 43 | 61.7 | 20.4 | mg/L 85 | Standard | | ĺ | Fe | 54 | 67.5 | 60.3 | mg/L 82 | Standard | | ĺ | Fe | 57 | 208.3 | 21.0 | mg/L 217 | Standard | | Ĺ> | Sc-1 | 45 | 13624.5 | 1.1 | mg/L 14524 | Standard | | | CI | 35 | 55593.1 | 0.4 | ug/L 53193 | Standard | | | Kr | 83 | 4.3 | 13.3 | ug/L 3 | Standard | | | Br | 81 | 393.3 | 10.6 | ug/L 327 | Standard | | | Р | 31 | 14053.2 | 0.5 |
ug/L 13329 | Standard | | | S | 34 | 3315.4 | 7.4 | ug/L 3234 | Standard | | | Sr | 88 | 90.0 | 5.6 | ug/L 87 | Standard | | | С | 12 | 163.3 | 37.4 | mg/L 103 | Standard | | | N | 14 | 0.0 | | mg/L 0 | Standard | | | Hg | 202 | 6.7 | 173.2 | mg/L 3 | Standard | | | Dy | 164 | 12.9 | 121.3 | mg/L 10 | Standard | | | Ho-1 | 165 | 13.3 | 21.7 | mg/L 3 | Standard | | | Er | 166 | 10.0 | 100.0 | mg/L 7 | Standard | | | 1 | 127 | 3795.5 | 3.3 | mg/L 3612 | Standard | | | | | | | | | | | Analyte | Mass | QC Std % Recovery | Int Std % Recovery | Spike % Recovery | |----|---------|------|-------------------|--------------------|------------------| | Γ> | Li | 6 | | | | | | Ве | 9 | | | | | L | Al | 27 | | | | | Γ | Sc | 45 | | | | | | Ti | 47 | | | | | | V | 51 | | | | | | Cr | 52 | | | | | | Cr | 53 | | | | | | Mn | 55 | | | | | | Co | 59 | | | | | | Ni | 60 | | | | | | Cu | 65 | | | | | | Zn | 66 | | | | | > | Ge | 72 | | | | | | As | 75 | | | | | | Se | 82 | | | | | L | Se-1 | 77 | | | | | [> | Ga | 71 | | | | Sample ID: Standard 1 Report Date/Time: Tuesday, October 27, 2015 13:08:22 Page 2 Approved: October 28, 2015 ``` Rb 85 Υ 89 | > Rh 103 Мо 98 107 Ag Cd 111 Cd 114 | > In 115 Sn 118 123 Sb Ва 135 140 Ce Tb 159 Но 165 ΤI 203 ΤI 205 Pb 206 Pb 207 208 Pb U 238 209 L> Bi Na 23 Mg 24 39 Κ Ca 43 Fe 54 Fe 57 45 |> Sc-1 CI 35 \operatorname{Kr} 83 Br 81 Ρ 31 S 34 Sr 88 С 12 Ν 14 202 Hg Dy 164 Ho-1 165 166 Er 127 ``` **QC Out of Limits** Measurement Type Analyte Mass Out of Limits Message Sample ID: Standard 1 Report Date/Time: Tuesday, October 27, 2015 13:08:22 Page 3 Approved: October 28, 2015 Sample ID: Standard 2 Sample Date/Time: Tuesday, October 27, 2015 13:09:17 Number of Replicates: 3 Autosampler Position: 2 Sample Description: Method File: C:\NexIONData\Method\6020a.mth Aliquot Volume (mL): Diluted to Volume (mL): User Name: BKT Nexion300X Cumulative Autodilution Factor: 1 Nexion-ICP 200.8\6020 #### **Concentration Results** | | | | | | Concentration | on Resi | นแร | | | | |----|--------|--------|-----------|-------|---------------|---------|-----|-------|---------------|----------| | IS | Analyt | e Mass | Intensity | RSD | Conc. | SD | RSD | Units | Blank Intens. | Mode | | Γ> | Li | 6 | 26039.0 | 4.3 | | | | ug/L | 26270 | Standard | | | Be | 9 | 43.3 | 29.0 | | | | ug/L | 2 | Standard | | L | ΑI | 27 | 3915.5 | 2.9 | | | | ug/L | 403 | Standard | | Γ | Sc | 45 | 14011.5 | 1.2 | | | | ug/L | 14524 | Standard | | | Ti | 47 | 346.0 | 5.4 | | | | ug/L | 365 | Standard | | | V | 51 | 1054.6 | 0.4 | | | | ug/L | 805 | Standard | | | Cr | 52 | 5718.4 | 1.3 | | | | ug/L | 5481 | Standard | | | Cr | 53 | 305.0 | 18.3 | | | | ug/L | 268 | Standard | | | Mn | 55 | 1317.4 | 3.4 | | | | ug/L | 670 | Standard | | | Co | 59 | 298.7 | 3.2 | | | | ug/L | 146 | Standard | | | Ni | 60 | 307.7 | 3.8 | | | | ug/L | 220 | Standard | | | Cu | 65 | 249.0 | 9.8 | | | | ug/L | 147 | Standard | | | Zn | 66 | 436.0 | 4.9 | | | | ug/L | 211 | Standard | | > | Ge | 72 | 208942.0 | 1.3 | | | | ug/L | 210599 | Standard | | | As | 75 | -19.7 | 175.3 | | | | ug/L | -47 | Standard | | | Se | 82 | 13.3 | 30.6 | | | | ug/L | 15 | Standard | | L | Se-1 | 77 | 49.0 | 8.9 | | | | ug/L | 65 | Standard | | Γ> | Ga | 71 | 30.0 | 50.0 | | | | mg/L | 27 | Standard | | L | Rb | 85 | 25.0 | 40.0 | | | | ug/L | 17 | Standard | | Γ | Υ | 89 | 213083.3 | 2.1 | | | | ug/L | 216672 | Standard | | L> | Rh | 103 | 10.0 | 50.0 | | | | ug/L | 18 | Standard | | Γ | Mo | 98 | 139.3 | 7.3 | | | | ug/L | 11 | Standard | | | Ag | 107 | 279.7 | 6.0 | | | | ug/L | 55 | Standard | | | Cd | 111 | 77.0 | 14.5 | | | | mg/L | 7 | Standard | | | Cd | 114 | 149.0 | 22.7 | | | | ug/L | 4 | Standard | | > | In | 115 | 314542.7 | 0.5 | | | | ug/L | 322525 | Standard | | | Sn | 118 | 783.4 | 9.6 | | | | ug/L | 345 | Standard | | | Sb | 123 | 223.4 | 8.0 | | | | ug/L | 88 | Standard | | L | Ва | 135 | 115.3 | 7.5 | | | | ug/L | 12 | Standard | | Γ | Ce | 140 | 40.0 | 12.5 | | | | ug/L | 37 | Standard | | L> | Tb | 159 | 608040.4 | 2.5 | | | | ug/L | 631826 | Standard | | Γ | Но | 165 | 11.7 | 24.7 | | | | ug/L | 3 | Standard | | | TI | 203 | 332.7 | 3.1 | | | | ug/L | 7 | Standard | | | TI | 205 | 201.7 | 28.9 | | | | ug/L | 7 | Standard | | | Pb | 206 | 424.7 | 5.3 | | | | ug/L | 159 | Standard | | | Pb | 207 | 376.0 | 8.0 | | | | ug/L | 120 | Standard | | | Pb | 208 | 1455.7 | 4.2 | | | | ug/L | 503 | Standard | | | U | 238 | 282.3 | 3.7 | | | | ug/L | 5 | Standard | | L> | Bi | 209 | 326115.6 | 1.8 | | | | ug/L | 333509 | Standard | | | | | | | | | | | | | Sample ID: Standard 2 Report Date/Time: Tuesday, October 27, 2015 13:11:34 Page 1 Approved: October 28, 2015 | Γ | Na | 23 | 0.0 | | mg/L 0 | Standard | |----|------|-----|---------|-------|------------|----------| | | Mg | 24 | 18.3 | 41.7 | mg/L 10 | Standard | | | K | 39 | 16.7 | 45.8 | mg/L 32 | Standard | | | Ca | 43 | 86.7 | 16.7 | mg/L 85 | Standard | | ĺ | Fe | 54 | 54.4 | 18.0 | mg/L 82 | Standard | | ĺ | Fe | 57 | 191.7 | 30.2 | mg/L 217 | Standard | | Ĺ> | Sc-1 | 45 | 14011.5 | 1.2 | mg/L 14524 | Standard | | | CI | 35 | 54631.0 | 1.8 | ug/L 53193 | Standard | | | Kr | 83 | 4.7 | 65.5 | ug/L 3 | Standard | | | Br | 81 | 293.3 | 31.7 | ug/L 327 | Standard | | | Р | 31 | 13597.8 | 4.0 | ug/L 13329 | Standard | | | S | 34 | 3175.3 | 1.1 | ug/L 3234 | Standard | | | Sr | 88 | 83.3 | 38.1 | ug/L 87 | Standard | | | С | 12 | 136.7 | 22.4 | mg/L 103 | Standard | | | N | 14 | 0.0 | | mg/L 0 | Standard | | | Hg | 202 | 3.3 | 173.2 | mg/L 3 | Standard | | | Dy | 164 | -0.5 | 100.0 | mg/L 10 | Standard | | | Ho-1 | 165 | 11.7 | 24.7 | mg/L 3 | Standard | | | Er | 166 | 10.0 | 100.0 | mg/L 7 | Standard | | | 1 | 127 | 3777.1 | 5.6 | mg/L 3612 | Standard | | | | | | | | | | Analyte | Mass | QC Std % Recovery | Int Std % Recovery | Spike % Recovery | |---------|------|-------------------|--------------------|------------------| | 「⊳ Li | 6 | | | | | Be | 9 | | | | | L AI | 27 | | | | | 「 Sc | 45 | | | | | Ti | 47 | | | | | V | 51 | | | | | Cr | 52 | | | | | Cr | 53 | | | | | Mn | 55 | | | | | Co | 59 | | | | | Ni | 60 | | | | | Cu | 65 | | | | | Zn | 66 | | | | | > Ge | 72 | | | | | As | 75 | | | | | Se | 82 | | | | | ∟ Se-1 | 77 | | | | | 「⊳ Ga | 71 | | | | Sample ID: Standard 2 Report Date/Time: Tuesday, October 27, 2015 13:11:34 Page 2 Approved: October 28, 2015 ``` Rb 85 Υ 89 | > Rh 103 Мо 98 107 Ag Cd 111 Cd 114 | > In 115 Sn 118 123 Sb Ва 135 140 Ce Tb 159 Но 165 ΤI 203 ΤI 205 Pb 206 Pb 207 208 Pb U 238 209 L> Bi Na 23 Mg 24 39 Κ Ca 43 Fe 54 Fe 57 45 |> Sc-1 CI 35 \operatorname{Kr} 83 Br 81 Ρ 31 S 34 Sr 88 С 12 Ν 14 202 Hg Dy 164 Ho-1 165 166 Er 127 ``` ### **QC Out of Limits** Measurement Type Analyte Mass Out of Limits Message Sample ID: Standard 2 Report Date/Time: Tuesday, October 27, 2015 13:11:34 Page 3 Sample ID: Standard 3 Sample Date/Time: Tuesday, October 27, 2015 13:12:28 Number of Replicates: 3 Autosampler Position: 3 Sample Description: Method File: C:\NexIONData\Method\6020a.mth Aliquot Volume (mL): Diluted to Volume (mL): User Name: BKT Nexion300X Cumulative Autodilution Factor: 1 Nexion-ICP 200.8\6020 | 0 | ncon | tration | Results | | |----|------|----------|---------|--| | Lα | ncen | itration | Results | | | | | | | | Concentia | | uito | | | | |----|--------|--------|-----------|------|-----------|--------|------|-------|---------------|----------| | IS | Analyt | e Mass | Intensity | RSD | Conc. | SD | RSD | Units | Blank Intens. | Mode | | Γ> | Li | 6 | 25990.7 | 5.9 | | | | ug/L | 26270 | Standard | | | Be | 9 | 24955.5 | 2.0 | 50.0000 | 3.868 | 7.7 | ug/L | 2 | Standard | | L | Αl | 27 | 2735287.7 | 5.6 | 50.0000 | 3.802 | 7.6 | ug/L | 403 | Standard | | Γ | Sc | 45 | 14265.1 | 8.7 | | | | ug/L | 14524 | Standard | | | Ti | 47 | 15761.9 | 1.5 | 100.0000 | 9.608 | 9.6 | ug/L | 365 | Standard | | | ٧ | 51 | 170096.7 | 2.1 | 50.0000 | 4.780 | 9.6 | ug/L | 805 | Standard | | | Cr | 52 | 215526.7 | 1.8 | 50.0000 | 4.172 | 8.3 | ug/L | 5481 | Standard | | | Cr | 53 | 26458.1 | 4.2 | 50.0000 | 5.543 | 11.1 | ug/L | 268 | Standard | | | Mn | 55 | 163896.7 | 2.4 | 50.0000 | 5.152 | 10.3 | ug/L | 670 | Standard | | | Co | 59 | 155965.9 | 3.3 | 50.0000 | 5.100 | 10.2 | ug/L | 146 | Standard | | | Ni | 60 | 55911.3 | 1.5 | 50.0000 | 4.334 | 8.7 | ug/L | 220 | Standard | | | Cu | 65 | 54541.3 | 1.6 | 50.0000 | 4.444 | 8.9 | ug/L | 147 | Standard | | | Zn | 66 | 32446.7 | 3.2 | 50.0000 | 5.217 | 10.4 | ug/L | 211 | Standard | | > | Ge | 72 | 211783.9 | 7.9 | | | | ug/L | 210599 | Standard | | | As | 75 | 34485.7 | 2.3 | 50.0000 | 4.598 | 9.2 | ug/L | -47 | Standard | | | Se | 82 | 2900.6 | 1.8 | 50.0000 | 4.336 | 8.7 | ug/L | 15 | Standard | | L | Se-1 | 77 | 1941.5 | 4.0 | 50.0000 | 5.071 | 10.1 | ug/L | 65 | Standard | | Γ> | Ga | 71 | 21.7 | 35.3 | | | | mg/L | 27 | Standard | | L | Rb | 85 | 485.0 | 9.0 | | | | ug/L | 17 | Standard | | Γ | Υ | 89 | 213957.3 | 8.6 | | | | ug/L | 216672 | Standard | | L> | Rh | 103 | 26.7 | 39.0 | | | | ug/L | 18 | Standard | | Γ | Мо | 98 | 134323.3 | 2.4 | 100.0000 | 10.321 | 10.3 | ug/L | 11 | Standard | | | Ag | 107 | 226397.1 | 1.4 | 50.0000 | 4.631 | 9.3 | ug/L | 55 | Standard | | | Cd | 111 | 67817.3 | 1.3 | 50.0000 | 4.724 | 9.4 | mg/L | 7 | Standard | | | Cd | 114 | 166097.6 | 1.4 | 50.0000 | 4.762 | 9.5 | ug/L | 4 | Standard | | > | In | 115 | 319055.6 | 8.3 | | | | ug/L | 322525 | Standard | | | Sn | 118 | 192664.5 | 2.8 | 50.0000 | 5.476 | 11.0 | ug/L | 345 | Standard | | | Sb | 123 | 182471.9 | 1.8 | 50.0000 | 4.959 | 9.9 | ug/L | 88 | Standard | | L | Ва | 135 | 77397.9 | 1.9 | 50.0000 | 4.965 | 9.9 | ug/L | 12 | Standard | | Γ | Ce | 140 | 170.0 | 23.0 | | | | ug/L | 37 | Standard | | L> | Tb | 159 | 617700.8 | 7.9 | | | | ug/L | 631826 | Standard | | Γ | Но | 165 | 10.0 | 50.0 | | | | ug/L | 3 | Standard | | | TI | 203 | 309416.0 | 1.1 | 50.0000 | 4.039 | 8.1 | ug/L | 7 | Standard | | | TI | 205 | 206754.8 | 2.0 | 50.0000 | 4.291 | 8.6 | ug/L | 7 | Standard |
 | Pb | 206 | 190040.8 | 2.4 | 50.0000 | 4.723 | 9.4 | ug/L | 159 | Standard | | | Pb | 207 | 172462.9 | 2.0 | 50.0000 | 4.669 | 9.3 | ug/L | 120 | Standard | | | Pb | 208 | 683417.1 | 1.6 | 50.0000 | 4.352 | 8.7 | ug/L | 503 | Standard | | | U | 238 | 251720.5 | 1.7 | 50.0000 | 4.329 | 8.7 | ug/L | 5 | Standard | | L> | Bi | 209 | 328079.7 | 7.5 | | | | ug/L | 333509 | Standard | | | | | | | | | | | | | Sample ID: Standard 3 Report Date/Time: Tuesday, October 27, 2015 13:14:45 Page 1 Approved: October 28, 2015 | Na | 23 | 0.0 | | | | | mg/L | 0 | Standard | |------|---|--|---|--|--|--
---|--|---| | Mg | 24 | 2083.5 | 1.0 | 5.0000 | 0.381 | 7.6 | mg/L | 10 | Standard | | K | 39 | 386.7 | 14.2 | 5.0000 | 0.943 | 18.9 | mg/L | 32 | Standard | | Ca | 43 | 115.0 | 19.0 | 5.0000 | 4.789 | 95.8 | mg/L | 85 | Standard | | Fe | 54 | 2070.1 | 2.0 | 5.0000 | 0.473 | 9.5 | mg/L | 82 | Standard | | Fe | 57 | 700.0 | 4.5 | 5.0000 | 0.525 | 10.5 | mg/L | 217 | Standard | | Sc-1 | 45 | 14265.1 | 8.7 | | | | mg/L | 14524 | Standard | | CI | 35 | 55070.6 | 0.5 | | | | ug/L | 53193 | Standard | | Kr | 83 | 4.3 | 26.6 | | | | ug/L | 3 | Standard | | Br | 81 | 380.0 | 16.0 | | | | ug/L | 327 | Standard | | Р | 31 | 14768.9 | 3.6 | | | | ug/L | 13329 | Standard | | S | 34 | 3678.8 | 4.2 | | | | ug/L | 3234 | Standard | | Sr | 88 | 120.0 | 8.3 | | | | ug/L | 87 | Standard | | С | 12 | 110.0 | | | | | mg/L | 103 | Standard | | N | 14 | 0.0 | | | | | mg/L | 0 | Standard | | Hg | 202 | 3.3 | 173.2 | | | | mg/L | 3 | Standard | | Dy | 164 | 5.9 | 93.7 | | | | mg/L | 10 | Standard | | Ho-1 | 165 | 10.0 | 50.0 | | | | mg/L | 3 | Standard | | Er | 166 | 16.7 | 34.6 | | | | mg/L | 7 | Standard | | I | 127 | 2386.9 | 3.3 | | | | mg/L | 3612 | Standard | | | Mg
K
Ca
Fe
Sc-1
Cl
Kr
Br
P
S C
C
N
Hg
Dy
Ho-1 | Mg 24 K 39 Ca 43 Fe 54 Fe 57 Sc-1 45 Cl 35 Kr 83 Br 81 P 31 S 34 Sr 88 C 12 N 14 Hg 202 Dy 164 Ho-1 165 Er 166 | Mg 24 2083.5 K 39 386.7 Ca 43 115.0 Fe 54 2070.1 Fe 57 700.0 Sc-1 45 14265.1 Cl 35 55070.6 Kr 83 4.3 Br 81 380.0 P 31 14768.9 S 34 3678.8 Sr 88 120.0 C 12 110.0 N 14 0.0 Hg 202 3.3 Dy 164 5.9 Ho-1 165 10.0 Er 166 16.7 | Mg 24 2083.5 1.0 K 39 386.7 14.2 Ca 43 115.0 19.0 Fe 54 2070.1 2.0 Fe 57 700.0 4.5 Sc-1 45 14265.1 8.7 CI 35 55070.6 0.5 Kr 83 4.3 26.6 Br 81 380.0 16.0 P 31 14768.9 3.6 S 34 3678.8 4.2 Sr 88 120.0 8.3 C 12 110.0 N N 14 0.0 H Hg 202 3.3 173.2 Dy 164 5.9 93.7 Ho-1 165 10.0 50.0 Er 166 16.7 34.6 | Mg 24 2083.5 1.0 5.0000 K 39 386.7 14.2 5.0000 Ca 43 115.0 19.0 5.0000 Fe 54 2070.1 2.0 5.0000 Fe 57 700.0 4.5 5.0000 Sc-1 45 14265.1 8.7 7 CI 35 55070.6 0.5 K Kr 83 4.3 26.6 B Br 81 380.0 16.0 P P 31 14768.9 3.6 S S 34 3678.8 4.2 S Sr 88 120.0 8.3 C C 12 110.0 N 14 0.0 Hg 202 3.3 173.2 173.2 173.2 Dy 164 5.9 93.7 16.0 173.2 173.2 173.2 173.2 173.2 173.2 | Mg 24 2083.5 1.0 5.0000 0.381 K 39 386.7 14.2 5.0000 0.943 Ca 43 115.0 19.0 5.0000 4.789 Fe 54 2070.1 2.0 5.0000 0.473 Fe 57 700.0 4.5 5.0000 0.525 Sc-1 45 14265.1 8.7 CI 35 55070.6 0.5 Kr 83 4.3 26.6 26.6 3.6 3.6 3.6 3.6 3.6 3.6 3.3 3.6 3.3 <th>Mg 24 2083.5 1.0 5.0000 0.381 7.6 K 39 386.7 14.2 5.0000 0.943 18.9 Ca 43 115.0 19.0 5.0000 4.789 95.8 Fe 54 2070.1 2.0 5.0000 0.473 9.5 Fe 57 700.0 4.5 5.0000 0.473 9.5 Sc-1 45 14265.1 8.7 7.000 0.525 10.5 Sc-1 45 14265.1 8.7 8.7 8.3 4.3 26.6 Br 81 380.0 16.0 9 9.3 <th< th=""><th>Mg 24 2083.5 1.0 5.0000 0.381 7.6 mg/L K 39 386.7 14.2 5.0000 0.943 18.9 mg/L Ca 43 115.0 19.0 5.0000 4.789 95.8 mg/L Fe 54 2070.1 2.0 5.0000 0.473 9.5 mg/L Fe 57 700.0 4.5 5.0000 0.525 10.5 mg/L Sc-1 45 14265.1 8.7 mg/L mg/L mg/L mg/L Kr 83 4.3 26.6 ug/L ug/L ug/L ug/L Br 81 380.0 16.0 ug/L ug/L ug/L ug/L Sr 34 3678.8 4.2 ug/L ug/L mg/L C 12 110.0 mg/L mg/L mg/L N 14 0.0 mg/L mg/L mg/L Hg</th><th>Mg 24 2083.5 1.0 5.0000 0.381 7.6 mg/L 10 K 39 386.7 14.2 5.0000 0.943 18.9 mg/L 32 Ca 43 115.0 19.0 5.0000 4.789 95.8 mg/L 85 Fe 54 2070.1 2.0 5.0000 0.473 9.5 mg/L 82 Fe 57 700.0 4.5 5.0000 0.525 10.5 mg/L 217 Sc-1 45 14265.1 8.7 mg/L 14524 217 Sc-1 45 14265.1 8.7 mg/L 14524 217 217 217 217 218 217 217 218 217 217 217 217 217 217 217 217 217 217 217 217 217 217 217 217 217 218 218 218 218 218 218</th></th<></th> | Mg 24 2083.5 1.0 5.0000 0.381 7.6 K 39 386.7 14.2 5.0000 0.943 18.9 Ca 43 115.0 19.0 5.0000 4.789 95.8 Fe 54 2070.1 2.0 5.0000 0.473 9.5 Fe 57 700.0 4.5 5.0000 0.473 9.5 Sc-1 45 14265.1 8.7 7.000 0.525 10.5 Sc-1 45 14265.1 8.7 8.7 8.3 4.3 26.6 Br 81 380.0 16.0 9 9.3 <th< th=""><th>Mg 24 2083.5 1.0 5.0000 0.381 7.6 mg/L K 39 386.7 14.2 5.0000 0.943 18.9 mg/L Ca 43 115.0 19.0 5.0000 4.789 95.8 mg/L Fe 54 2070.1 2.0 5.0000 0.473 9.5 mg/L Fe 57 700.0 4.5 5.0000 0.525
10.5 mg/L Sc-1 45 14265.1 8.7 mg/L mg/L mg/L mg/L Kr 83 4.3 26.6 ug/L ug/L ug/L ug/L Br 81 380.0 16.0 ug/L ug/L ug/L ug/L Sr 34 3678.8 4.2 ug/L ug/L mg/L C 12 110.0 mg/L mg/L mg/L N 14 0.0 mg/L mg/L mg/L Hg</th><th>Mg 24 2083.5 1.0 5.0000 0.381 7.6 mg/L 10 K 39 386.7 14.2 5.0000 0.943 18.9 mg/L 32 Ca 43 115.0 19.0 5.0000 4.789 95.8 mg/L 85 Fe 54 2070.1 2.0 5.0000 0.473 9.5 mg/L 82 Fe 57 700.0 4.5 5.0000 0.525 10.5 mg/L 217 Sc-1 45 14265.1 8.7 mg/L 14524 217 Sc-1 45 14265.1 8.7 mg/L 14524 217 217 217 217 218 217 217 218 217 217 217 217 217 217 217 217 217 217 217 217 217 217 217 217 217 218 218 218 218 218 218</th></th<> | Mg 24 2083.5 1.0 5.0000 0.381 7.6 mg/L K 39 386.7 14.2 5.0000 0.943 18.9 mg/L Ca 43 115.0 19.0 5.0000 4.789 95.8 mg/L Fe 54 2070.1 2.0 5.0000 0.473 9.5 mg/L Fe 57 700.0 4.5 5.0000 0.525 10.5 mg/L Sc-1 45 14265.1 8.7 mg/L mg/L mg/L mg/L Kr 83 4.3 26.6 ug/L ug/L ug/L ug/L Br 81 380.0 16.0 ug/L ug/L ug/L ug/L Sr 34 3678.8 4.2 ug/L ug/L mg/L C 12 110.0 mg/L mg/L mg/L N 14 0.0 mg/L mg/L mg/L Hg | Mg 24 2083.5 1.0 5.0000 0.381 7.6 mg/L 10 K 39 386.7 14.2 5.0000 0.943 18.9 mg/L 32 Ca 43 115.0 19.0 5.0000 4.789 95.8 mg/L 85 Fe 54 2070.1 2.0 5.0000 0.473 9.5 mg/L 82 Fe 57 700.0 4.5 5.0000 0.525 10.5 mg/L 217 Sc-1 45 14265.1 8.7 mg/L 14524 217 Sc-1 45 14265.1 8.7 mg/L 14524 217 217 217 217 218 217 217 218 217 217 217 217 217 217 217 217 217 217 217 217 217 217 217 217 217 218 218 218 218 218 218 | | | Analyte | Mass | QC Std % Recovery | Int Std % Recovery | Spike % Recovery | |----|---------|------|-------------------|--------------------|------------------| | Γ> | Li | 6 | | | | | | Ве | 9 | | | | | L | Al | 27 | | | | | Γ | Sc | 45 | | | | | | Ti | 47 | | | | | | V | 51 | | | | | | Cr | 52 | | | | | | Cr | 53 | | | | | | Mn | 55 | | | | | | Co | 59 | | | | | | Ni | 60 | | | | | | Cu | 65 | | | | | | Zn | 66 | | | | | > | Ge | 72 | | | | | | As | 75 | | | | | | Se | 82 | | | | | L | Se-1 | 77 | | | | | [> | Ga | 71 | | | | Sample ID: Standard 3 Report Date/Time: Tuesday, October 27, 2015 13:14:45 Page 2 Approved: October 28, 2015 ``` Rb 85 Υ 89 | > Rh 103 Мо 98 107 Ag Cd 111 Cd 114 | > In 115 Sn 118 123 Sb Ва 135 140 Ce Tb 159 Но 165 ΤI 203 ΤI 205 Pb 206 Pb 207 208 Pb U 238 209 L> Bi Na 23 Mg 24 39 Κ Ca 43 Fe 54 Fe 57 45 |> Sc-1 CI 35 \operatorname{Kr} 83 Br 81 Ρ 31 S 34 Sr 88 С 12 Ν 14 202 Hg Dy 164 Ho-1 165 166 Er 127 ``` ### **QC Out of Limits** Measurement Type Analyte Mass Out of Limits Message Sample ID: Standard 3 Report Date/Time: Tuesday, October 27, 2015 13:14:45 Page 3 Sample ID: Standard 4 Sample Date/Time: Tuesday, October 27, 2015 13:15:40 Number of Replicates: 3 Autosampler Position: 4 Sample Description: Method File: C:\NexIONData\Method\6020a.mth Aliquot Volume (mL): Diluted to Volume (mL): User Name: BKT Nexion300X Cumulative Autodilution Factor: 1 Nexion-ICP 200.8\6020 | 0 | ncon | tration | Results | | |----|------|----------|---------|--| | Lα | ncen | itration | Results | | | | Jone Intation Results | | | | | | | | | | |----|-----------------------|--------|-----------|-------|----------|-------|-----|-------|---------------|----------| | IS | Analyt | e Mass | Intensity | RSD | Conc. | SD | RSD | Units | Blank Intens. | Mode | | Γ> | Li | 6 | 25476.4 | 3.2 | | | | ug/L | 26270 | Standard | | | Ве | 9 | 51574.3 | 1.2 | 102.5262 | 2.242 | 2.2 | ug/L | 2 | Standard | | L | ΑI | 27 | 5503316.6 | 3.3 | 101.2095 | 2.077 | 2.1 | ug/L | 403 | Standard | | Γ | Sc | 45 | 14380.2 | 2.7 | | | | ug/L | 14524 | Standard | | | Ti | 47 | 32069.6 | 8.0 | 203.9564 | 7.481 | 3.7 | ug/L | 365 | Standard | | | ٧ | 51 | 345352.5 | 1.9 | 101.4613 | 4.580 | 4.5 | ug/L | 805 | Standard | | | Cr | 52 | 428584.2 | 2.2 | 100.9893 | 4.889 | 4.8 | ug/L | 5481 | Standard | | | Cr | 53 | 53576.2 | 0.3 | 101.4213 | 2.954 | 2.9 | ug/L | 268 | Standard | | | Mn | 55 | 331025.3 | 1.2 | 101.2242 | 4.190 | 4.1 | ug/L | 670 | Standard | | | Co | 59 | 314114.3 | 0.1 | 100.9194 | 3.046 | 3.0 | ug/L | 146 | Standard | | | Ni | 60 | 112444.5 | 1.7 | 100.9914 | 4.568 | 4.5 | ug/L | 220 | Standard | | | Cu | 65 | 110097.2 | 8.0 | 101.1387 | 3.647 | 3.6 | ug/L | 147 | Standard | | | Zn | 66 | 65314.2 | 1.7 | 101.2022 | 4.602 | 4.5 | ug/L | 211 | Standard | | > | Ge | 72 | 208497.9 | 2.9 | | | | ug/L | 210599 | Standard | | | As | 75 | 70363.4 | 0.5 | 101.5287 | 3.044 | 3.0 | ug/L | -47 | Standard | | | Se | 82 | 5987.0 | 0.9 | 102.2627 | 3.860 | 3.8 | ug/L | 15 | Standard | | L | Se-1 | 77 | 3900.8 | 1.0 | 101.4162 | 1.911 | 1.9 | ug/L | 65 | Standard | | Γ> | Ga | 71 | 26.7 | 60.3 | | | | mg/L | 27 | Standard | | L | Rb | 85 | 958.4 | 12.2 | | | | ug/L | 17 | Standard | | Γ | Υ | 89 | 212963.9 | 3.2 | | | | ug/L | 216672 | Standard | | L> | Rh | 103 | 40.0 | 33.1 | | | | ug/L | 18 | Standard | | Γ | Мо | 98 | 271316.2 | 0.5 | 204.2422 | 3.632 | 1.8 | ug/L | 11 | Standard | | | Ag | 107 | 451950.5 | 1.5 | 101.5757 | 3.120 | 3.1 | ug/L | 55 | Standard | | | Cd | 111 | 135592.2 | 1.4 | 101.6441 | 2.964 | 2.9 | mg/L | 7 | Standard | | | Cd | 114 | 331031.0 | 1.1 | 101.4743 | 2.605 | 2.6 | ug/L | 4 | Standard | | > | In | 115 | 307127.6 | 1.6 | | | | ug/L | 322525 | Standard | | | Sn | 118 | 383300.3 | 1.7 | 101.4348 | 3.068 | 3.0 | ug/L | 345 | Standard | | | Sb | 123 | 365509.0 | 1.5 | 101.7264 | 2.991 | 2.9 | ug/L | 88 | Standard | | Ĺ | Ва | 135 | 154856.4 | 1.3 | 101.6752 | 2.888 | 2.8 | ug/L | 12 | Standard | | ļ | Ce | 140 | 116.7 | 26.2 | | | | ug/L | 37 | Standard | | _> | Tb | 159 | 591995.7 | 2.3 | | | | ug/L | 631826 | Standard | | ļ | Но | 165 | 1.7 | 173.2 | | | | ug/L | 3 | Standard | | ļ | TI | 203 | 620136.3 | 1.1 | 102.1719 | 3.393 | 3.3 | ug/L | 7 | Standard | | ļ | TI | 205 | 420757.5 | 0.9 | 102.9181 | 3.008 | 2.9 | ug/L | 7 | Standard | | ļ | Pb | 206 | 378346.6 | 0.4 | 101.8290 | 2.549 | 2.5 | ug/L | 159 | Standard | | ļ | Pb | 207 | 342805.8 | 0.8 | 101.7529 | 2.982 | 2.9 | ug/L | 120 | Standard | | ļ | Pb | 208 | 1381344.3 | 0.0 | 102.6012 | 2.630 | 2.6 | ug/L | 503 | Standard | | ļ | U | 238 | 512188.3 | 0.9 | 102.9137 | 3.307 | 3.2 | ug/L | 5 | Standard | | L> | Bi | 209 | 313706.0 | 2.5 | | | | ug/L | 333509 | Standard | Sample ID: Standard 4 Report Date/Time: Tuesday, October 27, 2015 13:17:57 Page 1 Approved: October 28, 2015 | _ | | | | | | | | | _ | | |----|------|-----|---------|-------|---------|-------|------|------|-------|----------| | | Na | 23 | 0.0 | | | | | mg/L | 0 | Standard | | | Mg | 24 | 4123.9 | 1.8 | 9.9097 | 0.458 | 4.6 | mg/L | 10 | Standard | | | K | 39 | 853.4 | 9.0 | 10.5349 | 0.861 | 8.2 | mg/L | 32 | Standard | | | Ca | 43 | 155.0 | 3.2 | 10.8296 | 1.496 | 13.8 | mg/L | 85 | Standard | | | Fe | 54 | 4040.4 | 4.9 | 9.8809 | 0.725 | 7.3 | mg/L | 82 | Standard | | | Fe | 57 | 1263.4 | 6.9 | 10.2027 | 0.607 | 5.9 | mg/L | 217 | Standard | | L> | Sc-1 | 45 | 14380.2 | 2.7 | | | | mg/L | 14524 | Standard | | | CI | 35 | 54899.3 | 1.1 | | | | ug/L | 53193 | Standard | | | Kr | 83 | 6.0 | 28.9 | | | | ug/L | 3 | Standard | | | Br | 81 | 306.7 | 19.7 | | | | ug/L | 327 | Standard | | | Р | 31 | 15981.8 | 2.5 | | | | ug/L | 13329 | Standard | | | S | 34 | 3873.8 | 4.3 | | | | ug/L | 3234 | Standard | | | Sr | 88 | 101.7 | 2.8 | | | | ug/L | 87 | Standard | | | С | 12 | 126.7 | 18.2 | | | | mg/L | 103 | Standard | | | N | 14 | 0.0 | | | | | mg/L | 0 | Standard | | | Hg | 202 | 0.0 | | | | | mg/L | 3 | Standard | | | Dy | 164 | 2.1 | 297.9 | | | | mg/L | 10 | Standard | | | Ho-1 | 165 | 1.7 | 173.2 | | | | mg/L | 3 | Standard | | | Er | 166 | 26.7 | 78.1 | | | | mg/L | 7 | Standard | | | I | 127 | 926.7 | 15.1 | | | | mg/L | 3612 | Standard | | | Analyte | Mass | QC Std % Recovery | Int Std % Recovery | Spike % Recovery | |----|---------|------|-------------------|--------------------|------------------| | Γ> | Li | 6 | | | | | | Ве | 9 | | | | | L | Al | 27 | | | | | Γ | Sc | 45 | | | | | | Ti | 47 | | | | | | V | 51 | | | | | | Cr | 52 | | | | | | Cr | 53 | | | | | | Mn | 55 | | | | | | Co | 59 | | | | | | Ni | 60 | | | | | | Cu | 65 | | | | | | Zn | 66 | | | | | > | Ge | 72 | | | | | | As | 75 | | | | | | Se | 82 | | | | | L | Se-1 | 77 | | | | | [> | Ga | 71 | | | | Sample ID: Standard 4 Report Date/Time: Tuesday, October 27, 2015 13:17:57 Page 2 Approved: October 28, 2015 | l Di | 0.5 | |------------|------------| | L Rb | 85 | | Y | 89 | | L> Rh | 103 | | Γ Mo | 98
107 | | Ag | 107 | | Cd | 111 | | Cd | 114 | | > In | 115 | | Sn
 Sb | 118
123 | | Ba | 135 | | Ce | 140 | | by Tb | 159 | | [Ho | 165 | | TI | 203 | | TI | 205 | | Pb | 206 | | Pb | 207 | | Pb | 208 | | U | 238 | | Ĺ> Bi | 209 | | - Na | 23 | | Mg | 24 | | K | 39 | | Ca | 43 | | Fe | 54 | | Fe | 57 | | _> Sc-1 | 45 | | CI | 35 | | Kr | 83 | | Br | 81 | | Р | 31 | | S | 34 | | Sr | 88 | | С | 12 | | N | 14 | | Hg | 202 | | Dy | 164
165 | | Ho-1 | 165
166 | | Er | 166 | | ı | 127 | # **QC Out of Limits** | Measurement Type | Analyte | Mass | Out of Limits Message | |------------------|---------|------|---------------------------------| | Corr. Coef. | Na | 23 | Correlation coefficient < 0.998 | | Corr. Coef. | Ca | 43 | Correlation coefficient < 0.998 | Sample ID: Standard 4 Report Date/Time: Tuesday, October 27, 2015 13:17:57 Page 3 Sample ID: QC Std 1 Sample Date/Time: Tuesday, October 27, 2015 13:18:53 Number of Replicates: 3 Autosampler Position: 201 Sample Description: Method File: C:\NexIONData\Method\6020a.mth Aliquot Volume (mL): Diluted to Volume (mL): User Name: BKT Nexion300X Cumulative Autodilution Factor: 1 Nexion-ICP 200.8\6020 | | | Concentration Results | | | | | | | | | | | |----|--------|-----------------------|-----------|------|---------|-------|-----|-------|---------------|----------|--|--| | IS | Analyt | e Mass | Intensity | RSD | Conc. | SD | RSD | Units | Blank Intens. | Mode | | | | Γ> | Li | 6 | 26493.2 | 4.4 | | | | ug/L | 26270 | Standard | | | | ĺ | Be | 9 | 25840.4 | 2.7 | 49.3849 | 1.107 | 2.2 | ug/L | 2 | Standard | | | | Ĺ | ΑI | 27 | 2852224.7 | 1.4 | 50.5063 |
2.809 | 5.6 | ug/L | 403 | Standard | | | | Ī | Sc | 45 | 14658.8 | 4.2 | | | | ug/L | 14524 | Standard | | | | ĺ | Ti | 47 | 16179.3 | 2.1 | 97.7539 | 4.656 | 4.8 | ug/L | 365 | Standard | | | | | V | 51 | 172704.3 | 0.9 | 48.5877 | 1.665 | 3.4 | ug/L | 805 | Standard | | | | | Cr | 52 | 220543.5 | 0.5 | 49.2305 | 1.351 | 2.7 | ug/L | 5481 | Standard | | | | | Cr | 53 | 27132.6 | 2.1 | 49.0673 | 2.036 | 4.2 | ug/L | 268 | Standard | | | | | Mn | 55 | 168952.7 | 2.0 | 49.4370 | 2.057 | 4.2 | ug/L | 670 | Standard | | | | | Co | 59 | 160644.5 | 1.2 | 49.5360 | 0.898 | 1.8 | ug/L | 146 | Standard | | | | | Ni | 60 | 57556.8 | 0.9 | 49.5246 | 1.702 | 3.4 | ug/L | 220 | Standard | | | | | Cu | 65 | 56201.4 | 1.9 | 49.5023 | 2.204 | 4.5 | ug/L | 147 | Standard | | | | | Zn | 66 | 34376.0 | 1.0 | 50.8385 | 1.858 | 3.7 | ug/L | 211 | Standard | | | | > | Ge | 72 | 217075.4 | 2.7 | | | | ug/L | 210599 | Standard | | | | | As | 75 | 36155.9 | 0.4 | 50.1452 | 1.438 | 2.9 | ug/L | -47 | Standard | | | | | Se | 82 | 3036.4 | 1.5 | 49.7237 | 1.994 | 4.0 | ug/L | 15 | Standard | | | | L | Se-1 | 77 | 2026.8 | 0.4 | 50.0013 | 1.540 | 3.1 | ug/L | 65 | Standard | | | | Γ> | Ga | 71 | 60.0 | 16.7 | | | | mg/L | 27 | Standard | | | | L | Rb | 85 | 496.7 | 5.7 | | | | ug/L | 17 | Standard | | | | Γ | Υ | 89 | 220337.7 | 4.6 | | | | ug/L | 216672 | Standard | | | | L> | Rh | 103 | 21.7 | 26.6 | | | | ug/L | 18 | Standard | | | | Γ | Мо | 98 | 138768.8 | 1.5 | 98.7915 | 2.761 | 2.8 | ug/L | 11 | Standard | | | | | Ag | 107 | 229355.0 | 1.2 | 48.7500 | 1.877 | 3.8 | ug/L | 55 | Standard | | | | | Cd | 111 | 69036.5 | 0.5 | 48.9374 | 1.359 | 2.8 | mg/L | 7 | Standard | | | | | Cd | 114 | 169480.0 | 0.9 | 49.1419 | 1.750 | 3.6 | ug/L | 4 | Standard | | | | > | In | 115 | 324833.0 | 2.7 | | | | ug/L | 322525 | Standard | | | | | Sn | 118 | 200359.4 | 0.6 | 50.0691 | 1.612 | 3.2 | ug/L | 345 | Standard | | | | | Sb | 123 | 177495.0 | 1.1 | 46.7148 | 1.610 | 3.4 | ug/L | 88 | Standard | | | | Ĺ | Ва | 135 | 79218.9 | 0.9 | 49.1812 | 1.694 | 3.4 | ug/L | 12 | Standard | | | | | Ce | 140 | 145.0 | 9.1 | | | | ug/L | 37 | Standard | | | | Γ> | Tb | 159 | 631642.0 | 4.9 | | | | ug/L | 631826 | Standard | | | | | Но | 165 | 11.7 | 89.2 | | | | ug/L | 3 | Standard | | | | | TI | 203 | 315699.2 | 0.9 | 48.8324 | 2.144 | 4.4 | ug/L | 7 | Standard | | | 48.9618 48.6552 48.5756 48.6253 48.2888 Sample ID: QC Std 1 205 206 207 208 238 209 Report Date/Time: Tuesday, October 27, 2015 13:21:10 213223.2 192619.8 174369.7 697470.8 255907.6 334351.6 0.5 1.2 1.1 1.1 1.4 4.1 Page 1 ΤI Pb Pb Pb U Bi Approved: October 28, 2015 7 159 503 333509 5 Standard Standard Standard Standard Standard Standard Page 417 1.793 2.420 2.465 2.467 2.623 3.7 5.0 5.1 5.1 ug/L ug/L ug/L ug/L ug/L ug/L | _ | | | | | | | | | | | |----|------|-----|---------|-------|--------|-------|------|------|-------|----------| | | Na | 23 | 0.0 | | | | | mg/L | 0 | Standard | | | Mg | 24 | 2343.5 | 4.4 | 5.5074 | 0.315 | 5.7 | mg/L | 10 | Standard | | | K | 39 | 446.7 | 11.8 | 5.3131 | 0.686 | 12.9 | mg/L | 32 | Standard | | | Ca | 43 | 118.3 | 12.9 | 4.4728 | 2.680 | 59.9 | mg/L | 85 | Standard | | | Fe | 54 | 1987.2 | 4.8 | 4.6937 | 0.180 | 3.8 | mg/L | 82 | Standard | | | Fe | 57 | 736.7 | 4.4 | 5.0386 | 0.234 | 4.6 | mg/L | 217 | Standard | | L> | Sc-1 | 45 | 14658.8 | 4.2 | | | | mg/L | 14524 | Standard | | | CI | 35 | 53100.9 | 1.0 | | | | ug/L | 53193 | Standard | | | Kr | 83 | 3.7 | 31.5 | | | | ug/L | 3 | Standard | | | Br | 81 | 336.7 | 13.4 | | | | ug/L | 327 | Standard | | | Р | 31 | 14912.3 | 0.9 | | | | ug/L | 13329 | Standard | | | S | 34 | 3708.8 | 2.8 | | | | ug/L | 3234 | Standard | | | Sr | 88 | 111.7 | 11.3 | | | | ug/L | 87 | Standard | | | С | 12 | 106.7 | 5.4 | | | | mg/L | 103 | Standard | | | N | 14 | 0.0 | | | | | mg/L | 0 | Standard | | | Hg | 202 | 0.0 | | | | | mg/L | 3 | Standard | | | Dy | 164 | 12.5 | 119.0 | | | | mg/L | 10 | Standard | | | Ho-1 | 165 | 11.7 | 89.2 | | | | mg/L | 3 | Standard | | | Er | 166 | 16.7 | 91.7 | | | | mg/L | 7 | Standard | | | I | 127 | 963.4 | 6.1 | | | | mg/L | 3612 | Standard | | | | | | | | | | | | | | | Analyte | Mass | QC Std % Recovery | Int Std % Recovery | Spike % Recovery | |----|---------|------|-------------------|--------------------|------------------| | Γ> | Li | 6 | | | | | | Ве | 9 | 98.770 | | | | L | Al | 27 | 101.013 | | | | Γ | Sc | 45 | | | | | | Ti | 47 | 97.754 | | | | | V | 51 | 97.175 | | | | | Cr | 52 | 98.461 | | | | | Cr | 53 | | | | | | Mn | 55 | 98.874 | | | | | Co | 59 | 99.072 | | | | | Ni | 60 | 99.049 | | | | | Cu | 65 | 99.005 | | | | | Zn | 66 | 101.677 | | | | > | Ge | 72 | | 103.075 | | | | As | 75 | 100.290 | | | | | Se | 82 | 99.447 | | | | L | Se-1 | 77 | | | | | [> | Ga | 71 | | | | Sample ID: QC Std 1 Report Date/Time: Tuesday, October 27, 2015 13:21:10 Page 2 Approved: October 28, 2015 | l Dh | 05 | | | |--------------|----------------|-------------------|-----------------------| | L Rb
ΓΥ | 85
89 | | | | ∣ ⊦
∣> Rh | 103 | | | | Mo | 98 | 98.792 | | | Ag | 107 | 97.500 | | | Cd | 111 | 97.875 | | | Cd | 114 | | | |
 > In | 115 | | 100.716 | | Sn | 118 | 100.138 | | | Sb | 123 | 93.430 | | | ∟ Ba | 135 | 98.362 | | | Г Се | 140 | | | | ∟> Tb | 159 | | | | Г Ho | 165 | | | | TI | 203 | 97.665 | | | TI | 205 | | | | Pb | 206 | 97.310 | | | Pb | 207 | 97.151 | | | Pb | 208 | 97.251 | | | U | 238 | 96.578 | 400.050 | | [> Bi | 209 | | 100.253 | | 「 Na
□ Ma | 23 | 110 117 | | | Mg | 24 | 110.147 | | | │ K
│ Ca | 39
43 | 106.262
89.457 | | | Ca
 Fe | 43
54 | 93.875 | | | Fe | 5 7 | 100.773 | | | > Sc-1 | 45 | 100.773 | | | CI | 35 | | | | Kr | 83 | | | | Br | 81 | | | | Р | 31 | | | | S | 34 | | | | Sr | 88 | | | | С | 12 | | | | N | 14 | | | | Hg | 202 | | | | Dy | 164 | | | | Ho-1 | 165 | | | | Er | 166 | | | | I | 127 | | | | QC O | ut of Limits | | | | | ement Type | Analyte Mass | Out of Limits Message | | QC Std | 1 | Mg 24 | - | | QC Std | 1 | Ca 43 | | | | | | | Sample ID: QC Std 1 Report Date/Time: Tuesday, October 27, 2015 13:21:10 Page 3 Sample ID: QC Std 2 Sample Date/Time: Tuesday, October 27, 2015 13:22:05 Number of Replicates: 3 Autosampler Position: 102 Sample Description: Method File: C:\NexIONData\Method\6020a.mth Aliquot Volume (mL): Diluted to Volume (mL): User Name: BKT Nexion300X Cumulative Autodilution Factor: 1 Nexion-ICP 200.8\6020 #### **Concentration Results** | | | | | | Conconti | utioii 1100 | Juito | | | | |----|--------|--------|-----------|-------|----------|-------------|--------|-------|---------------|----------| | IS | Analyt | e Mass | Intensity | RSD | Conc. | SD | RSD | Units | Blank Intens. | Mode | | Γ> | Li | 6 | 26264.5 | 7.9 | | | | ug/L | 26270 | Standard | | | Be | 9 | 38.3 | 71.8 | 0.0367 | 0.046 | 124.5 | ug/L | 2 | Standard | | L | ΑI | 27 | 3859.5 | 139.3 | 0.0439 | 0.087 | 198.5 | ug/L | 403 | Standard | | Γ | Sc | 45 | 15117.5 | 3.3 | | | | ug/L | 14524 | Standard | | | Ti | 47 | 293.7 | 9.7 | -0.2938 | 0.127 | 43.3 | ug/L | 365 | Standard | | | ٧ | 51 | 878.7 | 34.2 | -0.0114 | 0.075 | 657.3 | ug/L | 805 | Standard | | | Cr | 52 | 5031.5 | 5.4 | -0.1502 | 0.027 | 18.2 | ug/L | 5481 | Standard | | | Cr | 53 | 343.3 | 24.0 | 0.0998 | 0.126 | 126.2 | ug/L | 268 | Standard | | | Mn | 55 | 750.0 | 36.8 | -0.1324 | 0.073 | 54.8 | ug/L | 670 | Standard | | | Co | 59 | 304.7 | 69.7 | 0.0475 | 0.061 | 129.3 | ug/L | 146 | Standard | | | Ni | 60 | 255.3 | 39.9 | -0.0058 | 0.079 | 1367.0 | ug/L | 220 | Standard | | | Cu | 65 | 233.0 | 45.8 | 0.0265 | 0.086 | 322.7 | ug/L | 147 | Standard | | | Zn | 66 | 229.7 | 33.3 | -0.2843 | 0.100 | 35.3 | ug/L | 211 | Standard | | > | Ge | 72 | 215475.4 | 4.2 | | | | ug/L | 210599 | Standard | | | As | 75 | 9.8 | 657.7 | 0.0896 | 0.088 | 98.1 | ug/L | -47 | Standard | | | Se | 82 | 20.2 | 28.9 | 0.1602 | 0.111 | 69.2 | ug/L | 15 | Standard | | L | Se-1 | 77 | 56.7 | 20.5 | 0.1994 | 0.237 | 118.8 | ug/L | 65 | Standard | | Γ> | Ga | 71 | 16.7 | 17.3 | | | | mg/L | 27 | Standard | | L | Rb | 85 | 11.7 | 65.5 | | | | ug/L | 17 | Standard | | Γ | Υ | 89 | 222779.9 | 2.6 | | | | ug/L | 216672 | Standard | | L> | Rh | 103 | 20.0 | 50.0 | | | | ug/L | 18 | Standard | | Γ | Мо | 98 | 416.0 | 65.1 | 0.2857 | 0.176 | 61.6 | ug/L | 11 | Standard | | | Ag | 107 | 193.7 | 113.3 | 0.0282 | 0.044 | 154.7 | ug/L | 55 | Standard | | | Cd | 111 | 67.4 | 138.8 | 0.0393 | 0.062 | 158.9 | mg/L | 7 | Standard | | | Cd | 114 | 181.5 | 152.6 | 0.0554 | 0.076 | 136.7 | ug/L | 4 | Standard | | > | In | 115 | 328609.5 | 4.0 | | | | ug/L | 322525 | Standard | | | Sn | 118 | 753.4 | 37.5 | 0.0324 | 0.062 | 191.6 | ug/L | 345 | Standard | | ļ | Sb | 123 | 818.3 | 17.6 | 0.2013 | 0.029 | 14.2 | ug/L | 88 | Standard | | Ē | Ва | 135 | 82.7 | 146.1 | 0.0250 | 0.071 | 283.0 | ug/L | 12 | Standard | | ļ | Ce | 140 | 23.3 | 24.7 | | | | ug/L | 37 | Standard | | Ĺ> | Tb | 159 | 638824.3 | 4.2 | | | | ug/L | 631826 | Standard | | ļ | Но | 165 | 11.7 | 89.2 | | | | ug/L | 3 | Standard | | ļ | TI | 203 | 203.7 | 150.3 | 0.0272 | 0.044 | 163.3 | ug/L | 7 | Standard | | ļ | TI | 205 | 113.3 | 158.0 | 0.0271 | 0.039 | 142.6 | ug/L | 7 | Standard | | ļ | Pb | 206 | 331.0 | 84.8 | 0.0211 | 0.065 | 308.6 | ug/L | 159 | Standard | | ļ | Pb | 207 | 271.7 | 91.3 | 0.0158 | 0.064 | 402.9 | ug/L | 120 | Standard | | - | Pb | 208 | 1076.4 | 85.6 | 0.0187 | 0.059 | 315.6 | ug/L | 503 | Standard | | - | U | 238 | 256.3 | 142.9 | 0.0414 | 0.065 | 156.3 | ug/L | 5 | Standard | | L> | Bi | 209 | 336870.7 | 4.5 | | | | ug/L | 333509 | Standard | Sample ID: QC Std 2 Report Date/Time: Tuesday, October 27, 2015 13:24:22 Page 1 Approved: October 28, 2015 | _ | | | | | | | | | | | |----|------|-----|---------|-------|---------|-------|-------|------|-------|----------| | | Na | 23 | 0.0 | | | | | mg/L | 0 | Standard | | | Mg | 24 | 15.0 | 33.3 | -0.0058 | 0.012 | 201.0 | mg/L | 10 | Standard | | | K | 39 | 23.3 | 32.7 | 0.0698 |
0.095 | 136.2 | mg/L | 32 | Standard | | | Ca | 43 | 85.0 | 21.2 | -1.3369 | 2.520 | 188.5 | mg/L | 85 | Standard | | ĺ | Fe | 54 | 71.0 | 42.7 | 0.0322 | 0.066 | 204.2 | mg/L | 82 | Standard | | | Fe | 57 | 186.7 | 13.7 | -0.1763 | 0.245 | 138.7 | mg/L | 217 | Standard | | L> | Sc-1 | 45 | 15117.5 | 3.3 | | | | mg/L | 14524 | Standard | | | CI | 35 | 55810.6 | 0.9 | | | | ug/L | 53193 | Standard | | | Kr | 83 | 4.3 | 58.1 | | | | ug/L | 3 | Standard | | | Br | 81 | 263.3 | 15.3 | | | | ug/L | 327 | Standard | | | Р | 31 | 15114.2 | 2.5 | | | | ug/L | 13329 | Standard | | | S | 34 | 3863.8 | 6.3 | | | | ug/L | 3234 | Standard | | | Sr | 88 | 81.7 | 15.4 | | | | ug/L | 87 | Standard | | | С | 12 | 96.7 | 6.0 | | | | mg/L | 103 | Standard | | | N | 14 | 0.0 | | | | | mg/L | 0 | Standard | | | Hg | 202 | 0.0 | | | | | mg/L | 3 | Standard | | | Dy | 164 | 2.9 | 203.0 | | | | mg/L | 10 | Standard | | | Ho-1 | 165 | 11.7 | 89.2 | | | | mg/L | 3 | Standard | | | Er | 166 | 10.0 | 100.0 | | | | mg/L | 7 | Standard | | | I | 127 | 3520.4 | 1.9 | | | | mg/L | 3612 | Standard | | | | | | | | | | | | | | | Analyte | Mass | QC Std % Recovery | Int Std % Recovery | Spike % Recovery | |----|---------|------|-------------------|--------------------|------------------| | Γ> | Li | 6 | | | | | | Ве | 9 | | | | | L | Al | 27 | | | | | Γ | Sc | 45 | | | | | | Ti | 47 | | | | | | V | 51 | | | | | | Cr | 52 | | | | | | Cr | 53 | | | | | | Mn | 55 | | | | | | Co | 59 | | | | | | Ni | 60 | | | | | | Cu | 65 | | | | | | Zn | 66 | | | | | > | Ge | 72 | | 102.316 | | | | As | 75 | | | | | | Se | 82 | | | | | L | Se-1 | 77 | | | | | [> | Ga | 71 | | | | Sample ID: QC Std 2 Report Date/Time: Tuesday, October 27, 2015 13:24:22 Page 2 Approved: October 28, 2015 | Mo
Ag Cd In Sb Ba e Tb OTT TI bb Pb U Bi A B C C Kr Br P S Sr C N H Dyo-1 Er I | 85
89
103
98
107
111
114
115
118
123
135
140
159
165
203
205
206
207
208
238
209
23
24
39
43
54
57
45
35
83
81
31
34
88
12
14
202
165
165
165
17
18
18
18
18
18
18
18
18
18
18 | | | 101.887 | |---|--|----------|-----------|-----------------------| | Measureme | of Limits
ent Type | Analyte | Mass | Out of Limits Message | | QC Std 2
QC Std 2 | | Sb
Ca | 123
43 | | Sample ID: QC Std 2 QC Std 2 Report Date/Time: Tuesday, October 27, 2015 13:24:22 Fe 57 Page 3 Sample ID: QC Std 3 Sample Date/Time: Tuesday, October 27, 2015 13:25:18 Number of Replicates: 3 Autosampler Position: 202 Sample Description: Method File: C:\NexIONData\Method\6020a.mth Aliquot Volume (mL): Diluted to Volume (mL): User Name: BKT Nexion300X Cumulative Autodilution Factor: 1 Nexion-ICP 200.8\6020 | | Concentration Results | | | | | | | | | | | |----|-----------------------|--------|-----------|------|---------|-------|-------|-------|---------------|----------|--| | IS | Analyt | e Mass | Intensity | RSD | Conc. | SD | RSD | Units | Blank Intens. | Mode | | | Γ> | Li | 6 | 25903.8 | 2.6 | | | | ug/L | 26270 | Standard | | | i | Be | 9 | 103.3 | 38.8 | 0.1659 | 0.073 | 44.1 | ug/L | 2 | Standard | | | i | ΑI | 27 | 868.4 | 72.0 | -0.0049 | 0.011 | 231.6 | ug/L | 403 | Standard | | | Ī | Sc | 45 | 14813.9 | 7.1 | | | | ug/L | 14524 | Standard | | | ĺ | Ti | 47 | 254.7 | 4.7 | -0.4545 | 0.129 | 28.5 | ug/L | 365 | Standard | | | ĺ | V | 51 | 2016.8 | 5.1 | 0.3432 | 0.039 | 11.4 | ug/L | 805 | Standard | | | | Cr | 52 | 8299.6 | 3.0 | 0.7004 | 0.121 | 17.3 | ug/L | 5481 | Standard | | | | Cr | 53 | 715.0 | 9.1 | 0.8549 | 0.166 | 19.5 | ug/L | 268 | Standard | | | | Mn | 55 | 2284.2 | 2.8 | 0.3585 | 0.040 | 11.2 | ug/L | 670 | Standard | | | | Co | 59 | 1382.7 | 5.3 | 0.4057 | 0.035 | 8.6 | ug/L | 146 | Standard | | | | Ni | 60 | 1960.8 | 1.8 | 1.5654 | 0.081 | 5.2 | ug/L | 220 | Standard | | | | Cu | 65 | 1078.0 | 2.1 | 0.8287 | 0.053 | 6.4 | ug/L | 147 | Standard | | | | Zn | 66 | 4700.7 | 8.0 | 6.8105 | 0.295 | 4.3 | ug/L | 211 | Standard | | | > | Ge | 72 | 205417.6 | 3.1 | | | | ug/L | 210599 | Standard | | | | As | 75 | 230.9 | 6.6 | 0.4155 | 0.018 | 4.3 | ug/L | -47 | Standard | | | | Se | 82 | 38.7 | 18.0 | 0.4934 | 0.102 | 20.8 | ug/L | 15 | Standard | | | L | Se-1 | 77 | 60.0 | 15.0 | 0.3613 | 0.199 | 55.0 | ug/L | 65 | Standard | | | Γ> | Ga | 71 | 16.7 | 17.3 | | | | mg/L | 27 | Standard | | | L | Rb | 85 | 26.7 | 21.7 | | | | ug/L | 17 | Standard | | | Γ | Υ | 89 | 211259.4 | 4.4 | | | | ug/L | 216672 | Standard | | | L> | Rh | 103 | 10.0 | | | | | ug/L | 18 | Standard | | | Γ | Мо | 98 | 130.2 | 30.6 | 0.0940 | 0.034 | 36.3 | ug/L | 11 | Standard | | | | Ag | 107 | 1894.8 | 3.0 | 0.4037 | 0.031 | 7.7 | ug/L | 55 | Standard | | | | Cd | 111 | 353.0 | 5.0 | 0.2517 | 0.023 | 9.0 | mg/L | 7 | Standard | | | | Cd | 114 | 756.6 | 5.0 | 0.2316 | 0.021 | 9.3 | ug/L | 4 | Standard | | | > | In | 115 | 315712.4 | 4.5 | | | | ug/L | 322525 | Standard | | | ! | Sn | 118 | 375.0 | 10.1 | -0.0559 | 0.011 | 20.1 | ug/L | 345 | Standard | | | ! | Sb | 123 | 1533.5 | 3.6 | 0.4048 | 0.019 | 4.6 | ug/L | 88 | Standard | | | Ļ | Ва | 135 | 1132.4 | 4.9 | 0.7013 | 0.069 | 9.8 | ug/L | 12 | Standard | | | ļ | Ce | 140 | 26.7 | 10.8 | | | | ug/L | 37 | Standard | | | Ĺ> | Tb | 159 | 613632.1 | 3.8 | | | | ug/L | 631826 | Standard | | | | Ho | 165 | 8.3 | 69.3 | | 0.000 | 0.0 | ug/L | 3 | Standard | | | | TI | 203 | 546.0 | 7.8 | 0.0844 | 0.008 | 9.9 | ug/L | 7 | Standard | | | | TI | 205 | 340.0 | 15.9 | 0.0832 | 0.015 | 18.3 | ug/L | 7 | Standard | | | ļ | Pb | 206 | 921.4 | 2.9 | 0.1800 | 0.006 | 3.3 | ug/L | 159 | Standard | | 0.1679 0.1841 0.3957 Sample ID: QC Std 3 207 208 238 209 Report Date/Time: Tuesday, October 27, 2015 13:27:35 784.4 3308.8 2058.1 324276.0 4.2 2.8 3.2 Page 1 Pb Pb U Bi Approved: October 28, 2015 Generated: 10/30/2015 10:11 503 333509 5 Standard Standard Standard Standard Page 423 9.6 ug/L 3.0 ug/L ug/L ug/L 0.005 0.018 0.021 | _ | | | | | | | | | | | |----|------|-----|---------|------|---------|-------|-------|------|-------|----------| | Γ | Na | 23 | 0.0 | | | | | mg/L | 0 | Standard | | | Mg | 24 | 13.3 | 94.4 | -0.0099 | 0.028 | 281.4 | mg/L | 10 | Standard | | | K | 39 | 21.7 | 35.3 | 0.0568 | 0.107 | 188.9 | mg/L | 32 | Standard | | | Ca | 43 | 70.0 | 43.4 | -3.3147 | 5.113 | 154.2 | mg/L | 85 | Standard | | ĺ | Fe | 54 | 75.7 | 9.8 | 0.0496 | 0.027 | 53.7 | mg/L | 82 | Standard | | | Fe | 57 | 210.0 | 6.3 | 0.0820 | 0.214 | 260.6 | mg/L | 217 | Standard | | L> | Sc-1 | 45 | 14813.9 | 7.1 | | | | mg/L | 14524 | Standard | | | CI | 35 | 56108.4 | 0.7 | | | | ug/L | 53193 | Standard | | | Kr | 83 | 5.0 | 34.6 | | | | ug/L | 3 | Standard | | | Br | 81 | 303.3 | 26.9 | | | | ug/L | 327 | Standard | | | Р | 31 | 15077.5 | 2.1 | | | | ug/L | 13329 | Standard | | | S | 34 | 3702.1 | 2.6 | | | | ug/L | 3234 | Standard | | | Sr | 88 | 83.3 | 29.6 | | | | ug/L | 87 | Standard | | | С | 12 | 130.0 | 13.3 | | | | mg/L | 103 | Standard | | | N | 14 | 0.0 | | | | | mg/L | 0 | Standard | | | Hg | 202 | 0.0 | | | | | mg/L | 3 | Standard | | | Dy | 164 | 6.2 | 93.3 | | | | mg/L | 10 | Standard | | | Ho-1 | 165 | 8.3 | 69.3 | | | | mg/L | 3 | Standard | | | Er | 166 | 10.0 | | | | | mg/L | 7 | Standard | | | I | 127 | 603.3 | 17.0 | | | | mg/L | 3612 | Standard | | | | | | | | | | | | | | Analyte | Mass | QC Std % Recovery | Int Std % Recovery | Spike % Recovery | |---------|------|-------------------|--------------------|------------------| | 「> Li | 6 | | | | | Be | 9 | 82.953 | | | | L AI | 27 | -0.486 | | | | 「 Sc | 45 | | | | | Ti | 47 | | | | | V | 51 | 85.802 | | | | Cr | 52 | 87.545 | | | | Cr | 53 | | | | | Mn | 55 | 71.690 | | | | Co | 59 | 101.421 | | | | Ni | 60 | 97.840 | | | | Cu | 65 | 103.588 | | | | Zn | 66 | 108.968 | | | | > Ge | 72 | | 97.540 | | | As | 75 | 103.884 | | | | Se | 82 | 123.338 | | | | ∟ Se-1 | 77 | | | | | 「⊳ Ga | 71 | | | | Sample ID: QC Std 3 Report Date/Time: Tuesday, October 27, 2015 13:27:35 Page 2 Approved: October 28, 2015 | ∟ Rb | 85 | | | | |----------------|--------------|--------------|------------------------|--| | ΓY | 89 | | | | | $\lfloor_>$ Rh | 103 | | | | | ГМо | 98 | | | | | Ag | 107 | 100.935 | | | | Cd | 111 | 104.859 | | | | Cd | 114 | | | | | > In | 115 | | 97.888 | | | Sn | 118 | | | | | Sb | 123 | 101.196 | | | | ∟ Ba | 135 | 93.509 | | | | 「 Ce | 140 | | | | | L> Tb | 159 | | | | | Γ Ho | 165 | | | | | TI | 203 | 105.526 | | | | TI | 205 | | | | | Pb | 206 | | | | | Pb | 207 | | | | | Pb | 208 | 92.070 | | | | į U | 238 | 98.925 | | | | Ĺ> Bi | 209 | | 97.231 | | | - Na | 23 | | | | | Mg | 24 | | | | | ίκ | 39 | | | | | Ca | 43 | | | | | Fe | 54 | | | | | Fe | 57 | | | | | _> Sc-1 | 45 | | | | | CI | 35 | | | | | Kr | 83 | | | | | Br | 81 | | | | | Р | 31 | | | | | S | 34 | | | | | Sr | 88 | | | | | С | 12 | | | | | N | 14 | | | | | Hg | 202 | | | | | Dy | 164 | | | | | Ho-1 | 165 | | | | | Er | 166 | | | | | 1 | 127 | | | | | OC 0 | ut of Limits | | | | | | | Analyta Mass | Out of Limits Massacra | | | | ement Type | Analyte Mass | Out of Limits Message | | | QC Std | 3 | Al 27 | | | Sample ID: QC Std 3 Report Date/Time: Tuesday, October 27, 2015 13:27:35 Page 3 Sample ID: QC Std 4 Sample Date/Time: Tuesday, October 27, 2015 13:28:29 Number of Replicates: 3 Autosampler Position: 203 Sample Description: Method File: C:\NexIONData\Method\6020a.mth Aliquot Volume (mL): Diluted to Volume (mL): User Name: BKT Nexion300X Cumulative Autodilution Factor: 1 Nexion-ICP 200.8\6020 | Con | cont | tration | Pagu | lte |
-----|------|---------|------|-----| | Con | ceni | tration | Resu | เเร | | | | | | | Concenti | alion Nes | นแจ | | | | |----|--------|--------|-----------|-------|----------|-----------|-------|-------|---------------|----------| | IS | Analyt | e Mass | Intensity | RSD | Conc. | SD | RSD | Units | Blank Intens. | Mode | | Γ> | Li | 6 | 23464.9 | 6.5 | | | | ug/L | 26270 | Standard | | | Be | 9 | 8.3 | 34.6 | -0.0169 | 0.006 | 36.6 | ug/L | 2 | Standard | | L | ΑI | 27 | 2100195.4 | 1.1 | 42.0175 | 2.361 | 5.6 | ug/L | 403 | Standard | | Γ | Sc | 45 | 12546.9 | 6.4 | | | | ug/L | 14524 | Standard | | | Ti | 47 | 12876.1 | 1.8 | 89.0846 | 3.480 | 3.9 | ug/L | 365 | Standard | | | ٧ | 51 | 529.2 | 10.7 | -0.0885 | 0.010 | 11.0 | ug/L | 805 | Standard | | | Cr | 52 | 3866.8 | 2.0 | -0.2933 | 0.057 | 19.4 | ug/L | 5481 | Standard | | | Cr | 53 | 1378.4 | 10.9 | 2.3540 | 0.181 | 7.7 | ug/L | 268 | Standard | | | Mn | 55 | 513.7 | 0.7 | -0.1793 | 0.011 | 5.9 | ug/L | 670 | Standard | | | Co | 59 | 193.0 | 6.5 | 0.0226 | 0.005 | 22.3 | ug/L | 146 | Standard | | | Ni | 60 | 399.7 | 6.2 | 0.1714 | 0.045 | 26.0 | ug/L | 220 | Standard | | | Cu | 65 | 348.3 | 3.5 | 0.1753 | 0.031 | 17.8 | ug/L | 147 | Standard | | | Zn | 66 | 651.7 | 0.6 | 0.4923 | 0.055 | 11.2 | ug/L | 211 | Standard | | > | Ge | 72 | 189266.2 | 5.2 | | | | ug/L | 210599 | Standard | | | As | 75 | -74.5 | 52.0 | -0.0401 | 0.059 | 147.0 | ug/L | -47 | Standard | | | Se | 82 | 12.0 | 37.7 | 0.0490 | 0.081 | 165.9 | ug/L | 15 | Standard | | L | Se-1 | 77 | 204.0 | 11.0 | 4.6722 | 0.520 | 11.1 | ug/L | 65 | Standard | | Γ> | Ga | 71 | 73.3 | 34.3 | | | | mg/L | 27 | Standard | | L | Rb | 85 | 365.0 | 9.9 | | | | ug/L | 17 | Standard | | Γ | Υ | 89 | 192085.0 | 4.7 | | | | ug/L | 216672 | Standard | | L> | Rh | 103 | 15.0 | 57.7 | | | | ug/L | 18 | Standard | | Γ | Мо | 98 | 104656.9 | 0.9 | 84.6936 | 5.752 | 6.8 | ug/L | 11 | Standard | | | Ag | 107 | 51.7 | 4.0 | 0.0011 | 0.001 | 84.3 | ug/L | 55 | Standard | | | Cd | 111 | -71.1 | 21.7 | -0.0636 | 0.013 | 20.0 | mg/L | 7 | Standard | | | Cd | 114 | 303.6 | 7.0 | 0.1052 | 0.004 | 3.9 | ug/L | 4 | Standard | | > | In | 115 | 286405.1 | 5.9 | | | | ug/L | 322525 | Standard | | | Sn | 118 | 238.3 | 12.8 | -0.0849 | 0.008 | 9.9 | ug/L | 345 | Standard | | | Sb | 123 | 63.0 | 23.4 | 0.0080 | 0.004 | 44.5 | ug/L | 88 | Standard | | L | Ва | 135 | 65.7 | 15.0 | 0.0224 | 0.007 | 33.3 | ug/L | 12 | Standard | | Γ | Ce | 140 | 65.0 | 27.7 | | | | ug/L | 37 | Standard | | _> | Tb | 159 | 558943.6 | 3.7 | | | | ug/L | 631826 | Standard | | Γ | Но | 165 | 10.0 | 132.3 | | | | ug/L | 3 | Standard | | | TI | 203 | 102.3 | 21.2 | 0.0148 | 0.005 | 30.7 | ug/L | 7 | Standard | | | TI | 205 | 50.0 | 52.9 | 0.0151 | 0.007 | 46.1 | ug/L | 7 | Standard | | ļ | Pb | 206 | 202.0 | 5.5 | -0.0040 | 0.000 | 6.1 | ug/L | 159 | Standard | | ļ | Pb | 207 | 168.3 | 14.3 | -0.0059 | 0.007 | 126.4 | ug/L | 120 | Standard | | ļ | Pb | 208 | 710.0 | 3.9 | 0.0003 | 0.002 | 653.7 | ug/L | 503 | Standard | | ļ | U | 238 | 7.3 | 28.4 | -0.0030 | 0.000 | 16.5 | ug/L | 5 | Standard | | _> | Bi | 209 | 304692.0 | 5.1 | | | | ug/L | 333509 | Standard | | | | | | | | | | | | | Sample ID: QC Std 4 Report Date/Time: Tuesday, October 27, 2015 13:30:46 Page 1 Approved: October 28, 2015 | Γ | Na | 23 | 0.0 | | | | | mg/L | 0 | Standard | |----|------|-----|---------|-------|---------|-------|------|------|-------|----------| | | Mg | 24 | 4118.9 | 7.9 | 11.3344 | 0.309 | 2.7 | mg/L | 10 | Standard | | | K | 39 | 370.0 | 2.3 | 5.1479 | 0.430 | 8.3 | mg/L | 32 | Standard | | | Ca | 43 | 140.0 | 19.9 | 11.5935 | 4.068 | 35.1 | mg/L | 85 | Standard | | İ | Fe | 54 | 3854.9 | 7.0 | 10.8056 | 0.373 | 3.5 | mg/L | 82 | Standard | | İ | Fe | 57 | 1186.7 | 7.9 | 11.1506 | 0.966 | 8.7 | mg/L | 217 | Standard | | Ĺ> | Sc-1 | 45 | 12546.9 | 6.4 | | | | mg/L | 14524 | Standard | | | CI | 35 | 52754.4 | 2.7 | | | | ug/L | 53193 | Standard | | | Kr | 83 | 7.0 | 14.3 | | | | ug/L | 3 | Standard | | | Br | 81 | 273.3 | 4.2 | | | | ug/L | 327 | Standard | | | Р | 31 | 5809.4 | 3.4 | | | | ug/L | 13329 | Standard | | | S | 34 | 3188.7 | 5.7 | | | | ug/L | 3234 | Standard | | | Sr | 88 | 113.3 | 9.2 | | | | ug/L | 87 | Standard | | | С | 12 | 290.0 | 24.1 | | | | mg/L | 103 | Standard | | | N | 14 | 0.0 | | | | | mg/L | 0 | Standard | | | Hg | 202 | 0.0 | | | | | mg/L | 3 | Standard | | | Dy | 164 | 12.7 | 115.9 | | | | mg/L | 10 | Standard | | | Ho-1 | 165 | 10.0 | 132.3 | | | | mg/L | 3 | Standard | | | Er | 166 | 13.3 | 114.6 | | | | mg/L | 7 | Standard | | | I | 127 | 1068.4 | 9.0 | | | | mg/L | 3612 | Standard | | | Analyte | Mass | QC Std % Recovery | Int Std % Recovery | Spike % Recovery | |----|---------|------|-------------------|--------------------|------------------| | Γ> | Li | 6 | | | | | | Ве | 9 | | | | | L | Al | 27 | 0.840 | | | | Γ | Sc | 45 | | | | | | Ti | 47 | 89.085 | | | | | V | 51 | | | | | | Cr | 52 | | | | | | Cr | 53 | | | | | | Mn | 55 | | | | | | Co | 59 | | | | | | Ni | 60 | | | | | | Cu | 65 | | | | | | Zn | 66 | | | | | > | Ge | 72 | | 89.870 | | | | As | 75 | | | | | | Se | 82 | | | | | L | Se-1 | 77 | | | | | [> | Ga | 71 | | | | Sample ID: QC Std 4 Report Date/Time: Tuesday, October 27, 2015 13:30:46 Page 2 | Sample ID: Q0 | | | | | |------------------------------|---------------|------------------|-----------------------|--| | QC S | | Mg 24
Ca 43 | | | | QC S | | Al 27 | | | | | urement Type | Analyte Mass | Out of Limits Message | | | | Out of Limits | | | | | 000 | 127 | | | | | Er | 166 | | | | | Ho-1 | 165 | | | | | Dy | 164 | | | | | Hg | 202 | | | | | N | 14 | | | | | C | 12 | | | | | Sr | 88 | | | | | S | 34 | | | | | P | 31 | | | | | Br | 81 | | | | | Kr | 83 | | | | | L> SC-1 | 45
35 | | | | | Fe
 _{>} Sc-1 | 57
45 | 09.200 | | | | Fe
 Fe | 54
57 | 86.445
89.205 | | | | Ca | 43
54 | 77.290
86.445 | | | | K | 39
43 | 102.959 | | | | Mg | 24 | 226.688 | | | | 「 Na | 23 | 000.005 | | | | Ĺ> Bi | 209 | | 91.359 | | | Ü | 238 | | | | | Pb | 208 | | | | | Pb | 207 | | | | | Pb | 206 | | | | | Ti | 205 | | | | | TI | 203 | | | | | L> Tb
Γ Ho | 165 | | | | | 「 Ce
└> Tb | 140
159 | | | | | L Ba
□ Co | 135 | | | | | Sb | 123 | | | | | Sn | 118 | | | | | > In | 115 | | 88.801 | | | Cd | 114 | | | | | Cd | 111 | | | | | Ag | 107 | | | | | ГМо | 98 | 84.694 | | | | _> Rh | 103 | | | | | Γ̈́Υ | 89 | | | | | L Rb | 85 | | | | | | | | | | Sample ID: QC Std 4 Report Date/Time: Tuesday, October 27, 2015 13:30:46 Page 3 Sample ID: QC Std 5 Sample Date/Time: Tuesday, October 27, 2015 13:31:40 Number of Replicates: 3 Autosampler Position: 204 Sample Description: Method File: C:\NexIONData\Method\6020a.mth Aliquot Volume (mL): Diluted to Volume (mL): User Name: BKT Nexion300X Cumulative Autodilution Factor: 1 Nexion-ICP 200.8\6020 | | | | | | Concentrat | ion Res | ults | | | | |----|-----------------------|-----|-----------|------|------------|---------|------|-------|---------------|----------| | IS | S Analyte Mass | | Intensity | RSD | Conc. | SD | RSD | Units | Blank Intens. | Mode | | Γ> | Li | 6 | 28740.6 | 4.9 | | | | ug/L | 26270 | Standard | | | Be | 9 | 57045.5 | 1.4 | 100.6687 | 5.988 | 5.9 | ug/L | 2 | Standard | | L | Al | 27 | 3039527.8 | 1.2 | 49.6194 | 2.706 | 5.5 | ug/L | 403 | Standard | | Γ | Sc | 45 | 14885.7 | 4.2 | | | | ug/L | 14524 | Standard | | | Ti | 47 | 17540.1 | 2.1 | 106.6365 | 6.732 | 6.3 | ug/L | 365 | Standard | | | V | 51 | 349134.0 | 1.6 | 98.9287 | 5.400 | 5.5 | ug/L | 805 | Standard | | | Cr | 52 | 435450.5 | 1.9 | 98.9532 | 5.953 | 6.0 | ug/L | 5481 | Standard | | | Cr | 53 | 54999.7 | 2.9 | 100.4775 | 6.684 | 6.7 | ug/L | 268 | Standard | | | Mn | 55 | 348082.6 | 2.0 | 102.6981 | 6.318 | 6.2 | ug/L | 670 | Standard | | | Co | 59 | 329037.1 | 2.1 | 102.0189 | 6.406 | 6.3 | ug/L | 146 | Standard | | | Ni | 60 | 113081.8 | 1.0 | 97.9491 | 5.080 | 5.2 | ug/L | 220 | Standard | | | Cu | 65 | 112032.3 | 0.5 | 99.2590 | 4.631 | 4.7 | ug/L | 147 | Standard | | | Zn | 66 | 67991.3 | 2.1 | 101.6349 | 6.226 | 6.1 | ug/L | 211 | Standard | | > | Ge | 72 | 216313.7 | 4.3 | | | | ug/L | 210599 | Standard | | | As | 75 | 74382.2 | 0.5 | 103.5287 | 4.868 | 4.7 | ug/L | -47 | Standard | | | Se | 82 | 6194.1 | 0.3 | 102.0343 | 4.566 | 4.5 | ug/L | 15 | Standard | | L | Se-1 | 77 | 4241.6 | 2.1 | 106.5032 | 6.699 | 6.3 | ug/L | 65 | Standard | | Γ> | Ga | 71 | 83.3 | 17.3 | | | | mg/L | 27 | Standard | | L | Rb | 85 | 538.3 | 14.1 | | | | ug/L | 17 | Standard | | Γ | Υ | 89 | 227639.5 | 4.5 | | | | ug/L | 216672 | Standard | | L> | Rh | 103 | 28.3 | 44.4 | | | | ug/L | 18 | Standard | | Γ | Мо | 98 | 147955.4 | 1.6 | 101.3298 | 5.055 | 5.0 | ug/L | 11 | Standard | | | Ag | 107 | 428496.9 | 2.0 | 87.5742 | 3.589 | 4.1 | ug/L | 55 | Standard | | | Cd | 111 | 143958.5 | 1.9 | 98.1757 | 5.180 | 5.3 | mg/L | 7 | Standard | | | Cd | 114 | 355464.2 | 2.5 | 99.1423 | 5.694 | 5.7 | ug/L | 4 | Standard | | > | In | 115 | 337910.8 | 3.5 | | | | ug/L | 322525 | Standard | | | Sn | 118 | 780.0 | 11.9 | 0.0357 | 0.027 | 76.7 | ug/L | 345 | Standard | | | Sb | 123 | 377384.0 | 0.6 | 95.5207 | 3.746 | 3.9 | ug/L | 88 | Standard | | Ĺ | Ва | 135 | 161718.2 | 1.3 | 96.5778 | 4.361 | 4.5 | ug/L | 12 | Standard | | ļ | Се | 140 | 66.7 | 11.5 | | | | ug/L | 37 | Standard | | Ĺ> | Tb | 159 | 650073.5 | 4.2 | | | | ug/L | 631826 | Standard | | ļ | Но | 165 | 3.3 | 86.6 | | | | ug/L | 3 | Standard | | ļ | TI | 203 | 657539.1 | 2.1 | 97.2948 | 5.211 | 5.4 | ug/L | 7 | Standard | | | TI | 205 | 443571.4 | 1.1 | 97.4259 | 4.203 | 4.3 | ug/L | 7 | Standard | | | Pb | 206 | 402979.0 | 1.4 | 97.4012 | 4.566 | 4.7 | ug/L | 159 | Standard | | | Pb | 207 | 363365.6 | 1.6 | 96.8583 | 4.756 | 4.9 | ug/L | 120 | Standard | | | Pb | 208 | 1447537.3 | 2.6 | 96.5798 | 5.662 | 5.9 | ug/L | 503 | Standard | | | U | 238 | 536091.2 | 1.7 | 96.7228 | 4.518 | 4.7 | ug/L | 5 | Standard | Sample ID: QC Std 5 209
Report Date/Time: Tuesday, October 27, 2015 13:33:57 349531.7 3.4 Page 1 L> Bi Approved: October 28, 2015 Standard Page 429 ug/L 333509 | _ | | | | | | | | | | | |----|------|-----|---------|-------|---------|-------|------|------|-------|----------| | Γ | Na | 23 | 0.0 | | | | | mg/L | 0 | Standard | | | Mg | 24 | 5374.3 | 2.3 | 12.4952 | 0.727 | 5.8 | mg/L | 10 | Standard | | | K | 39 | 476.7 | 10.3 | 5.5971 | 0.668 | 11.9 | mg/L | 32 | Standard | | | Ca | 43 | 158.3 | 15.6 | 10.5953 | 4.795 | 45.3 | mg/L | 85 | Standard | | ĺ | Fe | 54 | 5168.0 | 2.6 | 12.2492 | 0.834 | 6.8 | mg/L | 82 | Standard | | | Fe | 57 | 1578.4 | 2.9 | 12.7387 | 1.033 | 8.1 | mg/L | 217 | Standard | | L> | Sc-1 | 45 | 14885.7 | 4.2 | | | | mg/L | 14524 | Standard | | | CI | 35 | 60221.5 | 1.5 | | | | ug/L | 53193 | Standard | | | Kr | 83 | 6.0 | 33.3 | | | | ug/L | 3 | Standard | | | Br | 81 | 346.7 | 15.9 | | | | ug/L | 327 | Standard | | | Р | 31 | 13669.5 | 1.9 | | | | ug/L | 13329 | Standard | | | S | 34 | 3425.4 | 6.5 | | | | ug/L | 3234 | Standard | | | Sr | 88 | 110.0 | 27.3 | | | | ug/L | 87 | Standard | | | С | 12 | 250.0 | 21.2 | | | | mg/L | 103 | Standard | | | N | 14 | 0.0 | | | | | mg/L | 0 | Standard | | | Hg | 202 | 3.3 | 173.2 | | | | mg/L | 3 | Standard | | | Dy | 164 | 19.5 | 50.0 | | | | mg/L | 10 | Standard | | | Ho-1 | 165 | 3.3 | 86.6 | | | | mg/L | 3 | Standard | | | Er | 166 | 10.0 | 100.0 | | | | mg/L | 7 | Standard | | | 1 | 127 | 3388.7 | 6.1 | | | | mg/L | 3612 | Standard | | | | | | | | | | | | | | | Analyte | Mass | QC Std % Recovery | Int Std % Recovery | Spike % Recovery | |----|---------|------|-------------------|--------------------|------------------| | Γ> | Li | 6 | | | | | | Ве | 9 | 100.669 | | | | L | Al | 27 | 0.992 | | | | Γ | Sc | 45 | | | | | | Ti | 47 | 106.637 | | | | | V | 51 | 98.929 | | | | | Cr | 52 | 98.953 | | | | | Cr | 53 | | | | | | Mn | 55 | 102.698 | | | | | Co | 59 | 102.019 | | | | | Ni | 60 | 97.949 | | | | | Cu | 65 | 99.259 | | | | | Zn | 66 | 101.635 | | | | > | Ge | 72 | | 102.714 | | | | As | 75 | 103.529 | | | | | Se | 82 | 102.034 | | | | L | Se-1 | 77 | | | | | Γ> | Ga | 71 | | | | Sample ID: QC Std 5 Report Date/Time: Tuesday, October 27, 2015 13:33:57 Page 2 Approved: October 28, 2015 | Ag 107 | │ Rb
│ Y
│> Rh
│ Mo | 85
89
103
98 | 101.330
87.574 | | |---|------------------------------------|--------------------------|-----------------------------|-----------------------| | Sb 123 95.521 Ba 135 96.578 Ce 140 Tb 159 Ho 165 Tl 203 97.295 Tl 205 Pb 206 Pb 207 Pb 208 96.580 U 238 96.723 Si 209 104.804 K 39 111.943 Ca 43 70.636 Fe 54 97.994 Fe 57 101.909 Sc-1 45 Cl 35 Kr 83 Br 81 P 31 S 34 Sr 88 C 12 N 14 Hg 202 Dy 164 Ho-1 165 Er 166 Try 127 QC Out of Limits Measurement Type Analyte Mass Out of Limits Message | Cd
 Cd
 _{>} In | 111
114
115 | | 104.771 | | TI | Sb
Ba
Ce
b | 123
135
140
159 | | | | U 238 96.723
 > Bi 209 104.804 Na 23 Mg 24 249.904 K 39 111.943 Ca 43 70.636 Fe 54 97.994 Fe 57 101.909 Sc-1 45 Cl 35 Kr 83 Br 81 P 31 S 34 Sr 88 C 12 N 14 Hg 202 Dy 164 Ho-1 165 Er 166 I 127 QC Out of Limits Measurement Type Analyte Mass Out of Limits Message | TI
 TI
 Pb
 Pb | 203
205
206
207 | | | | K | U
L> Bi
Na | 238
209
23 | 96.723 | 104.804 | | CI 35 Kr 83 Br 81 P 31 S 34 Sr 88 C 12 N 14 Hg 202 Dy 164 Ho-1 165 Er 166 I 127 QC Out of Limits Measurement Type Analyte Mass Out of Limits Message | K
 Ca
 Fe
 Fe | 39
43
54
57 | 111.943
70.636
97.994 | | | S 34 Sr 88 C 12 N 14 Hg 202 Dy 164 Ho-1 165 Er 166 I 127 QC Out of Limits Measurement Type Analyte Mass Out of Limits Message | CI
Kr
Br | 35
83
81 | | | | Dy 164 Ho-1 165 Er 166 I 127 QC Out of Limits Measurement Type Analyte Mass Out of Limits Message | S
Sr
C
N | 34
88
12
14 | | | | QC Out of Limits Measurement Type Analyte Mass Out of Limits Message | Dy
Ho-1 | 164
165
166 | | | | | QC O | | | | | QC Std 5 Al 27 | Measure | ement Type | | Out of Limits Message | | QC Std 5 Mg 24 | | | | | | QC Std 5 Ca 43 | | | • | | Sample ID: QC Std 5 Report Date/Time: Tuesday, October 27, 2015 13:33:57 Page 3 Sample ID: QC Std 6 Sample Date/Time: Tuesday, October 27, 2015 13:34:53 Number of Replicates: 3 Autosampler Position: 101 Sample Description: Method File: C:\NexIONData\Method\6020a.mth Aliquot Volume (mL): Diluted to Volume (mL): User Name: BKT Nexion300X Cumulative Autodilution Factor: 1 Nexion-ICP 200.8\6020 | | | | | | Concentrat | ion Res | ults | | | | |----|----------|------------|-----------------|------------|------------|---------|-------------|--------------|---------------|----------------------| | IS | Analyt | e Mass | Intensity | RSD | Conc. | SD | RSD | Units | Blank Intens. | Mode | | Γ> | Li | 6 | 28478.5 | 6.3 | | | | ug/L | 26270 | Standard | | ĺ | Be | 9 | 27626.8 | 2.3 | 49.2501 | 3.936 | 8.0 | ug/L | 2 | Standard | | ĺ | Al | 27 | 2876826.7 | 1.2 | 47.4399 | 3.070 | 6.5 | ug/L | 403 | Standard | | Ī | Sc | 45 | 14393.5 | 1.1 | | | | ug/L | 14524 | Standard | | ĺ | Ti | 47 | 16067.2 | 2.4 | 98.7688 | 4.669 | 4.7 | ug/L | 365 | Standard | | | ٧ | 51 | 175819.0 | 1.5 | 50.3289 | 1.885 | 3.7 | ug/L | 805 | Standard | | | Cr | 52 | 217537.5 | 2.6 | 49.4173 | 2.381 | 4.8 | ug/L | 5481 | Standard | | | Cr | 53 | 26908.9 | 3.3 | 49.5140 | 2.590 | 5.2 | ug/L | 268 | Standard | | | Mn | 55 | 170413.1 | 1.4 | 50.7275 | 1.681 | 3.3 | ug/L | 670 | Standard | | | Co | 59 | 163189.5 | 1.2 | 51.2045 | 1.690 | 3.3 | ug/L | 146 | Standard | | | Ni | 60 | 56214.1 | 1.6 | 49.2028 | 1.803 | 3.7 | ug/L | 220 | Standard | | | Cu | 65 | 54861.5 | 2.2 | 49.1526 | 2.166 | 4.4 | ug/L | 147 | Standard | | | Zn | 66 | 32724.3 | 2.4 | 49.2156 | 2.223 | 4.5 | ug/L | 211 | Standard | | > | Ge | 72 | 213374.8 | 2.3 | | | | ug/L | 210599 | Standard | | | As | 75 | 35475.2 | 1.9 | 50.0595 | 2.030 | 4.1 | ug/L | -47 | Standard | | | Se | 82 | 3010.1 | 3.5 | 50.1504 | 2.691 | 5.4 | ug/L | 15 | Standard | | L | Se-1 | 77 | 2047.5 | 2.3 | 51.4279 | 2.330 | 4.5 | ug/L | 65 | Standard | | /> | Ga | 71 | 23.3 | 81.1 | | | | mg/L | 27 | Standard | | Ĺ | Rb | 85 | 488.3 | 8.7 | | | | ug/L | 17 | Standard | | ļ | Υ | 89 | 224157.1 | 3.3 | | | | ug/L | 216672 | Standard | | Ĺ> | Rh | 103 | 16.7 | 96.4 | | | | ug/L | 18 | Standard | | ļ | Мо | 98 | 148646.6 | 0.7 | 102.6729 | 2.711 | 2.6 | ug/L | 11 | Standard | | ļ | Ag | 107 | 233533.5 | 2.0 | 48.1591 | 2.043 | 4.2 | ug/L | 55 | Standard | | ļ | Cd | 111 | 70465.0 | 1.3 | 48.4632 | 1.573 | 3.2 | mg/L | 7 | Standard | | | Cd | 114 | 170924.9 | 2.3 | 48.0890 | 2.177 | 4.5 | ug/L | 4 | Standard | | > | In | 115 | 334790.7 | 2.3 | 40.000 | 0.404 | | ug/L | 322525 | Standard | | - | Sn | 118 | 199117.3 | 3.0 | 48.2826 | 2.491 | 5.2 | ug/L | 345 | Standard | | | Sb | 123 | 186668.9 | 1.9
1.8 | 47.6694 | 1.962 | 4.1 | ug/L | 88 | Standard | | L | Ba
Ce | 135
140 | 78713.0
60.0 | 33.3 | 47.4129 | 1.913 | 4.0 | ug/L
ug/L | 12
37 | Standard
Standard | | > | Tb | 159 | 630895.5 | 1.4 | | | | ug/L
ug/L | 631826 | Standard | | L> | Но | 165 | 11.7 | 24.7 | | | | ug/L
ug/L | 3 | Standard | | i | TI | 203 | 321762.5 | 2.0 | 48.9425 | 2.043 | 4.2 | ug/L
ug/L | 7 | Standard | | i | TI | 205 | 217207.6 | 1.0 | 49.0471 | 1.482 | 3.0 | ug/L | 7 | Standard | | | Pb | 206 | 198735.8 | 1.9 | 49.3581 | 2.046 | 4.1 | ug/L | 159 | Standard | | 1 | Pb | 207 | 179832.2 | 2.0 | 49.2562 | 2.115 | 4.3 | ug/L | 120 | Standard | | i | Pb | 208 | 719155.7 | 1.7 | 49.2923 | 1.954 | 4.0 | ug/L | 503 | Standard | | i | U | 238 | 265401.7 | 1.0 | 49.2245 | 1.553 | 3.2 | ug/L | 5 | Standard | | > | Bi | 209 | 339819.2 | 2.3 | 70.2270 | 1.000 | U. <u>-</u> | ug/L | 333509 | Standard | | | | | 0000.U.L | | | | | ~g. = | 555500 | | Sample ID: QC Std 6 Report Date/Time: Tuesday, October 27, 2015 13:37:10 Page 1 Approved: October 28, 2015 | _ | | | | | | | | | | | |----|------|-----|---------|-------|--------|-------|-------|------|-------|----------| | | Na | 23 | 0.0 | | | | | mg/L | 0 | Standard | | | Mg | 24 | 2238.5 | 2.0 | 5.3508 | 0.049 | 0.9 | mg/L | 10 | Standard | | | K | 39 | 386.7 | 12.0 | 4.6514 | 0.536 | 11.5 | mg/L | 32 | Standard | | | Ca | 43 | 103.3 | 24.4 | 2.3318 | 3.989 | 171.1 | mg/L | 85 | Standard | | ĺ | Fe | 54 | 2063.7 | 7.9 | 4.9722 | 0.431 | 8.7 | mg/L | 82 | Standard | | | Fe | 57 | 670.0 | 7.4 | 4.5250 | 0.426 | 9.4 | mg/L | 217 | Standard | | L> | Sc-1 | 45 | 14393.5 | 1.1 | | | | mg/L | 14524 | Standard | | | CI | 35 | 58042.3 | 1.0 | | | | ug/L | 53193 | Standard | | | Kr | 83 | 4.3 | 70.5 | | | | ug/L | 3 | Standard | | | Br | 81 | 283.3 | 29.6 | | | | ug/L | 327 | Standard | | | Р | 31 | 15025.8 | 3.3 | | | | ug/L | 13329 | Standard | | | S | 34 | 3530.4 | 7.6 | | | | ug/L | 3234 | Standard | | | Sr | 88 | 106.7 | 5.4 | | | | ug/L | 87 | Standard | | | С | 12 | 176.7 | 33.2 | | | | mg/L | 103 | Standard | | | N | 14 | 0.0 | | | | | mg/L | 0 | Standard | | | Hg | 202 | 3.3 | 173.2 | | | | mg/L | 3 | Standard | | | Dy | 164 | 13.2 | 41.7 | | | | mg/L | 10 | Standard | | | Ho-1 | 165 | 11.7 | 24.7 | | | | mg/L | 3 | Standard | | | Er | 166 | 3.3 | 173.2 | | | | mg/L | 7 | Standard | | | 1 | 127 | 3188.7 | 3.3 | | | | mg/L | 3612 | Standard | | | | | | | | | | | | | | Analyte | Mass | QC Std % Recovery | Int Std % Recovery | Spike % Recovery | |--------------|------|-------------------|--------------------|------------------| | 「> Li | 6 | | | | | Be | 9 | 98.500 | | | | L AI |
27 | 94.880 | | | | 「 Sc | 45 | | | | | Ti | 47 | 98.769 | | | | V | 51 | 100.658 | | | | Cr | 52 | 98.835 | | | | Cr | 53 | | | | | Mn | 55 | 101.455 | | | | Co | 59 | 102.409 | | | | Ni | 60 | 98.406 | | | | Cu | 65 | 98.305 | | | | Zn | 66 | 98.431 | | | | > Ge | 72 | | 101.318 | | | As | 75 | 100.119 | | | | Se | 82 | 100.301 | | | | ∟ Se-1 | 77 | | | | | 「> Ga | 71 | | | | Sample ID: QC Std 6 Report Date/Time: Tuesday, October 27, 2015 13:37:10 Page 2 Approved: October 28, 2015 Chine I | L Rb | 85 | | | |----------------|------------|--------------|-----------------------| | ΓΥ | 89 | | | | $\lfloor_>$ Rh | 103 | | | | ГМо | 98 | 102.673 | | | Ag | 107 | 96.318 | | | Cd | 111 | 96.926 | | | Cd | 114 | | | | > In | 115 | | 103.803 | | Sn | 118 | 96.565 | | | Sb | 123 | 95.339 | | | L Ba | 135 | 94.826 | | | 「 Ce | 140 | | | | L> Tb | 159 | | | | ГНо | 165 | | | | TI | 203 | 97.885 | | | TI | 205 | | | | Pb | 206 | | | | Pb | 207 | | | | Pb | 208 | 98.585 | | | U | 238 | 98.449 | | | L> Bi | 209 | | 101.892 | | Г Na | 23 | | | | Mg | 24 | | | | K | 39 | | | | Ca | 43 | | | | Fe | 54 | | | | Fe | 57 | | | | _> Sc-1 | 45 | | | | CI | 35 | | | | Kr | 83 | | | | Br | 81 | | | | Р | 31 | | | | S | 34 | | | | Sr | 88 | | | | С | 12 | | | | N | 14 | | | | Hg | 202 | | | | Dy | 164 | | | | Ho-1 | 165 | | | | Er | 166 | | | | 1 | 127 | 4_ | | | | ut of Limi | | | | Measur | ement Type | Analyte Mass | Out of Limits Message | Sample ID: QC Std 6 Report Date/Time: Tuesday, October 27, 2015 13:37:10 Page 3 Sample ID: QC Std 7 Sample Date/Time: Tuesday, October 27, 2015 13:38:04 Number of Replicates: 3 Autosampler Position: 102 Sample Description: Method File: C:\NexIONData\Method\6020a.mth Aliquot Volume (mL): Diluted to Volume (mL): User Name: BKT Nexion300X Cumulative Autodilution Factor: 1 Nexion-ICP 200.8\6020 | | | | | | _ | _ | | | | | |-----------------------|--------|---------------|-----------|-------|---------|-------|--------|-------|---------------|----------| | Concentration Results | | | | | | | | | | | | IS | Analyt | e Mass | Intensity | RSD | Conc. | SD | RSD | Units | Blank Intens. | Mode | | Γ> | Li | 6 | 28399.9 | 1.7 | | | | ug/L | 26270 | Standard | | | Be | 9 | 55.0 | 45.5 | 0.0627 | 0.043 | 68.4 | ug/L | 2 | Standard | | L | ΑI | 27 | 4401.0 | 86.5 | 0.0514 | 0.061 | 119.2 | ug/L | 403 | Standard | | Γ | Sc | 45 | 15039.1 | 2.8 | | | | ug/L | 14524 | Standard | | | Ti | 47 | 238.7 | 11.2 | -0.6271 | 0.155 | 24.8 | ug/L | 365 | Standard | | | V | 51 | 918.6 | 17.2 | 0.0030 | 0.043 | 1440.8 | ug/L | 805 | Standard | | | Cr | 52 | 5389.6 | 3.6 | -0.0612 | 0.037 | 61.2 | ug/L | 5481 | Standard | | | Cr | 53 | 440.0 | 29.0 | 0.2842 | 0.229 | 80.7 | ug/L | 268 | Standard | | | Mn | 55 | 839.4 | 19.7 | -0.1031 | 0.047 | 45.9 | ug/L | 670 | Standard | | | Co | 59 | 369.7 | 47.5 | 0.0695 | 0.054 | 77.6 | ug/L | 146 | Standard | | | Ni | 60 | 266.7 | 20.8 | 0.0070 | 0.047 | 670.2 | ug/L | 220 | Standard | | | Cu | 65 | 227.3 | 34.5 | 0.0244 | 0.068 | 280.9 | ug/L | 147 | Standard | | | Zn | 66 | 212.7 | 28.5 | -0.3061 | 0.089 | 29.1 | ug/L | 211 | Standard | | > | Ge | 72 | 214378.0 | 0.7 | | | | ug/L | 210599 | Standard | | | As | 75 | 10.0 | 214.7 | 0.0917 | 0.030 | 32.4 | ug/L | -47 | Standard | | | Se | 82 | 22.8 | 20.3 | 0.2033 | 0.080 | 39.1 | ug/L | 15 | Standard | | L | Se-1 | 77 | 61.0 | 12.8 | 0.3225 | 0.188 | 58.2 | ug/L | 65 | Standard | | Γ> | Ga | 71 | 18.3 | 31.5 | | | | mg/L | 27 | Standard | | L | Rb | 85 | 21.7 | 66.6 | | | | ug/L | 17 | Standard | | Γ | Υ | 89 | 217532.4 | 1.7 | | | | ug/L | 216672 | Standard | | L> | Rh | 103 | 10.0 | | | | | ug/L | 18 | Standard | | Γ | Мо | 98 | 505.3 | 34.6 | 0.3528 | 0.126 | 35.7 | ug/L | 11 | Standard | | | Ag | 107 | 327.0 | 69.6 | 0.0574 | 0.048 | 84.3 | ug/L | 55 | Standard | | | Cd | 111 | 81.6 | 89.1 | 0.0509 | 0.051 | 101.0 | mg/L | 7 | Standard | | | Cd | 114 | 235.8 | 96.5 | 0.0730 | 0.066 | 90.0 | ug/L | 4 | Standard | | > | In | 115 | 329473.0 | 8.0 | | | | ug/L | 322525 | Standard | | | Sn | 118 | 716.7 | 17.8 | 0.0245 | 0.033 | 134.9 | ug/L | 345 | Standard | | | Sb | 123 | 608.3 | 15.4 | 0.1472 | 0.025 | 17.1 | ug/L | 88 | Standard | | L | Ва | 135 | 111.3 | 77.8 | 0.0445 | 0.054 | 120.8 | ug/L | 12 | Standard | | Γ | Ce | 140 | 25.0 | 91.7 | | | | ug/L | 37 | Standard | | L> | Tb | 159 | 624028.7 | 1.0 | | | | ug/L | 631826 | Standard | | Γ | Но | 165 | 11.7 | 65.5 | | | | ug/L | 3 | Standard | | | TI | 203 | 327.7 | 85.4 | 0.0468 | 0.042 | 90.2 | ug/L | 7 | Standard | | | TI | 205 | 225.0 | 68.5 | 0.0530 | 0.034 | 65.1 | ug/L | 7 | Standard | | | Pb | 206 | 390.3 | 51.3 | 0.0366 | 0.049 | 134.7 | ug/L | 159 | Standard | | | Pb | 207 | 353.7 | 54.0 | 0.0390 | 0.052 | 132.8 | ug/L | 120 | Standard | | | Pb | 208 | 1372.4 | 47.8 | 0.0396 | 0.044 | 112.2 | ug/L | 503 | Standard | | | U | 238 | 319.0 | 82.8 | 0.0543 | 0.049 | 89.5 | ug/L | 5 | Standard | | L> | Bi | 209 | 341068.1 | 1.2 | | | | ug/L | 333509 | Standard | Sample ID: QC Std 7 Report Date/Time: Tuesday, October 27, 2015 13:40:21 Page 1 Approved: October 28, 2015 | Γ | Na | 23 | 0.0 | | | | | mg/L | 0 | Standard | |----|------|-----|---------|------|---------|-------|--------|------|-------|----------| | | Mg | 24 | 18.3 | 56.8 | 0.0015 | 0.023 | 1503.7 | mg/L | 10 | Standard | | | K | 39 | 13.3 | 43.3 | -0.0516 | 0.064 | 124.2 | mg/L | 32 | Standard | | | Ca | 43 | 70.0 | 14.3 | -3.5540 | 1.825 | 51.3 | mg/L | 85 | Standard | | ĺ | Fe | 54 | 69.5 | 12.4 | 0.0310 | 0.019 | 61.3 | mg/L | 82 | Standard | | ĺ | Fe | 57 | 183.3 | 15.0 | -0.2036 | 0.203 | 99.4 | mg/L | 217 | Standard | | Ĺ> | Sc-1 | 45 | 15039.1 | 2.8 | | | | mg/L | 14524 | Standard | | | CI | 35 | 60158.5 | 0.5 | | | | ug/L | 53193 | Standard | | | Kr | 83 | 4.3 | 35.3 | | | | ug/L | 3 | Standard | | | Br | 81 | 270.0 | 9.8 | | | | ug/L | 327 | Standard | | | Р | 31 | 14523.6 | 0.8 | | | | ug/L | 13329 | Standard | | | S | 34 | 3603.8 | 2.6 | | | | ug/L | 3234 | Standard | | | Sr | 88 | 90.0 | 19.2 | | | | ug/L | 87 | Standard | | | С | 12 | 153.3 | 21.0 | | | | mg/L | 103 | Standard | | | N | 14 | 0.0 | | | | | mg/L | 0 | Standard | | | Hg | 202 | 0.0 | | | | | mg/L | 3 | Standard | | | Dy | 164 | 12.2 | 41.6 | | | | mg/L | 10 | Standard | | | Ho-1 | 165 | 11.7 | 65.5 | | | | mg/L | 3 | Standard | | | Er | 166 | 23.3 | 65.5 | | | | mg/L | 7 | Standard | | | 1 | 127 | 3878.8 | 3.9 | | | | mg/L | 3612 | Standard | | | | | | | | | | | | | | Analyte | Mass | QC Std % Recovery | Int Std % Recovery | Spike % Recovery | |---------|------|-------------------|--------------------|------------------| | 「> Li | 6 | | | | | Be | 9 | | | | | L AI | 27 | | | | | 「 Sc | 45 | | | | | Ti | 47 | | | | | V | 51 | | | | | Cr | 52 | | | | | Cr | 53 | | | | | Mn | 55 | | | | | Co | 59 | | | | | Ni | 60 | | | | | Cu | 65 | | | | | Zn | 66 | | | | | > Ge | 72 | | 101.794 | | | As | 75 | | | | | Se | 82 | | | | | ∟ Se-1 | 77 | | | | | 「⊳ Ga | 71 | | | | Sample ID: QC Std 7 Report Date/Time: Tuesday, October 27, 2015 13:40:21 Page 2 Approved: October 28, 2015 | ∟ Rb
Γ Y | 85
89 | | | | |----------------------|--------------|--------------|-----------------------|--| | ∟ _{>} Rh | 103 | | | | | Mo | 98 | | | | | Ag | 107 | | | | | Cd | 111 | | | | | Cd | 114 | | | | | | 115 | | 102.154 | | | > In
 Sn | 118 | | 102.104 | | | Sb | 123 | | | | | L Ba | 135 | | | | | ∟ Da
Γ Ce | 140 | | | | | Ce
 > Tb | 159 | | | | | [> Ho | 165 | | | | | TI | 203 | | | | | ''
 Ti | 205 | | | | | Pb | 206 | | | | | Pb | 207 | | | | | Pb | 208 | | | | | I | 238 | | | | | ∣ | 209 | | 102.266 | | | [Na | 23 | | 102.200 | | | Mg | 24 | | | | | K | 39 | | | | | Ca | 43 | | | | | Fe | 54 | | | | | Fe | 57 | | | | | Sc-1 | 45 | | | | | CI | 35 | | | | | Kr | 83 | | | | | Br | 81 | | | | | P | 31 | | | | | S | 34 | | | | | Sr | 88 | | | | | C | 12 | | | | | N | 14 | | | | | Hg | 202 | | | | | Dy | 164 | | | | | Ho-1 | 165 | | | | | Er | 166 | | | | | I | 127 | | | | | QC O | ut of Limits | | | | | | ement Type | Analyte Mass | Out of Limits Message | | | QC Std | | Ti 47 | | | | QC Std | | Se 82 | | | | QC Std | | TI 203 | | | | 30 010 | • | 200 | | | Sample ID: QC Std 7 Report Date/Time: Tuesday, October 27, 2015 13:40:21 Page 3 Sample ID: PBW 9P WG543446-02 Sample Date/Time: Tuesday, October 27, 2015 13:41:16 Number of Replicates: 3 Autosampler Position: 301 Sample Description: 1 Method File: C:\NexIONData\Method\6020a.mth Aliquot Volume (mL): Diluted to Volume (mL): User Name: BKT Nexion300X Cumulative Autodilution Factor: 1 Nexion-ICP 200.8\6020 | \sim | ncon | tration | Results | | |--------|------|----------|---------|--| | υo | ncer | itration | Results | | | | | | | | Ooncenti | ation ites | uits | | | | |------------|--------|--------|-----------|-------|----------|------------|--------|-------|---------------|----------| | IS | Analyt | e Mass | Intensity | RSD | Conc. | SD | RSD | Units | Blank Intens. | Mode | | Γ> | Li | 6 | 29812.7 | 5.2 | | | | ug/L | 26270 | Standard | | | Ве | 9 | 21.7 | 13.3 | 0.0021 | 0.006 | 291.9 | ug/L | 2 | Standard | | L | ΑI | 27 | 1253.4 | 19.1 | -0.0010 | 0.003 | 284.8 | ug/L | 403 | Standard | | Γ | Sc | 45 | 15492.9 | 7.5 | | | | ug/L | 14524 | Standard | | | Ti | 47 | 227.0 | 7.8 | -0.7549 | 0.029 | 3.8 | ug/L | 365 | Standard | | | ٧ | 51 | 791.1 | 8.7 | -0.0419 | 0.017 | 41.7 | ug/L | 805 | Standard | | | Cr | 52 | 5588.0 | 2.6 | -0.0629 | 0.058 | 91.5 | ug/L | 5481 | Standard | | | Cr | 53 | 386.7 | 9.5 | 0.1591 | 0.053 | 33.4 | ug/L | 268 | Standard | | | Mn | 55 | 1075.4 | 1.0 | -0.0440 | 0.022 | 49.6 | ug/L | 670 | Standard | | | Co | 59 | 174.0 | 9.6 | 0.0064 | 0.001 | 22.7 | ug/L | 146 | Standard | | | Ni | 60 | 230.0 | 3.4 | -0.0323 | 0.012 | 37.2 | ug/L | 220 | Standard | | | Cu | 65 | 213.3 | 6.6 | 0.0058 | 0.023 | 401.7 | ug/L | 147 | Standard | | | Zn | 66 | 1014.4 | 3.7 | 0.8557 | 0.147 | 17.1 | ug/L | 211 | Standard | | > | Ge | 72 | 223090.3 | 7.2 | | | | ug/L |
210599 | Standard | | | As | 75 | -17.6 | 221.5 | 0.0566 | 0.049 | 87.0 | ug/L | -47 | Standard | | | Se | 82 | 18.5 | 35.0 | 0.1228 | 0.118 | 96.5 | ug/L | 15 | Standard | | L | Se-1 | 77 | 57.3 | 6.6 | 0.1752 | 0.107 | 61.1 | ug/L | 65 | Standard | | Γ> | Ga | 71 | 30.0 | 33.3 | | | | mg/L | 27 | Standard | | L | Rb | 85 | 48.3 | 21.5 | | | | ug/L | 17 | Standard | | Γ | Υ | 89 | 234012.7 | 8.1 | | | | ug/L | 216672 | Standard | | L> | Rh | 103 | 13.3 | 21.7 | | | | ug/L | 18 | Standard | | Γ | Мо | 98 | 148.6 | 22.8 | 0.0960 | 0.016 | 16.7 | ug/L | 11 | Standard | | | Ag | 107 | 95.0 | 19.0 | 0.0075 | 0.003 | 36.4 | ug/L | 55 | Standard | | | Cd | 111 | 14.4 | 49.9 | 0.0030 | 0.004 | 133.1 | mg/L | 7 | Standard | | | Cd | 114 | 24.5 | 7.2 | 0.0121 | 0.001 | 7.2 | ug/L | 4 | Standard | | > | In | 115 | 347047.1 | 6.5 | | | | ug/L | 322525 | Standard | | | Sn | 118 | 578.3 | 11.4 | -0.0173 | 0.008 | 44.9 | ug/L | 345 | Standard | | | Sb | 123 | 195.3 | 30.0 | 0.0380 | 0.017 | 44.1 | ug/L | 88 | Standard | | Ĺ | Ва | 135 | 97.0 | 15.3 | 0.0324 | 0.008 | 25.2 | ug/L | 12 | Standard | | ļ | Ce | 140 | 140.0 | 25.0 | | | | ug/L | 37 | Standard | | <u>_</u> > | Tb | 159 | 660862.4 | 4.8 | | | | ug/L | 631826 | Standard | | ļ | Но | 165 | 15.0 | 0.0 | | | | ug/L | 3 | Standard | | ļ | TI | 203 | 39.7 | 75.2 | 0.0029 | 0.004 | 130.4 | ug/L | 7 | Standard | | ļ | TI | 205 | 26.7 | 28.6 | 0.0082 | 0.001 | 15.3 | ug/L | 7 | Standard | | ļ | Pb | 206 | 244.0 | 14.0 | -0.0019 | 0.005 | 240.8 | ug/L | 159 | Standard | | ļ | Pb | 207 | 200.0 | 14.4 | -0.0049 | 0.004 | 81.7 | ug/L | 120 | Standard | | ļ | Pb | 208 | 865.3 | 7.1 | 0.0030 | 0.000 | 16.3 | ug/L | 503 | Standard | | ļ | U | 238 | 25.3 | 53.6 | -0.0001 | 0.002 | 1428.8 | ug/L | 5 | Standard | | L> | Bi | 209 | 353826.3 | 7.1 | | | | ug/L | 333509 | Standard | Sample ID: PBW 9P WG543446-02 Report Date/Time: Tuesday, October 27, 2015 13:43:33 Page 1 | _ | | | | | | | | _ | _ | | |----|------|-----|---------|-------|---------|-------|-------|------|-------|----------| | | Na | 23 | 1.7 | 173.2 | | | | mg/L | 0 | Standard | | | Mg | 24 | 23.3 | 32.7 | 0.0119 | 0.018 | 148.3 | mg/L | 10 | Standard | | | K | 39 | 11.7 | 24.7 | -0.0757 | 0.023 | 29.9 | mg/L | 32 | Standard | | | Ca | 43 | 66.7 | 15.6 | -4.3983 | 1.588 | 36.1 | mg/L | 85 | Standard | | | Fe | 54 | 82.6 | 29.0 | 0.0545 | 0.040 | 73.6 | mg/L | 82 | Standard | | | Fe | 57 | 233.3 | 3.3 | 0.1998 | 0.108 | 53.9 | mg/L | 217 | Standard | | L> | Sc-1 | 45 | 15492.9 | 7.5 | | | | mg/L | 14524 | Standard | | | CI | 35 | 60304.5 | 3.5 | | | | ug/L | 53193 | Standard | | | Kr | 83 | 2.7 | 57.3 | | | | ug/L | 3 | Standard | | | Br | 81 | 363.3 | 14.1 | | | | ug/L | 327 | Standard | | | Р | 31 | 15733.2 | 1.0 | | | | ug/L | 13329 | Standard | | | S | 34 | 3713.8 | 4.3 | | | | ug/L | 3234 | Standard | | | Sr | 88 | 106.7 | 11.8 | | | | ug/L | 87 | Standard | | | С | 12 | 186.7 | 16.4 | | | | mg/L | 103 | Standard | | | N | 14 | 0.0 | | | | | mg/L | 0 | Standard | | | Hg | 202 | 0.0 | | | | | mg/L | 3 | Standard | | | Dy | 164 | -0.5 | 0.0 | | | | mg/L | 10 | Standard | | | Ho-1 | 165 | 15.0 | 0.0 | | | | mg/L | 3 | Standard | | | Er | 166 | 10.0 | | | | | mg/L | 7 | Standard | | | I | 127 | 665.0 | 22.0 | | | | mg/L | 3612 | Standard | | Analyte | Mass | QC Std % Recovery | Int Std % Recovery | Spike % Recovery | |---------|------|-------------------|--------------------|------------------| | 「⊳ Li | 6 | | 113.487 | | | Be | 9 | | | | | L AI | 27 | | | | | 「 Sc | 45 | | | | | Ti | 47 | | | | | V | 51 | | | | | Cr | 52 | | | | | Cr | 53 | | | | | Mn | 55 | | | | | Co | 59 | | | | | Ni | 60 | | | | | Cu | 65 | | | | | Zn | 66 | | | | | > Ge | 72 | | 105.931 | | | As | 75 | | | | | Se | 82 | | | | | L Se-1 | 77 | | | | | 「⊳ Ga | 71 | | | | Sample ID: PBW 9P WG543446-02 Report Date/Time: Tuesday, October 27, 2015 13:43:33 Page 2 Approved: October 28, 2015 | ∟ Rb | 85 | | | | |----------------|--------------|---------|------|-----------------------| | ΓΥ | 89 | | | | | $\lfloor_>$ Rh | 103 | | | | | Г Мо | 98 | | | | | Ag | 107 | | | | | Cd | 111 | | | | | Cd | 114 | | | | | > In | 115 | | | 107.603 | | Sn | 118 | | | | | Sb | 123 | | | | | Ва | 135 | | | | | ¯ Ce | 140 | | | | | _
> Tb | 159 | | | | | Γ Ho | 165 | | | | | į TI | 203 | | | | | į ΤΙ | 205 | | | | | Pb | 206 | | | | | Pb | 207 | | | | | Pb | 208 | | | | | Ü | 238 | | | | | Ĺ> Bi | 209 | | | 106.092 | | Г Na | 23 | | | | | Mg | 24 | | | | | K | 39 | | | | | Ca | 43 | | | | | Fe | 54 | | | | | Fe | 57 | | | | | L> Sc-1 | 45 | | | | | CI | 35 | | | | | Kr | 83 | | | | | Br | 81 | | | | | Р | 31 | | | | | S | 34 | | | | | Sr | 88 | | | | | С | 12 | | | | | N | 14 | | | | | Hg | 202 | | | | | Dy | 164 | | | | | Ho-1 | 165 | | | | | Er | 166 | | | | | 1 | 127 | | | | | QC Oi | ıt of Limits | | | | | | ment Type | Analyte | Mass | Out of Limits Message | | Ti 47 Lov | | Ti | 47 | 2 a. 5. 2 11000ago | | 0 | - | | | | Sample ID: PBW 9P WG543446-02 Report Date/Time: Tuesday, October 27, 2015 13:43:33 Page 3 Sample ID: LCSW 9P WG543446-03 Sample Date/Time: Tuesday, October 27, 2015 13:44:27 Number of Replicates: 3 Autosampler Position: 302 Sample Description: 1 Method File: C:\NexIONData\Method\6020a.mth Aliquot Volume (mL): Diluted to Volume (mL): User Name: BKT Nexion300X Cumulative Autodilution Factor: 1 Nexion-ICP 200.8\6020 ## **Concentration Results** | | | | | | 00110011414 | | u | | | | |------------|--------|--------|-----------|------|-------------|-------|-------|-------|---------------|----------| | IS | Analyt | e Mass | Intensity | RSD | Conc. | SD | RSD | Units | Blank Intens. | Mode | | Γ> | Li | 6 | 29448.6 | 2.0 | | | | ug/L | 26270 | Standard | | | Be | 9 | 28216.3 | 3.0 | 48.5056 | 2.040 | 4.2 | ug/L | 2 | Standard | | L | ΑI | 27 | 2288.5 | 14.1 | 0.0158 | 0.005 | 30.2 | ug/L | 403 | Standard | | Γ | Sc | 45 | 15574.7 | 4.1 | | | | ug/L | 14524 | Standard | | | Ti | 47 | 215.3 | 3.8 | -0.8055 | 0.028 | 3.5 | ug/L | 365 | Standard | | | ٧ | 51 | 182002.3 | 0.9 | 50.5668 | 1.330 | 2.6 | ug/L | 805 | Standard | | | Cr | 52 | 229366.6 | 1.5 | 50.5973 | 1.618 | 3.2 | ug/L | 5481 | Standard | | | Cr | 53 | 28875.8 | 3.6 | 51.5979 | 2.738 | 5.3 | ug/L | 268 | Standard | | | Mn | 55 | 176986.4 | 1.1 | 51.1348 | 0.954 | 1.9 | ug/L | 670 | Standard | | | Co | 59 | 166927.9 | 1.3 | 50.8412 | 1.529 | 3.0 | ug/L | 146 | Standard | | | Ni | 60 | 59346.0 | 1.1 | 50.4237 | 1.438 | 2.9 | ug/L | 220 | Standard | | | Cu | 65 | 58505.8 | 1.5 | 50.8763 | 1.484 | 2.9 | ug/L | 147 | Standard | | | Zn | 66 | 34685.3 | 1.3 | 50.6453 | 1.549 | 3.1 | ug/L | 211 | Standard | | > | Ge | 72 | 219787.9 | 1.7 | | | | ug/L | 210599 | Standard | | | As | 75 | 37214.0 | 1.0 | 50.9628 | 1.306 | 2.6 | ug/L | -47 | Standard | | | Se | 82 | 3156.3 | 1.7 | 51.0367 | 1.700 | 3.3 | ug/L | 15 | Standard | | L | Se-1 | 77 | 2015.8 | 3.1 | 49.0949 | 2.428 | 4.9 | ug/L | 65 | Standard | | Γ> | Ga | 71 | 35.0 | 28.6 | | | | mg/L | 27 | Standard | | L | Rb | 85 | 45.0 | 11.1 | | | | ug/L | 17 | Standard | | Γ | Υ | 89 | 229060.2 | 0.7 | | | | ug/L | 216672 | Standard | | L> | Rh | 103 | 25.0 | 20.0 | | | | ug/L | 18 | Standard | | Γ | Mo | 98 | 120.3 | 15.6 | 0.0794 | 0.013 | 15.9 | ug/L | 11 | Standard | | | Ag | 107 | 246059.0 | 0.9 | 49.8864 | 1.233 | 2.5 | ug/L | 55 | Standard | | | Cd | 111 | 73402.8 | 1.4 | 49.6446 | 1.537 | 3.1 | mg/L | 7 | Standard | | | Cd | 114 | 180073.1 | 1.4 | 49.7974 | 0.736 | 1.5 | ug/L | 4 | Standard | | > | In | 115 | 340409.8 | 1.7 | | | | ug/L | 322525 | Standard | | | Sn | 118 | 660.0 | 11.9 | 0.0053 | 0.022 | 406.1 | ug/L | 345 | Standard | | | Sb | 123 | 193282.9 | 1.5 | 48.5305 | 1.508 | 3.1 | ug/L | 88 | Standard | | Ĺ | Ва | 135 | 82288.9 | 1.9 | 48.7396 | 1.764 | 3.6 | ug/L | 12 | Standard | | ļ | Ce | 140 | 118.3 | 4.9 | | | | ug/L | 37 | Standard | | <u></u> > | Tb | 159 | 643734.7 | 1.0 | | | | ug/L | 631826 | Standard | | Γ | Но | 165 | 11.7 | 65.5 | | | | ug/L | 3 | Standard | | ļ | TI | 203 | 336406.3 | 0.5 | 49.5168 | 0.155 | 0.3 | ug/L | 7 | Standard | | ļ | TI | 205 | 222093.0 | 2.0 | 48.5389 | 0.936 | 1.9 | ug/L | 7 | Standard | | ļ | Pb | 206 | 210257.6 | 1.1 | 50.5335 | 0.515 | 1.0 | ug/L | 159 | Standard | | ļ | Pb | 207 | 181190.5 | 1.8 | 48.0218 | 0.809 | 1.7 | ug/L | 120 | Standard | | ļ | Pb | 208 | 744874.8 | 1.1 | 49.4070 | 0.520 | 1.1 | ug/L | 503 | Standard | | ļ | U | 238 | 267784.5 | 1.1 | 48.0689 | 0.446 | 0.9 | ug/L | 5 | Standard | | L> | Bi | 209 | 350939.4 | 0.2 | | | | ug/L | 333509 | Standard | Sample ID: LCSW 9P WG543446-03 Report Date/Time: Tuesday, October 27, 2015 13:46:44 Page 1 Approved: October 28, 2015 | Γ | Na | 23 | 0.0 | | | | | mg/L | 0 | Standard | |----|------|-----|---------|-------|---------|-------|-------|------|-------|----------| | | Mg | 24 | 13.3 | 57.3 | -0.0105 | 0.017 | 160.8 | mg/L | 10 | Standard | | | K | 39 | 13.3 | 78.1 | -0.0582 | 0.116 | 200.0 | mg/L | 32 | Standard | | | Ca | 43 | 100.0 | 27.8 | 0.5613 | 4.040 | 719.8 | mg/L | 85 | Standard | | | Fe | 54 | 45.8 | 34.6 | -0.0282 | 0.038 | 134.9 | mg/L | 82 | Standard | | | Fe | 57 | 193.3 | 10.8 | -0.1659 | 0.212 | 127.7 | mg/L | 217 | Standard | | L> | Sc-1 | 45 | 15574.7 | 4.1 | | | | mg/L | 14524 | Standard | | | CI | 35 | 60117.7 | 0.7 | | | | ug/L | 53193 | Standard | | | Kr | 83 | 3.3 | 17.3 | | | | ug/L | 3 | Standard | | | Br | 81 | 830.0 | 6.0 | | | | ug/L | 327 | Standard | | | Р | 31 | 15793.2 | 3.4 | | | | ug/L | 13329 | Standard | | | S | 34 | 3662.1 | 3.1 | | | | ug/L | 3234 | Standard | | | Sr | 88 | 71.7 | 20.1 | | | | ug/L | 87 | Standard | | | С | 12 | 190.0 | 13.9 | | | | mg/L | 103 | Standard | | | N | 14 | 0.0 | | | | | mg/L | 0 | Standard | | | Hg | 202 | 0.0 | | | | | mg/L | 3 | Standard | | | Dy | 164 | 9.4 | 112.0 | | | | mg/L | 10 | Standard | | | Ho-1 | 165 | 11.7 | 65.5 | | | | mg/L | 3 | Standard | | | Er | 166 | 13.3 | 86.6 | | | | mg/L | 7 | Standard | | | 1 | 127 | 785.0 | 9.0 | | | | mg/L | 3612 |
Standard | | | | | | | | | | | | | | Analyte | Mass | QC Std % Recovery | Int Std % Recovery | Spike % Recovery | |---------|------|-------------------|--------------------|------------------| | 「⊳ Li | 6 | | 112.101 | | | Be | 9 | | | | | L AI | 27 | | | | | 「 Sc | 45 | | | | | Ti | 47 | | | | | V | 51 | | | | | Cr | 52 | | | | | Cr | 53 | | | | | Mn | 55 | | | | | Co | 59 | | | | | Ni | 60 | | | | | Cu | 65 | | | | | Zn | 66 | | | | | > Ge | 72 | | 104.363 | | | As | 75 | | | | | Se | 82 | | | | | ∟ Se-1 | 77 | | | | | 「̄> Ga | 71 | | | | Sample ID: LCSW 9P WG543446-03 Report Date/Time: Tuesday, October 27, 2015 13:46:44 Page 2 Approved: October 28, 2015 | ∟ Rb | 85 | | | | |----------------|--------------|---------|------|------------------------| | ΓΥ | 89 | | | | | $\lfloor_>$ Rh | 103 | | | | | Mo | 98 | | | | | Ag | 107 | | | | | Cd | 111 | | | | | Cd | 114 | | | | |
 > In | 115 | | | 105.545 | | Sn | 118 | | | | | Sb | 123 | | | | | Ba | 135 | | | | | Ce | 140 | | | | | _> Tb | 159 | | | | | Ho | 165 | | | | | TI | 203 | | | | | TI | 205 | | | | | Pb | 206 | | | | | Pb | 207 | | | | | Pb | 208 | | | | | U | 238 | | | | | ∟> Bi | 209 | | | 105.226 | | Na | 23 | | | | | Mg | 24 | | | | | K | 39 | | | | | Ca | 43 | | | | | Fe | 54 | | | | | Fe | 57 | | | | | > Sc-1 | 45 | | | | | CI | 35 | | | | | Kr | 83 | | | | | Br | 81 | | | | | Р | 31 | | | | | S | 34 | | | | | Sr | 88 | | | | | C | 12 | | | | | N | 14 | | | | | Hg | 202 | | | | | Dy | 164 | | | | | Ho-1 | 165 | | | | | Er | 166 | | | | |
I | 127 | | | | | OC O | ıt of Limits | | | | | | | A 14 | 14 | Out of Limits Massacra | | Measure | ment Type | Analyte | Mass | Out of Limits Message | | Ti 47 Lov | wer | Ti | 47 | | Sample ID: LCSW 9P WG543446-03 Report Date/Time: Tuesday, October 27, 2015 13:46:44 Page 3 Sample ID: L1510109001 WG543446-01 Sample Date/Time: Tuesday, October 27, 2015 13:47:38 Number of Replicates: 3 Autosampler Position: 303 Sample Description: 5 Method File: C:\NexIONData\Method\6020a.mth Aliquot Volume (mL): Diluted to Volume (mL): User Name: BKT Nexion300X Cumulative Autodilution Factor: 1 Nexion-ICP 200.8\6020 | \sim | ncon | tration | Results | | |--------|------|---------|---------|--| | υu | ncen | urauon | Results | | | | | | | | Concenti | Concentration Results | | | | | |----|--------|--------|-----------|-------|----------|-----------------------|-------|-------|---------------|----------| | IS | Analyt | e Mass | Intensity | RSD | Conc. | SD | RSD | Units | Blank Intens. | Mode | | Γ> | Li | 6 | 28445.0 | 4.0 | | | | ug/L | 26270 | Standard | | | Be | 9 | 120.0 | 98.2 | 0.1747 | 0.204 | 116.6 | ug/L | 2 | Standard | | L | Αl | 27 | 378849.0 | 3.0 | 6.2226 | 0.141 | 2.3 | ug/L | 403 | Standard | | Γ | Sc | 45 | 15085.8 | 2.5 | | | | ug/L | 14524 | Standard | | | Ti | 47 | 194.7 | 9.2 | -0.9238 | 0.115 | 12.5 | ug/L | 365 | Standard | | | ٧ | 51 | 1265.1 | 43.7 | 0.0958 | 0.157 | 163.5 | ug/L | 805 | Standard | | | Cr | 52 | 6176.9 | 13.6 | 0.0950 | 0.195 | 205.4 | ug/L | 5481 | Standard | | | Cr | 53 | 518.3 | 10.3 | 0.4124 | 0.101 | 24.4 | ug/L | 268 | Standard | | | Mn | 55 | 4023.5 | 12.2 | 0.8243 | 0.147 | 17.9 | ug/L | 670 | Standard | | | Co | 59 | 662.4 | 72.0 | 0.1575 | 0.147 | 93.4 | ug/L | 146 | Standard | | | Ni | 60 | 675.0 | 31.2 | 0.3535 | 0.183 | 51.7 | ug/L | 220 | Standard | | | Cu | 65 | 1871.8 | 9.6 | 1.4643 | 0.163 | 11.1 | ug/L | 147 | Standard | | | Zn | 66 | 3199.3 | 3.0 | 4.1283 | 0.162 | 3.9 | ug/L | 211 | Standard | | > | Ge | 72 | 218491.8 | 0.6 | | | | ug/L | 210599 | Standard | | | As | 75 | 114.6 | 101.4 | 0.2357 | 0.161 | 68.1 | ug/L | -47 | Standard | | | Se | 82 | 25.8 | 46.9 | 0.2439 | 0.198 | 81.4 | ug/L | 15 | Standard | | L | Se-1 | 77 | 63.3 | 8.7 | 0.3531 | 0.147 | 41.6 | ug/L | 65 | Standard | | Γ> | Ga | 71 | 13.3 | 108.3 | | | | mg/L | 27 | Standard | | L | Rb | 85 | 656.7 | 5.8 | | | | ug/L | 17 | Standard | | Γ | Υ | 89 | 223587.9 | 1.6 | | | | ug/L | 216672 | Standard | | L> | Rh | 103 | 11.7 | 107.9 | | | | ug/L | 18 | Standard | | Γ | Мо | 98 | 91.9 | 16.5 | 0.0605 | 0.011 | 18.4 | ug/L | 11 | Standard | | | Ag | 107 | 595.4 | 106.9 | 0.1115 | 0.133 | 119.3 | ug/L | 55 | Standard | | | Cd | 111 | 206.8 | 100.2 | 0.1359 | 0.145 | 106.5 | mg/L | 7 | Standard | | | Cd | 114 | 516.6 | 113.8 | 0.1509 | 0.167 | 111.0 | ug/L | 4 | Standard | | > | In | 115 | 338361.1 | 1.7 | | | | ug/L | 322525 | Standard | | | Sn | 118 | 561.7 | 6.8 | -0.0177 | 0.007 | 39.2 | ug/L | 345 | Standard | | | Sb | 123 | 689.3 | 70.2 | 0.1647 | 0.126 | 76.6 | ug/L | 88 | Standard | | L | Ва | 135 | 10626.1 | 1.7 | 6.3110 | 0.219 | 3.5 | ug/L | 12 | Standard | | Γ | Ce | 140 | 95.0 | 22.9 | | | | ug/L | 37 | Standard | | _> | Tb | 159 | 633259.5 | 2.9 | | | | ug/L | 631826 | Standard | | Γ | Но | 165 | 13.3 | 57.3 | | | | ug/L | 3 | Standard | | | TI | 203 | 778.7 | 110.7 | 0.1164 | 0.134 | 115.0 | ug/L | 7 | Standard | | | TI | 205 | 536.7 | 119.7 | 0.1245 | 0.148 | 118.9 | ug/L | 7 | Standard | | | Pb | 206 | 1484.4 | 39.9 | 0.3080 | 0.155 | 50.3 | ug/L | 159 | Standard | | ļ | Pb | 207 | 1266.4 | 37.9 | 0.2887 | 0.139 | 48.1 | ug/L | 120 | Standard | | ļ | Pb | 208 | 5323.4 | 40.2 | 0.3102 | 0.154 | 49.8 | ug/L | 503 | Standard | | ļ | U | 238 | 1001.0 | 77.6 | 0.1815 | 0.148 | 81.8 | ug/L | 5 | Standard | | _> | Bi | 209 | 342479.3 | 2.2 | | | | ug/L | 333509 | Standard | | | | | | | | | | | | | Sample ID: L1510109001 WG543446-01 Report Date/Time: Tuesday, October 27, 2015 13:49:55 Page 1 Approved: October 28, 2015 | Γ | Na | 23 | 0.0 | | | | | mg/L | 0 | Standard | |----|------|-----|---------|-------|---------|-------|--------|------|-------|----------| | | Mg | 24 | 370.0 | 11.1 | 0.8108 | 0.102 | 12.6 | mg/L | 10 | Standard | | | K | 39 | 18.3 | 56.8 | 0.0087 | 0.125 | 1428.4 | mg/L | 32 | Standard | | | Ca | 43 | 83.3 | 54.4 | -1.4207 | 7.363 | 518.3 | mg/L | 85 | Standard | | ĺ | Fe | 54 | 72.5 | 26.3 | 0.0376 | 0.045 | 119.3 | mg/L | 82 | Standard | | ĺ | Fe | 57 | 213.3 | 12.9 | 0.0658 | 0.209 | 318.2 | mg/L | 217 | Standard | | Ĺ> | Sc-1 | 45 | 15085.8 | 2.5 | | | | mg/L | 14524 | Standard | | | CI | 35 | 60088.9 | 1.9 | | | | ug/L | 53193 | Standard | | | Kr | 83 | 5.0 | 34.6 | | | | ug/L | 3 | Standard | | | Br | 81 | 493.3 | 6.5 | | | | ug/L | 327 | Standard | | | Р | 31 | 14675.4 | 1.9 | | | | ug/L | 13329 | Standard | | | S | 34 | 3532.1 | 4.4 | | | | ug/L | 3234 | Standard | | | Sr | 88 | 118.3 | 24.8 | | | | ug/L | 87 | Standard | | | С | 12 | 150.0 | 30.6 | | | | mg/L | 103 | Standard | | | N | 14 | 0.0 | | | | | mg/L | 0 | Standard | | | Hg | 202 | 6.7 | 86.6 | | | | mg/L | 3 | Standard | | | Dy | 164 | 5.5 | 109.4 | | | | mg/L | 10 | Standard | | | Ho-1 | 165 | 13.3 | 57.3 | | | | mg/L | 3 | Standard | | | Er | 166 | 23.3 | 49.5 | | | | mg/L | 7 | Standard | | | I | 127 | 3967.2 | 1.1 | | | | mg/L | 3612 | Standard | | | | | | | | | | | | | | _ | Analyte | | QC Std % Recovery | Int Std % Recovery | Spike % Recovery | |----|---------|----|-------------------|--------------------|------------------| | Γ> | Li | 6 | | 108.281 | | | | Be | 9 | | | | | L | Al | 27 | | | | | Γ | Sc | 45 | | | | | | Ti | 47 | | | | | | V | 51 | | | | | | Cr | 52 | | | | | | Cr | 53 | | | | | | Mn | 55 | | | | | | Co | 59 | | | | | | Ni | 60 | | | | | | Cu | 65 | | | | | | Zn | 66 | | | | | > | Ge | 72 | | 103.748 | | | | As | 75 | | | | | | Se | 82 | | | | | L | Se-1 | 77 | | | | | Γ> | Ga | 71 | | | | Sample ID: L1510109001 WG543446-01 Report Date/Time: Tuesday, October 27, 2015 13:49:55 Page 2 Approved: October 28, 2015 Generated: 10/30/2015 10:11 | L Rb | 85 | | | | |----------------|--------------|---------|------|-----------------------| | ΓY | 89 | | | | | $\lfloor_>$ Rh | 103 | | | | | Mo | 98 | | | | | Ag | 107 | | | | | Cd | 111 | | | | | Cd | 114 | | | | | > In | 115 | | | 104.910 | | Sn | 118 | | | | | Sb | 123 | | | | | Ba | 135 | | | | | Ce | 140 | | | | | > Tb | 159 | | | | | Ho | 165 | | | | | TI | 203 | | | | | TI | 205 | | | | | Pb | 206 | | | | | Pb | 207 | | | | | Pb | 208 | | | | | U | 238 | | | | | ∣ | 209 | | | 102.690 | | ∫ Na | 23 | | | 102.000 | | Mg | 24 | | | | | Wg
 K | 39 | | | | | Ca | 43 | | | | | Fe | 54 | | | | | Fe | 57 | | | | | Sc-1 | 45 | | | | | Cl | 35 | | | | | Kr | 83 | | | | | Br | 81 | | | | | P | 31 | | | | | S | 34 | | | | | Sr | 88 | | | | | C | 12 | | | | | N | 14 | | | | | | 202 | | | | | Hg | | | | | | Dy
Ho-1 | 164
165 | | | | | Fr | 166 | | | | | □ [
 | 127 | | | | | 000 | | | | | | | ut of Limits | | | | | Measure | ment Type | Analyte | Mass | Out of Limits Message | | Ti 47 Lov | wer | Ti | 47 | | Sample ID: L1510109001 WG543446-01 Report Date/Time: Tuesday, October 27, 2015 13:49:55 Page 3 Sample ID: L1510109001S WG543446-06 Sample Date/Time: Tuesday, October 27, 2015 13:50:49 Number of Replicates: 3 Autosampler Position: 304 Sample Description: 5 Method File: C:\NexIONData\Method\6020a.mth Aliquot Volume (mL): Diluted to Volume (mL): User Name: BKT Nexion300X Cumulative Autodilution Factor: 1 Nexion-ICP 200.8\6020 | Concentration | Results | |---------------|---------| |---------------|---------| | | | Concentration Results | | | | | | | | | |----|--------|-----------------------|-----------|-------|---------|-------|--------|-------|---------------|----------| | IS | Analyt | e Mass | Intensity | RSD | Conc. | SD | RSD | Units | Blank Intens. | Mode | | Γ> | Li | 6 | 28600.3 | 2.9 | | | | ug/L | 26270 | Standard | | | Be | 9 | 5459.3 | 3.3 | 9.6308 | 0.069 | 0.7 | ug/L | 2 | Standard | | L | Αl | 27 | 370697.1 | 1.3 | 6.0545 | 0.105 | 1.7 | ug/L | 403 | Standard | | Γ | Sc | 45 | 14850.6 | 5.8 | | | | ug/L | 14524 | Standard | | | Ti | 47 | 174.3 | 4.1 | -1.0345 | 0.032 | 3.1 | ug/L | 365 | Standard | | | ٧ | 51 | 35524.2 | 2.7 | 9.8543 | 0.376 | 3.8 | ug/L | 805 | Standard | | | Cr | 52 | 49497.7 | 0.1 | 10.1068 | 0.142 | 1.4 | ug/L | 5481 | Standard | | | Cr | 53 | 5926.2 | 1.1 | 10.3721 | 0.055 | 0.5 | ug/L | 268 |
Standard | | | Mn | 55 | 37130.8 | 0.9 | 10.6585 | 0.134 | 1.3 | ug/L | 670 | Standard | | | Co | 59 | 32139.7 | 1.2 | 9.9412 | 0.199 | 2.0 | ug/L | 146 | Standard | | | Ni | 60 | 11854.3 | 1.7 | 10.0873 | 0.274 | 2.7 | ug/L | 220 | Standard | | | Cu | 65 | 12629.6 | 2.9 | 11.0575 | 0.435 | 3.9 | ug/L | 147 | Standard | | | Zn | 66 | 9621.7 | 8.0 | 13.8702 | 0.272 | 2.0 | ug/L | 211 | Standard | | > | Ge | 72 | 215576.6 | 1.1 | | | | ug/L | 210599 | Standard | | | As | 75 | 7265.0 | 0.2 | 10.2039 | 0.120 | 1.2 | ug/L | -47 | Standard | | | Se | 82 | 612.9 | 2.6 | 9.9599 | 0.339 | 3.4 | ug/L | 15 | Standard | | L | Se-1 | 77 | 465.7 | 4.8 | 10.6155 | 0.684 | 6.4 | ug/L | 65 | Standard | | Γ> | Ga | 71 | 28.3 | 53.9 | | | | mg/L | 27 | Standard | | L | Rb | 85 | 683.3 | 10.7 | | | | ug/L | 17 | Standard | | Γ | Υ | 89 | 219030.2 | 1.0 | | | | ug/L | 216672 | Standard | | L> | Rh | 103 | 18.3 | 15.7 | | | | ug/L | 18 | Standard | | Γ | Мо | 98 | 70.0 | 11.0 | 0.0459 | 0.005 | 9.9 | ug/L | 11 | Standard | | | Ag | 107 | 46914.5 | 0.5 | 9.6552 | 0.215 | 2.2 | ug/L | 55 | Standard | | | Cd | 111 | 13956.6 | 8.0 | 9.5853 | 0.241 | 2.5 | mg/L | 7 | Standard | | | Cd | 114 | 34567.6 | 3.1 | 9.7215 | 0.462 | 4.7 | ug/L | 4 | Standard | | > | In | 115 | 335019.8 | 1.7 | | | | ug/L | 322525 | Standard | | | Sn | 118 | 626.7 | 5.2 | -0.0005 | | 1235.5 | ug/L | 345 | Standard | | | Sb | 123 | 35971.4 | 0.6 | 9.1677 | 0.212 | 2.3 | ug/L | 88 | Standard | | L | Ва | 135 | 26087.1 | 1.3 | 15.6825 | 0.470 | 3.0 | ug/L | 12 | Standard | | Γ | Ce | 140 | 40.0 | 12.5 | | | | ug/L | 37 | Standard | | _> | Tb | 159 | 636241.9 | 2.4 | | | | ug/L | 631826 | Standard | | Γ | Но | 165 | 13.3 | 142.0 | | | | ug/L | 3 | Standard | | | TI | 203 | 64918.1 | 1.5 | 9.7407 | 0.354 | 3.6 | ug/L | 7 | Standard | | | TI | 205 | 43577.6 | 3.0 | 9.7138 | 0.476 | 4.9 | ug/L | 7 | Standard | | | Pb | 206 | 41158.8 | 1.5 | 10.0382 | 0.371 | 3.7 | ug/L | 159 | Standard | | | Pb | 207 | 35551.0 | 1.1 | 9.5606 | 0.314 | 3.3 | ug/L | 120 | Standard | | ļ | Pb | 208 | 145947.7 | 1.0 | 9.8268 | 0.329 | 3.3 | ug/L | 503 | Standard | | ļ | U | 238 | 52323.2 | 2.1 | 9.5740 | 0.417 | 4.4 | ug/L | 5 | Standard | | _> | Bi | 209 | 344380.8 | 2.3 | | | | ug/L | 333509 | Standard | | | | | | | | | | | | | Sample ID: L1510109001S WG543446-06 Report Date/Time: Tuesday, October 27, 2015 13:53:06 Page 1 | г | | 00 | 0.0 | | | | | | ^ | 01 | |----|------|-----|---------|-------|--------|-------|-------|------|-------|----------| | | Na | 23 | 0.0 | | | | | mg/L | 0 | Standard | | | Mg | 24 | 360.0 | 7.2 | 0.8028 | 0.091 | 11.3 | mg/L | 10 | Standard | | | K | 39 | 21.7 | 26.6 | 0.0565 | 0.083 | 147.3 | mg/L | 32 | Standard | | | Ca | 43 | 93.3 | 3.1 | 0.2675 | 0.689 | 257.6 | mg/L | 85 | Standard | | | Fe | 54 | 68.4 | 22.5 | 0.0300 | 0.033 | 111.7 | mg/L | 82 | Standard | | | Fe | 57 | 210.0 | 8.6 | 0.0669 | 0.075 | 111.9 | mg/L | 217 | Standard | | L> | Sc-1 | 45 | 14850.6 | 5.8 | | | | mg/L | 14524 | Standard | | | CI | 35 | 58795.9 | 1.1 | | | | ug/L | 53193 | Standard | | | Kr | 83 | 5.3 | 47.2 | | | | ug/L | 3 | Standard | | | Br | 81 | 603.3 | 15.0 | | | | ug/L | 327 | Standard | | | Р | 31 | 14572.0 | 8.0 | | | | ug/L | 13329 | Standard | | | S | 34 | 3388.7 | 5.3 | | | | ug/L | 3234 | Standard | | | Sr | 88 | 93.3 | 26.4 | | | | ug/L | 87 | Standard | | | С | 12 | 153.3 | 26.4 | | | | mg/L | 103 | Standard | | | N | 14 | 3.3 | 173.2 | | | | mg/L | 0 | Standard | | | Hg | 202 | 0.0 | | | | | mg/L | 3 | Standard | | | Dy | 164 | 6.3 | 179.8 | | | | mg/L | 10 | Standard | | | Ho-1 | 165 | 13.3 | 142.0 | | | | mg/L | 3 | Standard | | | Er | 166 | 6.7 | 86.6 | | | | mg/L | 7 | Standard | | | 1 | 127 | 3920.5 | 3.1 | | | | mg/L | 3612 | Standard | | | | | | | | | | | | | | _ | Analyte | | QC Std % Recovery | Int Std % Recovery | Spike % Recovery | |----|---------|----|-------------------|--------------------|------------------| | Γ> | Li | 6 | | 108.872 | | | | Be | 9 | | | | | L | Al | 27 | | | | | Γ | Sc | 45 | | | | | | Ti | 47 | | | | | | V | 51 | | | | | | Cr | 52 | | | | | | Cr | 53 | | | | | | Mn | 55 | | | | | | Co | 59 | | | | | | Ni | 60 | | | | | | Cu | 65 | | | | | | Zn | 66 | | | | | > | Ge | 72 | | 102.364 | | | | As | 75 | | | | | | Se | 82 | | | | | L | Se-1 | 77 | | | | | Γ> | Ga | 71 | | | | Sample ID: L1510109001S WG543446-06 Report Date/Time: Tuesday, October 27, 2015 13:53:06 Page 2 Approved: October 28, 2015 | | | 103.260 | |---------|---------------|-----------------------| | Apolyto | Mass | Out of Limits Message | | | Analyte
Ti | Analyte Mass
Ti 47 | Sample ID: L1510109001S WG543446-06 Report Date/Time: Tuesday, October 27, 2015 13:53:06 Page 3 Sample ID: L1510109001SD WG543446-07 Sample Date/Time: Tuesday, October 27, 2015 13:54:01 Number of Replicates: 3 Autosampler Position: 305 Sample Description: 5 Method File: C:\NexIONData\Method\6020a.mth Aliquot Volume (mL): Diluted to Volume (mL): User Name: BKT Nexion300X Cumulative Autodilution Factor: 1 Nexion-ICP 200.8\6020 | Concentration | Results | |---------------|---------| |---------------|---------| | | | | | | Jonetha | ation ites | uito | | | | |----|--------|--------|-----------|-------|---------|------------|------|-------|---------------|----------| | IS | Analyt | e Mass | Intensity | RSD | Conc. | SD | RSD | Units | Blank Intens. | Mode | | Γ> | Li | 6 | 28323.1 | 2.6 | | | | ug/L | 26270 | Standard | | | Be | 9 | 5270.9 | 2.5 | 9.3923 | 0.284 | 3.0 | ug/L | 2 | Standard | | L | Αl | 27 | 364784.9 | 1.8 | 6.0153 | 0.082 | 1.4 | ug/L | 403 | Standard | | Γ | Sc | 45 | 14890.6 | 1.2 | | | | ug/L | 14524 | Standard | | | Ti | 47 | 182.3 | 4.9 | -0.9886 | 0.069 | 7.0 | ug/L | 365 | Standard | | | ٧ | 51 | 36479.5 | 1.0 | 10.0840 | 0.256 | 2.5 | ug/L | 805 | Standard | | | Cr | 52 | 50009.1 | 0.4 | 10.1813 | 0.349 | 3.4 | ug/L | 5481 | Standard | | | Cr | 53 | 5912.8 | 2.1 | 10.3128 | 0.580 | 5.6 | ug/L | 268 | Standard | | | Mn | 55 | 38200.4 | 1.8 | 10.9302 | 0.221 | 2.0 | ug/L | 670 | Standard | | | Co | 59 | 33119.8 | 1.1 | 10.2048 | 0.236 | 2.3 | ug/L | 146 | Standard | | | Ni | 60 | 12054.1 | 0.5 | 10.2226 | 0.399 | 3.9 | ug/L | 220 | Standard | | | Cu | 65 | 12719.0 | 1.3 | 11.0960 | 0.505 | 4.6 | ug/L | 147 | Standard | | | Zn | 66 | 9295.5 | 1.7 | 13.3310 | 0.687 | 5.2 | ug/L | 211 | Standard | | > | Ge | 72 | 216518.9 | 3.4 | | | | ug/L | 210599 | Standard | | | As | 75 | 7361.6 | 2.0 | 10.3048 | 0.537 | 5.2 | ug/L | -47 | Standard | | | Se | 82 | 639.9 | 2.6 | 10.3731 | 0.629 | 6.1 | ug/L | 15 | Standard | | L | Se-1 | 77 | 460.3 | 1.1 | 10.4350 | 0.502 | 4.8 | ug/L | 65 | Standard | | Γ> | Ga | 71 | 15.0 | 66.7 | | | | mg/L | 27 | Standard | | L | Rb | 85 | 593.3 | 3.0 | | | | ug/L | 17 | Standard | | Γ | Υ | 89 | 225013.6 | 0.6 | | | | ug/L | 216672 | Standard | | L> | Rh | 103 | 13.3 | 94.4 | | | | ug/L | 18 | Standard | | Γ | Мо | 98 | 64.2 | 16.0 | 0.0419 | 0.007 | 16.7 | ug/L | 11 | Standard | | | Ag | 107 | 47539.1 | 0.3 | 9.7744 | 0.326 | 3.3 | ug/L | 55 | Standard | | | Cd | 111 | 14386.0 | 1.1 | 9.8698 | 0.310 | 3.1 | mg/L | 7 | Standard | | | Cd | 114 | 34903.6 | 1.5 | 9.8049 | 0.403 | 4.1 | ug/L | 4 | Standard | | > | In | 115 | 335488.6 | 3.0 | | | | ug/L | 322525 | Standard | | | Sn | 118 | 495.0 | 10.3 | -0.0327 | 0.010 | 30.8 | ug/L | 345 | Standard | | | Sb | 123 | 37014.7 | 0.5 | 9.4248 | 0.326 | 3.5 | ug/L | 88 | Standard | | L | Ва | 135 | 25425.6 | 0.9 | 15.2697 | 0.593 | 3.9 | ug/L | 12 | Standard | | Γ | Ce | 140 | 68.3 | 18.4 | | | | ug/L | 37 | Standard | | L> | Tb | 159 | 638959.4 | 3.7 | | | | ug/L | 631826 | Standard | | Γ | Но | 165 | 3.3 | 173.2 | | | | ug/L | 3 | Standard | | | TI | 203 | 65159.5 | 1.0 | 9.7375 | 0.278 | 2.9 | ug/L | 7 | Standard | | | TI | 205 | 43861.7 | 1.4 | 9.7385 | 0.375 | 3.9 | ug/L | 7 | Standard | | | Pb | 206 | 41986.1 | 1.3 | 10.1995 | 0.297 | 2.9 | ug/L | 159 | Standard | | | Pb | 207 | 35749.5 | 0.4 | 9.5762 | 0.276 | 2.9 | ug/L | 120 | Standard | | | Pb | 208 | 148065.2 | 1.0 | 9.9290 | 0.214 | 2.2 | ug/L | 503 | Standard | | | U | 238 | 52665.4 | 0.5 | 9.5963 | 0.244 | 2.5 | ug/L | 5 | Standard | | L> | Bi | 209 | 345740.5 | 2.5 | | | | ug/L | 333509 | Standard | | | | | | | | | | | | | Sample ID: L1510109001SD WG543446-07 Report Date/Time: Tuesday, October 27, 2015 13:56:18 Page 1 Approved: October 28, 2015 | г | | 00 | 4 - | 470.0 | | | | | • | 01 | |----|------|-----|---------|-------|---------|-------|-------|------|-------|----------| | | Na | 23 | 1.7 | 173.2 | | | | mg/L | 0 | Standard | | | Mg | 24 | 375.0 | 11.6 | 0.8320 | 0.091 | 10.9 | mg/L | 10 | Standard | | | K | 39 | 16.7 | 34.6 | -0.0077 | 0.072 | 930.2 | mg/L | 32 | Standard | | | Ca | 43 | 73.3 | 10.4 | -2.9417 | 1.306 | 44.4 | mg/L | 85 | Standard | | | Fe | 54 | 63.7 | 40.2 | 0.0189 | 0.062 | 327.6 | mg/L | 82 | Standard | | | Fe | 57 | 256.7 | 12.7 | 0.4960 | 0.317 | 63.9 | mg/L | 217 | Standard | | L> | Sc-1 | 45 | 14890.6 | 1.2 | | | | mg/L | 14524 | Standard | | | CI | 35 | 60542.7 | 1.4 | | | | ug/L | 53193 | Standard | | | Kr | 83 | 5.3 | 21.7 | | | | ug/L | 3 | Standard | | | Br | 81 | 616.7 | 7.7 | | | | ug/L | 327 | Standard | | | Р | 31 | 15064.2 | 1.6 | | | | ug/L | 13329 | Standard | | | S | 34 | 3417.1 | 2.6 | | | | ug/L | 3234 | Standard | | | Sr | 88 | 101.7 | 10.2 | | | | ug/L | 87 | Standard | | | С | 12 | 136.7 | 25.7 | | | | mg/L | 103 | Standard | | | N | 14 | 0.0 | | | | | mg/L | 0 | Standard | | | Hg | 202 | 3.3 | 173.2 | | | | mg/L | 3 | Standard | | | Dy | 164 | 9.0 | 5.3 | | | | mg/L | 10 | Standard | | | Ho-1 | 165 | 3.3 | 173.2 | | | | mg/L | 3 | Standard | | | Er | 166 | 20.0 | 50.0 | | | | mg/L | 7 | Standard | | | I | 127 | 3927.2 | 3.4 | | | | mg/L | 3612 | Standard | | | | | | | | | | | | | | Analyte | Mass | QC Std % Recovery | Int Std % Recovery | Spike % Recovery | |---------|------|-------------------|--------------------|------------------| | 「⊳ Li | 6 | | 107.817 | | | Be | 9 | | | | | L AI | 27 |
 | | | 「 Sc | 45 | | | | | Ti | 47 | | | | | V | 51 | | | | | Cr | 52 | | | | | Cr | 53 | | | | | Mn | 55 | | | | | Co | 59 | | | | | Ni | 60 | | | | | Cu | 65 | | | | | Zn | 66 | | | | | > Ge | 72 | | 102.811 | | | As | 75 | | | | | Se | 82 | | | | | L Se-1 | 77 | | | | | 「⊳ Ga | 71 | | | | Sample ID: L1510109001SD WG543446-07 Report Date/Time: Tuesday, October 27, 2015 13:56:18 Page 2 Approved: October 28, 2015 | L Rb | 85 | | | | |----------------|--------------|---------|------|-----------------------| | ΓΥ | 89 | | | | | $\lfloor_>$ Rh | 103 | | | | | Mo | 98 | | | | | Ag | 107 | | | | | Cd | 111 | | | | | Cd | 114 | | | | |
 > In | 115 | | | 104.020 | | Sn | 118 | | | | | Sb | 123 | | | | | L Ba | 135 | | | | | Ce | 140 | | | | | _> Tb | 159 | | | | | Ho | 165 | | | | | TI | 203 | | | | | j тı | 205 | | | | | Pb | 206 | | | | | Pb | 207 | | | | | Pb | 208 | | | | | įυ | 238 | | | | | Ĺ> Bi | 209 | | | 103.667 | | - Na | 23 | | | | | i Mg | 24 | | | | | K | 39 | | | | | Ca | 43 | | | | | Fe | 54 | | | | | Fe | 57 | | | | | L> Sc-1 | 45 | | | | | CI | 35 | | | | | Kr | 83 | | | | | Br | 81 | | | | | Р | 31 | | | | | S | 34 | | | | | Sr | 88 | | | | | С | 12 | | | | | N | 14 | | | | | Hg | 202 | | | | | Dy | 164 | | | | | Ho-1 | 165 | | | | | Er | 166 | | | | | I | 127 | | | | | QC Ot | ut of Limits | | | | | | ement Type | Analyte | Mass | Out of Limits Message | | Ti 47 Lo | | Ti | 47 | | | | | | | | Sample ID: L1510109001SD WG543446-07 Report Date/Time: Tuesday, October 27, 2015 13:56:18 Page 3 Sample ID: L1510105501 Sample Date/Time: Tuesday, October 27, 2015 13:57:13 Number of Replicates: 3 Autosampler Position: 306 Sample Description: 1 Method File: C:\NexIONData\Method\6020a.mth Aliquot Volume (mL): Diluted to Volume (mL): User Name: BKT Nexion300X Cumulative Autodilution Factor: 1 Nexion-ICP 200.8\6020 | O | | | D | .14. | |-----|------|--------|------|------| | Con | ceni | ration | Resu | IIIS | | | | | | | Ooncentrat | | uito | | | | |----|--------|--------|-----------|------|------------|-------|------|-------|---------------|----------| | IS | Analyt | e Mass | Intensity | RSD | Conc. | SD | RSD | Units | Blank Intens. | Mode | | Γ> | Li | 6 | 29942.9 | 3.1 | | | | ug/L | 26270 | Standard | | | Be | 9 | 70.0 | 37.1 | 0.0837 | 0.044 | 52.8 | ug/L | 2 | Standard | | L | Αl | 27 | 1259829.9 | 2.8 | 19.6983 | 0.434 | 2.2 | ug/L | 403 | Standard | | Γ | Sc | 45 | 16328.8 | 2.0 | | | | ug/L | 14524 | Standard | | | Ti | 47 | 1595.4 | 7.0 | 7.6124 | 0.501 | 6.6 | ug/L | 365 | Standard | | | ٧ | 51 | 2503.1 | 7.4 | 0.4400 | 0.044 | 10.0 | ug/L | 805 | Standard | | | Cr | 52 | 12082.5 | 0.2 | 1.4278 | 0.054 | 3.8 | ug/L | 5481 | Standard | | | Cr | 53 | 3162.0 | 18.4 | 5.2008 | 1.150 | 22.1 | ug/L | 268 | Standard | | | Mn | 55 | 955649.7 | 0.7 | 278.1427 | 4.480 | 1.6 | ug/L | 670 | Standard | | | Co | 59 | 6235.6 | 0.2 | 1.8583 | 0.042 | 2.2 | ug/L | 146 | Standard | | | Ni | 60 | 39993.1 | 1.3 | 33.9592 | 0.516 | 1.5 | ug/L | 220 | Standard | | | Cu | 65 | 5496.3 | 1.6 | 4.6258 | 0.125 | 2.7 | ug/L | 147 | Standard | | | Zn | 66 | 31842.1 | 0.2 | 46.5217 | 1.121 | 2.4 | ug/L | 211 | Standard | | > | Ge | 72 | 219419.2 | 2.2 | | | | ug/L | 210599 | Standard | | | As | 75 | 441.4 | 16.5 | 0.6811 | 0.085 | 12.5 | ug/L | -47 | Standard | | | Se | 82 | 95.6 | 13.5 | 1.3736 | 0.173 | 12.6 | ug/L | 15 | Standard | | L | Se-1 | 77 | 265.3 | 7.3 | 5.4044 | 0.621 | 11.5 | ug/L | 65 | Standard | | Γ> | Ga | 71 | 186.7 | 8.2 | | | | mg/L | 27 | Standard | | L | Rb | 85 | 15569.7 | 3.0 | | | | ug/L | 17 | Standard | | Γ | Υ | 89 | 227495.2 | 3.9 | | | | ug/L | 216672 | Standard | | L> | Rh | 103 | 115.0 | 19.0 | | | | ug/L | 18 | Standard | | Γ | Мо | 98 | 17618.8 | 1.1 | 12.2461 | 0.294 | 2.4 | ug/L | 11 | Standard | | | Ag | 107 | 531.3 | 12.7 | 0.0988 | 0.012 | 12.6 | ug/L | 55 | Standard | | | Cd | 111 | 347.4 | 2.5 | 0.2341 | 0.007 | 2.9 | mg/L | 7 | Standard | | | Cd | 114 | 937.7 | 8.1 | 0.2707 | 0.022 | 8.0 | ug/L | 4 | Standard | | > | In | 115 | 332582.3 | 1.3 | | | | ug/L | 322525 | Standard | | | Sn | 118 | 3443.7 | 0.2 | 0.6900 | 0.013 | 1.9 | ug/L | 345 | Standard | | | Sb | 123 | 9496.3 | 0.4 | 2.4298 | 0.037 | 1.5 | ug/L | 88 | Standard | | L | Ва | 135 | 20927.1 | 1.3 | 12.6668 | 0.325 | 2.6 | ug/L | 12 | Standard | | Γ | Ce | 140 | 3743.8 | 6.2 | | | | ug/L | 37 | Standard | | L> | Tb | 159 | 646294.9 | 1.5 | | | | ug/L | 631826 | Standard | | Γ | Но | 165 | 63.3 | 43.5 | | | | ug/L | 3 | Standard | | | TI | 203 | 214.0 | 45.6 | 0.0301 | 0.015 | 48.2 | ug/L | 7 | Standard | | | TI | 205 | 136.7 | 59.1 | 0.0335 | 0.018 | 53.5 | ug/L | 7 | Standard | | | Pb | 206 | 2555.5 | 1.3 | 0.5829 | 0.014 | 2.4 | ug/L | 159 | Standard | | | Pb | 207 | 2095.5 | 4.9 | 0.5237 | 0.024 | 4.5 | ug/L | 120 | Standard | | | Pb | 208 | 8804.7 | 2.4 | 0.5571 | 0.012 | 2.1 | ug/L | 503 | Standard | | | U | 238 | 246.7 | 43.7 | 0.0416 | 0.020 | 47.0 | ug/L | 5 | Standard | | L> | Bi | 209 | 335730.5 | 1.2 | | | | ug/L | 333509 | Standard | | | | | | | | | | | | | Sample ID: L1510105501 Report Date/Time: Tuesday, October 27, 2015 13:59:29 Page 1 | Γ | Na | 23 | 0.0 | | | | | mg/L | 0 | Standard | |----|------|-----|---------|-------|----------|-------|-------|------|-------|----------| | i | Mg | 24 | 82170.6 | 2.6 | 174.5167 | 7.901 | 4.5 | mg/L | 10 | Standard | | i | ĸ | 39 | 205.0 | 4.9 | 2.0650 | 0.156 | 7.6 | mg/L | 32 | Standard | | ĺ | Ca | 43 | 93.3 | 32.3 | -1.0310 | 4.610 | 447.1 | mg/L | 85 | Standard | | ĺ | Fe | 54 | 4076.2 | 3.5 | 8.7550 | 0.335 | 3.8 | mg/L | 82 | Standard | | | Fe | 57 | 1253.4 | 2.2 | 8.6866 | 0.375 | 4.3 | mg/L | 217 | Standard | | L> | Sc-1 | 45 | 16328.8 | 2.0 | | | | mg/L | 14524 | Standard | | | CI | 35 | 70134.0 | 1.0 | | | | ug/L | 53193 | Standard | | | Kr | 83 | 4.7 | 61.9 | | | | ug/L | 3 | Standard | | | Br | 81 | 9793.2 | 6.0 | | | | ug/L | 327 | Standard | | | Р | 31 | 19749.5 | 1.8 | | | | ug/L | 13329 | Standard | | | S | 34 | 3678.8 | 4.6 | | | | ug/L | 3234 | Standard | | | Sr | 88 | 95.0 | 27.9 | | | | ug/L | 87 | Standard | | | С | 12 | 1083.4 | 11.0 | | | | mg/L | 103 | Standard | | | N | 14 | 3.3 | 173.2 | | | | mg/L | 0 | Standard | | | Hg | 202 | 16.7 | 124.9 | | | | mg/L | 3 | Standard | | | Dy | 164 | 87.3 | 22.4 | | | | mg/L | 10 | Standard | | | Ho-1 | 165 | 63.3 | 43.5 | | | | mg/L | 3 | Standard | | | Er | 166 | 56.7 | 27.0 | | | | mg/L | 7 | Standard | | | I | 127 | 31282.3 | 4.4 | | | | mg/L | 3612 | Standard | | | Analyte | Mass | QC Std % Recovery | Int Std % Recovery | Spike % Recovery | |----|---------|------|-------------------|--------------------|------------------| | Γ> | Li | 6 | | 113.983 | | | | Be | 9 | | | | | L | Al | 27 | | | | | Γ | Sc | 45 | | | | | | Ti | 47 | | | | | | V | 51 | | | | | | Cr | 52 | | | | | | Cr | 53 | | | | | | Mn | 55 | | | | | | Co | 59 | | | | | | Ni | 60 | | | | | | Cu | 65 | | | | | | Zn | 66 | | | | | > | Ge | 72 | | 104.188 | | | | As | 75 | | | | | | Se | 82 | | | | | L | Se-1 | 77 | | | | | Γ> | Ga | 71 | | | | Sample ID: L1510105501 Report Date/Time: Tuesday, October 27, 2015 13:59:29 Page 2 Approved: October 28, 2015 | L Rb | 85 | | | | |----------------------|------------------|-----------------|------|-----------------------| | ΓY | 89 | | | | | $\lfloor_>$ Rh | 103 | | | | | - Mo | 98 | | | | | Ag | 107 | | | | | Cd | 111 | | | | | Cd | 114 | | | | |
 > In | 115 | | | 103.118 | | Sn | 118 | | | | | Sb | 123 | | | | | Ва | 135 | | | | | Ce | 140 | | | | | _> Tb | 159 | | | | | Ho | 165 | | | | | TI | 203 | | | | | TI | 205 | | | | | Pb | 206 | | | | | Pb | 207 | | | | | Pb | 208 | | | | | Ü | 238 | | | | | Ĺ _{>} Bi | 209 | | | 100.666 | | Na | 23 | | | | | Mg | 24 | | | | | K | 39 | | | | | Ca | 43 | | | | | Fe | 54 | | | | | Fe | 57 | | | | | _> Sc-1 | 45 | | | | | CI | 35 | | | | | Kr | 83 | | | | | Br | 81 | | | | | Р | 31 | | | | | S | 34 | | | | | Sr | 88 | | | | | С | 12 | | | | | N | 14 | | | | | Hg | 202 | | | | | Dy | 164 | | | | | Ho-1 | 165 | | | | | Er | 166 | | | | | I | 127 | | | | | QC Ot | ut of Limits | | | | | | Measurement Type | | lass | Out of Limits Message | | | pper, S, EEE | Analyte M
Mn | 55 | | | со орран, с, === | | | | | Sample ID: L1510105501 Report Date/Time: Tuesday, October 27, 2015 13:59:29 Page 3 Approved: October 28, 2015 Sample ID: L1510105501PS WG543486-03 Sample Date/Time: Tuesday, October 27, 2015 14:00:24 Number of Replicates: 3 Autosampler Position: 307 Sample Description: 1 Method File: C:\NexIONData\Method\6020a.mth Aliquot Volume (mL): Diluted to Volume (mL): User Name: BKT Nexion300X Cumulative Autodilution Factor: 1 Nexion-ICP 200.8\6020 | Concentration | Results | |---------------|---------| |---------------|---------| | | | | | | Concentia | non ves | นแจ | | | | |----|--------|--------|-----------|------|-----------|---------|------|-------|---------------|----------| | IS | Analyt | e Mass | Intensity | RSD | Conc. | SD | RSD | Units | Blank Intens. | Mode | | Γ> | Li | 6 | 28239.6 | 3.2 | | | | ug/L | 26270 | Standard | | | Be | 9 | 29298.3 | 1.0 | 52.5477 | 2.125 | 4.0 | ug/L | 2 | Standard | | L | Αl | 27 | 1247161.8 | 1.1 | 20.6853 | 0.629 | 3.0 | ug/L | 403 | Standard | | Γ | Sc | 45 | 14733.8 | 3.3 | | | | ug/L | 14524 | Standard | | | Ti | 47 | 1482.7 | 10.9 | 7.3875 | 0.985 | 13.3 | ug/L | 365 | Standard | | | V | 51 | 186905.8 | 0.2 | 54.6752 | 1.332 | 2.4 | ug/L | 805 | Standard | | | Cr | 52 | 235590.8 | 0.6 | 54.8082 | 1.773 | 3.2 | ug/L | 5481 | Standard | | | Cr | 53 | 31442.6 | 2.3 | 59.1941 | 1.995 | 3.4 | ug/L | 268 | Standard | | | Mn | 55 | 1127798.0 | 1.4 | 344.9445 | 5.995 | 1.7 | ug/L | 670 | Standard | | | Co | 59 | 180826.0 | 0.3 | 57.9724 | 1.646 | 2.8 | ug/L | 146 | Standard | | | Ni | 60 | 97925.1 | 0.6 | 87.7437 | 2.760 | 3.1 | ug/L | 220 | Standard | | | Cu | 65 | 63394.7 | 1.2 | 58.0515 | 1.878 | 3.2 | ug/L | 147 | Standard | | | Zn | 66 | 66530.1 | 0.7 | 102.8674 | 2.057 | 2.0 | ug/L | 211 | Standard | | > | Ge
 72 | 208855.3 | 2.6 | | | | ug/L | 210599 | Standard | | | As | 75 | 39984.9 | 0.3 | 57.6217 | 1.412 | 2.5 | ug/L | -47 | Standard | | | Se | 82 | 3447.8 | 0.6 | 58.7042 | 1.817 | 3.1 | ug/L | 15 | Standard | | L | Se-1 | 77 | 2475.9 | 1.7 | 63.8302 | 2.778 | 4.4 | ug/L | 65 | Standard | | Γ> | Ga | 71 | 193.3 | 18.3 | | | | mg/L | 27 | Standard | | L | Rb | 85 | 15351.1 | 2.0 | | | | ug/L | 17 | Standard | | Γ | Υ | 89 | 217493.5 | 4.3 | | | | ug/L | 216672 | Standard | | L> | Rh | 103 | 138.3 | 21.2 | | | | ug/L | 18 | Standard | | Γ | Мо | 98 | 17626.6 | 0.6 | 12.8834 | 0.518 | 4.0 | ug/L | 11 | Standard | | | Ag | 107 | 229731.7 | 1.2 | 50.1088 | 1.212 | 2.4 | ug/L | 55 | Standard | | | Cd | 111 | 76133.3 | 8.0 | 55.3974 | 1.536 | 2.8 | mg/L | 7 | Standard | | | Cd | 114 | 182509.8 | 1.5 | 54.3320 | 2.448 | 4.5 | ug/L | 4 | Standard | | > | In | 115 | 316494.1 | 3.4 | | | | ug/L | 322525 | Standard | | | Sn | 118 | 3447.1 | 1.2 | 0.7344 | 0.038 | 5.2 | ug/L | 345 | Standard | | | Sb | 123 | 207247.2 | 1.3 | 55.9777 | 1.185 | 2.1 | ug/L | 88 | Standard | | L | Ва | 135 | 104891.2 | 0.3 | 66.8532 | 2.238 | 3.3 | ug/L | 12 | Standard | | Γ | Ce | 140 | 3640.4 | 2.5 | | | | ug/L | 37 | Standard | | _> | Tb | 159 | 610141.1 | 4.4 | | | | ug/L | 631826 | Standard | | Γ | Но | 165 | 38.3 | 54.3 | | | | ug/L | 3 | Standard | | | TI | 203 | 332026.5 | 0.1 | 54.2697 | 1.436 | 2.6 | ug/L | 7 | Standard | | | TI | 205 | 228755.9 | 1.7 | 55.5222 | 2.027 | 3.7 | ug/L | 7 | Standard | | | Pb | 206 | 208217.0 | 1.0 | 55.5736 | 1.422 | 2.6 | ug/L | 159 | Standard | | ļ | Pb | 207 | 187986.3 | 0.5 | 55.3374 | 1.646 | 3.0 | ug/L | 120 | Standard | | ļ | Pb | 208 | 747755.7 | 0.7 | 55.0819 | 1.505 | 2.7 | ug/L | 503 | Standard | | ļ | U | 238 | 276900.9 | 1.9 | 55.1855 | 1.241 | 2.2 | ug/L | 5 | Standard | | _> | Bi | 209 | 316188.3 | 2.7 | | | | ug/L | 333509 | Standard | | | | | | | | | | | | | Sample ID: L1510105501PS WG543486-03 Report Date/Time: Tuesday, October 27, 2015 14:02:41 Page 1 Approved: October 28, 2015 | Γ | Na | 23 | 0.0 | | | | | mg/L | 0 | Standard | |----|------|-----|---------|------|----------|-------|------|------|-------|----------| | İ | Mg | 24 | 81981.2 | 1.5 | 192.9763 | 6.296 | 3.3 | mg/L | 10 | Standard | | | K | 39 | 158.3 | 11.1 | 1.7328 | 0.168 | 9.7 | mg/L | 32 | Standard | | | Ca | 43 | 98.3 | 2.9 | 1.1771 | 0.885 | 75.1 | mg/L | 85 | Standard | | | Fe | 54 | 3886.4 | 7.2 | 9.2708 | 0.863 | 9.3 | mg/L | 82 | Standard | | | Fe | 57 | 1221.7 | 8.4 | 9.5289 | 0.853 | 8.9 | mg/L | 217 | Standard | | L> | Sc-1 | 45 | 14733.8 | 3.3 | | | | mg/L | 14524 | Standard | | | CI | 35 | 72466.3 | 2.6 | | | | ug/L | 53193 | Standard | | | Kr | 83 | 1.7 | 69.3 | | | | ug/L | 3 | Standard | | | Br | 81 | 9449.6 | 5.0 | | | | ug/L | 327 | Standard | | | Р | 31 | 19934.8 | 5.1 | | | | ug/L | 13329 | Standard | | | S | 34 | 3537.1 | 3.7 | | | | ug/L | 3234 | Standard | | | Sr | 88 | 121.7 | 13.2 | | | | ug/L | 87 | Standard | | | С | 12 | 1056.7 | 9.5 | | | | mg/L | 103 | Standard | | | N | 14 | 0.0 | | | | | mg/L | 0 | Standard | | | Hg | 202 | 36.7 | 41.7 | | | | mg/L | 3 | Standard | | | Dy | 164 | 91.4 | 12.2 | | | | mg/L | 10 | Standard | | | Ho-1 | 165 | 38.3 | 54.3 | | | | mg/L | 3 | Standard | | | Er | 166 | 40.0 | 25.0 | | | | mg/L | 7 | Standard | | | I | 127 | 31584.6 | 2.3 | | | | mg/L | 3612 | Standard | | Analyte | | QC Std % Recovery | Int Std % Recovery | Spike % Recovery | |---------|----|-------------------|--------------------|------------------| | 「> Li | 6 | | 107.499 | | | Be | 9 | | | | | L AI | 27 | | | | | 「 Sc | 45 | | | | | Ti | 47 | | | | | V | 51 | | | | | Cr | 52 | | | | | Cr | 53 | | | | | Mn | 55 | | | | | Co | 59 | | | | | Ni | 60 | | | | | Cu | 65 | | | | | Zn | 66 | | | | | > Ge | 72 | | 99.172 | | | As | 75 | | | | | Se | 82 | | | | | L Se-1 | 77 | | | | | 「̄> Ga | 71 | | | | **Sample ID: L1510105501PS WG543486-03**Report Date/Time: Tuesday, October 27, 2015 14:02:41 Page 2 Approved: October 28, 2015 | L | Rb | 85 | | | | |----|---------------------|------------|---------|------|-----------------------| | Γ | Υ | 89 | | | | | _> | Rh | 103 | | | | | Γ | Мо | 98 | | | | | | Ag | 107 | | | | | | Cd | 111 | | | | | | Cd | 114 | | | | | > | In | 115 | | | 98.130 | | | Sn | 118 | | | | | | Sb | 123 | | | | | L | Ва | 135 | | | | | Γ | Ce | 140 | | | | | L> | Tb | 159 | | | | | Γ | Но | 165 | | | | | | TI | 203 | | | | | | TI | 205 | | | | | | Pb | 206 | | | | | | Pb | 207 | | | | | | Pb | 208 | | | | | | U | 238 | | | | | _> | Bi | 209 | | | 94.806 | | Γ | Na | 23 | | | | | | Mg | 24 | | | | | | K | 39 | | | | | ļ | Ca | 43 | | | | | ļ | Fe | 54 | | | | | ļ | Fe | 57 | | | | | _> | Sc-1 | 45 | | | | | | CI | 35 | | | | | | Kr | 83 | | | | | | Br | 81 | | | | | | P | 31 | | | | | | S | 34 | | | | | | Sr | 88 | | | | | | C | 12 | | | | | | N | 14 | | | | | | Hg | 202 | | | | | | Dy | 164 | | | | | | Ho-1 | 165 | | | | | | Er | 166 | | | | | | 00.0-4 | 127 | | | | | | | of Limits | | | | | | Measurem | | Analyte | Mass | Out of Limits Message | | | Mn 55 Upper, S, EEE | | Mn | 55 | | | | Zn 66 Uppe | er, S, EEE | Zn | 66 | | **Sample ID: L1510105501PS WG543486-03**Report Date/Time: Tuesday, October 27, 2015 14:02:41 Page 3 Approved: October 28, 2015 Sample ID: L1510105501SDL WG543486-04 Sample Date/Time: Tuesday, October 27, 2015 14:03:35 Number of Replicates: 3 Autosampler Position: 308 Sample Description: 5 Method File: C:\NexIONData\Method\6020a.mth Aliquot Volume (mL): Diluted to Volume (mL): User Name: BKT Nexion300X Cumulative Autodilution Factor: 1 Nexion-ICP 200.8\6020 | Concentration | Results | |---------------|---------| |---------------|---------| | | | | | | | Concentia | non ves | นแจ | | | | |-----|----|--------|--------|-----------|------|-----------|---------|------|-------|---------------|----------| | - 1 | S | Analyt | e Mass | Intensity | RSD | Conc. | SD | RSD | Units | Blank Intens. | Mode | | | > | Li | 6 | 27959.1 | 3.0 | | | | ug/L | 26270 | Standard | | | | Be | 9 | 30.0 | 16.7 | 0.0194 | 0.008 | 41.7 | ug/L | 2 | Standard | | L | | Al | 27 | 248998.3 | 2.1 | 4.1533 | 0.064 | 1.5 | ug/L | 403 | Standard | | | | Sc | 45 | 15633.1 | 1.9 | | | | ug/L | 14524 | Standard | | | | Ti | 47 | 452.7 | 6.2 | 0.6999 | 0.203 | 29.0 | ug/L | 365 | Standard | | | | V | 51 | 1037.1 | 7.2 | 0.0359 | 0.022 | 60.6 | ug/L | 805 | Standard | | | | Cr | 52 | 6765.8 | 2.6 | 0.2520 | 0.047 | 18.5 | ug/L | 5481 | Standard | | | | Cr | 53 | 1525.1 | 6.0 | 2.2800 | 0.145 | 6.3 | ug/L | 268 | Standard | | | | Mn | 55 | 191754.1 | 2.8 | 56.6096 | 2.175 | 3.8 | ug/L | 670 | Standard | | | | Co | 59 | 1383.4 | 6.8 | 0.3851 | 0.036 | 9.4 | ug/L | 146 | Standard | | | | Ni | 60 | 8185.2 | 2.3 | 6.9062 | 0.242 | 3.5 | ug/L | 220 | Standard | | | | Cu | 65 | 1254.1 | 1.7 | 0.9386 | 0.031 | 3.3 | ug/L | 147 | Standard | | | | Zn | 66 | 7223.4 | 2.7 | 10.2747 | 0.443 | 4.3 | ug/L | 211 | Standard | | | > | Ge | 72 | 215271.4 | 1.7 | | | | ug/L | 210599 | Standard | | | | As | 75 | 98.2 | 38.0 | 0.2147 | 0.051 | 23.8 | ug/L | -47 | Standard | | | | Se | 82 | 37.4 | 22.4 | 0.4438 | 0.144 | 32.4 | ug/L | 15 | Standard | | L | | Se-1 | 77 | 122.3 | 3.7 | 1.8789 | 0.065 | 3.4 | ug/L | 65 | Standard | | Γ | > | Ga | 71 | 61.7 | 18.7 | | | | mg/L | 27 | Standard | | L | | Rb | 85 | 3125.3 | 6.5 | | | | ug/L | 17 | Standard | | Γ | | Υ | 89 | 226719.9 | 3.4 | | | | ug/L | 216672 | Standard | | L | > | Rh | 103 | 41.7 | 6.9 | | | | ug/L | 18 | Standard | | | | Мо | 98 | 3498.7 | 3.4 | 2.3856 | 0.109 | 4.6 | ug/L | 11 | Standard | | | | Ag | 107 | 137.0 | 5.7 | 0.0165 | 0.001 | 6.8 | ug/L | 55 | Standard | | | | Cd | 111 | 86.6 | 9.2 | 0.0525 | 0.005 | 9.3 | mg/L | 7 | Standard | | | | Cd | 114 | 179.5 | 6.8 | 0.0553 | 0.004 | 7.8 | ug/L | 4 | Standard | | | > | In | 115 | 338836.7 | 1.8 | | | | ug/L | 322525 | Standard | | | | Sn | 118 | 1011.7 | 5.5 | 0.0903 | 0.015 | 16.1 | ug/L | 345 | Standard | | | | Sb | 123 | 2301.5 | 2.0 | 0.5699 | 0.016 | 2.8 | ug/L | 88 | Standard | | L | : | Ва | 135 | 4178.6 | 2.1 | 2.4633 | 0.070 | 2.8 | ug/L | 12 | Standard | | ļ | | Ce | 140 | 781.7 | 13.9 | | | | ug/L | 37 | Standard | | L | > | Tb | 159 | 639370.6 | 1.7 | | | | ug/L | 631826 | Standard | | ļ | | Но | 165 | 15.0 | 33.3 | | | | ug/L | 3 | Standard | | ļ | | TI | 203 | 130.0 | 9.1 | 0.0168 | 0.002 | 9.0 | ug/L | 7 | Standard | | ļ | | TI | 205 | 123.3 | 40.0 | 0.0299 | 0.011 | 35.2 | ug/L | 7 | Standard | | | | Pb | 206 | 679.7 | 3.2 | 0.1071 | 0.008 | 7.1 | ug/L | 159 | Standard | | | | Pb | 207 | 573.3 | 3.1 | 0.0980 | 0.007 | 6.8 | ug/L | 120 | Standard | | ļ | | Pb | 208 | 2393.4 | 1.9 | 0.1083 | 0.001 | 0.9 | ug/L | 503 | Standard | | ļ | | U | 238 | 68.7 | 36.1 | 0.0080 | 0.004 | 54.0 | ug/L | 5 | Standard | | L | .> | Bi | 209 | 343650.7 | 1.6 | | | | ug/L | 333509 | Standard | | | | | | | | | | | | | | Sample ID: L1510105501SDL WG543486-04 Report Date/Time: Tuesday, October 27, 2015 14:05:52 Page 1 Approved: October 28, 2015 | Γ | Na | 23 | 0.0 | | | | | mg/L | 0 | Standard | |----|------|-----|---------|-------|---------|-------|-------|------|-------|----------| | | Mg | 24 | 16285.4 | 3.0 | 36.0955 | 1.776 | 4.9 | mg/L | 10 | Standard | | | K | 39 | 30.0 | 44.1 | 0.1362 | 0.151 | 110.7 | mg/L | 32 | Standard | | | Ca | 43 | 61.7 | 26.1 | -5.2653 | 2.314 | 43.9 | mg/L | 85 | Standard | | ĺ | Fe | 54 | 892.7 | 1.8 | 1.9000 | 0.059 | 3.1 | mg/L | 82 | Standard | | ĺ | Fe | 57 | 383.3 | 15.6 | 1.5019 | 0.571 | 38.0 | mg/L | 217 | Standard | | L> | Sc-1 | 45 | 15633.1 | 1.9 | | | | mg/L | 14524 | Standard | | | CI | 35 | 64679.1 | 1.3 | | | | ug/L | 53193 | Standard | | | Kr | 83 | 3.0 | 33.3 | | | | ug/L | 3 | Standard | | | Br | 81 | 2323.5 | 11.9 | | | | ug/L | 327 | Standard | | | Р | 31 | 15564.7 | 0.8 | | | | ug/L | 13329 | Standard | | | S | 34 | 3522.1 | 1.0 | | | | ug/L | 3234 | Standard | | | Sr | 88 | 100.0 | 34.6 | | | | ug/L | 87 | Standard | | | С | 12 | 290.0 | 28.2 | | | | mg/L |
103 | Standard | | | N | 14 | 0.0 | | | | | mg/L | 0 | Standard | | | Hg | 202 | 3.3 | 173.2 | | | | mg/L | 3 | Standard | | | Dy | 164 | 12.2 | 129.3 | | | | mg/L | 10 | Standard | | | Ho-1 | 165 | 15.0 | 33.3 | | | | mg/L | 3 | Standard | | | Er | 166 | 23.3 | 49.5 | | | | mg/L | 7 | Standard | | | I | 127 | 9159.4 | 2.9 | | | | mg/L | 3612 | Standard | | | | | | | | | | | | | | _ | Analyte | | QC Std % Recovery | Int Std % Recovery | Spike % Recovery | |----|---------|----|-------------------|--------------------|------------------| | Γ> | Li | 6 | | 106.431 | | | | Be | 9 | | | | | L | Al | 27 | | | | | Γ | Sc | 45 | | | | | | Ti | 47 | | | | | | V | 51 | | | | | | Cr | 52 | | | | | | Cr | 53 | | | | | | Mn | 55 | | | | | | Co | 59 | | | | | | Ni | 60 | | | | | | Cu | 65 | | | | | | Zn | 66 | | | | | > | Ge | 72 | | 102.219 | | | | As | 75 | | | | | | Se | 82 | | | | | L | Se-1 | 77 | | | | | Γ> | Ga | 71 | | | | **Sample ID: L1510105501SDL WG543486-04**Report Date/Time: Tuesday, October 27, 2015 14:05:52 Page 2 Approved: October 28, 2015 | _ Rb | 85 | | | | |----------------|------------------|--|------|-----------------------| | ΓΥ | 89 | | | | | $\lfloor_>$ Rh | 103 | | | | | ГМо | 98 | | | | | Ag | 107 | | | | | Cd | 111 | | | | | Cd | 114 | | | | | > In | 115 | | | 105.058 | | Sn | 118 | | | | | Sb | 123 | | | | | ∟ Ba | 135 | | | | | 「 Ce | 140 | | | | | $\lfloor > Tb$ | 159 | | | | | Г Ho | 165 | | | | | TI | 203 | | | | | TI | 205 | | | | | Pb | 206 | | | | | Pb | 207 | | | | | Pb | 208 | | | | | U | 238 | | | | | L> Bi | 209 | | | 103.041 | | 「Na | 23 | | | | | Mg | 24 | | | | | K | 39 | | | | | Ca | 43 | | | | | Fe | 54 | | | | | Fe | 57 | | | | | _> Sc-1 | | | | | | CI | 35 | | | | | Kr | 83 | | | | | Br | 81 | | | | | Р | 31 | | | | | S | 34 | | | | | Sr | 88 | | | | | С | 12 | | | | | N | 14 | | | | | Hg | 202 | | | | | Dy | 164 | | | | | Ho-1 | | | | | | Er | 166 | | | | | I | 127 | | | | | | Out of Limits | | | | | Meas | Measurement Type | | Mass | Out of Limits Message | **Sample ID: L1510105501SDL WG543486-04**Report Date/Time: Tuesday, October 27, 2015 14:05:52 Page 3 Approved: October 28, 2015 Sample ID: L1510105501SDL WG543486-04 Sample Date/Time: Tuesday, October 27, 2015 14:06:47 Number of Replicates: 3 Autosampler Position: 309 Sample Description: 25 Method File: C:\NexIONData\Method\6020a.mth Aliquot Volume (mL): Diluted to Volume (mL): User Name: BKT Nexion300X Cumulative Autodilution Factor: 1 Nexion-ICP 200.8\6020 | 0 | ncon | tration | Results | | |----|------|----------|---------|--| | Lα | ncen | itration | Results | | | | | | | | Ooncenti | ation ites | uito | | | | |------------|--------|--------|-----------|-------|----------|------------|-------|-------|---------------|----------| | IS | Analyt | e Mass | Intensity | RSD | Conc. | SD | RSD | Units | Blank Intens. | Mode | | Γ> | Li | 6 | 28323.2 | 5.3 | | | | ug/L | 26270 | Standard | | | Be | 9 | 13.3 | 78.1 | -0.0116 | 0.017 | 146.6 | ug/L | 2 | Standard | | L | Αl | 27 | 49288.4 | 8.0 | 0.7962 | 0.040 | 5.0 | ug/L | 403 | Standard | | Γ | Sc | 45 | 15579.7 | 2.6 | | | | ug/L | 14524 | Standard | | | Ti | 47 | 183.0 | 8.3 | -0.9889 | 0.110 | 11.2 | ug/L | 365 | Standard | | | ٧ | 51 | 873.8 | 6.3 | -0.0132 | 0.013 | 98.4 | ug/L | 805 | Standard | | | Cr | 52 | 5860.5 | 1.9 | 0.0291 | 0.008 | 27.7 | ug/L | 5481 | Standard | | | Cr | 53 | 718.4 | 4.1 | 0.7816 | 0.053 | 6.7 | ug/L | 268 | Standard | | | Mn | 55 | 39160.2 | 1.9 | 11.1610 | 0.159 | 1.4 | ug/L | 670 | Standard | | | Co | 59 | 393.7 | 2.5 | 0.0755 | 0.004 | 5.4 | ug/L | 146 | Standard | | | Ni | 60 | 1812.8 | 2.9 | 1.3377 | 0.055 | 4.1 | ug/L | 220 | Standard | | | Cu | 65 | 398.7 | 6.7 | 0.1728 | 0.020 | 11.7 | ug/L | 147 | Standard | | | Zn | 66 | 2093.5 | 3.8 | 2.5006 | 0.156 | 6.2 | ug/L | 211 | Standard | | > | Ge | 72 | 217431.0 | 1.7 | | | | ug/L | 210599 | Standard | | | As | 75 | 19.1 | 104.6 | 0.1046 | 0.028 | 26.6 | ug/L | -47 | Standard | | | Se | 82 | 20.6 | 11.1 | 0.1601 | 0.035 | 21.8 | ug/L | 15 | Standard | | L | Se-1 | 77 | 72.3 | 5.2 | 0.5874 | 0.092 | 15.7 | ug/L | 65 | Standard | | Γ> | Ga | 71 | 30.0 | 16.7 | | | | mg/L | 27 | Standard | | L | Rb | 85 | 638.3 | 7.7 | | | | ug/L | 17 | Standard | | Γ | Υ | 89 | 223009.4 | 4.2 | | | | ug/L | 216672 | Standard | | L> | Rh | 103 | 28.3 | 20.4 | | | | ug/L | 18 | Standard | | Γ | Mo | 98 | 712.2 | 6.9 | 0.4920 | 0.038 | 7.7 | ug/L | 11 | Standard | | | Ag | 107 | 76.7 | 10.1 | 0.0045 | 0.002 | 34.8 | ug/L | 55 | Standard | | | Cd | 111 | 15.8 | 23.8 | 0.0045 | 0.003 | 56.3 | mg/L | 7 | Standard | | | Cd | 114 | 54.7 | 21.8 | 0.0208 | 0.003 | 15.3 | ug/L | 4 | Standard | | > | In | 115 | 333214.5 | 1.2 | | | | ug/L | 322525 | Standard | | | Sn | 118 | 633.3 | 4.0 | 0.0019 | 0.005 | 232.5 | ug/L | 345 | Standard | | | Sb | 123 | 474.7 | 10.1 | 0.1111 | 0.014 | 12.2 | ug/L | 88 | Standard | | Ĺ | Ва | 135 | 880.7 | 2.9 | 0.5091 | 0.018 | 3.5 | ug/L | 12 | Standard | | ļ | Ce | 140 | 165.0 | 15.7 | | | | ug/L | 37 | Standard | | <u>_</u> > | Tb | 159 | 637269.9 | 1.0 | | | | ug/L | 631826 | Standard | | ļ | Но | 165 | 10.0 | 50.0 | | | | ug/L | 3 | Standard | | ļ | TI | 203 | 61.7 | 11.4 | 0.0066 | 0.001 | 17.3 | ug/L | 7 | Standard | | ļ | TI | 205 | 55.0 | 18.2 | 0.0148 | 0.002 | 15.6 | ug/L | 7 | Standard | | ļ | Pb | 206 | 289.0 | 3.7 | 0.0111 | 0.002 | 16.6 | ug/L | 159 | Standard | | ļ | Pb | 207 | 278.3 | 14.6 | 0.0181 | 0.011 | 60.9 | ug/L | 120 | Standard | | ļ | Pb | 208 | 1079.3 | 3.4 | 0.0192 | 0.002 | 8.8 | ug/L | 503 | Standard | | ļ | U | 238 | 16.0 | 43.8 | -0.0016 | 0.001 | 75.5 | ug/L | 5 | Standard | | L> | Bi | 209 | 343304.3 | 1.5 | | | | ug/L | 333509 | Standard | Sample ID: L1510105501SDL WG543486-04 Report Date/Time: Tuesday, October 27, 2015 14:09:04 Page 1 | _ | | | | | | | | _ | | | |----|------|-----|---------|-------|---------|-------|------|------|-------|----------| | | Na | 23 | 1.7 | 173.2 | | | | mg/L | 0 | Standard | | | Mg | 24 | 3213.7 | 3.9 | 7.1110 | 0.222 | 3.1 | mg/L | 10 | Standard | | | K | 39 | 35.0 | 37.8 | 0.1944 | 0.147 | 75.6 | mg/L | 32 | Standard | | | Ca | 43 | 41.7 | 18.3 | -8.2491 | 1.038 | 12.6 | mg/L | 85 | Standard | | | Fe | 54 | 243.0 | 16.4 | 0.4219 | 0.091 | 21.5 | mg/L | 82 | Standard | | | Fe | 57 | 275.0 | 15.9 | 0.5500 | 0.362 | 65.9 | mg/L | 217 | Standard | | L> | Sc-1 | 45 | 15579.7 | 2.6 | | | | mg/L | 14524 | Standard | | | CI | 35 | 61248.9 | 1.6 | | | | ug/L | 53193 | Standard | | | Kr | 83 | 1.3 | 86.6 | | | | ug/L | 3 | Standard | | | Br | 81 | 786.7 | 1.9 | | | | ug/L | 327 | Standard | | | Р | 31 | 14093.2 | 2.7 | | | | ug/L | 13329 | Standard | | | S | 34 | 3533.7 | 4.5 | | | | ug/L | 3234 | Standard | | | Sr | 88 | 101.7 | 10.2 | | | | ug/L | 87 | Standard | | | С | 12 | 196.7 | 32.3 | | | | mg/L | 103 | Standard | | | N | 14 | 3.3 | 173.2 | | | | mg/L | 0 | Standard | | | Hg | 202 | 0.0 | | | | | mg/L | 3 | Standard | | | Dy | 164 | 9.5 | 105.0 | | | | mg/L | 10 | Standard | | | Ho-1 | 165 | 10.0 | 50.0 | | | | mg/L | 3 | Standard | | | Er | 166 | 10.0 | | | | | mg/L | 7 | Standard | | | 1 | 127 | 4247.3 | 6.8 | | | | mg/L | 3612 | Standard | | | | | | | | | | | | | | Analyte | Mass | QC Std % Recovery | Int Std % Recovery | Spike % Recovery | |---------|------|-------------------|--------------------|------------------| | 「⊳ Li | 6 | | 107.817 | | | Be | 9 | | | | | L AI | 27 | | | | | 「 Sc | 45 | | | | | Ti | 47 | | | | | V | 51 | | | | | Cr | 52 | | | | | Cr | 53 | | | | | Mn | 55 | | | | | Co | 59 | | | | | Ni | 60 | | | | | Cu | 65 | | | | | Zn | 66 | | | | | > Ge | 72 | | 103.244 | | | As | 75 | | | | | Se | 82 | | | | | ∟ Se-1 | 77 | | | | | 「> Ga | 71 | | | | **Sample ID: L1510105501SDL WG543486-04**Report Date/Time: Tuesday, October 27, 2015 14:09:04 Page 2 Approved: October 28, 2015 | L Rb | 85 | | | | |-----------|--------------|---------|------|-----------------------| | Γ̈́Υ | 89 | | | | | Ĺ> Rh | 103 | | | | | - Mo | 98 | | | | | Ag | 107 | | | | | Cd | 111 | | | | | Cd | 114 | | | | | > In | 115 | | | 103.314 | | Sn | 118 | | | | | Sb | 123 | | | | | L Ba | 135 | | | | | 「 Ce | 140 | | | | | L> Tb | 159 | | | | | Г Ho | 165 | | | | | TI | 203 | | | | | TI | 205 | | | | | Pb | 206 | | | | | Pb | 207 | | | | | Pb | 208 | | | | | U | 238 | | | | | L> Bi | 209 | | | 102.937 | | Г Na | 23 | | | | | Mg | 24 | | | | | K | 39 | | | | | Ca | 43 | | | | | Fe | 54 | | | | | Fe | 57 | | | | | _> Sc-1 | 45 | | | | | CI | 35 | | | | | Kr | 83 | | | | | Br | 81 | | | | | Р | 31 | | | | | S | 34 | | | | | Sr | 88 | | | | | С | 12 | | | | | N | 14 | | | | | Hg | 202 | | | | | Dy | 164 | | | | | Ho-1 | 165 | | | | | Er | 166 | | | | | | 127 | | | | | QC Oi | ut of Limits | | | | | | ment Type | Analyte | Mass | Out of Limits Message | | Ti 47 Lov | | Ti | 47 | | **Sample ID: L1510105501SDL WG543486-04**Report Date/Time: Tuesday, October 27, 2015 14:09:04 Page 3 Approved: October 28, 2015 Sample ID: L1510105501SDL WG543486-04 Sample Date/Time: Tuesday, October 27, 2015 14:09:57 Number of Replicates: 3 Autosampler Position: 310 Sample Description: 125 Method File: C:\NexIONData\Method\6020a.mth Aliquot Volume (mL): Diluted to Volume (mL): User Name: BKT Nexion300X Cumulative Autodilution Factor: 1 Nexion-ICP 200.8\6020 | 0 | | 44: | D | 14. | |-----|-----|---------|------|-------| | COH | cen | tration | Resu | ILS - | | | | | | | Concenti | alion Nes | นแจ | | | | |----|--------|--------|-----------|-------|----------|-----------|-------|-------|---------------|----------| | IS | Analyt | e Mass | Intensity | RSD | Conc. | SD | RSD | Units | Blank Intens. | Mode | | Γ> | Li | 6 | 27339.7 | 3.8 | | | | ug/L | 26270 | Standard | | | Be | 9 | 26.7 | 78.1 | 0.0153 | 0.040 | 261.4 | ug/L | 2 | Standard | | L | ΑI | 27 | 11125.8 | 5.3 | 0.1701 | 0.005 | 2.7 | ug/L | 403 | Standard | | Γ | Sc | 45 | 15147.6 | 1.8 | | | | ug/L | 14524 | Standard | | | Ti | 47 | 155.3 | 4.3 | -1.1531 | 0.048 | 4.2 | ug/L | 365 | Standard | | | ٧ |
51 | 877.6 | 9.9 | -0.0104 | 0.022 | 210.6 | ug/L | 805 | Standard | | | Cr | 52 | 5836.1 | 1.0 | 0.0335 | 0.001 | 3.7 | ug/L | 5481 | Standard | | | Cr | 53 | 478.3 | 3.7 | 0.3501 | 0.024 | 6.9 | ug/L | 268 | Standard | | | Mn | 55 | 8994.7 | 3.7 | 2.3106 | 0.069 | 3.0 | ug/L | 670 | Standard | | | Co | 59 | 225.3 | 2.5 | 0.0242 | 0.002 | 6.7 | ug/L | 146 | Standard | | | Ni | 60 | 537.0 | 9.6 | 0.2403 | 0.040 | 16.7 | ug/L | 220 | Standard | | | Cu | 65 | 241.7 | 12.4 | 0.0359 | 0.024 | 68.1 | ug/L | 147 | Standard | | | Zn | 66 | 1353.4 | 5.7 | 1.4083 | 0.099 | 7.0 | ug/L | 211 | Standard | | > | Ge | 72 | 215820.7 | 1.1 | | | | ug/L | 210599 | Standard | | | As | 75 | -20.3 | 199.4 | 0.0496 | 0.057 | 113.8 | ug/L | -47 | Standard | | | Se | 82 | 13.5 | 17.4 | 0.0462 | 0.041 | 88.3 | ug/L | 15 | Standard | | L | Se-1 | 77 | 58.7 | 21.3 | 0.2543 | 0.323 | 127.0 | ug/L | 65 | Standard | | Γ> | Ga | 71 | 21.7 | 58.1 | | | | mg/L | 27 | Standard | | L | Rb | 85 | 145.0 | 9.1 | | | | ug/L | 17 | Standard | | Γ | Υ | 89 | 227011.3 | 0.5 | | | | ug/L | 216672 | Standard | | L> | Rh | 103 | 8.3 | 34.6 | | | | ug/L | 18 | Standard | | Γ | Мо | 98 | 168.7 | 18.3 | 0.1139 | 0.022 | 19.5 | ug/L | 11 | Standard | | | Ag | 107 | 76.3 | 29.0 | 0.0043 | 0.004 | 101.7 | ug/L | 55 | Standard | | | Cd | 111 | 12.6 | 52.2 | 0.0023 | 0.004 | 193.7 | mg/L | 7 | Standard | | | Cd | 114 | 34.5 | 98.0 | 0.0150 | 0.009 | 61.9 | ug/L | 4 | Standard | | > | In | 115 | 335849.0 | 1.4 | | | | ug/L | 322525 | Standard | | | Sn | 118 | 453.3 | 5.0 | -0.0428 | 0.007 | 15.7 | ug/L | 345 | Standard | | | Sb | 123 | 186.3 | 8.2 | 0.0367 | 0.004 | 11.7 | ug/L | 88 | Standard | | L | Ва | 135 | 219.0 | 16.0 | 0.1074 | 0.019 | 18.1 | ug/L | 12 | Standard | | Γ | Ce | 140 | 75.0 | 17.6 | | | | ug/L | 37 | Standard | | _> | Tb | 159 | 638153.6 | 2.9 | | | | ug/L | 631826 | Standard | | Γ | Но | 165 | 10.0 | 50.0 | | | | ug/L | 3 | Standard | | | TI | 203 | 42.3 | 88.8 | 0.0036 | 0.006 | 153.1 | ug/L | 7 | Standard | | | TI | 205 | 25.0 | 87.2 | 0.0080 | 0.005 | 59.6 | ug/L | 7 | Standard | | | Pb | 206 | 236.0 | 3.8 | -0.0021 | 0.002 | 72.4 | ug/L | 159 | Standard | | ļ | Pb | 207 | 194.3 | 8.8 | -0.0049 | 0.004 | 84.4 | ug/L | 120 | Standard | | ļ | Pb | 208 | 814.7 | 10.9 | 0.0011 | 0.005 | 509.7 | ug/L | 503 | Standard | | ļ | U | 238 | 19.7 | 111.7 | -0.0010 | 0.004 | 399.7 | ug/L | 5 | Standard | | _> | Bi | 209 | 344450.0 | 1.1 | | | | ug/L | 333509 | Standard | | | | | | | | | | | | | Sample ID: L1510105501SDL WG543486-04 Report Date/Time: Tuesday, October 27, 2015 14:12:14 Page 1 | Γ | Na | 23 | 0.0 | | | | | mg/L | 0 | Standard | |----|------|-----|---------|-------|---------|-------|-------|------|-------|----------| | | Mg | 24 | 733.4 | 5.5 | 1.6386 | 0.103 | 6.3 | mg/L | 10 | Standard | | | K | 39 | 13.3 | 43.3 | -0.0509 | 0.072 | 141.0 | mg/L | 32 | Standard | | | Ca | 43 | 50.0 | 26.5 | -6.7389 | 2.176 | 32.3 | mg/L | 85 | Standard | | | Fe | 54 | 119.4 | 25.1 | 0.1475 | 0.073 | 49.6 | mg/L | 82 | Standard | | | Fe | 57 | 216.7 | 18.7 | 0.0955 | 0.398 | 416.5 | mg/L | 217 | Standard | | L> | Sc-1 | 45 | 15147.6 | 1.8 | | | | mg/L | 14524 | Standard | | | CI | 35 | 62839.4 | 1.4 | | | | ug/L | 53193 | Standard | | | Kr | 83 | 6.0 | 16.7 | | | | ug/L | 3 | Standard | | | Br | 81 | 466.7 | 10.1 | | | | ug/L | 327 | Standard | | | Р | 31 | 14396.8 | 0.6 | | | | ug/L | 13329 | Standard | | | S | 34 | 3578.8 | 7.1 | | | | ug/L | 3234 | Standard | | | Sr | 88 | 95.0 | 9.1 | | | | ug/L | 87 | Standard | | | С | 12 | 146.7 | 23.9 | | | | mg/L | 103 | Standard | | | N | 14 | 0.0 | | | | | mg/L | 0 | Standard | | | Hg | 202 | 3.3 | 173.2 | | | | mg/L | 3 | Standard | | | Dy | 164 | 5.5 | 211.0 | | | | mg/L | 10 | Standard | | | Ho-1 | 165 | 10.0 | 50.0 | | | | mg/L | 3 | Standard | | | Er | 166 | 23.3 | 65.5 | | | | mg/L | 7 | Standard | | | I | 127 | 3502.1 | 2.3 | | | | mg/L | 3612 | Standard | | Analyte | Mass | QC Std % Recovery | Int Std % Recovery | Spike % Recovery | |---------|------|-------------------|--------------------|------------------| | 「⊳ Li | 6 | | 104.073 | | | Be | 9 | | | | | L AI | 27 | | | | | 「 Sc | 45 | | | | | Ti | 47 | | | | | V | 51 | | | | | Cr | 52 | | | | | Cr | 53 | | | | | Mn | 55 | | | | | Co | 59 | | | | | Ni | 60 | | | | | Cu | 65 | | | | | Zn | 66 | | | | | > Ge | 72 | | 102.480 | | | As | 75 | | | | | Se | 82 | | | | | ∟ Se-1 | 77 | | | | | 「⊳ Ga | 71 | | | | **Sample ID: L1510105501SDL WG543486-04**Report Date/Time: Tuesday, October 27, 2015 14:12:14 Page 2 Approved: October 28, 2015 | L Rb | 85 | | | | |----------|--------------|---------|------|-----------------------| | ĪΥ | 89 | | | | | > Rh | 103 | | | | | - Mo | 98 | | | | | Ag | 107 | | | | | Cd | 111 | | | | | Cd | 114 | | | | | > In | 115 | | | 104.131 | | Sn | 118 | | | | | Sb | 123 | | | | | ∟ Ba | 135 | | | | | 「 Ce | 140 | | | | | L> Tb | 159 | | | | | Г Ho | 165 | | | | | TI | 203 | | | | | TI | 205 | | | | | Pb | 206 | | | | | Pb | 207 | | | | | Pb | 208 | | | | | U | 238 | | | | | L> Bi | 209 | | | 103.280 | | Г Na | 23 | | | | | Mg | 24 | | | | | K | 39 | | | | | Ca | 43 | | | | | Fe | 54 | | | | | Fe | 57 | | | | | _> Sc-1 | 45 | | | | | CI | 35 | | | | | Kr | 83 | | | | | Br | 81 | | | | | Р | 31 | | | | | S | 34 | | | | | Sr | 88 | | | | | С | 12 | | | | | N | 14 | | | | | Hg | 202 | | | | | Dy | 164 | | | | | Ho-1 | 165 | | | | | Er | 166 | | | | | ı | 127 | | | | | QC O | ut of Limits | | | | | | ement Type | Analyte | Mass | Out of Limits Message | | Ti 47 Lo | | Ti | 47 | | **Sample ID: L1510105501SDL WG543486-04**Report Date/Time: Tuesday, October 27, 2015 14:12:14 Page 3 Approved: October 28, 2015 Sample ID: QC Std 6 Sample Date/Time: Tuesday, October 27, 2015 14:13:11 Number of Replicates: 3 Autosampler Position: 101 Sample Description: Method File: C:\NexIONData\Method\6020a.mth Aliquot Volume (mL): Diluted to Volume (mL): User Name: BKT Nexion300X Cumulative Autodilution Factor: 1 Nexion-ICP 200.8\6020 | 0 | 4. | | D | .14. | |------|------|--------|------|------| | COII | cenu | ration | Resu | เมเร | | Concentration Results | | | | | | uito | | | | | |-----------------------|--------|---------------|-----------|------|----------|-------|-----|-------|---------------|----------| | IS | Analyt | e Mass | Intensity | RSD | Conc. | SD | RSD | Units | Blank Intens. | Mode | | Γ> | Li | 6 | 27353.0 | 0.4 | | | | ug/L | 26270 | Standard | | | Be | 9 | 27067.5 | 2.2 | 50.0791 | 1.300 | 2.6 | ug/L | 2 | Standard | | L | Αl | 27 | 2883508.0 | 2.1 | 49.3763 | 1.162 | 2.4 | ug/L | 403 | Standard | | Γ | Sc | 45 | 15054.2 | 4.8 | | | | ug/L | 14524 | Standard | | | Ti | 47 | 16606.4 | 0.1 | 102.2782 | 1.806 | 1.8 | ug/L | 365 | Standard | | | ٧ | 51 | 177699.1 | 8.0 | 50.9414 | 1.244 | 2.4 | ug/L | 805 | Standard | | | Cr | 52 | 221014.9 | 1.5 | 50.2964 | 1.559 | 3.1 | ug/L | 5481 | Standard | | | Cr | 53 | 27302.9 | 3.2 | 50.2886 | 0.850 | 1.7 | ug/L | 268 | Standard | | | Mn | 55 | 171828.9 | 0.5 | 51.2234 | 0.810 | 1.6 | ug/L | 670 | Standard | | | Co | 59 | 165562.7 | 0.9 | 52.0248 | 1.203 | 2.3 | ug/L | 146 | Standard | | | Ni | 60 | 56889.9 | 0.4 | 49.8661 | 0.984 | 2.0 | ug/L | 220 | Standard | | | Cu | 65 | 56023.7 | 1.3 | 50.2658 | 1.473 | 2.9 | ug/L | 147 | Standard | | | Zn | 66 | 33161.9 | 0.5 | 49.9461 | 1.036 | 2.1 | ug/L | 211 | Standard | | > | Ge | 72 | 213013.5 | 1.6 | | | | ug/L | 210599 | Standard | | | As | 75 | 35909.2 | 1.2 | 50.7402 | 1.368 | 2.7 | ug/L | -47 | Standard | | | Se | 82 | 3067.7 | 2.0 | 51.1754 | 1.564 | 3.1 | ug/L | 15 | Standard | | L | Se-1 | 77 | 2080.8 | 1.9 | 52.3408 | 0.526 | 1.0 | ug/L | 65 | Standard | | Γ> | Ga | 71 | 31.7 | 55.5 | | | | mg/L | 27 | Standard | | L | Rb | 85 | 431.7 | 8.1 | | | | ug/L | 17 | Standard | | Γ | Υ | 89 | 222923.2 | 1.5 | | | | ug/L | 216672 | Standard | | L> | Rh | 103 | 25.0 | 52.9 | | | | ug/L | 18 | Standard | | Γ | Мо | 98 | 148786.8 | 0.7 | 105.2394 | 0.859 | 8.0 | ug/L | 11 | Standard | | | Ag | 107 | 233978.9 | 1.0 | 49.3980 | 0.532 | 1.1 | ug/L | 55 | Standard | | | Cd | 111 | 70827.2 | 0.6 | 49.8800 | 0.548 | 1.1 | mg/L | 7 | Standard | | | Cd | 114 | 172460.9 | 1.2 | 49.6763 | 1.027 | 2.1 | ug/L | 4 | Standard | | > | In | 115 | 326817.5 | 8.0 | | | | ug/L | 322525 | Standard | | | Sn | 118 | 196847.2 | 1.1 | 48.8610 | 0.403 | 8.0 | ug/L | 345 | Standard | | | Sb | 123 | 186890.4 | 1.2 | 48.8605 | 0.462 | 0.9 | ug/L | 88 | Standard | | L | Ва | 135 | 79629.4 | 0.3 | 49.1089 | 0.559 | 1.1 | ug/L | 12 | Standard | | Γ | Ce | 140 | 76.7 | 16.4 | | | | ug/L | 37 | Standard | | L> | Tb | 159 | 624874.8 | 1.3 | | | | ug/L | 631826 | Standard | | Γ | Но | 165 | 6.7 | 43.3 | | | | ug/L | 3 | Standard | | | TI | 203 | 318363.8 | 8.0 | 49.1246 | 0.593 | 1.2 | ug/L | 7 | Standard | | | TI | 205 | 215420.6 | 0.6 | 49.3536 | 0.322 | 0.7 | ug/L | 7 | Standard | | | Pb | 206 | 197623.2 | 0.5 | 49.7930 | 0.789 | 1.6 | ug/L | 159 | Standard | | | Pb | 207 | 178738.1 | 0.6 | 49.6615 | 0.369 | 0.7 | ug/L | 120 | Standard | | | Pb | 208 | 714893.9 | 0.9 | 49.7141 | 1.066 | 2.1 | ug/L | 503 | Standard | | | U | 238 | 260594.8 | 1.2 | 49.0417 | 1.029 | 2.1 | ug/L | 5 | Standard | | L> | Bi | 209 | 334795.5 | 1.2 | | | | ug/L | 333509 | Standard | | | | | | | | | | | | | Sample ID: QC Std 6 Report Date/Time: Tuesday, October 27, 2015 14:15:28 Page 1 | _ | | | | | | | | | | | |----|------|-----|---------|-------|--------|-------|------|------|-------|----------| | Γ | Na | 23 | 0.0 | | | | | mg/L | 0 | Standard | | | Mg | 24 | 2226.8 | 5.5 | 5.0875 | 0.128 | 2.5 | mg/L | 10 | Standard | | | K | 39 | 398.3 | 6.9 | 4.5982 | 0.550 | 12.0 | mg/L | 32 | Standard | | | Ca | 43 | 100.0 | 8.7 | 1.0659 | 0.622 | 58.4 | mg/L | 85 | Standard | | ĺ | Fe | 54 | 2219.4 | 0.3 | 5.1236 | 0.276 | 5.4 | mg/L | 82 | Standard | | | Fe | 57 | 726.7 | 14.8 | 4.7558 | 0.825 | 17.3 | mg/L | 217 | Standard | | L> | Sc-1 | 45 | 15054.2 | 4.8 | | | | mg/L | 14524 | Standard | | | CI | 35 |
59576.3 | 1.9 | | | | ug/L | 53193 | Standard | | | Kr | 83 | 4.7 | 44.6 | | | | ug/L | 3 | Standard | | | Br | 81 | 336.7 | 40.3 | | | | ug/L | 327 | Standard | | | Р | 31 | 15434.5 | 5.0 | | | | ug/L | 13329 | Standard | | | S | 34 | 3790.5 | 3.6 | | | | ug/L | 3234 | Standard | | | Sr | 88 | 116.7 | 4.9 | | | | ug/L | 87 | Standard | | | С | 12 | 130.0 | 7.7 | | | | mg/L | 103 | Standard | | | N | 14 | 0.0 | | | | | mg/L | 0 | Standard | | | Hg | 202 | 0.0 | | | | | mg/L | 3 | Standard | | | Dy | 164 | 6.5 | 86.7 | | | | mg/L | 10 | Standard | | | Ho-1 | 165 | 6.7 | 43.3 | | | | mg/L | 3 | Standard | | | Er | 166 | 3.3 | 173.2 | | | | mg/L | 7 | Standard | | | I | 127 | 3002.0 | 2.3 | | | | mg/L | 3612 | Standard | | | | | | | | | | | | | | Analyte | Mass | QC Std % Recovery | Int Std % Recovery | Spike % Recovery | |---------|------|-------------------|--------------------|------------------| | 「> Li | 6 | · | | | | Be | 9 | 100.158 | | | | L AI | 27 | 98.753 | | | | 「 Sc | 45 | | | | | Ti | 47 | 102.278 | | | | V | 51 | 101.883 | | | | Cr | 52 | 100.593 | | | | Cr | 53 | | | | | Mn | 55 | 102.447 | | | | Co | 59 | 104.050 | | | | Ni | 60 | 99.732 | | | | Cu | 65 | 100.532 | | | | Zn | 66 | 99.892 | | | | > Ge | 72 | | 101.147 | | | As | 75 | 101.480 | | | | Se | 82 | 102.351 | | | | ∟ Se-1 | 77 | | | | | 「⊳ Ga | 71 | | | | Sample ID: QC Std 6 Report Date/Time: Tuesday, October 27, 2015 14:15:28 Page 2 Approved: October 28, 2015 | ı | DI: | 05 | | | | |----|------------|-----------|---------|------|-----------------------| | L | Rb | 85 | | | | | | Y | 89
103 | | | | | L> | ⊳ Rh
Mo | 98 | 105.23 | 20 | | | | Ag | 107 | 98.79 | | | | | Ag
Cd | 111 | 99.76 | | | | ļ | Cd | 114 | 99.70 | 00 | | | | . In | 115 | | | 101.331 | | / | Sn | 118 | 97.72 | 2 | 101.331 | | i | Sb | 123 | 97.72 | | | | i | Ba | 135 | 98.21 | | | | Ė | Ce | 140 | 00.21 | | | | > | | 159 | | | | | Ē | Но | 165 | | | | | i | TI | 203 | 98.24 | 9 | | | į | TI | 205 | | | | | Ĺ | Pb | 206 | | | | | ĺ | Pb | 207 | | | | | | Pb | 208 | 99.42 | 28 | | | | U | 238 | 98.08 | 33 | | | L> | . Bi | 209 | | | 100.386 | | Γ | Na | 23 | | | | | ļ | Mg | 24 | | | | | | K | 39 | | | | | | Ca | 43 | | | | | | Fe | 54 | | | | | | Fe | 57
45 | | | | | L> | Sc-1 | 45
35 | | | | | | CI
Kr | 35
83 | | | | | | Br | 81 | | | | | | Р | 31 | | | | | | S | 34 | | | | | | Sr | 88 | | | | | | C | 12 | | | | | | N | 14 | | | | | | Hg | 202 | | | | | | Dy | 164 | | | | | | Ho-1 | 165 | | | | | | Er | 166 | | | | | | 1 | 127 | | | | | | QC Out | of Limits | | | | | | Measurem | nent Type | Analyte | Mass | Out of Limits Message | | | | | | | | Sample ID: QC Std 6 Report Date/Time: Tuesday, October 27, 2015 14:15:28 Page 3 Sample ID: QC Std 7 Sample Date/Time: Tuesday, October 27, 2015 14:16:23 Number of Replicates: 3 Autosampler Position: 102 Sample Description: Method File: C:\NexIONData\Method\6020a.mth Aliquot Volume (mL): Diluted to Volume (mL): User Name: BKT Nexion300X Cumulative Autodilution Factor: 1 Nexion-ICP 200.8\6020 | | | | | | Concentra | tion Res | ults | | | | |-----|----------|------------|--------------|--------------|-----------|----------|-------|--------------|---------------|----------------------| | IS | Analyt | e Mass | Intensity | RSD | Conc. | SD | RSD | Units | Blank Intens. | Mode | | Γ> | Li | 6 | 28329.8 | 1.6 | | | | ug/L | 26270 | Standard | | | Be | 9 | 21.7 | 74.2 | 0.0036 | 0.028 | 772.5 | ug/L | 2 | Standard | | L | Al | 27 | 1476.8 | 112.2 | 0.0036 | 0.027 | 748.8 | ug/L | 403 | Standard | | Γ | Sc | 45 | 15214.3 | 4.5 | | | | ug/L | 14524 | Standard | | | Ti | 47 | 141.3 | 12.8 | -1.2280 | 0.113 | 9.2 | ug/L | 365 | Standard | | | V | 51 | 809.2 | 12.3 | -0.0265 | 0.027 | 103.6 | ug/L | 805 | Standard | | | Cr | 52 | 5334.6 | 4.4 | -0.0649 | 0.048 | 74.7 | ug/L | 5481 | Standard | | | Cr | 53 | 370.0 | 20.0 | 0.1604 | 0.135 | 84.2 | ug/L | 268 | Standard | | | Mn | 55 | 731.7 | 34.7 | -0.1336 | 0.075 | 56.3 | ug/L | 670 | Standard | | | Co | 59 | 202.0 | 46.3 | 0.0177 | 0.029 | 164.2 | ug/L | 146 | Standard | | | Ni | 60 | 184.7 | 29.1 | -0.0635 | 0.047 | 73.4 | ug/L | 220 | Standard | | | Cu | 65 | 153.7 | 30.2 | -0.0403 | 0.041 | 102.1 | ug/L | 147 | Standard | | | Zn | 66 | 187.7 | 18.9 | -0.3417 | 0.053 | 15.5 | ug/L | 211 | Standard | | > | Ge | 72 | 212834.8 | 0.5 | | | | ug/L | 210599 | Standard | | | As | 75 | -0.8 | 2415.8 | 0.0769 | 0.027 | 35.3 | ug/L | -47 | Standard | | | Se | 82 | 18.2 | 17.9 | 0.1282 | 0.055 | 42.8 | ug/L | 15 | Standard | | Ĺ | Se-1 | 77 | 64.0 | 10.2 | 0.4118 | 0.166 | 40.2 | ug/L | 65 | Standard | | > | Ga | 71 | 20.0 | 50.0 | | | | mg/L | 27 | Standard | | Ĺ | Rb | 85 | 25.0 | 52.9 | | | | ug/L | 17 | Standard | | ! | Υ | 89 | 213453.3 | 1.6 | | | | ug/L | 216672 | Standard | | [> | Rh | 103 | 26.7 | 47.2 | | | | ug/L | 18 | Standard | | ļ | Мо | 98 | 183.7 | 38.9 | 0.1276 | 0.051 | 39.6 | ug/L | 11 | Standard | | ļ | Ag | 107 | 124.7 | 85.9 | 0.0150 | 0.023 | 150.8 | ug/L | 55 | Standard | | | Cd | 111 | 24.0 | 80.2 | 0.0105 | 0.013 | 128.2 | mg/L | 7 | Standard | | | Cd | 114 | 60.0 | 86.7 | 0.0226 | 0.015 | 65.9 | ug/L | 4 | Standard | | > | In
O | 115 | 326804.3 | 0.4 | | 0.047 | 50.0 | ug/L | 322525 | Standard | | | Sn | 118 | 498.3 | 14.1 | -0.0287 | 0.017 | 59.8 | ug/L | 345 | Standard | | | Sb | 123 | 212.5 | 61.6 | 0.0448 | 0.034 | 76.1 | ug/L | 88 | Standard | | Ļ | Ba
Ce | 135
140 | 41.7
25.0 | 67.2
34.6 | 0.0018 | 0.017 | 962.3 | ug/L | 12
37 | Standard
Standard | | 1. | Ce
Tb | 159 | 629019.1 | 34.6 | | | | ug/L | 631826 | Standard | | [> | Но | 165 | 5.0 | 0.0 | | | | ug/L
ug/L | 3 | Standard | | | TI | 203 | 98.3 | 113.7 | 0.0122 | 0.017 | 138.2 | ug/L
ug/L | 7 | Standard | | | TI | 205 | 65.0 | 134.1 | 0.0122 | 0.017 | 114.4 | ug/L
ug/L | 7 | Standard | | | Pb | 206 | 219.0 | 52.2 | -0.0057 | 0.019 | 490.1 | ug/L
ug/L | ,
159 | Standard | | | Pb | 207 | 193.3 | 51.5 | -0.0057 | 0.028 | 587.3 | ug/L
ug/L | 120 | Standard | | 1 | Pb | 208 | 745.7 | 53.6 | -0.0046 | 0.027 | 887.8 | ug/L
ug/L | 503 | Standard | | 1 | U | 238 | 93.7 | 137.9 | 0.0127 | 0.027 | 187.0 | ug/L
ug/L | 5 | Standard | | - ! | - | 200 | 33.1 | 101.0 | 0.0127 | 0.024 | 107.0 | ug/L | | Standard | Sample ID: QC Std 7 209 Report Date/Time: Tuesday, October 27, 2015 14:18:39 339917.8 0.8 Page 1 L> Bi Approved: October 28, 2015 Standard Page 471 ug/L 333509 | Γ | Na | 23 | 0.0 | | | | | mg/L | 0 | Standard | |----|------|-----|---------|-------|---------|-------|-------|------|-------|----------| | | Mg | 24 | 26.7 | 21.7 | 0.0202 | 0.012 | 58.2 | mg/L | 10 | Standard | | | K | 39 | 11.7 | 65.5 | -0.0704 | 0.094 | 133.4 | mg/L | 32 | Standard | | | Ca | 43 | 65.0 | 40.7 | -4.5902 | 3.562 | 77.6 | mg/L | 85 | Standard | | ĺ | Fe | 54 | 65.9 | 15.4 | 0.0215 | 0.030 | 139.6 | mg/L | 82 | Standard | | ĺ | Fe | 57 | 236.7 | 6.1 | 0.2696 | 0.221 | 81.9 | mg/L | 217 | Standard | | Ĺ> | Sc-1 | 45 | 15214.3 | 4.5 | | | | mg/L | 14524 | Standard | | | CI | 35 | 60824.5 | 1.7 | | | | ug/L | 53193 | Standard | | | Kr | 83 | 2.7 | 43.3 | | | | ug/L | 3 | Standard | | | Br | 81 | 340.0 | 29.9 | | | | ug/L | 327 | Standard | | | Р | 31 | 14828.9 | 1.7 | | | | ug/L | 13329 | Standard | | | S | 34 | 3743.8 | 1.2 | | | | ug/L | 3234 | Standard | | | Sr | 88 | 91.7 | 8.3 | | | | ug/L | 87 | Standard | | | С | 12 | 106.7 | 28.6 | | | | mg/L | 103 | Standard | | | N | 14 | 0.0 | | | | | mg/L | 0 | Standard | | | Hg | 202 | 0.0 | | | | | mg/L | 3 | Standard | | | Dy | 164 | 13.2 | 117.5 | | | | mg/L | 10 | Standard | | | Ho-1 | 165 | 5.0 | 0.0 | | | | mg/L | 3 | Standard | | | Er | 166 | 3.3 | 173.2 | | | | mg/L | 7 | Standard | | | 1 | 127 | 3452.1 | 4.9 | | | | mg/L | 3612 | Standard | | | | | | | | | | | | | | Analyte | Mass | QC Std % Recovery | Int Std % Recovery | Spike % Recovery | |---------|------|-------------------|--------------------|------------------| | 「> Li | 6 | | | | | Be | 9 | | | | | L AI | 27 | | | | | 「 Sc | 45 | | | | | Ti | 47 | | | | | V | 51 | | | | | Cr | 52 | | | | | Cr | 53 | | | | | Mn | 55 | | | | | Co | 59 | | | | | Ni | 60 | | | | | Cu | 65 | | | | | Zn | 66 | | | | | > Ge | 72 | | 101.062 | | | As | 75 | | | | | Se | 82 | | | | | ∟ Se-1 | 77 | | | | | 「⊳ Ga | 71 | | | | Sample ID: QC Std 7 Report Date/Time: Tuesday, October 27, 2015 14:18:39 Page 2 Approved: October 28, 2015 | ∟ Rb | 85 | | | | |----------------------|--------------|---|------|-----------------------| | ΓΥ | 89 | | | | | $\lfloor_>$ Rh | 103 | | | | | Mo | 98 | | | | | Ag | 107 | | | | | Cd | 111 | | | | | Cd | 114 | | | | |
 > In | 115 | | | 101.327 | | Sn | 118 | | | | | Sb | 123 | | | | | L Ba | 135 | | | | | Ce | 140 | | | | | > Tb | 159 | | | | | Ho | 165 | | | | | TI TI | 203 | | | | | ТI | 205 | | | | | Pb | 206 | | | | | Pb | 207 | | | | | Pb | 208 | | | | | Ü | 238 | | | | | Ĺ _{>} Bi | 209 | | | 101.922 | | Na | 23 | | | | | Mg | 24 | | | | | K | 39 | | | | | Ca | 43 | | | | | Fe | 54 | | | | | Fe | 57 | | | | | > Sc-1 | 45 | | | | | CI | 35 | | | | | Kr | 83 | | | | | Br | 81 | | | | | Р | 31 | | | | | S | 34 | | | | | Sr | 88 | | | | | С | 12 | | | | | N | 14 | | | | | Hg | 202 | | | | | Dy | 164 | | | | | Ho-1 | 165 | | | | | Er | 166 | | | | | 1 | 127 | | | | | QC Ou | ıt of Limits | | | | | | ment Type | Analyte | Mass | Out of Limits Message | | QC Std 7 | | Ti | 47 | Cat of Limito Moodago | | QC Old 7 | | • | 71 | | Sample ID: QC Std 7 Report Date/Time: Tuesday, October 27, 2015 14:18:39 Page 3 Sample ID: QC Std 8 Sample Date/Time: Tuesday, October 27, 2015 14:41:29 RSD 0.9 Number of Replicates: 3 Autosampler Position: 202 Sample Description: Method File: C:\NexIONData\Method\6020a.mth Intensity 28050.9 Aliquot Volume (mL): Diluted to Volume (mL): User Name: BKT Nexion300X Cumulative Autodilution Factor: 1 Nexion-ICP 200.8\6020 IS Analyte Mass | | Be | 9 | 125.0 |
4.0 | 0.1908 | 0.007 | 3.7 | ug/L | 2 | Standard | |----|------|-----|----------|------|---------|-------|------|------|--------|----------| | L | Αl | 27 | 396.7 | 5.7 | -0.0140 | 0.000 | 2.3 | ug/L | 403 | Standard | | Γ | Sc | 45 | 15397.8 | 2.5 | | | | ug/L | 14524 | Standard | | İ | Ti | 47 | 145.7 | 10.8 | -1.2091 | 0.094 | 7.8 | ug/L | 365 | Standard | | İ | V | 51 | 2355.9 | 1.1 | 0.4134 | 0.012 | 2.9 | ug/L | 805 | Standard | | İ | Cr | 52 | 9445.9 | 1.3 | 0.8758 | 0.022 | 2.5 | ug/L | 5481 | Standard | | İ | Cr | 53 | 768.4 | 9.1 | 0.8910 | 0.143 | 16.1 | ug/L | 268 | Standard | | İ | Mn | 55 | 2415.2 | 2.4 | 0.3659 | 0.024 | 6.6 | ug/L | 670 | Standard | | ĺ | Co | 59 | 1417.7 | 1.5 | 0.3964 | 0.003 | 8.0 | ug/L | 146 | Standard | | | Ni | 60 | 2012.5 | 1.3 | 1.5313 | 0.039 | 2.5 | ug/L | 220 | Standard | | | Cu | 65 | 1017.4 | 5.2 | 0.7299 | 0.054 | 7.4 | ug/L | 147 | Standard | | | Zn | 66 | 4757.1 | 1.8 | 6.5662 | 0.135 | 2.1 | ug/L | 211 | Standard | | > | Ge | 72 | 214771.9 | 1.0 | | | | ug/L | 210599 | Standard | | | As | 75 | 248.0 | 2.6 | 0.4248 | 0.011 | 2.7 | ug/L | -47 | Standard | | | Se | 82 | 34.5 | 11.0 | 0.3949 | 0.057 | 14.4 | ug/L | 15 | Standard | | L | Se-1 | 77 | 74.0 | 10.6 | 0.6517 | 0.188 | 28.9 | ug/L | 65 | Standard | | Γ> | Ga | 71 | 21.7 | 66.6 | | | | mg/L | 27 | Standard | | L | Rb | 85 | 15.0 | 66.7 | | | | ug/L | 17 | Standard | | Γ | Υ | 89 | 225624.3 | 1.1 | | | | ug/L | 216672 | Standard | | L> | Rh | 103 | 23.3 | 32.7 | | | | ug/L | 18 | Standard | | Γ | Mo | 98 | 16.3 | 16.4 | 0.0090 | 0.002 | 20.0 | ug/L | 11 | Standard | | | Ag | 107 | 1893.5 | 2.9 | 0.3843 | 0.015 | 3.9 | ug/L | 55 | Standard | | | Cd | 111 | 345.3 | 2.4 | 0.2343 | 0.008 | 3.4 | mg/L | 7 | Standard | | | | | | | | | | | | | 0.2306 -0.0673 0.3820 0.6735 0.0734 0.0833 0.1707 0.1580 0.1729 0.3742 0.006 0.010 0.013 0.044 0.004 0.007 0.002 0.005 0.006 0.007 **Concentration Results** Conc. SD RSD Units ug/L 14.1 3.5 6.6 4.8 8.7 0.9 3.5 3.7 Blank Intens. 26270 Mode Standard 322525 631826 345 88 12 37 3 7 159 120 503 333509 5 Sample ID: QC Std 8 Report Date/Time: Tuesday, October 27, 2015 14:43:45 790.7 346.7 1518.1 1142.4 628169.0 13.3 5.0 500.3 358.3 928.7 786.4 3310.8 2043.8 339969.3 330378.2 2.6 0.9 10.2 2.9 5.5 78.1 1.5 4.0 9.8 0.4 2.2 2.3 1.8 0.8 173.2 Page 1 Cd In Sn Sb Ва Се Th Но ΤI ΤI Ph Pb Pb U Bi 114 115 118 123 135 140 159 165 203 205 206 207 208 238 209 Approved: October 28, 2015 | _ | | | | | | | | | _ | - · · · | |----|------|-----|---------|-------|---------|-------|-------|------|-------|----------| | | Na | 23 | 0.0 | | | | | mg/L | 0 | Standard | | | Mg | 24 | 13.3 | 78.1 | -0.0107 | 0.022 | 210.0 | mg/L | 10 | Standard | | | K | 39 | 30.0 | 33.3 | 0.1436 | 0.124 | 86.1 | mg/L | 32 | Standard | | | Ca | 43 | 51.7 | 31.1 | -6.6139 | 2.583 | 39.1 | mg/L | 85 | Standard | | | Fe | 54 | 82.6 | 3.4 | 0.0575 | 0.005 | 9.5 | mg/L | 82 | Standard | | | Fe | 57 | 190.0 | 25.9 | -0.1714 | 0.477 | 278.4 | mg/L | 217 | Standard | | L> | Sc-1 | 45 | 15397.8 | 2.5 | | | | mg/L | 14524 | Standard | | | CI | 35 | 64494.3 | 1.1 | | | | ug/L | 53193 | Standard | | | Kr | 83 | 4.3 | 74.2 | | | | ug/L | 3 | Standard | | | Br | 81 | 373.3 | 13.5 | | | | ug/L | 327 | Standard | | | Р | 31 | 14230.0 | 0.9 | | | | ug/L | 13329 | Standard | | | S | 34 | 3680.4 | 3.7 | | | | ug/L | 3234 | Standard | | | Sr | 88 | 91.7 | 26.9 | | | | ug/L | 87 | Standard | | | С | 12 | 170.0 | 30.6 | | | | mg/L | 103 | Standard | | | N | 14 | 0.0 | | | | | mg/L | 0 | Standard | | | Hg | 202 | 0.0 | | | | | mg/L | 3 | Standard | | | Dy | 164 | 6.2 | 186.6 | | | | mg/L | 10 | Standard | | | Ho-1 | 165 | 5.0 | 173.2 | | | | mg/L | 3 | Standard | | | Er | 166 | 10.0 | | | | | mg/L | 7 | Standard | | | 1 | 127 | 583.3 | 38.7 | | | | mg/L | 3612 | Standard | | | | | | | | | | | | | | Analyte | Mass | QC Std % Recovery | Int Std % Recovery | Spike % Recovery | |---------|------|-------------------|--------------------|------------------| | 「> Li | 6 | • | | | | Be | 9 | 95.390 | | | | L AI | 27 | | | | | 「 Sc | 45 | | | | | Ti | 47 | | | | | V | 51 | 103.350 | | | | Cr | 52 | 109.481 | | | | Cr | 53 | | | | | Mn | 55 | 73.172 | | | | Co | 59 | 99.089 | | | | Ni | 60 | 95.705 | | | | Cu | 65 | 91.242 | | | | Zn | 66 | 105.060 | | | | > Ge | 72 | | 101.982 | | | As | 75 | 106.209 | | | | Se | 82 | 98.720 | | | | L Se-1 | 77 | | | | | 「⊳ Ga | 71 | | | | Sample ID: QC Std 8 Report Date/Time: Tuesday, October 27, 2015 14:43:45 Page 2 Approved: October 28, 2015 | Rb | 85 | | | | |------------|--------------|--------------|-----------------------|--| | Γ̈́Υ | 89 | | | | | _
 > Rh | 103 | | | | | - Mo | 98 | | | | | Ag | 107 | 96.063 | | | | Cd | 111 | 97.617 | | | | Cd | 114 | | | | | > In | 115 | | 102.435 | | | Sn | 118 | | | | | Sb | 123 | 95.507 | | | | _
Ba | 135 | 89.806 | | | | Ce | 140 | | | | | > Tb | 159 | | | | | Ho | 165 | | | | | TI TI | 203 | 91.691 | | | | į TI | 205 | | | | | Pb | 206 | | | | | Pb | 207 | | | | | Pb | 208 | 86.473 | | | | įυ | 238 | 93.551 | | | | Ĺ> Bi | 209 | | 101.937 | | | Ña | 23 | | | | | Mg | 24 | | | | | K | 39 | | | | | Ca | 43 | | | | | Fe | 54 | | | | | Fe | 57 | | | | | _> Sc-1 | 45 | | | | | CI | 35 | | | | | Kr | 83 | | | | | Br | 81 | | | | | Р | 31 | | | | | S | 34 | | | | | Sr | 88 | | | | | С | 12 | | | | | N | 14 | | | | | Hg | 202 | | | | | Dy | 164 | | | | | Ho-1 | 165 | | | | | Er | 166 | | | | | l . | 127 | | | | | QC O | ut of Limits | | | | | Measure | ement Type | Analyte Mass | Out of Limits Message | | | | | | | | Sample ID: QC Std 8 Report Date/Time: Tuesday, October 27, 2015 14:43:45 Page 3 Sample ID: L1510135202 Sample Date/Time: Tuesday, October 27, 2015 15:16:22 Number of Replicates: 3 Autosampler Position: 311 Sample Description: 1 Method File: C:\NexIONData\Method\6020a.mth Aliquot Volume (mL): Diluted to Volume (mL): User Name: BKT Nexion300X Cumulative Autodilution Factor: 1 Nexion-ICP 200.8\6020 **Concentration Results** | | | | Concentration Results | | | | | | | | | | | |----|-------|---------|-----------------------|------|---------|-------|-------|-------|---------------|----------|--|--|--| | IS | Analy | te Mass | Intensity | RSD | Conc. | SD | RSD | Units | Blank Intens. | Mode | | | | | Γ> | Li | 6 | 29618.9 | 1.4 | | | | ug/L | 26270 | Standard | | | | | | Be | 9 | 8.3 | 34.6 | -0.0206 | 0.005 | 23.6 | ug/L | 2 | Standard | | | | | L | Αl | 27 | 6276678.0 | 4.6 | 99.3201 | 5.733 | 5.8 | ug/L | 403 | Standard | | | | | Γ | Sc | 45 | 15392.8 | 2.2 | | | | ug/L | 14524 | Standard | | | | | | Ti | 47 | 215.7 | 8.4 | -0.7789 | 0.074 | 9.5 | ug/L | 365 | Standard | | | | | | V | 51 | 981.4 | 12.8 | 0.0194 | 0.033 | 168.4 | ug/L | 805 | Standard | | | | | | Cr | 52 | 6333.7 | 0.8 | 0.1508 | 0.053 | 35.3 | ug/L | 5481 | Standard | | | | | | Cr | 53 | 931.7 | 24.7 | 1.1940 | 0.470 | 39.4 | ug/L | 268 | Standard | | | | | | Mn | 55 | 174978.3 | 0.5 | 51.5621 | 1.377 | 2.7 | ug/L | 670 | Standard | | | | | | Co | 59 | 599.3 | 1.7 | 0.1406 | 0.008 | 6.0 | ug/L | 146 | Standard | | | | | | Ni | 60 | 1134.0 | 3.1 | 0.7615 | 0.059 | 7.7 | ug/L | 220 | Standard | | | | | | Cu | 65 | 421.3 | 12.5 | 0.1969 | 0.054 | 27.4 | ug/L | 147 | Standard | | | | | | Zn | 66 | 1194.4 | 1.3 | 1.1725 | 0.053 | 4.5 | ug/L | 211 | Standard | | | | | > | Ge | 72 | 215575.6 | 2.9 | | | | ug/L | 210599 | Standard | | | | | | As | 75 | 2878.1 | 3.5 | 4.0937 | 0.249 | 6.1 | ug/L | -47 | Standard | | | | | | Se | 82 | 25.3 | 10.6 | 0.2424 | 0.050 | 20.6 | ug/L | 15 | Standard | | | | | L | Se-1 | 77 | 100.7 | 8.6 | 1.3236 | 0.201 | 15.2 | ug/L | 65 | Standard | | | | | Γ> | Ga | 71 | 30.0 | 50.0 | | | | mg/L | 27 | Standard | | | | | L | Rb | 85 | 1228.4 | 4.0 | | | | ug/L | 17 | Standard | | | | | Γ | Υ | 89 | 221613.0 | 4.8 | | | | ug/L | 216672 | Standard | | | | | L> | Rh | 103 | 20.0 | 66.1 | | | | ug/L | 18 | Standard | | | | | Γ | Mo | 98 | 3618.7 | 1.1 | 2.5594 | 0.092 | 3.6 | ug/L | 11 | Standard | | | | | | Ag | 107 | 52.0 | 1.9 | -0.0004 | 0.000 | 86.9 | ug/L | 55 | Standard | | | | | | Cd | 111 | 20.2 | 36.9 | 0.0079 | 0.005 | 67.7 | mg/L | 7 | Standard | | | | | | Cd | 114 | 62.5 | 20.3 | 0.0233 | 0.003 | 13.8 | ug/L | 4 | Standard | | | | | > | . In | 115 | 326738.0 | 2.7 | | | | ug/L | 322525 | Standard | | | | | | Sn | 118 | 466.7 | 8.7 | -0.0366 | 0.007 | 20.4 | ug/L | 345 | Standard | | | | | | Sb | 123 | 205.4 | 14.6 | 0.0431 | 0.009 | 20.2 | ug/L | 88 | Standard | | | | | L | Ва | 135 | 86718.0 | 3.4 | 53.5271 | 2.620 | 4.9 | ug/L | 12 | Standard | | | | | Γ | Ce | 140 | 188.3 | 23.9 | | | | ug/L | 37 | Standard | | | | | L> | | 159 | 631013.1 | 2.8 | | | | ug/L | 631826 | Standard | | | | | Γ | Но | 165 | 23.3 | 53.9 | | | | ug/L | 3 | Standard | | | | | | TI | 203 | 179.0 | 7.5 | 0.0252 | 0.002 | 8.1 | ug/L | 7 | Standard | | | | | | TI | 205 | 141.7 | 10.8 | 0.0353 | 0.003 | 9.3 | ug/L | 7 | Standard | | | | | | Pb | 206 | 239.0 | 5.9 | 0.0010 | 0.003 | 313.6 | ug/L | 159 | Standard | | | | | | Pb | 207 | 217.0 | 5.6 | 0.0037 | 0.004 | 111.7 | ug/L | 120 | Standard | | | | | | Pb | 208 | 870.0 | 4.7 | 0.0073 | 0.003 | 46.2 | ug/L | 503 | Standard | | | | | | U | 238 | 1422.4 | 3.4 | 0.2663 | 0.012 | 4.6 | ug/L | 5 | Standard | | | | | L> | . Bi | 209 | 330934.1 | 1.4 | | | | ug/L | 333509 | Standard | | | | | | | | | | | | | | | | | | | Sample ID: L1510135202 Report Date/Time: Tuesday, October 27, 2015 15:18:39 Page 1 Approved: October 28, 2015 Page 477 L15101055 / Revision: 0 / 760 total pages | _ | | | | | | | | | _ | | |----|------|-----|---------|-------|---------|-------|------|------|-------|----------| | | Na | 23 | 1.7 | 173.2 | | | | mg/L | 0 | Standard | | | Mg | 24 | 16258.7 | 3.5 | 36.6075 | 2.079 | 5.7 | mg/L | 10 | Standard | | | K | 39 | 128.3 | 2.2 | 1.3000 | 0.065 | 5.0 | mg/L | 32 | Standard | | | Ca | 43 | 208.3 | 6.0 | 17.2704 | 1.615 | 9.4 | mg/L | 85 | Standard | | | Fe | 54 | 371.0 | 13.8 | 0.7262 | 0.135 | 18.6 | mg/L | 82 | Standard | | | Fe |
57 | 306.7 | 9.4 | 0.8614 | 0.205 | 23.8 | mg/L | 217 | Standard | | L> | Sc-1 | 45 | 15392.8 | 2.2 | | | | mg/L | 14524 | Standard | | | CI | 35 | 70561.3 | 1.1 | | | | ug/L | 53193 | Standard | | | Kr | 83 | 4.7 | 53.9 | | | | ug/L | 3 | Standard | | | Br | 81 | 1716.8 | 8.8 | | | | ug/L | 327 | Standard | | | Р | 31 | 17675.3 | 2.4 | | | | ug/L | 13329 | Standard | | | S | 34 | 3522.1 | 3.3 | | | | ug/L | 3234 | Standard | | | Sr | 88 | 150.0 | 29.6 | | | | ug/L | 87 | Standard | | | С | 12 | 196.7 | 12.8 | | | | mg/L | 103 | Standard | | | N | 14 | 0.0 | | | | | mg/L | 0 | Standard | | | Hg | 202 | 6.7 | 173.2 | | | | mg/L | 3 | Standard | | | Dy | 164 | 8.6 | 217.0 | | | | mg/L | 10 | Standard | | | Ho-1 | 165 | 23.3 | 53.9 | | | | mg/L | 3 | Standard | | | Er | 166 | 30.0 | 100.0 | | | | mg/L | 7 | Standard | | | I | 127 | 38183.2 | 6.8 | | | | mg/L | 3612 | Standard | | Analyte | Mass | QC Std % Recovery | Int Std % Recovery | Spike % Recovery | |---------|------|-------------------|--------------------|------------------| | 「⊳ Li | 6 | | 112.750 | | | Be | 9 | | | | | L AI | 27 | | | | | 「 Sc | 45 | | | | | Ti | 47 | | | | | V | 51 | | | | | Cr | 52 | | | | | Cr | 53 | | | | | Mn | 55 | | | | | Co | 59 | | | | | Ni | 60 | | | | | Cu | 65 | | | | | Zn | 66 | | | | | > Ge | 72 | | 102.363 | | | As | 75 | | | | | Se | 82 | | | | | L Se-1 | 77 | | | | | 「⊳ Ga | 71 | | | | Sample ID: L1510135202 Report Date/Time: Tuesday, October 27, 2015 15:18:39 Page 2 Approved: October 28, 2015 ``` Rb 85 Υ 89 | > Rh 103 98 Мо 107 Ag Cd 111 Cd 114 101.306 | > In 115 Sn 118 Sb 123 Ва 135 140 Ce Tb 159 Но 165 ΤI 203 ΤI 205 Pb 206 Pb 207 208 Pb U 238 209 99.228 L> Bi Na 23 Mg 24 39 Κ Ca 43 Fe 54 Fe 57 45 |> Sc-1 CI 35 83 Kr Br 81 Ρ 31 S 34 Sr 88 С 12 Ν 14 202 Hg Dу 164 Ho-1 165 166 Er 127 QC Out of Limits Measurement Type Analyte Mass Out of Limits Message Ti 47 Lower Τi 47 ``` Sample ID: L1510135202 Report Date/Time: Tuesday, October 27, 2015 15:18:39 Page 3 Sample ID: L1510114809 Sample Date/Time: Tuesday, October 27, 2015 15:19:34 Number of Replicates: 3 Autosampler Position: 312 Sample Description: 1 Method File: C:\NexIONData\Method\6020a.mth Aliquot Volume (mL): Diluted to Volume (mL): User Name: BKT Nexion300X Cumulative Autodilution Factor: 1 Nexion-ICP 200.8\6020 | Concentration | Results | |---------------|---------| |---------------|---------| | | | | Concentration Results | | | | | | | | | | |----|--------|---------------|-----------------------|------|---------|-------|-------|-------|---------------|----------|--|--| | IS | Analyt | e Mass | Intensity | RSD | Conc. | SD | RSD | Units | Blank Intens. | Mode | | | | Γ> | Li | 6 | 32409.8 | 7.4 | | | | ug/L | 26270 | Standard | | | | | Ве | 9 | 8.3 | 91.7 | -0.0216 | 0.013 | 58.3 | ug/L | 2 | Standard | | | | L | ΑI | 27 | 736015.4 | 3.8 | 10.6777 | 1.171 | 11.0 | ug/L | 403 | Standard | | | | Γ | Sc | 45 | 16489.0 | 5.5 | | | | ug/L | 14524 | Standard | | | | | Ti | 47 | 353.7 | 4.0 | 0.0715 | 0.152 | 212.4 | ug/L | 365 | Standard | | | | | ٧ | 51 | 2789.7 | 1.4 | 0.5313 | 0.041 | 7.8 | ug/L | 805 | Standard | | | | | Cr | 52 | 6911.2 | 2.3 | 0.2774 | 0.100 | 36.2 | ug/L | 5481 | Standard | | | | | Cr | 53 | 750.0 | 8.0 | 0.8486 | 0.170 | 20.0 | ug/L | 268 | Standard | | | | | Mn | 55 | 2679.2 | 20.4 | 0.4426 | 0.197 | 44.4 | ug/L | 670 | Standard | | | | | Co | 59 | 369.7 | 6.1 | 0.0687 | 0.010 | 14.5 | ug/L | 146 | Standard | | | | | Ni | 60 | 675.7 | 6.0 | 0.3585 | 0.022 | 6.1 | ug/L | 220 | Standard | | | | | Cu | 65 | 1456.1 | 3.7 | 1.1123 | 0.100 | 9.0 | ug/L | 147 | Standard | | | | | Zn | 66 | 2386.2 | 2.3 | 2.9545 | 0.224 | 7.6 | ug/L | 211 | Standard | | | | > | Ge | 72 | 216724.6 | 4.4 | | | | ug/L | 210599 | Standard | | | | | As | 75 | 72.1 | 24.8 | 0.1772 | 0.020 | 11.6 | ug/L | -47 | Standard | | | | | Se | 82 | 82.0 | 6.6 | 1.1723 | 0.056 | 4.8 | ug/L | 15 | Standard | | | | L | Se-1 | 77 | 112.7 | 10.8 | 1.6206 | 0.362 | 22.4 | ug/L | 65 | Standard | | | | Γ> | Ga | 71 | 25.0 | 20.0 | | | | mg/L | 27 | Standard | | | | L | Rb | 85 | 918.4 | 4.7 | | | | ug/L | 17 | Standard | | | | Γ | Υ | 89 | 223886.7 | 5.3 | | | | ug/L | 216672 | Standard | | | | L> | Rh | 103 | 21.7 | 66.6 | | | | ug/L | 18 | Standard | | | | Γ | Мо | 98 | 187.3 | 5.0 | 0.1274 | 0.012 | 9.8 | ug/L | 11 | Standard | | | | | Ag | 107 | 48.0 | 11.0 | -0.0015 | 0.001 | 55.2 | ug/L | 55 | Standard | | | | | Cd | 111 | 49.9 | 27.4 | 0.0277 | 0.007 | 26.3 | mg/L | 7 | Standard | | | | | Cd | 114 | 132.1 | 9.2 | 0.0427 | 0.005 | 11.0 | ug/L | 4 | Standard | | | | > | In | 115 | 334767.7 | 5.6 | | | | ug/L | 322525 | Standard | | | | | Sn | 118 | 480.0 | 9.0 | -0.0356 | 0.015 | 43.0 | ug/L | 345 | Standard | | | | | Sb | 123 | 137.9 | 5.7 | 0.0245 | 0.001 | 4.0 | ug/L | 88 | Standard | | | | Ē | Ва | 135 | 29618.6 | 2.3 | 17.8615 | 1.267 | 7.1 | ug/L | 12 | Standard | | | | ļ | Ce | 140 | 571.7 | 16.3 | | | | ug/L | 37 | Standard | | | | Ĺ> | Tb | 159 | 634681.1 | 4.6 | | | | ug/L | 631826 | Standard | | | | ļ | Но | 165 | 33.3 | 22.9 | | | | ug/L | 3 | Standard | | | | ļ | TI | 203 | 59.3 | 4.2 | 0.0064 | 0.001 | 8.5 | ug/L | 7 | Standard | | | | ļ | TI | 205 | 35.0 | 0.0 | 0.0104 | 0.000 | 3.9 | ug/L | 7 | Standard | | | | ļ | Pb | 206 | 287.7 | 5.4 | 0.0118 | 0.006 | 54.0 | ug/L | 159 | Standard | | | | ļ | Pb | 207 | 248.7 | 9.7 | 0.0107 | 0.004 | 33.9 | ug/L | 120 | Standard | | | | ļ | Pb | 208 | 1018.3 | 8.8 | 0.0158 | 0.003 | 18.7 | ug/L | 503 | Standard | | | | ļ | U | 238 | 50.0 | 23.1 | 0.0048 | 0.003 | 53.8 | ug/L | 5 | Standard | | | | L> | Bi | 209 | 339408.0 | 5.2 | | | | ug/L | 333509 | Standard | | | Sample ID: L1510114809 Report Date/Time: Tuesday, October 27, 2015 15:21:51 Page 1 | Г | N. | 23 | 1.7 | 173.2 | | | | ma/l | 0 | Standard | |----|------|-----|----------|-------|---------|-------|-------|------|-------|----------| | ! | Na | | | | | | | mg/L | | | | | Mg | 24 | 10135.1 | 0.9 | 21.3167 | 1.330 | 6.2 | mg/L | 10 | Standard | | | K | 39 | 35.0 | 24.7 | 0.1738 | 0.096 | 55.4 | mg/L | 32 | Standard | | | Ca | 43 | 65.0 | 40.0 | -5.2258 | 3.797 | 72.7 | mg/L | 85 | Standard | | | Fe | 54 | 79.1 | 38.5 | 0.0397 | 0.072 | 181.4 | mg/L | 82 | Standard | | | Fe | 57 | 243.3 | 8.3 | 0.1566 | 0.195 | 124.6 | mg/L | 217 | Standard | | L> | Sc-1 | 45 | 16489.0 | 5.5 | | | | mg/L | 14524 | Standard | | | CI | 35 | 73783.2 | 1.5 | | | | ug/L | 53193 | Standard | | | Kr | 83 | 5.7 | 40.8 | | | | ug/L | 3 | Standard | | | Br | 81 | 1973.5 | 7.9 | | | | ug/L | 327 | Standard | | | Р | 31 | 24559.9 | 2.3 | | | | ug/L | 13329 | Standard | | | S | 34 | 3493.7 | 4.3 | | | | ug/L | 3234 | Standard | | | Sr | 88 | 88.3 | 28.5 | | | | ug/L | 87 | Standard | | | С | 12 | 233.3 | 16.2 | | | | mg/L | 103 | Standard | | | N | 14 | 0.0 | | | | | mg/L | 0 | Standard | | | Hg | 202 | 16.7 | 34.6 | | | | mg/L | 3 | Standard | | | Dy | 164 | 31.7 | 66.4 | | | | mg/L | 10 | Standard | | | Ho-1 | 165 | 33.3 | 22.9 | | | | mg/L | 3 | Standard | | | Er | 166 | 33.3 | 17.3 | | | | mg/L | 7 | Standard | | | I | 127 | 110053.8 | 4.8 | | | | mg/L | 3612 | Standard | | | | | | | | | | | | | | _ | Analyte | | QC Std % Recovery | Int Std % Recovery | Spike % Recovery | |----|---------|----|-------------------|--------------------|------------------| | Γ> | Li | 6 | | 123.373 | | | | Be | 9 | | | | | L | Al | 27 | | | | | Γ | Sc | 45 | | | | | | Ti | 47 | | | | | | V | 51 | | | | | | Cr | 52 | | | | | | Cr | 53 | | | | | | Mn | 55 | | | | | | Co | 59 | | | | | | Ni | 60 | | | | | | Cu | 65 | | | | | | Zn | 66 | | | | | > | Ge | 72 | | 102.909 | | | | As | 75 | | | | | | Se | 82 | | | | | L | Se-1 | 77 | | | | | Γ> | Ga | 71 | | | | Sample ID: L1510114809 Report Date/Time: Tuesday, October 27, 2015 15:21:51 Page 2 Approved: October 28, 2015 | L Rb | 85 | | | | | |---------------|-------------------------|---------|------|-----------------------|--| | Γ Y | 89 | | | | | | Ĺ> Rh | 103 | | | | | | Γ Mo | 98 | | | | | | Ag | 107 | | | | | | Cd | 111 | | | | | | Cd | 114 | | | 102 700 | | | > In | 115 | | | 103.796 | | | Sn | 118 | | | | | | Sb | 123 | | | | | | L Ba
□ Co | 135 | | | | | | 「 Ce ⊤h | 140 | | | | | | L> Tb
Γ Ho | 159
165 | | | | | | H0
 TI | 203 | | | | | | ''
 Ti | 205 | | | | | | II
 Pb | 206 | | | | | | Pb | 207 | | | | | | Pb | 208 | | | | | | U | 238 | | | | | | ∣ | 209 | | | 101.769 | | | ∫ Na | 23 | | | 101.700 | | | Mg | 24 | | | | | | K | 39 | | | | | | Ca | 43 | | | | | | Fe | 54 | | | | | | Fe | 57 | | | | | |
 > Sc-1 | 45 | | | | | | CI | 35 | | | | | | Kr | 83 | | | | | | Br | 81 | | | | | | Р | 31 | | | | | | S | 34 | | | | | | Sr | 88 | | | | | | С | 12 | | | | | | N | 14 | | | | | | Hg | 202 | | | | | | Dy | 164 | | | | | | Ho-1 | 165 | | | | | | Er | 166 | | | | | | I | 127 | | | | | | QC O | ut of Limits | | | | | | | ement Type | Analyte | Mass | Out of Limits Message | | | | Std for sample | Li | 6 | Rerun sample | | | | Li o ini ota ioi sampie | | | • | | Sample ID: L1510114809 Report Date/Time: Tuesday, October 27, 2015 15:21:51 Page 3 Sample ID: L1510114811 Sample Date/Time: Tuesday, October 27, 2015 15:22:45 Number of Replicates: 3 Autosampler Position: 313 Sample Description: 1 Method File: C:\NexIONData\Method\6020a.mth Aliquot Volume (mL): Diluted to Volume (mL): User Name: BKT Nexion300X Cumulative Autodilution Factor: 1 Nexion-ICP 200.8\6020 | \sim | ncon | tration | Results | | |--------|------|----------|---------|--| | υo | ncer | itration | Results | | | | | Concentration results | | | | | | | | | |----|--------|-----------------------|-----------|------|---------|-------|-------|-------|---------------|----------| | IS | Analyt | e Mass | Intensity | RSD | Conc. | SD | RSD | Units | Blank Intens. | Mode | | Γ> | Li | 6 | 32732.0 | 0.7 | | | | ug/L | 26270 | Standard | | | Be | 9 | 15.0 | 88.2 | -0.0117 | 0.020 | 173.6 | ug/L | 2 | Standard | | L | Αl | 27 | 1931718.9 | 2.0 | 27.6314 | 0.466 | 1.7 | ug/L | 403 | Standard | | Γ
 Sc | 45 | 16302.1 | 2.7 | | | | ug/L | 14524 | Standard | | | Ti | 47 | 302.0 | 7.8 | -0.2693 | 0.143 | 53.3 | ug/L | 365 | Standard | | | ٧ | 51 | 2220.2 | 4.2 | 0.3630 | 0.032 | 8.8 | ug/L | 805 | Standard | | | Cr | 52 | 6449.7 | 2.8 | 0.1543 | 0.028 | 18.0 | ug/L | 5481 | Standard | | | Cr | 53 | 750.0 | 2.3 | 0.8304 | 0.024 | 2.9 | ug/L | 268 | Standard | | | Mn | 55 | 8604.1 | 0.9 | 2.1605 | 0.033 | 1.5 | ug/L | 670 | Standard | | | Co | 59 | 409.7 | 2.2 | 0.0796 | 0.004 | 4.6 | ug/L | 146 | Standard | | | Ni | 60 | 728.4 | 2.6 | 0.3981 | 0.019 | 4.9 | ug/L | 220 | Standard | | | Cu | 65 | 489.3 | 5.4 | 0.2500 | 0.019 | 7.6 | ug/L | 147 | Standard | | | Zn | 66 | 1120.4 | 2.5 | 1.0354 | 0.058 | 5.6 | ug/L | 211 | Standard | | > | Ge | 72 | 218830.4 | 1.0 | | | | ug/L | 210599 | Standard | | | As | 75 | 94.2 | 33.6 | 0.2070 | 0.042 | 20.5 | ug/L | -47 | Standard | | | Se | 82 | 30.5 | 19.9 | 0.3190 | 0.094 | 29.4 | ug/L | 15 | Standard | | L | Se-1 | 77 | 75.7 | 7.7 | 0.6603 | 0.165 | 25.0 | ug/L | 65 | Standard | | Γ> | Ga | 71 | 26.7 | 47.2 | | | | mg/L | 27 | Standard | | L | Rb | 85 | 1225.0 | 1.6 | | | | ug/L | 17 | Standard | | Γ | Υ | 89 | 230968.9 | 1.0 | | | | ug/L | 216672 | Standard | | L> | Rh | 103 | 56.7 | 18.4 | | | | ug/L | 18 | Standard | | Γ | Мо | 98 | 82.1 | 8.5 | 0.0535 | 0.004 | 8.2 | ug/L | 11 | Standard | | | Ag | 107 | 96.0 | 14.5 | 0.0081 | 0.003 | 34.7 | ug/L | 55 | Standard | | | Cd | 111 | 54.2 | 12.9 | 0.0303 | 0.004 | 14.3 | mg/L | 7 | Standard | | | Cd | 114 | 111.7 | 27.9 | 0.0363 | 0.008 | 23.1 | ug/L | 4 | Standard | | > | In | 115 | 339753.2 | 1.1 | | | | ug/L | 322525 | Standard | | | Sn | 118 | 495.0 | 14.7 | -0.0340 | 0.019 | 55.0 | ug/L | 345 | Standard | | | Sb | 123 | 108.8 | 15.1 | 0.0166 | 0.004 | 24.3 | ug/L | 88 | Standard | | L | Ва | 135 | 51332.8 | 0.9 | 30.4435 | 0.377 | 1.2 | ug/L | 12 | Standard | | Γ | Ce | 140 | 1100.0 | 4.8 | | | | ug/L | 37 | Standard | | L> | Tb | 159 | 639978.5 | 1.6 | | | | ug/L | 631826 | Standard | | Γ | Но | 165 | 28.3 | 56.7 | | | | ug/L | 3 | Standard | | | TI | 203 | 123.3 | 9.0 | 0.0161 | 0.002 | 10.4 | ug/L | 7 | Standard | | | TI | 205 | 56.7 | 36.7 | 0.0153 | 0.005 | 31.9 | ug/L | 7 | Standard | | | Pb | 206 | 281.3 | 8.0 | 0.0100 | 0.001 | 6.5 | ug/L | 159 | Standard | | | Pb | 207 | 244.7 | 2.3 | 0.0097 | 0.001 | 10.3 | ug/L | 120 | Standard | | | Pb | 208 | 1032.7 | 1.7 | 0.0168 | 0.001 | 3.3 | ug/L | 503 | Standard | | | U | 238 | 170.7 | 11.9 | 0.0271 | 0.004 | 13.4 | ug/L | 5 | Standard | | L> | Bi | 209 | 339744.9 | 1.2 | | | | ug/L | 333509 | Standard | | | | | | | | | | | | | Sample ID: L1510114811 Report Date/Time: Tuesday, October 27, 2015 15:25:02 Page 1 Approved: October 28, 2015 | _ | | | | | | | | | | | |----|------|-----|---------|-------|---------|-------|--------|------|-------|----------| | | Na | 23 | 0.0 | | | | | mg/L | 0 | Standard | | | Mg | 24 | 11747.9 | 1.2 | 24.9590 | 0.945 | 3.8 | mg/L | 10 | Standard | | | K | 39 | 26.7 | 10.8 | 0.0853 | 0.031 | 36.3 | mg/L | 32 | Standard | | | Ca | 43 | 93.3 | 8.2 | -1.0794 | 0.840 | 77.8 | mg/L | 85 | Standard | | | Fe | 54 | 82.3 | 3.5 | 0.0465 | 0.009 | 18.6 | mg/L | 82 | Standard | | | Fe | 57 | 223.3 | 28.0 | 0.0183 | 0.587 | 3207.9 | mg/L | 217 | Standard | | L> | Sc-1 | 45 | 16302.1 | 2.7 | | | | mg/L | 14524 | Standard | | | CI | 35 | 72127.3 | 1.7 | | | | ug/L | 53193 | Standard | | | Kr | 83 | 5.7 | 53.9 | | | | ug/L | 3 | Standard | | | Br | 81 | 1690.1 | 0.0 | | | | ug/L | 327 | Standard | | | Р | 31 | 22263.0 | 2.3 | | | | ug/L | 13329 | Standard | | | S | 34 | 3238.7 | 2.1 | | | | ug/L | 3234 | Standard | | | Sr | 88 | 161.7 | 7.8 | | | | ug/L | 87 | Standard | | | С | 12 | 200.0 | 10.0 | | | | mg/L | 103 | Standard | | | N | 14 | 0.0 | | | | | mg/L | 0 | Standard | | | Hg | 202 | 6.7 | 173.2 | | | | mg/L | 3 | Standard | | | Dy | 164 | 22.5 | 53.7 | | | | mg/L | 10 | Standard | | | Ho-1 | 165 | 28.3 | 56.7 | | | | mg/L | 3 | Standard | | | Er | 166 | 16.7 | 91.7 | | | | mg/L | 7 | Standard | | | I | 127 | 51256.6 | 2.5 | | | | mg/L | 3612 | Standard | | Analyte | Mass | QC Std % Recovery | Int Std % Recovery | Spike % Recovery | |---------|------|-------------------|--------------------|------------------| | 「⊳ Li | 6 | | 124.600 | | | Be | 9 | | | | | L AI | 27 | | | | | 「 Sc | 45 | | | | | Ti | 47 | | | | | V | 51 | | | | | Cr | 52 | | | | | Cr | 53 | | | | | Mn | 55 | | | | | Co | 59 | | | | | Ni | 60 | | | | | Cu | 65 | | | | | Zn | 66 | | | | | > Ge | 72 | | 103.909 | | | As | 75 | | | | | Se | 82 | | | | | L Se-1 | 77 | | | | | 「⊳ Ga | 71 | | | | Sample ID: L1510114811 Report Date/Time: Tuesday, October 27, 2015 15:25:02 Page 2 Approved: October 28, 2015 | L Rb | 85 | | | | |-------------------------|--------------|-----------|------|-----------------------| | ΓΥ | 89 | | | | | $\lfloor_>$ Rh | 103 | | | | | - Mo | 98 | | | | | Ag | 107 | | | | | Cď | 111 | | | | | Cd | 114 | | | | | > In | 115 | | | 105.342 | | Sn | 118 | | | | | Sb | 123 | | | | | L Ba | 135 | | | | | ∟ Ce | 140 | | | | | Tb | 159 | | | | | Ho | 165 | | | | | TI | 203 | | | | | TI | 205 | | | | | Pb | 206 | | | | | Pb | 207 | | | | | Pb | 208 | | | | | U | 238 | | | | | ∟> Bi | 209 | | | 101.870 | | ∫ Na | 23 | | | | | Mg | 24 | | | | | K | 39 | | | | | Ca | 43 | | | | | Fe | 54 | | | | | Fe | 57 | | | | | _
> Sc-1 | 45 | | | | | CI | 35 | | | | | Kr | 83 | | | | | Br | 81 | | | | | Р | 31 | | | | | S | 34 | | | | | Sr | 88 | | | | | С | 12 | | | | | Ν | 14 | | | | | Hg | 202 | | | | | Dy | 164 | | | | | Ho-1 | 165 | | | | | Er | 166 | | | | | I | 127 | | | | | QC Ou | ıt of Limits | | | | | | ment Type | Analyte M | lass | Out of Limits Message | | | | Li | 6 | Rerun sample | | Li 6 Int Std for sample | | LI | U | Norum Sample | Sample ID: L1510114811 Report Date/Time: Tuesday, October 27, 2015 15:25:02 Page 3 Sample ID: L1510114802 Sample Date/Time: Tuesday, October 27, 2015 15:25:56 Number of Replicates: 3 Autosampler Position: 314 Sample Description: 5 Method File: C:\NexIONData\Method\6020a.mth Aliquot Volume (mL): Diluted to Volume (mL): User Name: BKT Nexion300X Cumulative Autodilution Factor: 1 Nexion-ICP 200.8\6020 | Concentration | Results | |---------------|---------| |---------------|---------| | | | Concentration Results | | | | | | | | | |----|--------|-----------------------|-----------|-------|---------|-------|-------|-------|---------------|----------| | IS | Analyt | e Mass | Intensity | RSD | Conc. | SD | RSD | Units | Blank Intens. | Mode | | Γ> | Li | 6 | 31319.0 | 0.6 | | | | ug/L | 26270 | Standard | | | Be | 9 | 15.0 | 57.7 | -0.0106 | 0.014 | 131.1 | ug/L | 2 | Standard | | L | ΑI | 27 | 374214.0 | 1.7 | 5.5784 | 0.123 | 2.2 | ug/L | 403 | Standard | | Γ | Sc | 45 | 15678.1 | 2.0 | | | | ug/L | 14524 | Standard | | | Ti | 47 | 176.0 | 8.0 | -1.0428 | 0.084 | 8.1 | ug/L | 365 | Standard | | | ٧ | 51 | 958.1 | 1.0 | 0.0083 | 0.005 | 63.3 | ug/L | 805 | Standard | | | Cr | 52 | 6112.9 | 1.4 | 0.0748 | 0.030 | 40.7 | ug/L | 5481 | Standard | | | Cr | 53 | 408.3 | 6.7 | 0.2093 | 0.042 | 20.1 | ug/L | 268 | Standard | | | Mn | 55 | 16053.2 | 0.5 | 4.3257 | 0.065 | 1.5 | ug/L | 670 | Standard | | | Co | 59 | 321.7 | 4.8 | 0.0525 | 0.005 | 10.1 | ug/L | 146 | Standard | | | Ni | 60 | 342.0 | 2.5 | 0.0663 | 0.005 | 7.0 | ug/L | 220 | Standard | | | Cu | 65 | 447.0 | 8.5 | 0.2119 | 0.029 | 13.6 | ug/L | 147 | Standard | | | Zn | 66 | 1472.7 | 2.5 | 1.5530 | 0.067 | 4.3 | ug/L | 211 | Standard | | > | Ge | 72 | 219359.6 | 1.1 | | | | ug/L | 210599 | Standard | | | As | 75 | 53.4 | 43.8 | 0.1512 | 0.033 | 21.6 | ug/L | -47 | Standard | | | Se | 82 | 24.4 | 22.9 | 0.2195 | 0.086 | 39.4 | ug/L | 15 | Standard | | L | Se-1 | 77 | 56.0 | 13.5 | 0.1625 | 0.182 | 112.1 | ug/L | 65 | Standard | | Γ> | Ga | 71 | 21.7 | 13.3 | | | | mg/L | 27 | Standard | | L | Rb | 85 | 701.7 | 8.2 | | | | ug/L | 17 | Standard | | Γ | Υ | 89 | 232537.9 | 1.8 | | | | ug/L | 216672 | Standard | | L> | Rh | 103 | 18.3 | 78.7 | | | | ug/L | 18 | Standard | | Γ | Мо | 98 | 49.2 | 2.6 | 0.0311 | 0.001 | 4.0 | ug/L | 11 | Standard | | | Ag | 107 | 48.0 | 12.5 | -0.0016 | 0.001 | 80.0 | ug/L | 55 | Standard | | | Cd | 111 | 65.6 | 3.9 | 0.0380 | 0.002 | 5.2 | mg/L | 7 | Standard | | | Cd | 114 | 153.3 | 16.4 | 0.0477 | 0.007 | 13.7 | ug/L | 4 | Standard | | > | In | 115 | 340290.5 | 1.1 | | | | ug/L | 322525 | Standard | | | Sn | 118 | 435.0 | 11.0 | -0.0487 | 0.010 | 21.5 | ug/L | 345 | Standard | | | Sb | 123 | 58.4 | 13.2 | 0.0040 | 0.002 | 53.0 | ug/L | 88 | Standard | | L | Ва | 135 | 7619.9 | 0.7 | 4.4919 | 0.079 | 1.8 | ug/L | 12 | Standard | | Γ | Ce | 140 | 70.0 | 0.0 | | | | ug/L | 37 | Standard | | _> | Tb | 159 | 650197.0 | 0.9 | | | | ug/L | 631826 | Standard | | Γ | Но | 165 | 6.7 | 114.6 | | | | ug/L | 3 | Standard | | | TI | 203 | 32.0 | 15.6 | 0.0020 | 0.001 | 33.5 | ug/L | 7 | Standard | | | TI | 205 | 23.3 | 65.5 | 0.0076 | 0.003 | 44.6 | ug/L | 7 | Standard | | | Pb | 206 | 251.0 | 3.1 | 0.0008 | 0.002 | 229.5 | ug/L | 159 | Standard | | ļ | Pb | 207 | 207.0 | 10.6 | -0.0021 | 0.006 | 299.3 | ug/L | 120 | Standard | | ļ | Pb | 208 | 879.0 | 2.8 | 0.0047 | 0.002 | 40.3 | ug/L | 503 | Standard | | ļ | U | 238 | 17.3 | 33.8 | -0.0014 | 0.001 | 76.1 | ug/L | 5 | Standard | | _> | Bi | 209 | 349027.0 | 1.3 | | | | ug/L | 333509 | Standard | | | | | | | | | | | | | Sample ID: L1510114802 Report Date/Time: Tuesday, October 27, 2015 15:28:13 Page 1 | _ | | | | | | | | | _ | | |----|------|-----|---------|-------|---------|-------|-------|------|-------|----------| | | Na | 23 | 0.0 | | | | | mg/L | 0 | Standard | | | Mg | 24 | 1911.8 | 4.0 | 4.1858 | 0.085 | 2.0 | mg/L | 10 | Standard | | | K | 39 | 13.3 | 78.1 | -0.0555 | 0.124 | 224.3 | mg/L | 32 | Standard | | | Ca | 43 | 65.0 | 27.7 | -4.7609 | 2.767 | 58.1 | mg/L | 85 | Standard | | | Fe | 54 | 115.8 | 39.3 | 0.1286 | 0.101 | 78.3 | mg/L | 82 | Standard | | | Fe | 57 | 253.3 | 16.0 | 0.3462 | 0.351 | 101.3 | mg/L
| 217 | Standard | | L> | Sc-1 | 45 | 15678.1 | 2.0 | | | | mg/L | 14524 | Standard | | | CI | 35 | 66343.6 | 1.9 | | | | ug/L | 53193 | Standard | | | Kr | 83 | 4.7 | 65.5 | | | | ug/L | 3 | Standard | | | Br | 81 | 650.0 | 11.6 | | | | ug/L | 327 | Standard | | | Р | 31 | 16086.9 | 1.7 | | | | ug/L | 13329 | Standard | | | S | 34 | 3263.7 | 2.7 | | | | ug/L | 3234 | Standard | | | Sr | 88 | 128.3 | 19.2 | | | | ug/L | 87 | Standard | | | С | 12 | 163.3 | 12.7 | | | | mg/L | 103 | Standard | | | N | 14 | 10.0 | | | | | mg/L | 0 | Standard | | | Hg | 202 | 3.3 | 173.2 | | | | mg/L | 3 | Standard | | | Dy | 164 | 9.5 | 102.6 | | | | mg/L | 10 | Standard | | | Ho-1 | 165 | 6.7 | 114.6 | | | | mg/L | 3 | Standard | | | Er | 166 | 10.0 | 100.0 | | | | mg/L | 7 | Standard | | | I | 127 | 23221.1 | 2.2 | | | | mg/L | 3612 | Standard | | ۲> | Analyte
Li | Mass
6 | QC Std % Recovery | Int Std % Recovery
119.221 | Spike % Recovery | |----|---------------|-----------|-------------------|-------------------------------|------------------| | ĺ | Be | 9 | | | | | Ĺ | Al | 27 | | | | | Γ | Sc | 45 | | | | | | Ti | 47 | | | | | | V | 51 | | | | | | Cr | 52 | | | | | | Cr | 53 | | | | | | Mn | 55 | | | | | | Co | 59 | | | | | | Ni | 60 | | | | | | Cu | 65 | | | | | | Zn | 66 | | | | | > | Ge | 72 | | 104.160 | | | | As | 75 | | | | | | Se | 82 | | | | | L | Se-1 | 77 | | | | | Γ> | Ga | 71 | | | | Sample ID: L1510114802 Report Date/Time: Tuesday, October 27, 2015 15:28:13 Page 2 Approved: October 28, 2015 | L Rb | 85 | | | | |----------------------|--------------|---------|------|-----------------------| | ΓY | 89 | | | | | $\lfloor_>$ Rh | 103 | | | | | Г Мо | 98 | | | | | Ag | 107 | | | | | Cd | 111 | | | | | Cd | 114 | | | | | > In | 115 | | | 105.508 | | Sn | 118 | | | | | Sb | 123 | | | | | L Ba | 135 | | | | | Ce | 140 | | | | | > Tb | 159 | | | | | Ho | 165 | | | | | TI | 203 | | | | | TI | 205 | | | | | Pb | 206 | | | | | Pb | 207 | | | | | Pb | 208 | | | | | U | 238 | | | | | ∟ _{>} Bi | 209 | | | 104.653 | | Na | 23 | | | 10 1.000 | | Mg | 24 | | | | | K | 39 | | | | | Ca | 43 | | | | | Fe | 54 | | | | | Fe | 57 | | | | | > Sc-1 | 45 | | | | | CI | 35 | | | | | Kr | 83 | | | | | Br | 81 | | | | | P | 31 | | | | | S | 34 | | | | | Sr | 88 | | | | | C | 12 | | | | | N | 14 | | | | | Hg | 202 | | | | | Dy | 164 | | | | | Ho-1 | 165 | | | | | Er | 166 | | | | |
I | 127 | | | | | OC O | ıt of Limits | | | | | | | A 14 | 14 | Out of Limits Massacs | | Measure | ment Type | Analyte | Mass | Out of Limits Message | | Ti 47 Lov | wer | Ti | 47 | | Sample ID: L1510114802 Report Date/Time: Tuesday, October 27, 2015 15:28:13 Page 3 Sample ID: L1510114803 Sample Date/Time: Tuesday, October 27, 2015 15:29:08 RSD 1.6 Number of Replicates: 3 Autosampler Position: 315 Sample Description: 5 Method File: C:\NexIONData\Method\6020a.mth Intensity 30851.4 836.7 50.0 42.1 55.3 16.9 49.2 463.3 7138.7 630400.9 45.2 80.0 11.7 128.0 96.7 238.7 198.3 820.0 76.7 343715.7 337020.0 223973.5 8.7 1.5 26.5 16.5 17.4 5.9 24.3 0.4 5.1 19.9 1.4 6.3 0.8 99.0 17.7 42.1 8.4 5.8 3.1 5.4 0.8 Aliquot Volume (mL): Diluted to Volume (mL): User Name: BKT Nexion300X Cumulative Autodilution Factor: 1 Nexion-ICP 200.8\6020 9 27 45 47 51 52 53 55 59 60 65 66 72 75 82 77 71 85 89 103 98 107 111 114 115 118 123 135 140 159 165 203 205 206 207 208 238 209 IS Analyte Mass Be ΑI Sc Τi Cr Cr Mn Со Ni Cu Zn Ge As Se Se-1 Ga Rh Mο Ag Cd Cd In Sn Sb Ва Се Th Но TI ΤI Ph Pb Pb U Bi Page 1 | 91.7 | -0.0211 | 0.013 | 59.4 | ug/L | 2 | Standard | |-------|--|---|---|---|---|--| | 1.4 | 14.6648 | 0.036 | 0.2 | ug/L | 403 | Standard | | 1.7 | | | | ug/L | 14524 | Standard | | 9.6 | -1.2452 | 0.084 | 6.7 | ug/L | 365 | Standard | | 10.8 | -0.0135 | 0.028 | 204.4 | ug/L | 805 | Standard | | 1.8 | 0.0652 | 0.022 | 34.0 | ug/L | 5481 | Standard | | 2.2 | 1.7033 | 0.056 | 3.3 | ug/L | 268 | Standard | | 2.6 | 11.7395 | 0.270 | 2.3 | ug/L | 670 | Standard | | 4.4 | 0.0981 | 0.006 | 6.1 | ug/L | 146 | Standard | | 4.5 | 0.0534 | 0.011 | 21.0 | ug/L | 220 | Standard | | 7.2 | 0.0199 | 0.014 | 68.1 | ug/L | 147 | Standard | | 4.3 | 0.9753 | 0.062 | 6.3 | ug/L | 211 | Standard | | 0.6 | | | | ug/L | 210599 | Standard | | 87.9 | 0.1957 | 0.104 | 52.9 | ug/L | -47 | Standard | | 20.1 | 0.3321 | 0.103 | 31.1 | ug/L | 15 | Standard | | 7.0 | 1.2428 | 0.190 | 15.3 | ug/L | 65 | Standard | | 100.0 | | | | mg/L | 27 | Standard | | | 1.4
1.7
9.6
10.8
1.8
2.2
2.6
4.4
4.5
7.2
4.3
0.6
87.9
20.1
7.0 | 1.4 14.6648 1.7 9.6 -1.2452 10.8 -0.0135 1.8 0.0652 2.2 1.7033 2.6 11.7395 4.4 0.0981 4.5 0.0534 7.2 0.0199 4.3 0.9753 0.6 87.9 0.1957 20.1 0.3321 7.0 1.2428 | 1.4 14.6648 0.036 1.7 9.6 -1.2452 0.084 10.8 -0.0135 0.028 1.8 0.0652 0.022 2.2 1.7033 0.056 2.6 11.7395 0.270 4.4 0.0981 0.006 4.5 0.0534 0.011 7.2 0.0199 0.014 4.3 0.9753 0.062 0.6 87.9 0.1957 0.104 20.1 0.3321 0.103 7.0 1.2428 0.190 | 1.4 14.6648 0.036 0.2 1.7 9.6 -1.2452 0.084 6.7 10.8 -0.0135 0.028 204.4 1.8 0.0652 0.022 34.0 2.2 1.7033 0.056 3.3 2.6 11.7395 0.270 2.3 4.4 0.0981 0.006 6.1 4.5 0.0534 0.011 21.0 7.2 0.0199 0.014 68.1 4.3 0.9753 0.062 6.3 0.6 87.9 0.1957 0.104 52.9 20.1 0.3321 0.103 31.1 7.0 1.2428 0.190 15.3 | 1.4 14.6648 0.036 0.2 ug/L 1.7 ug/L ug/L 9.6 -1.2452 0.084 6.7 ug/L 10.8 -0.0135 0.028 204.4 ug/L 1.8 0.0652 0.022 34.0 ug/L 2.2 1.7033 0.056 3.3 ug/L 2.6 11.7395 0.270 2.3 ug/L 4.4 0.0981 0.006 6.1 ug/L 4.5 0.0534 0.011 21.0 ug/L 4.3 0.9753 0.062 6.3 ug/L 4.3 0.9753 0.062 6.3 ug/L 0.6 87.9 0.1957 0.104 52.9 ug/L 20.1 0.3321 0.103 31.1 ug/L 7.0 1.2428 0.190 15.3 ug/L | 1.4 14.6648 0.036 0.2 ug/L 403 1.7 ug/L 14524 9.6 -1.2452 0.084 6.7 ug/L 365 10.8 -0.0135 0.028 204.4 ug/L 805 1.8 0.0652 0.022 34.0 ug/L 5481 2.2 1.7033 0.056 3.3 ug/L 268 2.6 11.7395 0.270 2.3 ug/L 670 4.4 0.0981 0.006 6.1 ug/L 146 4.5 0.0534 0.011 21.0 ug/L 220 7.2 0.0199 0.014 68.1 ug/L 147 4.3 0.9753 0.062 6.3 ug/L 210 0.6 ug/L 210599 87.9 0.1957 0.104 52.9 ug/L -47 20.1 0.3321 0.103 31.1 ug/L 15 7.0 1.242 | 0.005 0.001 0.003 0.006 0.002 0.052 0.003 0.009 0.005 0.003 0.002 0.001 0.002 11392.8 SD RSD Units ug/L ug/L ug/L ug/L ug/L ug/L mg/L ug/L 17.6 12.5 17.7 14.2 1.2 19.8 37.5 340.4 74.4 133.9 7.9 304.1 Blank Intens. 26270 17 18 11 7 216672 322525 631826 345 88 12 37 3 7 159 120 503 333509 5 Standard Mode Standard **Concentration Results** Conc. 0.0265 -0.0000 0.0052 0.0191 -0.0408 0.0008 4.2471 0.0165 0.0240 -0.0013 -0.0037 0.0016 0.0095 Sample ID: L1510114803 Report Date/Time: Tuesday, October 27, 2015 15:31:25 Approved: October 28, 2015 | _ | | | | | | | | | | | |----|------|-----|---------|-------|---------|-------|-------|------|-------|----------| | | Na | 23 | 1.7 | 173.2 | | | | mg/L | 0 | Standard | | | Mg | 24 | 5571.0 |
2.3 | 12.2438 | 0.465 | 3.8 | mg/L | 10 | Standard | | | K | 39 | 40.0 | 62.5 | 0.2484 | 0.282 | 113.6 | mg/L | 32 | Standard | | | Ca | 43 | 90.0 | 16.7 | -1.0998 | 2.012 | 182.9 | mg/L | 85 | Standard | | | Fe | 54 | 127.7 | 8.5 | 0.1556 | 0.026 | 16.5 | mg/L | 82 | Standard | | | Fe | 57 | 235.0 | 36.9 | 0.1867 | 0.798 | 427.3 | mg/L | 217 | Standard | | L> | Sc-1 | 45 | 15728.2 | 1.7 | | | | mg/L | 14524 | Standard | | | CI | 35 | 68671.9 | 0.2 | | | | ug/L | 53193 | Standard | | | Kr | 83 | 4.7 | 75.3 | | | | ug/L | 3 | Standard | | | Br | 81 | 2270.2 | 0.4 | | | | ug/L | 327 | Standard | | | Р | 31 | 15180.9 | 2.2 | | | | ug/L | 13329 | Standard | | | S | 34 | 3190.3 | 4.3 | | | | ug/L | 3234 | Standard | | | Sr | 88 | 150.0 | 15.3 | | | | ug/L | 87 | Standard | | | С | 12 | 186.7 | 35.7 | | | | mg/L | 103 | Standard | | | N | 14 | 0.0 | | | | | mg/L | 0 | Standard | | | Hg | 202 | 3.3 | 173.2 | | | | mg/L | 3 | Standard | | | Dy | 164 | 9.7 | 2.9 | | | | mg/L | 10 | Standard | | | Ho-1 | 165 | 11.7 | 99.0 | | | | mg/L | 3 | Standard | | | Er | 166 | 6.7 | 86.6 | | | | mg/L | 7 | Standard | | | I | 127 | 50101.2 | 6.3 | | | | mg/L | 3612 | Standard | | | Analyte | Mass | QC Std % Recovery | Int Std % Recovery | Spike % Recovery | |----|---------|------|-------------------|--------------------|------------------| | Γ> | Li | 6 | | 117.441 | | | | Be | 9 | | | | | L | Al | 27 | | | | | Γ | Sc | 45 | | | | | | Ti | 47 | | | | | | V | 51 | | | | | | Cr | 52 | | | | | | Cr | 53 | | | | | | Mn | 55 | | | | | | Co | 59 | | | | | | Ni | 60 | | | | | | Cu | 65 | | | | | | Zn | 66 | | | | | > | Ge | 72 | | 105.745 | | | | As | 75 | | | | | | Se | 82 | | | | | L | Se-1 | 77 | | | | | Γ> | Ga | 71 | | | | Sample ID: L1510114803 Report Date/Time: Tuesday, October 27, 2015 15:31:25 Page 2 Approved: October 28, 2015 | L Rb | 85 | | | | |--------------------|--------------|---------|------|-----------------------| | ΓY | 89 | | | | | $\lfloor_>$ Rh | 103 | | | | | Mo | 98 | | | | | Ag | 107 | | | | | Cd | 111 | | | | | Cd | 114 | | | | | _{>} In | 115 | | | 104.494 | | Sn | 118 | | | | | Sb | 123 | | | | | L Ba | 135 | | | | | ¯ Ce | 140 | | | | | _
Tb | 159 | | | | | ⊢ Ho | 165 | | | | | į TI | 203 | | | | | TI | 205 | | | | | Pb | 206 | | | | | Pb | 207 | | | | | Pb | 208 | | | | | Ü | 238 | | | | | ∟> Bi | 209 | | | 103.060 | | Na | 23 | | | 100,000 | | Mg | 24 | | | | | K | 39 | | | | | Ca | 43 | | | | | Fe | 54 | | | | | Fe | 57 | | | | | Sc-1 | 45 | | | | | CI | 35 | | | | | Kr | 83 | | | | | Br | 81 | | | | | P | 31 | | | | | S | 34 | | | | | Sr | 88 | | | | | C | 12 | | | | | N | 14 | | | | | Hg | 202 | | | | | Dy | 164 | | | | | Ho-1 | 165 | | | | | Er | 166 | | | | | ī. | 127 | | | | | | | | | | | | ut of Limits | | | | | | ement Type | Analyte | Mass | Out of Limits Message | | Ti 47 Lower | | Ti | 47 | | Sample ID: L1510114803 Report Date/Time: Tuesday, October 27, 2015 15:31:25 Page 3 Sample ID: L1510114804 Sample Date/Time: Tuesday, October 27, 2015 15:32:19 Number of Replicates: 3 Autosampler Position: 316 Sample Description: 5 Method File: C:\NexIONData\Method\6020a.mth Aliquot Volume (mL): Diluted to Volume (mL): User Name: BKT Nexion300X Cumulative Autodilution Factor: 1 Nexion-ICP 200.8\6020 | Concentration Re | sults | |------------------|-------| |------------------|-------| | IS | Analyt | e Mass | Intensity | RSD | Conc. | SD | RSD | Units | Blank Intens. | Mode | |----|--------|--------|-----------|-------|---------|-------|--------|-------|---------------|----------| | Γ> | Li | 6 | 30916.5 | 0.9 | | | | ug/L | 26270 | Standard | | ĺ | Ве | 9 | 3.3 | 173.2 | -0.0294 | 0.009 | 31.8 | ug/L | 2 | Standard | | Ĺ | ΑI | 27 | 910329.3 | 1.4 | 13.7760 | 0.145 | 1.1 | ug/L | 403 | Standard | | Ī | Sc | 45 | 15845.0 | 2.3 | | | | ug/L | 14524 | Standard | | ĺ | Ti | 47 | 152.0 | 3.7 | -1.1885 | 0.035 | 3.0 | ug/L | 365 | Standard | | ĺ | V | 51 | 948.7 | 13.7 | 0.0058 | 0.036 | 624.2 | ug/L | 805 | Standard | | ĺ | Cr | 52 | 6327.3 | 1.3 | 0.1243 | 0.018 | 14.6 | ug/L | 5481 | Standard | | ĺ | Cr | 53 | 1375.1 | 8.4 | 1.9594 | 0.216 | 11.0 | ug/L | 268 | Standard | | ĺ | Mn | 55 | 41904.6 | 2.2 | 11.8690 | 0.290 | 2.4 | ug/L | 670 | Standard | | ĺ | Co | 59 | 505.7 | 2.0 | 0.1088 | 0.004 | 3.3 | ug/L | 146 | Standard | | | Ni | 60 | 349.7 | 1.9 | 0.0731 | 0.007 | 9.1 | ug/L | 220 | Standard | | | Cu | 65 | 233.7 | 6.6 | 0.0258 | 0.014 | 52.7 | ug/L | 147 | Standard | | | Zn | 66 | 1099.0 | 1.6 | 1.0007 | 0.031 | 3.1 | ug/L | 211 | Standard | | > | Ge | 72 | 219189.1 | 0.3 | | | | ug/L | 210599 | Standard | | | As | 75 | 86.3 | 17.6 | 0.1962 | 0.021 | 10.7 | ug/L | -47 | Standard | | | Se | 82 | 37.4 | 17.6 | 0.4321 | 0.108 | 24.9 | ug/L | 15 | Standard | | L | Se-1 | 77 | 98.7 | 3.8 | 1.2315 | 0.088 | 7.1 | ug/L | 65 | Standard | | Γ> | Ga | 71 | 35.0 | 37.8 | | | | mg/L | 27 | Standard | | L | Rb | 85 | 778.4 | 11.5 | | | | ug/L | 17 | Standard | | Γ | Υ | 89 | 224049.6 | 1.6 | | | | ug/L | 216672 | Standard | | L> | Rh | 103 | 40.0 | 12.5 | | | | ug/L | 18 | Standard | | Γ | Мо | 98 | 35.1 | 10.0 | 0.0217 | 0.003 | 11.6 | ug/L | 11 | Standard | | | Ag | 107 | 48.7 | 16.5 | -0.0014 | 0.002 | 107.0 | ug/L | 55 | Standard | | | Cd | 111 | 29.6 | 15.9 | 0.0139 | 0.004 | 25.5 | mg/L | 7 | Standard | | | Cd | 114 | 56.7 | 33.2 | 0.0212 | 0.005 | 24.0 | ug/L | 4 | Standard | | > | In | 115 | 337159.3 | 1.5 | | | | ug/L | 322525 | Standard | | | Sn | 118 | 433.3 | 11.8 | -0.0482 | 0.011 | 22.5 | ug/L | 345 | Standard | | | Sb | 123 | 54.0 | 13.5 | 0.0030 | 0.002 | 56.5 | ug/L | 88 | Standard | | L | Ва | 135 | 7069.6 | 1.6 | 4.2050 | 0.111 | 2.6 | ug/L | 12 | Standard | | Γ | Ce | 140 | 95.0 | 15.8 | | | | ug/L | 37 | Standard | | L> | Tb | 159 | 639545.8 | 8.0 | | | | ug/L | 631826 | Standard | | Γ | Но | 165 | 6.7 | 86.6 | | | | ug/L | 3 | Standard | | | TI | 203 | 155.3 | 4.8 | 0.0206 | 0.001 | 5.1 | ug/L | 7 | Standard | | | TI | 205 | 93.3 | 8.2 | 0.0232 | 0.002 | 7.8 | ug/L | 7 | Standard | | | Pb | 206 | 245.3 | 3.7 | 0.0001 | 0.003 | 1899.6 | ug/L | 159 | Standard | | | Pb | 207 | 202.3 | 4.0 | -0.0027 | 0.002 | 84.7 | ug/L | 120 | Standard | | | Pb | 208 | 862.7 | 2.9 | 0.0043 | 0.001 | 31.2 | ug/L | 503 | Standard | | | U | 238 | 79.7 | 12.6 | 0.0100 | 0.002 | 20.2 | ug/L | 5 | Standard | | L> | Bi | 209 | 344787.3 | 1.4 | | | | ug/L | 333509 | Standard | Sample ID: L1510114804 Report Date/Time: Tuesday, October 27, 2015 15:34:36 Page 1 Approved: October 28, 2015 | Γ | Na | 23 | 1.7 | 173.2 | | | | mg/L | 0 | Standard | |----|------|-----|---------|-------|---------|-------|-------|------|-------|----------| | | Mg | 24 | 5260.9 | 0.6 | 11.4737 | 0.256 | 2.2 | mg/L | 10 | Standard | | | K | 39 | 30.0 | 44.1 | 0.1325 | 0.154 | 116.5 | mg/L | 32 | Standard | | | Ca | 43 | 91.7 | 13.7 | -0.9480 | 1.597 | 168.4 | mg/L | 85 | Standard | | | Fe | 54 | 156.2 | 13.3 | 0.2177 | 0.051 | 23.3 | mg/L | 82 | Standard | | | Fe | 57 | 220.0 | 8.2 | 0.0317 | 0.117 | 369.8 | mg/L | 217 | Standard | | L> | Sc-1 | 45 | 15845.0 | 2.3 | | | | mg/L | 14524 | Standard | | | CI | 35 | 71907.6 | 0.6 | | | | ug/L | 53193 | Standard | | | Kr | 83 | 3.0 | 33.3 | | | | ug/L | 3 | Standard | | | Br | 81 | 2176.8 | 8.5 | | | | ug/L | 327 | Standard | | | Р | 31 | 15638.1 | 1.5 | | | | ug/L | 13329 | Standard | | | S | 34 | 3445.4 | 1.8 | | | | ug/L | 3234 | Standard | | | Sr | 88 | 135.0 | 11.1 | | | | ug/L | 87 | Standard | | | С | 12 | 180.0 | 11.1 | | | | mg/L | 103 | Standard | | | N | 14 | 0.0 | | | | | mg/L | 0 | Standard | | | Hg | 202 | 3.3 | 173.2 | | | | mg/L | 3 | Standard | | | Dy | 164 | 2.7 | 219.6 | | | | mg/L | 10 | Standard | | | Ho-1 | 165 | 6.7 | 86.6 | | | | mg/L | 3 | Standard | | | Er | 166 | 13.3 | 43.3 | | | | mg/L | 7 | Standard | | | I | 127 | 50594.6 | 6.9 | | | | mg/L | 3612 | Standard | | | | | | | | | | | | | | | Analyte | Mass | QC Std % Recovery | Int Std % Recovery | Spike % Recovery | |----|---------|------|-------------------|--------------------|------------------| | Γ> | Li | 6 | | 117.689 | | | | Be | 9 | | | | | L | Al | 27 | | | | | Γ | Sc | 45 | | | | | | Ti | 47 | | | | | | V | 51 | | | | | | Cr | 52 | | | | | | Cr | 53 | | | | | | Mn | 55 | | | | | | Co | 59 | | | | | | Ni | 60 | | | | | | Cu | 65 | | | | | | Zn | 66 | | | | | > | Ge | 72 | | 104.079 | | | | As | 75 | | | | | | Se | 82 | | | | | L | Se-1 | 77 | | | | | Γ> | Ga | 71 | | | | Sample ID: L1510114804 Report Date/Time: Tuesday, October 27, 2015 15:34:36 Page 2 Approved: October 28, 2015 | L Rb | 85 | | | | |----------------------|-------------|---------|------|-----------------------| | Γ̈́Υ | 89 | | | | | Ĺ _{>} Rh | 103 | | | | | Mo | 98 | | | | | Ag | 107 | | | | | Cď | 111 | | | | | Cd | 114 | | | | |
 > In | 115 | | | 104.538 | | Sn | 118 | | | | | Sb | 123 | | | | | L Ba | 135 | | | | | ¯ Ce | 140 | | | | | _
Tb | 159 | | | | | Ho | 165 | | | | | j TI | 203 | | | | | j TI | 205 | | | | | Pb | 206 | | | | | Pb | 207 | | | | | Pb | 208 | | | | | į U | 238 | | | | | Ĺ> Bi | 209 | | | 103.382 | | - Na | 23 | | | | | Mg | 24 | | | | | K | 39 | | | | | Ca | 43 | | | | | Fe | 54 | | | | | Fe | 57 | | | | | _> Sc-1 | 45 | | | | | CI | 35 | | | | | Kr | 83 | | | | | Br | 81 | | | | | Р | 31 | | | | | S | 34 | | | | | Sr | 88 | | | | | С | 12 | | | | | N | 14 | | | | | Hg | 202 | | | | | Dy | 164 | | | | | Ho-1 | 165 | | | | | Er | 166 | | | | | I | 127 | | | | | QC Ou | t of Limits | | | | | | nent Type | Analyte | Mass | Out of Limits Message | | Ti 47 Low | | Ti | 47 | | | =0 | | | | | **Sample ID: L1510114804**Report Date/Time: Tuesday, October 27, 2015 15:34:36 Page 3 Sample ID: L1510114812 Sample Date/Time: Tuesday, October 27, 2015 15:35:31 Number of Replicates: 3 Autosampler Position: 317 Sample Description: 5 Method File: C:\NexIONData\Method\6020a.mth Aliquot Volume (mL): Diluted to Volume (mL): User Name: BKT Nexion300X Cumulative Autodilution Factor: 1 Nexion-ICP 200.8\6020 | 0 | ncon |
tration | Results | | |----|------|----------|---------|--| | Lα | ncen | itration | Results | | | | | | | | Concenti | ation Nes | ouito | | | | |----|--------|--------|-----------|-------|----------|-----------|--------|-------|---------------|----------| | IS | Analyt | e Mass | Intensity | RSD | Conc. | SD | RSD | Units | Blank Intens. | Mode | | Γ> | Li | 6 | 30803.0 | 5.1 | | | | ug/L | 26270 | Standard | | | Be | 9 | 3.3 | 173.2 | -0.0291 | 0.010 | 34.4 | ug/L | 2 | Standard | | L | Αl | 27 | 1022067.3 | 1.2 | 15.5539 | 0.824 | 5.3 | ug/L | 403 | Standard | | Γ | Sc | 45 | 15973.4 | 3.3 | | | | ug/L | 14524 | Standard | | | Ti | 47 | 183.0 | 16.4 | -0.9855 | 0.143 | 14.5 | ug/L | 365 | Standard | | | ٧ | 51 | 1024.8 | 13.9 | 0.0316 | 0.039 | 122.6 | ug/L | 805 | Standard | | | Cr | 52 | 6552.4 | 1.7 | 0.2008 | 0.086 | 43.0 | ug/L | 5481 | Standard | | | Cr | 53 | 718.4 | 4.5 | 0.7922 | 0.067 | 8.5 | ug/L | 268 | Standard | | | Mn | 55 | 40622.4 | 0.5 | 11.6936 | 0.542 | 4.6 | ug/L | 670 | Standard | | | Co | 59 | 285.7 | 2.7 | 0.0429 | 0.002 | 4.2 | ug/L | 146 | Standard | | | Ni | 60 | 300.7 | 5.5 | 0.0357 | 0.023 | 65.6 | ug/L | 220 | Standard | | | Cu | 65 | 248.7 | 3.6 | 0.0424 | 0.006 | 14.3 | ug/L | 147 | Standard | | | Zn | 66 | 1211.4 | 6.1 | 1.1991 | 0.170 | 14.1 | ug/L | 211 | Standard | | > | Ge | 72 | 215825.9 | 4.0 | | | | ug/L | 210599 | Standard | | | As | 75 | 50.0 | 65.7 | 0.1467 | 0.045 | 30.5 | ug/L | -47 | Standard | | | Se | 82 | 40.1 | 5.4 | 0.4851 | 0.020 | 4.2 | ug/L | 15 | Standard | | L | Se-1 | 77 | 83.7 | 12.6 | 0.8890 | 0.250 | 28.1 | ug/L | 65 | Standard | | Γ> | Ga | 71 | 31.7 | 24.1 | | | | mg/L | 27 | Standard | | L | Rb | 85 | 448.3 | 9.4 | | | | ug/L | 17 | Standard | | Γ | Υ | 89 | 226849.6 | 6.0 | | | | ug/L | 216672 | Standard | | L> | Rh | 103 | 43.3 | 35.3 | | | | ug/L | 18 | Standard | | Γ | Мо | 98 | 66.8 | 2.6 | 0.0435 | 0.003 | 7.2 | ug/L | 11 | Standard | | | Ag | 107 | 50.7 | 14.9 | -0.0009 | 0.002 | 203.6 | ug/L | 55 | Standard | | | Cd | 111 | 41.2 | 16.2 | 0.0217 | 0.004 | 19.6 | mg/L | 7 | Standard | | | Cd | 114 | 102.9 | 23.5 | 0.0343 | 0.008 | 23.9 | ug/L | 4 | Standard | | > | In | 115 | 337702.7 | 4.4 | | | | ug/L | 322525 | Standard | | | Sn | 118 | 515.0 | 3.4 | -0.0283 | 0.010 | 34.6 | ug/L | 345 | Standard | | | Sb | 123 | 54.4 | 21.2 | 0.0030 | 0.003 | 89.2 | ug/L | 88 | Standard | | L | Ва | 135 | 5169.2 | 1.4 | 3.0657 | 0.108 | 3.5 | ug/L | 12 | Standard | | Γ | Ce | 140 | 463.3 | 9.2 | | | | ug/L | 37 | Standard | | _> | Tb | 159 | 630292.9 | 5.5 | | | | ug/L | 631826 | Standard | | Γ | Но | 165 | 11.7 | 107.9 | | | | ug/L | 3 | Standard | | | TI | 203 | 86.0 | 22.4 | 0.0104 | 0.003 | 26.0 | ug/L | 7 | Standard | | | TI | 205 | 55.0 | 50.6 | 0.0148 | 0.006 | 40.1 | ug/L | 7 | Standard | | | Pb | 206 | 249.0 | 7.5 | 0.0020 | 0.003 | 143.3 | ug/L | 159 | Standard | | ļ | Pb | 207 | 209.0 | 8.3 | 0.0002 | 0.007 | 3569.6 | ug/L | 120 | Standard | | ļ | Pb | 208 | 846.0 | 4.3 | 0.0042 | 0.005 | 110.2 | ug/L | 503 | Standard | | ļ | U | 238 | 244.3 | 3.6 | 0.0409 | 0.001 | 2.8 | ug/L | 5 | Standard | | _> | Bi | 209 | 339044.3 | 4.0 | | | | ug/L | 333509 | Standard | | | | | | | | | | | | | Sample ID: L1510114812 Report Date/Time: Tuesday, October 27, 2015 15:37:48 Page 1 Approved: October 28, 2015 Page 495 L15101055 / Revision: 0 / 760 total pages | _ | | | | | | | | | | | |----|------|-----|---------|-------|---------|-------|-------|------|-------|----------| | | Na | 23 | 5.0 | 100.0 | | | | mg/L | 0 | Standard | | | Mg | 24 | 4804.1 | 2.5 | 10.3983 | 0.570 | 5.5 | mg/L | 10 | Standard | | | K | 39 | 18.3 | 15.7 | -0.0034 | 0.030 | 864.5 | mg/L | 32 | Standard | | | Ca | 43 | 61.7 | 32.8 | -5.5082 | 2.624 | 47.6 | mg/L | 85 | Standard | | | Fe | 54 | 77.7 | 30.3 | 0.0388 | 0.046 | 119.3 | mg/L | 82 | Standard | | | Fe | 57 | 248.3 | 9.9 | 0.2621 | 0.208 | 79.2 | mg/L | 217 | Standard | | L> | Sc-1 | 45 | 15973.4 | 3.3 | | | | mg/L | 14524 | Standard | | | CI | 35 | 74998.5 | 1.2 | | | | ug/L | 53193 | Standard | | | Kr | 83 | 6.3 | 50.8 | | | | ug/L | 3 | Standard | | | Br | 81 | 1393.4 | 4.8 | | | | ug/L | 327 | Standard | | | Р | 31 | 16198.7 | 2.6 | | | | ug/L | 13329 | Standard | | | S | 34 | 3550.4 | 2.5 | | | | ug/L | 3234 | Standard | | | Sr | 88 | 123.3 | 20.4 | | | | ug/L | 87 | Standard | | | С | 12 | 176.7 | 18.2 | | | | mg/L | 103 | Standard | | | N | 14 | 0.0 | | | | | mg/L | 0 | Standard | | | Hg | 202 | 3.3 | 173.2 | | | | mg/L | 3 | Standard | | | Dy | 164 | 23.0 | 26.3 | | | | mg/L | 10 | Standard | | | Ho-1 | 165 | 11.7 | 107.9 | | | | mg/L | 3 | Standard | | | Er | 166 | 6.7 | 86.6 | | | | mg/L | 7 | Standard | | | I | 127 | 43830.0 | 1.2 | | | | mg/L | 3612 | Standard | | Analyte | Mass | QC Std % Recovery | Int Std % Recovery | Spike % Recovery | |--------------|------|-------------------|--------------------|------------------| | 「> Li | 6 | | 117.257 | | | Be | 9 | | | | | L AI | 27 | | | | | 「 Sc | 45 | | | | | Ti | 47 | | | | | V | 51 | | | | | Cr | 52 | | | | | Cr | 53 | | | | | Mn | 55 | | | | | Co | 59 | | | | | Ni | 60 | | | | | Cu | 65 | | | | | Zn | 66 | | | | | > Ge | 72 | | 102.482 | | | As | 75 | | | | | Se | 82 | | | | | L Se-1 | 77 | | | | | 「> Ga | 71 | | | | Sample ID: L1510114812 Report Date/Time: Tuesday, October 27, 2015 15:37:48 Page 2 Approved: October 28, 2015 | ∟ Rb | 85 | | | | |----------------|--------------|---------|------|-----------------------| | ΓΥ | 89 | | | | | $\lfloor_>$ Rh | 103 | | | | | ГМо | 98 | | | | | Ag | 107 | | | | | Cd | 111 | | | | | Cd | 114 | | | | | > In | 115 | | | 104.706 | | Sn | 118 | | | | | Sb | 123 | | | | | L Ba | 135 | | | | | ¯ Ce | 140 | | | | | _
_> Tb | 159 | | | | | Γ Ho | 165 | | | | | j TI | 203 | | | | | TI | 205 | | | | | Pb | 206 | | | | | Pb | 207 | | | | | Pb | 208 | | | | | į U | 238 | | | | | Ĺ> Bi | 209 | | | 101.660 | | Г Nа | 23 | | | | | Mg | 24 | | | | | K | 39 | | | | | Ca | 43 | | | | | Fe | 54 | | | | | Fe | 57 | | | | | _> Sc-1 | 45 | | | | | CI | 35 | | | | | Kr | 83 | | | | | Br | 81 | | | | | Р | 31 | | | | | S | 34 | | | | | Sr | 88 | | | | | С | 12 | | | | | N | 14 | | | | | Hg | 202 | | | | | Dy | 164 | | | | | Ho-1 | 165 | | | | | Er | 166 | | | | | 1 | 127 | | | | | QC Ou | ıt of Limits | | | | | | ment Type | Analyte | Mass | Out of Limits Message | | Ti 47 Lov | | Ti | 47 | 2 1. 3. 2 Moodago | | II TI LOWGI | | | | | Sample ID: L1510114812 Report Date/Time: Tuesday, October 27, 2015 15:37:48 Page 3 Sample ID: QC Std 6 Sample Date/Time: Tuesday, October 27, 2015 15:38:44 Number of Replicates: 3 Autosampler Position: 101 Sample Description: Method File: C:\NexIONData\Method\6020a.mth Aliquot Volume (mL): Diluted to Volume (mL): User Name: BKT Nexion300X Cumulative Autodilution Factor: 1 Nexion-ICP 200.8\6020 | | Concentration Results | | | | | | | | | | | | | |----|-----------------------|------------|----------------------|------------|--------------|-------|-----|--------------|---------------|----------------------|--|--|--| | IS | Analyt | e Mass | Intensity | RSD | Conc. | SD | RSD | Units | Blank Intens. | Mode | | | | | [> | Li | 6 | 28062.6 | 0.9 | | | | ug/L | 26270 | Standard | | | | | ĺ | Ве | 9 | 28735.6 | 3.0 | 51.8148 | 1.259 | 2.4 | ug/L | 2 | Standard | | | | | Ĺ | Al | 27 | 2992447.2 | 1.2 | 49.9432 | 0.179 | 0.4 | ug/L | 403 | Standard | | | | | Γ | Sc | 45 | 15034.1 | 3.7 | | | | ug/L | 14524 | Standard | | | | | | Ti | 47 | 17332.6 | 0.1 | 105.5985 | 4.015 | 3.8 | ug/L | 365 | Standard | | | | | | V | 51 | 183751.6 | 1.0 | 52.0735 | 1.892 | 3.6 | ug/L | 805 | Standard | | | | | | Cr | 52 | 231105.6 | 1.9 | 52.0042 | 0.983 | 1.9 | ug/L | 5481 | Standard | | | | | | Cr | 53 | 28010.9 | 1.4 | 51.0258 | 1.951 | 3.8 | ug/L | 268 | Standard | | | | | | Mn | 55 | 178956.0 | 2.2 | 52.7229 | 0.965 | 1.8 | ug/L | 670 | Standard | | | | | | Co | 59 | 171075.8 | 0.9 | 53.1480 | 2.271 | 4.3 | ug/L | 146 | Standard | | | | | | Ni | 60 | 59533.4 | 1.0 | 51.5880 | 1.763 | 3.4 | ug/L | 220 | Standard | | | | | | Cu | 65 | 58071.4 | 1.3 | 51.4960 | 1.652 | 3.2 | ug/L | 147 | Standard | | | | | | Zn | 66 | 34213.9 | 1.8 | 50.9308 | 1.074 | 2.1 | ug/L | 211 | Standard | | | | | > | Ge | 72 | 215634.0 | 3.7 | | | | ug/L | 210599 | Standard | | | | | | As | 75 | 36866.6 | 1.5 | 51.4720 | 1.120 | 2.2 | ug/L | -47 | Standard | | | | | | Se | 82 | 3138.3 | 0.7 | 51.7600 | 2.212 | 4.3 | ug/L | 15 | Standard | | | | | Ĺ | Se-1 | 77 | 2108.1 | 1.6 | 52.4191 | 1.516 | 2.9 | ug/L | 65 | Standard | | | | | > | Ga | 71 | 16.7 | 34.6 | | | | mg/L | 27 | Standard | | | | | Ĺ | Rb | 85 | 550.0 | 9.8 | | | | ug/L | 17 | Standard | | | | | ! | Υ | 89 | 220494.9 | 4.5 | | | | ug/L | 216672 | Standard | | | | | L> | Rh | 103 | 21.7 | 13.3 | | | | ug/L | 18 | Standard | | | | | | Мо | 98 | 152928.1 | 1.0 | 106.2430 | 2.297 | 2.2 | ug/L | 11 | Standard | | | | | | Ag | 107 | 242476.6 | 0.9 | 50.2789 | 0.905 | 1.8 | ug/L | 55 | Standard | | | | | | Cd | 111 | 74415.1 | 0.5 | 51.4708 | 0.864 | 1.7 | mg/L | 7
4 | Standard | | | | | - | Cd | 114
115 | 180749.5
332805.2 | 1.8
1.7 | 51.1415 | 1.783 | 3.5 | ug/L | 322525 | Standard
Standard | | | | | > | In
Sn | 118 | 206663.6 | 2.0 | 50.3789 | 0.492 | 1.0 | ug/L
ug/L | 322525
345 | Standard | | | | | | Sb | 123 | 192300.1 | 0.4 | 49.3795 | 0.492 | 1.7 | ug/L
ug/L | 88 | Standard | | | | | | Ba | 135 | 81495.6 | 0.4 | 49.3640 | 1.021 | 2.1 | ug/L
ug/L | 12 | Standard | | | | | Ļ | Сe | 140 | 45.0 | 19.2 | 49.3040 | 1.021 | 2.1 | ug/L
ug/L | 37 | Standard | | | | | > | Tb | 159 | 624047.6 | 3.3 | | | | ug/L | 631826 | Standard | | | | | Ĺ | Ho | 165 | 0.0 | 0.0 | | | | ug/L | 3 | Standard | | | | | i | TI | 203 | 327892.7 | 0.4 | 50,1403 | 0.896 | 1.8 | ug/L | 7 | Standard | | | | | i | TI | 205 | 223325.5 | 0.6 | 50.7024 | 0.576 | 1.1 | ug/L | 7 | Standard | | | | | i | Pb | 206 | 203599.2 | 0.7 | 50.8328 | 0.567 | 1.1 | ug/L | 159 | Standard | | | | | i | Pb | 207
 183685.2 | 1.5 | 50.5783 | 1.081 | 2.1 | ug/L | 120 | Standard | | | | | i | Pb | 208 | 742625.0 | 0.9 | 51.1725 | 0.770 | 1.5 | ug/L | 503 | Standard | | | | | i | U | 238 | 273962.1 | 0.8 | 51.0922 | 1.091 | 2.1 | ug/L | 5 | Standard | | | | | Ĺ> | Bi | 209 | 337865.1 | 1.5 | - | | | ug/L | 333509 | Standard | | | | | | | | | | | | | | | | | | | Sample ID: QC Std 6 Report Date/Time: Tuesday, October 27, 2015 15:41:01 Page 1 Approved: October 28, 2015 | г | N. | 22 | F 0 | 100.0 | | | | m ~ /I | 0 | Ctandard | |----|------|-----|---------|-------|---------|-------|------|--------|-------|----------| | | Na | 23 | 5.0 | 100.0 | | | | mg/L | 0 | Standard | | | Mg | 24 | 2291.8 | 5.8 | 5.2426 | 0.163 | 3.1 | mg/L | 10 | Standard | | | K | 39 | 426.7 | 6.0 | 4.9282 | 0.205 | 4.2 | mg/L | 32 | Standard | | | Ca | 43 | 71.7 | 8.1 | -3.3333 | 0.502 | 15.1 | mg/L | 85 | Standard | | | Fe | 54 | 2099.3 | 3.0 | 4.8415 | 0.217 | 4.5 | mg/L | 82 | Standard | | | Fe | 57 | 730.0 | 15.5 | 4.8054 | 1.010 | 21.0 | mg/L | 217 | Standard | | L> | Sc-1 | 45 | 15034.1 | 3.7 | | | | mg/L | 14524 | Standard | | | CI | 35 | 68084.7 | 2.5 | | | | ug/L | 53193 | Standard | | | Kr | 83 | 3.0 | 33.3 | | | | ug/L | 3 | Standard | | | Br | 81 | 300.0 | 17.6 | | | | ug/L | 327 | Standard | | | Р | 31 | 16118.6 | 1.6 | | | | ug/L | 13329 | Standard | | | S | 34 | 3933.8 | 6.9 | | | | ug/L | 3234 | Standard | | | Sr | 88 | 95.0 | 5.3 | | | | ug/L | 87 | Standard | | | С | 12 | 133.3 | 4.3 | | | | mg/L | 103 | Standard | | | N | 14 | 0.0 | | | | | mg/L | 0 | Standard | | | Hg | 202 | 3.3 | 173.2 | | | | mg/L | 3 | Standard | | | Dy | 164 | 6.2 | 100.1 | | | | mg/L | 10 | Standard | | | Ho-1 | 165 | 0.0 | | | | | mg/L | 3 | Standard | | | Er | 166 | 10.0 | 100.0 | | | | mg/L | 7 | Standard | | | 1 | 127 | 4033.9 | 13.3 | | | | mg/L | 3612 | Standard | | | | | | | | | | | | | | Analyte | Mass | QC Std % Recovery | Int Std % Recovery | Spike % Recovery | |---------|------|-------------------|--------------------|------------------| | 「> Li | 6 | | | | | Be | 9 | 103.630 | | | | L AI | 27 | 99.886 | | | | 「 Sc | 45 | | | | | Ti | 47 | 105.599 | | | | V | 51 | 104.147 | | | | Cr | 52 | 104.008 | | | | Cr | 53 | | | | | Mn | 55 | 105.446 | | | | Co | 59 | 106.296 | | | | Ni | 60 | 103.176 | | | | Cu | 65 | 102.992 | | | | Zn | 66 | 101.862 | | | | > Ge | 72 | | 102.391 | | | As | 75 | 102.944 | | | | Se | 82 | 103.520 | | | | ∟ Se-1 | 77 | | | | | 「⊳ Ga | 71 | | | | Sample ID: QC Std 6 Report Date/Time: Tuesday, October 27, 2015 15:41:01 Page 2 Approved: October 28, 2015 | L Rb | 85 | | | |-----------------|----------------------|--------------|------------------------| | Γ Υ | 89 | | | | Ĺ> Rh | 103 | 100.010 | | | 「 Mo | 98 | 106.243 | | | Ag | 107 | 100.558 | | | Cd | 111 | 102.942 | | | Cd | 114 | | 100 100 | | > In | 115 | 100 750 | 103.188 | | Sn | 118 | 100.758 | | | Sb | 123 | 98.759 | | | L Ba | 135 | 98.728 | | | Г Се | 140 | | | | [> Tb | 159 | | | | Γ Ho | 165 | 400.004 | | | TI | 203 | 100.281 | | | TI | 205 | | | | Pb | 206 | | | | Pb | 207 | 102.245 | | | Pb | 208 | 102.345 | | | U | 238 | 102.184 | 101 206 | | L> Bi
□ No | 209 | | 101.306 | | Γ Na
⊢ Mα | 23
24 | | | | Mg | | | | | K
 Ca | 39
43 | | | | Ca
 Fe | 43
54 | | | | Fe | 5 4
57 | | | | ⊢ Fe
_> Sc-1 | 57
45 | | | | CI | 45
35 | | | | Kr | 83 | | | | Br | 81 | | | | P | 31 | | | | S | 34 | | | | Sr | 88 | | | | C | 12 | | | | N | 14 | | | | Hg | 202 | | | | Dy | 164 | | | | Ho-1 | 165 | | | | Er | 166 | | | | <u>-</u> , | 127 | | | | • | ot of Limit | re | | | | | | Out of Limita Magazaga | | ivieasu | rement Type | Analyte Mass | Out of Limits Message | Sample ID: QC Std 6 Report Date/Time: Tuesday, October 27, 2015 15:41:01 Page 3 Sample ID: QC Std 7 Sample Date/Time: Tuesday, October 27, 2015 15:41:55 RSD Number of Replicates: 3 Autosampler Position: 102 Sample Description: Method File: C:\NexIONData\Method\6020a.mth Intensity Aliquot Volume (mL): Diluted to Volume (mL): User Name: BKT Nexion300X Cumulative Autodilution Factor: 1 Nexion-ICP 200.8\6020 IS Analyte Mass | | ,u.y c | • | | | 000. | | | • | Diamit intono. | | |----|--------|-----|----------|-------|---------|---------|---------|------|----------------|----------| | Γ> | Li | 6 | 29059.6 | 5.8 | | | | ug/L | 26270 | Standard | | | Be | 9 | 20.0 | 90.1 | -0.0001 | 0.032 2 | 26962.3 | ug/L | 2 | Standard | | L | Αl | 27 | 898.4 | 36.9 | -0.0060 | 0.006 | 96.8 | ug/L | 403 | Standard | | Γ | Sc | 45 | 16031.8 | 2.0 | | | | ug/L | 14524 | Standard | | | Ti | 47 | 132.0 | 6.0 | -1.3037 | 0.038 | 2.9 | ug/L | 365 | Standard | | | V | 51 | 878.9 | 4.2 | -0.0114 | 0.013 | 114.9 | ug/L | 805 | Standard | | | Cr | 52 | 5853.8 | 1.6 | 0.0292 | 0.036 | 123.0 | ug/L | 5481 | Standard | | | Cr | 53 | 338.3 | 18.7 | 0.0882 | 0.107 | 121.8 | ug/L | 268 | Standard | | | Mn | 55 | 624.3 | 4.0 | -0.1694 | 0.010 | 5.8 | ug/L | 670 | Standard | | | Co | 59 | 173.0 | 11.0 | 0.0076 | 0.007 | 86.9 | ug/L | 146 | Standard | | | Ni | 60 | 184.7 | 4.9 | -0.0666 | 0.009 | 14.2 | ug/L | 220 | Standard | | | Cu | 65 | 128.3 | 9.0 | -0.0653 | 0.011 | 16.1 | ug/L | 147 | Standard | | | Zn | 66 | 137.3 | 4.1 | -0.4226 | 0.006 | 1.3 | ug/L | 211 | Standard | | > | Ge | 72 | 217217.5 | 1.4 | | | | ug/L | 210599 | Standard | | | As | 75 | -31.9 | 136.0 | 0.0342 | 0.059 | 173.2 | ug/L | -47 | Standard | | | Se | 82 | 16.4 | 73.9 | 0.0938 | 0.200 | 213.0 | ug/L | 15 | Standard | | L | Se-1 | 77 | 55.7 | 17.0 | 0.1667 | 0.225 | 134.8 | ug/L | 65 | Standard | | Γ> | Ga | 71 | 18.3 | 103.3 | | | | mg/L | 27 | Standard | | L | Rb | 85 | 31.7 | 32.9 | | | | ug/L | 17 | Standard | | Γ | Υ | 89 | 227224.5 | 0.6 | | | | ug/L | 216672 | Standard | | L> | Rh | 103 | 8.3 | 69.3 | | | | ug/L | 18 | Standard | | Γ | Mo | 98 | 162.0 | 14.6 | 0.1104 | 0.017 | 15.0 | ug/L | 11 | Standard | | | Ag | 107 | 58.3 | 19.9 | 8000.0 | 0.002 | 313.6 | ug/L | 55 | Standard | | | Cd | 111 | 13.0 | 45.6 | 0.0026 | 0.004 | 155.0 | mg/L | 7 | Standard | 0.0164 -0.0372 0.0205 -0.0114 0.0035 0.0069 -0.0149 -0.0190 -0.0148 0.0022 0.009 0.014 0.007 0.005 0.001 0.001 0.001 0.004 0.005 0.002 54.5 36.8 32.9 40.1 41.8 16.2 8.2 21.8 35.2 79.8 ug/L **Concentration Results** Conc. SD RSD Units Blank Intens. Mode Standard 322525 345 88 12 37 3 7 159 120 503 333509 5 631826 Sample ID: QC Std 7 Report Date/Time: Tuesday, October 27, 2015 15:44:12 39.0 471.7 121.3 20.7 10.0 3.3 41.0 20.0 183.0 141.3 576.7 342809.8 37.0 332166.4 638238.8 81.0 0.1 11.9 21.6 36.3 100.0 1.5 86.6 23.3 25.0 3.0 10.8 13.0 26.1 0.3 Page 1 Cd In Sn Sb Ва Се Tb Но ΤI ΤI Ph Pb Pb U Bi 114 115 118 123 135 140 159 165 203 205 206 207 208 238 209 Approved: October 28, 2015 | Γ | Na | 23 | 0.0 | | | | | mg/L | 0 | Standard | |----|------|-----|---------|-------|---------|-------|---------|------|-------|----------| | | Mg | 24 | 18.3 | 78.7 | -0.0010 | 0.030 | 2958.6 | mg/L | 10 | Standard | | | K | 39 | 16.7 | 34.6 | -0.0235 | 0.063 | 266.6 | mg/L | 32 | Standard | | | Ca | 43 | 81.7 | 37.4 | -2.5373 | 4.495 | 177.1 | mg/L | 85 | Standard | | | Fe | 54 | 85.9 | 29.7 | 0.0574 | 0.057 | 99.3 | mg/L | 82 | Standard | | | Fe | 57 | 218.3 | 23.1 | 0.0026 | 0.468 | 18098.7 | mg/L | 217 | Standard | | L> | Sc-1 | 45 | 16031.8 | 2.0 | | | | mg/L | 14524 | Standard | | | CI | 35 | 69263.3 | 1.1 | | | | ug/L | 53193 | Standard | | | Kr | 83 | 4.7 | 32.7 | | | | ug/L | 3 | Standard | | | Br | 81 | 393.3 | 26.0 | | | | ug/L | 327 | Standard | | | Р | 31 | 15389.5 | 2.6 | | | | ug/L | 13329 | Standard | | | S | 34 | 3812.1 | 3.1 | | | | ug/L | 3234 | Standard | | | Sr | 88 | 101.7 | 28.0 | | | | ug/L | 87 | Standard | | | С | 12 | 130.0 | 20.4 | | | | mg/L | 103 | Standard | | | N | 14 | 3.3 | 173.2 | | | | mg/L | 0 | Standard | | | Hg | 202 | 0.0 | | | | | mg/L | 3 | Standard | | | Dy | 164 | 9.7 | 105.8 | | | | mg/L | 10 | Standard | | | Ho-1 | 165 | 3.3 | 86.6 | | | | mg/L | 3 | Standard | | | Er | 166 | 6.7 | 86.6 | | | | mg/L | 7 | Standard | | | I | 127 | 3592.1 | 3.0 | | | | mg/L | 3612 | Standard | | | | | | | | | | | | | | Analyte | Mass | QC Std % Recovery | Int Std % Recovery | Spike % Recovery | |---------|------|-------------------|--------------------|------------------| | 「> Li | 6 | | | | | Be | 9 | | | | | L AI | 27 | | | | | 「 Sc | 45 | | | | | Ti | 47 | | | | | V | 51 | | | | | Cr | 52 | | | | | Cr | 53 | | | | | Mn | 55 | | | | | Co | 59 | | | | | Ni | 60 | | | | | Cu | 65 | | | | | Zn | 66 | | | | | > Ge | 72 | | 103.143 | | | As | 75 | | | | | Se | 82 | | | | | ∟ Se-1 | 77 | | | | | 「⊳ Ga | 71 | | | | Sample ID: QC Std 7 Report Date/Time: Tuesday, October 27, 2015 15:44:12 Page 2 Approved: October 28, 2015 | ∟ Rb | 85 | | | | |----------------|--------------|---------|------|-----------------------| | ΓΥ | 89 | | | | | $\lfloor_>$ Rh | 103 | | | | | ГМо | 98 | | | | | Ag | 107 | | | | | Cd | 111 | | | | | Cd | 114 | | | | | > In | 115 | | | 102.989 | | Sn | 118 | | | | | Sb | 123 | | | | | L Ba | 135 | | | | | ¯ Ce | 140 | | | | | > Tb | 159 | | | | | Ho | 165 | | | | | TI | 203 | | | | | TI | 205 | | | | | Pb | 206 | | | | | Pb | 207 | | | | | Pb | 208 | | | | | U | 238 | | | | | ∟> Bi | 209 | | | 102.789 | | ∫ Na | 23 | | | 102.100 | | Mg | 24 | | | | | K | 39 | | | | | Ca | 43 | | | | | Fe | 54 | | | | | Fe | 57 | | | | | > Sc-1 | 45 | | | | | CI | 35 | | | | | Kr | 83 | | | | | Br | 81 | | | | | P | 31 | | | | | S | 34 | | | | | Sr | 88 | | | | | C | 12 | | | | | N | 14 | | | | | Hg | 202 | | | | | Dy | 164 | | | | | Ho-1 | 165 | | | | | Er | 166 | | | | | _,
 | 127 | | | | | 00.0 | it of Limits | | | | | | | | | | | Measure | ment Type | Analyte | Mass | Out of Limits Message | | QC Std 7 | ′ | Ti | 47 | | Sample ID: QC Std 7 Report Date/Time: Tuesday, October 27, 2015 15:44:12 Page 3 Sample ID: QC Std 8 Sample Date/Time: Tuesday, October 27, 2015 15:46:13 Number of Replicates: 3 Autosampler Position: 202 Sample Description: Method File:
C:\NexIONData\Method\6020a.mth Aliquot Volume (mL): Diluted to Volume (mL): User Name: BKT Nexion300X Cumulative Autodilution Factor: 1 Nexion-ICP 200.8\6020 | Concentration Re | esults | |------------------|--------| |------------------|--------| | | | | | | Concentra | ilion ites | uits | | | | |----|--------|--------|-----------|-------|-----------|------------|------|-------|---------------|----------| | IS | Analyt | e Mass | Intensity | RSD | Conc. | SD | RSD | Units | Blank Intens. | Mode | | Γ> | Li | 6 | 29497.0 | 1.5 | | | | ug/L | 26270 | Standard | | | Be | 9 | 120.0 | 31.5 | 0.1706 | 0.062 | 36.5 | ug/L | 2 | Standard | | L | Al | 27 | 496.7 | 10.1 | -0.0127 | 0.001 | 6.9 | ug/L | 403 | Standard | | Γ | Sc | 45 | 15241.0 | 1.9 | | | | ug/L | 14524 | Standard | | | Ti | 47 | 128.0 | 8.1 | -1.3281 | 0.064 | 4.8 | ug/L | 365 | Standard | | | V | 51 | 2359.8 | 4.7 | 0.4068 | 0.031 | 7.7 | ug/L | 805 | Standard | | | Cr | 52 | 9520.7 | 0.5 | 0.8684 | 0.037 | 4.3 | ug/L | 5481 | Standard | | | Cr | 53 | 785.0 | 9.6 | 0.9057 | 0.157 | 17.3 | ug/L | 268 | Standard | | | Mn | 55 | 2429.9 | 2.9 | 0.3620 | 0.028 | 7.7 | ug/L | 670 | Standard | | | Co | 59 | 1493.1 | 1.2 | 0.4147 | 0.011 | 2.7 | ug/L | 146 | Standard | | | Ni | 60 | 1990.5 | 3.4 | 1.4927 | 0.079 | 5.3 | ug/L | 220 | Standard | | | Cu | 65 | 1044.4 | 0.7 | 0.7433 | 0.016 | 2.1 | ug/L | 147 | Standard | | | Zn | 66 | 4436.0 | 2.6 | 6.0045 | 0.176 | 2.9 | ug/L | 211 | Standard | | > | Ge | 72 | 217244.2 | 1.3 | | | | ug/L | 210599 | Standard | | | As | 75 | 257.2 | 19.8 | 0.4332 | 0.066 | 15.3 | ug/L | -47 | Standard | | | Se | 82 | 37.6 | 23.2 | 0.4390 | 0.135 | 30.7 | ug/L | 15 | Standard | | L | Se-1 | 77 | 76.0 | 10.8 | 0.6828 | 0.224 | 32.8 | ug/L | 65 | Standard | | Γ> | Ga | 71 | 15.0 | 57.7 | | | | mg/L | 27 | Standard | | L | Rb | 85 | 23.3 | 53.9 | | | | ug/L | 17 | Standard | | Γ | Υ | 89 | 220371.4 | 2.0 | | | | ug/L | 216672 | Standard | | L> | Rh | 103 | 16.7 | 45.8 | | | | ug/L | 18 | Standard | | Γ | Мо | 98 | 44.8 | 33.8 | 0.0282 | 0.010 | 36.8 | ug/L | 11 | Standard | | | Ag | 107 | 1917.1 | 3.0 | 0.3792 | 0.015 | 4.0 | ug/L | 55 | Standard | | | Cd | 111 | 359.9 | 4.6 | 0.2382 | 0.011 | 4.7 | mg/L | 7 | Standard | | | Cd | 114 | 797.4 | 6.6 | 0.2269 | 0.014 | 6.0 | ug/L | 4 | Standard | | > | In | 115 | 338808.7 | 1.0 | | | | ug/L | 322525 | Standard | | ļ | Sn | 118 | 345.0 | 22.8 | -0.0698 | 0.019 | 27.1 | ug/L | 345 | Standard | | ļ | Sb | 123 | 1498.1 | 2.5 | 0.3672 | 0.013 | 3.5 | ug/L | 88 | Standard | | Ē | Ва | 135 | 1195.4 | 2.6 | 0.6876 | 0.021 | 3.0 | ug/L | 12 | Standard | | ļ | Ce | 140 | 13.3 | 94.4 | | | | ug/L | 37 | Standard | | Γ> | Tb | 159 | 639523.9 | 1.2 | | | | ug/L | 631826 | Standard | | ļ | Но | 165 | 6.7 | 114.6 | | | | ug/L | 3 | Standard | | ļ | TI | 203 | 498.0 | 6.5 | 0.0721 | 0.006 | 7.7 | ug/L | 7 | Standard | | ļ | TI | 205 | 326.7 | 6.2 | 0.0753 | 0.005 | 6.1 | ug/L | 7 | Standard | | | Pb | 206 | 964.7 | 4.3 | 0.1767 | 0.011 | 6.1 | ug/L | 159 | Standard | | | Pb | 207 | 810.7 | 4.7 | 0.1619 | 0.010 | 6.1 | ug/L | 120 | Standard | | | Pb | 208 | 3430.5 | 2.5 | 0.1783 | 0.008 | 4.3 | ug/L | 503 | Standard | | | U | 238 | 2144.2 | 3.5 | 0.3880 | 0.018 | 4.6 | ug/L | 5 | Standard | | L> | Bi | 209 | 344221.1 | 1.1 | | | | ug/L | 333509 | Standard | Sample ID: QC Std 8 Report Date/Time: Tuesday, October 27, 2015 15:48:30 Page 1 Approved: October 28, 2015 Page 504 L15101055 / Revision: 0 / 760 total pages | Г | Na | 23 | 1.7 | 173.2 | | | | ma/l | 0 | Standard | |----|------|-----|---------|-------|---------|-------|-------|------|-------|----------| | ! | | | | | | | | mg/L | | | | | Mg | 24 | 11.7 | 89.2 | -0.0136 | 0.024 | 174.3 | mg/L | 10 | Standard | | | K | 39 | 26.7 | 75.8 | 0.1075 | 0.245 | 227.8 | mg/L | 32 | Standard | | | Ca | 43 | 83.3 | 27.7 | -1.7074 | 3.338 | 195.5 | mg/L | 85 | Standard | | | Fe | 54 | 72.3 | 13.8 | 0.0358 | 0.026 | 73.6 | mg/L | 82 | Standard | | | Fe | 57 | 213.3 | 17.0 | 0.0531 | 0.365 | 687.2 | mg/L | 217 | Standard | | L> | Sc-1 | 45 | 15241.0 | 1.9 | | | | mg/L | 14524 | Standard | | | CI | 35 | 69782.3 | 0.2 | | | | ug/L | 53193 | Standard | | | Kr | 83 | 5.3 | 21.7 | | | | ug/L | 3 | Standard | | | Br | 81 | 316.7 | 7.3 | | | | ug/L | 327 | Standard | | | Р | 31 | 15888.3 | 3.9 | | | | ug/L | 13329 | Standard | | | S | 34 | 3745.5 | 2.3 | | | | ug/L | 3234 | Standard | | | Sr | 88 | 96.7 | 24.4 | | | | ug/L | 87 | Standard | | | С | 12 | 153.3 | 15.1 | | | | mg/L | 103 | Standard | | | N | 14 | 0.0 | | | | | mg/L | 0 | Standard | | | Hg | 202 | 0.0 | | | | | mg/L | 3 | Standard | | | Dy | 164 | 15.7 | 73.5 | | | | mg/L | 10 | Standard | | | Ho-1 | 165 | 6.7 | 114.6 | | | | mg/L | 3 | Standard | | | Er | 166 | 20.0 | 0.0 | | | | mg/L | 7 | Standard | | | I | 127 | 1021.7 | 9.9 | | | | mg/L | 3612 | Standard | | Analyte | Mass | QC Std % Recovery | Int Std % Recovery | Spike % Recovery | |---------|------|-------------------|--------------------|------------------| | 「> Li | 6 | | | | | Be | 9 | 85.305 | | | | L AI | 27 | | | | | 「 Sc | 45 | | | | | Ti | 47 | | | | | V | 51 | 101.707 | | | | Cr | 52 | 108.545 | | | | Cr | 53 | | | | | Mn | 55 | 72.409 | | | | Co | 59 | 103.665 | | | | Ni | 60 | 93.294 | | | | Cu | 65 | 92.908 | | | | Zn | 66 | 96.072 | | | | > Ge | 72 | | 103.155 | | | As | 75 | 108.292 | | | | Se | 82 | 109.740 | | | | ∟ Se-1 | 77 | | | | | 「⊳ Ga | 71 | | | | Sample ID: QC Std 8 Report Date/Time: Tuesday, October 27, 2015 15:48:30 Page 2 Approved: October 28, 2015 | L Rb | 85 | | | | | | |------------------|------------|--------------------|-------------------------|--|--|--| | ΓΥ | 89 | | | | | | | $\lfloor_>$ Rh | 103 | | | | | | | ГМо | 98 | | | | | | | Ag | 107 | 94.811 | | | | | | Cd | 111 | 99.244 | | | | | | Cd | 114 | | | | | | | > In | 115 | | 105.049 | | | | | Sn | 118 | | | | | | | Sb | 123 | 91.810 | | | | | | L Ba | 135 | 91.677 | | | | | | 「 Ce | 140 | | | | | | | L> Tb | 159 | | | | | | | 「 Ho | 165 | | | | | | | TI | 203 | 90.102 | | | | | | TI | 205 | | | | | | | Pb | 206 | | | | | | | Pb | 207 | | | | | | | Pb | 208 | 89.131 | | | | | | U | 238 | 97.002 | | | | | | Ĺ> Bi | 209 | | 103.212 | | | | | Г Na | 23 | | | | | | | Mg | 24 | | | | | | | K | 39 | | | | | | | Ca | 43 | | | | | | | Fe | 54 | | | | | | | Fe | 57 | | | | | | | _> Sc-1 | 45 | | | | | | | CI | 35 | | | | | | | Kr | 83 | | | | | | | Br | 81 | | | | | | | Р | 31 | | | | | | | S | 34 | | | | | | | Sr | 88 | | | | | | | С | 12 | | | | | | | N | 14 | | | | | | | Hg | 202 | | | | | | | Dy | 164 | | | | | | | Ho-1 | 165 | | | | | | | Er | 166 | | | | | | | I | 127 | | | | | | | QC Out of Limits | | | | | | | | | ement Type | Analyte Mass | Out of Limits Message | | | | | Modera | one 1 y po | , triary to ividoo | Cat of Ellittle Moodage | | | | Sample ID: QC Std 8 Report Date/Time: Tuesday, October 27, 2015 15:48:30 Page 3 Sample ID: PBW 76 WG544075-03 Sample Date/Time: Tuesday, October 27, 2015 16:10:39 Number of Replicates: 3 Autosampler Position: 318 Sample Description: 1 Method File: C:\NexIONData\Method\6020a.mth Aliquot Volume (mL): Diluted to Volume (mL): User Name: BKT Nexion300X Cumulative Autodilution Factor: 1 Nexion-ICP 200.8\6020 #### **Concentration Results** | | | Concentration Results | | | | | | | | | |----|--------|-----------------------|-----------|-------|-------|----|-----|-------|---------------|----------| | IS | Analyt | e Mass | Intensity | RSD | Conc. | SD | RSD | Units | Blank Intens. | Mode | | Γ> | Li | 6 | 29141.4 | 3.6 | | | | ug/L | 0 | Standard | | | Be | 9 | 5.0 | 173.2 | | | | ug/L | 0 | Standard | | L | Al | 27 | 1271.7 | 3.1 | | | | ug/L | 0 | Standard | | Γ | Sc | 45 | 15444.5 | 1.1 | | | | ug/L | 0 | Standard | | | Ti | 47 | 124.3 | 11.3 | | | | ug/L | 0 | Standard | | | ٧ | 51 | 1095.6 | 2.3 | | | | ug/L | 0 | Standard | | | Cr | 52 | 6853.6 | 2.0 | | | | ug/L | 0 | Standard | | | Cr | 53 | 363.3 | 4.2 | | | | ug/L | 0 | Standard | | | Mn | 55 | 751.4 | 2.7 | | | | ug/L | 0 | Standard | | | Co | 59 | 166.0 | 7.1 | | | | ug/L | 0 | Standard | | | Ni | 60 | 211.7 | 10.4 | | | | ug/L | 0 | Standard | | | Cu | 65 | 145.0 | 3.6 | | | | ug/L | 0 | Standard | | | Zn | 66 | 731.7 | 1.2 | | | | ug/L | 0 | Standard | | > | Ge | 72 | 216392.8 | 2.2 | | | | ug/L | 0 | Standard | | | As | 75 | -57.1 | 64.4 | | | | ug/L | 0 | Standard | | | Se | 82 | 10.5 | 40.3 | | | | ug/L | 0 | Standard | | L | Se-1 | 77 | 49.0 | 22.1 | | | | ug/L | 0 | Standard | | Γ> | Ga | 71 | 20.0 | 25.0 | | | | mg/L | 0 | Standard | | L | Rb | 85 | 31.7 | 36.5 | | | | ug/L | 0 | Standard | | Γ | Υ | 89 | 223991.6 | 3.6 | | | | ug/L | 0 | Standard | | L> | Rh | 103 | 10.0 | 86.6 | | | | ug/L | 0 | Standard | | Γ | Мо | 98 | 21.2 | 29.5 | | | | ug/L | 0 | Standard | | | Ag | 107 | 48.3 | 15.3 | | | | ug/L | 0 | Standard | | | Cd | 111 | 6.6 | 17.5 | | | | mg/L | 0 | Standard | | | Cd | 114 | 24.9 | 86.8 | | | | ug/L | 0 | Standard | | > | In | 115 | 330714.6 | 2.1 | | | | ug/L | 0 | Standard | | ļ | Sn | 118 | 563.3 | 9.8 | | | | ug/L | 0 | Standard | | ļ | Sb | 123 | 66.0 | 12.5 | | | | ug/L | 0 | Standard | | Ĺ | Ва | 135 | 131.3 | 8.0 | | | | ug/L | 0 | Standard | | ! | Се | 140 | 90.0 | 28.9 | | | | ug/L | 0 | Standard | | Ĺ> | Tb | 159 | 632599.4 | 2.9 | | | | ug/L | 0 | Standard | | ! | Но | 165 | 11.7 | 24.7 | | | | ug/L | 0 | Standard | | ! | TI | 203 | 4.0 | 25.0 | | | | ug/L | 0 | Standard | | | TI | 205 | 0.0 | 444 | | | | ug/L | 0 | Standard | | | Pb | 206 | 151.7 | 14.1 | | | | ug/L | 0 | Standard | | - | Pb | 207 | 134.7 | 10.1 | | | | ug/L | 0 | Standard | | - | Pb | 208 | 569.0 | 3.4 | | | | ug/L | 0 | Standard | | - | U. | 238 | 4.0 | 66.1 | | | | ug/L | 0 | Standard | | L> | Bi | 209 | 334623.4 | 2.1 | | | | ug/L | 0 | Standard | Sample ID: PBW 76 WG544075-03 Report Date/Time: Tuesday, October 27, 2015 16:12:56 Page 1 Approved: October 28, 2015 Page 507 L15101055 / Revision: 0 / 760 total pages | Γ | Na | 23 | 0.0 | | mg/L 0 | Standard |
----|------|-----|---------|-------|--------|----------| | | Mg | 24 | 18.3 | 31.5 | mg/L 0 | Standard | | | K | 39 | 15.0 | 88.2 | mg/L 0 | Standard | | | Ca | 43 | 48.3 | 41.8 | mg/L 0 | Standard | | | Fe | 54 | 72.3 | 41.8 | mg/L 0 | Standard | | | Fe | 57 | 235.0 | 14.9 | mg/L 0 | Standard | | L> | Sc-1 | 45 | 15444.5 | 1.1 | mg/L 0 | Standard | | | CI | 35 | 71667.1 | 1.3 | ug/L 0 | Standard | | | Kr | 83 | 3.0 | 57.7 | ug/L 0 | Standard | | | Br | 81 | 516.7 | 14.8 | ug/L 0 | Standard | | | Р | 31 | 16787.6 | 8.0 | ug/L 0 | Standard | | | S | 34 | 3798.8 | 7.2 | ug/L 0 | Standard | | | Sr | 88 | 106.7 | 2.7 | ug/L 0 | Standard | | | С | 12 | 166.7 | 15.1 | mg/L 0 | Standard | | | N | 14 | 0.0 | | mg/L 0 | Standard | | | Hg | 202 | 0.0 | | mg/L 0 | Standard | | | Dy | 164 | 9.2 | 108.8 | mg/L 0 | Standard | | | Ho-1 | 165 | 11.7 | 24.7 | mg/L 0 | Standard | | | Er | 166 | 16.7 | 69.3 | mg/L 0 | Standard | | | 1 | 127 | 3408.7 | 5.5 | mg/L 0 | Standard | | | | | | | | | | Analyte | Mass | QC Std % Recovery | Int Std % Recovery | Spike % Recovery | |---------|------|-------------------|--------------------|------------------| | 「> Li | 6 | | | | | Be | 9 | | | | | L AI | 27 | | | | | 「 Sc | 45 | | | | | Ti | 47 | | | | | V | 51 | | | | | Cr | 52 | | | | | Cr | 53 | | | | | Mn | 55 | | | | | Co | 59 | | | | | Ni | 60 | | | | | Cu | 65 | | | | | Zn | 66 | | | | | > Ge | 72 | | | | | As | 75 | | | | | Se | 82 | | | | | ∟ Se-1 | 77 | | | | | 「⊳ Ga | 71 | | | | **Sample ID: PBW 76 WG544075-03**Report Date/Time: Tuesday, October 27, 2015 16:12:56 Page 2 Approved: October 28, 2015 ``` Rb 85 Υ 89 | > Rh 103 Мо 98 107 Ag Cd 111 Cd 114 | > In 115 Sn 118 123 Sb Ва 135 140 Ce Tb 159 Но 165 ΤI 203 ΤI 205 Pb 206 Pb 207 208 Pb U 238 209 L> Bi Na 23 Mg 24 39 Κ Ca 43 Fe 54 Fe 57 45 |> Sc-1 CI 35 83 Kr Br 81 Ρ 31 S 34 Sr 88 С 12 Ν 14 202 Hg Dy 164 Ho-1 165 166 Er 127 ``` #### **QC Out of Limits** Measurement Type Analyte Mass Out of Limits Message Sample ID: PBW 76 WG544075-03 Report Date/Time: Tuesday, October 27, 2015 16:12:56 Page 3 Approved: October 28, 2015 Sample ID: PBW 76 WG544075-03 Sample Date/Time: Tuesday, October 27, 2015 16:10:39 Number of Replicates: 3 Autosampler Position: 318 Sample Description: 1 Method File: C:\NexIONData\Method\6020a.mth Aliquot Volume (mL): Diluted to Volume (mL): User Name: BKT Nexion300X Cumulative Autodilution Factor: 1 Nexion-ICP 200.8\6020 | Concentration | Results | |---------------|---------| |---------------|---------| | | | | Concentration Results | | | | | | | | | | |------------|--------|--------|-----------------------|-------|---------|-------|---------|-------|---------------|----------|--|--| | IS | Analyt | e Mass | Intensity | RSD | Conc. | SD | RSD | Units | Blank Intens. | Mode | | | | Γ> | Li | 6 | 29141.4 | 3.6 | | | | ug/L | 26270 | Standard | | | | | Be | 9 | 5.0 | 173.2 | -0.0265 | 0.015 | 54.8 | ug/L | 2 | Standard | | | | L | Αl | 27 | 1271.7 | 3.1 | -0.0001 | 0.001 | 1281.9 | ug/L | 403 | Standard | | | | Γ | Sc | 45 | 15444.5 | 1.1 | | | | ug/L | 14524 | Standard | | | | | Ti | 47 | 124.3 | 11.3 | -1.3480 | 0.080 | 5.9 | ug/L | 365 | Standard | | | | | V | 51 | 1095.6 | 2.3 | 0.0510 | 0.008 | 14.8 | ug/L | 805 | Standard | | | | | Cr | 52 | 6853.6 | 2.0 | 0.2638 | 0.009 | 3.4 | ug/L | 5481 | Standard | | | | | Cr | 53 | 363.3 | 4.2 | 0.1373 | 0.025 | 18.0 | ug/L | 268 | Standard | | | | | Mn | 55 | 751.4 | 2.7 | -0.1311 | 0.011 | 8.1 | ug/L | 670 | Standard | | | | | Co | 59 | 166.0 | 7.1 | 0.0056 | 0.003 | 50.1 | ug/L | 146 | Standard | | | | | Ni | 60 | 211.7 | 10.4 | -0.0429 | 0.015 | 35.2 | ug/L | 220 | Standard | | | | | Cu | 65 | 145.0 | 3.6 | -0.0502 | 0.003 | 5.1 | ug/L | 147 | Standard | | | | | Zn | 66 | 731.7 | 1.2 | 0.4706 | 0.022 | 4.8 | ug/L | 211 | Standard | | | | > | Ge | 72 | 216392.8 | 2.2 | | | | ug/L | 210599 | Standard | | | | | As | 75 | -57.1 | 64.4 | -0.0012 | 0.051 | 4054.1 | ug/L | -47 | Standard | | | | | Se | 82 | 10.5 | 40.3 | -0.0023 | 0.074 | 3276.2 | ug/L | 15 | Standard | | | | L | Se-1 | 77 | 49.0 | 22.1 | 0.0010 | 0.248 | 25612.8 | ug/L | 65 | Standard | | | | Γ> | Ga | 71 | 20.0 | 25.0 | | | | mg/L | 27 | Standard | | | | L | Rb | 85 | 31.7 | 36.5 | | | | ug/L | 17 | Standard | | | | Γ | Υ | 89 | 223991.6 | 3.6 | | | | ug/L | 216672 | Standard | | | | L> | Rh | 103 | 10.0 | 86.6 | | | | ug/L | 18 | Standard | | | | Γ | Мо | 98 | 21.2 | 29.5 | 0.0124 | 0.004 | 33.9 | ug/L | 11 | Standard | | | | | Ag | 107 | 48.3 | 15.3 | -0.0012 | 0.002 | 135.3 | ug/L | 55 | Standard | | | | | Cd | 111 | 6.6 | 17.5 | -0.0017 | 0.001 | 47.6 | mg/L | 7 | Standard | | | | | Cd | 114 | 24.9 | 86.8 | 0.0125 | 0.006 | 49.5 | ug/L | 4 | Standard | | | | > | In | 115 | 330714.6 | 2.1 | | | | ug/L | 322525 | Standard | | | | | Sn | 118 | 563.3 | 9.8 | -0.0141 | 0.013 | 90.6 | ug/L | 345 | Standard | | | | | Sb | 123 | 66.0 | 12.5 | 0.0063 | 0.002 | 35.4 | ug/L | 88 | Standard | | | | Ĺ | Ва | 135 | 131.3 | 8.0 | 0.0561 | 0.006 | 9.9 | ug/L | 12 | Standard | | | | | Ce | 140 | 90.0 | 28.9 | | | | ug/L | 37 | Standard | | | | <u>_</u> > | Tb | 159 | 632599.4 | 2.9 | | | | ug/L | 631826 | Standard | | | | | Но | 165 | 11.7 | 24.7 | | | | ug/L | 3 | Standard | | | | | TI | 203 | 4.0 | 25.0 | -0.0021 | 0.000 | 6.9 | ug/L | 7 | Standard | | | | | TI | 205 | 0.0 | | 0.0025 | 0.000 | 0.0 | ug/L | 7 | Standard | | | | | Pb | 206 | 151.7 | 14.1 | -0.0216 | 0.006 | 28.3 | ug/L | 159 | Standard | | | | ! | Pb | 207 | 134.7 | 10.1 | -0.0199 | 0.004 | 17.7 | ug/L | 120 | Standard | | | | ! | Pb | 208 | 569.0 | 3.4 | -0.0144 | 0.001 | 4.1 | ug/L | 503 | Standard | | | | ! | U | 238 | 4.0 | 66.1 | -0.0038 | 0.001 | 13.4 | ug/L | 5 | Standard | | | | _> | Bi | 209 | 334623.4 | 2.1 | | | | ug/L | 333509 | Standard | | | Sample ID: PBW 76 WG544075-03 Report Date/Time: Tuesday, October 27, 2015 16:31:29 Page 1 Approved: October 28, 2015 | Γ | Na | 23 | 0.0 | | | | | mg/L | 0 | Standard | |----|------|-----|---------|-------|---------|-------|--------|------|-------|----------| | | Mg | 24 | 18.3 | 31.5 | 0.0008 | 0.013 | 1688.9 | mg/L | 10 | Standard | | | K | 39 | 15.0 | 88.2 | -0.0362 | 0.154 | 425.8 | mg/L | 32 | Standard | | | Ca | 43 | 48.3 | 41.8 | -7.1549 | 3.109 | 43.5 | mg/L | 85 | Standard | | ĺ | Fe | 54 | 72.3 | 41.8 | 0.0330 | 0.069 | 208.7 | mg/L | 82 | Standard | | ĺ | Fe | 57 | 235.0 | 14.9 | 0.2166 | 0.312 | 144.2 | mg/L | 217 | Standard | | Ĺ> | Sc-1 | 45 | 15444.5 | 1.1 | | | | mg/L | 14524 | Standard | | _ | CI | 35 | 71667.1 | 1.3 | | | | ug/L | 53193 | Standard | | | Kr | 83 | 3.0 | 57.7 | | | | ug/L | 3 | Standard | | | Br | 81 | 516.7 | 14.8 | | | | ug/L | 327 | Standard | | | Р | 31 | 16787.6 | 0.8 | | | | ug/L | 13329 | Standard | | | S | 34 | 3798.8 | 7.2 | | | | ug/L | 3234 | Standard | | | Sr | 88 | 106.7 | 2.7 | | | | ug/L | 87 | Standard | | | С | 12 | 166.7 | 15.1 | | | | mg/L | 103 | Standard | | | N | 14 | 0.0 | | | | | mg/L | 0 | Standard | | | Hg | 202 | 0.0 | | | | | mg/L | 3 | Standard | | | Dy | 164 | 9.2 | 108.8 | | | | mg/L | 10 | Standard | | | Ho-1 | 165 | 11.7 | 24.7 | | | | mg/L | 3 | Standard | | | Er | 166 | 16.7 | 69.3 | | | | mg/L | 7 | Standard | | | I | 127 | 3408.7 | 5.5 | | | | mg/L | 3612 | Standard | | | | | | | | | | | | | | _ | Analyte | | QC Std % Recovery | Int Std % Recovery | Spike % Recovery | |----|---------|----|-------------------|--------------------|------------------| | Γ> | Li | 6 | | 110.932 | | | | Be | 9 | | | | | L | Al | 27 | | | | | Γ | Sc | 45 | | | | | | Ti | 47 | | | | | | V | 51 | | | | | | Cr | 52 | | | | | | Cr | 53 | | | | | | Mn | 55 | | | | | | Co | 59 | | | | | | Ni | 60 | | | | | | Cu | 65 | | | | | | Zn | 66 | | | | | > | Ge | 72 | | 102.751 | | | | As | 75 | | | | | | Se | 82 | | | | | L | Se-1 | 77 | | | | | Γ> | Ga | 71 | | | | **Sample ID: PBW 76 WG544075-03**Report Date/Time: Tuesday, October 27, 2015 16:31:29 Page 2 Approved: October 28, 2015 | L Rb 85 | | 102.539 | |---|-----------------------|-----------------------| | TI | | 100.334 | | Kr 83 Br 81 P 31 S 34 Sr 88 C 12 N 14 Hg 202 Dy 164 Ho-1 165 Er 166 I 127 QC Out of Limits Measurement Type Ti 47 Lower | Analyte Mass
Ti 47 | Out of Limits Message | **Sample ID: PBW 76 WG544075-03**Report Date/Time: Tuesday, October 27, 2015 16:31:29 Page 3 Approved: October 28, 2015 Sample ID: LCSW 76 WG544075-04 Sample Date/Time: Tuesday, October 27, 2015 16:13:51 Number of Replicates: 3 Autosampler Position: 319 Sample Description: 1 Method File: C:\NexIONData\Method\6020a.mth Aliquot Volume (mL): Diluted to Volume (mL): User Name: BKT Nexion300X Cumulative Autodilution Factor: 1 Nexion-ICP 200.8\6020 | Concentration | Results | |---------------|---------| |---------------|---------| | | | | | Concentia | alion Results | | | | | | |----|--------|--------|-----------|-----------|---------------|-------|------|-------|---------------|----------| | IS | Analyt | e Mass | Intensity | RSD | Conc. | SD | RSD | Units | Blank Intens. | Mode | | Γ> | Li | 6 | 30477.4 | 5.9 | | | | ug/L | 26270 | Standard | | | Be | 9 | 27889.0 | 1.2 | 46.3901 | 2.235 | 4.8 | ug/L | 2 | Standard | | L | ΑI | 27 | 1048.4 | 9.7 | -0.0044 | 0.002 | 50.0 | ug/L | 403 | Standard | | Γ | Sc | 45 | 16375.5 | 7.8 | | | | ug/L | 14524 | Standard | | | Ti | 47 | 128.7 | 1.8 | -1.3647 | 0.039 | 2.9 | ug/L | 365 | Standard | | | ٧ | 51 | 181038.6 | 8.0 | 48.2458 | 2.256 | 4.7 | ug/L | 805 | Standard | | | Cr | 52 | 231201.5 | 2.2 | 48.9375 | 3.732 | 7.6 | ug/L | 5481 | Standard | | | Cr | 53 | 27842.2 | 8.0 | 47.7028 | 2.904 | 6.1 | ug/L | 268 | Standard | | | Mn | 55 | 181023.6 | 1.9 | 50.2240 | 3.603 | 7.2 | ug/L | 670 | Standard | | | Co | 59 | 166347.3 | 1.6 | 48.6415 |
3.307 | 6.8 | ug/L | 146 | Standard | | | Ni | 60 | 59023.1 | 0.9 | 48.1273 | 2.933 | 6.1 | ug/L | 220 | Standard | | | Cu | 65 | 58452.6 | 2.0 | 48.7957 | 3.331 | 6.8 | ug/L | 147 | Standard | | | Zn | 66 | 35235.9 | 0.9 | 49.3686 | 3.041 | 6.2 | ug/L | 211 | Standard | | > | Ge | 72 | 229407.4 | 5.5 | | | | ug/L | 210599 | Standard | | | As | 75 | 35339.3 | 0.6 | 46.4585 | 2.690 | 5.8 | ug/L | -47 | Standard | | | Se | 82 | 3114.8 | 2.1 | 48.3564 | 3.580 | 7.4 | ug/L | 15 | Standard | | L | Se-1 | 77 | 2042.1 | 2.2 | 47.6960 | 3.114 | 6.5 | ug/L | 65 | Standard | | [> | Ga | 71 | 23.3 | 12.4 | | | | mg/L | 27 | Standard | | L | Rb | 85 | 23.3 | 24.7 | | | | ug/L | 17 | Standard | | Γ | Υ | 89 | 237334.1 | 3.4 | | | | ug/L | 216672 | Standard | | _> | Rh | 103 | 31.7 | 48.2 | | | | ug/L | 18 | Standard | | Γ | Мо | 98 | 14.0 | 32.5 | 0.0069 | 0.003 | 48.1 | ug/L | 11 | Standard | | ļ | Ag | 107 | 238436.0 | 2.6 | 46.6633 | 3.324 | 7.1 | ug/L | 55 | Standard | | ļ | Cd | 111 | 72762.6 | 1.2 | 47.4820 | 2.718 | 5.7 | mg/L | 7 | Standard | | ļ | Cd | 114 | 176385.3 | 0.8 | 47.0613 | 2.282 | 4.8 | ug/L | 4 | Standard | | > | In | 115 | 353337.5 | 4.9 | | | | ug/L | 322525 | Standard | | ļ | Sn | 118 | 458.3 | 3.3 | -0.0469 | 0.008 | 16.6 | ug/L | 345 | Standard | | ļ | Sb | 123 | 185515.6 | 1.6 | 44.9536 | 2.885 | 6.4 | ug/L | 88 | Standard | | Ļ | Ва | 135 | 79741.0 | 1.2 | 45.5633 | 2.544 | 5.6 | ug/L | 12 | Standard | | | Ce | 140 | 78.3 | 35.2 | | | | ug/L | 37 | Standard | | L> | Tb | 159 | 675738.4 | 3.8 | | | | ug/L | 631826 | Standard | | | Ho | 165 | 13.3 | 78.1 | | | | ug/L | 3 | Standard | | - | TI
 | 203 | 321069.5 | 1.2 | 45.8700 | 2.027 | 4.4 | ug/L | 7 | Standard | | | TI | 205 | 222076.7 | 3.1 | 47.1299 | 2.999 | 6.4 | ug/L | 7 | Standard | | | Pb | 206 | 204111.2 | 1.5 | 47.6165 | 2.319 | 4.9 | ug/L | 159 | Standard | | - | Pb | 207 | 175683.7 | 1.0 | 45.1863 | 1.818 | 4.0 | ug/L | 120 | Standard | | - | Pb | 208 | 733410.5 | 1.1 | 47.2143 | 2.063 | 4.4 | ug/L | 503 | Standard | | - | U. | 238 | 262155.9 | 0.7 | 45.6733 | 1.889 | 4.1 | ug/L | 5 | Standard | | L> | Bi | 209 | 361939.2 | 3.6 | | | | ug/L | 333509 | Standard | Sample ID: LCSW 76 WG544075-04 Report Date/Time: Tuesday, October 27, 2015 16:31:35 Page 1 Approved: October 28, 2015 Page 513 L15101055 / Revision: 0 / 760 total pages | _ | | | | | | | | | | | |----|------|-----|---------|-------|---------|-------|--------|------|-------|----------| | Γ | Na | 23 | 3.3 | 86.6 | | | | mg/L | 0 | Standard | | | Mg | 24 | 21.7 | 13.3 | 0.0054 | 0.002 | 45.2 | mg/L | 10 | Standard | | | K | 39 | 18.3 | 56.8 | -0.0059 | 0.124 | 2100.4 | mg/L | 32 | Standard | | | Ca | 43 | 66.7 | 31.2 | -5.0628 | 2.203 | 43.5 | mg/L | 85 | Standard | | ĺ | Fe | 54 | 96.3 | 20.7 | 0.0787 | 0.057 | 72.0 | mg/L | 82 | Standard | | | Fe | 57 | 228.3 | 12.8 | 0.0609 | 0.380 | 623.4 | mg/L | 217 | Standard | | L> | Sc-1 | 45 | 16375.5 | 7.8 | | | | mg/L | 14524 | Standard | | | CI | 35 | 69814.5 | 2.1 | | | | ug/L | 53193 | Standard | | | Kr | 83 | 5.7 | 36.7 | | | | ug/L | 3 | Standard | | | Br | 81 | 346.7 | 6.0 | | | | ug/L | 327 | Standard | | | Р | 31 | 17059.7 | 9.7 | | | | ug/L | 13329 | Standard | | | S | 34 | 3572.1 | 1.5 | | | | ug/L | 3234 | Standard | | | Sr | 88 | 95.0 | 29.3 | | | | ug/L | 87 | Standard | | | С | 12 | 170.0 | 41.2 | | | | mg/L | 103 | Standard | | | N | 14 | 0.0 | | | | | mg/L | 0 | Standard | | | Hg | 202 | 6.7 | 173.2 | | | | mg/L | 3 | Standard | | | Dy | 164 | 9.8 | 101.7 | | | | mg/L | 10 | Standard | | | Ho-1 | 165 | 13.3 | 78.1 | | | | mg/L | 3 | Standard | | | Er | 166 | 3.3 | 173.2 | | | | mg/L | 7 | Standard | | | I | 127 | 3877.2 | 3.6 | | | | mg/L | 3612 | Standard | | | | | | | | | | | | | | Analyte | Mass | QC Std % Recovery | Int Std % Recovery | Spike % Recovery | |---------|------|-------------------|--------------------|------------------| | 「> Li | 6 | | 116.017 | | | Be | 9 | | | | | L AI | 27 | | | | | 「 Sc | 45 | | | | | Ti | 47 | | | | | V | 51 | | | | | Cr | 52 | | | | | Cr | 53 | | | | | Mn | 55 | | | | | Co | 59 | | | | | Ni | 60 | | | | | Cu | 65 | | | | | Zn | 66 | | | | | > Ge | 72 | | 108.931 | | | As | 75 | | | | | Se | 82 | | | | | L Se-1 | 77 | | | | | 「⊳ Ga | 71 | | | | Sample ID: LCSW 76 WG544075-04 Report Date/Time: Tuesday, October 27, 2015 16:31:35 Page 2 Approved: October 28, 2015 | ∟ Rb | 85 | | | | |----------------|--------------|---------|------|-----------------------| | ΓΥ | 89 | | | | | $\lfloor_>$ Rh | 103 | | | | | - Mo | 98 | | | | | Ag | 107 | | | | | Cq | 111 | | | | | Cd | 114 | | | | | > In | 115 | | | 109.554 | | Sn | 118 | | | 100.001 | | Sb | 123 | | | | | L Ba | 135 | | | | | ∟ Ба
Г Се | 140 | | | | | | 159 | | | | | | | | | | | Γ Ho | 165 | | | | | TI | 203 | | | | | TI | 205 | | | | | Pb | 206 | | | | | Pb | 207 | | | | | Pb | 208 | | | | | U | 238 | | | | | Ĺ> Bi | 209 | | | 108.524 | | Na | 23 | | | | | Mg | 24 | | | | | K | 39 | | | | | Ca | 43 | | | | | Fe | 54 | | | | | Fe | 57 | | | | | _> Sc-1 | 45 | | | | | CI | 35 | | | | | Kr | 83 | | | | | Br | 81 | | | | | Р | 31 | | | | | S | 34 | | | | | Sr | 88 | | | | | С | 12 | | | | | N | 14 | | | | | Hg | 202 | | | | | Dy | 164 | | | | | Ho-1 | 165 | | | | | Er | 166 | | | | |
I | 127 | | | | | 00.0 | ut of Limits | | | | | | | | | | | | ement Type | Analyte | Mass | Out of Limits Message | | Ti 47 Lo | wer | Ti | 47 | | Sample ID: LCSW 76 WG544075-04 Report Date/Time: Tuesday, October 27, 2015 16:31:35 Page 3 Sample ID: L1510121510 WG544075-01 Sample Date/Time: Tuesday, October 27, 2015 16:17:02 Number of Replicates: 3 Autosampler Position: 320 Sample Description: 5 Method File: C:\NexIONData\Method\6020a.mth Aliquot Volume (mL): Diluted to Volume (mL): User Name: BKT Nexion300X Cumulative Autodilution Factor: 1 Nexion-ICP 200.8\6020 | Con | cont | tration | Pagu | lte | |-----|------|---------|------|-----| | Con | ceni | tration | Resu | เเร | | | | | | | Ochicchia | ation ites | uita | | | | |------------|--------|---------------|-----------|-------|-----------|------------|-------|-------|---------------|----------| | IS | Analyt | e Mass | Intensity | RSD | Conc. | SD | RSD | Units | Blank Intens. | Mode | | Γ> | Li | 6 | 29303.3 | 3.1 | | | | ug/L | 26270 | Standard | | | Ве | 9 | 151.7 | 148.0 | 0.2354 | 0.403 | 171.0 | ug/L | 2 | Standard | | L | ΑI | 27 | 426262.2 | 4.5 | 6.8058 | 0.515 | 7.6 | ug/L | 403 | Standard | | Γ | Sc | 45 | 15389.5 | 4.1 | | | | ug/L | 14524 | Standard | | | Ti | 47 | 148.3 | 9.6 | -1.2038 | 0.099 | 8.2 | ug/L | 365 | Standard | | | ٧ | 51 | 1979.4 | 61.8 | 0.3035 | 0.362 | 119.3 | ug/L | 805 | Standard | | | Cr | 52 | 7706.0 | 23.3 | 0.4557 | 0.455 | 99.8 | ug/L | 5481 | Standard | | | Cr | 53 | 695.0 | 28.0 | 0.7430 | 0.387 | 52.1 | ug/L | 268 | Standard | | | Mn | 55 | 8687.5 | 15.7 | 2.2047 | 0.463 | 21.0 | ug/L | 670 | Standard | | | Co | 59 | 946.1 | 119.2 | 0.2506 | 0.358 | 142.9 | ug/L | 146 | Standard | | | Ni | 60 | 596.0 | 76.6 | 0.2934 | 0.410 | 139.8 | ug/L | 220 | Standard | | | Cu | 65 | 426.3 | 96.6 | 0.2025 | 0.376 | 185.7 | ug/L | 147 | Standard | | | Zn | 66 | 1129.7 | 23.1 | 1.0639 | 0.432 | 40.6 | ug/L | 211 | Standard | | > | Ge | 72 | 217714.2 | 2.2 | | | | ug/L | 210599 | Standard | | | As | 75 | 193.0 | 143.4 | 0.3500 | 0.393 | 112.2 | ug/L | -47 | Standard | | | Se | 82 | 32.6 | 87.5 | 0.3638 | 0.485 | 133.2 | ug/L | 15 | Standard | | L | Se-1 | 77 | 73.0 | 26.4 | 0.6097 | 0.533 | 87.5 | ug/L | 65 | Standard | | Γ> | Ga | 71 | 13.3 | 57.3 | | | | mg/L | 27 | Standard | | L | Rb | 85 | 253.3 | 16.6 | | | | ug/L | 17 | Standard | | Γ | Υ | 89 | 229212.6 | 4.1 | | | | ug/L | 216672 | Standard | | L> | Rh | 103 | 26.7 | 47.2 | | | | ug/L | 18 | Standard | | Γ | Мо | 98 | 25.3 | 23.1 | 0.0150 | 0.003 | 23.3 | ug/L | 11 | Standard | | | Ag | 107 | 827.7 | 153.6 | 0.1664 | 0.275 | 165.4 | ug/L | 55 | Standard | | | Cd | 111 | 335.6 | 152.0 | 0.2339 | 0.368 | 157.5 | mg/L | 7 | Standard | | | Cd | 114 | 773.6 | 143.6 | 0.2313 | 0.328 | 142.0 | ug/L | 4 | Standard | | > | In | 115 | 335275.0 | 4.1 | | | | ug/L | 322525 | Standard | | | Sn | 118 | 426.7 | 13.3 | -0.0491 | 0.013 | 27.3 | ug/L | 345 | Standard | | | Sb | 123 | 1447.6 | 71.3 | 0.3659 | 0.285 | 77.9 | ug/L | 88 | Standard | | Ĺ | Ва | 135 | 7350.5 | 7.3 | 4.4105 | 0.513 | 11.6 | ug/L | 12 | Standard | | ļ | Ce | 140 | 118.3 | 30.0 | | | | ug/L | 37 | Standard | | <u>_</u> > | Tb | 159 | 639395.0 | 4.5 | | | | ug/L | 631826 | Standard | | ļ | Но | 165 | 6.7 | 86.6 | | | | ug/L | 3 | Standard | | ļ | TI | 203 | 1087.1 | 159.1 | 0.1703 | 0.277 | 162.5 | ug/L | 7 | Standard | | ļ | TI | 205 | 731.7 | 163.7 | 0.1755 | 0.285 | 162.1 | ug/L | 7 | Standard | | ļ | Pb | 206 | 1062.4 | 128.0 | 0.2140 | 0.358 | 167.4 | ug/L | 159 | Standard | | ļ | Pb | 207 | 894.4 | 134.6 | 0.1975 | 0.349 | 176.7 | ug/L | 120 | Standard | | ļ | Pb | 208 | 3664.7 | 133.1 | 0.2072 | 0.354 | 170.9 | ug/L | 503 | Standard | | ļ | U | 238 | 1289.8 | 146.3 | 0.2449 | 0.369 | 150.7 | ug/L | 5 | Standard | | L> | Bi | 209 | 340932.1 | 4.8 | | | | ug/L | 333509 | Standard | Sample ID: L1510121510 WG544075-01 Report Date/Time: Tuesday, October 27, 2015 16:31:36 Page 1 Approved: October 28, 2015 | Γ | Na | 23 | 0.0 | | | | | mg/L | 0 | Standard | |----|------|-----|---------|-------|---------|-------|-------|------|-------|----------| | Ĺ | Mg | 24 | 3198.7 | 3.1 | 7.1794 | 0.525 | 7.3 | mg/L | 10 | Standard | | ĺ | ĸ | 39 | 26.7 | 54.1 | 0.1063 | 0.176 | 166.0 | mg/L | 32 | Standard | | ĺ | Ca | 43 | 63.3 | 22.8 | -4.8606 | 2.086 | 42.9 | mg/L | 85 | Standard | | ĺ | Fe | 54 | 69.1 | 26.3 | 0.0264 | 0.041 | 156.7 | mg/L | 82 | Standard | | ĺ | Fe | 57 | 203.3 | 9.3 | -0.0599 | 0.138 | 230.9 | mg/L | 217 | Standard | | L> | Sc-1 | 45 | 15389.5 | 4.1 | | | | mg/L | 14524 | Standard | | | CI | 35 | 71050.9 | 0.4 | | | | ug/L | 53193 | Standard | | | Kr | 83 | 6.0 | 28.9 | | | | ug/L | 3 | Standard | | | Br | 81 | 840.0 | 10.2 | | | |
ug/L | 327 | Standard | | | Р | 31 | 16110.2 | 2.9 | | | | ug/L | 13329 | Standard | | | S | 34 | 3490.4 | 2.3 | | | | ug/L | 3234 | Standard | | | Sr | 88 | 136.7 | 18.0 | | | | ug/L | 87 | Standard | | | С | 12 | 146.7 | 10.4 | | | | mg/L | 103 | Standard | | | N | 14 | 0.0 | | | | | mg/L | 0 | Standard | | | Hg | 202 | 3.3 | 173.2 | | | | mg/L | 3 | Standard | | | Dy | 164 | 12.7 | 122.3 | | | | mg/L | 10 | Standard | | | Ho-1 | 165 | 6.7 | 86.6 | | | | mg/L | 3 | Standard | | | Er | 166 | 13.3 | 173.2 | | | | mg/L | 7 | Standard | | | I | 127 | 52885.6 | 4.9 | | | | mg/L | 3612 | Standard | | Analyte
√> Li | Mass
6 | QC Std % Recovery | Int Std % Recovery
111.548 | Spike % Recovery | |------------------|-----------|-------------------|-------------------------------|------------------| | Be | 9 | | | | | L AI | 27 | | | | | 「 Sc | 45 | | | | | Ti | 47 | | | | | V | 51 | | | | | Cr | 52 | | | | | Cr | 53 | | | | | Mn | 55 | | | | | Co | 59 | | | | | Ni | 60 | | | | | Cu | 65 | | | | | Zn | 66 | | | | | > Ge | 72 | | 103.379 | | | As | 75 | | | | | Se | 82 | | | | | ∟ Se-1 | 77 | | | | | 「⊳ Ga | 71 | | | | Sample ID: L1510121510 WG544075-01 Report Date/Time: Tuesday, October 27, 2015 16:31:36 Page 2 Approved: October 28, 2015 | L Rb | 85 | | | | |----------------------|--------------|----------|------|-----------------------| | ΓΥ | 89 | | | | | $\lfloor_>$ Rh | 103 | | | | | Mo | 98 | | | | | Ag | 107 | | | | | Cd | 111 | | | | | Cd | 114 | | | | |
 > In | 115 | | | 103.953 | | Sn | 118 | | | | | Sb | 123 | | | | | _
Ba | 135 | | | | | Ce | 140 | | | | | _> Tb | 159 | | | | | Ho | 165 | | | | | TI | 203 | | | | | TI | 205 | | | | | Pb | 206 | | | | | Pb | 207 | | | | | Pb | 208 | | | | | U | 238 | | | | | ∟ _{>} Bi | 209 | | | 102.226 | | Na | 23 | | | . • | | Mg | 24 | | | | | K | 39 | | | | | Ca | 43 | | | | | Fe | 54 | | | | | Fe | 57 | | | | | > Sc-1 | 45 | | | | | CI | 35 | | | | | Kr | 83 | | | | | Br | 81 | | | | | Р | 31 | | | | | S | 34 | | | | | Sr | 88 | | | | | C | 12 | | | | | N | 14 | | | | | Hg | 202 | | | | | Dy | 164 | | | | | Ho-1 | 165 | | | | | Er | 166 | | | | | I | 127 | | | | | OC O | ut of Limits | | | | | | | . با . ا | Mass | Out of Limita Massaca | | ivieasure | ment Type | Analyte | Mass | Out of Limits Message | | Ti 47 Lov | wer | Ti | 47 | | Sample ID: L1510121510 WG544075-01 Report Date/Time: Tuesday, October 27, 2015 16:31:36 Page 3 Sample ID: L1510121510S WG544075-06 Sample Date/Time: Tuesday, October 27, 2015 16:20:14 Number of Replicates: 3 Autosampler Position: 321 Sample Description: 5 Method File: C:\NexIONData\Method\6020a.mth Aliquot Volume (mL): Diluted to Volume (mL): User Name: BKT Nexion300X Cumulative Autodilution Factor: 1 Nexion-ICP 200.8\6020 | 0 | ncon | tration | Results | | |----|------|----------|---------|--| | Lα | ncen | itration | Results | | | | | | | | Concentra | ation Res | นเเอ | | | | |----|--------|--------|-----------|------|-----------|----------------------|------|-------|---------------|----------| | IS | Analyt | e Mass | Intensity | RSD | Conc. | SD | RSD | Units | Blank Intens. | Mode | | Γ> | Li | 6 | 28717.3 | 6.5 | | | | ug/L | 26270 | Standard | | | Be | 9 | 5781.1 | 5.1 | 10.1664 | 0.203 | 2.0 | ug/L | 2 | Standard | | L | ΑI | 27 | 424787.6 | 2.3 | 6.9237 | 0.309 | 4.5 | ug/L | 403 | Standard | | Γ | Sc | 45 | 15651.4 | 3.0 | | | | ug/L | 14524 | Standard | | | Ti | 47 | 138.3 | 7.8 | -1.2570 | 0.068 | 5.4 | ug/L | 365 | Standard | | | ٧ | 51 | 38129.6 | 0.9 | 10.6029 | 0.121 | 1.1 | ug/L | 805 | Standard | | | Cr | 52 | 51993.7 | 0.7 | 10.6919 | 0.088 | 8.0 | ug/L | 5481 | Standard | | | Cr | 53 | 6131.2 | 4.0 | 10.7584 | 0.426 | 4.0 | ug/L | 268 | Standard | | | Mn | 55 | 44152.2 | 0.4 | 12.7514 | 0.035 | 0.3 | ug/L | 670 | Standard | | | Co | 59 | 33828.7 | 0.9 | 10.4738 | 0.092 | 0.9 | ug/L | 146 | Standard | | | Ni | 60 | 12193.9 | 0.5 | 10.3901 | 0.026 | 0.2 | ug/L | 220 | Standard | | | Cu | 65 | 11985.4 | 1.5 | 10.4906 | 0.125 | 1.2 | ug/L | 147 | Standard | | | Zn | 66 | 7886.1 | 1.4 | 11.2636 | 0.159 | 1.4 | ug/L | 211 | Standard | | > | Ge | 72 | 215388.8 | 0.3 | | | | ug/L | 210599 | Standard | | | As | 75 | 7511.7 | 2.4 | 10.5555 | 10.5555 0.225 | | ug/L | -47 | Standard | | | Se | 82 | 639.1 | | | 0.276 | 2.7 | ug/L | 15 | Standard | | L | Se-1 | 77 | 464.0 | 5.5 | 10.5795 | 0.674 | 6.4 | ug/L | 65 | Standard | | Γ> | Ga | 71 | 21.7 | 13.3 | | | | mg/L | 27 | Standard | | L | Rb | 85 | 191.7 | 8.4 | | | | ug/L | 17 | Standard | | Γ | Υ | 89 | 224925.6 | 8.0 | | | | ug/L | 216672 | Standard | | _> | Rh | 103 | 15.0 | 33.3 | | | | ug/L | 18 | Standard | | Γ | Мо | 98 | 21.6 | 10.0 | 0.0127 | 0.001 | 10.9 | ug/L | 11 | Standard | | ļ | Ag | 107 | 47646.8 | 0.4 | 9.8857 | 0.182 | 1.8 | ug/L | 55 | Standard | | ļ | Cd | 111 | 14902.6 | 0.5 | 10.3188 | 0.232 | 2.2 | mg/L | 7 | Standard | | ļ | Cd | 114 | 36682.9 | 1.8 | 10.3972 | 0.283 | 2.7 | ug/L | 4 | Standard | | > | In | 115 | 332312.4 | 1.8 | | | | ug/L | 322525 | Standard | | ļ | Sn | 118 | 366.7 | 7.9 | -0.0629 | 0.006 | 9.9 | ug/L | 345 | Standard | | ļ | Sb | 123 | 39000.0 | 1.2 | 10.0226 | 0.302 | 3.0 | ug/L | 88 | Standard | | Ē | Ва | 135 | 23292.6 | 8.0 | 14.1138 | 0.359 | 2.5 | ug/L | 12 | Standard | | ļ | Ce | 140 | 86.7 | 17.6 | | | | ug/L | 37 | Standard | | Ĺ> | Tb | 159 | 618247.2 | 3.1 | | | | ug/L | 631826 | Standard | | ļ | Но | 165 | 10.0 | 50.0 | | | | ug/L | 3 | Standard | | | TI | 203 | 66061.4 | 0.4 | 10.2078 | 0.221 | 2.2 | ug/L | 7 | Standard | | | TI | 205 | 44846.3 | 1.6 | 10.2939 | 0.308 | 3.0 | ug/L | 7 | Standard | | | Pb | 206 | 41896.5 | 0.9 | 10.5256 | 0.250 | 2.4 | ug/L | 159 | Standard | | - | Pb | 207 | 35909.2 | 0.9 | 9.9495 | 0.331 | 3.3 | ug/L | 120 | Standard | | - | Pb | 208 | 150677.1 | 0.5 | 10.4522 | 0.276 | 2.6 | ug/L | 503 | Standard | | - | U | 238 | 53841.8 | 0.7 | 10.1460 | 0.310 | 3.1 | ug/L | 5 | Standard | | L> | Bi | 209 | 334342.6 | 2.4 | | | | ug/L | 333509 | Standard | Sample ID: L1510121510S WG544075-06 Report Date/Time: Tuesday, October 27, 2015 16:31:38 Page 1 Approved: October 28, 2015 Page 519 L15101055 / Revision: 0 / 760 total pages Generated: 10/30/2015 10:11 | _ | | | | | | | | | | | |----|------|-----|---------|-------|---------|-------|-------|------|-------|----------| | | Na | 23 | 3.3 | 86.6 | | | | mg/L | 0 | Standard | | | Mg | 24 | 3277.0 | 3.8 | 7.2217 | 0.331 | 4.6 | mg/L | 10 | Standard | | | K | 39 | 13.3 | 108.3 | -0.0599 | 0.160 | 266.4 | mg/L | 32 | Standard | | | Ca | 43 | 78.3 | 3.7 | -2.7593 | 0.406 | 14.7 | mg/L | 85 | Standard | | | Fe | 54 | 63.9 | 24.2 | 0.0118 | 0.035 | 298.3 | mg/L | 82 | Standard | | | Fe | 57 | 230.0 | 11.5 | 0.1504 | 0.288 | 191.6 | mg/L | 217 | Standard | | L> | Sc-1 | 45 | 15651.4 | 3.0 | | | | mg/L | 14524 | Standard | | | CI | 35 | 73132.8 | 1.8 | | | | ug/L | 53193 | Standard | | | Kr | 83 | 3.0 | 57.7 | | | | ug/L | 3 | Standard | | | Br | 81 | 913.4 | 20.3 | | | | ug/L | 327 | Standard | | | Р | 31 | 16278.7 | 2.6 | | | | ug/L | 13329 | Standard | | | S | 34 | 3627.1 | 2.3 | | | | ug/L | 3234 | Standard | | | Sr | 88 | 123.3 | 22.3 | | | | ug/L | 87 | Standard | | | С | 12 | 193.3 | 21.5 | | | | mg/L | 103 | Standard | | | N | 14 | 0.0 | | | | | mg/L | 0 | Standard | | | Hg | 202 | 3.3 | 173.2 | | | | mg/L | 3 | Standard | | | Dy | 164 | 15.9 | 94.6 | | | | mg/L | 10 | Standard | | | Ho-1 | 165 | 10.0 | 50.0 | | | | mg/L | 3 | Standard | | | Er | 166 | 16.7 | 34.6 | | | | mg/L | 7 | Standard | | | 1 | 127 | 58097.9 | 3.7 | | | | mg/L | 3612 | Standard | | | | | | | | | | | | | | Analyte | Mass | QC Std % Recovery | Int Std % Recovery | Spike % Recovery | |---------|------|-------------------|--------------------|------------------| | 「⊳ Li | 6 | | 109.317 | | | Be | 9 | | | | | L AI | 27 | | | | | 「 Sc | 45 | | | | | Ti | 47 | | | | | V | 51 | | | | | Cr | 52 | | | | | Cr | 53 | | | | | Mn | 55 | | | | | Co | 59 | | | | | Ni | 60 | | | | | Cu | 65 | | | | | Zn | 66 | | | | | > Ge | 72 | | 102.274 | | | As | 75 | | | | | Se | 82 | | | | | ∟ Se-1 | 77 | | | | | 「⊳ Ga | 71 | | | | Sample ID: L1510121510S WG544075-06 Report Date/Time: Tuesday, October 27, 2015 16:31:38 Page 2 Approved: October 28, 2015 | L Rb | 85 | | | | |----------------|--------------|---------|------|-----------------------| | ΓΥ | 89 | | | | | $\lfloor_>$ Rh | 103 | | | | | 「 Mo | 98 | | | | | Ag | 107 | | | | | Cd | 111 | | | | | Cd | 114 | | | | |
 > In | 115 | | | 103.035 | | Sn | 118 | | | | | Sb | 123 | | | | | Ba | 135 | | | | | Ce | 140 | | | | | > Tb | 159 | | | | | Ho | 165 | | | | | TI | 203 | | | | | TI | 205 | | | | | Pb | 206 | | | | | Pb | 207 | | | | | Pb | 208 | | | | | U | 238 | | | | | ∣ | 209 | | | 100.250 | | ∫ Na | 23 | | | 100.200 | | Mg | 24 | | | | | K | 39 | | | | | Ca | 43 | | | | | Fe | 54 | | | | | Fe | 57 | | | | | Sc-1 | 45 | | | | | Cl | 35 | | | | | Kr | 83 | | | | | Br | 81 | | | | | P | 31 | | | | | S | 34 | | | | | Sr | 88 | | | | | C | 12 | | | | | N | 14 | | | | | Hg | 202 | | | | | Dy | 164 | | | | | Ho-1 | 165 | | | | | Er | 166 | | | | | _,
 | 127 | | | | | 000 | ut of Limits | | | | | | | | | | | Measure | ement Type | Analyte | Mass | Out of Limits Message | | Ti 47 Lo | wer | Ti | 47 | | Sample ID: L1510121510S WG544075-06 Report Date/Time: Tuesday, October 27, 2015 16:31:38 Page 3 Sample ID: L1510121510SD WG544075-07 Sample Date/Time: Tuesday, October 27, 2015 16:23:25 Number of Replicates: 3 Autosampler Position: 322 Sample Description: 5 Method File: C:\NexIONData\Method\6020a.mth Aliquot Volume (mL): Diluted to Volume (mL): User Name: BKT Nexion300X Cumulative Autodilution Factor: 1 Nexion-ICP 200.8\6020 | Concentration | Results | |---------------|---------| |---------------|---------| | | | | | | Concentia | tion ites | uito | | | | |------------|--------|---------------|--------------------------|------|-----------|-----------|------|-------|---------------|----------| | IS | Analyt | e Mass |
Intensity | RSD | Conc. | SD | RSD | Units | Blank Intens. | Mode | | Γ> | Li | 6 | 30393.8 | 2.1 | | | | ug/L | 26270 | Standard | | | Ве | 9 | 5746.1 | 2.3 | 9.5427 | 0.352 | 3.7 | ug/L | 2 | Standard | | L | ΑI | 27 | 423728.8 | 1.1 | 6.5128 | 0.085 | 1.3 | ug/L | 403 | Standard | | Γ | Sc | 45 | 16000.1 | 4.1 | | | | ug/L | 14524 | Standard | | | Ti | 47 | 133.0 | 7.5 | -1.3003 | 0.065 | 5.0 | ug/L | 365 | Standard | | | ٧ | 51 | 37692.2 | 2.2 | 10.3446 | 0.225 | 2.2 | ug/L | 805 | Standard | | | Cr | 52 | 50327.5 | 1.6 | 10.1626 | 0.157 | 1.5 | ug/L | 5481 | Standard | | | Cr | 53 | 5986.2 | 5.1 | 10.3549 | 0.549 | 5.3 | ug/L | 268 | Standard | | | Mn | 55 | 43693.6 | 1.3 | 12.4545 | 0.211 | 1.7 | ug/L | 670 | Standard | | | Co | 59 | 33532.1 | 0.9 | 10.2523 | 0.146 | 1.4 | ug/L | 146 | Standard | | | Ni | 60 | 11930.0 | 0.9 | 10.0316 | 0.131 | 1.3 | ug/L | 220 | Standard | | | Cu | 65 | 11704.2 | 1.4 | 10.1113 | 0.176 | 1.7 | ug/L | 147 | Standard | | | Zn | 66 | 8005.4 | 1.3 | 11.2942 | 0.208 | 1.8 | ug/L | 211 | Standard | | > | Ge | 72 | 218101.9 | 0.6 | | | | ug/L | 210599 | Standard | | | As | 75 | 7492.3 | 0.9 | 10.3995 | 0.151 | 1.5 | ug/L | -47 | Standard | | | Se | 82 | 643.5 2.3 10.3419 | | 10.3419 | 0.263 | 2.5 | ug/L | 15 | Standard | | L | Se-1 | 77 | 449.7 | 5.2 | 10.0729 | 0.633 | 6.3 | ug/L | 65 | Standard | | Γ> | Ga | 71 | 16.7 | 45.8 | | | | mg/L | 27 | Standard | | L | Rb | 85 | 253.3 | 12.8 | | | | ug/L | 17 | Standard | | Γ | Υ | 89 | 226918.7 | 1.9 | | | | ug/L | 216672 | Standard | | L> | Rh | 103 | 28.3 | 40.8 | | | | ug/L | 18 | Standard | | Γ | Mo | 98 | 27.1 | 12.2 | 0.0160 | 0.002 | 12.6 | ug/L | 11 | Standard | | | Ag | 107 | 47365.3 | 0.6 | 9.5971 | 0.161 | 1.7 | ug/L | 55 | Standard | | | Cd | 111 | 14762.1 | 0.6 | 9.9816 | 0.159 | 1.6 | mg/L | 7 | Standard | | | Cd | 114 | 35852.6 | 0.3 | 9.9236 | 0.107 | 1.1 | ug/L | 4 | Standard | | > | In | 115 | 340248.2 | 1.3 | | | | ug/L | 322525 | Standard | | | Sn | 118 | 428.3 | 19.4 | -0.0503 | 0.020 | 39.6 | ug/L | 345 | Standard | | | Sb | 123 | 38995.3 | 1.4 | 9.7862 | 0.267 | 2.7 | ug/L | 88 | Standard | | L | Ва | 135 | 23292.6 | 0.6 | 13.7813 | 0.185 | 1.3 | ug/L | 12 | Standard | | ļ | Ce | 140 | 96.7 | 24.4 | | | | ug/L | 37 | Standard | | <u>_</u> > | Tb | 159 | 635587.4 | 2.1 | | | | ug/L | 631826 | Standard | | ļ | Но | 165 | 8.3 | 34.6 | | | | ug/L | 3 | Standard | | ļ | TI | 203 | 66159.5 | 0.6 | 9.8660 | 0.133 | 1.3 | ug/L | 7 | Standard | | ļ | TI | 205 | 45376.2 | 2.4 | 10.0523 | 0.317 | 3.2 | ug/L | 7 | Standard | | ļ | Pb | 206 | 41748.1 | 0.6 | 10.1192 | 0.033 | 0.3 | ug/L | 159 | Standard | | ļ | Pb | 207 | 35827.3 | 0.6 | 9.5762 | 0.116 | 1.2 | ug/L | 120 | Standard | | ļ | Pb | 208 | 148279.4 | 0.4 | 9.9233 | 0.127 | 1.3 | ug/L | 503 | Standard | | ļ | U | 238 | 53787.6 | 1.3 | 9.7805 | 0.183 | 1.9 | ug/L | 5 | Standard | | _> | Bi | 209 | 346346.7 | 8.0 | | | | ug/L | 333509 | Standard | Sample ID: L1510121510SD WG544075-07 Report Date/Time: Tuesday, October 27, 2015 16:31:39 Page 1 Approved: October 28, 2015 | Γ | Na | 23 | 0.0 | | | | | mg/L | 0 | Standard | |----|------|-----|---------|-------|---------|-------|-------|------|-------|----------| | | Mg | 24 | 3380.4 | 3.4 | 7.2986 | 0.544 | 7.5 | mg/L | 10 | Standard | | | K | 39 | 20.0 | 25.0 | 0.0141 | 0.048 | 337.9 | mg/L | 32 | Standard | | | Ca | 43 | 63.3 | 12.1 | -5.1949 | 1.330 | 25.6 | mg/L | 85 | Standard | | ĺ | Fe | 54 | 78.0 | 41.9 | 0.0382 | 0.066 | 172.7 | mg/L | 82 | Standard | | | Fe | 57 | 258.3 | 12.6 | 0.3391 | 0.190 | 56.2 | mg/L | 217 | Standard | | L> | Sc-1 | 45 | 16000.1 | 4.1 | | | | mg/L | 14524 | Standard | | | CI | 35 | 70805.7 | 1.5 | | | | ug/L | 53193 | Standard | | | Kr | 83 | 5.7 | 56.7 | | | | ug/L | 3 | Standard | | | Br | 81 | 783.4 | 18.7 | | | | ug/L | 327 | Standard | | | Р | 31 | 15883.3 | 3.3 | | | | ug/L | 13329 | Standard | | | S | 34 | 3463.7 | 4.9 | | | | ug/L | 3234 | Standard | | | Sr | 88 | 106.7 | 42.0 | | | | ug/L | 87 | Standard | | | С | 12 | 180.0 | 24.2 | | | | mg/L | 103 | Standard | | | N | 14 | 0.0 | | | | | mg/L | 0 | Standard | | | Hg | 202 | 3.3 | 173.2 | | | | mg/L | 3 | Standard | | | Dy | 164 | 6.3 | 99.7 | | | | mg/L | 10 | Standard | | | Ho-1 | 165 | 8.3 | 34.6 | | | | mg/L | 3 | Standard | | | Er | 166 | 6.7 | 173.2 | | | | mg/L | 7 | Standard | | | I | 127 | 59881.6 | 4.2 | | | | mg/L | 3612 | Standard | | | | | | | | | | | | | | | Analyte | Mass | QC Std % Recovery | Int Std % Recovery | Spike % Recovery | |----|---------|------|-------------------|--------------------|------------------| | Γ> | Li | 6 | | 115.699 | | | | Be | 9 | | | | | L | Al | 27 | | | | | Γ | Sc | 45 | | | | | | Ti | 47 | | | | | | V | 51 | | | | | | Cr | 52 | | | | | | Cr | 53 | | | | | | Mn | 55 | | | | | | Co | 59 | | | | | | Ni | 60 | | | | | | Cu | 65 | | | | | | Zn | 66 | | | | | > | Ge | 72 | | 103.563 | | | | As | 75 | | | | | | Se | 82 | | | | | L | Se-1 | 77 | | | | | Γ> | Ga | 71 | | | | **Sample ID: L1510121510SD WG544075-07**Report Date/Time: Tuesday, October 27, 2015 16:31:39 Page 2 Approved: October 28, 2015 | ∟ Rb | 85 | | | | |----------------------|--------------|---------|------|-----------------------| | ΓY | 89 | | | | | $\lfloor_>$ Rh | 103 | | | | | Mo | 98 | | | | | Ag | 107 | | | | | Cd | 111 | | | | | Cd | 114 | | | | |
 > In | 115 | | | 105.495 | | Sn | 118 | | | | | Sb | 123 | | | | | L Ba | 135 | | | | | ¯ Ce | 140 | | | | | _> Tb | 159 | | | | | Ho | 165 | | | | | TI TI | 203 | | | | | ті | 205 | | | | | Pb | 206 | | | | | Pb | 207 | | | | | Pb | 208 | | | | | Ü | 238 | | | | | Ĺ _{>} Bi | 209 | | | 103.849 | | Na | 23 | | | | | Mg | 24 | | | | | ίκ | 39 | | | | | Ca | 43 | | | | | Fe | 54 | | | | | Fe | 57 | | | | | _> Sc-1 | 45 | | | | | CI | 35 | | | | | Kr | 83 | | | | | Br | 81 | | | | | Р | 31 | | | | | S | 34 | | | | | Sr | 88 | | | | | С | 12 | | | | | N | 14 | | | | | Hg | 202 | | | | | Dy | 164 | | | | | Ho-1 | 165 | | | | | Er | 166 | | | | | 1 | 127 | | | | | QC Oi | ıt of Limits | | | | | | ment Type | Analyte | Mass | Out of Limits Message | | Ti 47 Lo | | Ti | 47 | | | 1147 Lowel | | • • | •• | | **Sample ID: L1510121510SD WG544075-07**Report Date/Time: Tuesday, October 27, 2015 16:31:39 Page 3 Sample ID: L1510121301 Sample Date/Time: Tuesday, October 27, 2015 16:26:37 Number of Replicates: 3 Autosampler Position: 323 Sample Description: 1 Method File: C:\NexIONData\Method\6020a.mth Aliquot Volume (mL): Diluted to Volume (mL): User Name: BKT Nexion300X Cumulative Autodilution Factor: 1 Nexion-ICP 200.8\6020 | 0 | ncon | tration | Results | | |----|------|----------|---------|--| | Lα | ncen | itration | Results | | | | | | | | Concentra | incentration results | | | | | | | |----|--------|--------|------------|------|-----------|----------------------|-------|-------|---------------|----------|--|--| | IS | Analyt | e Mass | Intensity | RSD | Conc. | SD | RSD | Units | Blank Intens. | Mode | | | | Γ> | Li | 6 | 22261.4 | 4.7 | | | | ug/L | 26270 | Standard | | | | | Be | 9 | 20.0 | 66.1 | 0.0099 | 0.027 | 277.7 | ug/L | 2 | Standard | | | | L | Αl | 27 | 17839459.2 | 3.6 | 376.4258 | 30.543 | 8.1 | ug/L | 403 | Standard | | | | Γ | Sc | 45 | 13964.8 | 4.1 | | | | ug/L | 14524 | Standard | | | | | Ti | 47 | 2985.3 | 13.6 | 18.5007 | 3.039 | 16.4 | ug/L | 365 | Standard | | | | | ٧ | 51 | 5951.0 | 20.5 | 1.6201 | 0.375 | 23.2 | ug/L | 805 | Standard | | | | | Cr | 52 | 16621.5 | 5.4 | 2.9500 | 0.280 | 9.5 | ug/L | 5481 | Standard | | | | | Cr | 53 | 32685.3 | 4.6 | 66.2366 | 2.088 | 3.2 | ug/L | 268 | Standard | | | | | Mn | 55 | 158869.9 | 8.0 | 51.9929 | 1.149 | 2.2 | ug/L | 670 | Standard | | | | | Co | 59 | 1131.4 | 3.5 | 0.3447 | 0.012 | 3.6 | ug/L | 146 | Standard | | | | | Ni | 60 | 3506.7 | 2.9 | 3.1636 | 0.138 | 4.3 | ug/L | 220 | Standard | | | | | Cu | 65 | 3832.2 | 2.0 | 3.6088 | 0.127 | 3.5 | ug/L | 147 | Standard | | | | | Zn | 66 | 19796.9 | 3.0 | 32.5161 | 1.363 | 4.2 | ug/L | 211 | Standard | | | | > | Ge | 72 | 194063.7 | 1.5 | | | | ug/L | 210599 | Standard | | | | | As | 75 | -444.7 | 37.1 | -0.6096 | 0.253 | 41.6 | ug/L | -47 | Standard | | | | | Se | 82 | -165.3 | 28.9 | -3.2216 | 0.912 | 28.3 | ug/L | 15 | Standard | | | | L | Se-1 | 77 | 3923.5 | 5.5 | 109.7020 | 7.069 | 6.4 | ug/L | 65 | Standard | | | | Γ> | Ga | 71 | 176.7 | 31.3 | | | | mg/L | 27 | Standard | | | | L | Rb | 85 | 156314.4 | 3.1 | | | | ug/L | 17 | Standard | | | | Γ | Υ | 89 | 196969.5 | 3.2 | | | | ug/L | 216672 | Standard | | | | L> | Rh | 103 | 368.3 | 27.8 | | | | ug/L | 18 | Standard | | | | Γ | Мо | 98 | 16263.6 | 0.3 | 13.7272 | 0.356 | 2.6 | ug/L | 11 | Standard | | | | | Ag | 107 | 63.3 | 6.6 | 0.0046 | 0.001 | 12.6 | ug/L | 55 | Standard | | | | | Cd | 111 | 19.5 | 51.8 | 0.0099 | 0.008 | 80.4 | mg/L | 7 | Standard | | | | | Cd | 114 | 104.0 | 25.4 | 0.0413 | 0.010 | 24.2 | ug/L | 4 | Standard | | | | > | In | 115 | 273965.7 | 3.0 | | | | ug/L | 322525 | Standard | | | | | Sn | 118 | 535.0 | 11.0 | 0.0066 | 0.022 | 326.1 | ug/L | 345 | Standard | | | | | Sb | 123 | 975.8 | 4.3 | 0.2941 | 0.021 | 7.3 | ug/L | 88 | Standard | | | | L | Ва | 135 | 19517.9 | 0.6 | 14.3509 | 0.489 | 3.4 | ug/L | 12 | Standard | | | | Γ | Ce | 140 | 4117.2 | 4.7 | | | | ug/L | 37 | Standard | | | | _> | Tb | 159 | 555012.6 | 5.1 | | | | ug/L | 631826 | Standard | | | | Γ | Но | 165 | 86.7 | 39.3 | | | | ug/L | 3 | Standard | | | | ļ | TI | 203 | 307.3 | 5.8 | 0.0543 | 0.003 | 5.2 | ug/L | 7 | Standard | | | | | TI | 205 | 191.7 | 13.1 | 0.0552 | 0.006 | 10.5 | ug/L | 7 | Standard | | | | | Pb | 206 | 888.4 | 3.7 | 0.2094 | 0.002 | 1.1 | ug/L | 159 | Standard | | | | ļ | Pb | 207 | 723.0 | 1.5 | 0.1844 | 0.005 | 2.7 | ug/L | 120 | Standard | | | | ļ | Pb | 208 | 2778.4 | 3.6 | 0.1785 | 0.007 | 3.7 | ug/L | 503 | Standard | | | | ļ | U | 238 | 1119.0 | 6.2 | 0.2490 | 0.022 | 8.7 | ug/L | 5 | Standard | | | | _> | Bi | 209 | 278514.4 | 3.1 | | | | ug/L | 333509 | Standard | | | |
| | | | | | | | | | | | | Sample ID: L1510121301 Report Date/Time: Tuesday, October 27, 2015 16:31:40 Page 1 Approved: October 28, 2015 Page 525 L15101055 / Revision: 0 / 760 total pages | _ | | | | | | | | | | | |----|------|-----|----------|------|----------|-------|------|------|-------|----------| | Γ | Na | 23 | 0.0 | | | | | mg/L | 0 | Standard | | | Mg | 24 | 360281.7 | 3.6 | 894.4709 | 4.750 | 0.5 | mg/L | 10 | Standard | | | K | 39 | 3927.2 | 6.0 | 50.6981 | 1.021 | 2.0 | mg/L | 32 | Standard | | | Ca | 43 | 163.3 | 18.7 | 13.1262 | 6.212 | 47.3 | mg/L | 85 | Standard | | | Fe | 54 | 129.6 | 18.6 | 0.1959 | 0.054 | 27.5 | mg/L | 82 | Standard | | | Fe | 57 | 250.0 | 5.3 | 0.5852 | 0.046 | 7.8 | mg/L | 217 | Standard | | L> | Sc-1 | 45 | 13964.8 | 4.1 | | | | mg/L | 14524 | Standard | | | CI | 35 | 105850.7 | 3.0 | | | | ug/L | 53193 | Standard | | | Kr | 83 | 4.0 | 50.0 | | | | ug/L | 3 | Standard | | | Br | 81 | 3287.0 | 7.5 | | | | ug/L | 327 | Standard | | | Р | 31 | 16033.5 | 2.4 | | | | ug/L | 13329 | Standard | | | S | 34 | 3728.8 | 6.4 | | | | ug/L | 3234 | Standard | | | Sr | 88 | 135.0 | 9.8 | | | | ug/L | 87 | Standard | | | С | 12 | 876.7 | 18.3 | | | | mg/L | 103 | Standard | | | N | 14 | 0.0 | | | | | mg/L | 0 | Standard | | | Hg | 202 | 6.7 | 86.6 | | | | mg/L | 3 | Standard | | | Dy | 164 | 121.4 | 48.6 | | | | mg/L | 10 | Standard | | | Ho-1 | 165 | 86.7 | 39.3 | | | | mg/L | 3 | Standard | | | Er | 166 | 110.0 | 9.1 | | | | mg/L | 7 | Standard | | | I | 127 | 298391.2 | 8.4 | | | | mg/L | 3612 | Standard | | Analyte | Mass | QC Std % Recovery | Int Std % Recovery | Spike % Recovery | |---------|------|-------------------|--------------------|------------------| | 「> Li | 6 | | 84.742 | | | Be | 9 | | | | | L AI | 27 | | | | | 「 Sc | 45 | | | | | Ti | 47 | | | | | V | 51 | | | | | Cr | 52 | | | | | Cr | 53 | | | | | Mn | 55 | | | | | Co | 59 | | | | | Ni | 60 | | | | | Cu | 65 | | | | | Zn | 66 | | | | | > Ge | 72 | | 92.149 | | | As | 75 | | | | | Se | 82 | | | | | Se-1 | 77 | | | | | 「̄> Ga | 71 | | | | Sample ID: L1510121301 Report Date/Time: Tuesday, October 27, 2015 16:31:40 Page 2 Approved: October 28, 2015 | ∟ Rb | 85 | | | | | |---------------|--------------|-----|-----|-----------------------|--| | Γ̈́Υ | 89 | | | | | | _
_> Rh | 103 | | | | | | ☐ Mo | 98 | | | | | | Ag | 107 | | | | | | Cd | 111 | | | | | | Cd | 114 | | | | | | > In | 115 | | | 84.944 | | | Sn | 118 | | | 01.011 | | | Sb | 123 | | | | | | L Ba | 135 | | | | | | □ Ce | 140 | | | | | | | 159 | | | | | | L> Tb
Γ Ho | 165 | | | | | | TI | 203 | | | | | | ''
 TI | 205 | | | | | | 11
 Pb | 206 | | | | | | Pb | 207 | | | | | | Pb | 208 | | | | | | U | 238 | | | | | | | | | | 83.510 | | | L> Bi
□ No | 209 | | | 65.510 | | | 「 Na
└ Ma | 23 | | | | | | Mg | 24 | | | | | | K | 39 | | | | | | Ca | 43 | | | | | | Fe | 54 | | | | | | Fe | 57
45 | | | | | | L> Sc-1 | 45 | | | | | | Cl | 35 | | | | | | Kr | 83 | | | | | | Br | 81 | | | | | | P | 31 | | | | | | S | 34 | | | | | | Sr | 88 | | | | | | С | 12 | | | | | | N | 14 | | | | | | Hg | 202 | | | | | | Dy | 164 | | | | | | Ho-1 | 165 | | | | | | Er | 166 | | | | | | <u> </u> | 127 | | | | | | | ut of Limits | | | | | | | ement Type | | ass | Out of Limits Message | | | | oper, S, EEE | Al | 27 | | | | As 75 L | | As | 75 | | | | C ~ 00 I | | C ~ | 00 | | | Sample ID: L1510121301 Se 82 Lower Report Date/Time: Tuesday, October 27, 2015 16:31:40 Se 82 Page 3 Se-1 77 Upper, S, EEE Se-1 77 Sample ID: L1510121301 Report Date/Time: Tuesday, October 27, 2015 16:31:40 Page 4 Approved: October 28, 2015 Sample ID: L1510121501 Sample Date/Time: Tuesday, October 27, 2015 16:36:42 Number of Replicates: 3 Autosampler Position: 334 Sample Description: 5 Method File: C:\NexIONData\Method\6020a.mth Aliquot Volume (mL): Diluted to Volume (mL): User Name: BKT Nexion300X Cumulative Autodilution Factor: 1 Nexion-ICP 200.8\6020 | 0 | | 44: | D | 14. | |-----|-----|---------|------|-------| | COH | cen | tration | Resu | ILS - | | | | | | | Concentiat | | Juita | | | | |----|--------|--------|-----------|------|------------|-------|--------|-------|---------------|----------| | IS | Analyt | e Mass | Intensity | RSD | Conc. | SD | RSD | Units | Blank Intens. | Mode | | Γ> | Li | 6 | 30896.5 | 2.1 | | | | ug/L | 26270 | Standard | | | Be | 9 | 13.3 | 57.3 | -0.0131 | 0.012 | 92.4 | ug/L | 2 | Standard | | L | Αl | 27 | 1625489.0 | 1.3 | 24.6417 | 0.802 | 3.3 | ug/L | 403 | Standard | | Γ | Sc | 45 | 16654.2 | 2.2 | | | | ug/L | 14524 | Standard | | | Ti | 47 | 561.0 | 5.8 | 1.2026 | 0.223 | 18.5 | ug/L | 365 | Standard | | | ٧ | 51 | 2435.7 | 2.8 | 0.4006 | 0.021 | 5.3 | ug/L | 805 | Standard | | | Cr | 52 | 8485.4 | 1.8 | 0.5528 | 0.019 | 3.4 | ug/L | 5481 | Standard | | | Cr | 53 | 1971.8 | 3.4 | 2.9262 | 0.141 | 4.8 | ug/L | 268 | Standard | | | Mn | 55 | 20280.6 | 0.6 | 5.3749 | 0.086 | 1.6 | ug/L | 670 | Standard | | | Co | 59 | 502.0 | 3.4 | 0.1028 | 0.004 | 3.9 | ug/L | 146 | Standard | | | Ni | 60 | 713.4 | 3.6 | 0.3650 | 0.026 | 7.1 | ug/L | 220 | Standard | | | Cu | 65 | 416.7 | 3.2 | 0.1743 | 0.009 | 5.4 | ug/L | 147 | Standard | | | Zn | 66 | 3130.0 | 3.1 | 3.8638 | 0.165 | 4.3 | ug/L | 211 | Standard | | > | Ge | 72 | 226360.4 | 0.9 | | | | ug/L | 210599 | Standard | | | As | 75 | 48.8 | 90.5 | 0.1425 | 0.058 | 40.7 | ug/L | -47 | Standard | | | Se | 82 | 39.0 | 11.2 | 0.4368 | 0.064 | 14.7 | ug/L | 15 | Standard | | L | Se-1 | 77 | 135.3 | 3.5 | 2.0420 | 0.112 | 5.5 | ug/L | 65 | Standard | | Γ> | Ga | 71 | 125.0 | 10.6 | | | | mg/L | 27 | Standard | | L | Rb | 85 | 1921.8 | 2.4 | | | | ug/L | 17 | Standard | | Γ | Υ | 89 | 231806.7 | 1.4 | | | | ug/L | 216672 | Standard | | L> | Rh | 103 | 61.7 | 16.9 | | | | ug/L | 18 | Standard | | Γ | Мо | 98 | 105.5 | 6.4 | 0.0690 | 0.005 | 6.6 | ug/L | 11 | Standard | | | Ag | 107 | 56.3 | 7.4 | 0.0000 | 0.001 | 3131.7 | ug/L | 55 | Standard | | | Cd | 111 | 19.1 | 36.8 | 0.0065 | 0.005 | 71.9 | mg/L | 7 | Standard | | | Cd | 114 | 28.2 | 61.8 | 0.0132 | 0.005 | 36.8 | ug/L | 4 | Standard | | > | In | 115 | 341615.0 | 0.5 | | | | ug/L | 322525 | Standard | | | Sn | 118 | 501.7 | 14.1 | -0.0332 | 0.017 | 51.6 | ug/L | 345 | Standard | | | Sb | 123 | 106.7 | 23.6 | 0.0159 | 0.006 | 38.7 | ug/L | 88 | Standard | | L | Ва | 135 | 12231.6 | 2.1 | 7.1955 | 0.116 | 1.6 | ug/L | 12 | Standard | | Γ | Ce | 140 | 7358.5 | 4.9 | | | | ug/L | 37 | Standard | | L> | Tb | 159 | 654795.4 | 1.6 | | | | ug/L | 631826 | Standard | | Γ | Но | 165 | 125.0 | 20.8 | | | | ug/L | 3 | Standard | | | TI | 203 | 167.7 | 4.4 | 0.0221 | 0.001 | 3.5 | ug/L | 7 | Standard | | | TI | 205 | 95.0 | 32.0 | 0.0233 | 0.007 | 28.5 | ug/L | 7 | Standard | | | Pb | 206 | 479.3 | 9.4 | 0.0560 | 0.012 | 22.1 | ug/L | 159 | Standard | | | Pb | 207 | 391.0 | 3.1 | 0.0468 | 0.003 | 7.5 | ug/L | 120 | Standard | | | Pb | 208 | 1643.4 | 1.3 | 0.0556 | 0.003 | 5.1 | ug/L | 503 | Standard | | | U | 238 | 1572.7 | 4.0 | 0.2790 | 0.011 | 4.0 | ug/L | 5 | Standard | | L> | Bi | 209 | 349511.7 | 1.3 | | | | ug/L | 333509 | Standard | | | | | | | | | | | | | Sample ID: L1510121501 Report Date/Time: Tuesday, October 27, 2015 16:38:58 Page 1 Approved: October 28, 2015 Page 529 L15101055 / Revision: 0 / 760 total pages | Γ | Na | 23 | 1.7 | 173.2 | | | | mg/L | 0 | Standard | |---|------|-----|---------|-------|---------|-------|-------|------|-------|----------| | i | Mg | 24 | 4975.8 | 3.6 | 10.3158 | 0.221 | 2.1 | mg/L | 10 | Standard | | i | K | 39 | 33.3 | 70.9 | 0.1515 | 0.259 | 170.7 | mg/L | 32 | Standard | | i | Ca | 43 | 83.3 | 21.1 | -2.7953 | 2.236 | 80.0 | mg/L | 85 | Standard | | i | Fe | 54 | 143.5 | 15.1 | 0.1734 | 0.047 | 27.1 | mg/L | 82 | Standard | | i | Fe | 57 | 268.3 | 13.7 | 0.3430 | 0.340 | 99.0 | mg/L | 217 | Standard | | > | Sc-1 | 45 | 16654.2 | 2.2 | 0.0400 | 0.010 | 00.0 | mg/L | 14524 | Standard | | | CI | 35 | 78435.2 | 2.3 | | | | ug/L | 53193 | Standard | | | Kr | 83 | 1.7 | 124.9 | | | | ug/L | 3 | Standard | | | Br | 81 | 2386.9 | 6.1 | | | | ug/L | 327 | Standard | | | P. | 31 | 16584.1 | 1.6 | | | | ug/L | 13329 | Standard | | | s | 34 | 4047.2 | 1.7 | | | | ug/L | 3234 | Standard | | | Sr | 88 | 138.3 | 5.5 | | | | ug/L | 87 | Standard | | | C | 12 | 123.3 | 30.7 | | | | mg/L | 103 | Standard | | | N | 14 | 0.0 | 30.7 | | | | mg/L | 0 | Standard | | | | 202 | 0.0 | | | | | mg/L | 3 | Standard | | | Hg | 164 | 188.9 | 47.2 | | | | mg/L | 10 | Standard | | | Dy | 165 | 125.0 | 20.8 | | | | • | 3 | Standard | | | Ho-1 | | | | | | | mg/L | 7 | | | | Er | 166 | 93.3 | 72.9 | | | | mg/L | | Standard | | | ı | 127 | 12400.1 | 1.9 | | | | mg/L | 3612 | Standard | | Analyte | Mass | QC Std % Recovery | Int Std % Recovery | Spike % Recovery | |---------|------|-------------------|--------------------|------------------| | 「⊳ Li | 6 | | 117.613 | | | Be | 9 | | | | | L AI | 27 | | | | | 「 Sc | 45 | | | | | Ti | 47 | | | | | V | 51 | | | | | Cr | 52 | | | | | Cr | 53 | | | | | Mn | 55 | | | | | Co | 59 | | | | | Ni | 60 | | | | | Cu | 65 | | | | | Zn | 66 | | | | | > Ge | 72 | | 107.484 | | | As | 75 | | | | | Se | 82 | | | | | ∟ Se-1 | 77 | | | | | 「> Ga | 71 | | | | Sample ID: L1510121501 Report Date/Time: Tuesday, October 27, 2015 16:38:58 Page 2 Approved: October 28, 2015 ``` Rb 85 Υ 89 | > Rh 103 Мо 98 107 Ag Cd 111 Cd 114 105.919 | > In 115 Sn 118 123 Sb Ва 135 140 Ce L> Tb 159 Но 165 ΤI 203 ΤI 205 Pb 206 Pb 207 208 Pb U 238 209 104.798 L> Bi Na 23 Mg 24 39 Κ Ca 43 Fe 54 Fe 57 45 |> Sc-1 CI 35 83 Kr Br 81 Ρ 31 S 34 Sr 88 С 12 Ν 14 202 Hg Dy 164 Ho-1 165 166 Er 127 QC Out of Limits Measurement Type Analyte Mass Out of Limits Message ``` Sample ID: L1510121501 Report Date/Time: Tuesday, October 27, 2015 16:38:58 Page 3 Sample ID: L1510121501PS WG544216-05 Sample Date/Time: Tuesday, October 27, 2015 16:43:41 Number of Replicates: 3 Autosampler Position: 342 Sample Description: 5 Method File: C:\NexIONData\Method\6020a.mth Aliquot Volume (mL):
Diluted to Volume (mL): User Name: BKT Nexion300X Cumulative Autodilution Factor: 1 Nexion-ICP 200.8\6020 | O | | | D | .14. | |-----|------|--------|------|------| | Con | ceni | ration | Resu | IIIS | | | | | | | 0011001111 | | Juito | | | | |------------|--------|--------|-----------|------|------------|-------|--------|-------|---------------|----------| | IS | Analyt | e Mass | Intensity | RSD | Conc. | SD | RSD | Units | Blank Intens. | Mode | | Γ> | Li | 6 | 30068.2 | 2.5 | | | | ug/L | 26270 | Standard | | | Be | 9 | 30069.8 | 1.8 | 50.6202 | 1.088 | 2.1 | ug/L | 2 | Standard | | L | ΑI | 27 | 1561961.2 | 0.2 | 24.3308 | 0.662 | 2.7 | ug/L | 403 | Standard | | Γ | Sc | 45 | 16427.2 | 3.0 | | | | ug/L | 14524 | Standard | | | Ti | 47 | 589.3 | 1.9 | 1.4440 | 0.131 | 9.1 | ug/L | 365 | Standard | | | V | 51 | 195036.2 | 0.5 | 53.7366 | 0.949 | 1.8 | ug/L | 805 | Standard | | | Cr | 52 | 245952.0 | 1.2 | 53.8721 | 1.428 | 2.7 | ug/L | 5481 | Standard | | | Cr | 53 | 31582.9 | 2.0 | 55.9867 | 1.966 | 3.5 | ug/L | 268 | Standard | | | Mn | 55 | 209874.3 | 0.6 | 60.1881 | 1.451 | 2.4 | ug/L | 670 | Standard | | | Co | 59 | 177257.2 | 1.0 | 53.5290 | 1.521 | 2.8 | ug/L | 146 | Standard | | | Ni | 60 | 62688.4 | 1.3 | 52.8219 | 1.626 | 3.1 | ug/L | 220 | Standard | | | Cu | 65 | 61671.6 | 1.2 | 53.1789 | 1.391 | 2.6 | ug/L | 147 | Standard | | | Zn | 66 | 39932.9 | 1.3 | 57.8926 | 1.407 | 2.4 | ug/L | 211 | Standard | | > | Ge | 72 | 221682.0 | 1.8 | | | | ug/L | 210599 | Standard | | | As | 75 | 39974.2 | 0.9 | 54.2717 | 1.415 | 2.6 | ug/L | -47 | Standard | | | Se | 82 | 3403.3 | 0.5 | 54.5615 | 0.795 | 1.5 | ug/L | 15 | Standard | | L | Se-1 | 77 | 2262.5 | 3.3 | 54.7384 | 1.376 | 2.5 | ug/L | 65 | Standard | | Γ> | Ga | 71 | 145.0 | 15.0 | | | | mg/L | 27 | Standard | | L | Rb | 85 | 2011.8 | 5.2 | | | | ug/L | 17 | Standard | | Γ | Υ | 89 | 230231.5 | 2.1 | | | | ug/L | 216672 | Standard | | L> | Rh | 103 | 68.3 | 18.4 | | | | ug/L | 18 | Standard | | Γ | Мо | 98 | 114.0 | 9.8 | 0.0758 | 0.006 | 8.1 | ug/L | 11 | Standard | | | Ag | 107 | 236721.0 | 0.9 | 48.5056 | 1.907 | 3.9 | ug/L | 55 | Standard | | | Cd | 111 | 76595.6 | 2.3 | 52.3643 | 2.666 | 5.1 | mg/L | 7 | Standard | | | Cd | 114 | 186710.1 | 1.1 | 52.1904 | 1.986 | 3.8 | ug/L | 4 | Standard | | > | In | 115 | 336992.4 | 3.1 | | | | ug/L | 322525 | Standard | | | Sn | 118 | 628.3 | 12.7 | -0.0008 | 0.021 | 2621.3 | ug/L | 345 | Standard | | | Sb | 123 | 196507.5 | 0.9 | 49.8634 | 1.943 | 3.9 | ug/L | 88 | Standard | | Ĺ | Ва | 135 | 97493.3 | 8.0 | 58.3392 | 1.378 | 2.4 | ug/L | 12 | Standard | | ļ | Ce | 140 | 7170.0 | 0.4 | | | | ug/L | 37 | Standard | | <u>_</u> > | Tb | 159 | 642782.0 | 2.2 | | | | ug/L | 631826 | Standard | | Γ | Но | 165 | 128.3 | 18.4 | | | | ug/L | 3 | Standard | | ļ | TI | 203 | 340924.8 | 0.9 | 51.6862 | 1.359 | 2.6 | ug/L | 7 | Standard | | ļ | TI | 205 | 233141.8 | 0.9 | 52.4792 | 1.292 | 2.5 | ug/L | 7 | Standard | | ļ | Pb | 206 | 207905.1 | 0.7 | 51.4818 | 1.991 | 3.9 | ug/L | 159 | Standard | | ļ | Pb | 207 | 188797.4 | 1.1 | 51.5589 | 2.111 | 4.1 | ug/L | 120 | Standard | | ļ | Pb | 208 | 768577.1 | 1.9 | 52.5231 | 2.146 | 4.1 | ug/L | 503 | Standard | | ļ | U | 238 | 285129.5 | 2.7 | 52.7434 | 2.792 | 5.3 | ug/L | 5 | Standard | | L> | Bi | 209 | 340917.0 | 3.3 | | | | ug/L | 333509 | Standard | Sample ID: L1510121501PS WG544216-05 Report Date/Time: Tuesday, October 27, 2015 16:45:58 Page 1 Approved: October 28, 2015 | Γ | Na | 23 | 1.7 | 173.2 | | | | mg/L | 0 | Standard | |----|------|-----|---------|-------|---------|-------|-------|------|-------|----------| | | Mg | 24 | 4914.1 | 2.5 | 10.3413 | 0.562 | 5.4 | mg/L | 10 | Standard | | | K | 39 | 45.0 | 22.2 | 0.2840 | 0.100 | 35.1 | mg/L | 32 | Standard | | | Ca | 43 | 105.0 | 31.2 | 0.5437 | 4.973 | 914.6 | mg/L | 85 | Standard | | | Fe | 54 | 133.6 | 24.6 | 0.1548 | 0.063 | 40.7 | mg/L | 82 | Standard | | | Fe | 57 | 271.7 | 2.8 | 0.4001 | 0.114 | 28.4 | mg/L | 217 | Standard | | Ĺ> | Sc-1 | 45 | 16427.2 | 3.0 | | | | mg/L | 14524 | Standard | | | CI | 35 | 75587.4 | 1.6 | | | | ug/L | 53193 | Standard | | | Kr | 83 | 3.7 | 41.7 | | | | ug/L | 3 | Standard | | | Br | 81 | 2640.2 | 5.3 | | | | ug/L | 327 | Standard | | | Р | 31 | 16235.4 | 2.8 | | | | ug/L | 13329 | Standard | | | S | 34 | 3770.5 | 5.4 | | | | ug/L | 3234 | Standard | | | Sr | 88 | 108.3 | 11.6 | | | | ug/L | 87 | Standard | | | С | 12 | 143.3 | 21.3 | | | | mg/L | 103 | Standard | | | N | 14 | 0.0 | | | | | mg/L | 0 | Standard | | | Hg | 202 | 0.0 | | | | | mg/L | 3 | Standard | | | Dy | 164 | 220.4 | 25.5 | | | | mg/L | 10 | Standard | | | Ho-1 | 165 | 128.3 | 18.4 | | | | mg/L | 3 | Standard | | | Er | 166 | 130.0 | 30.8 | | | | mg/L | 7 | Standard | | | I | 127 | 11264.2 | 1.8 | | | | mg/L | 3612 | Standard | | | | | | | | | | | | | | Analyte | Mass | QC Std % Recovery | Int Std % Recovery | Spike % Recovery | |---------|------|-------------------|--------------------|------------------| | 「> Li | 6 | | 114.460 | | | Be | 9 | | | | | L AI | 27 | | | | | 「 Sc | 45 | | | | | Ti | 47 | | | | | V | 51 | | | | | Cr | 52 | | | | | Cr | 53 | | | | | Mn | 55 | | | | | Co | 59 | | | | | Ni | 60 | | | | | Cu | 65 | | | | | Zn | 66 | | | | | > Ge | 72 | | 105.263 | | | As | 75 | | | | | Se | 82 | | | | | L Se-1 | 77 | | | | | 「̄> Ga | 71 | | | | **Sample ID: L1510121501PS WG544216-05**Report Date/Time: Tuesday, October 27, 2015 16:45:58 Page 2 Approved: October 28, 2015 | | Rb
Y | 85
89 | | | | |----|------------|------------|---------|------|-----------------------| | | Rh | 103 | | | | | | Мо | 98 | | | | | | Ag | 107 | | | | | | Cd | 111 | | | | | | Cd | 114 | | | | | > | | 115 | | | 104.486 | | | Sn | 118 | | | | | | Sb | 123 | | | | | | Ва | 135 | | | | | | Ce | 140 | | | | | | Tb | 159 | | | | | | Но | 165 | | | | | | TI | 203 | | | | | | TI | 205 | | | | | | Pb | 206 | | | | | | Pb | 207 | | | | | | Pb
U | 208
238 | | | | | | Bi | 209 | | | 102.221 | | | Na | 23 | | | 102.221 | | | Mg | 24 | | | | | | K | 39 | | | | | | Ca | 43 | | | | | | Fe | 54 | | | | | | Fe | 57 | | | | | Ĺ> | Sc-1 | 45 | | | | | | CI | 35 | | | | | | Kr | 83 | | | | | | Br | 81 | | | | | | Р | 31 | | | | | | S | 34 | | | | | | Sr | 88 | | | | | | С | 12 | | | | | | N | 14 | | | | | | Hg | 202 | | | | | | Dy | 164 | | | | | | Ho-1
Er | 165
166 | | | | | | | 127 | | | | | | | | | | | | | | of Limits | | | | | | Measurem | ent Type | Analyte | Mass | Out of Limits Message | **Sample ID: L1510121501PS WG544216-05**Report Date/Time: Tuesday, October 27, 2015 16:45:58 Page 3 Approved: October 28, 2015 Sample ID: L1510121501SDL WG544216-06 Sample Date/Time: Tuesday, October 27, 2015 16:46:53 Number of Replicates: 3 Autosampler Position: 343 Sample Description: 25 Method File: C:\NexIONData\Method\6020a.mth Aliquot Volume (mL): Diluted to Volume (mL): User Name: BKT Nexion300X Cumulative Autodilution Factor: 1 Nexion-ICP 200.8\6020 | 0 | ncon | tration | Results | | |----|------|----------|---------|--| | Lα | ncen | itration | Results | | | | Concentration Results | | | | | | | | | | |----|-----------------------|--------|-----------|-------|---------|-------|-------|-------|---------------|----------| | IS | Analyt | e Mass | Intensity | RSD | Conc. | SD | RSD | Units | Blank Intens. | Mode | | Γ> | Li | 6 | 29368.5 | 7.4 | | | | ug/L | 26270 | Standard | | | Ве | 9 | 65.0 | 106.6 | 0.0749 | 0.114 | 151.7 | ug/L | 2 | Standard | | L | Αl | 27 | 321130.9 | 0.8 | 5.1234 | 0.420 | 8.2 | ug/L | 403 | Standard | | Γ | Sc | 45 | 16632.5 | 4.5 | | | | ug/L | 14524 | Standard | | | Ti | 47 | 211.3 | 6.7 | -0.8807 | 0.082 | 9.3 | ug/L | 365 | Standard | | | ٧ | 51 | 1632.7 | 20.6 | 0.1782 | 0.092 | 51.8 | ug/L | 805 | Standard | | | Cr | 52 | 7442.8 | 7.4 | 0.3062 | 0.125 | 40.9 | ug/L | 5481 | Standard | | | Cr | 53 | 978.4 | 4.3 | 1.1668 | 0.082 | 7.0 | ug/L | 268 | Standard | | | Mn | 55 | 5105.2 | 7.2 | 1.0731 | 0.109 | 10.1 | ug/L | 670 | Standard | | | Co | 59 | 466.3 | 56.9 | 0.0909 | 0.078 | 86.1 | ug/L | 146 | Standard | | | Ni | 60 | 394.0 | 31.7 | 0.0971 | 0.104 | 106.9 | ug/L | 220 | Standard | | | Cu | 65 | 290.3 | 34.9 | 0.0649 | 0.086 | 132.6 | ug/L | 147 | Standard | | | Zn | 66 | 1489.4 | 4.3 | 1.4861 | 0.102 | 6.9 | ug/L | 211 | Standard | | > | Ge | 72 | 228868.0 | 0.6 | | | | ug/L | 210599 | Standard | | | As | 75 | 35.0 | 139.7 | 0.1240 | 0.065 | 52.0 | ug/L | -47 | Standard | | | Se | 82 | 22.6 | 17.1 | 0.1751 | 0.062 | 35.4 | ug/L | 15 | Standard | | L | Se-1 | 77 | 81.3 | 13.1 | 0.7129 | 0.266 | 37.3 | ug/L | 65 | Standard | | Γ> | Ga | 71 | 40.0 | 33.1 | | | | mg/L | 27 | Standard | | L | Rb | 85 | 353.3 | 5.7 | | | | ug/L | 17 | Standard | | Γ | Υ | 89 | 233614.1 | 1.4 | | | | ug/L | 216672 | Standard | | L> | Rh | 103 | 36.7 | 28.4 | | | | ug/L | 18 | Standard | | Γ | Mo | 98 | 21.8 | 15.1 | 0.0123 | 0.002 | 16.4 | ug/L | 11 | Standard | | | Ag | 107 | 257.0 | 116.6 | 0.0402 | 0.060 | 148.8 | ug/L | 55 | Standard | | | Cd | 111 | 104.9 | 119.9 | 0.0638 | 0.084 | 131.2 | mg/L | 7 | Standard | | | Cd | 114 | 232.7 | 127.5 | 0.0690 | 0.081 | 116.9 | ug/L | 4 | Standard | | > | In | 115 | 343553.6 | 2.3 | | | | ug/L | 322525 | Standard | | | Sn | 118 | 460.0 | 8.6 | -0.0436 | 0.012 | 27.1 | ug/L | 345 | Standard | | | Sb | 123 | 971.4 | 21.1 | 0.2309 | 0.050 | 21.6 | ug/L | 88 | Standard | | Ĺ | Ва | 135 | 2534.2 | 7.6 | 1.4645 | 0.126 | 8.6 | ug/L | 12 | Standard | | | Ce | 140 | 1491.7 | 3.7 | | | | ug/L | 37 | Standard | | Ĺ> | Tb | 159 | 657653.1 | 2.0 | | | | ug/L | 631826 | Standard | | ļ | Но | 165 | 33.3 | 8.7 | | | | ug/L | 3 | Standard | | ļ | TI | 203 | 367.0 | 113.8 | 0.0511 | 0.062 | 120.5 | ug/L | 7 | Standard | | ļ | TI | 205 | 258.3 | 119.6 | 0.0587 | 0.068 | 115.2 | ug/L | 7 | Standard | | ļ | Pb | 206 | 526.3 | 62.5 | 0.0656 | 0.080 | 121.7 | ug/L | 159 | Standard | | ļ | Pb | 207 | 456.7 | 63.8 | 0.0628 | 0.078 | 124.3 | ug/L | 120 | Standard | | ļ | Pb | 208 | 1774.4 |
68.7 | 0.0629 | 0.082 | 129.8 | ug/L | 503 | Standard | | ļ | U | 238 | 664.7 | 71.3 | 0.1139 | 0.086 | 75.3 | ug/L | 5 | Standard | | L> | Bi | 209 | 355537.2 | 2.1 | | | | ug/L | 333509 | Standard | Sample ID: L1510121501SDL WG544216-06 Report Date/Time: Tuesday, October 27, 2015 16:49:10 Page 1 Approved: October 28, 2015 | Γ | Na | 23 | 0.0 | | | | | mg/L | 0 | Standard | |----|------|-----|---------|------|---------|-------|---------|------|-------|----------| | | Mg | 24 | 988.4 | 11.4 | 2.0190 | 0.208 | 10.3 | mg/L | 10 | Standard | | | K | 39 | 13.3 | 43.3 | -0.0644 | 0.068 | 105.8 | mg/L | 32 | Standard | | | Ca | 43 | 85.0 | 15.6 | -2.5497 | 1.337 | 52.5 | mg/L | 85 | Standard | | ĺ | Fe | 54 | 62.6 | 20.2 | -0.0001 | 0.022 | 34666.5 | mg/L | 82 | Standard | | | Fe | 57 | 225.0 | 8.0 | -0.0161 | 0.121 | 753.4 | mg/L | 217 | Standard | | L> | Sc-1 | 45 | 16632.5 | 4.5 | | | | mg/L | 14524 | Standard | | | CI | 35 | 73340.4 | 1.1 | | | | ug/L | 53193 | Standard | | | Kr | 83 | 5.7 | 36.7 | | | | ug/L | 3 | Standard | | | Br | 81 | 733.4 | 19.3 | | | | ug/L | 327 | Standard | | | Р | 31 | 15865.0 | 1.8 | | | | ug/L | 13329 | Standard | | | S | 34 | 3790.5 | 4.3 | | | | ug/L | 3234 | Standard | | | Sr | 88 | 128.3 | 11.2 | | | | ug/L | 87 | Standard | | | С | 12 | 120.0 | 8.3 | | | | mg/L | 103 | Standard | | | N | 14 | 0.0 | | | | | mg/L | 0 | Standard | | | Hg | 202 | 6.7 | 86.6 | | | | mg/L | 3 | Standard | | | Dy | 164 | 40.6 | 25.7 | | | | mg/L | 10 | Standard | | | Ho-1 | 165 | 33.3 | 8.7 | | | | mg/L | 3 | Standard | | | Er | 166 | 56.7 | 44.4 | | | | mg/L | 7 | Standard | | | I | 127 | 5391.0 | 2.3 | | | | mg/L | 3612 | Standard | | | | | | | | | | | | | | Analyte | Mass | QC Std % Recovery | Int Std % Recovery | Spike % Recovery | |---------|------|-------------------|--------------------|------------------| | 「⊳ Li | 6 | | 111.796 | | | Be | 9 | | | | | L AI | 27 | | | | | 「 Sc | 45 | | | | | Ti | 47 | | | | | V | 51 | | | | | Cr | 52 | | | | | Cr | 53 | | | | | Mn | 55 | | | | | Co | 59 | | | | | Ni | 60 | | | | | Cu | 65 | | | | | Zn | 66 | | | | | > Ge | 72 | | 108.675 | | | As | 75 | | | | | Se | 82 | | | | | L Se-1 | 77 | | | | | 「⊳ Ga | 71 | | | | **Sample ID: L1510121501SDL WG544216-06**Report Date/Time: Tuesday, October 27, 2015 16:49:10 Page 2 Approved: October 28, 2015 | L Rb | 85 | | | | |----------------------|--------------|---------|------|------------------------| | ΓΥ | 89 | | | | | $\lfloor_>$ Rh | 103 | | | | | 「 Mo | 98 | | | | | Ag | 107 | | | | | Cd | 111 | | | | | Cd | 114 | | | | |
 > In | 115 | | | 106.520 | | Sn | 118 | | | | | Sb | 123 | | | | | Ва | 135 | | | | | Ce | 140 | | | | | > Tb | 159 | | | | | Ho | 165 | | | | | TI | 203 | | | | | TI | 205 | | | | | Pb | 206 | | | | | Pb | 207 | | | | | Pb | 208 | | | | | U | 238 | | | | | ∟ _{>} Bi | 209 | | | 106.605 | | ∫ Na | 23 | | | 100.000 | | Mg | 24 | | | | | K | 39 | | | | | Ca | 43 | | | | | Fe | 54 | | | | | Fe | 57 | | | | | Sc-1 | 45 | | | | | Cl | 35 | | | | | Kr | 83 | | | | | Br | 81 | | | | | P | 31 | | | | | S | 34 | | | | | Sr | 88 | | | | | C | 12 | | | | | N | 14 | | | | | Hg | 202 | | | | | Dy | 164 | | | | | Ho-1 | 165 | | | | | Er | 166 | | | | |
I | 127 | | | | | 00 0 | ut of Limits | | | | | | | A ! (| | Out of Directo Manager | | Measure | ement Type | Analyte | Mass | Out of Limits Message | | Ti 47 Lo | wer | Ti | 47 | | **Sample ID: L1510121501SDL WG544216-06**Report Date/Time: Tuesday, October 27, 2015 16:49:10 Page 3 Approved: October 28, 2015 Sample ID: QC Std 6 Sample Date/Time: Tuesday, October 27, 2015 16:50:06 Number of Replicates: 3 Autosampler Position: 101 Sample Description: Method File: C:\NexIONData\Method\6020a.mth Aliquot Volume (mL): Diluted to Volume (mL): User Name: BKT Nexion300X Cumulative Autodilution Factor: 1 Nexion-ICP 200.8\6020 | | | | | | Concentra | tion Res | ults | | | | |----|----------|------------|------------------|-------------|--------------------|----------|------|--------------|---------------|----------------------| | IS | Analyte | e Mass | Intensity | RSD | Conc. | SD | RSD | Units | Blank Intens. | Mode | | Γ> | Li | 6 | 30096.7 | 8.7 | | | | ug/L | 26270 | Standard | | Ï | Be | 9 | 28263.0 | 3.9 | 47.8521 | 5.903 | 12.3 | ug/L | 2 | Standard | | Ĺ | Al | 27 | 2980514.3 | 1.8 | 46.6555 | 4.807 | 10.3 | ug/L | 403 | Standard | | Ī | Sc | 45 | 16974.6 | 8.8 | | | | ug/L | 14524 | Standard | | Ĺ | Ti | 47 | 17796.8 | 3.5 | 101.7904 | 10.302 | 10.1 | ug/L | 365 | Standard | | ĺ | V | 51 | 183733.8 | 2.8 | 48.8875 | 4.491 | 9.2 | ug/L | 805 | Standard | | ĺ | Cr | 52 | 232692.7 | 3.6 | 49.1505 | 5.109 | 10.4 | ug/L | 5481 | Standard | | | Cr | 53 | 28855.8 | 4.1 | 49.3697 | 5.089 | 10.3 | ug/L | 268 | Standard | | | Mn | 55 | 177784.5 | 3.5 | 49.2081 | 4.903 | 10.0 | ug/L | 670 | Standard | | | Co | 59 | 166353.3 | 4.2 | 48.5581 | 5.170 | 10.6 | ug/L | 146 | Standard | | | Ni | 60 | 59548.9 | 3.0 | 48.4632 | 4.622 | 9.5 | ug/L | 220 | Standard | | | Cu | 65 | 57565.6 | 4.3 | 47.9515 | 4.913 | 10.2 | ug/L | 147 | Standard | | | Zn | 66 | 34923.6 | 2.8 | 48.8029 | 4.248 | 8.7 | ug/L | 211 | Standard | | > | Ge | 72 | 230273.0 | 6.4 | | | | ug/L | 210599 | Standard | | | As | 75 | 37290.3 | 3.1 | 48.9274 | 4.655 | 9.5 | ug/L | -47 | Standard | | | Se | 82 | 3187.9 | 2.4 | 49.3545 | 4.271 | 8.7 | ug/L | 15 | Standard | | L | Se-1 | 77 | 2106.1 | 4.3 | 49.1110 | 4.754 | 9.7 | ug/L | 65 | Standard | | > | Ga | 71 | 21.7 | 53.3 | | | | mg/L | 27 | Standard | | L | Rb | 85 | 505.0 | 13.9 | | | | ug/L | 17 | Standard | | Γ | Υ | 89 | 242031.2 | 5.2 | | | | ug/L | 216672 | Standard | | Γ> | Rh | 103 | 45.0 | 11.1 | | | | ug/L | 18 | Standard | | | Мо | 98 | 149166.0 | 3.7 | 97.9298 | 11.868 | 12.1 | ug/L | 11 | Standard | | ! | Ag | 107 | 237364.5 | 3.3 | 46.5036 | 5.438 | 11.7 | ug/L | 55 | Standard | | ! | Cd | 111 | 73012.8 | 2.9 | 47.7053 | 5.389 | 11.3 | mg/L | 7 | Standard | | | Cd | 114 | 179696.6 | 1.7 | 47.9887 | 4.850 | 10.1 | ug/L | 4 | Standard | | > | In | 115 | 354411.5 | 8.2 | | = 440 | 40 = | ug/L | 322525 | Standard | | | Sn | 118 | 208491.9 | 2.6 | 47.9939 | 5.149 | 10.7 | ug/L | 345 | Standard | | | Sb | 123 | 189299.1 | 3.6 | 45.9353 | 5.523 | 12.0 | ug/L | 88 | Standard | | Ĺ | Ba | 135
140 | 79929.0
246.7 | 2.8
9.6 | 45.7279 | 5.118 | 11.2 | ug/L | 12
37 | Standard
Standard | | | Ce | 159 | 676131.8 | 9.6
8.0 | | | | ug/L | 631826 | Standard | | L> | Tb
Ho | 165 | 11.7 | 65.5 | | | | ug/L
ug/L | 3 | Standard | | | по
TI | 203 | 324765.1 | 2.5 | 47.0365 | 5.755 | 12.2 | ug/L
ug/L | 7 | Standard | | | TI | 205 | 224013.2 | 3.0 | 48.1812 | 6.009 | 12.5 | ug/L
ug/L | 7 | Standard | | | Pb | 205 | 205020.1 | 1.9 | 48.4661 | 5.670 | 11.7 | ug/L
ug/L | 159 | Standard | | 1 | Pb | 207 | 185106.5 | 2.1 | 48.2586 | 5.683 | 11.7 | ug/L
ug/L | 120 | Standard | | 1 | Pb | 207 | 752984.4 | 2.1 | 49.1388 | 5.924 | 12.1 | ug/L
ug/L | 503 | Standard | | 1 | U | 238 | 268590.6 | 2.5
3.5 | 49.1366
47.4706 | 6.292 | 13.3 | ug/L
ug/L | 505 | Standard | | L> | О
Ві | 209 | 359395.2 | 9.4 | 41.4100 | 0.232 | 10.0 | ug/L
ug/L | 333509 | Standard | | L> | ום | 203 | 308083.Z | <i>3.</i> ┿ | | | | uy/L | 333309 | Glariuaru | Sample ID: QC Std 6 Report Date/Time: Tuesday, October 27, 2015 16:52:23 Page 1 Approved: October 28, 2015 | _ | | | | | | | | | | | |----|------|-----|---------|-------|---------|-------|--------|------|-------|----------| | | Na | 23 | 0.0 | | | | | mg/L | 0 | Standard | | | Mg | 24 | 2240.2 | 3.7 | 4.5615 | 0.491 | 10.8 | mg/L | 10 | Standard | | | K | 39 | 436.7 | 19.2 | 4.4549 | 0.848 | 19.0 | mg/L | 32 | Standard | | | Ca | 43 | 101.7 | 41.8 | -0.2095 | 6.332 | 3023.4 | mg/L | 85 | Standard | | | Fe | 54 | 2324.3 | 8.4 | 4.7469 | 0.277 | 5.8 | mg/L | 82 | Standard | | | Fe | 57 | 825.0 | 5.8 | 4.8668 | 0.981 | 20.2 | mg/L | 217 | Standard | | L> | Sc-1 | 45 | 16974.6 | 8.8 | | | | mg/L | 14524 | Standard | | | CI | 35 | 71269.3 | 1.7 | | | | ug/L | 53193 | Standard | | | Kr | 83 | 4.7 | 12.4 | | | | ug/L | 3 | Standard | | | Br | 81 | 400.0 | 25.4 | | | | ug/L | 327 | Standard | | | Р | 31 | 16640.8 | 4.0 | | | | ug/L | 13329 | Standard | | | S | 34 | 4430.6 | 5.8 | | | | ug/L | 3234 | Standard | | | Sr | 88 | 126.7 | 12.7 | | | | ug/L | 87 | Standard | | | С | 12 | 133.3 | 11.5 | | | | mg/L | 103 | Standard | | | N | 14 | 0.0 | | | | | mg/L | 0 | Standard | | | Hg | 202 | 3.3 | 173.2 | | | | mg/L | 3 | Standard | | | Dy | 164 | 2.9 | 203.0 | | | | mg/L | 10 | Standard | | | Ho-1 | 165 | 11.7 | 65.5 | | | | mg/L | 3 | Standard | | | Er | 166 | 10.0 | 100.0 | | | | mg/L | 7 | Standard | | | 1 | 127 | 3110.3 | 5.2 | | | | mg/L | 3612 | Standard | | | | | | | | | | | | | | Analyte | Mass | QC Std % Recovery | Int Std % Recovery | Spike % Recovery | |---------|------|-------------------|--------------------|------------------| | 「> Li | 6 | | | | | Be | 9 | 95.704 | | | | L AI | 27 | 93.311 | | | | 「 Sc | 45 | | | | | Ti | 47 | 101.790 | | | | V | 51 | 97.775 | | | | Cr | 52 | 98.301 | | | | Cr | 53 | | | | | Mn | 55 | 98.416 | | | | Co | 59 | 97.116 | | | | Ni | 60 | 96.926 | | | | Cu | 65 | 95.903 | | | | Zn | 66 | 97.606 | | | | > Ge | 72 | | 109.342 | | | As | 75 | 97.855 | | | | Se | 82 | 98.709 | | | | ∟ Se-1 | 77 | | | | | 「⊳ Ga | 71 | | | | Sample ID: QC Std 6 Report Date/Time: Tuesday, October 27, 2015 16:52:23 Page 2 Approved: October 28, 2015 | . DI | 0.5 | | | |---------------|-------------|------------------|-----------------------| | L Rb | 85 | | | | ΓΥ | 89 | | | | _> Rh | 103 | 07.020 | | | Γ Mo | 98
107 | 97.930
93.007 | | | Ag
 Cd | 111 | 95.411 | | | Cd
 Cd | 114 | 95.411 | | | Cu
 > In | 115 | | 109.887 | | >
 Sn | 118 | 95.988 | 109.007 | | Sb | 123 | 91.871 | | | Ba | 135 | 91.456 | | | Г Се | 140 | 31.430 | | | OC
 > Tb | 159 | | | | [Ho | 165 | | | | TI | 203 | 94.073 | | | i Ti | 205 | 01.070 | | | Pb | 206 | | | | Pb | 207 | | | |
Pb | 208 | 98.278 | | | Ü | 238 | 94.941 | | | Ĺ> Bi | 209 | | 107.762 | | - Na | 23 | | | | Mg | 24 | | | | K | 39 | | | | Ca | 43 | | | | Fe | 54 | | | | Fe | 57 | | | | _> Sc-1 | 45 | | | | CI | 35 | | | | Kr | 83 | | | | Br | 81 | | | | Р | 31 | | | | S | 34 | | | | Sr | 88 | | | | С | 12 | | | | N | 14 | | | | Hg | 202 | | | | Dy | 164 | | | | Ho-1 | 165
166 | | | | Er
I | 166
127 | | | | | | | | | | t of Limits | | | | Measurer | nent Type | Analyte Mass | Out of Limits Message | Sample ID: QC Std 6 Report Date/Time: Tuesday, October 27, 2015 16:52:23 Page 3 Sample ID: QC Std 7 Sample Date/Time: Tuesday, October 27, 2015 16:53:17 Number of Replicates: 3 Autosampler Position: 102 Sample Description: Method File: C:\NexIONData\Method\6020a.mth Aliquot Volume (mL): Diluted to Volume (mL): User Name: BKT Nexion300X Cumulative Autodilution Factor: 1 Nexion-ICP 200.8\6020 | Concentration Re | sults | |------------------|-------| |------------------|-------| | | | | | | Ooncenti | ation ites | uits | | | | |------------|--------------|-----|-----------|--------|----------|------------|--------|-------|---------------|----------| | IS | Analyte Mass | | Intensity | RSD | Conc. | SD | RSD | Units | Blank Intens. | Mode | | Γ> | Li | 6 | 29951.4 | 7.6 | | | | ug/L | 26270 | Standard | | | Ве | 9 | 55.0 | 101.2 | 0.0621 | 0.104 | 167.4 | ug/L | 2 | Standard | | L | ΑI | 27 | 4646.6 | 135.9 | 0.0572 | 0.108 | 189.5 | ug/L | 403 | Standard | | Γ | Sc | 45 | 16552.4 | 4.2 | | | | ug/L | 14524 | Standard | | | Ti | 47 | 125.3 | 31.6 | -1.3589 | 0.301 | 22.1 | ug/L | 365 | Standard | | | ٧ | 51 | 1064.8 | 39.4 | 0.0363 | 0.140 | 385.7 | ug/L | 805 | Standard | | | Cr | 52 | 6035.2 | 6.3 | 0.0280 | 0.185 | 662.2 | ug/L | 5481 | Standard | | | Cr | 53 | 606.7 | 9.2 | 0.5466 | 0.182 | 33.3 | ug/L | 268 | Standard | | | Mn | 55 | 847.7 | 38.0 | -0.1076 | 0.113 | 105.2 | ug/L | 670 | Standard | | | Co | 59 | 395.3 | 78.8 | 0.0766 | 0.105 | 137.7 | ug/L | 146 | Standard | | | Ni | 60 | 273.3 | 44.6 | 0.0069 | 0.123 | 1771.9 | ug/L | 220 | Standard | | | Cu | 65 | 212.7 | 48.0 | 0.0071 | 0.104 | 1465.1 | ug/L | 147 | Standard | | | Zn | 66 | 178.7 | 31.1 | -0.3657 | 0.103 | 28.1 | ug/L | 211 | Standard | | > | Ge | 72 | 225589.7 | 7.2 | | | | ug/L | 210599 | Standard | | | As | 75 | -5.7 | 1205.4 | 0.0748 | 0.095 | 126.5 | ug/L | -47 | Standard | | | Se | 82 | 20.4 | 32.3 | 0.1514 | 0.132 | 87.3 | ug/L | 15 | Standard | | L | Se-1 | 77 | 64.3 | 5.9 | 0.3279 | 0.023 | 7.0 | ug/L | 65 | Standard | | Γ> | Ga | 71 | 21.7 | 70.5 | | | | mg/L | 27 | Standard | | L | Rb | 85 | 30.0 | 28.9 | | | | ug/L | 17 | Standard | | Γ | Υ | 89 | 235608.8 | 8.0 | | | | ug/L | 216672 | Standard | | L> | Rh | 103 | 23.3 | 53.9 | | | | ug/L | 18 | Standard | | Γ | Мо | 98 | 364.2 | 86.4 | 0.2485 | 0.230 | 92.5 | ug/L | 11 | Standard | | | Ag | 107 | 289.3 | 118.9 | 0.0488 | 0.074 | 151.3 | ug/L | 55 | Standard | | | Cd | 111 | 99.2 | 141.8 | 0.0630 | 0.100 | 158.7 | mg/L | 7 | Standard | | | Cd | 114 | 252.7 | 136.6 | 0.0776 | 0.100 | 129.5 | ug/L | 4 | Standard | | > | In | 115 | 347639.5 | 5.7 | | | | ug/L | 322525 | Standard | | | Sn | 118 | 768.4 | 41.9 | 0.0304 | 0.088 | 290.1 | ug/L | 345 | Standard | | | Sb | 123 | 404.1 | 70.3 | 0.0915 | 0.078 | 85.2 | ug/L | 88 | Standard | | Ĺ | Ва | 135 | 132.7 | 126.3 | 0.0569 | 0.105 | 184.3 | ug/L | 12 | Standard | | ļ | Ce | 140 | 15.0 | 57.7 | | | | ug/L | 37 | Standard | | <u>_</u> > | Tb | 159 | 650959.0 | 5.3 | | | | ug/L | 631826 | Standard | | ļ | Но | 165 | 6.7 | 43.3 | | | | ug/L | 3 | Standard | | ļ | TI | 203 | 336.3 | 145.9 | 0.0499 | 0.078 | 156.9 | ug/L | 7 | Standard | | ļ | TI | 205 | 223.3 | 146.1 | 0.0543 | 0.077 | 142.3 | ug/L | 7 | Standard | | ļ | Pb | 206 | 378.3 | 91.3 | 0.0342 | 0.093 | 270.9 | ug/L | 159 | Standard | | ļ | Pb | 207 | 355.0 | 88.3 | 0.0399 | 0.093 | 232.7 | ug/L | 120 | Standard | | ļ | Pb | 208 | 1446.4 | 89.1 | 0.0452 | 0.096 | 211.3 | ug/L | 503 | Standard | | ļ | U | 238 | 356.0 | 140.5 | 0.0631 | 0.097 | 154.3 | ug/L | 5 | Standard | | L> | Bi | 209 | 356604.6 | 7.5 | | | | ug/L | 333509 | Standard | Sample ID: QC Std 7 Report Date/Time: Tuesday, October 27, 2015 16:55:34 Page 1 Approved: October 28, 2015 | Γ | Na | 23 | 0.0 | | | | | mg/L | 0 | Standard | |----|------|-----|---------|-------|---------|-------|--------|------|-------|----------| | | Mg | 24 | 23.3 | 24.7 | 0.0089 | 0.014 | 160.2 | mg/L | 10 | Standard | | | K | 39 | 10.0 | 86.6 | -0.1037 | 0.089 | 86.0 | mg/L | 32 | Standard | | | Ca | 43 | 41.7 | 50.0 | -8.6238 | 2.920 | 33.9 | mg/L | 85 | Standard | | | Fe | 54 | 84.4 | 21.3 | 0.0480 | 0.037 | 78.0 | mg/L | 82 | Standard | | | Fe | 57 | 228.3 | 16.4 | 0.0303 | 0.376 | 1240.3 | mg/L | 217 | Standard | | L> | Sc-1 | 45 | 16552.4 | 4.2 | | | | mg/L | 14524 | Standard | | | CI | 35 | 71535.8 | 1.2 | | | | ug/L | 53193 | Standard | | | Kr | 83 | 5.7 | 53.9 | | | | ug/L | 3 | Standard | | | Br | 81 | 363.3 | 1.6 | | | | ug/L | 327 | Standard | | | Р | 31 | 16896.1 | 4.1 | | | | ug/L | 13329 | Standard | | | S | 34 | 4263.9 | 4.0 | | | | ug/L | 3234 | Standard | | | Sr | 88 | 130.0 | 11.5 | | | | ug/L | 87 | Standard | | | С | 12 | 146.7 | 25.8 | | | | mg/L | 103 | Standard | | | N | 14 | 0.0 | | | | | mg/L | 0 | Standard | | | Hg | 202 | 3.3 | 173.2 | | | | mg/L | 3 | Standard | | | Dy | 164 | 22.7 | 53.9 | | | | mg/L | 10 | Standard | | | Ho-1 | 165 | 6.7 | 43.3 | | | | mg/L | 3 | Standard | | | Er | 166 | 13.3 | 114.6 | | | | mg/L | 7 | Standard | | | I | 127 | 2796.9 | 3.4 | | | | mg/L | 3612 | Standard | | | | | | | | | | | | | | Analyte | Mass | QC Std % Recovery | Int Std % Recovery | Spike % Recovery | |--------------|------|-------------------|--------------------|------------------| | √> Li | 6 | | | | | Be | 9 | | | | | L AI | 27 | | | | | 「 Sc | 45 | | | | | Ti | 47 | | | | | V | 51 | | | | | Cr | 52 | | | | | Cr | 53 | | | | | Mn | 55 | | | | | Co | 59 | | | | | Ni | 60 | | | | | Cu | 65 | | | | | Zn | 66 | | | | | > Ge | 72 | | 107.118 | | | As | 75 | | | | | Se | 82 | | | | | ∟ Se-1 | 77 | | | | | 「> Ga | 71 | | | | Sample ID: QC Std 7 Report Date/Time: Tuesday, October 27, 2015 16:55:34 Page 2 Approved: October 28, 2015 | Ī | Rb | 85 | | | | |--------------|----------|-----------|---------|------|-----------------------| | | Υ | 89 | | | | | _> | Rh | 103 | | | | | Γ | Мо | 98 | | | | | | Ag | 107 | | | | | | Cd | 111 | | | | | ĺ | Cd | 114 | | | | | > | In | 115 | | | 107.787 | | i | Sn | 118 | | | | | i | Sb | 123 | | | | | i | Ва | 135 | | | | | È | Ce | 140 | | | | | _

 - | Tb | 159 | | | | | Γ | Но | 165 | | | | | l
I | TI | 203 | | | | | ŀ | Ti | 205 | | | | | l
I | Pb | 206 | | | | | l
I | Pb | 207 | | | | | l
i | | | | | | | ļ | Pb | 208 | | | | | | U | 238 | | | 100.005 | | Ľ> | Bi
N- | 209 | | | 106.925 | | ļ | Na | 23 | | | | | | Mg | 24 | | | | | ļ | K | 39 | | | | | ļ | Ca | 43 | | | | | ļ | Fe | 54 | | | | | ļ | Fe | 57 | | | | | L> | Sc-1 | 45 | | | | | | CI | 35 | | | | | | Kr | 83 | | | | | | Br | 81 | | | | | | Р | 31 | | | | | | S | 34 | | | | | | Sr | 88 | | | | | | С | 12 | | | | | | N | 14 | | | | | | Hg | 202 | | | | | | Dy | 164 | | | | | | Ho-1 | 165 | | | | | | Er | 166 | | | | | | 1 | 127 | | | | | | QC Out | of Limits | | | | | | | | Anglyta | Mass | Out of Limits Mossage | | | Measurem | ен туре | Analyte | Mass | Out of Limits Message | | | QC Std 7 | | Ti | 47 | | | | QC Std 7 | | TI | 203 | | Sample ID: QC Std 7 Report Date/Time: Tuesday, October 27, 2015 16:55:34 Page 3 Sample ID: L1510121503 Sample Date/Time: Tuesday, October 27, 2015 17:09:25 RSD 0.8 Number of Replicates: 3 Autosampler Position: 335 Sample Description: 5 Method File: C:\NexIONData\Method\6020a.mth Intensity 31060.1 Aliquot Volume (mL): Diluted to Volume (mL): User Name: BKT Nexion300X Cumulative Autodilution Factor: 1 Nexion-ICP 200.8\6020 IS Analyte Mass | - 1 - | | • | 0.000 | 0.0 | | | | ~g, _ | | O talla | |-------|------|-----|----------|------|---------|-------|------|-------|--------|----------| | | Be | 9 | 130.0 | 20.4 | 0.1773 | 0.045 | 25.2 | ug/L | 2 | Standard | | L | Al | 27 | 232762.7 | 8.0 | 3.4908 | 0.006 | 0.2 | ug/L | 403 | Standard | | Γ | Sc | 45 | 17521.8 | 1.5 | | | | ug/L | 14524 | Standard | | | Ti | 47 | 2556.9 | 1.1 | 13.0242 | 0.207 | 1.6 | ug/L | 365 | Standard | | | V | 51 | 20182.3 | 0.9 | 5.2176 | 0.062 | 1.2 | ug/L | 805 | Standard | | | Cr | 52 | 23223.8 | 1.4 | 3.7963 | 0.062 | 1.6 | ug/L | 5481 | Standard | | | Cr | 53 | 2571.9 | 5.0 | 3.9822 | 0.232 | 5.8 | ug/L | 268 | Standard | | | Mn | 55 | 51867.0 | 0.9 | 14.3123 | 0.156 | 1.1 | ug/L | 670 | Standard | | | Co | 59 | 5369.0 | 3.1 | 1.5448 | 0.051 | 3.3 | ug/L | 146 | Standard | | | Ni | 60 | 4198.6 | 1.5 | 3.2561 | 0.047 | 1.4 | ug/L | 220 | Standard | | | Cu | 65 | 2852.6 | 2.7 | 2.2404 | 0.060 | 2.7 | ug/L | 147 | Standard | | | Zn | 66 | 20750.2 | 1.1 | 29.1796 | 0.288 | 1.0 | ug/L | 211 | Standard | | 1: | > Ge | 72 | 226095.4 | 0.2 | | | | ug/L | 210599 | Standard | | | As | 75 | 282.7 | 4.5 | 0.4536 | 0.017 | 3.7 | ug/L | -47 | Standard | | | Se | 82 | 20.6 | 12.2 | 0.1482 | 0.040 | 26.9 | ug/L | 15 | Standard | | L | Se-1 | 77 | 80.3 | 11.6 | 0.7113 | 0.222 | 31.2 | ug/L | 65 | Standard | | Γ: | > Ga | 71 | 2215.2 | 5.3 | | | | mg/L | 27 | Standard | | L | Rb | 85 | 32331.1 | 1.4 | | | | ug/L | 17 | Standard | | Γ | Υ | 89 | 266397.6 | 2.6 | | | | ug/L | 216672 | Standard | | Ŀ | > Rh | 103 | 28.3 | 40.8 | | | | ug/L | 18 | Standard | | Γ | Мо | 98 | 93.8 | 7.3 | 0.0604 | 0.005 | 7.5 | ug/L | 11 | Standard | | | Ag | 107 | 92.0 | 13.6 | 0.0070 | 0.002 | 35.1 | ug/L | 55 | Standard | | | Cd | 111 | 103.5 | 4.9 | 0.0626 | 0.003 | 5.2 | mg/L | 7 | Standard | | | | | | | | | | | | | 0.0713 0.0926 0.0193 27.3003 0.0403 0.0444 1.5679 1.3766 1.5080 0.2145 0.001 0.026 0.006 0.225 0.003 0.009 0.054 0.011 0.017 0.002 8.0 28.6 29.0 8.0 8.3 3.5 8.0 1.1 1.1 20.7 ug/L **Concentration Results**
Conc. SD RSD Units ug/L Blank Intens. 26270 Mode Standard 322525 631826 345 88 12 37 3 7 159 503 333509 5 Sample ID: L1510121503 Report Date/Time: Tuesday, October 27, 2015 17:11:41 242.1 1041.7 46833.3 262482.6 657909.9 3068.6 291.7 191.7 6757.2 5397.0 1218.4 23492.1 350449.6 121.3 345603.9 0.8 0.2 10.8 18.8 1.1 1.2 1.8 9.6 8.6 22.2 4.4 1.8 2.1 1.9 1.2 Page 1 Cd In Sn Sb Ва Се Tb Но ΤI ΤI Ph Pb Pb U Bi 114 115 118 123 135 140 159 165 203 205 206 207 208 238 209 Approved: October 28, 2015 | _ | | | | | | | | _ | | | |----|------|-----|---------|-------|---------|-------|------|------|-------|----------| | | Na | 23 | 0.0 | | | | | mg/L | 0 | Standard | | | Mg | 24 | 901.7 | 5.6 | 1.7437 | 0.096 | 5.5 | mg/L | 10 | Standard | | | K | 39 | 46.7 | 16.4 | 0.2721 | 0.086 | 31.5 | mg/L | 32 | Standard | | | Ca | 43 | 53.3 | 44.3 | -7.3373 | 3.295 | 44.9 | mg/L | 85 | Standard | | | Fe | 54 | 1058.5 | 13.3 | 2.0184 | 0.295 | 14.6 | mg/L | 82 | Standard | | | Fe | 57 | 476.7 | 4.7 | 1.8656 | 0.169 | 9.1 | mg/L | 217 | Standard | | L> | Sc-1 | 45 | 17521.8 | 1.5 | | | | mg/L | 14524 | Standard | | | CI | 35 | 69294.8 | 0.9 | | | | ug/L | 53193 | Standard | | | Kr | 83 | 3.0 | 57.7 | | | | ug/L | 3 | Standard | | | Br | 81 | 640.0 | 7.2 | | | | ug/L | 327 | Standard | | | Р | 31 | 19258.9 | 1.6 | | | | ug/L | 13329 | Standard | | | S | 34 | 3608.8 | 5.6 | | | | ug/L | 3234 | Standard | | | Sr | 88 | 126.7 | 30.7 | | | | ug/L | 87 | Standard | | | С | 12 | 123.3 | 24.8 | | | | mg/L | 103 | Standard | | | N | 14 | 0.0 | | | | | mg/L | 0 | Standard | | | Hg | 202 | 16.7 | 124.9 | | | | mg/L | 3 | Standard | | | Dy | 164 | 4787.1 | 3.7 | | | | mg/L | 10 | Standard | | | Ho-1 | 165 | 3068.6 | 9.6 | | | | mg/L | 3 | Standard | | | Er | 166 | 3070.3 | 7.3 | | | | mg/L | 7 | Standard | | | 1 | 127 | 18229.3 | 8.8 | | | | mg/L | 3612 | Standard | | | | | | | | | | | | | | Analyte | Mass | QC Std % Recovery | Int Std % Recovery | Spike % Recovery | |---------|------|-------------------|--------------------|------------------| | 「⊳ Li | 6 | | 118.236 | | | Be | 9 | | | | | L AI | 27 | | | | | 「 Sc | 45 | | | | | Ti | 47 | | | | | V | 51 | | | | | Cr | 52 | | | | | Cr | 53 | | | | | Mn | 55 | | | | | Co | 59 | | | | | Ni | 60 | | | | | Cu | 65 | | | | | Zn | 66 | | | | | > Ge | 72 | | 107.358 | | | As | 75 | | | | | Se | 82 | | | | | L Se-1 | 77 | | | | | 「⊳ Ga | 71 | | | | Sample ID: L1510121503 Report Date/Time: Tuesday, October 27, 2015 17:11:41 Page 2 Approved: October 28, 2015 | L Rb | 85 | | | | |----------------------------|--------------|--------------|-----------------------|--| | Γ Y | 89 | | | | | Ĺ> Rh | 103 | | | | | Γ Mo | 98 | | | | | Ag | 107 | | | | | Cd | 111 | | | | | Cd | 114 | | 107.156 | | | > In
 Sn | 115
118 | | 107.156 | | | Sh
 Sb | | | | | | : | 123
135 | | | | | ∟ Ba
Γ Ce | 140 | | | | | Ce
 _{>} Tb | 159 | | | | | [> Ho | 165 | | | | | TI | 203 | | | | | ''
 Ti | 205 | | | | | Pb | 206 | | | | | Pb | 207 | | | | | Pb | 208 | | | | | Ü | 238 | | | | | ∟> Bi | 209 | | 105.079 | | | ر
ا Na | 23 | | | | | Mg | 24 | | | | | K | 39 | | | | | Ca | 43 | | | | | Fe | 54 | | | | | Fe | 57 | | | | | _> Sc-1 | 45 | | | | | CI | 35 | | | | | Kr | 83 | | | | | Br | 81 | | | | | Р | 31 | | | | | S | 34 | | | | | Sr | 88 | | | | | С | 12 | | | | | N | 14 | | | | | Hg | 202 | | | | | Dy | 164 | | | | | Ho-1 | 165 | | | | | Er
I | 166
127 | | | | | | | | | | | | ut of Limits | | | | | Measure | ement Type | Analyte Mass | Out of Limits Message | | Sample ID: L1510121503 Report Date/Time: Tuesday, October 27, 2015 17:11:41 Page 3 Sample ID: L1510121504 Sample Date/Time: Tuesday, October 27, 2015 17:12:36 Number of Replicates: 3 Autosampler Position: 336 Sample Description: 5 Method File: C:\NexIONData\Method\6020a.mth Aliquot Volume (mL): Diluted to Volume (mL): User Name: BKT Nexion300X Cumulative Autodilution Factor: 1 Nexion-ICP 200.8\6020 | 0 | ncon | tration | Results | | |----|------|----------|---------|--| | Lα | ncen | itration | Results | | | | | | | | Jonetha | ation ite. | Juita | | | | |----|--------|--------|-----------|-------|---------|------------|--------|-------|---------------|----------| | IS | Analyt | e Mass | Intensity | RSD | Conc. | SD | RSD | Units | Blank Intens. | Mode | | Γ> | Li | 6 | 30502.4 | 3.4 | | | | ug/L | 26270 | Standard | | | Ве | 9 | 10.0 | 100.0 | -0.0186 | 0.016 | 86.2 | ug/L | 2 | Standard | | L | Αl | 27 | 104737.4 | 0.6 | 1.5894 | 0.045 | 2.8 | ug/L | 403 | Standard | | Γ | Sc | 45 | 16428.9 | 3.8 | | | | ug/L | 14524 | Standard | | | Ti | 47 | 230.0 | 13.7 | -0.7249 | 0.200 | 27.6 | ug/L | 365 | Standard | | | ٧ | 51 | 1600.1 | 1.8 | 0.1840 | 0.010 | 5.3 | ug/L | 805 | Standard | | | Cr | 52 | 7212.4 | 2.0 | 0.3096 | 0.034 | 10.8 | ug/L | 5481 | Standard | | | Cr | 53 | 726.7 | 1.1 | 0.7739 | 0.039 | 5.0 | ug/L | 268 | Standard | | | Mn | 55 | 2948.3 | 7.9 | 0.4973 | 0.036 | 7.2 | ug/L | 670 | Standard | | | Co | 59 | 304.3 | 6.8 | 0.0462 | 0.003 | 6.8 | ug/L | 146 | Standard | | | Ni | 60 | 358.7 | 5.3 | 0.0777 | 0.012 | 15.9 | ug/L | 220 | Standard | | | Cu | 65 | 275.3 | 1.6 | 0.0600 | 0.006 | 10.5 | ug/L | 147 | Standard | | | Zn | 66 | 1511.4 | 9.4 | 1.5864 | 0.123 | 7.8 | ug/L | 211 | Standard | | > | Ge | 72 | 221400.6 | 4.0 | | | | ug/L | 210599 | Standard | | | As | 75 | 50.5 | 66.3 | 0.1467 | 0.047 | 32.0 | ug/L | -47 | Standard | | | Se | 82 | 117.1 | 2.5 | 1.7124 | 0.118 | 6.9 | ug/L | 15 | Standard | | L | Se-1 | 77 | 147.0 | 5.3 | 2.4110 | 0.296 | 12.3 | ug/L | 65 | Standard | | Γ> | Ga | 71 | 43.3 | 37.1 | | | | mg/L | 27 | Standard | | L | Rb | 85 | 458.3 | 23.0 | | | | ug/L | 17 | Standard | | Γ | Υ | 89 | 229291.7 | 3.5 | | | | ug/L | 216672 | Standard | | L> | Rh | 103 | 38.3 | 32.8 | | | | ug/L | 18 | Standard | | Γ | Мо | 98 | 59.3 | 6.7 | 0.0377 | 0.004 | 9.4 | ug/L | 11 | Standard | | | Ag | 107 | 57.0 | 29.9 | 0.0001 | 0.003 | 4143.3 | ug/L | 55 | Standard | | | Cd | 111 | 10.9 | 39.9 | 0.0009 | 0.003 | 304.9 | mg/L | 7 | Standard | | | Cd | 114 | 32.3 | 99.8 | 0.0141 | 0.009 | 60.4 | ug/L | 4 | Standard | | > | In | 115 | 342707.3 | 2.8 | | | | ug/L | 322525 | Standard | | | Sn | 118 | 471.7 | 7.1 | -0.0406 | 0.009 | 21.3 | ug/L | 345 | Standard | | ļ | Sb | 123 | 69.5 | 3.9 | 0.0066 | 0.000 | 2.9 | ug/L | 88 | Standard | | Ĺ | Ва | 135 | 10695.8 | 1.4 | 6.2724 | 0.189 | 3.0 | ug/L | 12 | Standard | | ! | Се | 140 | 2706.9 | 22.6 | | | | ug/L | 37 | Standard | | Ĺ> | Tb | 159 | 650533.5 | 2.8 | | | | ug/L | 631826 | Standard | | ! | Но | 165 | 45.0 | 66.7 | | | | ug/L | 3 | Standard | | ! | TI | 203 | 36.0 | 54.7 | 0.0026 | 0.003 | 105.1 | ug/L | 7 | Standard | | ! | TI | 205 | 20.0 | 50.0 | 0.0069 | 0.002 | 33.7 | ug/L | 7 | Standard | | ! | Pb | 206 | 280.7 | 13.2 | 0.0080 | 0.008 | 98.9 | ug/L | 159 | Standard | | | Pb | 207 | 227.3 | 18.5 | 0.0032 | 0.010 | 300.0 | ug/L | 120 | Standard | | | Pb | 208 | 909.7 | 6.5 | 0.0068 | 0.002 | 29.3 | ug/L | 503 | Standard | | | U | 238 | 21.0 | 60.8 | -0.0008 | 0.002 | 286.0 | ug/L | 5 | Standard | | L> | Bi | 209 | 348433.4 | 3.2 | | | | ug/L | 333509 | Standard | Sample ID: L1510121504 Report Date/Time: Tuesday, October 27, 2015 17:14:53 Page 1 Approved: October 28, 2015 | _ | | | | | | | | | | | |----|------|-----|---------|-------|---------|-------|-------|------|-------|----------| | | Na | 23 | 0.0 | | | | | mg/L | 0 | Standard | | | Mg | 24 | 1725.1 | 1.0 | 3.6041 | 0.170 | 4.7 | mg/L | 10 | Standard | | | K | 39 | 18.3 | 31.5 | -0.0074 | 0.071 | 964.3 | mg/L | 32 | Standard | | | Ca | 43 | 60.0 | 8.3 | -5.9392 | 0.664 | 11.2 | mg/L | 85 | Standard | | | Fe | 54 | 64.3 | 28.9 | 0.0051 | 0.036 | 698.9 | mg/L | 82 | Standard | | | Fe | 57 | 251.7 | 16.1 | 0.2403 | 0.407 | 169.3 | mg/L | 217 | Standard | | L> | Sc-1 | 45 | 16428.9 | 3.8 | | | | mg/L | 14524 | Standard | | | CI | 35 | 66438.7 | 0.7 | | | | ug/L | 53193 | Standard | | | Kr | 83 | 5.7 | 10.2 | | | | ug/L | 3 | Standard | | | Br | 81 | 516.7 | 11.0 | | | | ug/L | 327 | Standard | | | Р | 31 | 16604.1 | 3.4 | | | | ug/L | 13329 | Standard | | | S | 34 | 3508.7 | 4.8 | | | | ug/L | 3234 | Standard | | | Sr | 88 | 136.7 | 18.8 | | | | ug/L | 87 | Standard | | | С | 12 | 136.7 | 15.2 | | | | mg/L | 103 | Standard | | | N | 14 | 0.0 | | | | | mg/L | 0 | Standard | | | Hg | 202 | 3.3 | 173.2 | | | | mg/L | 3 | Standard | | | Dy | 164 | 61.1 | 22.5 | | | | mg/L | 10 | Standard | | | Ho-1 | 165 | 45.0 | 66.7 | | | | mg/L | 3 | Standard | | | Er | 166 | 46.7 | 99.0 | | | | mg/L | 7 | Standard | | | I | 127 | 10473.6 | 1.5 | | | | mg/L | 3612 | Standard | | | | | | | | | | | | | | Analyte | | QC Std % Recovery | Int Std % Recovery | Spike % Recovery | |-------------|----|-------------------|--------------------|------------------| | 「> Li | 6 | | 116.113 | | | Be | 9 | | | | | L AI | 27 | | | | | 「 Sc | 45 | | | | | Ti | 47 | | | | | V | 51 | | | | | Cr | 52 | | | | | Cr | 53 | | | | | Mn | 55 | | | | | Co | 59 | | | | | Ni | 60 | | | | | Cu | 65 | | | | | Zn | 66 | | | | | > Ge | 72 | | 105.129 | | | As | 75 | | | | | Se | 82 | | | | | Se-1 | 77 | | | | | 「̄> Ga | 71 | | | | Sample ID: L1510121504 Report Date/Time: Tuesday, October 27, 2015 17:14:53 Page 2 Approved: October 28, 2015 | L Rb 85 √ 89 L> Rh 103 √ Mo 98 Ag 107 Cd 111 Cd 114 > In 115 Sn 118 Sb 123 Ba 135 Ce 140 L> Tb 159 Ho 165 TI 203 TI 205 Pb 206 Pb 207 | | | 106.258 | |---|-----------|------|-----------------------| | Pb 208
 U 238 | | | | | _> Bi 209 | | | 104.475 | | 「 Na 23
│ Mg 24 | | | | | K 39 | | | | | Ca 43 | | | | | Fe 54 | | | |
 Fe 57 | | | | | L> Sc-1 45
Cl 35 | | | | | Kr 83 | | | | | Br 81 | | | | | P 31 | | | | | S 34
Sr 88 | | | | | C 12 | | | | | N 14 | | | | | Hg 202 | | | | | Dy 164 | | | | | Ho-1 165
Er 166 | | | | | I 127 | | | | | QC Out of Limits | | | | | Measurement Type | Analyte M | lass | Out of Limits Message | | Ti 47 Lower | Ti | 47 | | | | | | | **Sample ID: L1510121504**Report Date/Time: Tuesday, October 27, 2015 17:14:53 Page 3 Sample ID: L1510121505 Sample Date/Time: Tuesday, October 27, 2015 17:15:47 Number of Replicates: 3 Autosampler Position: 337 Sample Description: 5 Method File: C:\NexIONData\Method\6020a.mth Aliquot Volume (mL): Diluted to Volume (mL): User Name: BKT Nexion300X Cumulative Autodilution Factor: 1 Nexion-ICP 200.8\6020 | Concentratio | n Resu | lts | |--------------|--------|-----| | | | | | IS | Analyt | e Mass | Intensity | RSD | Conc. | SD | RSD | Units | Blank Intens. | Mode | |----|----------|------------|--------------------|-------------|---------|-------|------------------|--------------|---------------|----------------------| | Γ> | Li | 6 | 29702.4 | 3.7 | Oone. | OB | ROD | ug/L | 26270 | Standard | | | Be | 9 | 11.7 | 89.2 | -0.0146 | 0.018 | 125.0 | ug/L | 2 | Standard | | i | Al | 27 | 108169.7 | 0.1 | 1.6874 | 0.065 | 3.8 | ug/L | 403 | Standard | | ř | Sc | 45 | 16195.3 | 1.9 | | 0.000 | 0.0 | ug/L | 14524 | Standard | | i | Ti | 47 | 232.7 | 11.5 | -0.6505 | 0.192 | 29.5 | ug/L | 365 | Standard | | i | ٧ | 51 | 1671.6 | 3.7 | 0.2229 | 0.030 | 13.4 | ug/L | 805 | Standard | | í | Cr | 52 | 7254.7 | 1.5 | 0.3856 | 0.057 | 14.9 | ug/L | 5481 | Standard | | i | Cr | 53 | 676.7 | 2.8 | 0.7346 | 0.084 | 11.4 | ug/L | 268 | Standard | | i | Mn | 55 | 3509.4 | 2.7 | 0.7029 | 0.068 | 9.6 | ug/L | 670 | Standard | | ĺ | Co | 59 | 294.7 | 4.9 | 0.0472 | 0.008 | 16.9 | ug/L | 146 | Standard | | | Ni | 60 | 406.0 | 3.6 | 0.1321 | 0.020 | 15.4 | ug/L | 220 | Standard | | | Cu | 65 | 477.3 | 3.3 | 0.2523 | 0.030 | 12.0 | ug/L | 147 | Standard | | | Zn | 66 | 1666.4 | 0.7 | 1.9186 | 0.114 | 5.9 | ug/L | 211 | Standard | | > | Ge | 72 | 212795.5 | 4.1 | | | | ug/L | 210599 | Standard | | | As | 75 | 63.0 | 80.0 | 0.1655 | 0.070 | 42.4 | ug/L | -47 | Standard | | | Se | 82 | 125.9 | 12.1 | 1.9275 | 0.172 | 8.9 | ug/L | 15 | Standard | | L | Se-1 | 77 | 119.7 | 6.3 | 1.8558 | 0.319 | 17.2 | ug/L | 65 | Standard | | Γ> | Ga | 71 | 68.3 | 16.9 | | | | mg/L | 27 | Standard | | L | Rb | 85 | 488.3 | 12.5 | | | | ug/L | 17 | Standard | | Γ | Υ | 89 | 221244.2 | 4.6 | | | | ug/L | 216672 | Standard | | L> | Rh | 103 | 13.3 | 43.3 | | | | ug/L | 18 | Standard | | Γ | Мо | 98 | 56.2 | 1.9 | 0.0367 | 0.001 | 1.9 | ug/L | 11 | Standard | | ļ | Ag | 107 | 52.3 | 21.7 | -0.0005 | 0.002 | 384.9 | ug/L | 55 | Standard | | ļ | Cd | 111 | 11.5 | 25.0 | 0.0017 | 0.002 | 123.0 | mg/L | 7 | Standard | | ļ | Cd | 114 | 26.7 | 20.3 | 0.0130 | 0.002 | 12.7 | ug/L | 4 | Standard | | > | ln | 115 | 332825.8 | 3.4 | | | | ug/L | 322525 | Standard | | ! | Sn | 118 | 495.0 | 8.3 | -0.0314 | 0.013 | 41.7 | ug/L | 345 | Standard | | ! | Sb | 123 | 69.5 | 19.1 | 0.0071 | 0.003 | 43.1 | ug/L | 88 | Standard | | Ļ | Ва | 135 | 10685.4 | 0.7 | 6.4555 | 0.249 | 3.9 | ug/L | 12 | Standard | | | Ce | 140
159 | 2313.5
622020.4 | 3.8
2.3 | | | | ug/L | 37
631826 | Standard | | [> | Tb | 165 | 622020.4
40.0 | 2.3
12.5 | | | | ug/L | 631826 | Standard
Standard | | 1 | Ho
TI | 203 | 40.0
25.3 | 8.2 | 0.0012 | 0.000 | 33.5 | ug/L
ug/L | 3
7 | Standard | | - | TI | 205 | 18.3 | 31.5 | 0.0012 | 0.000 | 19.6 | ug/L
ug/L | 7 | Standard | | | Pb | 206 | 281.3 | 9.7 | 0.0066 | 0.001 | 76.7 | ug/L
ug/L | 7
159 | Standard | | | Pb | 207 | 231.3 | 5.2 | 0.0066 | 0.008 | 68.3 | ug/L
ug/L | 120 | Standard | | i | Pb | 208 | 986.0 | 4.0 | 0.0142 | 0.004 | 19.5 | ug/L | 503 | Standard | | i | U | 238 | 20.7 | 17.0 | -0.0007 | 0.003 | 90.4 | ug/L | 505 | Standard | | > | о
Ві | 209 | 337038.3 | 2.3 | -0.0007 | 0.001 | 30. 1 | ug/L
ug/L | 333509 | Standard | | L> | اد | 200 | 337 030.3 | 2.5 | | | | ug/L | 333309 | Standard | Sample ID: L1510121505 Report Date/Time: Tuesday, October 27, 2015 17:18:04 Page 1 | Γ | Na | 23 | 3.3 | 173.2 | | | | mg/L | 0 | Standard | |----|------|-----|---------|-------|---------|-------|-------|------|-------|----------| | | Mg | 24 | 1863.4 | 4.8 | 3.9516 | 0.264 | 6.7 | mg/L | 10 | Standard | | | K | 39 | 25.0 | 72.1 | 0.0688 | 0.200 | 291.4 | mg/L | 32 | Standard | | | Ca | 43 | 71.7 | 33.0 | -4.1595 | 3.294 | 79.2 | mg/L | 85 | Standard | | | Fe | 54 | 69.0 | 14.1 | 0.0180 | 0.019 | 103.5 | mg/L | 82 | Standard | | | Fe | 57 | 236.7 | 8.8 | 0.1358 | 0.213 | 156.5 | mg/L | 217 | Standard | | L> | Sc-1 | 45 | 16195.3 | 1.9 | | | | mg/L | 14524 | Standard | | | CI | 35 | 67865.7 | 0.4 | | | | ug/L | 53193 | Standard | | | Kr | 83 | 0.7 | 173.2 | | | | ug/L | 3 | Standard | | | Br | 81 | 683.3 | 13.6 | | | | ug/L | 327 | Standard | | | Р | 31 | 16458.9 | 4.4 | | | | ug/L | 13329 | Standard | | | S | 34 | 3573.8 | 4.7 | | | | ug/L | 3234 | Standard | | | Sr | 88 | 95.0 | 24.1 | | | | ug/L | 87 | Standard | | | С | 12 | 150.0 | 11.5 | | | | mg/L | 103 | Standard | | | N | 14 | 0.0 | | | | | mg/L | 0 | Standard | | | Hg | 202 | 3.3 | 173.2 | | | | mg/L | 3 | Standard | | | Dy | 164 | 61.3 | 33.7 | | | | mg/L | 10 | Standard | | | Ho-1 | 165 | 40.0 | 12.5 | | | | mg/L | 3 | Standard | | | Er | 166 | 43.3 | 13.3 | | | | mg/L | 7 | Standard | | | I | 127 | 9743.1 | 2.1 | | | | mg/L | 3612 | Standard | | Analyte | Mass | QC Std % Recovery | Int Std % Recovery | Spike % Recovery | |---------|------|-------------------|--------------------|------------------| | 「> Li | 6 | | 113.068 | | | Be | 9 | | | | | L AI | 27 | | | | | 「 Sc | 45 | | | | | Ti | 47 | | | | | V | 51 | | | | | Cr | 52 | | | | | Cr | 53 | | | | | Mn | 55 | | | | | Co | 59 | | | | | Ni | 60 | | | | | Cu | 65 | | | | | Zn | 66 | | | | | > Ge | 72 | | 101.043 | | | As | 75 | | | | | Se | 82 | | | | | L Se-1 | 77 | | | | | 「⊳ Ga | 71 | | | | Sample ID: L1510121505 Report Date/Time: Tuesday, October 27, 2015 17:18:04 Page 2 Approved: October 28, 2015 | ∟ Rb | 85 | | | | |----------------|--------------|---------|------|-----------------------| | ΓY | 89 | | | | | $\lfloor_>$ Rh | 103 | | | | | Г Мо | 98 | | | | | Ag | 107 | | | | | Cd | 111 | | | | | Cd | 114 | | | | |
 > In | 115 | | | 103.194 | | Sn | 118 | | | | | Sb | 123 | | | | | L Ba | 135 | | | | | Ce | 140 | | | | | _> Tb | 159 | | | | | Γ Ho | 165 | | | | | j тı | 203 | | | | | j тı | 205 | | | | | Pb | 206 | | | | | Pb | 207 | | | | | Pb | 208 | | | | | į U | 238 | | | | | Ĺ> Bi | 209 | | | 101.058 | | Г Na | 23 | | | | | Mg | 24 | | | | | K | 39 | | | | | Ca | 43 | | | | | Fe | 54 | | | | | Fe | 57 | | | | | L> Sc-1 | 45 | | | | | CI | 35 | | | | | Kr | 83 | | | | | Br | 81 | | | | | Р | 31 | | | | | S | 34 | | | | | Sr | 88 | | | | | С | 12 | | | | | N | 14 | | | | | Hg | 202 | | | | | Dy | 164 | | | | | Ho-1 | 165 | | | | | Er | 166 | | | | | I | 127 | | | | | QC Oı | it of Limits | | | | | Measure | ment Type | Analyte | Mass | Out of Limits Message | | Ti 47 Lov | | Ti | 47 | ŭ | | | | | | | Sample ID: L1510121505 Report Date/Time: Tuesday, October 27, 2015 17:18:04 Page 3 Sample ID: L1510121506 Sample Date/Time: Tuesday, October 27, 2015 17:18:59 Number of Replicates: 3 Autosampler Position: 338 Sample Description: 5 Method File: C:\NexIONData\Method\6020a.mth Aliquot Volume (mL): Diluted to Volume (mL): User Name: BKT Nexion300X Cumulative Autodilution Factor: 1 Nexion-ICP 200.8\6020 | | | Concentration Results | | | | | | | | | | | | |-----|----------|-----------------------|-------------------|-------------|---------|-------|-------|--------------|---------------|----------------------|--|--|--| | IS | Analy | te Mass | Intensity | RSD | Conc. | SD | RSD | Units | Blank Intens. | Mode | | | | | Γ> | • | 6 | 28797.4 | 4.0 | | | | ug/L | 26270 | Standard | | | | | Ĺ | Ве | 9 | 6.7 | 114.6 | -0.0234 | 0.013 | 54.5 | ug/L | 2 | Standard | | | | | Ĺ | ΑI | 27 | 216367.5 | 1.6 | 3.5026 | 0.110 | 3.1 | ug/L | 403 | Standard | | | | | Γ | Sc | 45 | 15813.2 | 1.9 | | | | ug/L | 14524 | Standard | | | | | | Ti | 47 | 130.7 | 10.9 | -1.3252 | 0.090 | 6.8 | ug/L | 365 | Standard | | | | | | V | 51 | 1046.2 | 11.7 | 0.0306 | 0.033 | 108.3 | ug/L | 805 | Standard | | | | | | Cr | 52 | 6600.1 | 1.9 | 0.1738 | 0.041 | 23.7 | ug/L | 5481 | Standard | | | | | | Cr | 53 | 1153.4 | 3.9 | 1.5402 | 0.065 | 4.2 | ug/L | 268 | Standard | | | | | | Mn | 55 | 5830.1 | 2.4 | 1.3333 | 0.055 | 4.2 | ug/L | 670 | Standard | | | | | | Co | 59 | 186.0 | 5.6 | 0.0106 | 0.003 | 30.0 | ug/L | 146 | Standard | | | | | | Ni | 60 | 265.0 | 4.9 | -0.0012 | 0.012 | 948.0 | ug/L | 220 | Standard | | | | | | Cu | 65 | 186.3 | 13.7 | -0.0171 | 0.021 | 123.2 | ug/L | 147 | Standard | | | | | | Zn | 66 | 1375.4 | 3.7 | 1.3928 | 0.064 | 4.6 | ug/L | 211 | Standard | | | | | > | | 72 | 221042.8 | 0.9 | | | | ug/L | 210599 | Standard | | | | | | As | 75 | 22.8 | 114.2 | 0.1090 | 0.035 | 32.4 | ug/L | -47 | Standard | | | | | ļ | Se | 82 | 22.6 | 21.8 | 0.1882 | 0.082 | 43.3 | ug/L | 15 | Standard | | | | | Ĺ | Se-1 | 77 | 84.7 | 10.7 | 0.8637 | 0.226 | 26.2 | ug/L | 65 | Standard | | | | | > | | 71 | 43.3 | 29.0 | | | | mg/L | 27 | Standard | | | | | Ĺ | Rb | 85 | 8840.9 | 2.1 | | | | ug/L | 17 | Standard | | | | | ! | Υ | 89 | 224308.4 | 1.5 | | | | ug/L | 216672 | Standard | | | | | Į> | | 103 | 35.0 | 62.3 | | | | ug/L | 18 | Standard | | | | | - ! | Мо | 98 | 428.5 | 6.5 | 0.2935 | 0.023 | 7.7 | ug/L | 11 | Standard | | | | | | Ag | 107 | 50.0 | 18.3 | -0.0010 | 0.002 | 194.2 | ug/L | 55 | Standard | | | | | - | Cd | 111 | 10.1 | 40.2 | 0.0006 | 0.003 | 484.2 | mg/L | 7 | Standard | | | | | - | Cd | 114 | 11.6
334986.5 | 85.3
1.3 | 0.0087 | 0.003 | 32.7 | ug/L | 4 | Standard | | | | | > | In
Sn | 115 | 334986.5
498.3 | 1.3
8.2 | -0.0316 | 0.010
 31.0 | ug/L | 322525
345 | Standard
Standard | | | | | 1 | Sb | 118
123 | 496.3
49.0 | 0.2
7.4 | 0.0018 | 0.010 | 59.1 | ug/L
ug/L | 345
88 | Standard | | | | | | Ba | 135 | 49.0
15745.2 | 0.7 | 9.4551 | 0.001 | 1.8 | ug/L
ug/L | 12 | Standard | | | | | L | Ce | 140 | 373.3 | 10.4 | 3.4331 | 0.109 | 1.0 | ug/L
ug/L | 37 | Standard | | | | | | | 159 | 637971.7 | 0.9 | | | | ug/L | 631826 | Standard | | | | | Γ | Ho | 165 | 15.0 | 88.2 | | | | ug/L | 3 | Standard | | | | | i | TI | 203 | 101.3 | 13.9 | 0.0127 | 0.002 | 15.8 | ug/L | 7 | Standard | | | | | i | TI | 205 | 66.7 | 30.3 | 0.0175 | 0.004 | 25.4 | ug/L | 7 | Standard | | | | | i | Pb | 206 | 222.7 | 8.7 | -0.0046 | 0.005 | 99.7 | ug/L | 159 | Standard | | | | | i | Pb | 207 | 176.0 | 9.9 | -0.0091 | 0.005 | 53.7 | ug/L | 120 | Standard | | | | | i | Pb | 208 | 776.0 | 5.5 | -0.0008 | 0.003 | 374.7 | ug/L | 503 | Standard | | | | | Ĺ | U | 238 | 87.3 | 13.6 | 0.0116 | 0.002 | 18.0 | ug/L | 5 | Standard | | | | | Ĺ> | Bi | 209 | 339797.6 | 0.9 | | | | ug/L | 333509 | Standard | | | | | | | | | | | | | | | | | | | Sample ID: L1510121506 Report Date/Time: Tuesday, October 27, 2015 17:21:16 Page 1 Approved: October 28, 2015 Page 553 L15101055 / Revision: 0 / 760 total pages | Γ | Na | 23 | 1.7 | 173.2 | | | | mg/L | 0 | Standard | |----|------|-----|---------|-------|---------|-------|-------|------|-------|----------| | | Mg | 24 | 5861.1 | 1.1 | 12.8116 | 0.257 | 2.0 | mg/L | 10 | Standard | | | K | 39 | 41.7 | 38.6 | 0.2682 | 0.194 | 72.1 | mg/L | 32 | Standard | | | Ca | 43 | 70.0 | 28.6 | -4.0813 | 3.168 | 77.6 | mg/L | 85 | Standard | | | Fe | 54 | 69.2 | 26.1 | 0.0222 | 0.040 | 180.2 | mg/L | 82 | Standard | | | Fe | 57 | 243.3 | 23.1 | 0.2419 | 0.496 | 205.0 | mg/L | 217 | Standard | | L> | Sc-1 | 45 | 15813.2 | 1.9 | | | | mg/L | 14524 | Standard | | | CI | 35 | 67924.6 | 1.3 | | | | ug/L | 53193 | Standard | | | Kr | 83 | 5.3 | 84.5 | | | | ug/L | 3 | Standard | | | Br | 81 | 1423.4 | 11.2 | | | | ug/L | 327 | Standard | | | Р | 31 | 15462.9 | 0.8 | | | | ug/L | 13329 | Standard | | | S | 34 | 3592.1 | 3.3 | | | | ug/L | 3234 | Standard | | | Sr | 88 | 148.3 | 10.8 | | | | ug/L | 87 | Standard | | | С | 12 | 143.3 | 44.9 | | | | mg/L | 103 | Standard | | | N | 14 | 6.7 | 173.2 | | | | mg/L | 0 | Standard | | | Hg | 202 | 10.0 | 100.0 | | | | mg/L | 3 | Standard | | | Dy | 164 | 16.2 | 99.2 | | | | mg/L | 10 | Standard | | | Ho-1 | 165 | 15.0 | 88.2 | | | | mg/L | 3 | Standard | | | Er | 166 | 10.0 | 173.2 | | | | mg/L | 7 | Standard | | | I | 127 | 23843.8 | 3.7 | | | | mg/L | 3612 | Standard | | | | | | | | | | | | | | Analyte | Mass | QC Std % Recovery | Int Std % Recovery | Spike % Recovery | |---------|------|-------------------|--------------------|------------------| | 「⊳ Li | 6 | | 109.622 | | | Be | 9 | | | | | L AI | 27 | | | | | 「 Sc | 45 | | | | | Ti | 47 | | | | | V | 51 | | | | | Cr | 52 | | | | | Cr | 53 | | | | | Mn | 55 | | | | | Co | 59 | | | | | Ni | 60 | | | | | Cu | 65 | | | | | Zn | 66 | | | | | > Ge | 72 | | 104.959 | | | As | 75 | | | | | Se | 82 | | | | | ∟ Se-1 | 77 | | | | | √̄> Ga | 71 | | | | Sample ID: L1510121506 Report Date/Time: Tuesday, October 27, 2015 17:21:16 Page 2 Approved: October 28, 2015 | L Rb 85 √ 89 L> Rh 103 √ Mo 98 Ag 107 Cd 111 Cd 114 In 115 Sn 118 Sb 123 L Ba 135 √ Ce 140 L> Tb 159 √ Ho 165 √ TI 203 √ TI 205 | | 103.864 | | |---|-----------------------|-----------------------|--| | Pb 206
 Pb 207
 Pb 208
 U 238
 Si 209
 Na 23
 Mg 24
 K 39
 Ca 43
 Fe 54
 Fe 57
 Sc-1 45
 Cl 35
 Kr 83
 Br 81 | | 101.885 | | | P 31 S 34 Sr 88 C 12 N 14 Hg 202 Dy 164 Ho-1 165 Er 166 I 127 QC Out of Limits Measurement Type Ti 47 Lower | Analyte Mass
Ti 47 | Out of Limits Message | | **Sample ID: L1510121506**Report Date/Time: Tuesday, October 27, 2015 17:21:16 Page 3 Sample ID: L1510121507 Sample Date/Time: Tuesday, October 27, 2015 17:22:10 Number of Replicates: 3 Autosampler Position: 339 Sample Description: 5 Method File: C:\NexIONData\Method\6020a.mth Aliquot Volume (mL): Diluted to Volume (mL): User Name: BKT Nexion300X Cumulative Autodilution Factor: 1 Nexion-ICP 200.8\6020 | \sim | ncon | tration | Results | | |--------|------|----------|---------|--| | υo | ncer | itration | Results | | | | | | | | Ooncentia | tion ites | uito | | | | |----|--------|--------|-----------|------|-----------|-----------|-------|-------|---------------|----------| | IS | Analyt | e Mass | Intensity | RSD | Conc. | SD | RSD | Units | Blank Intens. | Mode | | Γ> | Li | 6 | 30256.9 | 2.6 | | | | ug/L | 26270 | Standard | | | Be | 9 | 8.3 | 34.6 | -0.0209 | 0.005 | 22.6 | ug/L | 2 | Standard | | L | Αl | 27 | 510768.2 | 1.8 | 7.8907 | 0.108 | 1.4 | ug/L | 403 | Standard | | Γ | Sc | 45 | 16255.4 | 1.6 | | | | ug/L | 14524 | Standard | | | Ti | 47 | 143.0 | 6.7 | -1.2426 | 0.062 | 5.0 | ug/L | 365 | Standard | | | ٧ | 51 | 2002.6 | 7.2 | 0.3015 | 0.043 | 14.1 | ug/L | 805 | Standard | | | Cr | 52 | 6816.2 | 1.5 | 0.2366 | 0.030 | 12.9 | ug/L | 5481 | Standard | | | Cr | 53 | 823.4 | 11.9 | 0.9626 | 0.181 | 18.8 | ug/L | 268 | Standard | | | Mn | 55 | 1697.4 | 1.7 | 0.1423 | 0.011 | 7.7 | ug/L | 670 | Standard | | | Co | 59 | 235.7 | 5.0 | 0.0263 | 0.003 | 13.3 | ug/L | 146 | Standard | | | Ni | 60 | 289.3 | 9.7 | 0.0217 | 0.024 | 109.0 | ug/L | 220 | Standard | | | Cu | 65 | 232.0 | 6.5 | 0.0245 | 0.012 | 49.8 | ug/L | 147 | Standard | | | Zn | 66 | 1121.4 | 3.7 | 1.0352 | 0.064 | 6.2 | ug/L | 211 | Standard | | > | Ge | 72 | 219000.7 | 0.6 | | | | ug/L | 210599 | Standard | | | As | 75 | 274.5 | 13.4 | 0.4543 | 0.048 | 10.6 | ug/L | -47 | Standard | | | Se | 82 | 490.3 | 2.9 | 7.8040 | 0.215 | 2.8 | ug/L | 15 | Standard | | L | Se-1 | 77 | 372.3 | 2.3 | 8.0875 | 0.181 | 2.2 | ug/L | 65 | Standard | | Γ> | Ga | 71 | 165.0 | 10.5 | | | | mg/L | 27 | Standard | | L | Rb | 85 | 613.3 | 2.9 | | | | ug/L | 17 | Standard | | Γ | Υ | 89 | 225402.9 | 1.8 | | | | ug/L | 216672 | Standard | | L> | Rh | 103 | 26.7 | 57.3 | | | | ug/L | 18 | Standard | | Γ | Мо | 98 | 93.5 | 6.0 | 0.0608 | 0.003 | 5.6 | ug/L | 11 | Standard | | | Ag | 107 | 60.3 | 28.2 | 0.0008 | 0.003 | 414.7 | ug/L | 55 | Standard | | | Cd | 111 | 23.2 | 20.4 | 0.0093 | 0.003 | 34.6 | mg/L | 7 | Standard | | | Cd | 114 | 37.7 | 18.5 | 0.0158 | 0.002 | 12.6 | ug/L | 4 | Standard | | > | In | 115 | 341864.2 | 0.7 | | | | ug/L | 322525 | Standard | | | Sn | 118 | 458.3 | 16.9 | -0.0437 | 0.018 | 40.7 | ug/L | 345 | Standard | | | Sb | 123 | 100.5 | 8.4 | 0.0144 | 0.002 | 14.3 | ug/L | 88 | Standard | | L | Ва | 135 | 8276.6 | 1.0 | 4.8579 | 0.054 | 1.1 | ug/L | 12 | Standard | | Γ | Ce | 140 | 855.0 | 21.7 | | | | ug/L | 37 | Standard | | L> | Tb | 159 | 646488.7 | 1.2 | | | | ug/L | 631826 | Standard | | Γ | Но | 165 | 16.7 | 62.4 | | | | ug/L | 3 | Standard | | | TI | 203 | 91.7 | 29.6 | 0.0110 | 0.004 | 34.9 | ug/L | 7 | Standard | | | TI | 205 | 43.3 | 46.6 | 0.0121 | 0.005 | 37.6 | ug/L | 7 | Standard | | | Pb | 206 | 241.0 | 7.3 | -0.0011 | 0.004 | 315.0 | ug/L | 159 | Standard | | | Pb | 207 | 227.7 | 7.0 | 0.0039 | 0.004 | 94.0 | ug/L | 120 | Standard | | | Pb | 208 | 866.0 | 9.5 | 0.0043 | 0.005 | 111.4 | ug/L | 503 | Standard | | | U | 238 | 215.3 | 8.5 | 0.0347 | 0.003 | 8.1 | ug/L | 5 | Standard | | L> | Bi | 209 | 345672.9 | 1.4 | | | | ug/L | 333509 | Standard | | | | | | | | | | | | | Sample ID: L1510121507 Report Date/Time: Tuesday, October 27, 2015 17:24:27 Page 1 Approved: October 28, 2015 Page 556 L15101055 / Revision: 0 / 760 total pages | Γ | Na | 23 | 0.0 | | | | | mg/L | 0 | Standard | |----|------|-----|---------|-------|---------|-------|-------|------|-------|----------| | | Mg | 24 | 3857.2 | 7.2 | 8.1810 | 0.471 | 5.8 | mg/L | 10 | Standard | | | K | 39 | 25.0 | 34.6 | 0.0681 | 0.098 | 144.5 | mg/L | 32 | Standard | | | Ca | 43 | 71.7 | 4.0 | -4.1630 | 0.360 | 8.6 | mg/L | 85 | Standard | | | Fe | 54 | 82.7 | 14.3 | 0.0473 | 0.023 | 49.2 | mg/L | 82 | Standard | | | Fe | 57 | 226.7 | 7.1 | 0.0411 | 0.127 | 308.7 | mg/L | 217 | Standard | | L> | Sc-1 | 45 | 16255.4 | 1.6 | | | | mg/L | 14524 | Standard | | | CI | 35 | 69363.1 | 0.2 | | | | ug/L | 53193 | Standard | | | Kr | 83 | 3.7 | 56.8 | | | | ug/L | 3 | Standard | | | Br | 81 | 1600.1 | 7.4 | | | | ug/L | 327 | Standard | | | Р | 31 | 16193.7 | 2.2 | | | | ug/L | 13329 | Standard | | | S | 34 | 3432.1 | 4.4 | | | | ug/L | 3234 | Standard | | | Sr | 88 | 103.3 | 26.6 | | | | ug/L | 87 | Standard | | | С | 12 | 203.3 | 36.9 | | | | mg/L | 103 | Standard | | | N | 14 | 0.0 | | | | | mg/L | 0 | Standard | | | Hg | 202 | 3.3 | 173.2 | | | | mg/L | 3 | Standard | | | Dy | 164 | 5.7 | 94.7 | | | | mg/L | 10 | Standard | | | Ho-1 | 165 | 16.7 | 62.4 | | | | mg/L | 3 | Standard | | | Er | 166 | 20.0 | 86.6 | | | | mg/L | 7 | Standard | | | I | 127 | 13224.1 | 3.9 | | | | mg/L | 3612 | Standard | | Analyte | | QC Std % Recovery | Int Std % Recovery | Spike % Recovery | |-------------|----|-------------------|--------------------|------------------| | 「> Li | 6 | | 115.178 | | | Be | 9 | | | | | L AI | 27 | | | | | 「 Sc | 45 | | | | | Ti | 47 | | | | | V | 51 | | | | | Cr | 52 | | | | | Cr | 53 | | | | | Mn | 55 | | | | | Co | 59 | | | | | Ni | 60 | | | | | Cu | 65 | | | | | Zn | 66 | | | | | > Ge | 72 | | 103.990 | | | As | 75 | | | | | Se | 82 | | | | | Se-1 | 77 | | | | | 「̄> Ga | 71 | | | | Sample ID: L1510121507 Report Date/Time: Tuesday, October 27, 2015 17:24:27 Page 2 Approved: October 28, 2015 | ∟ Rb | 85 | | | |
----------------------|--------------|---------|------|-----------------------| | ΓΥ | 89 | | | | | $\lfloor_>$ Rh | 103 | | | | | Г Мо | 98 | | | | | Ag | 107 | | | | | Cd | 111 | | | | | Cd | 114 | | | | | > In | 115 | | | 105.996 | | Sn | 118 | | | | | Sb | 123 | | | | | Ва | 135 | | | | | ¯ Ce | 140 | | | | | _
_> Tb | 159 | | | | | Γ Ho | 165 | | | | | j тı | 203 | | | | | j тı | 205 | | | | | Pb | 206 | | | | | Pb | 207 | | | | | Pb | 208 | | | | | į U | 238 | | | | | Ĺ _{>} Bi | 209 | | | 103.647 | | - Na | 23 | | | | | Mg | 24 | | | | | K | 39 | | | | | Ca | 43 | | | | | Fe | 54 | | | | | Fe | 57 | | | | | L> Sc-1 | 45 | | | | | CI | 35 | | | | | Kr | 83 | | | | | Br | 81 | | | | | Р | 31 | | | | | S | 34 | | | | | Sr | 88 | | | | | С | 12 | | | | | N | 14 | | | | | Hg | 202 | | | | | Dy | 164 | | | | | Ho-1 | 165 | | | | | Er | 166 | | | | | I | 127 | | | | | QC Oi | ıt of Limits | | | | | | ment Type | Analyte | Mass | Out of Limits Message | | Ti 47 Lov | | Ti | 47 | | | | | | | | Sample ID: L1510121507 Report Date/Time: Tuesday, October 27, 2015 17:24:27 Page 3 Sample ID: L1510121509 Sample Date/Time: Tuesday, October 27, 2015 17:25:21 Number of Replicates: 3 Autosampler Position: 340 Sample Description: 5 Method File: C:\NexIONData\Method\6020a.mth Aliquot Volume (mL): Diluted to Volume (mL): User Name: BKT Nexion300X Cumulative Autodilution Factor: 1 Nexion-ICP 200.8\6020 | Concentration | Results | |---------------|---------| |---------------|---------| | IS | Analyte Mass | | Intensity | RSD | Conc. | SD | RSD | Units | Blank Intens. | Mode | |------------|--------------|-----|-----------|-------|---------|-------|-------|-------|---------------|----------| | Γ> | Li | 6 | 30794.6 | 1.0 | | | | ug/L | 26270 | Standard | | | Be | 9 | 16.7 | 62.4 | -0.0075 | 0.017 | 224.4 | ug/L | 2 | Standard | | L | Al | 27 | 33854.4 | 0.2 | 0.4946 | 0.005 | 1.0 | ug/L | 403 | Standard | | Γ | Sc | 45 | 15494.6 | 0.7 | | | | ug/L | 14524 | Standard | | | Ti | 47 | 173.0 | 9.6 | -1.0533 | 0.117 | 11.1 | ug/L | 365 | Standard | | | ٧ | 51 | 1255.8 | 7.7 | 0.0935 | 0.022 | 23.9 | ug/L | 805 | Standard | | | Cr | 52 | 7430.5 | 0.4 | 0.3840 | 0.031 | 8.1 | ug/L | 5481 | Standard | | | Cr | 53 | 615.0 | 9.1 | 0.5893 | 0.086 | 14.5 | ug/L | 268 | Standard | | | Mn | 55 | 11231.2 | 1.2 | 2.9404 | 0.012 | 0.4 | ug/L | 670 | Standard | | | Co | 59 | 1008.0 | 1.7 | 0.2639 | 0.001 | 0.3 | ug/L | 146 | Standard | | | Ni | 60 | 718.7 | 7.2 | 0.3922 | 0.045 | 11.4 | ug/L | 220 | Standard | | | Cu | 65 | 253.0 | 2.9 | 0.0439 | 0.006 | 13.9 | ug/L | 147 | Standard | | | Zn | 66 | 1345.4 | 0.3 | 1.3768 | 0.024 | 1.7 | ug/L | 211 | Standard | | > | Ge | 72 | 218000.0 | 1.5 | | | | ug/L | 210599 | Standard | | | As | 75 | 18.4 | 143.3 | 0.1031 | 0.036 | 35.3 | ug/L | -47 | Standard | | | Se | 82 | 26.2 | 23.3 | 0.2504 | 0.097 | 38.6 | ug/L | 15 | Standard | | L | Se-1 | 77 | 69.3 | 18.8 | 0.5106 | 0.353 | 69.1 | ug/L | 65 | Standard | | Γ> | Ga | 71 | 45.0 | 11.1 | | | | mg/L | 27 | Standard | | L | Rb | 85 | 540.0 | 6.4 | | | | ug/L | 17 | Standard | | Γ | Υ | 89 | 228339.5 | 1.1 | | | | ug/L | 216672 | Standard | | L> | Rh | 103 | 8.3 | 91.7 | | | | ug/L | 18 | Standard | | Γ | Мо | 98 | 14.6 | 38.7 | 0.0077 | 0.004 | 49.4 | ug/L | 11 | Standard | | | Ag | 107 | 67.0 | 19.1 | 0.0024 | 0.003 | 108.4 | ug/L | 55 | Standard | | | Cd | 111 | 14.6 | 38.8 | 0.0036 | 0.004 | 102.7 | mg/L | 7 | Standard | | | Cd | 114 | 27.7 | 75.3 | 0.0132 | 0.006 | 45.5 | ug/L | 4 | Standard | | > | In | 115 | 336328.5 | 1.6 | | | | ug/L | 322525 | Standard | | | Sn | 118 | 456.7 | 41.6 | -0.0426 | 0.044 | 104.2 | ug/L | 345 | Standard | | | Sb | 123 | 47.8 | 19.5 | 0.0015 | 0.003 | 176.8 | ug/L | 88 | Standard | | Ĺ | Ва | 135 | 8828.2 | 0.3 | 5.2699 | 0.096 | 1.8 | ug/L | 12 | Standard | | ļ | Ce | 140 | 2841.9 | 2.5 | | | | ug/L | 37 | Standard | | <u>_</u> > | Tb | 159 | 642811.0 | 1.4 | | | | ug/L | 631826 | Standard | | ļ | Но | 165 | 78.3 | 22.4 | | | | ug/L | 3 | Standard | | ļ | TI | 203 | 22.3 | 22.5 | 0.0006 | 0.001 | 118.4 | ug/L | 7 | Standard | | ļ | TI | 205 | 6.7 | 114.6 | 0.0039 | 0.002 | 42.9 | ug/L | 7 | Standard | | ļ | Pb | 206 | 264.3 | 3.8 | 0.0045 | 0.002 | 47.1 | ug/L | 159 | Standard | | ļ | Pb | 207 | 206.7 | 2.7 | -0.0018 | 0.001 | 79.0 | ug/L | 120 | Standard | | ļ | Pb | 208 | 868.7 | 1.4 | 0.0045 | 0.001 | 31.3 | ug/L | 503 | Standard | | ! | U | 238 | 18.0 | 34.7 | -0.0013 | 0.001 | 88.5 | ug/L | 5 | Standard | | <u>_</u> > | Bi | 209 | 346162.3 | 1.1 | | | | ug/L | 333509 | Standard | Sample ID: L1510121509 Report Date/Time: Tuesday, October 27, 2015 17:27:38 Page 1 Approved: October 28, 2015 | _ | | | | | | | | | | | |----|------|-----|---------|-------|---------|-------|-------|------|-------|----------| | | Na | 23 | 1.7 | 173.2 | | | | mg/L | 0 | Standard | | | Mg | 24 | 901.7 | 5.8 | 1.9777 | 0.131 | 6.6 | mg/L | 10 | Standard | | | K | 39 | 20.0 | 90.1 | 0.0225 | 0.209 | 930.3 | mg/L | 32 | Standard | | | Ca | 43 | 50.0 | 30.0 | -6.9486 | 2.230 | 32.1 | mg/L | 85 | Standard | | | Fe | 54 | 67.9 | 11.4 | 0.0225 | 0.018 | 79.7 | mg/L | 82 | Standard | | | Fe | 57 | 251.7 | 10.9 | 0.3587 | 0.260 | 72.5 | mg/L | 217 | Standard | | L> | Sc-1 | 45 | 15494.6 | 0.7 | | | | mg/L | 14524 | Standard | | | CI | 35 | 66708.5 | 0.8 | | | | ug/L | 53193 | Standard | | | Kr | 83 | 5.3 | 65.8 | | | | ug/L | 3 | Standard | | | Br | 81 | 536.7 | 6.0 | | | | ug/L | 327 | Standard | | | Р | 31 | 16624.1 | 1.4 | | | | ug/L | 13329 | Standard | | | S | 34 | 3420.4 | 4.9 | | | | ug/L | 3234 | Standard | | | Sr | 88 | 128.3 | 22.2 | | | | ug/L | 87 | Standard | | | С | 12 | 223.3 | 6.8 | | | | mg/L | 103 | Standard | | | N | 14 | 0.0 | | | | | mg/L | 0 | Standard | | | Hg | 202 | 6.7 | 86.6 | | | | mg/L | 3 | Standard | | | Dy | 164 | 83.5 | 34.4 | | | | mg/L | 10 | Standard | | | Ho-1 | 165 | 78.3 | 22.4 | | | | mg/L | 3 | Standard | | | Er | 166 | 66.7 | 37.7 | | | | mg/L | 7 | Standard | | | 1 | 127 | 18928.5 | 2.3 | | | | mg/L | 3612 | Standard | | | | | | | | | | | | | | Analyte | | QC Std % Recovery | Int Std % Recovery | Spike % Recovery | |-------------|----|-------------------|--------------------|------------------| | 「> Li | 6 | | 117.225 | | | Be | 9 | | | | | L AI | 27 | | | | | 「 Sc | 45 | | | | | Ti | 47 | | | | | V | 51 | | | | | Cr | 52 | | | | | Cr | 53 | | | | | Mn | 55 | | | | | Co | 59 | | | | | Ni | 60 | | | | | Cu | 65 | | | | | Zn | 66 | | | | | > Ge | 72 | | 103.514 | | | As | 75 | | | | | Se | 82 | | | | | ∟ Se-1 | 77 | | | | | 「̄> Ga | 71 | | | | Sample ID: L1510121509 Report Date/Time: Tuesday, October 27, 2015 17:27:38 Page 2 Approved: October 28, 2015 | └ Rb
「 Y | 85 | | | | |--------------|--------------|---------------|------|-----------------------| | ⊢ f
L> Rh | 89
103 | | | | | L> Mo | 98 | | | | | Ag | 107 | | | | | | 111 | | | | | Cd | 114 | | | | | | 115 | | | 104.280 | | Sn | 118 | | | 101.200 | | Sb | 123 | | | | | L Ba | 135 | | | | | Ce | 140 | | | | | _> Tb | 159 | | | | | Γ Ho | 165 | | | | | j TI | 203 | | | | | į ΤΙ | 205 | | | | | Pb | 206 | | | | | Pb | 207 | | | | | Pb | 208 | | | | | U | 238 | | | | | ∟> Bi | 209 | | | 103.794 | | Г Nа | 23 | | | | | Mg | 24 | | | | | K | 39 | | | | | Ca | 43 | | | | | Fe | 54
 | | | | | Fe | 57 | | | | | L> Sc-1 | 45
25 | | | | | Cl | 35 | | | | | Kr
Dr | 83 | | | | | Br | 81 | | | | | P
S | 31
34 | | | | | Sr | 88 | | | | | C | 12 | | | | | N | 14 | | | | | Hg | 202 | | | | | Dy | 164 | | | | | Ho-1 | 165 | | | | | Er | 166 | | | | | I. | 127 | | | | | = | ıt of Limits | | | | | | | Analyta | Mass | Out of Limita Managa | | | ment Type | Analyte
Ti | Mass | Out of Limits Message | | Ti 47 Lower | | 11 | 47 | | Sample ID: L1510121509 Report Date/Time: Tuesday, October 27, 2015 17:27:38 Page 3 Sample ID: L1510121504 Sample Date/Time: Tuesday, October 27, 2015 17:33:51 Number of Replicates: 3 Autosampler Position: 352 Sample Description: 1 Method File: C:\NexIONData\Method\6020a.mth Aliquot Volume (mL): Diluted to Volume (mL): User Name: BKT Nexion300X Cumulative Autodilution Factor: 1 Nexion-ICP 200.8\6020 | | | | | | Concential | ion ites | uito | | | | |----|--------|--------|-----------|------|------------|----------|-------|-------|---------------|----------| | IS | Analyt | e Mass | Intensity | RSD | Conc. | SD | RSD | Units | Blank Intens. | Mode | | Γ> | Li | 6 | 32656.9 | 5.5 | | | | ug/L | 26270 | Standard | | | Be | 9 | 10.0 | 50.0 | -0.0195 | 0.007 | 36.7 | ug/L | 2 | Standard | | L | Al | 27 | 524139.9 | 2.3 | 7.5219 | 0.604 | 8.0 | ug/L | 403 | Standard | | Γ | Sc | 45 | 17036.2 | 3.6 | | | | ug/L | 14524 | Standard | | | Ti | 47 | 592.7 | 1.5 | 1.4352 | 0.175 | 12.2 | ug/L | 365 | Standard | | | V | 51 | 4098.0 | 5.0 | 0.8683 | 0.121 | 14.0 | ug/L | 805 | Standard | | | Cr | 52 | 10794.5 | 3.2 | 1.0952 | 0.213 | 19.5 | ug/L | 5481 | Standard | | | Cr | 53 | 1248.4 | 12.0 | 1.6892 | 0.298 | 17.6 | ug/L | 268 | Standard | | | Mn | 55 | 10604.0 | 3.7 | 2.6866 | 0.287 | 10.7 | ug/L | 670 | Standard | | | Co | 59 | 744.7 | 4.7 | 0.1780 | 0.023 | 13.1 | ug/L | 146 | Standard | | | Ni | 60 | 785.0 | 3.6 | 0.4334 | 0.050 | 11.5 | ug/L | 220 | Standard | | | Cu | 65 | 435.3 | 2.4 | 0.1952 | 0.024 | 12.1 | ug/L | 147 | Standard | | | Zn | 66 | 1263.4 | 2.4 | 1.2104 | 0.132 | 10.9 | ug/L | 211 | Standard | | > | Ge | 72 | 223778.3 | 5.5 | | | | ug/L | 210599 | Standard | | | As | 75 | 377.6 | 9.8 | 0.5841 | 0.022 | 3.9 | ug/L | -47 | Standard | | | Se | 82 | 580.9 | 2.3 | 9.1028 | 0.702 | 7.7 | ug/L | 15 | Standard | | L | Se-1 | 77 | 414.7 | 10.1 | 8.9852 | 1.621 | 18.0 | ug/L | 65 | Standard | | Γ> | Ga | 71 | 130.0 | 27.7 | | | | mg/L | 27 | Standard | | L | Rb | 85 | 1810.1 | 6.3 | | | | ug/L | 17 | Standard | | Γ | Υ | 89 | 237371.1 | 3.1 | | | | ug/L | 216672 | Standard | | L> | Rh | 103 | 18.3 | 41.7 | | | | ug/L | 18 | Standard | | Γ | Мо | 98 | 198.3 | 4.1 | 0.1291 | 0.009 | 7.0 | ug/L | 11 | Standard
 | | Ag | 107 | 49.3 | 18.4 | -0.0015 | 0.002 | 147.8 | ug/L | 55 | Standard | | | Cd | 111 | 30.6 | 19.9 | 0.0138 | 0.003 | 24.4 | mg/L | 7 | Standard | | | Cd | 114 | 74.1 | 12.0 | 0.0253 | 0.002 | 6.2 | ug/L | 4 | Standard | | > | In | 115 | 349402.5 | 4.6 | | | | ug/L | 322525 | Standard | | | Sn | 118 | 470.0 | 10.8 | -0.0427 | 0.017 | 40.2 | ug/L | 345 | Standard | | | Sb | 123 | 153.0 | 6.0 | 0.0267 | 0.001 | 3.2 | ug/L | 88 | Standard | | L | Ва | 135 | 52449.3 | 8.0 | 30.2952 | 1.651 | 5.4 | ug/L | 12 | Standard | | Γ | Ce | 140 | 10335.2 | 2.5 | | | | ug/L | 37 | Standard | | _> | Tb | 159 | 652162.8 | 5.8 | | | | ug/L | 631826 | Standard | | Γ | Но | 165 | 100.0 | 18.0 | | | | ug/L | 3 | Standard | | | TI | 203 | 64.3 | 2.4 | 0.0068 | 0.001 | 7.8 | ug/L | 7 | Standard | | | TI | 205 | 51.7 | 62.2 | 0.0136 | 0.007 | 49.1 | ug/L | 7 | Standard | | | Pb | 206 | 608.0 | 6.8 | 0.0875 | 0.018 | 20.8 | ug/L | 159 | Standard | | ļ | Pb | 207 | 473.7 | 2.3 | 0.0691 | 0.009 | 12.7 | ug/L | 120 | Standard | | ļ | Pb | 208 | 2068.1 | 3.1 | 0.0842 | 0.011 | 12.7 | ug/L | 503 | Standard | | ļ | U | 238 | 96.0 | 5.8 | 0.0127 | 0.001 | 5.6 | ug/L | 5 | Standard | | L> | Bi | 209 | 349658.6 | 5.6 | | | | ug/L | 333509 | Standard | | | | | | | | | | | | | Sample ID: L1510121504 Report Date/Time: Tuesday, October 27, 2015 17:36:08 Page 1 Approved: October 28, 2015 | Γ | Na | 23 | 1.7 | 173.2 | | | | mg/L | 0 | Standard | |----|------|-----|---------|-------|---------|-------|-------|------|-------|----------| | i | Mg | 24 | 8834.2 | 1.0 | 17.9554 | 0.803 | 4.5 | mg/L | 10 | Standard | | İ | ĸ | 39 | 33.3 | 52.7 | 0.1431 | 0.182 | 127.2 | mg/L | 32 | Standard | | ĺ | Ca | 43 | 70.0 | 21.4 | -4.8481 | 2.128 | 43.9 | mg/L | 85 | Standard | | ĺ | Fe | 54 | 154.2 | 11.7 | 0.1895 | 0.046 | 24.0 | mg/L | 82 | Standard | | ĺ | Fe | 57 | 290.0 | 12.1 | 0.4680 | 0.307 | 65.6 | mg/L | 217 | Standard | | Ĺ> | Sc-1 | 45 | 17036.2 | 3.6 | | | | mg/L | 14524 | Standard | | | CI | 35 | 74398.9 | 1.2 | | | | ug/L | 53193 | Standard | | | Kr | 83 | 3.3 | 45.8 | | | | ug/L | 3 | Standard | | | Br | 81 | 1923.5 | 10.7 | | | | ug/L | 327 | Standard | | | Р | 31 | 23326.3 | 3.1 | | | | ug/L | 13329 | Standard | | | S | 34 | 3277.0 | 3.5 | | | | ug/L | 3234 | Standard | | | Sr | 88 | 120.0 | 7.2 | | | | ug/L | 87 | Standard | | | С | 12 | 296.7 | 19.2 | | | | mg/L | 103 | Standard | | | N | 14 | 6.7 | 173.2 | | | | mg/L | 0 | Standard | | | Hg | 202 | 16.7 | 34.6 | | | | mg/L | 3 | Standard | | | Dy | 164 | 168.1 | 38.7 | | | | mg/L | 10 | Standard | | | Ho-1 | 165 | 100.0 | 18.0 | | | | mg/L | 3 | Standard | | | Er | 166 | 110.0 | 15.7 | | | | mg/L | 7 | Standard | | | I | 127 | 40280.2 | 2.3 | | | | mg/L | 3612 | Standard | | | Analyte | Mass | QC Std % Recovery | Int Std % Recovery | Spike % Recovery | |----|---------|------|-------------------|--------------------|------------------| | [> | Li | 6 | | 124.314 | | | | Ве | 9 | | | | | L | Al | 27 | | | | | Γ | Sc | 45 | | | | | | Ti | 47 | | | | | | V | 51 | | | | | | Cr | 52 | | | | | | Cr | 53 | | | | | | Mn | 55 | | | | | | Co | 59 | | | | | | Ni | 60 | | | | | | Cu | 65 | | | | | | Zn | 66 | | | | | > | Ge | 72 | | 106.258 | | | | As | 75 | | | | | | Se | 82 | | | | | L | Se-1 | 77 | | | | | Γ> | Ga | 71 | | | | Sample ID: L1510121504 Report Date/Time: Tuesday, October 27, 2015 17:36:08 Page 2 Approved: October 28, 2015 | L Rb 85 √ 89 L> Rh 103 √ Mo 98 Ag 107 Cd 111 Cd 114 I In 115 Sn 118 Sb 123 Ba 135 Ce 140 L> Tb 159 Ho 165 TI 203 TI 205 | | 108.334 | | |---|----------------------|---------------------------------------|--| | Pb 206
 Pb 207
 Pb 208
 U 238
 Description 23
 Mg 24
 K 39
 Ca 43
 Fe 54
 Fe 57
 Sc-1 45
 Cl 35
 Kr 83
 Br 81 | | 104.842 | | | P 31 S 34 Sr 88 C 12 N 14 Hg 202 Dy 164 Ho-1 165 Er 166 I 127 QC Out of Limits Measurement Type Li 6 Int Std for sample | Analyte Mass
Li 6 | Out of Limits Message
Rerun sample | | **Sample ID: L1510121504**Report Date/Time: Tuesday, October 27, 2015 17:36:08 Page 3 Sample ID: L1510121505 Sample Date/Time: Tuesday, October 27, 2015 17:37:02 Number of Replicates: 3 Autosampler Position: 353 Sample Description: 1 Method File: C:\NexIONData\Method\6020a.mth Aliquot Volume (mL): Diluted to Volume (mL): User Name: BKT Nexion300X Cumulative Autodilution Factor: 1 Nexion-ICP 200.8\6020 **Concentration Results** | | | | | | Ooncentrat | iation results | | | | | |----|--------|--------|-----------|------|------------|----------------|--------|-------|---------------|----------| | IS | Analyt | e Mass | Intensity | RSD | Conc. | SD | RSD | Units | Blank Intens. | Mode | | Γ> | Li | 6 | 31577.9 | 3.8 | | | | ug/L | 26270 | Standard | | | Be | 9 | 21.7 | 35.3 | -0.0004 | 0.011 | 2985.7 | ug/L | 2 | Standard | | L | Αl | 27 | 540257.9 | 1.5 | 8.0062 | 0.414 | 5.2 | ug/L | 403 | Standard | | Γ | Sc | 45 | 16462.3 | 1.2 | | | | ug/L | 14524 | Standard | | | Ti | 47 | 750.7 | 3.2 | 2.5799 | 0.271 | 10.5 | ug/L | 365 | Standard | | | ٧ | 51 | 4657.4 | 3.5 | 1.0760 | 0.086 | 8.0 | ug/L | 805 | Standard | | | Cr | 52 | 11394.0 | 2.2 | 1.3364 | 0.136 | 10.2 | ug/L | 5481 | Standard | | | Cr | 53 | 1448.4 | 6.8 | 2.1573 | 0.257 | 11.9 | ug/L | 268 | Standard | | | Mn | 55 | 10583.7 | 2.9 | 2.8090 | 0.185 | 6.6 | ug/L | 670 | Standard | | | Co | 59 | 772.7 | 1.6 | 0.1960 | 0.011 | 5.5 | ug/L | 146 | Standard | | | Ni | 60 | 917.0 | 5.2 | 0.5778 | 0.063 | 10.9 | ug/L | 220 | Standard | | | Cu | 65 | 518.7 | 2.9 | 0.2857 | 0.011 | 4.0 | ug/L | 147 | Standard | | | Zn | 66 | 1207.7 | 3.5 | 1.2049 | 0.099 | 8.2 | ug/L | 211 | Standard | | > | Ge | 72 | 214205.4 | 2.9 | | | | ug/L | 210599 | Standard | | | As | 75 | 391.3 | 20.8 | 0.6280 | 0.122 | 19.4 | ug/L | -47 | Standard | | | Se | 82 | 599.5 | 3.1 | 9.8128 | 0.608 | 6.2 | ug/L | 15 | Standard | | L | Se-1 | 77 | 446.0 | 8.0 | 10.1892 | 0.342 | 3.4 | ug/L | 65 | Standard | | Γ> | Ga | 71 | 158.3 | 6.6 | | | | mg/L | 27 | Standard | | L | Rb | 85 | 2190.2 | 8.7 | | | | ug/L | 17 | Standard | | Γ | Υ | 89 | 228144.4 | 5.1 | | | | ug/L | 216672 | Standard | | L> | Rh | 103 | 25.0 | 40.0 | | | | ug/L | 18 | Standard | | Γ | Мо | 98 | 218.1 | 5.0 | 0.1478 | 0.003 | 2.1 | ug/L | 11 | Standard | | | Ag | 107 | 55.0 | 15.5 | -0.0001 | 0.001 | 1585.8 | ug/L | 55 | Standard | | | Cd | 111 | 26.9 | 8.5 | 0.0122 | 0.002 | 19.1 | mg/L | 7 | Standard | | | Cd | 114 | 61.5 | 8.7 | 0.0226 | 0.001 | 3.7 | ug/L | 4 | Standard | | > | In | 115 | 335616.8 | 4.3 | | | | ug/L | 322525 | Standard | | | Sn | 118 | 440.0 | 5.2 | -0.0459 | 0.006 | 12.9 | ug/L | 345 | Standard | | | Sb | 123 | 139.4 | 8.3 | 0.0247 | 0.002 | 6.4 | ug/L | 88 | Standard | | L | Ва | 135 | 52985.8 | 0.7 | 31.8550 | 1.560 | 4.9 | ug/L | 12 | Standard | | Γ | Се | 140 | 11027.3 | 3.3 | | | | ug/L | 37 | Standard | | _> | Tb | 159 | 628379.2 | 5.2 | | | | ug/L | 631826 | Standard | | Γ | Но | 165 | 141.7 | 19.4 | | | | ug/L | 3 | Standard | | | TI | 203 | 77.0 | 16.3 | 0.0091 | 0.002 | 23.3 | ug/L | 7 | Standard | | | TI | 205 | 55.0 | 15.7 | 0.0149 | 0.002 | 13.3 | ug/L | 7 | Standard | | ļ | Pb | 206 | 626.0 | 3.0 | 0.0962 | 0.005 | 5.4 | ug/L | 159 | Standard | | | Pb | 207 | 542.7 | 4.0 | 0.0920 | 0.009 | 9.9 | ug/L | 120 | Standard | | ļ | Pb | 208 | 2230.1 | 2.6 | 0.0995 | 0.004 | 4.1 | ug/L | 503 | Standard | | ļ | U | 238 | 93.0 | 13.1 | 0.0127 | 0.002 | 17.8 | ug/L | 5 | Standard | | L> | Bi | 209 | 338640.1 | 2.8 | | | | ug/L | 333509 | Standard | | | | | | | | | | | | | Sample ID: L1510121505 Report Date/Time: Tuesday, October 27, 2015 17:39:19 Page 1 Approved: October 28, 2015 | _ | | | | | | | | | | | |----|------|-----|---------|-------|---------|-------|------|------|-------|----------| | | Na | 23 | 0.0 | | | | | mg/L | 0 | Standard | | | Mg | 24 | 9106.1 | 2.6 | 19.1345 | 0.378 | 2.0 | mg/L | 10 | Standard | | | K | 39 | 41.7 | 18.3 | 0.2468 | 0.078 | 31.7 | mg/L | 32 | Standard | | | Ca | 43 | 70.0 | 35.7 | -4.5065 | 3.650 | 81.0 | mg/L | 85 | Standard | | | Fe | 54 | 142.4 | 23.0 | 0.1744 | 0.071 | 40.7 | mg/L | 82 | Standard | | | Fe | 57 | 278.3 | 11.0 | 0.4490 | 0.256 | 57.0 | mg/L | 217 | Standard | | L> | Sc-1 | 45 | 16462.3 | 1.2 | | | | mg/L | 14524 | Standard | | | CI | 35 | 74220.0 | 1.1 | | | | ug/L | 53193 | Standard | | | Kr | 83 | 5.3 | 10.8 | | | | ug/L | 3 | Standard | | | Br | 81 | 1936.8 | 6.7 | | | | ug/L | 327 | Standard | | | Р | 31 | 23052.5 | 2.8 | | | | ug/L | 13329 | Standard | | | S | 34 | 3410.4 | 8.3 | | | | ug/L | 3234 | Standard | | | Sr | 88 | 128.3 | 11.9 | | | | ug/L | 87 | Standard | | | С | 12 | 223.3 | 14.4 | | | | mg/L | 103 | Standard | | | N | 14 | 0.0 | | | | | mg/L | 0 | Standard | | | Hg | 202 | 6.7 | 173.2 | | | | mg/L | 3 | Standard | | | Dy | 164 | 188.1 | 7.9 | | | | mg/L | 10 | Standard | | | Ho-1 | 165 | 141.7 | 19.4 | | | | mg/L | 3 | Standard | | | Er | 166 | 110.0 | 27.3 | | | | mg/L | 7 | Standard | | | I | 127 | 37471.3 | 1.5 | | | | mg/L | 3612 | Standard | | Analyte | Mass | QC Std % Recovery | Int Std % Recovery | Spike % Recovery | |--------------|------|-------------------|--------------------|------------------| | 「⊳ Li | 6 | | 120.207 | | | Be | 9 | | | | | L AI | 27 | | | | | 「 Sc | 45 | | | | | Ti | 47 | | | | | V | 51 | | | | | Cr | 52 | | | | | Cr | 53 | | | | | Mn | 55 | | | | | Co | 59 | | | | | Ni | 60 | | | | | Cu | 65 | | | | | Zn | 66 | | | | | > Ge | 72 | | 101.713 | | | As | 75 | | | | | Se | 82 | | | | | L Se-1 | 77 | | | | | 「> Ga | 71 | | | | Sample ID: L1510121505 Report Date/Time: Tuesday, October 27, 2015 17:39:19 Page 2 Approved: October 28, 2015 | ∟
Rb | 85 | | | | |----------------|----------------|--------------|-----------------------|--| | ΓY | 89 | | | | | $\lfloor_>$ Rh | 103 | | | | | Г Мо | 98 | | | | | Ag | 107 | | | | | Cď | 111 | | | | | Cd | 114 | | | | | > In | 115 | | 104.059 | | | Sn | 118 | | | | | Sb | 123 | | | | | L Ba | 135 | | | | | ∟ Ba
Γ Ce | 140 | | | | | | 159 | | | | | [> Ib
[Ho | 165 | | | | | TI | 203 | | | | | | | | | | | TI | 205 | | | | | Pb | 206 | | | | | Pb | 207 | | | | | Pb | 208 | | | | | U | 238 | | 404 500 | | | Ĺ> Bi | 209 | | 101.538 | | | Na | 23 | | | | | Mg | 24 | | | | | K | 39 | | | | | Ca | 43 | | | | | Fe | 54 | | | | | Fe | 57 | | | | | _> Sc-1 | 45 | | | | | CI | 35 | | | | | Kr | 83 | | | | | Br | 81 | | | | | Р | 31 | | | | | S | 34 | | | | | Sr | 88 | | | | | С | 12 | | | | | N | 14 | | | | | Hg | 202 | | | | | Dy | 164 | | | | | Ho-1 | 165 | | | | | Er | 166 | | | | | ı | 127 | | | | | OC O | ut of Limits | | | | | | | Amalusta NA | Out of Limits BAssass | | | | ement Type | Analyte Mass | Out of Limits Message | | | LIBINTS | Std for sample | Li 6 | Rerun sample | | Sample ID: L1510121505 Report Date/Time: Tuesday, October 27, 2015 17:39:19 Page 3 Sample ID: L1510121507 Sample Date/Time: Tuesday, October 27, 2015 17:40:13 Number of Replicates: 3 Autosampler Position: 354 Sample Description: 1 Method File: C:\NexIONData\Method\6020a.mth Aliquot Volume (mL): Diluted to Volume (mL): User Name: BKT Nexion300X Cumulative Autodilution Factor: 1 Nexion-ICP 200.8\6020 | \sim | ncon | tration | Results | | |--------|------|----------|---------|--| | υo | ncer | itration | Results | | | | | | | Concentra | alion results | | | | | | |----|--------|--------|-----------|-----------|---------------|-------|-------|-------|---------------|----------| | IS | Analyt | e Mass | Intensity | RSD | Conc. | SD | RSD | Units | Blank Intens. | Mode | | Γ> | Li | 6 | 34651.4 | 7.7 | | | | ug/L | 26270 | Standard | | | Be | 9 | 11.7 | 24.7 | -0.0179 | 0.003 | 15.6 | ug/L | 2 | Standard | | L | Αl | 27 | 2355189.2 | 3.4 | 31.9908 | 3.273 | 10.2 | ug/L | 403 | Standard | | Γ | Sc | 45 | 17546.8 | 4.8 | | | | ug/L | 14524 | Standard | | | Ti | 47 | 382.7 | 6.0 | 0.1468 | 0.253 | 172.4 | ug/L | 365 | Standard | | | V | 51 | 5787.0 | 3.3 | 1.3083 | 0.139 | 10.6 | ug/L | 805 | Standard | | | Cr | 52 | 8860.6 | 1.7 | 0.6334 | 0.145 | 23.0 | ug/L | 5481 | Standard | | | Cr | 53 | 2125.1 | 4.5 | 3.1816 | 0.058 | 1.8 | ug/L | 268 | Standard | | | Mn | 55 | 5393.6 | 3.2 | 1.1695 | 0.137 | 11.7 | ug/L | 670 | Standard | | | Co | 59 | 415.7 | 0.3 | 0.0770 | 0.007 | 9.7 | ug/L | 146 | Standard | | | Ni | 60 | 683.7 | 5.3 | 0.3402 | 0.057 | 16.9 | ug/L | 220 | Standard | | | Cu | 65 | 562.0 | 4.1 | 0.2971 | 0.041 | 13.9 | ug/L | 147 | Standard | | | Zn | 66 | 1458.4 | 4.0 | 1.4643 | 0.201 | 13.8 | ug/L | 211 | Standard | | > | Ge | 72 | 227263.8 | 6.0 | | | | ug/L | 210599 | Standard | | | As | 75 | 1499.7 | 10.4 | 2.0639 | 0.224 | 10.9 | ug/L | -47 | Standard | | | Se | 82 | 2369.3 | 2.6 | 37.0959 | 2.768 | 7.5 | ug/L | 15 | Standard | | L | Se-1 | 77 | 1586.1 | 1.9 | 37.1604 | 2.963 | 8.0 | ug/L | 65 | Standard | | Γ> | Ga | 71 | 655.0 | 10.8 | | | | mg/L | 27 | Standard | | L | Rb | 85 | 2982.0 | 4.3 | | | | ug/L | 17 | Standard | | Γ | Υ | 89 | 239353.4 | 5.9 | | | | ug/L | 216672 | Standard | | L> | Rh | 103 | 68.3 | 11.2 | | | | ug/L | 18 | Standard | | Γ | Мо | 98 | 356.9 | 2.7 | 0.2297 | 0.006 | 2.6 | ug/L | 11 | Standard | | | Ag | 107 | 53.7 | 6.5 | -0.0009 | 0.001 | 117.9 | ug/L | 55 | Standard | | | Cd | 111 | 62.2 | 11.3 | 0.0341 | 0.006 | 17.4 | mg/L | 7 | Standard | | | Cd | 114 | 169.6 | 29.6 | 0.0505 | 0.014 | 28.5 | ug/L | 4 | Standard | | > | In | 115 | 355799.3 | 4.6 | | | | ug/L | 322525 | Standard | | | Sn | 118 | 636.7 | 18.1 | -0.0075 | 0.022 | 291.1 | ug/L | 345 | Standard | | | Sb | 123 | 250.4 | 7.5 | 0.0494 | 0.002 | 3.5 | ug/L | 88 | Standard | | L | Ва | 135 | 40146.5 | 3.4 | 22.7816 | 1.758 | 7.7 | ug/L | 12 | Standard | | Γ | Ce | 140 | 3857.2 | 3.0 | | | | ug/L | 37 | Standard | | _> | Tb | 159 | 670292.5 | 5.2 | | | | ug/L | 631826 | Standard | | Γ | Но | 165 | 41.7 | 36.7 | | | | ug/L | 3 | Standard | | | TI | 203 | 182.7 | 6.1 | 0.0240 | 0.002 | 8.8 | ug/L | 7 | Standard | | | TI | 205 | 121.7 | 34.5 | 0.0291 | 0.010 | 35.5 | ug/L | 7 | Standard | | | Pb | 206 | 484.0 | 4.0 | 0.0556 | 0.004 | 7.0 | ug/L | 159 | Standard | | | Pb | 207 | 403.3 | 7.8 | 0.0488 | 0.007 | 14.4 | ug/L | 120 | Standard | | ļ | Pb | 208 | 1755.4 | 3.3 | 0.0617 | 0.005 | 8.4 | ug/L | 503 | Standard | | ļ | U | 238 | 1048.7 | 2.3 | 0.1824 | 0.007 | 4.1 | ug/L | 5 | Standard | | _> | Bi | 209 | 354082.5 | 6.4 | | | | ug/L | 333509 | Standard | | | | | | | | | | | | | Sample ID: L1510121507 Report Date/Time: Tuesday, October 27, 2015 17:42:30 Page 1 Approved: October 28, 2015 Page 568 L15101055 / Revision: 0 / 760 total pages | Γ | Na | 23 | 5.0 | 173.2 | | | | mg/L | 0 | Standard | |----|------|-----|---------|-------|---------|-------|------|------|-------|----------| | | Mg | 24 | 19599.3 | 2.0 | 38.7559 | 2.392 | 6.2 | mg/L | 10 | Standard | | | K | 39 | 71.7 | 22.4 | 0.5316 | 0.184 | 34.5 | mg/L | 32 | Standard | | | Ca | 43 | 135.0 | 7.4 | 3.6180 | 2.088 | 57.7 | mg/L | 85 | Standard | | | Fe | 54 | 121.0 | 20.5 | 0.1107 | 0.038 | 33.9 | mg/L | 82 | Standard | | | Fe | 57 | 290.0 | 1.7 | 0.4012 | 0.141 | 35.2 | mg/L | 217 | Standard | | Ĺ> | Sc-1 | 45 | 17546.8 | 4.8 | | | | mg/L | 14524 | Standard | | | CI | 35 | 82584.5 | 1.2 | | | | ug/L | 53193 | Standard | | | Kr | 83 | 4.7 | 44.6 | | | | ug/L | 3 | Standard | | | Br | 81 | 6878.2 | 2.4 | | | | ug/L | 327 | Standard | | | Р | 31 | 22243.0 | 1.3 | | | | ug/L | 13329 | Standard | | | S | 34 | 3217.0 | 2.3 | | | | ug/L | 3234 | Standard | | | Sr | 88 | 188.3 | 3.1 | | | | ug/L | 87 | Standard | | | С | 12 | 180.0 | 9.6 | | | | mg/L | 103 | Standard | | | N | 14 | 3.3 | 173.2 | | | | mg/L | 0 | Standard | | | Hg | 202 | 26.7 | 21.7 | | | | mg/L | 3 | Standard | | | Dy | 164 | 68.1 | 38.5 | | | | mg/L | 10 | Standard | | | Ho-1 | 165 | 41.7 | 36.7 | | | | mg/L | 3 | Standard | | | Er | 166 | 40.0 | 75.0 | | | | mg/L | 7 | Standard | | | I | 127 | 55822.7 | 2.9 | | | | mg/L | 3612 | Standard | | | | | | | | | | | | | | | Analyte | Mass | QC Std % Recovery | Int Std % Recovery | Spike % Recovery | |----|---------|------|-------------------|--------------------|------------------| | [> | Li | 6 | | 131.907 | | | | Ве | 9 | | | | | L | Al | 27 | | | | | Γ | Sc | 45 | | | | | | Ti | 47 | | | | | | V | 51 | | | | | | Cr | 52 | | | | | | Cr | 53 | | | | | | Mn | 55 | | | | | | Co | 59 | | | | | | Ni | 60 | | | | | | Cu | 65 | | | | | | Zn | 66 | | | | | > | Ge | 72 | | 107.913 | | | | As | 75 | | | | | | Se | 82 | | | | | L | Se-1 | 77 | | | | | Γ> | Ga | 71 | | | | Sample ID: L1510121507 Report Date/Time: Tuesday, October 27, 2015 17:42:30 Page 2 Approved: October 28, 2015 | L Rb | 85 | | | | |----------------|----------------|--------------|-----------------------|--| | ΓY | 89 | | | | | $\lfloor_>$ Rh | 103 | | | | | Г Мо | 98 | | | | | Ag | 107 | | | | | Cď | 111 | | | | | Cd | 114 | | | | | > In | 115 | | 110.317 | | | Sn | 118 | | 110.011 | | | Sb | 123 | | | | | L Ba | 135 | | | | | ∟ Da
Γ Ce | 140 | | | | | | 159 | | | | | L> Tb
「 Ho | | | | | | | 165 | | | | | TI | 203 | | | | | TI | 205 | | | | | Pb | 206 | | | | | Pb | 207 | | | | | Pb | 208 | | | | | U | 238 | | | | | L> Bi | 209 | | 106.169 | | | Г Na | 23 | | | | | Mg | 24 | | | | | K | 39 | | | | | Ca | 43 | | | | | Fe | 54 | | | | | Fe | 57 | | | | | L> Sc-1 | 45 | | | | | CI | 35 | | | | | Kr | 83 | | | | | Br | 81 | | | | | Р | 31 | | | | | S | 34 | | | | | Sr | 88 | | | | | C | 12 | | | | | N | 14 | | | | | Hg | 202 | | | | | Dy | 164 | | | | | Ho-1 | 165 | | | | | | 166 | | | | | Er | 127 | | | | | 1 | | | | | | | ut of Limits | | | | | | ement Type | Analyte Mass | Out of Limits Message | | | Li 6 Int S | Std for sample | Li 6 | Rerun sample | | | | | | | | Sample ID: L1510121507 Report Date/Time: Tuesday, October 27, 2015 17:42:30 Page 3 Sample ID: FBLANK 76 WG544075-05 Sample Date/Time: Tuesday, October 27, 2015 17:45:54 Number of Replicates: 3 Autosampler Position: 341 Sample Description: 1 Method File: C:\NexIONData\Method\6020a.mth Aliquot Volume (mL): Diluted to Volume (mL): User Name: BKT Nexion300X Cumulative Autodilution Factor: 1 Nexion-ICP 200.8\6020 | Concentration | Results | |---------------|---------| |---------------|---------| | | | | | | Comcontin | 41.011 1100 | uito | | | | |----|--------|--------|-----------|-------|-----------|-------------|-------|-------|---------------|----------| | IS | Analyt | e Mass | Intensity | RSD | Conc. | SD | RSD | Units | Blank Intens. | Mode | | Γ> | Li | 6 | 33687.4 | 3.9 | | | | ug/L | 26270 | Standard | | | Be | 9 | 11.7 | 49.5 | -0.0174 | 0.009 | 49.4 | ug/L | 2 | Standard | | L | ΑI | 27 | 1955.1 | 12.8 | 0.0066 | 0.003 | 51.0 | ug/L | 403 | Standard | | Γ | Sc | 45 | 17623.6 | 9.0 | | | | ug/L | 14524 | Standard | | | Ti | 47 | 92.7 | 11.8 | -1.5797 | 0.093 | 5.9 | ug/L | 365 | Standard | | | ٧ | 51 | 1068.6 | 11.6 | 0.0230 | 0.035 | 153.5 | ug/L | 805 | Standard | | | Cr | 52 | 6828.5 | 2.0 | 0.1536 | 0.095 | 61.8 | ug/L | 5481 | Standard | | | Cr | 53 | 448.3 | 11.9 | 0.2399 | 0.121 | 50.4 | ug/L | 268 | Standard | | | Mn | 55 | 1587.7 | 4.4 | 0.0850 | 0.039 | 46.0 | ug/L | 670 | Standard | | | Co | 59 | 200.0 | 10.5 | 0.0119 | 0.006 | 47.9 | ug/L | 146 | Standard | | | Ni | 60 | 231.7 | 10.2 | -0.0384 | 0.026 | 66.6 | ug/L | 220 | Standard | | | Cu | 65 | 172.7 | 4.9 | -0.0358 | 0.011 | 30.2 | ug/L | 147 | Standard | | | Zn | 66 | 1098.7 | 2.0 | 0.9109 | 0.084 | 9.2 | ug/L | 211 | Standard | | > | Ge | 72 | 232308.8 | 5.1 | | | | ug/L | 210599 | Standard | | | As | 75 | 8.2 | 361.4 | 0.0872 | 0.038 | 44.1 | ug/L | -47 | Standard | | | Se | 82 | 17.7 | 6.4 | 0.0945 | 0.015 | 16.1 | ug/L | 15 | Standard | | L | Se-1 | 77 | 56.7 | 2.0 |
0.1024 | 0.055 | 53.4 | ug/L | 65 | Standard | | Γ> | Ga | 71 | 21.7 | 26.6 | | | | mg/L | 27 | Standard | | L | Rb | 85 | 30.0 | 16.7 | | | | ug/L | 17 | Standard | | Γ | Υ | 89 | 249144.4 | 2.8 | | | | ug/L | 216672 | Standard | | L> | Rh | 103 | 20.0 | 50.0 | | | | ug/L | 18 | Standard | | Γ | Мо | 98 | 12.8 | 28.7 | 0.0056 | 0.002 | 36.8 | ug/L | 11 | Standard | | | Ag | 107 | 51.3 | 13.8 | -0.0018 | 0.001 | 68.9 | ug/L | 55 | Standard | | | Cd | 111 | 15.6 | 20.6 | 0.0033 | 0.002 | 49.0 | mg/L | 7 | Standard | | | Cd | 114 | 41.2 | 59.6 | 0.0160 | 0.007 | 41.9 | ug/L | 4 | Standard | | > | In | 115 | 370061.0 | 4.4 | | | | ug/L | 322525 | Standard | | | Sn | 118 | 515.0 | 6.8 | -0.0391 | 0.013 | 32.6 | ug/L | 345 | Standard | | | Sb | 123 | 75.6 | 9.7 | 0.0068 | 0.002 | 22.4 | ug/L | 88 | Standard | | Ĺ | Ва | 135 | 132.3 | 8.7 | 0.0485 | 0.010 | 19.6 | ug/L | 12 | Standard | | ļ | Ce | 140 | 65.0 | 15.4 | | | | ug/L | 37 | Standard | | Ĺ> | Tb | 159 | 691176.8 | 3.7 | | | | ug/L | 631826 | Standard | | ļ | Но | 165 | 8.3 | 69.3 | | | | ug/L | 3 | Standard | | ļ | TI | 203 | 54.3 | 24.0 | 0.0049 | 0.002 | 34.9 | ug/L | 7 | Standard | | ļ | TI | 205 | 36.7 | 34.3 | 0.0101 | 0.003 | 29.0 | ug/L | 7 | Standard | | ļ | Pb | 206 | 251.0 | 12.8 | -0.0028 | 0.005 | 183.2 | ug/L | 159 | Standard | | ļ | Pb | 207 | 219.0 | 2.0 | -0.0022 | 0.001 | 61.9 | ug/L | 120 | Standard | | - | Pb | 208 | 870.7 | 1.7 | 0.0009 | 0.002 | 231.2 | ug/L | 503 | Standard | | - | U | 238 | 33.3 | 4.6 | 0.0011 | 0.000 | 23.2 | ug/L | 5 | Standard | | L> | Bi | 209 | 369791.7 | 4.4 | | | | ug/L | 333509 | Standard | Sample ID: FBLANK 76 WG544075-05 Report Date/Time: Tuesday, October 27, 2015 17:48:11 Page 1 | Γ | Na | 23 | 1.7 | 173.2 | | | | mg/L | 0 | Standard | |----|------|-----|---------|-------|---------|-------|-------|------|-------|----------| | | Mg | 24 | 31.7 | 74.6 | 0.0214 | 0.045 | 209.8 | mg/L | 10 | Standard | | | K | 39 | 25.0 | 20.0 | 0.0491 | 0.065 | 133.2 | mg/L | 32 | Standard | | | Ca | 43 | 55.0 | 48.1 | -6.9458 | 4.061 | 58.5 | mg/L | 85 | Standard | | ĺ | Fe | 54 | 72.2 | 9.7 | 0.0126 | 0.013 | 101.3 | mg/L | 82 | Standard | | ĺ | Fe | 57 | 235.0 | 24.0 | -0.0528 | 0.355 | 672.7 | mg/L | 217 | Standard | | Ĺ> | Sc-1 | 45 | 17623.6 | 9.0 | | | | mg/L | 14524 | Standard | | | CI | 35 | 71328.8 | 0.4 | | | | ug/L | 53193 | Standard | | | Kr | 83 | 3.3 | 62.4 | | | | ug/L | 3 | Standard | | | Br | 81 | 480.0 | 6.3 | | | | ug/L | 327 | Standard | | | Р | 31 | 16320.5 | 1.6 | | | | ug/L | 13329 | Standard | | | S | 34 | 3528.7 | 1.6 | | | | ug/L | 3234 | Standard | | | Sr | 88 | 113.3 | 38.5 | | | | ug/L | 87 | Standard | | | С | 12 | 166.7 | 28.4 | | | | mg/L | 103 | Standard | | | N | 14 | 0.0 | | | | | mg/L | 0 | Standard | | | Hg | 202 | 0.0 | | | | | mg/L | 3 | Standard | | | Dy | 164 | 12.9 | 93.1 | | | | mg/L | 10 | Standard | | | Ho-1 | 165 | 8.3 | 69.3 | | | | mg/L | 3 | Standard | | | Er | 166 | 10.0 | 100.0 | | | | mg/L | 7 | Standard | | | I | 127 | 2878.6 | 1.2 | | | | mg/L | 3612 | Standard | | | | | | | | | | | | | | Analyte | Mass | QC Std % Recovery | Int Std % Recovery | Spike % Recovery | |---------|------|-------------------|--------------------|------------------| | 「⊳ Li | 6 | | 128.237 | | | Be | 9 | | | | | L AI | 27 | | | | | 「 Sc | 45 | | | | | Ti | 47 | | | | | V | 51 | | | | | Cr | 52 | | | | | Cr | 53 | | | | | Mn | 55 | | | | | Co | 59 | | | | | Ni | 60 | | | | | Cu | 65 | | | | | Zn | 66 | | | | | > Ge | 72 | | 110.309 | | | As | 75 | | | | | Se | 82 | | | | | L Se-1 | 77 | | | | | 「⊳ Ga | 71 | | | | Sample ID: FBLANK 76 WG544075-05 Report Date/Time: Tuesday, October 27, 2015 17:48:11 Page 2 Approved: October 28, 2015 | U | Rb Y Rh Mo Ag Cd In Sh Ba Ce Tb TI Pb Pb | 85
89
103
98
107
111
114
115
118
123
135
140
159
165
203
205
206
207
208 | | 114.739 | | |--|--|--|-------|--------------|--| | Na | | | | 110.970 | | | Mg | | | | 110.079 | | | K 39 | | | | | | | Ca | | | | | | | Fe | | | | | | | Fe | | | | | | | Sc-1 | | | | | | | CI 35 Kr 83 Br 81 P 31 S 34 Sr 88 C 12 N 14 Hg 202 Dy 164 Ho-1 165 Er 166 I 127 QC Out of Limits Measurement Type Analyte Mass Out of Limits Message Li 6 Int Std for sample Li 6 Rerun sample | | | | | | | Kr 83 Br 81 P 31 S 34 Sr 88 C 12 N 14 Hg 202 Dy 164 Ho-1 165 Er 166 I 127 QC Out of Limits Measurement Type Analyte Mass Out of Limits Message Li 6 Int Std for sample Li 6 Rerun sample | | | | | | | Br 81 P 31 S 34 Sr 88 C 12 N 14 Hg 202 Dy 164 Ho-1 165 Er 166 I 127 QC Out of Limits Measurement Type Analyte Mass Out of Limits Message Li 6 Int Std for sample Li 6 Rerun sample | | | | | | | P 31 S 34 Sr 88 C 12 N 14 Hg 202 Dy 164 Ho-1 165 Er 166 I 127 QC Out of Limits Measurement Type Analyte Mass Out of Limits Message Li 6 Int Std for sample Li 6 Rerun sample | | | | | | | S 34 Sr 88 C 12 N 14 Hg 202 Dy 164 Ho-1 165 Er 166 I 127 QC Out of Limits Measurement Type Analyte Mass Out of Limits Message Li 6 Int Std for sample Li 6 Rerun sample | | | | | | | Sr 88 C 12 N 14 Hg 202 Dy 164 Ho-1 165 Er 166 I 127 QC Out of Limits Measurement Type Analyte Mass Out of Limits Message Li 6 Int Std for sample Li 6 Rerun sample | S | | | | | | N 14 Hg 202 Dy 164 Ho-1 165 Er 166 I 127 QC Out of Limits Measurement Type Analyte Mass Out of Limits Message Li 6 Int Std for sample Li 6 Rerun sample | Sr | | | | | | Hg 202 Dy 164 Ho-1 165 Er 166 I 127 QC Out of Limits Measurement Type Analyte Mass Out of Limits Message Li 6 Int Std for sample Li 6 Rerun sample | С | | | | | | Dy 164 Ho-1 165 Er 166 I 127 QC Out of Limits Measurement Type Analyte Mass Out of Limits Message Li 6 Int Std for sample Li 6 Rerun sample | | | | | | | Ho-1 165 Er 166 I 127 QC Out of Limits Measurement Type Analyte Mass Out of Limits Message Li 6 Int Std for sample Li 6 Rerun sample | | | | | | | Er 166 I 127 QC Out of Limits Measurement Type Analyte Mass Out of Limits Message Li 6 Int Std for sample Li 6 Rerun sample | | | | | | | I 127 QC Out of Limits Measurement Type Analyte Mass Out of Limits Message Li 6 Int Std for sample Li 6 Rerun sample | | | | | | | QC Out of Limits Measurement Type Analyte Mass Out of Limits Message Li 6 Int Std for sample Li 6 Rerun sample | Er | | | | | | Measurement Type Analyte Mass Out of Limits Message Li 6 Int Std for sample Li 6 Rerun sample | 00.0 | | | | | | Li 6 Int Std for sample Li 6 Rerun sample | | | | | | | | | | • | | | | Ti 47 Lower Ti 47 | | | | Rerun sample | | | | Ti 47 Lov | ver | 11 47 | | | Sample ID: FBLANK 76 WG544075-05 Report Date/Time: Tuesday, October 27, 2015 17:48:11 Page 3 Sample ID: QC Std 6 Sample Date/Time: Tuesday, October 27, 2015 17:49:07 Number of Replicates: 3 Autosampler Position: 101 Sample Description: Method File: C:\NexIONData\Method\6020a.mth Aliquot Volume (mL): Diluted to Volume (mL): User Name: BKT Nexion300X Cumulative Autodilution Factor: 1 Nexion-ICP 200.8\6020 | | | | | | Concentra | tion Res | ults | | | | |-----|----------|------------|------------------|-------------|-----------|----------|------|--------------|---------------|----------------------| | IS | Analyt | e Mass | Intensity | RSD | Conc. | SD | RSD | Units | Blank Intens. | Mode | | Γ> | Li | 6 | 29557.2 | 2.9 | | | | ug/L | 26270 | Standard | | i | Be | 9 | 29405.2 | 0.3 | 50.3712 | 1.391 | 2.8 | ug/L | 2 | Standard | | Ĺ | Al | 27 | 3024041.9 | 1.4 | 47.9422 | 1.370 | 2.9 | ug/L | 403 | Standard | | Ī | Sc | 45 | 16287.1 | 3.6 | | | | ug/L | 14524 | Standard | | | Ti | 47 | 17968.0 | 1.7 | 109.7163 | 2.555 | 2.3 | ug/L | 365 | Standard | | | V | 51 | 186643.3 | 1.1 | 52.9850 | 1.287 | 2.4 | ug/L | 805 | Standard | | | Cr | 52 | 237278.2 | 0.7 | 53.5360 | 0.832 | 1.6 | ug/L | 5481 | Standard | | | Cr | 53 | 29538.8 | 0.5 | 53.9247 | 1.000 | 1.9 | ug/L | 268 | Standard | | | Mn | 55 | 179750.0 | 1.1 | 53.0714 | 1.301 | 2.5 | ug/L | 670 | Standard | | | Co | 59 | 169303.7 | 1.3 | 52.6725 | 1.188 | 2.3 | ug/L | 146 | Standard | | | Ni | 60 | 60181.6 | 1.5 | 52.2391 | 1.229 | 2.4 | ug/L | 220 | Standard | | | Cu | 65 | 57889.4 | 0.7 | 51.4227 | 0.918 | 1.8 | ug/L | 147 | Standard | | | Zn | 66 | 34818.3 | 1.6 | 51.9352 | 0.192 | 0.4 | ug/L | 211 | Standard | | > | Ge | 72 | 215137.5 | 1.3 | | | | ug/L | 210599 | Standard | | | As | 75 | 37195.7 | 0.2 | 52.0291 | 0.752 | 1.4 | ug/L | -47 | Standard | | | Se | 82 | 3199.2 | 1.7 | 52.8336 | 0.331 | 0.6 | ug/L | 15 | Standard | | L | Se-1 | 77 | 2122.8 | 2.0 | 52.8950 | 1.608 | 3.0 | ug/L | 65 | Standard | | [> | Ga | 71 | 23.3 | 61.9 | | | | mg/L | 27 | Standard | | Ī | Rb | 85 | 595.0 | 9.4 | | | | ug/L | 17 | Standard | | Γ | Υ | 89 | 228227.8 | 0.9 | | | | ug/L | 216672 | Standard | | Ļ> | Rh | 103 | 25.0 | 34.6 | | | | ug/L | 18 | Standard | | ļ | Мо | 98 | 152234.9 | 0.2 | 102.2117 | 1.313 | 1.3 | ug/L | 11 | Standard | | ļ | Ag | 107 | 242237.2 | 1.1 | 48.5414 | 0.338 | 0.7 | ug/L | 55 | Standard | | - ! | Cd | 111 | 74658.0 | 0.6 | 49.9059 | 0.498 | 1.0 | mg/L | 7 | Standard | | ļ | Cd | 114 | 184656.6 | 1.9 | 50.4864 | 1.288 | 2.6 | ug/L | 4 | Standard | | > | In | 115 | 344324.5 | 1.3 | | | | ug/L | 322525 | Standard | | - | Sn | 118 | 211550.3 | 1.9 | 49.8552 | 1.484 | 3.0 | ug/L | 345 | Standard | | - | Sb | 123 | 195048.1 | 1.7 | 48.3995 | 0.388 | 8.0 | ug/L | 88 | Standard | | Ļ | Ba | 135
140 | 82537.9
226.7 | 0.9
20.5 | 48.3141 | 0.450 | 0.9 | ug/L | 12
37 | Standard
Standard |
| 1. | Ce
Tb | 159 | 642738.4 | 20.5 | | | | ug/L | 631826 | Standard | | L> | Но | 165 | 18.3 | 31.5 | | | | ug/L
ug/L | 3 | Standard | | | по
TI | 203 | 333937.7 | 1.5 | 50.1820 | 0.556 | 1.1 | ug/L
ug/L | 7 | Standard | | 1 | TI | 205 | 228901.1 | 0.4 | 51.0769 | 0.536 | 1.1 | ug/L
ug/L | 7 | Standard | | 1 | Pb | 206 | 207035.9 | 0.4 | 50.8038 | 0.343 | 0.8 | ug/L
ug/L | 7
159 | Standard | | | Pb | 207 | 187467.3 | 0.2 | 50.7307 | 0.413 | 0.5 | ug/L
ug/L | 120 | Standard | | 1 | Pb | 208 | 771220.8 | 0.5 | 52.2296 | 0.160 | 0.3 | ug/L | 503 | Standard | | 1 | U | 238 | 275686.6 | 0.9 | 50.5248 | 0.100 | 0.8 | ug/L | 5 | Standard | | - ! | J . | 200 | 210000.0 | 0.5 | 30.3240 | 0.507 | 0.0 | ug/L | | Clandard | Sample ID: QC Std 6 209 Report Date/Time: Tuesday, October 27, 2015 17:51:23 343741.6 0.7 Page 1 L> Bi Approved: October 28, 2015 Standard Page 574 ug/L 333509 | Γ | Na | 23 | 1.7 | 173.2 | | | | mg/L | 0 | Standard | |---|------|-----|---------|-------|---------|-------|-------|------|-------|----------| | i | Mg | 24 | 2350.2 | 0.7 | 4.9655 | 0.146 | 2.9 | mg/L | 10 | Standard | | i | K | 39 | 358.3 | 13.0 | 3.7891 | 0.646 | 17.1 | mg/L | 32 | Standard | | i | Ca | 43 | 96.7 | 20.9 | -0.5153 | 3.231 | 627.0 | mg/L | 85 | Standard | | i | Fe | 54 | 2220.8 | 5.1 | 4.7243 | 0.290 | 6.1 | mg/L | 82 | Standard | | i | Fe | 57 | 878.4 | 13.7 | 5.5472 | 1.041 | 18.8 | mg/L | 217 | Standard | | > | Sc-1 | 45 | 16287.1 | 3.6 | 0.04.2 | | | mg/L | 14524 | Standard | | | CI | 35 | 70421.9 | 0.6 | | | | ug/L | 53193 | Standard | | | Kr | 83 | 3.7 | 15.7 | | | | ug/L | 3 | Standard | | | Br | 81 | 440.0 | 27.6 | | | | ug/L | 327 | Standard | | | P | 31 | 16100.2 | 1.9 | | | | ug/L | 13329 | Standard | | | S | 34 | 3677.1 | 1.0 | | | | ug/L | 3234 | Standard | | | Sr | 88 | 143.3 | 8.1 | | | | ug/L | 87 | Standard | | | C | 12 | 176.7 | 11.8 | | | | mg/L | 103 | Standard | | | N | 14 | 0.0 | | | | | mg/L | 0 | Standard | | | Hg | 202 | 3.3 | 173.2 | | | | mg/L | 3 | Standard | | | Dy | 164 | 9.0 | 113.3 | | | | mg/L | 10 | Standard | | | Ho-1 | 165 | 18.3 | 31.5 | | | | mg/L | 3 | Standard | | | Er | 166 | 20.0 | 50.0 | | | | mg/L | 7 | Standard | | | 1 | 127 | 2691.9 | 6.3 | | | | mg/L | 3612 | Standard | | | - | | | | | | | J. – | | | | | Analyte | Mass | QC Std % Recovery | Int Std % Recovery | Spike % Recovery | |----|---------|------|-------------------|--------------------|------------------| | Γ> | Li | 6 | | | | | | Ве | 9 | 100.742 | | | | L | Al | 27 | 95.884 | | | | Γ | Sc | 45 | | | | | | Ti | 47 | 109.716 | | | | | V | 51 | 105.970 | | | | | Cr | 52 | 107.072 | | | | | Cr | 53 | | | | | | Mn | 55 | 106.143 | | | | | Co | 59 | 105.345 | | | | | Ni | 60 | 104.478 | | | | | Cu | 65 | 102.845 | | | | | Zn | 66 | 103.870 | | | | > | Ge | 72 | | 102.155 | | | | As | 75 | 104.058 | | | | | Se | 82 | 105.667 | | | | L | Se-1 | 77 | | | | | Γ> | Ga | 71 | | | | Sample ID: QC Std 6 Report Date/Time: Tuesday, October 27, 2015 17:51:23 Page 2 Approved: October 28, 2015 | L Rb | 85 | | | | |---------------|----------------------|--------------------|-----------------------|--| | Γ Y | 89 | | | | | Ĺ> Rh | 103 | 100.040 | | | | Γ Mo | 98 | 102.212 | | | | Ag | 107 | 97.083 | | | | Cd | 111 | 99.812 | | | | Cd | 114 | | 400.750 | | | > In | 115 | 00.740 | 106.759 | | | Sn | 118 | 99.710 | | | | Sb | 123 | 96.799 | | | | L Ba | 135 | 96.628 | | | | Г Се | 140 | | | | | L> Tb | 159 | | | | | Γ Ho | 165 | 100.264 | | | | TI | 203 | 100.364 | | | | TI | 205 | | | | | Pb | 206 | | | | | Pb | 207 | 104.450 | | | | Pb
 U | 208
238 | 104.459
101.050 | | | | | 209 | 101.050 | 103.068 | | | L> Bi
Γ Na | 23 | | 103.006 | | | Na
 Mg | 23
24 | | | | | Nig
 K | 39 | | | | | Ca | 43 | | | | | Fe | 54 | | | | | Fe | 5 7
57 | | | | | | 45 | | | | | CI | 35 | | | | | Kr | 83 | | | | | Br | 81 | | | | | P | 31 | | | | | S | 34 | | | | | Sr | 88 | | | | | C | 12 | | | | | N | 14 | | | | | Hg | 202 | | | | | Dy | 164 | | | | | Ho-1 | 165 | | | | | Er | 166 | | | | | I | 127 | | | | | OC O | ut of Limits | | | | | | | Analyta Maas | Out of Limita Magaza | | | ivieasure | ement Type | Analyte Mass | Out of Limits Message | | Sample ID: QC Std 6 Report Date/Time: Tuesday, October 27, 2015 17:51:23 Page 3 Approved: October 28, 2015 Sample ID: QC Std 7 Sample Date/Time: Tuesday, October 27, 2015 17:52:18 Number of Replicates: 3 Autosampler Position: 102 Sample Description: Method File: C:\NexIONData\Method\6020a.mth Aliquot Volume (mL): Diluted to Volume (mL): User Name: BKT Nexion300X Cumulative Autodilution Factor: 1 Nexion-ICP 200.8\6020 ## **Concentration Results** | | | | | | Concenti | audii Nes | uits | | | | |----|--------------|-----|-----------|--------|----------|-----------|--------|-------|---------------|----------| | IS | Analyte Mass | | Intensity | RSD | Conc. | SD | RSD | Units | Blank Intens. | Mode | | Γ> | Li | 6 | 30784.6 | 3.4 | | | | ug/L | 26270 | Standard | | | Be | 9 | 20.0 | 86.6 | -0.0025 | 0.027 | 1079.5 | ug/L | 2 | Standard | | L | Αl | 27 | 1306.8 | 118.3 | -0.0012 | 0.023 | 1934.4 | ug/L | 403 | Standard | | Γ | Sc | 45 | 17153.1 | 7.0 | | | | ug/L | 14524 | Standard | | | Ti | 47 | 84.7 | 12.5 | -1.6113 | 0.074 | 4.6 | ug/L | 365 | Standard | | | V | 51 | 881.9 | 3.2 | -0.0189 | 0.006 | 32.8 | ug/L | 805 | Standard | | | Cr | 52 | 6028.2 | 8.0 | 0.0240 | 0.052 | 216.2 | ug/L | 5481 | Standard | | | Cr | 53 | 325.0 | 16.6 | 0.0471 | 0.110 | 233.3 | ug/L | 268 | Standard | | | Mn | 55 | 646.3 | 10.3 | -0.1693 | 0.018 | 10.8 | ug/L | 670 | Standard | | | Co | 59 | 221.3 | 35.8 | 0.0203 | 0.024 | 119.1 | ug/L | 146 | Standard | | | Ni | 60 | 191.0 | 13.0 | -0.0666 | 0.021 | 32.2 | ug/L | 220 | Standard | | | Cu | 65 | 131.3 | 22.4 | -0.0664 | 0.026 | 39.4 | ug/L | 147 | Standard | | | Zn | 66 | 168.0 | 13.3 | -0.3848 | 0.034 | 8.8 | ug/L | 211 | Standard | | > | Ge | 72 | 224689.5 | 3.1 | | | | ug/L | 210599 | Standard | | | As | 75 | 1.9 | 1565.0 | 0.0812 | 0.039 | 48.3 | ug/L | -47 | Standard | | | Se | 82 | 16.6 | 26.6 | 0.0877 | 0.077 | 87.9 | ug/L | 15 | Standard | | L | Se-1 | 77 | 64.0 | 9.5 | 0.3272 | 0.173 | 52.9 | ug/L | 65 | Standard | | Γ> | Ga | 71 | 18.3 | 63.0 | | | | mg/L | 27 | Standard | | L | Rb | 85 | 11.7 | 49.5 | | | | ug/L | 17 | Standard | | Γ | Υ | 89 | 239276.4 | 1.3 | | | | ug/L | 216672 | Standard | | L> | Rh | 103 | 26.7 | 60.3 | | | | ug/L | 18 | Standard | | Γ | Мо | 98 | 142.4 | 53.4 | 0.0914 | 0.052 | 56.7 | ug/L | 11 | Standard | | | Ag | 107 | 108.0 | 80.4 | 0.0098 | 0.017 | 176.9 | ug/L | 55 | Standard | | | Cd | 111 | 20.7 | 62.4 | 0.0071 | 0.009 | 120.4 | mg/L | 7 | Standard | | | Cd | 114 | 52.5 | 70.7 | 0.0194 | 0.010 | 52.3 | ug/L | 4 | Standard | | > | In | 115 | 354071.2 | 3.1 | | | | ug/L | 322525 | Standard | | | Sn | 118 | 590.0 | 3.7 | -0.0171 | 0.001 | 5.0 | ug/L | 345 | Standard | | | Sb | 123 | 159.7 | 39.1 | 0.0280 | 0.016 | 56.5 | ug/L | 88 | Standard | | L | Ва | 135 | 28.3 | 78.9 | -0.0077 | 0.013 | 171.2 | ug/L | 12 | Standard | | ļ | Ce | 140 | 10.0 | 50.0 | | | | ug/L | 37 | Standard | | Ĺ> | Tb | 159 | 661837.4 | 2.7 | | | | ug/L | 631826 | Standard | | ļ | Но | 165 | 8.3 | 69.3 | | | | ug/L | 3 | Standard | | ļ | TI | 203 | 101.3 | 100.1 | 0.0119 | 0.015 | 124.3 | ug/L | 7 | Standard | | ļ | TI | 205 | 65.0 | 127.1 | 0.0164 | 0.018 | 108.7 | ug/L | 7 | Standard | | ļ | Pb | 206 | 206.0 | 37.1 | -0.0113 | 0.018 | 162.3 | ug/L | 159 | Standard | | ļ | Pb | 207 | 187.0 | 45.0 | -0.0087 | 0.022 | 254.6 | ug/L | 120 | Standard | | ļ | Pb | 208 | 736.0 | 36.6 | -0.0060 | 0.018 | 297.0 | ug/L | 503 | Standard | | ļ | U | 238 | 73.0 | 130.6 | 0.0084 | 0.017 | 202.6 | ug/L | 5 | Standard | | L> | Bi | 209 | 357990.3 | 2.8 | | | | ug/L | 333509 | Standard | | | | | | | | | | | | | Sample ID: QC Std 7 Report Date/Time: Tuesday, October 27, 2015 17:54:35 Page 1 Approved: October 28, 2015 | Γ | Na | 23 | 0.0 | | | | | mg/L | 0 | Standard | |----|------|-----|---------|-------|---------|-------|-------|------|-------|----------| | | Mg | 24 | 15.0 | 88.2 | -0.0093 | 0.028 | 301.4 | mg/L | 10 | Standard | | | K | 39 | 13.3 | 78.1 | -0.0659 | 0.118 | 179.5 | mg/L | 32 | Standard | | | Ca | 43 | 41.7 | 30.2 | -8.7966 | 1.823 | 20.7 | mg/L | 85 | Standard | | ĺ | Fe | 54 | 76.1 | 36.3 | 0.0275 | 0.066 | 240.0 | mg/L | 82 | Standard | | ĺ | Fe | 57 | 248.3 | 4.6 | 0.1184 | 0.110 | 93.1 | mg/L | 217 | Standard | | Ĺ> | Sc-1 | 45 | 17153.1 | 7.0 | | | | mg/L | 14524 | Standard | | _ | CI | 35 | 70756.9 | 1.5 | | | | ug/L | 53193 | Standard | | | Kr | 83 | 3.7 | 15.7 | | | | ug/L | 3 | Standard | | | Br | 81 | 403.3 | 6.2 | | | | ug/L | 327 | Standard | | | Р | 31 | 15501.3 | 3.0 | | | | ug/L | 13329 | Standard | | | S | 34 | 3818.8 | 4.3 | | | | ug/L | 3234 | Standard | | | Sr | 88 | 116.7 | 8.9 | | | | ug/L | 87 | Standard | | | С | 12 | 113.3 | 10.2 | | | | mg/L | 103 | Standard | | | N | 14 | 0.0 | | | | | mg/L | 0 | Standard | | | Hg | 202 | 0.0 | | | | | mg/L | 3 | Standard | | | Dy | 164 | 2.7 | 237.5 | | | | mg/L | 10 | Standard | | | Ho-1 | 165 | 8.3 | 69.3 | | | | mg/L | 3 | Standard | | | Er | 166 | 13.3 | 173.2 | | | | mg/L | 7 | Standard | | | I | 127 | 2348.5 | 9.1 | | | | mg/L | 3612 | Standard | | | | | | | | | | | | | | Analyte | Mass | QC Std % Recovery | Int Std % Recovery | Spike % Recovery | |----------------------|------|-------------------|--------------------|------------------| | 「⊳ Li | 6 | | | | | Be | 9 | | | | | L AI | 27 | | | | | 「 Sc | 45 | | | | | Ti | 47 | | | | | V | 51 | | | | | Cr | 52 | | | | | Cr | 53 | | | | | Mn | 55 | | | | | Co | 59 | | | | | Ni | 60 | | | | | Cu | 65 | | | | | Zn | 66 | | | | | > Ge | 72 | | 106.691 | | | As | 75 | | | | | Se | 82 | | | | | L Se-1 | 77 | | | | | 「 _{>} Ga | 71 | | | | Sample ID: QC Std 7 Report Date/Time: Tuesday, October 27, 2015 17:54:35 Page 2 Approved: October 28, 2015 | ∟ Rb | 85 | | | | |----------------|--------------
---------|------|-----------------------| | ΓΥ | 89 | | | | | $\lfloor_>$ Rh | 103 | | | | | ГМо | 98 | | | | | Ag | 107 | | | | | Cd | 111 | | | | | Cd | 114 | | | | | > In | 115 | | | 109.781 | | Sn | 118 | | | | | Sb | 123 | | | | | L Ba | 135 | | | | | ¯ Ce | 140 | | | | | _
_> Tb | 159 | | | | | ⊢ Ho | 165 | | | | | į TI | 203 | | | | | TI | 205 | | | | | Pb | 206 | | | | | Pb | 207 | | | | | Pb | 208 | | | | | į U | 238 | | | | | Ĺ> Bi | 209 | | | 107.340 | | Г Na | 23 | | | | | Mg | 24 | | | | | K | 39 | | | | | Ca | 43 | | | | | Fe | 54 | | | | | Fe | 57 | | | | | _> Sc-1 | 45 | | | | | CI | 35 | | | | | Kr | 83 | | | | | Br | 81 | | | | | Р | 31 | | | | | S | 34 | | | | | Sr | 88 | | | | | С | 12 | | | | | N | 14 | | | | | Hg | 202 | | | | | Dy | 164 | | | | | Ho-1 | 165 | | | | | Er | 166 | | | | | 1 | 127 | | | | | QC Ou | it of Limits | | | | | Measure | ment Type | Analyte | Mass | Out of Limits Message | | QC Std 7 | | Ti | 47 | Ŭ | | | | | | | Sample ID: QC Std 7 Report Date/Time: Tuesday, October 27, 2015 17:54:35 Page 3 Sample ID: QC Std 8 Sample Date/Time: Tuesday, October 27, 2015 17:56:24 Number of Replicates: 3 Autosampler Position: 202 Sample Description: Method File: C:\NexIONData\Method\6020a.mth Aliquot Volume (mL): Diluted to Volume (mL): User Name: BKT Nexion300X Cumulative Autodilution Factor: 1 Nexion-ICP 200.8\6020 | Concentration | Results | |---------------|---------| |---------------|---------| | IS | Analyte Mass | | Intensity | RSD | Conc. | SD | RSD | Units | Blank Intens. | Mode | |------------|--------------|-----|-----------|-------|---------|-------|-------|-------|---------------|----------| | Γ> | Li 6 | | 29779.3 | 3.3 | | | | ug/L | 26270 | Standard | | | Be | 9 | 110.0 | 18.2 | 0.1517 | 0.029 | 19.1 | ug/L | 2 | Standard | | L | Al | 27 | 718.4 | 102.7 | -0.0091 | 0.012 | 131.0 | ug/L | 403 | Standard | | Γ | Sc | 45 | 15851.6 | 1.9 | | | | ug/L | 14524 | Standard | | | Ti | 47 | 86.3 | 7.5 | -1.5780 | 0.044 | 2.8 | ug/L | 365 | Standard | | | V | 51 | 2353.8 | 8.8 | 0.4134 | 0.059 | 14.3 | ug/L | 805 | Standard | | | Cr | 52 | 9630.7 | 1.0 | 0.9211 | 0.048 | 5.2 | ug/L | 5481 | Standard | | | Cr | 53 | 856.7 | 2.0 | 1.0546 | 0.015 | 1.4 | ug/L | 268 | Standard | | | Mn | 55 | 2384.9 | 2.1 | 0.3574 | 0.016 | 4.6 | ug/L | 670 | Standard | | | Co | 59 | 1425.4 | 3.2 | 0.3993 | 0.016 | 4.1 | ug/L | 146 | Standard | | | Ni | 60 | 1972.5 | 3.3 | 1.4981 | 0.067 | 4.5 | ug/L | 220 | Standard | | | Cu | 65 | 1045.4 | 1.4 | 0.7557 | 0.022 | 3.0 | ug/L | 147 | Standard | | | Zn | 66 | 4454.3 | 1.6 | 6.1158 | 0.166 | 2.7 | ug/L | 211 | Standard | | > | Ge | 72 | 214561.3 | 1.1 | | | | ug/L | 210599 | Standard | | | As | 75 | 249.7 | 4.9 | 0.4277 | 0.020 | 4.8 | ug/L | -47 | Standard | | | Se | 82 | 39.8 | 4.0 | 0.4844 | 0.031 | 6.3 | ug/L | 15 | Standard | | L | Se-1 | 77 | 68.0 | 17.3 | 0.4990 | 0.284 | 56.9 | ug/L | 65 | Standard | | Γ> | Ga | 71 | 10.0 | 50.0 | | | | mg/L | 27 | Standard | | L | Rb | 85 | 6.7 | 86.6 | | | | ug/L | 17 | Standard | | Γ | Υ | 89 | 227571.4 | 8.0 | | | | ug/L | 216672 | Standard | | L> | Rh | 103 | 13.3 | 86.6 | | | | ug/L | 18 | Standard | | Γ | Мо | 98 | 24.4 | 33.0 | 0.0144 | 0.006 | 39.1 | ug/L | 11 | Standard | | | Ag | 107 | 1884.8 | 1.3 | 0.3739 | 0.003 | 0.8 | ug/L | 55 | Standard | | | Cd | 111 | 380.6 | 3.1 | 0.2531 | 0.008 | 3.3 | mg/L | 7 | Standard | | | Cd | 114 | 920.1 | 8.8 | 0.2619 | 0.024 | 9.0 | ug/L | 4 | Standard | | > | In | 115 | 337648.4 | 0.6 | | | | ug/L | 322525 | Standard | | | Sn | 118 | 371.7 | 10.2 | -0.0632 | 0.009 | 13.7 | ug/L | 345 | Standard | | | Sb | 123 | 1500.0 | 1.8 | 0.3690 | 0.009 | 2.5 | ug/L | 88 | Standard | | L | Ва | 135 | 1226.7 | 1.9 | 0.7087 | 0.016 | 2.3 | ug/L | 12 | Standard | | Γ | Ce | 140 | 18.3 | 31.5 | | | | ug/L | 37 | Standard | | L> | Tb | 159 | 638997.4 | 2.3 | | | | ug/L | 631826 | Standard | | Γ | Но | 165 | 10.0 | | | | | ug/L | 3 | Standard | | | TI | 203 | 519.7 | 3.8 | 0.0762 | 0.004 | 4.8 | ug/L | 7 | Standard | | | TI | 205 | 343.3 | 5.1 | 0.0798 | 0.004 | 5.5 | ug/L | 7 | Standard | | | Pb | 206 | 967.4 | 3.5 | 0.1800 | 0.007 | 3.6 | ug/L | 159 | Standard | | | Pb | 207 | 806.7 | 4.4 | 0.1632 | 0.008 | 5.1 | ug/L | 120 | Standard | | | Pb | 208 | 3504.2 | 3.5 | 0.1858 | 0.007 | 4.0 | ug/L | 503 | Standard | | | U | 238 | 2165.2 | 1.0 | 0.3962 | 0.008 | 1.9 | ug/L | 5 | Standard | | <u></u> > | Bi | 209 | 340436.3 | 0.9 | | | | ug/L | 333509 | Standard | Sample ID: QC Std 8 Report Date/Time: Tuesday, October 27, 2015 17:58:41 Page 1 Approved: October 28, 2015 | _ | | | | | | | | | | | |----|------|-----|---------|-------|---------|-------|-------|------|-------|----------| | Γ | Na | 23 | 0.0 | | | | | mg/L | 0 | Standard | | | Mg | 24 | 13.3 | 78.1 | -0.0109 | 0.023 | 214.5 | mg/L | 10 | Standard | | | K | 39 | 20.0 | 43.3 | 0.0178 | 0.100 | 560.7 | mg/L | 32 | Standard | | | Ca | 43 | 45.0 | 29.4 | -7.8712 | 1.839 | 23.4 | mg/L | 85 | Standard | | ĺ | Fe | 54 | 64.0 | 14.1 | 0.0102 | 0.021 | 202.1 | mg/L | 82 | Standard | | | Fe | 57 | 263.3 | 4.0 | 0.4079 | 0.053 | 13.1 | mg/L | 217 | Standard | | L> | Sc-1 | 45 | 15851.6 | 1.9 | | | | mg/L | 14524 | Standard | | | CI | 35 | 70798.4 | 0.7 | | | | ug/L | 53193 | Standard | | | Kr | 83 | 5.7 | 27.0 | | | | ug/L | 3 | Standard | | | Br | 81 | 296.7 | 1.9 | | | | ug/L | 327 | Standard | | | Р | 31 | 15591.4 | 1.6 | | | | ug/L | 13329 | Standard | | | S | 34 | 3697.1 | 1.5 | | | | ug/L | 3234 | Standard | | | Sr | 88 | 91.7 | 31.5 | | | | ug/L | 87 | Standard | | | С | 12 | 203.3 | 27.1 | | | | mg/L | 103 | Standard | | | N | 14 | 3.3 | 173.2 | | | | mg/L | 0 | Standard | | | Hg | 202 | 3.3 | 173.2 | | | | mg/L | 3 | Standard | | | Dy | 164 | 6.2 | 186.8 | | | | mg/L | 10 | Standard | | | Ho-1 | 165 | 10.0 | | | | | mg/L | 3 | Standard | | | Er | 166 | 10.0 | 100.0 | | | | mg/L | 7 | Standard | | | I | 127 | 676.7 | 17.1 | | | | mg/L | 3612 | Standard | | | | | | | | | | | | | | | Analyte | Mass | QC Std % Recovery | Int Std % Recovery | Spike % Recovery | |----|---------|------|-------------------|--------------------|------------------| | Γ> | Li | 6 | | | | | | Ве | 9 | 75.874 | | | | L | Al | 27 | | | | | Γ | Sc | 45 | | | | | | Ti | 47 | | | | | | V | 51 | 103.355 | | | | | Cr | 52 | 115.142 | | | | | Cr | 53 | | | | | | Mn | 55 | 71.483 | | | | | Co | 59 | 99.817 | | | | | Ni | 60 | 93.632 | | | | | Cu | 65 | 94.464 | | | | | Zn | 66 | 97.853 | | | | > | Ge | 72 | | 101.882 | | | | As | 75 | 106.914 | | | | | Se | 82 | 121.102 | | | | L | Se-1 | 77 | | | | | Γ> | Ga | 71 | | | | Sample ID: QC Std 8 Report Date/Time: Tuesday, October 27, 2015 17:58:41 Page 2 Approved: October 28, 2015 | ∟ Rb | 85 | | | |----------------|-------------|--------------|-----------------------| | ΓΥ | 89 | | | | $\lfloor_>$ Rh | 103 | | | | ГМо | 98 | | | | Ag | 107 | 93.467 | | | Cd | 111 | 105.472 | | | Cd | 114 | | | | > In | 115 | | 104.689 | | Sn | 118 | | | | Sb | 123 | 92.247 | | | ∟ Ba | 135 | 94.495 | | | Г Се | 140 | | | | $\lfloor_>$ Tb | 159 | | | | Γ Ho | 165 | | | | TI | 203 | 95.234 | | | TI | 205 | | | | Pb | 206 | | | | Pb | 207 | | | | Pb | 208 | 92.913 | | | U | 238 | 99.044 | | | Ĺ> Bi | 209 | | 102.077 | | Г Na | 23 | | | | Mg | 24 | | | | K | 39 | | | | Ca | 43 | | | | Fe | 54 | | | | Fe | 57 | | | | L> Sc-1 | 45 | | | | CI | 35 | | | | Kr | 83 | | | | Br | 81 | | | | Р | 31 | | | | S | 34 | | | | Sr | 88 | | | | С | 12 | | | | N | 14 | | | | Hg | 202 | | | | Dy | 164
165 | | | | Ho-1
Er | 165
166 | | | | Er
I | 166
127 | | | | | | | | | | ut of Limit | | | | Measu | rement Type | Analyte Mass | Out of Limits Message | Sample ID: QC Std 8 Report Date/Time: Tuesday, October 27, 2015 17:58:41 Page 3 Sample ID: L1510121301 Sample Date/Time: Tuesday, October 27, 2015 18:02:10 Number of Replicates: 3 Autosampler Position: 344 Sample Description: 10 Method File: C:\NexIONData\Method\6020a.mth Aliquot Volume (mL): Diluted to Volume (mL): User Name: BKT Nexion300X Cumulative Autodilution Factor: 1 Nexion-ICP 200.8\6020 ### **Concentration Results** | | | | | Concentration Results | | | | | | | |----|--------|--------|-----------|-----------------------|---------|-------|-------|-------|---------------|----------| | IS | Analyt | e Mass | Intensity | RSD | Conc. | SD | RSD | Units | Blank Intens. | Mode | | Γ> | Li | 6 | 28286.5 | 7.2 | | | | ug/L | 26270 | Standard | | | Be | 9 | 13.3 | 21.7 | -0.0110 | 0.005 | 40.9 | ug/L | 2 | Standard | | L | Αl | 27 | 2152810.7 | 2.3 | 35.7440 | 2.298 | 6.4 | ug/L | 403 | Standard | | Γ | Sc | 45 | 15090.9 | 8.2 | | | | ug/L | 14524 | Standard | | | Ti | 47 | 425.0 | 20.1 | 0.5962 | 0.429 | 72.0 | ug/L | 365 | Standard | | | ٧ | 51 | 1528.0 | 17.4 | 0.1904 | 0.080 | 42.2 | ug/L | 805 | Standard | | | Cr | 52 | 7683.3 | 2.0 | 0.5228 | 0.106 | 20.4 | ug/L | 5481 | Standard | | | Cr | 53 | 12398.4 | 5.6 | 23.1345 | 2.830 | 12.2 | ug/L | 268 | Standard | | | Mn | 55 | 19559.6 | 1.2 | 5.6548 | 0.463 | 8.2 | ug/L | 670 | Standard | | | Co | 59 | 278.7 | 1.5 | 0.0439 | 0.007 | 16.0 | ug/L | 146 | Standard | | | Ni | 60 | 557.7 | 3.0 | 0.2768 | 0.048 | 17.4 | ug/L | 220 | Standard | | | Cu | 65 | 602.3 | 4.7 | 0.3749 | 0.012 | 3.1 | ug/L | 147 | Standard | | | Zn | 66 | 3163.3 | 8.0 | 4.3047 | 0.289 | 6.7 | ug/L | 211 | Standard | | > | Ge | 72 | 208802.6 | 6.3 | | | | ug/L | 210599 | Standard | | | As | 75 | -53.9 | 13.7 | 0.0006 | 0.006 | 987.0 | ug/L | -47 | Standard | | | Se | 82 | 19.6 | 32.8 | 0.1540 | 0.094 | 61.2 | ug/L | 15 | Standard | | L | Se-1 | 77 | 641.0 | 4.2 | 15.6203 | 0.588 | 3.8 | ug/L | 65 | Standard | | Γ> | Ga | 71 | 21.7 | 70.5 | | | | mg/L | 27 | Standard | | L | Rb | 85 | 18434.5 | 1.9 | | | | ug/L | 17 | Standard | | Γ | Υ | 89 | 213812.0 | 7.6 | | | | ug/L | 216672 | Standard | | L> | Rh | 103 | 43.3 | 54.5 | | | | ug/L | 18 | Standard | | Γ | Мо | 98 | 1810.1 | 1.0 | 1.3150 | 0.100 | 7.6 | ug/L | 11 | Standard | | | Ag | 107 | 58.0 | 20.9 | 0.0011 |
0.002 | 161.8 | ug/L | 55 | Standard | | | Cd | 111 | 11.6 | 61.1 | 0.0019 | 0.005 | 258.6 | mg/L | 7 | Standard | | | Cd | 114 | 28.6 | 43.4 | 0.0139 | 0.004 | 26.2 | ug/L | 4 | Standard | | > | In | 115 | 318715.9 | 6.7 | | | | ug/L | 322525 | Standard | | | Sn | 118 | 426.7 | 10.6 | -0.0438 | 0.008 | 18.7 | ug/L | 345 | Standard | | ļ | Sb | 123 | 146.2 | 11.8 | 0.0284 | 0.002 | 8.6 | ug/L | 88 | Standard | | Ĺ | Ва | 135 | 2337.8 | 0.2 | 1.4597 | 0.101 | 7.0 | ug/L | 12 | Standard | | ! | Се | 140 | 508.3 | 11.5 | | | | ug/L | 37 | Standard | | Ĺ> | Tb | 159 | 611764.5 | 7.0 | | | | ug/L | 631826 | Standard | | ! | Но | 165 | 15.0 | 88.2 | | | | ug/L | 3 | Standard | | ! | TI | 203 | 139.3 | 15.6 | 0.0198 | 0.003 | 13.8 | ug/L | 7 | Standard | | ! | TI | 205 | 86.7 | 14.5 | 0.0232 | 0.003 | 10.9 | ug/L | 7 | Standard | | ! | Pb | 206 | 277.0 | 3.8 | 0.0133 | 0.003 | 21.1 | ug/L | 159 | Standard | | | Pb | 207 | 223.3 | 5.7 | 0.0078 | 0.004 | 56.4 | ug/L | 120 | Standard | | | Pb | 208 | 899.7 | 3.8 | 0.0116 | 0.002 | 19.9 | ug/L | 503 | Standard | | | U | 238 | 142.7 | 9.3 | 0.0235 | 0.001 | 5.5 | ug/L | 5 | Standard | | L> | Bi | 209 | 319809.2 | 7.2 | | | | ug/L | 333509 | Standard | Sample ID: L1510121301 Report Date/Time: Tuesday, October 27, 2015 18:04:27 Page 1 Approved: October 28, 2015 | Γ | Na | 23 | 0.0 | | | | | mg/L | 0 | Standard | |----|------|-----|---------|-------|---------|-------|-------|------|-------|----------| | | Mg | 24 | 39138.8 | 0.5 | 90.2807 | 7.569 | 8.4 | mg/L | 10 | Standard | | | K | 39 | 255.0 | 9.0 | 2.8684 | 0.421 | 14.7 | mg/L | 32 | Standard | | | Ca | 43 | 76.7 | 3.8 | -2.5108 | 1.392 | 55.4 | mg/L | 85 | Standard | | ĺ | Fe | 54 | 66.1 | 39.0 | 0.0255 | 0.073 | 287.0 | mg/L | 82 | Standard | | | Fe | 57 | 251.7 | 16.1 | 0.4269 | 0.419 | 98.1 | mg/L | 217 | Standard | | L> | Sc-1 | 45 | 15090.9 | 8.2 | | | | mg/L | 14524 | Standard | | | CI | 35 | 75470.2 | 1.8 | | | | ug/L | 53193 | Standard | | | Kr | 83 | 5.0 | 20.0 | | | | ug/L | 3 | Standard | | | Br | 81 | 543.3 | 11.2 | | | | ug/L | 327 | Standard | | | Р | 31 | 15454.6 | 3.4 | | | | ug/L | 13329 | Standard | | | S | 34 | 3747.1 | 2.4 | | | | ug/L | 3234 | Standard | | | Sr | 88 | 103.3 | 17.0 | | | | ug/L | 87 | Standard | | | С | 12 | 160.0 | 12.5 | | | | mg/L | 103 | Standard | | | N | 14 | 0.0 | | | | | mg/L | 0 | Standard | | | Hg | 202 | 0.0 | | | | | mg/L | 3 | Standard | | | Dy | 164 | 18.6 | 103.9 | | | | mg/L | 10 | Standard | | | Ho-1 | 165 | 15.0 | 88.2 | | | | mg/L | 3 | Standard | | | Er | 166 | 30.0 | 57.7 | | | | mg/L | 7 | Standard | | | I | 127 | 37814.0 | 7.1 | | | | mg/L | 3612 | Standard | | | | | | | | | | | | | | Analyte | Mass | QC Std % Recovery | Int Std % Recovery | Spike % Recovery | |---------|------|-------------------|--------------------|------------------| | 「> Li | 6 | | 107.677 | | | Be | 9 | | | | | L AI | 27 | | | | | 「 Sc | 45 | | | | | Ti | 47 | | | | | V | 51 | | | | | Cr | 52 | | | | | Cr | 53 | | | | | Mn | 55 | | | | | Co | 59 | | | | | Ni | 60 | | | | | Cu | 65 | | | | | Zn | 66 | | | | | > Ge | 72 | | 99.147 | | | As | 75 | | | | | Se | 82 | | | | | Se-1 | 77 | | | | | √> Ga | 71 | | | | Sample ID: L1510121301 Report Date/Time: Tuesday, October 27, 2015 18:04:27 Page 2 Approved: October 28, 2015 | L Rb | 85 | | | | |----------------------------|--------------|---------|------|-----------------------| | ΓY | 89 | | | | | Ĺ> Rh | 103 | | | | | Γ Mo | 98 | | | | | Ag | 107 | | | | | Cd | 111 | | | | | Cd | 114 | | | 00.040 | | _{>} In
 Sn | 115 | | | 98.819 | | Sh | 118 | | | | | | 123
135 | | | | | ∟ Ba
Γ Ce | 140 | | | | | • | 159 | | | | | L> Tb
「 Ho | 165 | | | | | TI | 203 | | | | | "."
 Ti | 205 | | | | | Pb | 206 | | | | | Pb | 207 | | | | | Pb | 208 | | | | | Ü | 238 | | | | | ∟> Bi | 209 | | | 95.892 | | Na | 23 | | | | | Mg | 24 | | | | | ίκ | 39 | | | | | Ca | 43 | | | | | Fe | 54 | | | | | Fe | 57 | | | | | _> Sc-1 | 45 | | | | | CI | 35 | | | | | Kr | 83 | | | | | Br | 81 | | | | | Р | 31 | | | | | S | 34 | | | | | Sr | 88 | | | | | С | 12 | | | | | N | 14 | | | | | Hg | 202 | | | | | Dy | 164 | | | | | Ho-1 | 165 | | | | | Er | 166 | | | | | 1 | 127 | | | | | | ut of Limits | | | | | Measure | ement Type | Analyte | Mass | Out of Limits Message | **Sample ID: L1510121301**Report Date/Time: Tuesday, October 27, 2015 18:04:27 Page 3 Sample ID: L1510121302 Sample Date/Time: Tuesday, October 27, 2015 18:05:20 Number of Replicates: 3 Autosampler Position: 345 Sample Description: 10 Method File: C:\NexIONData\Method\6020a.mth Aliquot Volume (mL): Diluted to Volume (mL): User Name: BKT Nexion300X Cumulative Autodilution Factor: 1 Nexion-ICP 200.8\6020 | Concentration | Results | |---------------|---------| |---------------|---------| | | | | | | Concentra | ation results | | | | | |----|--------|--------|-----------|-------|-----------|---------------|-------|-------|---------------|----------| | IS | Analyt | e Mass | Intensity | RSD | Conc. | SD | RSD | Units | Blank Intens. | Mode | | Γ> | Li | 6 | 28551.9 | 4.1 | | | | ug/L | 26270 | Standard | | | Be | 9 | 8.3 | 34.6 | -0.0199 | 0.006 | 27.9 | ug/L | 2 | Standard | | L | Αl | 27 | 1938316.3 | 2.0 | 31.8158 | 1.140 | 3.6 | ug/L | 403 | Standard | | Γ | Sc | 45 | 15551.3 | 3.7 | | | | ug/L | 14524 | Standard | | | Ti | 47 | 91.0 | 16.2 | -1.5560 | 0.069 | 4.4 | ug/L | 365 | Standard | | | ٧ | 51 | 754.7 | 20.6 | -0.0446 | 0.051 | 114.6 | ug/L | 805 | Standard | | | Cr | 52 | 7525.9 | 1.6 | 0.4192 | 0.089 | 21.2 | ug/L | 5481 | Standard | | | Cr | 53 | 11484.4 | 1.7 | 20.5131 | 0.504 | 2.5 | ug/L | 268 | Standard | | | Mn | 55 | 15075.5 | 0.4 | 4.1019 | 0.180 | 4.4 | ug/L | 670 | Standard | | | Co | 59 | 274.7 | 5.1 | 0.0392 | 0.005 | 12.5 | ug/L | 146 | Standard | | | Ni | 60 | 409.0 | 5.1 | 0.1280 | 0.005 | 3.7 | ug/L | 220 | Standard | | | Cu | 65 | 362.0 | 4.6 | 0.1424 | 0.024 | 16.6 | ug/L | 147 | Standard | | | Zn | 66 | 1533.4 | 1.4 | 1.6749 | 0.115 | 6.9 | ug/L | 211 | Standard | | > | Ge | 72 | 216544.9 | 3.8 | | | | ug/L | 210599 | Standard | | | As | 75 | -38.8 | 122.9 | 0.0248 | 0.066 | 264.2 | ug/L | -47 | Standard | | | Se | 82 | 18.3 | 60.3 | 0.1295 | 0.189 | 146.1 | ug/L | 15 | Standard | | L | Se-1 | 77 | 652.0 | 8.7 | 15.3182 | 1.901 | 12.4 | ug/L | 65 | Standard | | Γ> | Ga | 71 | 31.7 | 9.1 | | | | mg/L | 27 | Standard | | L | Rb | 85 | 18838.4 | 8.0 | | | | ug/L | 17 | Standard | | Γ | Υ | 89 | 219358.3 | 4.2 | | | | ug/L | 216672 | Standard | | L> | Rh | 103 | 43.3 | 48.0 | | | | ug/L | 18 | Standard | | Γ | Мо | 98 | 1816.6 | 2.8 | 1.2617 | 0.069 | 5.4 | ug/L | 11 | Standard | | | Ag | 107 | 50.0 | 36.4 | -0.0010 | 0.004 | 389.2 | ug/L | 55 | Standard | | | Cd | 111 | 6.6 | 47.3 | -0.0018 | 0.002 | 118.3 | mg/L | 7 | Standard | | | Cd | 114 | 15.3 | 35.7 | 0.0097 | 0.001 | 14.7 | ug/L | 4 | Standard | | > | In | 115 | 332528.5 | 2.8 | | | | ug/L | 322525 | Standard | | ļ | Sn | 118 | 361.7 | 9.0 | -0.0641 | 0.009 | 14.4 | ug/L | 345 | Standard | | ļ | Sb | 123 | 127.5 | 24.0 | 0.0221 | 0.008 | 36.3 | ug/L | 88 | Standard | | Ē | Ва | 135 | 2201.8 | 3.0 | 1.3122 | 0.064 | 4.9 | ug/L | 12 | Standard | | ļ | Ce | 140 | 40.0 | 12.5 | | | | ug/L | 37 | Standard | | Γ> | Tb | 159 | 637345.6 | 3.2 | | | | ug/L | 631826 | Standard | | ļ | Но | 165 | 10.0 | 132.3 | | | | ug/L | 3 | Standard | | ļ | TI | 203 | 113.7 | 11.0 | 0.0150 | 0.002 | 12.5 | ug/L | 7 | Standard | | ļ | TI | 205 | 50.0 | 30.0 | 0.0140 | 0.003 | 24.5 | ug/L | 7 | Standard | | ļ | Pb | 206 | 210.3 | 4.8 | -0.0065 | 0.001 | 13.9 | ug/L | 159 | Standard | | | Pb | 207 | 160.0 | 13.0 | -0.0125 | 0.006 | 50.9 | ug/L | 120 | Standard | | | Pb | 208 | 738.0 | 2.6 | -0.0022 | 0.001 | 32.8 | ug/L | 503 | Standard | | | U | 238 | 136.7 | 2.6 | 0.0214 | 0.001 | 6.4 | ug/L | 5 | Standard | | L> | Bi | 209 | 332094.7 | 3.2 | | | | ug/L | 333509 | Standard | Sample ID: L1510121302 Report Date/Time: Tuesday, October 27, 2015 18:07:37 Page 1 Approved: October 28, 2015 Page 586 L15101055 / Revision: 0 / 760 total pages | _ | | | | | | | | | | | |----|------|-----|---------|-------|---------|-------|-------|------|-------|----------| | Γ | Na | 23 | 1.7 | 173.2 | | | | mg/L | 0 | Standard | | | Mg | 24 | 38577.4 | 3.0 | 86.0078 | 3.130 | 3.6 | mg/L | 10 | Standard | | | K | 39 | 296.7 | 21.2 | 3.2574 | 0.795 | 24.4 | mg/L | 32 | Standard | | | Ca | 43 | 56.7 | 20.4 | -5.9878 | 1.457 | 24.3 | mg/L | 85 | Standard | | | Fe | 54 | 69.2 | 45.4 | 0.0249 | 0.070 | 283.7 | mg/L | 82 | Standard | | | Fe | 57 | 293.3 | 16.8 | 0.7208 | 0.447 | 62.1 | mg/L | 217 | Standard | | L> | Sc-1 | 45 | 15551.3 | 3.7 | | | | mg/L | 14524 | Standard | | | CI | 35 | 78621.5 | 0.6 | | | | ug/L | 53193 | Standard | | | Kr | 83 | 3.3 | 45.8 | | | | ug/L | 3 | Standard | | | Br | 81 | 683.3 | 8.1 | | | | ug/L | 327 | Standard | | | Р | 31 | 15561.3 | 3.2 | | | | ug/L | 13329 | Standard | | | S | 34 | 3763.8 | 2.9 | | | | ug/L | 3234 | Standard | | | Sr | 88 | 108.3 | 27.0 | | | | ug/L | 87 | Standard | | | С | 12 | 223.3 | 13.7 | | | | mg/L | 103 | Standard | | | N | 14 | 0.0 | | | | | mg/L | 0 | Standard | | | Hg | 202 | 0.0 | | | | | mg/L | 3 | Standard | | | Dy | 164 | 2.2 | 286.4 | | | | mg/L | 10 | Standard | | | Ho-1 | 165 | 10.0 | 132.3 | | | | mg/L | 3 | Standard | | | Er | 166 | 23.3 | 65.5 | | | | mg/L | 7 | Standard | | | I | 127 | 39373.1 | 10.2 | | | | mg/L | 3612 | Standard | | Analyte | | QC Std % Recovery | Int Std % Recovery | Spike % Recovery | |---------|----|-------------------|--------------------|------------------| | 「⊳ Li | 6 | | 108.688 | | | Be | 9 | | | | | L AI | 27 | | | | | 「 Sc | 45 | | | | | Ti | 47 | | | | | V | 51 | | | | | Cr | 52 | | | | | Cr | 53 | | | | | Mn | 55 | | | | | Co | 59 | | | | | Ni | 60 | | | | | Cu | 65 | | | | | Zn | 66 | | | | | > Ge | 72 | | 102.823 | | | As | 75 | | | | | Se | 82 | | | | | ∟ Se-1 | 77 | | | | | 「̄> Ga | 71 | | | | Sample ID: L1510121302 Report Date/Time: Tuesday, October 27, 2015
18:07:37 Page 2 Approved: October 28, 2015 | L Rb | 85 | | | | |----------------|--------------|---------|------|-----------------------| | ΓY | 89 | | | | | $\lfloor_>$ Rh | 103 | | | | | Mo | 98 | | | | | Ag | 107 | | | | | Cd | 111 | | | | | Cd | 114 | | | | | > In | 115 | | | 103.102 | | Sn | 118 | | | | | Sb | 123 | | | | | Ba | 135 | | | | | Ce | 140 | | | | | > Tb | 159 | | | | | Ho | 165 | | | | | TI | 203 | | | | | TI | 205 | | | | | Pb | 206 | | | | | Pb | 207 | | | | | Pb | 208 | | | | | U | 238 | | | | | ∣ | 209 | | | 99.576 | | ∫ Na | 23 | | | 00.070 | | Mg | 24 | | | | | K | 39 | | | | | Ca | 43 | | | | | Fe | 54 | | | | | Fe | 57 | | | | | Sc-1 | 45 | | | | | CI | 35 | | | | | Kr | 83 | | | | | Br | 81 | | | | | P | 31 | | | | | S | 34 | | | | | Sr | 88 | | | | | C | 12 | | | | | N | 14 | | | | | Hg | 202 | | | | | Dy | 164 | | | | | Ho-1 | 165 | | | | | Er | 166 | | | | |
I | 127 | | | | | טר טי | ut of Limits | | | | | | | A 1 1 | | Out of Divide Manager | | Measure | ement Type | Analyte | Mass | Out of Limits Message | | Ti 47 Lov | wer | Ti | 47 | | **Sample ID: L1510121302**Report Date/Time: Tuesday, October 27, 2015 18:07:37 Page 3 Sample ID: L1510121303 Sample Date/Time: Tuesday, October 27, 2015 18:08:32 Number of Replicates: 3 Autosampler Position: 346 Sample Description: 10 Method File: C:\NexIONData\Method\6020a.mth Aliquot Volume (mL): Diluted to Volume (mL): User Name: BKT Nexion300X Cumulative Autodilution Factor: 1 Nexion-ICP 200.8\6020 | | Concentration Results | | | | | | | | | | | | | |----|-----------------------|------------|-----------------|-------------|------------------|----------------|--------------|-------|---------------|----------------------|--|--|--| | IS | Analyt | e Mass | Intensity | RSD | Conc. | SD | RSD | Units | Blank Intens. | Mode | | | | | Γ> | Li | 6 | 29363.4 | 2.5 | | | | ug/L | 26270 | Standard | | | | | i | Be | 9 | 11.7 | 65.5 | -0.0145 | 0.014 | 94.5 | ug/L | 2 | Standard | | | | | i | Αl | 27 | 5882155.2 | 0.7 | 93.8785 | 2.255 | 2.4 | ug/L | 403 | Standard | | | | | Ī | Sc | 45 | 15948.4 | 5.5 | | | | ug/L | 14524 | Standard | | | | | i | Ti | 47 | 109.3 | 6.1 | -1.4352 | 0.048 | 3.3 | ug/L | 365 | Standard | | | | | ĺ | V | 51 | 1758.9 | 14.8 | 0.2409 | 0.055 | 22.9 | ug/L | 805 | Standard | | | | | | Cr | 52 | 8469.7 | 3.9 | 0.6488 | 0.028 | 4.3 | ug/L | 5481 | Standard | | | | | | Cr | 53 | 8492.4 | 5.2 | 15.1881 | 1.583 | 10.4 | ug/L | 268 | Standard | | | | | | Mn | 55 | 10887.2 | 1.9 | 2.8917 | 0.218 | 7.5 | ug/L | 670 | Standard | | | | | | Co | 59 | 259.3 | 2.9 | 0.0351 | 0.004 | 10.2 | ug/L | 146 | Standard | | | | | | Ni | 60 | 547.7 | 6.6 | 0.2519 | 0.029 | 11.4 | ug/L | 220 | Standard | | | | | | Cu | 65 | 450.7 | 7.0 | 0.2243 | 0.039 | 17.6 | ug/L | 147 | Standard | | | | | | Zn | 66 | 2148.8 | 2.8 | 2.6257 | 0.223 | 8.5 | ug/L | 211 | Standard | | | | | > | Ge | 72 | 214953.0 | 4.8 | | | | ug/L | 210599 | Standard | | | | | | As | 75 | -54.2 | 5.4 | 0.0021 | 0.002 | 118.0 | ug/L | -47 | Standard | | | | | | Se | 82 | 17.7 | 8.1 | 0.1162 | 0.024 | 20.5 | ug/L | 15 | Standard | | | | | L | Se-1 | 77 | 482.3 | 7.7 | 11.0590 | 0.371 | 3.4 | ug/L | 65 | Standard | | | | | [> | Ga | 71 | 30.0 | 0.0 | | | | mg/L | 27 | Standard | | | | | L | Rb | 85 | 17987.3 | 4.1 | | | | ug/L | 17 | Standard | | | | | Γ | Υ | 89 | 226682.0 | 8.1 | | | | ug/L | 216672 | Standard | | | | | Ĺ> | Rh | 103 | 31.7 | 18.2 | | | | ug/L | 18 | Standard | | | | | ļ | Мо | 98 | 1458.5 | 3.0 | 1.0087 | 0.076 | 7.5 | ug/L | 11 | Standard | | | | | ļ | Ag | 107 | 44.0 | 8.2 | -0.0023 | 0.001 | 31.7 | ug/L | 55 | Standard | | | | | ļ | Cd | 111 | 6.2 | 17.2 | -0.0021 | 0.001 | 36.7 | mg/L | 7 | Standard | | | | | ļ | Cd | 114 | 14.8 | 63.4 | 0.0096 | 0.003 | 29.8 | ug/L | 4 | Standard | | | | | > | In | 115 | 334193.4 | 4.4 | | | | ug/L | 322525 | Standard | | | | | ļ | Sn | 118 | 503.3 | 8.7 | -0.0299 | 0.014 | 46.0 | ug/L | 345 | Standard | | | | | ! | Sb | 123 | 195.3 | 3.6 | 0.0393 | 0.001 | 3.3 | ug/L | 88 | Standard | | | | | Ļ | Ва | 135 | 3894.2 | 1.0 | 2.3291 | 0.119 | 5.1 | ug/L | 12 | Standard | | | | | - | Ce | 140 | 156.7 | 14.7 | | | | ug/L | 37 | Standard | | | | | [> | Tb | 159 | 635109.6 | 4.0 | | | | ug/L | 631826 | Standard | | | | | - | Ho | 165
203 | 13.3
98.7 | 43.3
6.6 | 0.0400 | 0.001 | 11.8 | ug/L | 3 | Standard | | | | | | TI
T' | 205 | 98.7
68.3 | 27.7 | 0.0126 | | | ug/L | 7
7 | Standard | | | | | 1 | TI
Pb | 205
206 | 325.7 | 27.7
6.7 | 0.0180
0.0224 | 0.004
0.005 | 19.9
20.6 | ug/L | 7
159 | Standard
Standard | | | | | 1 | Pb
Pb | 206 | 325.7
288.3 | 4.6 | 0.0224 | 0.005 | 20.6
4.7 | ug/L | 120 | Standard | | | | | 1 | Pb
Pb | 207 | 200.3
1108.3 | 4.6
6.6 | | 0.001 | 4.7
11.2 | ug/L | 503 | Standard | | | | | | PD | 200 | 1100.3 | 0.0 | 0.0232 | 0.003 | 11.2 | ug/L | 503 | Standard | | | | 0.0305 Sample ID: L1510121303 238 209 Report Date/Time: Tuesday, October 27, 2015 18:10:49 185.0 334187.0 8.5 4.9 Page 1 U ∟> Bi Approved: October 28, 2015 5 333509 Standard Standard Page 589 ug/L ug/L 0.005 15.2 | г | N. | 23 | 3.3 | 173.2 | | | | | 0 | Ctandard | |----|------|-----|---------|-------|---------|-------|-------|------|-------|----------| | ! | Na | | | | | | | mg/L | | Standard | | | Mg | 24 | 24843.7 | 2.9 | 54.1283 | 4.538 | 8.4 | mg/L | 10 | Standard | | | K | 39 | 231.7 | 16.2 | 2.4369 | 0.556 | 22.8 | mg/L | 32 | Standard | | | Ca | 43 | 65.0 | 15.4 | -4.9635 | 1.193 | 24.0 | mg/L | 85 | Standard | | | Fe | 54 | 75.7 | 27.3 | 0.0368 | 0.053 | 145.0 | mg/L | 82 | Standard | | | Fe | 57 | 273.3 | 17.0 | 0.4709 | 0.284 | 60.3 | mg/L | 217 | Standard | | L> | Sc-1 | 45 | 15948.4 | 5.5 | | | | mg/L | 14524 | Standard | | | CI | 35 | 84276.4 | 0.7 | | | | ug/L | 53193 | Standard | | | Kr | 83 | 3.7 | 68.6 | | | | ug/L | 3 | Standard | | | Br | 81 | 726.7 | 15.1 | | | | ug/L | 327 | Standard | | | Р | 31 | 15841.6 | 0.9 | | | | ug/L | 13329 | Standard | | | S | 34 | 3883.8 | 2.7 | | | | ug/L | 3234 | Standard | | | Sr | 88 | 101.7 | 23.2 | | | | ug/L | 87 | Standard | | | С | 12 | 100.0 | 0.0 | | | | mg/L | 103 | Standard | | | N | 14 | 0.0 | | | | | mg/L | 0 | Standard | | | Hg | 202 | 0.0 | | | | | mg/L | 3 | Standard | | | Dy | 164 | 3.2 | 186.4 | | | | mg/L | 10 | Standard | | | Ho-1 | 165 | 13.3 | 43.3 | | | | mg/L | 3 | Standard | | | Er | 166 | 3.3 | 173.2 | | | | mg/L | 7 | Standard | | | 1 | 127 | 32070.6 | 5.3 | | | | mg/L | 3612 | Standard | | | | | | | | | | | | | | Analyte | Mass | QC Std % Recovery | Int Std % Recovery | Spike % Recovery | |---------|------|-------------------|--------------------|------------------| | 「⊳ Li | 6 | | 111.777 | | | Be | 9 | | | | | L AI | 27 | | | | | 「 Sc | 45 | | | | | Ti | 47 | | | | | V | 51 | | | | | Cr | 52 | | | | | Cr | 53 | | | | | Mn | 55 | | | | | Co | 59 | | | | | Ni | 60 | | | | | Cu | 65 | | | | | Zn | 66 | | | | | > Ge | 72 | | 102.068 | | | As | 75 | | | | | Se | 82 | | | | | L Se-1 | 77 | | | | | 「⊳ Ga | 71 | | | | Sample ID: L1510121303 Report Date/Time: Tuesday, October 27, 2015 18:10:49 Page 2 Approved: October 28, 2015 | l Dh | 0.5 | | | | |------------------------------|--------------|---------|------|-------------------------| | L Rb
Γ Y | 85
80 | | | | | | 89
103 | | | | | L> Rh
□ Mo | 103 | | | | | Γ Mo | 98
107 | | | | | Ag | | | | | | Cd | 111
114 | | | | | Cd | | | | 103.618 | | > In | 115 | | | 103.016 | | Sn
 Sb | 118
123 | | | | | | | | | | | L Ba
□ Co | 135 | | | | | 「 Ce ⊤h | 140
159 | | | | | _> Tb
□ Ho | 165 | | | | | 「 Ho
∣ TI | 203 | | | | | ''
 TI | 205 | | | | | 11
 Pb | 206 | | | | | Pb | 207 | | | | | Pb | 208 | | | | | U | 238 | | | | | i | 209 | | | 100.203 | | ∟ _{>} Bi
Γ Na | 23 | | | 100.203 | | Mg | 24 | | | | | Wig
 K | 39 | | | | | Ca | 43 | | | | | Fe | 54 | | | | | Fe | 57 | | | | | Sc-1 | 45 | | | | | CI | 35 | | | | | Kr | 83 | | | | | Br | 81 | | | | | P | 31 | | | | | S | 34 | | | | | Sr | 88 | | | | | C | 12 | | | | | N | 14 | | | | | Hg | 202 | | | | | Dy | 164 | | | | | Ho-1 | 165 | | | | | Er | 166 | | | | | 1 | 127 | | | | | QC Ou | ıt of Limits | | | | | | ment Type | Analyte | Mass | Out of Limits Message | | Ti 47 Lo | | Ti | 47 | Out of Littlite Message | | 114/ LO | WC1 | 11 | 71 | | Sample ID: L1510121303 Report Date/Time: Tuesday, October 27, 2015 18:10:49 Page 3 Sample ID: L1510121304 Sample Date/Time: Tuesday, October 27, 2015 18:11:44 Number of Replicates: 3 Autosampler Position: 347 Sample Description: 10 Method File: C:\NexIONData\Method\6020a.mth Aliquot Volume (mL): Diluted to Volume (mL): User Name: BKT Nexion300X Cumulative Autodilution Factor: 1 Nexion-ICP 200.8\6020 | Concentration | Results | |---------------|---------| |---------------|---------| | | Concentration Results | | | | | | | | | | |-----|-----------------------|-----------|-----------|--------|---------|-------|-------|-------|---------------|----------| | 18 | S Ana | lyte Mass | Intensity | RSD | Conc. | SD | RSD | Units | Blank Intens. | Mode | | Γ: | > Li | 6 | 29351.8 | 3.6 | | | | ug/L | 26270 | Standard | | | Ве | 9 | 11.7 | 24.7 | -0.0148 | 0.004 | 29.2 | ug/L | 2 | Standard | | L | ΑI | 27 | 5873294.0 | 0.5 | 93.8276 | 3.772 | 4.0 | ug/L | 403 | Standard | | Γ | Sc | 45 | 15838.3 | 3.8 | | | | ug/L | 14524 | Standard | | | Ti | 47 | 87.7 | 7.6 | -1.5810 | 0.038 | 2.4 | ug/L | 365 | Standard | | | V | 51 | 2018.2 | 16.0 | 0.3052 | 0.085 | 27.9 | ug/L | 805 | Standard | | | Cr | 52 | 9103.4 | 1.5 | 0.7562 | 0.028 | 3.7 | ug/L | 5481 | Standard | | | Cr | 53 | 7705.3 | 1.9 | 13.4270 | 0.358 | 2.7 | ug/L | 268 | Standard | | | Mn | 55 | 1529.7 | 4.2 | 0.0935 | 0.020 | 21.1 | ug/L | 670 | Standard | | | Co | 59 | 257.3 | 5.7 | 0.0329 | 0.003 | 9.9 | ug/L | 146 | Standard | | | Ni | 60 | 520.7 | 3.2 | 0.2200 | 0.020 | 9.3 | ug/L | 220 | Standard | | | Cu | 65 | 383.0 | 5.4 | 0.1568 | 0.020 | 12.8 | ug/L | 147 | Standard | | | Zn | 66
| 1912.8 | 2.8 | 2.2099 | 0.099 | 4.5 | ug/L | 211 | Standard | | : | > Ge | 72 | 218974.6 | 1.6 | | | | ug/L | 210599 | Standard | | | As | 75 | 1.2 | 5686.1 | 0.0790 | 0.091 | 114.8 | ug/L | -47 | Standard | | | Se | 82 | 17.1 | 45.9 | 0.1010 | 0.128 | 126.7 | ug/L | 15 | Standard | | L | Se-1 | | 491.0 | 6.3 | 11.0712 | 0.959 | 8.7 | ug/L | 65 | Standard | | Γ: | > Ga | 71 | 30.0 | 57.7 | | | | mg/L | 27 | Standard | | L | Rb | 85 | 17610.2 | 2.8 | | | | ug/L | 17 | Standard | | Γ | Υ | 89 | 224616.4 | 1.8 | | | | ug/L | 216672 | Standard | | Ŀ | > R h | 103 | 28.3 | 20.4 | | | | ug/L | 18 | Standard | | Γ | Мо | 98 | 1426.6 | 2.0 | 0.9829 | 0.022 | 2.3 | ug/L | 11 | Standard | | | Ag | 107 | 49.7 | 19.6 | -0.0011 | 0.002 | 183.8 | ug/L | 55 | Standard | | | Cd | 111 | 8.6 | 6.7 | -0.0004 | 0.000 | 85.0 | mg/L | 7 | Standard | | | Cd | 114 | 32.2 | 21.9 | 0.0144 | 0.002 | 13.9 | ug/L | 4 | Standard | | : | > In | 115 | 334729.4 | 0.4 | | | | ug/L | 322525 | Standard | | | Sn | 118 | 416.7 | 5.4 | -0.0514 | 0.006 | 11.4 | ug/L | 345 | Standard | | | Sb | 123 | 199.3 | 13.2 | 0.0402 | 0.007 | 16.3 | ug/L | 88 | Standard | | L | Ва | 135 | 3423.4 | 0.2 | 2.0383 | 0.006 | 0.3 | ug/L | 12 | Standard | | | Се | 140 | 33.3 | 8.7 | | | | ug/L | 37 | Standard | | Ŀ | | 159 | 630120.1 | 1.1 | | | | ug/L | 631826 | Standard | | ļ | Но | 165 | 10.0 | 86.6 | | | | ug/L | 3 | Standard | | ļ | TI | 203 | 110.7 | 3.2 | 0.0144 | 0.001 | 5.2 | ug/L | 7 | Standard | | ļ | TI | 205 | 78.3 | 47.0 | 0.0204 | 0.009 | 42.3 | ug/L | 7 | Standard | | ļ | Pb | 206 | 366.7 | 3.7 | 0.0324 | 0.004 | 13.2 | ug/L | 159 | Standard | | ļ | Pb | 207 | 324.3 | 3.7 | 0.0327 | 0.002 | 7.2 | ug/L | 120 | Standard | | - [| Pb | 208 | 1299.0 | 6.4 | 0.0363 | 0.005 | 14.5 | ug/L | 503 | Standard | | - [| U | 238 | 195.0 | 4.1 | 0.0321 | 0.002 | 5.9 | ug/L | 5 | Standard | | Ŀ | > Bi | 209 | 335238.8 | 1.2 | | | | ug/L | 333509 | Standard | | | | | | | | | | | | | Sample ID: L1510121304 Report Date/Time: Tuesday, October 27, 2015 18:14:01 Page 1 Approved: October 28, 2015 | _ | | | | | | | | | | | |----|------|-----|---------|-------|---------|-------|-------|------|-------|----------| | | Na | 23 | 1.7 | 173.2 | | | | mg/L | 0 | Standard | | | Mg | 24 | 25498.1 | 2.5 | 55.8311 | 2.792 | 5.0 | mg/L | 10 | Standard | | | K | 39 | 236.7 | 11.6 | 2.4960 | 0.298 | 12.0 | mg/L | 32 | Standard | | | Ca | 43 | 73.3 | 32.2 | -3.6769 | 3.245 | 88.2 | mg/L | 85 | Standard | | | Fe | 54 | 74.3 | 20.1 | 0.0345 | 0.040 | 116.2 | mg/L | 82 | Standard | | | Fe | 57 | 298.3 | 11.8 | 0.7096 | 0.217 | 30.5 | mg/L | 217 | Standard | | L> | Sc-1 | 45 | 15838.3 | 3.8 | | | | mg/L | 14524 | Standard | | | CI | 35 | 88507.8 | 1.3 | | | | ug/L | 53193 | Standard | | | Kr | 83 | 4.0 | 50.0 | | | | ug/L | 3 | Standard | | | Br | 81 | 663.3 | 15.4 | | | | ug/L | 327 | Standard | | | Р | 31 | 15294.4 | 2.5 | | | | ug/L | 13329 | Standard | | | S | 34 | 3898.8 | 3.4 | | | | ug/L | 3234 | Standard | | | Sr | 88 | 120.0 | 11.0 | | | | ug/L | 87 | Standard | | | С | 12 | 133.3 | 31.2 | | | | mg/L | 103 | Standard | | | N | 14 | 3.3 | 173.2 | | | | mg/L | 0 | Standard | | | Hg | 202 | 0.0 | | | | | mg/L | 3 | Standard | | | Dy | 164 | 6.3 | 93.2 | | | | mg/L | 10 | Standard | | | Ho-1 | 165 | 10.0 | 86.6 | | | | mg/L | 3 | Standard | | | Er | 166 | 6.7 | 86.6 | | | | mg/L | 7 | Standard | | | 1 | 127 | 31243.9 | 5.0 | | | | mg/L | 3612 | Standard | | | | | | | | | | | | | | Analyte | Mass | QC Std % Recovery | Int Std % Recovery | Spike % Recovery | |---------|------|-------------------|--------------------|------------------| | 「⊳ Li | 6 | | 111.733 | | | Be | 9 | | | | | L AI | 27 | | | | | 「 Sc | 45 | | | | | Ti | 47 | | | | | V | 51 | | | | | Cr | 52 | | | | | Cr | 53 | | | | | Mn | 55 | | | | | Co | 59 | | | | | Ni | 60 | | | | | Cu | 65 | | | | | Zn | 66 | | | | | > Ge | 72 | | 103.977 | | | As | 75 | | | | | Se | 82 | | | | | L Se-1 | 77 | | | | | 「⊳ Ga | 71 | | | | Sample ID: L1510121304 Report Date/Time: Tuesday, October 27, 2015 18:14:01 Page 2 Approved: October 28, 2015 | L Rb | 85 | | | | |----------------|--------------|---------|------|-----------------------| | ΓY | 89 | | | | | $\lfloor_>$ Rh | 103 | | | | | Г Мо | 98 | | | | | Ag | 107 | | | | | Cd | 111 | | | | | Cd | 114 | | | | |
 > In | 115 | | | 103.784 | | Sn | 118 | | | | | Sb | 123 | | | | | Ва | 135 | | | | | Ce | 140 | | | | | _> Tb | 159 | | | | | Ho | 165 | | | | | TI | 203 | | | | | TI | 205 | | | | | Pb | 206 | | | | | Pb | 207 | | | | | Pb | 208 | | | | | U | 238 | | | | | ∟> Bi | 209 | | | 100.519 | | Na | 23 | | | | | Mg | 24 | | | | | K | 39 | | | | | Ca | 43 | | | | | Fe | 54 | | | | | Fe | 57 | | | | | > Sc-1 | 45 | | | | | CI | 35 | | | | | Kr | 83 | | | | | Br | 81 | | | | | Р | 31 | | | | | S | 34 | | | | | Sr | 88 | | | | | C | 12 | | | | | N | 14 | | | | | Hg | 202 | | | | | Dy | 164 | | | | | Ho-1 | 165 | | | | | Er | 166 | | | | | 1 | 127 | | | | | OC O | ıt of Limits | | | | | | | Analyta | Mass | Out of Limita Massage | | | ment Type | Analyte | Mass | Out of Limits Message | | Ti 47 Lower | | Ti | 47 | | **Sample ID: L1510121304**Report Date/Time: Tuesday, October 27, 2015 18:14:01 Page 3 Sample ID: L1510121305 Sample Date/Time: Tuesday, October 27, 2015 18:14:56 Number of Replicates: 3 Autosampler Position: 348 Sample Description: 10 Method File: C:\NexIONData\Method\6020a.mth Aliquot Volume (mL): Diluted to Volume (mL): User Name: BKT Nexion300X Cumulative Autodilution Factor: 1 Nexion-ICP 200.8\6020 ### **Concentration Results** | IS | S Analyte Mass | | Intensity | RSD | Conc. | SD | RSD | Units | Blank Intens. | Mode | |----|-----------------------|------------|-----------|-------|---------|-------|---------------|-------|---------------|----------| | Γ> | Li | 6 e iviass | 29949.6 | 4.5 | Conc. | OD | NOD | ug/L | 26270 | Standard | | | Be | 9 | 10.0 | 50.0 | -0.0182 | 0.008 | 42.5 | ug/L | 20270 | Standard | | i | Al | 27 | 5565132.9 | 1.0 | 87.1411 | 3.259 | 3.7 | ug/L | 403 | Standard | | Ĺ | Sc | 45 | 16862.7 | 4.6 | 0111411 | 0.200 | 0.1 | ug/L | 14524 | Standard | | i | Ti | 47 | 101.7 | 16.5 | -1.4986 | 0.106 | 7.1 | ug/L | 365 | Standard | | i | V | 51 | 2200.7 | 11.8 | 0.3531 | 0.070 | 19.8 | ug/L | 805 | Standard | | i | Cr | 52 | 9357.9 | 0.2 | 0.8014 | 0.025 | 3.1 | ug/L | 5481 | Standard | | i | Cr | 53 | 7121.7 | 6.4 | 12.2933 | 0.871 | 7.1 | ug/L | 268 | Standard | | í | Mn | 55 | 4877.1 | 1.5 | 1.0622 | 0.015 | 1.5 | ug/L | 670 | Standard | | ĺ | Co | 59 | 254.0 | 4.8 | 0.0315 | 0.004 | 13.9 | ug/L | 146 | Standard | | ĺ | Ni | 60 | 477.0 | 1.9 | 0.1800 | 0.008 | 4.5 | ug/L | 220 | Standard | | ĺ | Cu | 65 | 400.3 | 10.6 | 0.1700 | 0.039 | 22.8 | ug/L | 147 | Standard | | ĺ | Zn | 66 | 1621.8 | 5.3 | 1.7629 | 0.116 | 6.6 | ug/L | 211 | Standard | | > | Ge | 72 | 220284.9 | 0.9 | | | | ug/L | 210599 | Standard | | | As | 75 | -34.9 | 71.0 | 0.0306 | 0.033 | 108.5 | ug/L | -47 | Standard | | | Se | 82 | 17.8 | 23.5 | 0.1114 | 0.069 | 62.1 | ug/L | 15 | Standard | | L | Se-1 | 77 | 460.0 | 4.9 | 10.2185 | 0.620 | 6.1 | ug/L | 65 | Standard | | Γ> | Ga | 71 | 21.7 | 26.6 | | | | mg/L | 27 | Standard | | L | Rb | 85 | 16992.9 | 0.7 | | | | ug/L | 17 | Standard | | Γ | Υ | 89 | 227250.0 | 4.1 | | | | ug/L | 216672 | Standard | | L> | Rh | 103 | 45.0 | 29.4 | | | | ug/L | 18 | Standard | | Γ | Мо | 98 | 1289.7 | 1.9 | 0.8730 | 0.004 | 0.4 | ug/L | 11 | Standard | | | Ag | 107 | 51.7 | 26.1 | -0.0009 | 0.003 | 320.1 | ug/L | 55 | Standard | | | Cd | 111 | 9.7 | 31.7 | 0.0002 | 0.002 | 901.1 | mg/L | 7 | Standard | | | Cd | 114 | 13.8 | 92.0 | 0.0092 | 0.004 | 38.6 | ug/L | 4 | Standard | | > | In | 115 | 340561.8 | 1.6 | | | | ug/L | 322525 | Standard | | ļ | Sn | 118 | 418.3 | 11.3 | -0.0526 | 0.013 | 24.0 | ug/L | 345 | Standard | | ļ | Sb | 123 | 181.8 | 9.4 | 0.0349 | 0.004 | 10.3 | ug/L | 88 | Standard | | Ĺ | Ва | 135 | 3122.7 | 0.9 | 1.8251 | 0.013 | 0.7 | ug/L | 12 | Standard | | ! | Ce | 140 | 130.0 | 30.0 | | | | ug/L | 37 | Standard | | L> | Tb | 159 | 653955.1 | 1.6 | | | | ug/L | 631826 | Standard | | - | Ho | 165 | 5.0 | 100.0 | | 0.000 | 40.0 | ug/L | 3 | Standard | | | TI | 203 | 102.7 | 13.3 | 0.0129 | 0.002 | 16.8 | ug/L | 7 | Standard | | | TI | 205 | 63.3 | 40.5 | 0.0167 | 0.006 | 33.2 | ug/L | 7 | Standard | | | Pb | 206 | 231.3 | 1.9 | -0.0024 | 0.001 | 34.4 | ug/L | 159 | Standard | | | Pb | 207
208 | 187.7 | 6.9 | -0.0060 | 0.003 | 47.6
846.6 | ug/L | 120
503 | Standard | | | Pb | | 780.3 | 4.5 | -0.0004 | 0.004 | | ug/L | | Standard | | | U
D: | 238 | 185.3 | 14.8 | 0.0299 | 0.006 | 19.4 | ug/L | 5 | Standard | | L> | Bi | 209 | 339609.6 | 2.1 | | | | ug/L | 333509 | Standard | Sample ID: L1510121305 Report Date/Time: Tuesday, October 27, 2015 18:17:13 Page 1 Approved: October 28, 2015 | _ | | | | | | | | _ | _ | | |----|------|-----|---------|-------|---------|-------|------|------|-------|----------| | | Na | 23 | 1.7 | 173.2 | | | | mg/L | 0 | Standard | | | Mg | 24 | 23615.1 | 0.3 | 48.5748 | 2.189 | 4.5 | mg/L | 10 | Standard | | | K | 39 | 248.3 | 12.9 | 2.4498 | 0.220 | 9.0 | mg/L | 32 | Standard | | | Ca | 43 | 78.3 | 26.6 | -3.6480 | 2.624 | 71.9 | mg/L | 85 | Standard | | | Fe | 54 | 87.3 | 18.2 | 0.0507 | 0.033 | 64.5 | mg/L | 82 | Standard | | | Fe | 57 | 306.7 | 11.5 | 0.6281 | 0.312 | 49.7 | mg/L | 217 | Standard | | L> | Sc-1 | 45 | 16862.7 | 4.6 | | | | mg/L | 14524 | Standard | | | CI | 35 | 86274.3 | 1.3 | | | | ug/L | 53193 | Standard | | | Kr | 83 | 4.0 | 43.3 | | | | ug/L | 3 | Standard | | | Br | 81 | 736.7 | 10.9 | | | | ug/L | 327 | Standard | | | Р | 31 | 15094.2 | 0.5 | | | | ug/L | 13329 | Standard | | | S | 34 | 3813.8 | 2.2 | | | | ug/L | 3234 | Standard | | | Sr | 88 | 123.3 | 41.0 | | | | ug/L | 87 | Standard | | | С | 12 | 146.7 | 15.7 | | | | mg/L | 103 | Standard | | | N | 14 | 3.3 | 173.2 | | | | mg/L | 0 | Standard | | | Hg | 202 | 0.0 | | | | | mg/L | 3 | Standard | | | Dy |
164 | 19.0 | 52.7 | | | | mg/L | 10 | Standard | | | Ho-1 | 165 | 5.0 | 100.0 | | | | mg/L | 3 | Standard | | | Er | 166 | 20.0 | 86.6 | | | | mg/L | 7 | Standard | | | I | 127 | 30873.3 | 8.9 | | | | mg/L | 3612 | Standard | | Analyte | Mass | QC Std % Recovery | Int Std % Recovery | Spike % Recovery | |---------|------|-------------------|--------------------|------------------| | 「> Li | 6 | | 114.008 | | | Be | 9 | | | | | L AI | 27 | | | | | 「 Sc | 45 | | | | | Ti | 47 | | | | | V | 51 | | | | | Cr | 52 | | | | | Cr | 53 | | | | | Mn | 55 | | | | | Co | 59 | | | | | Ni | 60 | | | | | Cu | 65 | | | | | Zn | 66 | | | | | > Ge | 72 | | 104.599 | | | As | 75 | | | | | Se | 82 | | | | | L Se-1 | 77 | | | | | 「⊳ Ga | 71 | | | | Sample ID: L1510121305 Report Date/Time: Tuesday, October 27, 2015 18:17:13 Page 2 Approved: October 28, 2015 | ∟ Rb | 85 | | | | |----------------|--------------|---|---|------------------------| | ΓY | 89 | | | | | $\lfloor_>$ Rh | 103 | | | | | Г Мо | 98 | | | | | Ag | 107 | | | | | Cd | 111 | | | | | Cd | 114 | | | | | > In | 115 | | | 105.592 | | Sn | 118 | | | | | Sb | 123 | | | | | L Ba | 135 | | | | | _ Ce | 140 | | | | | _> Tb | 159 | | | | | ⊢ Ho | 165 | | | | | j TI | 203 | | | | | į ΤΙ | 205 | | | | | Pb | 206 | | | | | Pb | 207 | | | | | Pb | 208 | | | | | U | 238 | | | | | Ĺ> Bi | 209 | | | 101.829 | | Г Na | 23 | | | | | Mg | 24 | | | | | K | 39 | | | | | Ca | 43 | | | | | Fe | 54 | | | | | Fe | 57 | | | | | L> Sc-1 | 45 | | | | | CI | 35 | | | | | Kr | 83 | | | | | Br | 81 | | | | | Р | 31 | | | | | S | 34 | | | | | Sr | 88 | | | | | С | 12 | | | | | N | 14 | | | | | Hg | 202 | | | | | Dy | 164 | | | | | Ho-1 | 165 | | | | | Er | 166 | | | | | 1 | 127 | | | | | QC Oi | ıt of Limits | | | | | | ment Type | Analyte | Mass | Out of Limits Message | | Ti 47 Lo | | Ti | 47 | 2 a. c. Linite moodage | | 11 11 LO | | • | • | | Sample ID: L1510121305 Report Date/Time: Tuesday, October 27, 2015 18:17:13 Page 3 Sample ID: L1510121306 Sample Date/Time: Tuesday, October 27, 2015 18:18:07 Number of Replicates: 3 Autosampler Position: 349 Sample Description: 10 Method File: C:\NexIONData\Method\6020a.mth Aliquot Volume (mL): Diluted to Volume (mL): User Name: BKT Nexion300X Cumulative Autodilution Factor: 1 Nexion-ICP 200.8\6020 | 0 | ncon | tration | Results | | |----|------|----------|---------|--| | Lα | ncen | itration | Results | | | | Concentration results | | | | | | | | | | |----|-----------------------|---------------|-----------|-------|---------|--------|-------|-------|---------------|----------| | IS | Analyt | e Mass | Intensity | RSD | Conc. | SD | RSD | Units | Blank Intens. | Mode | | Γ> | Li | 6 | 28395.1 | 9.2 | | | | ug/L | 26270 | Standard | | | Ве | 9 | 13.3 | 57.3 | -0.0109 | 0.013 | 121.6 | ug/L | 2 | Standard | | L | ΑI | 27 | 5967950.6 | 1.9 | 99.1403 | 11.106 | 11.2 | ug/L | 403 | Standard | | Γ | Sc | 45 | 15427.9 | 6.4 | | | | ug/L | 14524 | Standard | | | Ti | 47 | 75.3 | 3.1 | -1.6308 | 0.027 | 1.7 | ug/L | 365 | Standard | | | ٧ | 51 | 2075.1 | 9.0 | 0.3537 | 0.058 | 16.4 | ug/L | 805 | Standard | | | Cr | 52 | 9522.7 | 0.9 | 0.9726 | 0.148 | 15.3 | ug/L | 5481 | Standard | | | Cr | 53 | 7288.4 | 1.3 | 13.4061 | 0.819 | 6.1 | ug/L | 268 | Standard | | | Mn | 55 | 1110.7 | 3.6 | -0.0110 | 0.018 | 165.5 | ug/L | 670 | Standard | | | Co | 59 | 264.0 | 2.5 | 0.0396 | 0.008 | 20.7 | ug/L | 146 | Standard | | | Ni | 60 | 479.7 | 7.4 | 0.2086 | 0.054 | 25.8 | ug/L | 220 | Standard | | | Cu | 65 | 387.7 | 8.0 | 0.1800 | 0.026 | 14.5 | ug/L | 147 | Standard | | | Zn | 66 | 1296.7 | 1.0 | 1.4039 | 0.144 | 10.3 | ug/L | 211 | Standard | | > | Ge | 72 | 207975.2 | 7.0 | | | | ug/L | 210599 | Standard | | | As | 75 | -67.5 | 10.4 | -0.0205 | 0.018 | 85.8 | ug/L | -47 | Standard | | | Se | 82 | 14.4 | 19.4 | 0.0685 | 0.036 | 53.0 | ug/L | 15 | Standard | | L | Se-1 | 77 | 510.3 | 8.8 | 12.2737 | 1.568 | 12.8 | ug/L | 65 | Standard | | Γ> | Ga | 71 | 16.7 | 34.6 | | | | mg/L | 27 | Standard | | L | Rb | 85 | 18449.6 | 0.3 | | | | ug/L | 17 | Standard | | Γ | Υ | 89 | 215415.6 | 7.1 | | | | ug/L | 216672 | Standard | | L> | Rh | 103 | 46.7 | 27.0 | | | | ug/L | 18 | Standard | | Γ | Мо | 98 | 1431.2 | 3.4 | 1.0377 | 0.106 | 10.2 | ug/L | 11 | Standard | | | Ag | 107 | 43.7 | 19.5 | -0.0020 | 0.001 | 67.9 | ug/L | 55 | Standard | | | Cd | 111 | 5.2 | 30.1 | -0.0026 | 0.001 | 43.0 | mg/L | 7 | Standard | | | Cd | 114 | 16.9 | 122.4 | 0.0107 | 0.007 | 62.6 | ug/L | 4 | Standard | | > | In | 115 | 319524.7 | 6.6 | | | | ug/L | 322525 | Standard | | | Sn | 118 | 425.0 | 15.8 | -0.0449 | 0.010 | 22.9 | ug/L | 345 | Standard | | | Sb | 123 | 224.7 | 5.3 | 0.0497 | 0.007 | 14.7 | ug/L | 88 | Standard | | Ĺ | Ва | 135 | 3388.4 | 2.5 | 2.1230 | 0.196 | 9.2 | ug/L | 12 | Standard | | ļ | Ce | 140 | 20.0 | 25.0 | | | | ug/L | 37 | Standard | | [> | Tb | 159 | 607987.1 | 6.8 | | | | ug/L | 631826 | Standard | | ļ | Но | 165 | 18.3 | 31.5 | | | | ug/L | 3 | Standard | | ļ | TI | 203 | 93.0 | 17.8 | 0.0125 | 0.003 | 21.2 | ug/L | 7 | Standard | | ļ | TI | 205 | 75.0 | 24.0 | 0.0208 | 0.006 | 26.6 | ug/L | 7 | Standard | | ! | Pb | 206 | 195.3 | 9.3 | -0.0079 | 0.003 | 31.8 | ug/L | 159 | Standard | | ļ | Pb | 207 | 164.0 | 10.0 | -0.0089 | 0.008 | 87.2 | ug/L | 120 | Standard | | ! | Pb | 208 | 658.7 | 8.0 | -0.0056 | 0.001 | 23.0 | ug/L | 503 | Standard | | ! | U | 238 | 189.7 | 8.5 | 0.0332 | 0.001 | 3.8 | ug/L | 5 | Standard | | L> | Bi | 209 | 316563.4 | 6.0 | | | | ug/L | 333509 | Standard | Sample ID: L1510121306 Report Date/Time: Tuesday, October 27, 2015 18:20:24 Page 1 Approved: October 28, 2015 Page 598 L15101055 / Revision: 0 / 760 total pages | _ | | | | | | | | | | | |----|------|-----|---------|-------|---------|-------|------|------|-------|----------| | | Na | 23 | 3.3 | 86.6 | | | | mg/L | 0 | Standard | | | Mg | 24 | 25833.7 | 2.1 | 58.2002 | 4.637 | 8.0 | mg/L | 10 | Standard | | | K | 39 | 245.0 | 21.6 | 2.6791 | 0.675 | 25.2 | mg/L | 32 | Standard | | | Ca | 43 | 51.7 | 14.8 | -6.5830 | 1.670 | 25.4 | mg/L | 85 | Standard | | | Fe | 54 | 82.5 | 15.4 | 0.0586 | 0.041 | 70.4 | mg/L | 82 | Standard | | | Fe | 57 | 283.3 | 20.9 | 0.6546 | 0.546 | 83.4 | mg/L | 217 | Standard | | L> | Sc-1 | 45 | 15427.9 | 6.4 | | | | mg/L | 14524 | Standard | | | CI | 35 | 87868.8 | 1.4 | | | | ug/L | 53193 | Standard | | | Kr | 83 | 5.0 | 34.6 | | | | ug/L | 3 | Standard | | | Br | 81 | 663.3 | 14.0 | | | | ug/L | 327 | Standard | | | Р | 31 | 14872.3 | 1.3 | | | | ug/L | 13329 | Standard | | | S | 34 | 3977.2 | 1.0 | | | | ug/L | 3234 | Standard | | | Sr | 88 | 135.0 | 7.4 | | | | ug/L | 87 | Standard | | | С | 12 | 106.7 | 23.6 | | | | mg/L | 103 | Standard | | | N | 14 | 6.7 | 86.6 | | | | mg/L | 0 | Standard | | | Hg | 202 | 0.0 | | | | | mg/L | 3 | Standard | | | Dy | 164 | 9.4 | 106.9 | | | | mg/L | 10 | Standard | | | Ho-1 | 165 | 18.3 | 31.5 | | | | mg/L | 3 | Standard | | | Er | 166 | 13.3 | 43.3 | | | | mg/L | 7 | Standard | | | I | 127 | 31711.6 | 8.2 | | | | mg/L | 3612 | Standard | | | | | | | | | | | | | | Analyte | Mass | QC Std % Recovery | Int Std % Recovery | Spike % Recovery | |---------|------|-------------------|--------------------|------------------| | 「⊳ Li | 6 | | 108.091 | | | Be | 9 | | | | | L AI | 27 | | | | | 「 Sc | 45 | | | | | Ti | 47 | | | | | V | 51 | | | | | Cr | 52 | | | | | Cr | 53 | | | | | Mn | 55 | | | | | Co | 59 | | | | | Ni | 60 | | | | | Cu | 65 | | | | | Zn | 66 | | | | | > Ge | 72 | | 98.754 | | | As | 75 | | | | | Se | 82 | | | | | L Se-1 | 77 | | | | | 「⊳ Ga | 71 | | | | Sample ID: L1510121306 Report Date/Time: Tuesday, October 27, 2015 18:20:24 Page 2 Approved: October 28, 2015 | L Rb 85 √ 89 L Rh 103 Mo 98 Ag 107 Cd 111 Cd 114 In 115 Sn 118 Sb 123 Ba 135 Ce 140 Nb 159 Ho 165 TI 203 Pb 206 Pb 207 Pb 208 U 238 Bi 209 Na 23 Mg 24 K 39 Ca 43 Fe 54 Fe 57 L> Sc-1 45 CI 35 Kr 83 Br 81 P 31 S 34 Sr 88 C 12 N 14 Hg 202 | | | 99.070 | |---|---------|------|-----------------------| | QC Out of Limits | | | | | Measurement Type | Analyte | Mass | Out of Limits Message | | Ti 47 Lower | Ti | 47 | | **Sample ID: L1510121306**Report Date/Time: Tuesday, October 27, 2015 18:20:24 Page 3 Sample ID: L1510121307 Sample Date/Time: Tuesday, October 27, 2015 18:21:19 Number of Replicates: 3 Autosampler Position: 350 Sample Description: 10 Method File: C:\NexIONData\Method\6020a.mth Aliquot Volume (mL): Diluted to Volume (mL): User Name: BKT Nexion300X Cumulative Autodilution Factor: 1 Nexion-ICP 200.8\6020 | Concentration Resul | ts | |---------------------|----| |---------------------|----| | Concentration Results | | | | | | | | | | | |-----------------------|--------|---------------|-----------|-------|---------|-------|-------|-------|---------------|----------| | IS | Analyt | e Mass | Intensity | RSD | Conc. | SD | RSD | Units | Blank Intens. | Mode | | Γ> | Li | 6 | 30425.5 | 2.9 | | | | ug/L | 26270 | Standard | | | Be | 9 | 3.3 | 173.2 | -0.0291 | 0.010 | 34.2 | ug/L | 2 | Standard | | L | ΑI | 27 | 3812790.1 | 2.3 | 58.7550 | 3.049 | 5.2 | ug/L | 403 |
Standard | | Γ | Sc | 45 | 16694.2 | 7.3 | | | | ug/L | 14524 | Standard | | | Ti | 47 | 103.3 | 6.8 | -1.5072 | 0.055 | 3.7 | ug/L | 365 | Standard | | | V | 51 | 2176.8 | 9.9 | 0.3270 | 0.037 | 11.4 | ug/L | 805 | Standard | | | Cr | 52 | 9851.9 | 1.8 | 0.8463 | 0.098 | 11.5 | ug/L | 5481 | Standard | | | Cr | 53 | 6919.9 | 1.8 | 11.5553 | 0.529 | 4.6 | ug/L | 268 | Standard | | | Mn | 55 | 38393.9 | 2.1 | 10.4634 | 0.700 | 6.7 | ug/L | 670 | Standard | | | Co | 59 | 273.0 | 9.5 | 0.0349 | 0.010 | 29.9 | ug/L | 146 | Standard | | | Ni | 60 | 539.3 | 7.9 | 0.2184 | 0.018 | 8.5 | ug/L | 220 | Standard | | | Cu | 65 | 2848.9 | 1.7 | 2.2286 | 0.152 | 6.8 | ug/L | 147 | Standard | | | Zn | 66 | 2409.5 | 3.6 | 2.8228 | 0.286 | 10.1 | ug/L | 211 | Standard | | > | Ge | 72 | 227351.9 | 4.5 | | | | ug/L | 210599 | Standard | | | As | 75 | 24.1 | 229.0 | 0.1112 | 0.072 | 65.2 | ug/L | -47 | Standard | | | Se | 82 | 23.0 | 9.1 | 0.1848 | 0.049 | 26.6 | ug/L | 15 | Standard | | L | Se-1 | 77 | 481.0 | 2.6 | 10.3788 | 0.471 | 4.5 | ug/L | 65 | Standard | | Γ> | Ga | 71 | 30.0 | 28.9 | | | | mg/L | 27 | Standard | | L | Rb | 85 | 20712.5 | 2.7 | | | | ug/L | 17 | Standard | | Γ | Υ | 89 | 232723.5 | 5.2 | | | | ug/L | 216672 | Standard | | L> | Rh | 103 | 33.3 | 22.9 | | | | ug/L | 18 | Standard | | Γ | Mo | 98 | 1483.8 | 4.1 | 1.0018 | 0.089 | 8.9 | ug/L | 11 | Standard | | | Ag | 107 | 49.7 | 18.3 | -0.0013 | 0.002 | 157.7 | ug/L | 55 | Standard | | | Cd | 111 | 8.7 | 20.6 | -0.0005 | 0.001 | 255.9 | mg/L | 7 | Standard | | | Cd | 114 | 27.9 | 94.8 | 0.0129 | 0.007 | 53.2 | ug/L | 4 | Standard | | > | In | 115 | 342531.8 | 4.7 | | | | ug/L | 322525 | Standard | | | Sn | 118 | 698.3 | 4.8 | 0.0137 | 0.015 | 110.2 | ug/L | 345 | Standard | | | Sb | 123 | 863.4 | 5.7 | 0.2053 | 0.020 | 9.6 | ug/L | 88 | Standard | | L | Ва | 135 | 3075.6 | 1.6 | 1.7894 | 0.093 | 5.2 | ug/L | 12 | Standard | | Γ | Ce | 140 | 166.7 | 13.9 | | | | ug/L | 37 | Standard | | L> | Tb | 159 | 664870.0 | 5.1 | | | | ug/L | 631826 | Standard | | Γ | Но | 165 | 21.7 | 26.6 | | | | ug/L | 3 | Standard | | | TI | 203 | 94.3 | 4.0 | 0.0115 | 0.000 | 1.7 | ug/L | 7 | Standard | | | TI | 205 | 50.0 | 26.5 | 0.0136 | 0.003 | 18.8 | ug/L | 7 | Standard | | | Pb | 206 | 587.3 | 4.7 | 0.0846 | 0.001 | 1.2 | ug/L | 159 | Standard | | | Pb | 207 | 481.3 | 3.0 | 0.0734 | 0.003 | 4.3 | ug/L | 120 | Standard | | | Pb | 208 | 1947.7 | 1.1 | 0.0785 | 0.006 | 7.3 | ug/L | 503 | Standard | | | U | 238 | 130.0 | 11.1 | 0.0194 | 0.003 | 16.3 | ug/L | 5 | Standard | | <u>_</u> > | Bi | 209 | 342980.7 | 4.1 | | | | ug/L | 333509 | Standard | | | | | | | | | | | | | Sample ID: L1510121307 Report Date/Time: Tuesday, October 27, 2015 18:23:36 Page 1 Approved: October 28, 2015 Page 601 L15101055 / Revision: 0 / 760 total pages | _ | | | | | | | | | | | |----|------|-----|---------|-------|---------|-------|--------|------|-------|----------| | | Na | 23 | 1.7 | 173.2 | | | | mg/L | 0 | Standard | | | Mg | 24 | 23504.9 | 2.7 | 48.9280 | 3.480 | 7.1 | mg/L | 10 | Standard | | | K | 39 | 296.7 | 10.3 | 3.0360 | 0.586 | 19.3 | mg/L | 32 | Standard | | | Ca | 43 | 73.3 | 10.4 | -4.2120 | 0.489 | 11.6 | mg/L | 85 | Standard | | | Fe | 54 | 97.4 | 50.2 | 0.0723 | 0.096 | 132.3 | mg/L | 82 | Standard | | | Fe | 57 | 228.3 | 5.1 | 0.0144 | 0.213 | 1480.2 | mg/L | 217 | Standard | | L> | Sc-1 | 45 | 16694.2 | 7.3 | | | | mg/L | 14524 | Standard | | | CI | 35 | 87824.5 | 1.7 | | | | ug/L | 53193 | Standard | | | Kr | 83 | 5.0 | 20.0 | | | | ug/L | 3 | Standard | | | Br | 81 | 813.4 | 13.1 | | | | ug/L | 327 | Standard | | | Р | 31 | 14753.8 | 2.5 | | | | ug/L | 13329 | Standard | | | S | 34 | 3863.8 | 1.4 | | | | ug/L | 3234 | Standard | | | Sr | 88 | 131.7 | 20.9 | | | | ug/L | 87 | Standard | | | С | 12 | 173.3 | 12.0 | | | | mg/L | 103 | Standard | | | N | 14 | 0.0 | | | | | mg/L | 0 | Standard | | | Hg | 202 | 3.3 | 173.2 | | | | mg/L | 3 | Standard | | | Dy | 164 | 12.5 | 45.0 | | | | mg/L | 10 | Standard | | | Ho-1 | 165 | 21.7 | 26.6 | | | | mg/L | 3 | Standard | | | Er | 166 | 16.7 | 34.6 | | | | mg/L | 7 | Standard | | | I | 127 | 54319.0 | 5.3 | | | | mg/L | 3612 | Standard | | Analyte | Mass | QC Std % Recovery | Int Std % Recovery | Spike % Recovery | |---------|------|-------------------|--------------------|------------------| | 「⊳ Li | 6 | | 115.820 | | | Be | 9 | | | | | L AI | 27 | | | | | 「 Sc | 45 | | | | | Ti | 47 | | | | | V | 51 | | | | | Cr | 52 | | | | | Cr | 53 | | | | | Mn | 55 | | | | | Co | 59 | | | | | Ni | 60 | | | | | Cu | 65 | | | | | Zn | 66 | | | | | > Ge | 72 | | 107.955 | | | As | 75 | | | | | Se | 82 | | | | | ∟ Se-1 | 77 | | | | | 「⊳ Ga | 71 | | | | Sample ID: L1510121307 Report Date/Time: Tuesday, October 27, 2015 18:23:36 Page 2 Approved: October 28, 2015 | ∟ Rb | 85 | | | | |----------------|--------------|---|---|-----------------------| | ΓY | 89 | | | | | $\lfloor_>$ Rh | 103 | | | | | Г Мо | 98 | | | | | Ag | 107 | | | | | Cd | 111 | | | | | Cd | 114 | | | | | > In | 115 | | | 106.203 | | Sn | 118 | | | | | Sb | 123 | | | | | L Ba | 135 | | | | | _ Ce | 140 | | | | | _> Tb | 159 | | | | | ⊢ Ho | 165 | | | | | j TI | 203 | | | | | į ΤΙ | 205 | | | | | Pb | 206 | | | | | Pb | 207 | | | | | Pb | 208 | | | | | į U | 238 | | | | | Ĺ> Bi | 209 | | | 102.840 | | Г Na | 23 | | | | | Mg | 24 | | | | | K | 39 | | | | | Ca | 43 | | | | | Fe | 54 | | | | | Fe | 57 | | | | | L> Sc-1 | 45 | | | | | CI | 35 | | | | | Kr | 83 | | | | | Br | 81 | | | | | Р | 31 | | | | | S | 34 | | | | | Sr | 88 | | | | | С | 12 | | | | | N | 14 | | | | | Hg | 202 | | | | | Dy | 164 | | | | | Ho-1 | 165 | | | | | Er | 166 | | | | | 1 | 127 | | | | | QC Oi | ıt of Limits | | | | | | ment Type | Analyte | Mass | Out of Limits Message | | Ti 47 Lo | | Ti | 47 | out of Emilio Moodago | | 11 11 LO | | • | • | | Sample ID: L1510121307 Report Date/Time: Tuesday, October 27, 2015 18:23:36 Page 3 Sample ID: L1510121308 Sample Date/Time: Tuesday, October 27, 2015 18:24:30 Number of Replicates: 3 Autosampler Position: 351 Sample Description: 10 Method File: C:\NexIONData\Method\6020a.mth Aliquot Volume (mL): Diluted to Volume (mL): User Name: BKT Nexion300X Cumulative Autodilution Factor: 1 Nexion-ICP 200.8\6020 | Concentration Resu | ılte | |--------------------|------| | | Concentration Results | | | | | | | | | | |-----|-----------------------|--------|-----------|-------|---------|-------|-------|-------|---------------|----------| | IS | Analyt | e Mass | Intensity | RSD | Conc. | SD | RSD | Units | Blank Intens. | Mode | | Γ> | Li | 6 | 28738.9 | 1.6 | | | | ug/L | 26270 | Standard | | | Be | 9 | 1.7 | 173.2 | -0.0319 | 0.005 | 15.8 | ug/L | 2 | Standard | | L | ΑI | 27 | 3990481.7 | 2.1 | 65.0639 | 2.335 | 3.6 | ug/L | 403 | Standard | | Γ | Sc | 45 | 15870.0 | 3.2 | | | | ug/L | 14524 | Standard | | | Ti | 47 | 87.3 | 12.6 | -1.5813 | 0.056 | 3.6 | ug/L | 365 | Standard | | | ٧ | 51 | 2066.1 | 12.4 | 0.3208 | 0.058 | 18.2 | ug/L | 805 | Standard | | | Cr | 52 | 9898.6 | 2.5 | 0.9491 | 0.124 | 13.0 | ug/L | 5481 | Standard | | | Cr | 53 | 7326.8 | 1.4 | 12.8070 | 0.467 | 3.6 | ug/L | 268 | Standard | | | Mn | 55 | 32746.7 | 1.8 | 9.2584 | 0.446 | 4.8 | ug/L | 670 | Standard | | | Co | 59 | 277.7 | 3.6 | 0.0396 | 0.003 | 8.8 | ug/L | 146 | Standard | | | Ni | 60 | 651.7 | 0.2 | 0.3348 | 0.017 | 5.1 | ug/L | 220 | Standard | | | Cu | 65 | 429.3 | 5.1 | 0.1994 | 0.028 | 13.9 | ug/L | 147 | Standard | | | Zn | 66 | 1657.8 | 2.7 | 1.8447 | 0.140 | 7.6 | ug/L | 211 | Standard | | > | Ge | 72 | 217994.5 | 2.9 | | | | ug/L | 210599 | Standard | | | As | 75 | 6.1 | 722.3 | 0.0866 | 0.059 | 68.7 | ug/L | -47 | Standard | | | Se | 82 | 17.9 | 24.2 | 0.1165 | 0.071 | 61.3 | ug/L | 15 | Standard | | L | Se-1 | 77 | 505.3 | 3.4 | 11.4760 | 0.076 | 0.7 | ug/L | 65 | Standard | | Γ> | Ga | 71 | 33.3 | 31.2 | | | | mg/L | 27 | Standard | | L | Rb | 85 | 22615.2 | 2.3 | | | | ug/L | 17 | Standard | | Γ | Υ | 89 | 223933.6 | 3.0 | | | | ug/L | 216672 | Standard | | L> | Rh | 103 | 45.0 | 11.1 | | | | ug/L | 18 | Standard | | Γ | Мо | 98 | 1574.9 | 2.5 | 1.1096 | 0.032 | 2.8 | ug/L | 11 | Standard | | | Ag | 107 | 48.0 | 15.0 | -0.0013 | 0.001 | 110.0 | ug/L | 55 | Standard | | | Cd | 111 | 6.2 | 117.6 | -0.0020 | 0.005 | 250.1 | mg/L | 7 | Standard | | | Cd | 114 | 30.0 | 39.3 | 0.0140 | 0.003 | 24.6 | ug/L | 4 | Standard | | > | In | 115 | 327476.4 | 1.8 | | | | ug/L | 322525 | Standard | | | Sn | 118 | 373.3 | 20.3 | -0.0597 | 0.021 | 34.5 | ug/L | 345 | Standard | | | Sb | 123 | 928.6 | 2.2 | 0.2317 | 0.008 | 3.6 | ug/L | 88 | Standard | | Ē | Ва | 135 | 3235.3 | 2.8 | 1.9688 | 0.076 | 3.9 | ug/L | 12 | Standard | | ļ | Ce | 140 | 35.0 | 37.8 | | | | ug/L | 37 | Standard | | [> | Tb | 159 | 627280.7 | 4.2 | | | | ug/L | 631826 | Standard | | ļ | Но | 165 | 8.3 | 124.9 | | | | ug/L | 3 | Standard | | ļ | TI | 203 | 76.3 | 13.1 | 0.0093 | 0.002 | 19.6 | ug/L | 7 | Standard | | ļ | TI | 205 | 55.0 | 15.7 | 0.0152 | 0.002 | 12.8 | ug/L | 7 | Standard | | ļ | Pb | 206 | 223.7 | 2.9 | -0.0028 | 0.001 | 42.5 | ug/L | 159 | Standard | | | Pb | 207 | 192.3 | 6.6 | -0.0031 | 0.005 | 157.7 | ug/L | 120 | Standard | | - ! | Pb | 208 | 835.3 | 3.0 | 0.0050 | 0.003 | 59.0 | ug/L | 503 | Standard | | - ! | U | 238 | 133.0 | 15.4 | 0.0209 | 0.005 | 22.1 | ug/L | 5 | Standard | | _> | Bi | 209 | 330337.9 | 2.7 | | | | ug/L | 333509 | Standard | | | | | | | | | | | | | Sample ID: L1510121308 Report Date/Time: Tuesday, October 27, 2015 18:26:46 Page 1 Approved: October 28, 2015 Page 604 L15101055 / Revision: 0 / 760 total pages | Γ | Na | 23 | 3.3 | 86.6 | | | | mg/L | 0 | Standard | |----|------|-----|---------|-------|---------|-------|------|------|-------|----------| | i | Mg | 24 | 24633.3 | 1.1 | 53.8070 | 1.848 | 3.4 | mg/L | 10 | Standard | | i | ĸ | 39 |
305.0 | 12.4 | 3.2784 | 0.504 | 15.4 | mg/L | 32 | Standard | | İ | Ca | 43 | 65.0 | 23.1 | -4.8445 | 2.523 | 52.1 | mg/L | 85 | Standard | | ĺ | Fe | 54 | 74.3 | 17.9 | 0.0329 | 0.027 | 82.7 | mg/L | 82 | Standard | | ĺ | Fe | 57 | 258.3 | 8.7 | 0.3598 | 0.126 | 35.1 | mg/L | 217 | Standard | | L> | Sc-1 | 45 | 15870.0 | 3.2 | | | | mg/L | 14524 | Standard | | | CI | 35 | 89973.1 | 1.5 | | | | ug/L | 53193 | Standard | | | Kr | 83 | 5.7 | 36.7 | | | | ug/L | 3 | Standard | | | Br | 81 | 926.7 | 12.6 | | | | ug/L | 327 | Standard | | | P | 31 | 14957.4 | 1.7 | | | | ug/L | 13329 | Standard | | | S | 34 | 4257.3 | 6.8 | | | | ug/L | 3234 | Standard | | | Sr | 88 | 118.3 | 6.5 | | | | ug/L | 87 | Standard | | | С | 12 | 146.7 | 17.2 | | | | mg/L | 103 | Standard | | | N | 14 | 0.0 | | | | | mg/L | 0 | Standard | | | Hg | 202 | 6.7 | 173.2 | | | | mg/L | 3 | Standard | | | Dy | 164 | 9.4 | 3.0 | | | | mg/L | 10 | Standard | | | Ho-1 | 165 | 8.3 | 124.9 | | | | mg/L | 3 | Standard | | | Er | 166 | 13.3 | 43.3 | | | | mg/L | 7 | Standard | | | I | 127 | 61265.6 | 6.4 | | | | mg/L | 3612 | Standard | | _ | Analyte | | QC Std % Recovery | Int Std % Recovery | Spike % Recovery | |----|---------|----|-------------------|--------------------|------------------| | [> | Li | 6 | | 109.400 | | | | Be | 9 | | | | | L | Al | 27 | | | | | Γ | Sc | 45 | | | | | | Ti | 47 | | | | | | V | 51 | | | | | | Cr | 52 | | | | | | Cr | 53 | | | | | | Mn | 55 | | | | | | Co | 59 | | | | | | Ni | 60 | | | | | | Cu | 65 | | | | | | Zn | 66 | | | | | > | Ge | 72 | | 103.512 | | | | As | 75 | | | | | | Se | 82 | | | | | L | Se-1 | 77 | | | | | Γ> | Ga | 71 | | | | Sample ID: L1510121308 Report Date/Time: Tuesday, October 27, 2015 18:26:46 Page 2 | ∟ Rb | 85 | | | | |----------------------|--------------|---------|------|-----------------------| | [Y | 89 | | | | | ∣ | 103 | | | | | Mo | 98 | | | | | Ag | 107 | | | | | Cd | 111 | | | | | Cd | 114 | | | | | | 115 | | | 101.535 | | Sn | 118 | | | 101.000 | | Sb | 123 | | | | | L Ba | 135 | | | | | ∟ Ce | 140 | | | | | Tb | 159 | | | | | Ho | 165 | | | | | TI | 203 | | | | | TI | 205 | | | | | Pb | 206 | | | | | Pb | 207 | | | | | Pb | 208 | | | | | įυ | 238 | | | | | Ĺ _{>} Bi | 209 | | | 99.049 | | - Na | 23 | | | | | Mg | 24 | | | | | K | 39 | | | | | Ca | 43 | | | | | Fe | 54 | | | | | Fe | 57 | | | | | _> Sc-1 | 45 | | | | | CI | 35 | | | | | Kr | 83 | | | | | Br | 81 | | | | | Р | 31 | | | | | S | 34 | | | | | Sr | 88 | | | | | С | 12 | | | | | N | 14 | | | | | Hg | 202 | | | | | Dy | 164 | | | | | Ho-1 | 165 | | | | | Er | 166 | | | | | l
 | 127 | | | | | QC O | ut of Limits | | | | | Measure | ement Type | Analyte | Mass | Out of Limits Message | | Ti 47 Lo | | Ti | 47 | | Sample ID: L1510121308 Report Date/Time: Tuesday, October 27, 2015 18:26:46 Page 3 Sample ID: QC Std 6 Sample Date/Time: Tuesday, October 27, 2015 18:27:42 Number of Replicates: 3 Autosampler Position: 101 Sample Description: Method File: C:\NexIONData\Method\6020a.mth Aliquot Volume (mL): Diluted to Volume (mL): User Name: BKT Nexion300X Cumulative Autodilution Factor: 1 Nexion-ICP 200.8\6020 | \sim | ncon | tration | Results | | |--------|------|----------|---------|--| | υo | ncer | itration | Results | | | | Concentration Results | | | | | | | | | | |----|-----------------------|--------|-----------|-------|----------|-------|-----|-------|---------------|----------| | IS | Analyt | e Mass | Intensity | RSD | Conc. | SD | RSD | Units | Blank Intens. | Mode | | Γ> | Li | 6 | 30175.1 | 4.7 | | | | ug/L | 26270 | Standard | | | Be | 9 | 28675.4 | 0.8 | 48.1452 | 1.846 | 3.8 | ug/L | 2 | Standard | | L | Αl | 27 | 3056301.9 | 3.1 | 47.4904 | 2.213 | 4.7 | ug/L | 403 | Standard | | Γ | Sc | 45 | 16540.7 | 2.0 | | | | ug/L | 14524 | Standard | | | Ti | 47 | 18196.6 | 1.8 | 108.4662 | 1.205 | 1.1 | ug/L | 365 | Standard | | | ٧ | 51 | 188818.1 | 0.7 | 52.3378 | 0.877 | 1.7 | ug/L | 805 | Standard | | | Cr | 52 | 235991.4 | 1.8 | 51.9559 | 0.963 | 1.9 | ug/L | 5481 | Standard | | | Cr | 53 | 29495.4 | 1.9 | 52.5685 | 1.349 | 2.6 | ug/L | 268 | Standard | | | Mn | 55 | 178856.5 | 1.0 | 51.5525 | 0.747 | 1.4 | ug/L | 670 | Standard | | | Co | 59 | 167295.9 | 0.7 | 50.8224 | 0.769 | 1.5 | ug/L | 146 | Standard | | | Ni | 60 | 60632.1 | 1.1 | 51.3868 | 0.647 | 1.3 | ug/L | 220 | Standard | | | Cu | 65 | 58253.8 | 0.8 | 50.5288 | 0.891 | 1.8 | ug/L | 147 | Standard | | | Zn | 66 | 34696.7 | 0.3 | 50.5277 | 0.353 | 0.7 | ug/L | 211 | Standard | | > | Ge | 72 | 220299.4 | 1.0 | | | | ug/L | 210599 | Standard | | | As | 75 | 37044.7 | 0.7 | 50.6025 | 0.623 | 1.2 | ug/L | -47 | Standard | | | Se | 82 | 3175.8 | 1.2 | 51.2174 | 0.801 | 1.6 | ug/L | 15 | Standard | | L | Se-1 | 77 | 2144.5 | 0.7 | 52.1565 | 0.490 | 0.9 | ug/L | 65 | Standard | | Γ> | Ga | 71 | 28.3 | 44.4 | | | | mg/L | 27 | Standard | | L | Rb | 85 | 555.0 | 3.1 | | | | ug/L | 17 | Standard | | Γ | Υ | 89 | 228416.0 | 2.1 | | | | ug/L | 216672 | Standard | | L> | Rh | 103 | 46.7 | 27.0 | | | | ug/L | 18 | Standard | | Γ | Мо | 98 | 150499.1 | 0.9 | 103.2042 | 0.694 | 0.7 | ug/L | 11 | Standard | | | Ag | 107 | 242274.6 | 1.6 | 49.5904 | 0.808 | 1.6 | ug/L | 55 | Standard | | | Cd | 111 | 74420.2 | 1.6 | 50.8106 | 0.717 | 1.4 | mg/L | 7 | Standard | | | Cd | 114 | 179852.3 | 2.1 | 50.2230 | 1.133 | 2.3 | ug/L | 4 | Standard | | > | In | 115 | 337084.4 | 0.2 | | | | ug/L | 322525 | Standard | | | Sn | 118 | 212124.9 | 1.8 | 51.0552 | 0.864 | 1.7 | ug/L | 345 | Standard | | | Sb | 123 | 195061.9 | 0.2 | 49.4436 | 0.120 | 0.2 | ug/L | 88 | Standard | | L | Ва | 135 | 82093.5 | 0.4 | 49.0835 | 0.160 | 0.3 | ug/L | 12 | Standard | | Γ | Ce | 140 | 260.0 | 12.0 | | | | ug/L | 37 | Standard | | L> | Tb | 159 | 654444.6 | 1.2 | | | | ug/L | 631826 | Standard | | Γ | Но | 165 | 1.7 | 173.2 | | | | ug/L | 3 | Standard | | | TI | 203 | 331517.1 | 1.0 | 50.0334 | 0.455 | 0.9 | ug/L | 7 | Standard | | | TI | 205 | 227764.2 | 0.6 | 51.0450 | 0.968 | 1.9 | ug/L | 7 | Standard | | | Pb | 206 | 210012.5 | 0.2 | 51.7615 | 0.989 | 1.9 | ug/L | 159 | Standard | | | Pb | 207 | 188624.9 | 0.5 | 51.2708 | 1.115 | 2.2 | ug/L | 120 | Standard | | | Pb | 208 | 765613.7 | 1.4 | 52.0854 | 1.603 | 3.1 | ug/L | 503 | Standard | | | U | 238 | 271956.7 | 0.6 | 50.0633 | 1.145 | 2.3 | ug/L | 5 | Standard | | L> | Bi | 209 | 342300.1 | 1.7 | | | | ug/L | 333509 | Standard | | | | | | | | | | | | | Sample ID: QC Std 6 Report Date/Time: Tuesday, October 27, 2015 18:29:59 Page 1 Approved: October 28, 2015 Page 607 L15101055 / Revision: 0 / 760 total pages | г | | 00 | 0.0 | | | | | | • | 01 | |----|------|-----|---------|-------|---------|-------|-------|------|-------|----------| | | Na | 23 | 0.0 | | | | | mg/L | 0 | Standard | | | Mg | 24 | 2450.2 | 4.4 | 5.0961 | 0.239 | 4.7 | mg/L | 10 | Standard | | | K | 39 | 418.3 | 8.1 | 4.3725 | 0.405 | 9.3 | mg/L | 32 | Standard | | | Ca | 43 | 86.7 | 34.8 | -2.1605 | 4.506 | 208.5 | mg/L | 85 | Standard | | | Fe | 54 | 2276.3 | 3.1 | 4.7692 | 0.256 | 5.4 | mg/L | 82 | Standard | | | Fe | 57 | 796.7 | 2.8 | 4.7507 | 0.226 | 4.8 | mg/L | 217 | Standard | | L> | Sc-1 | 45 | 16540.7 | 2.0 | | | | mg/L | 14524 | Standard | | | CI | 35 | 75942.8 | 4.9 | | | | ug/L | 53193 | Standard | | | Kr | 83 | 3.7 | 83.3 | | | | ug/L | 3 | Standard | | | Br | 81 | 380.0 | 16.4 | | | | ug/L | 327 | Standard | | | Р | 31 | 17049.6 | 2.4 | | | | ug/L | 13329 | Standard | | | S | 34 | 4399.0 | 0.5 | | | | ug/L | 3234 | Standard | | | Sr | 88 | 120.0 | 18.2 | | | | ug/L | 87 | Standard | | | С | 12 | 150.0 | 17.6 | | | | mg/L | 103 | Standard | | | N | 14 | 0.0 | | | | | mg/L | 0 | Standard | | | Hg | 202 | 0.0 | | | | | mg/L | 3 | Standard | | | Dy | 164 | 12.9 | 41.7 | | | | mg/L | 10 | Standard | | | Ho-1 | 165 | 1.7 | 173.2 | | | | mg/L | 3 | Standard | | | Er | 166 | 10.0 | 100.0 | | | | mg/L | 7 | Standard | | | I | 127 | 4185.6 | 14.9 | | | | mg/L | 3612 | Standard | | | | | | | | | | | | | | | Analyte | Mass | QC Std % Recovery | Int Std % Recovery | Spike % Recovery | |----|---------|------|-------------------|--------------------|------------------| | Γ> | Li | 6 | | | | | | Ве | 9 | 96.290 | | | | L | Al | 27 | 94.981 | | | | Γ | Sc | 45 | | | | | | Ti | 47 | 108.466 | | | | | V | 51 | 104.676 | | | | | Cr | 52 | 103.912 | | | | | Cr | 53 | | | | | | Mn | 55 | 103.105 | | | | | Co | 59 | 101.645 | | | | | Ni | 60 | 102.774 | | | | | Cu | 65 | 101.058 | | | | | Zn | 66 | 101.055 | | | | > | Ge | 72 | | 104.606 | | | | As | 75 | 101.205 | | | | | Se | 82 | 102.435 | | | | L | Se-1 | 77 | | | | | [> | Ga | 71 | | | | Sample ID: QC Std 6 Report Date/Time: Tuesday, October 27, 2015 18:29:59 Page 2 Approved: October 28, 2015 | | ₹b | 85 | | | | |-----|---------------------|---|------------|--------|------------------------| | | / | 89 | | | | | | Rh
4- | 103 | 400.00 | 4 | | | | Иo | 98 | 103.20 | | | | | ∖ g | 107 | 99.18 | | | | | Cd | 111 | 101.62 | .1 | | | | Cd | 114 | | | 404 544 | | > | | 115 | 400.44 | 0 | 104.514 | | | Sn
Sh | 118 | 102.11 | | | | | Sb | 123 | 98.88 | | | | | 3a | 135 | 98.16 | 1 | | | | Ce | 140 | | | | | | Γb | 159 | | | | | | Ho
Fi | 165 | 100.00 | 7 | | | | ΓI
 | 203 | 100.06 | 1 | | | | ΓI | 205 | | | | | | Pb
Pb | 206 | | | | | | | 207 | 104.17 | 4 | | | | Pb
J | 208
238 | 104.17 | | | | i - | | 209 | 100.12 | 1 | 102.636 | | | | | | | 102.030 | | | Na
Ma | 23
24 | | | | | | Иg
С | 39 | | | | | | Ca | 43 | | | | | | -
- е | 54 | | | | | | -e
=e | 57 | | | | | | | 45 | | | | | | CI | 35 | | | | | | ζr | 83 | | | | | | Sr Sr | 81 | | | | | F | | 31 | | | | | | | 34 | | | | | | Sr . | 88 | | | | | | 5 | 12 | | | | | | N | 14 | | | | | | -
Hg | 202 | | | | | | .g
Dy | 164 | | | | | | | 165 | | | | | | Er | 166 | | | | | Ī | | 127 | | | | | C | OC Out | of Limits | | | | | | leasurem | | Analyte | Mass | Out of Limits Message | | 14
 | J. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. | . andry to | 11.000 | Cat of Ellinto Moodage | Sample ID: QC Std 6 Report Date/Time: Tuesday, October 27, 2015 18:29:59 Page 3 Approved: October 28, 2015 **Concentration Results** ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L 71.2 38.8 10.2 29.6 13.7 908.8 631826 3 7 159 503 333509 5 Standard Standard Standard Standard Standard Standard Standard Standard Standard Sample ID: QC Std 7 Sample Date/Time: Tuesday, October 27, 2015 18:30:54 Number of Replicates: 3 Autosampler Position: 102 Sample Description: Method File: C:\NexIONData\Method\6020a.mth Aliquot Volume (mL): Diluted to Volume (mL): User Name: BKT Nexion300X Cumulative Autodilution Factor: 1 Nexion-ICP 200.8\6020 | IS | Analyt | e Mass | Intensity | RSD | Conc. | SD | RSD | Units | Blank Intens. | Mode | |----|--------|--------|-----------|-------|---------|-------|--------|-------|---------------|----------| | Γ> | . Li | 6 | 30405.5 | 4.6 | | | | ug/L | 26270 | Standard | | | Be | 9 | 15.0 | 120.2 | -0.0097 | 0.031 | 316.1 | ug/L | 2 | Standard | | L | Al | 27 | 716.7 | 6.3 | -0.0095 | 0.001 | 8.3 | ug/L | 403 | Standard | | Γ | Sc | 45 | 17163.1 | 5.6 | | | | ug/L | 14524 | Standard | | | Ti | 47 | 69.7 | 4.6 | -1.7042 | 0.025 | 1.5 | ug/L | 365 | Standard | | | V | 51 | 952.4 | 10.6 | -0.0012 | 0.029 | 2458.9 | ug/L | 805 | Standard | | | Cr | 52 | 5899.5 | 1.9 | -0.0129 | 0.057 | 442.3 | ug/L | 5481 | Standard | | | Cr | 53 | 700.0 | 6.8 | 0.7002 | 0.105 | 15.1 | ug/L | 268 | Standard | | | Mn | 55 | 596.0 | 5.2 | -0.1847 | 0.006 | 3.5 | ug/L | 670 | Standard | | | Co | 59 | 202.7 | 5.1 | 0.0144 | 0.006 | 40.5 | ug/L | 146 | Standard | | | Ni | 60 | 186.3 | 10.0 | -0.0718 | 0.011 | 15.2 | ug/L | 220 | Standard | | | Cu | 65 | 140.7 | 1.1 | -0.0592 | 0.006 | 10.9 | ug/L | 147 | Standard | | | Zn | 66 | 141.7 | 3.6 | -0.4243 | 0.009 | 2.2 | ug/L | 211 | Standard | | > | Ge | 72 | 226248.1 | 4.7 | | | | ug/L | 210599 | Standard | | | As | 75 | -33.0 | 65.5 | 0.0347 | 0.028 | 81.1 | ug/L | -47 | Standard | | | Se | 82 | 10.4 | 48.8 | -0.0107 | 0.085 | 788.8 | ug/L | 15 | Standard | | L | Se-1 | 77 | 71.7 | 7.9 | 0.4985 | 0.060 | 12.1 | ug/L | 65 | Standard | | Γ> | Ga | 71 | 16.7 | 121.2 | | | | mg/L | 27 | Standard | | L | Rb | 85 | 16.7 | 45.8 | | | | ug/L | 17 | Standard | | Γ | Υ | 89 | 236721.2 | 3.4 | | | | ug/L | 216672 | Standard | | L> | | 103 | 13.3 | 21.7 | | | | ug/L | 18 | Standard | | Γ | Мо | 98 | 119.1 | 14.6 | 0.0755 | 0.010 | 12.8 | ug/L | 11 | Standard | | | Ag | 107 | 73.0 | 2.4 | 0.0029 | 0.001 | 19.9 | ug/L | 55 | Standard | | | Cd | 111 | 10.7 | 42.3 | 0.0006 | 0.003 | 450.2 | mg/L | 7 | Standard | | | Cd | 114 | 11.2 | 65.2 | 0.0083 | 0.002 | 22.2 | ug/L | 4 | Standard | | > | | 115 | 353136.0 | 2.8 | | | | ug/L | 322525 | Standard | | | Sn | 118 | 575.0 | 2.3 | -0.0202 | 0.002 | 10.7 | ug/L | 345 | Standard | | | Sb | 123 | 114.0 | 31.7 | 0.0170 | 0.009 | 54.7 | ug/L | 88 | Standard | | Ĺ | Ва | 135 | 19.0 | 19.0 | -0.0130 | 0.002 | 17.8 | ug/L | 12 | Standard | | Γ | Ce | 140 | 8.3 | 124.9 | | | | ug/L | 37 | Standard | | | | | | | | | | | | | 0.0023 0.0088 -0.0212 -0.0204 -0.0177 -0.0002 0.002 0.003 0.002 0.006 0.002 0.002 Sample ID: QC Std 7 159 165 203 205 206 207 208 238 209 Report Date/Time: Tuesday, October 27, 2015 18:33:11 662606.0 1.7 34.7 30.0 165.0 142.3 561.7 25.0 359640.2 3.7 173.2 30.8 57.7 5.6 10.3 42.1 4.0 Page 1 Tb Но ΤI ΤI Ph Pb Pb U Bi Approved: October 28, 2015 | Γ | Na | 23 | 3.3 | 173.2 | | | | mg/L | 0 | Standard | |----|------|-----|---------|-------|---------|-------|-------|------|-------|----------| | | Mg | 24 | 23.3 | 49.5 | 0.0062 | 0.022 | 355.0 | mg/L | 10 | Standard | | | K | 39 | 23.3 | 53.9 | 0.0332 | 0.124 | 374.2 | mg/L | 32 | Standard | | ĺ | Ca | 43 | 56.7 | 60.1 | -6.6868 | 4.782 | 71.5 | mg/L | 85 | Standard | | | Fe | 54 | 57.4 | 30.5 | -0.0148 | 0.033 | 220.1 | mg/L | 82 | Standard | | | Fe | 57 | 265.0 | 7.5 | 0.2479 | 0.128 | 51.6 | mg/L | 217 | Standard | | L> | Sc-1 | 45 | 17163.1 | 5.6 | | | | mg/L | 14524 | Standard | | | CI | 35 | 72303.4 | 0.5 | | | | ug/L | 53193 | Standard | | | Kr | 83 | 4.7 | 81.1 | | | | ug/L | 3 | Standard | | | Br | 81 | 410.0 | 10.6 | | | | ug/L | 327 | Standard | | | Р | 31 | 16278.7 | 1.1 | | | | ug/L | 13329 | Standard | | | S | 34 | 4078.9 | 2.8 | | | | ug/L | 3234 | Standard | | | Sr | 88 | 123.3 | 18.3 | | | | ug/L | 87 | Standard | | | С | 12 | 133.3 | 15.6 | | | | mg/L | 103 | Standard | | | N | 14 | 6.7 | 86.6 | | | | mg/L | 0 | Standard | | | Hg | 202 | 10.0 | 100.0 | | | | mg/L | 3 | Standard | | | Dy | 164 | 9.0 | 102.8 | | | | mg/L | 10 | Standard | | | Ho-1 | 165 | 1.7 | 173.2 | | | | mg/L | 3 | Standard | | | Er | 166 | 20.0 | 86.6 | | | | mg/L | 7 | Standard | | | I | 127 | 2726.9 | 4.2 | | | | mg/L | 3612 | Standard | | | | | | | | | | | | | | Analyte | Mass | QC Std % Recovery | Int Std % Recovery | Spike % Recovery | |---------|------|-------------------|--------------------|------------------| | 「> Li | 6 | | | | | Be | 9 | | | | | L AI | 27 | | | | | 「 Sc | 45 | | | | | Ti | 47 | | | | | V | 51 | | | | | Cr | 52 | | | | | Cr | 53 | | | | | Mn | 55 | | | | | Co | 59 | | | | | Ni | 60 | | | | | Cu | 65 | | | | | Zn | 66 | | | | | > Ge | 72 | | 107.431 | | | As | 75 | | | | | Se | 82 | | | | | L Se-1 | 77 | | | | | 「⊳ Ga | 71 | | | | Sample ID: QC Std 7 Report Date/Time: Tuesday, October 27, 2015 18:33:11 Page 2 Approved: October 28, 2015 | L Rb | 85 | | | | |----------------------|--------------|---------|------|-----------------------| | ΓΥ | 89 | | | | | $\lfloor_>$ Rh | 103 | | | | | Г Мо | 98 | | | | | Ag | 107 | | | | | Cd | 111 | | | | | Cd | 114 | | | | | > In | 115 | | | 109.491 | | Sn | 118 | | | | | Sb | 123 | | | | | L Ba | 135 | | | | | ¯ Ce | 140 | | | | | _
_> Tb | 159 | | | | | Γ Ho | 165 | | | | | į TI | 203 | | | | | TI | 205 | | | | | Pb | 206 | | | | | Pb | 207 | | | | | Pb | 208 | | | | | įυ | 238 | | | | | Ĺ _{>} Bi | 209 | | | 107.835 | | Na | 23 | | | | | Mg | 24 | | | | | K | 39 | | | | | Ca | 43 | | | | | Fe | 54 | | | | | Fe | 57 | | | | | > Sc-1 | 45 | | | | | CI | 35 | | | | | Kr | 83 | | | | | Br | 81 | | | | | Р | 31 | | | | | S | 34 | | | | | Sr | 88 | | | | | С | 12 | | | | | N | 14 | | | | | Hg | 202 | | | | | Dÿ | 164 | | | | | Ho-1 | 165 | | | | | Er | 166 | | | | | 1 | 127 | | | | | OC O | it of Limits | | | | | | | Analyta | Mass | Out of Limita Massage | | ivieasure | ment Type | Analyte | Mass | Out of Limits Message | | QC Std 7 | | Ti | 47 | | Sample ID: QC Std 7 Report Date/Time: Tuesday, October 27, 2015 18:33:11 Page 3 Sample ID: PBW 44 WG544285-02 Sample Date/Time: Tuesday, October 27, 2015 18:47:09 Number of Replicates: 3 Autosampler Position: 205 Sample Description: 1 Method File: C:\NexIONData\Method\6020a.mth Aliquot Volume (mL): Diluted to Volume (mL): User Name: BKT Nexion300X Cumulative Autodilution Factor: 1 Nexion-ICP 200.8\6020 | Concentration | ı Kes | uits | |---------------|-------|------| | _ | 0.0 | D05 | | | | | | | Concentiati | ion ves | นแร | | | | |----|--------|---------------|-----------|------|-------------|---------|-------|-------|---------------|----------| | IS | Analyt | e Mass | Intensity | RSD | Conc. | SD | RSD | Units | Blank Intens. | Mode | | Γ> | Li | 6 | 30499.0 | 1.1 | | | | ug/L | 26270 | Standard | | | Be | 9 | 8.3 | 91.7 | -0.0211 | 0.013 | 59.7 | ug/L | 2 | Standard | | L | Αl | 27 | 2108.5 | 5.9 | 0.0118 | 0.002 | 15.2 | ug/L | 403 | Standard | | Γ | Sc | 45 | 17076.3 | 1.1 | | | | ug/L | 14524 | Standard | | | Ti | 47 | 90.0 | 2.9 | -1.5823 | 0.015 | 0.9 | ug/L | 365 | Standard | | | V | 51 | 1138.1 | 0.5 | 0.0501 | 0.001 | 1.9 | ug/L | 805 | Standard | | | Cr | 52 | 7062.6 | 1.3 | 0.2473 | 0.022 | 9.1 | ug/L | 5481 | Standard | | | Cr | 53 | 496.7 | 1.2 | 0.3454 | 0.013 | 3.8 | ug/L | 268 | Standard | | | Mn | 55 | 1466.7 | 4.4 | 0.0629 | 0.019 | 29.6 | ug/L | 670 | Standard | | | Co | 59 | 202.7 | 4.0 | 0.0145 | 0.003 | 18.0 | ug/L | 146 | Standard | | | Ni | 60 | 247.3 | 2.7 | -0.0203 | 0.005 | 27.1 | ug/L | 220 | Standard | | | Cu | 65 | 225.3 | 7.4 | 0.0131 | 0.014 | 108.6 | ug/L | 147 | Standard | | | Zn | 66 | 1057.0 | 3.2 | 0.8957 | 0.053 | 5.9 | ug/L | 211 | Standard | | > | Ge | 72 | 225348.1 | 0.4 | | | | ug/L | 210599 | Standard | | | As | 75 | -33.3 | 66.8 | 0.0336 | 0.029 | 87.5 | ug/L | -47 | Standard | | | Se | 82 | 13.9 | 52.6 | 0.0429 | 0.116 | 270.7 | ug/L | 15 | Standard | | L | Se-1 | 77 | 65.3 | 9.7 | 0.3533 | 0.160 | 45.3 | ug/L | 65 | Standard | | Γ> | Ga | 71 | 18.3 | 15.7 | | | | mg/L | 27 | Standard | | L | Rb | 85 | 93.3 | 25.3 | | | | ug/L | 17 | Standard | | Γ | Υ | 89 | 233494.6 | 2.7 | | | | ug/L | 216672 | Standard | | L> | Rh | 103 | 30.0 | 44.1 | | | | ug/L | 18 | Standard | | Γ | Мо | 98 | 19.1 | 11.0 | 0.0106 | 0.001 | 13.0 | ug/L | 11 | Standard | | | Ag | 107 | 65.0 | 5.5 | 0.0018 | 0.001 | 35.4 | ug/L | 55 | Standard | | | Cd | 111 | 10.0 | 26.7 | 0.0004 | 0.002 | 464.3 | mg/L | 7 | Standard | | | Cd | 114 | 25.5 | 52.7 | 0.0124 | 0.004 | 29.6 | ug/L | 4 | Standard | | > | In | 115 | 340809.4 | 0.9 | | | | ug/L | 322525 | Standard | | | Sn | 118 | 541.7 | 3.7 | -0.0234 | 0.005 | 20.6 | ug/L | 345 | Standard | | | Sb | 123 | 73.9 | 16.0 | 0.0078 | 0.003 | 37.6 | ug/L | 88 | Standard | | Ĺ | Ва | 135 | 338.3 | 5.3 | 0.1762 | 0.009 | 5.1 | ug/L | 12 | Standard | | | Ce | 140 | 233.3 | 4.5 | | | | ug/L | 37 | Standard | | Ĺ> | Tb | 159 | 650599.7 | 0.2 | | | | ug/L | 631826 | Standard | | | Но | 165 | 8.3 | 34.6 | | | | ug/L | 3 | Standard | | | TI | 203 | 21.3 | 31.9 | 0.0005 | 0.001 | 202.8 | ug/L | 7 | Standard | | | TI | 205 | 15.0 | 88.2 | 0.0058 | 0.003 | 50.6 | ug/L | 7 | Standard | | | Pb | 206 | 219.3 | 6.8 | -0.0062 | 0.004 | 61.8 | ug/L | 159 | Standard | | | Pb | 207 | 162.3 | 13.4 | -0.0135 | 0.006 | 41.8 | ug/L | 120 | Standard | | | Pb | 208 | 706.3 | 2.7 | -0.0062 | 0.001 | 20.4 | ug/L | 503 | Standard | | | U | 238 | 12.0 | 16.7 |
-0.0024 | 0.000 | 16.1 | ug/L | 5 | Standard | | _> | Bi | 209 | 344353.3 | 8.0 | | | | ug/L | 333509 | Standard | | | | | | | | | | | | | Sample ID: PBW 44 WG544285-02 Report Date/Time: Tuesday, October 27, 2015 18:49:26 Page 1 Approved: October 28, 2015 Page 613 L15101055 / Revision: 0 / 760 total pages | Mg | andard
andard
andard
andard
andard
andard
andard
andard | |--|--| | K 39 18.3 15.7 -0.0163 0.032 198.1 mg/L 32 Sta Ca 43 56.7 43.5 -6.7012 3.486 52.0 mg/L 85 Sta Fe 54 61.2 34.5 -0.0061 0.043 696.2 mg/L 82 Sta Fe 57 253.3 6.3 0.1632 0.110 67.3 mg/L 217 Sta | andard
andard
andard
andard
andard | | Ca | andard
andard
andard
andard | | Fe 54 61.2 34.5 | andard
andard
andard | | Fe 57 253.3 6.3 0.1632 0.110 67.3 mg/L 217 Sta | andard
andard | | 9 | andard | | · · · · · · · · · · · · · · · · · · · | | | > Sc-1 45 17076.3 1.1 mg/L 14524 Sta | andard | | CI 35 75703.3 1.2 ug/L 53193 Sta | | | | andard | | | andard | | P 31 16175.3 1.3 ug/L 13329 Sta | andard | | S 34 4095.6 1.9 ug/L 3234 Sta | andard | | Sr 88 120.0 23.2 ug/L 87 Sta | andard | | C 12 143.3 46.5 mg/L 103 Sta | andard | | N 14 0.0 mg/L 0 Sta | andard | | Hg 202 3.3 173.2 mg/L 3 Sta | andard | | Dy 164 21.9 112.8 mg/L 10 Sta | andard | | Ho-1 165 8.3 34.6 mg/L 3 Sta | andard | | | andard | | - | andard | | Analyte | Mass | QC Std % Recovery | Int Std % Recovery | Spike % Recovery | |---------|------|-------------------|--------------------|------------------| | 「⊳ Li | 6 | | 116.100 | | | Be | 9 | | | | | L AI | 27 | | | | | 「 Sc | 45 | | | | | Ti | 47 | | | | | V | 51 | | | | | Cr | 52 | | | | | Cr | 53 | | | | | Mn | 55 | | | | | Co | 59 | | | | | Ni | 60 | | | | | Cu | 65 | | | | | Zn | 66 | | | | | > Ge | 72 | | 107.003 | | | As | 75 | | | | | Se | 82 | | | | | ∟ Se-1 | 77 | | | | | 「⊳ Ga | 71 | | | | **Sample ID: PBW 44 WG544285-02**Report Date/Time: Tuesday, October 27, 2015 18:49:26 Page 2 Approved: October 28, 2015 | L Rb 85 √ 89 L> Rh 103 √ Mo 98 Ag 107 Cd 111 Cd 114 I In 115 Sn 118 Sb 123 L Ba 135 √ Ce 140 L> Tb 159 √ Ho 165 √ TI 203 √ TI 205 | | 105.669 | | |---|--------------|-------------------------|--| | Pb 206
 Pb 207
 Pb 208
 U 238
 Si 209
 Na 23
 Mg 24
 K 39
 Ca 43
 Fe 54
 Fe 57
 Sc-1 45
 Cl 35
 Kr 83 | | 103.251 | | | Br 81 P 31 S 34 Sr 88 C 12 N 14 Hg 202 Dy 164 Ho-1 165 Er 166 I 127 QC Out of Limits Measurement Type | Analyte Mass | s Out of Limits Message | | | Ti 47 Lower | Ti 47 | | | **Sample ID: PBW 44 WG544285-02**Report Date/Time: Tuesday, October 27, 2015 18:49:26 Page 3 Sample ID: LCSW 44 WG544285-03 Sample Date/Time: Tuesday, October 27, 2015 18:50:21 Number of Replicates: 3 Autosampler Position: 206 Sample Description: 1 Method File: C:\NexIONData\Method\6020a.mth Aliquot Volume (mL): Diluted to Volume (mL): User Name: BKT Nexion300X Cumulative Autodilution Factor: 1 Nexion-ICP 200.8\6020 **Concentration Results** | | | | Concentration Results | | | | | | | | | |----|--------|--------|-----------------------|------|---------|-------|------|-------|---------------|----------|--| | IS | Analyt | e Mass | Intensity | RSD | Conc. | SD | RSD | Units | Blank Intens. | Mode | | | Γ> | Li | 6 | 29973.0 | 2.5 | | | | ug/L | 26270 | Standard | | | | Be | 9 | 28189.5 | 1.0 | 47.6059 | 0.956 | 2.0 | ug/L | 2 | Standard | | | L | ΑI | 27 | 1215.0 | 1.4 | -0.0016 | 0.000 | 17.4 | ug/L | 403 | Standard | | | Γ | Sc | 45 | 17370.0 | 5.5 | | | | ug/L | 14524 | Standard | | | | Ti | 47 | 85.3 | 15.1 | -1.6054 | 0.087 | 5.4 | ug/L | 365 | Standard | | | | ٧ | 51 | 188100.7 | 8.0 | 51.3407 | 1.351 | 2.6 | ug/L | 805 | Standard | | | | Cr | 52 | 240577.0 | 0.9 | 52.1701 | 1.517 | 2.9 | ug/L | 5481 | Standard | | | | Cr | 53 | 29794.3 | 8.0 | 52.2943 | 1.631 | 3.1 | ug/L | 268 | Standard | | | | Mn | 55 | 184873.8 | 8.0 | 52.4835 | 1.342 | 2.6 | ug/L | 670 | Standard | | | | Co | 59 | 170594.0 | 0.4 | 51.0371 | 1.316 | 2.6 | ug/L | 146 | Standard | | | | Ni | 60 | 60704.0 | 1.4 | 50.6554 | 0.846 | 1.7 | ug/L | 220 | Standard | | | | Cu | 65 | 60325.5 | 0.7 | 51.5262 | 0.889 | 1.7 | ug/L | 147 | Standard | | | | Zn | 66 | 35362.2 | 1.4 | 50.7182 | 1.445 | 2.8 | ug/L | 211 | Standard | | | > | Ge | 72 | 223769.2 | 2.4 | | | | ug/L | 210599 | Standard | | | | As | 75 | 36717.6 | 0.6 | 49.3918 | 0.955 | 1.9 | ug/L | -47 | Standard | | | | Se | 82 | 3216.4 | 0.3 | 51.0815 | 1.092 | 2.1 | ug/L | 15 | Standard | | | L | Se-1 | 77 | 2111.5 | 1.4 | 50.5418 | 1.684 | 3.3 | ug/L | 65 | Standard | | | Γ> | Ga | 71 | 21.7 | 48.0 | | | | mg/L | 27 | Standard | | | L | Rb | 85 | 38.3 | 52.7 | | | | ug/L | 17 | Standard | | | Γ | Υ | 89 | 236841.8 | 0.6 | | | | ug/L | 216672 | Standard | | | _> | Rh | 103 | 35.0 | 24.7 | | | | ug/L | 18 | Standard | | | Γ | Мо | 98 | 18.9 | 8.5 | 0.0101 | 0.001 | 8.8 | ug/L | 11 | Standard | | | ļ | Ag | 107 | 243403.2 | 0.6 | 48.1031 | 0.951 | 2.0 | ug/L | 55 | Standard | | | ļ | Cd | 111 | 74044.5 | 0.9 | 48.8122 | 1.057 | 2.2 | mg/L | 7 | Standard | | | ļ | Cd | 114 | 181300.1 | 1.6 | 48.8855 | 1.490 | 3.0 | ug/L | 4 | Standard | | | > | ln | 115 | 349186.0 | 1.4 | | | | ug/L | 322525 | Standard | | | ļ | Sn | 118 | 3457.1 | 4.6 | 0.6533 | 0.047 | 7.2 | ug/L | 345 | Standard | | | ļ | Sb | 123 | 190917.7 | 1.0 | 46.7249 | 1.073 | 2.3 | ug/L | 88 | Standard | | | Ĺ | Ва | 135 | 81900.1 | 0.6 | 47.2789 | 0.955 | 2.0 | ug/L | 12 | Standard | | | ļ | Се | 140 | 158.3 | 14.9 | | | | ug/L | 37 | Standard | | | Ĺ> | Tb | 159 | 648194.1 | 1.8 | | | | ug/L | 631826 | Standard | | | ļ | Но | 165 | 8.3 | 34.6 | | | | ug/L | 3 | Standard | | | | TI | 203 | 331777.5 | 0.4 | 48.5776 | 0.339 | 0.7 | ug/L | 7 | Standard | | | ! | TI | 205 | 226365.3 | 1.5 | 49.2143 | 1.019 | 2.1 | ug/L | 7 | Standard | | | ! | Pb | 206 | 208222.5 | 1.2 | 49.7838 | 1.044 | 2.1 | ug/L | 159 | Standard | | | - | Pb | 207 | 178395.4 | 0.4 | 47.0322 | 0.585 | 1.2 | ug/L | 120 | Standard | | | - | Pb | 208 | 751881.1 | 0.6 | 49.6106 | 0.670 | 1.4 | ug/L | 503 | Standard | | | - | U | 238 | 269151.0 | 1.0 | 48.0621 | 0.854 | 1.8 | ug/L | 5 | Standard | | | L> | Bi | 209 | 352817.5 | 0.9 | | | | ug/L | 333509 | Standard | | Sample ID: LCSW 44 WG544285-03 Report Date/Time: Tuesday, October 27, 2015 18:52:38 Page 1 Approved: October 28, 2015 Page 616 L15101055 / Revision: 0 / 760 total pages | _ | | | | | | | | | | | |----|------|-----------|---------|-------|---------|-------|-------|------|-------|----------| | | Na | 23 | 5.0 | 100.0 | | | | mg/L | 0 | Standard | | | Mg | 24 | 25.0 | 34.6 | 0.0092 | 0.015 | 161.9 | mg/L | 10 | Standard | | | K | 39 | 26.7 | 28.6 | 0.0649 | 0.065 | 100.0 | mg/L | 32 | Standard | | | Ca | 43 | 46.7 | 24.7 | -8.2402 | 1.270 | 15.4 | mg/L | 85 | Standard | | | Fe | 54 | 100.2 | 35.5 | 0.0696 | 0.063 | 90.5 | mg/L | 82 | Standard | | | Fe | 57 | 258.3 | 13.7 | 0.1712 | 0.279 | 162.9 | mg/L | 217 | Standard | | L> | Sc-1 | 45 | 17370.0 | 5.5 | | | | mg/L | 14524 | Standard | | | CI | 35 | 75549.9 | 2.1 | | | | ug/L | 53193 | Standard | | | Kr | 83 | 3.7 | 68.6 | | | | ug/L | 3 | Standard | | | Br | 81 | 416.7 | 22.8 | | | | ug/L | 327 | Standard | | | Р | 31 | 18439.7 | 12.1 | | | | ug/L | 13329 | Standard | | | S | 34 3918.8 | | 2.3 | | | | ug/L | 3234 | Standard | | | Sr | 88 | 98.3 | 29.4 | | | | ug/L | 87 | Standard | | | С | 12 | 166.7 | 24.2 | | | | mg/L | 103 | Standard | | | N | 14 | 0.0 | | | | | mg/L | 0 | Standard | | | Hg | 202 | 6.7 | 86.6 | | | | mg/L | 3 | Standard | | | Dy | 164 | 9.7 | 100.8 | | | | mg/L | 10 | Standard | | | Ho-1 | 165 | 8.3 | 34.6 | | | | mg/L | 3 | Standard | | | Er | 166 | 6.7 | 86.6 | | | | mg/L | 7 | Standard | | | I | 127 | 4288.9 | 1.4 | | | | mg/L | 3612 | Standard | | Analyte | Mass | QC Std % Recovery | Int Std % Recovery | Spike % Recovery | |---------|------|-------------------|--------------------|------------------| | 「⊳ Li | 6 | | 114.097 | | | Be | 9 | | | | | L AI | 27 | | | | | 「 Sc | 45 | | | | | Ti | 47 | | | | | V | 51 | | | | | Cr | 52 | | | | | Cr | 53 | | | | | Mn | 55 | | | | | Co | 59 | | | | | Ni | 60 | | | | | Cu | 65 | | | | | Zn | 66 | | | | | > Ge | 72 | | 106.254 | | | As | 75 | | | | | Se | 82 | | | | | L Se-1 | 77 | | | | | 「⊳ Ga | 71 | | | | Sample ID: LCSW 44 WG544285-03 Report Date/Time: Tuesday, October 27, 2015 18:52:38 Page 2 Approved: October 28, 2015 | L Rb | 85 | | | | |----------------------|--------------|---------|------|-----------------------| | ΓΥ | 89 | | | | | $\lfloor_>$ Rh | 103 | | | | | Mo | 98 | | | | | Ag | 107 | | | | | Cd | 111 | | | | | Cd | 114 | | | | |
 > In | 115 | | | 108.266 | | Sn | 118 | | | | | Sb | 123 | | | | | Ba | 135 | | | | | Ce | 140 | | | | | _> Tb | 159 | | | | | Ho | 165 | | | | | TI | 203 | | | | | TI | 205 | | | | | Pb | 206 | | | | | Pb | 207 | | | | | Pb | 208 | | | | | U | 238 | | | | | ∟ _{>} Bi | 209 | | | 105.789 | | ∫ Na | 23 | | | | | Mg | 24 | | | | | K | 39 | | | | | Ca | 43 | | | | | Fe | 54 | | | | | Fe | 57 | | | | | > Sc-1 | 45 | | | | | CI | 35 | | | | | Kr | 83 | | | | | Br | 81 | | | | | Р | 31 | | | | | S | 34 |
| | | | Sr | 88 | | | | | C | 12 | | | | | N | 14 | | | | | Hg | 202 | | | | | Dy | 164 | | | | | Ho-1 | 165 | | | | | Er | 166 | | | | |
I | 127 | | | | | OC O | ut of Limits | | | | | | | A I4 | Mana | Out of Limits Massacs | | Measure | ement Type | Analyte | Mass | Out of Limits Message | | Ti 47 Lov | wer | Ti | 47 | | Sample ID: LCSW 44 WG544285-03 Report Date/Time: Tuesday, October 27, 2015 18:52:38 Page 3 Approved: October 28, 2015 Sample ID: L1510122410 WG544285-01 Sample Date/Time: Tuesday, October 27, 2015 18:53:32 Number of Replicates: 3 Autosampler Position: 207 Sample Description: 1 Method File: C:\NexIONData\Method\6020a.mth Aliquot Volume (mL): Diluted to Volume (mL): User Name: BKT Nexion300X Cumulative Autodilution Factor: 1 Nexion-ICP 200.8\6020 | 0 | noon | tration | Results | | |----|------|---------|---------|--| | La | ncen | tration | Results | | | | Concentration Results | | | | | | | | | | |----|-----------------------|--------|------------|------|-----------|---------|-------|-------|---------------|----------| | IS | Analyt | e Mass | Intensity | RSD | Conc. | SD | RSD | Units | Blank Intens. | Mode | | Γ> | Li | 6 | 34235.4 | 6.3 | | | | ug/L | 26270 | Standard | | | Be | 9 | 26.7 | 57.3 | 0.0056 | 0.024 | 435.5 | ug/L | 2 | Standard | | L | ΑI | 27 | 86069340.2 | 4.2 | 1182.6449 | 114.620 | 9.7 | ug/L | 403 | Standard | | Γ | Sc | 45 | 15749.9 | 8.7 | | | | ug/L | 14524 | Standard | | | Ti | 47 | 107.3 | 3.9 | -1.4640 | 0.061 | 4.2 | ug/L | 365 | Standard | | | ٧ | 51 | 1651.9 | 8.1 | 0.2012 | 0.058 | 29.0 | ug/L | 805 | Standard | | | Cr | 52 | 8145.9 | 3.2 | 0.5260 | 0.101 | 19.1 | ug/L | 5481 | Standard | | | Cr | 53 | 1031.7 | 15.5 | 1.3169 | 0.177 | 13.4 | ug/L | 268 | Standard | | | Mn | 55 | 1710485.0 | 1.7 | 496.1196 | 35.865 | 7.2 | ug/L | 670 | Standard | | | Co | 59 | 1848.8 | 2.8 | 0.5169 | 0.050 | 9.6 | ug/L | 146 | Standard | | | Ni | 60 | 9038.0 | 2.0 | 7.4690 | 0.565 | 7.6 | ug/L | 220 | Standard | | | Cu | 65 | 2550.2 | 2.3 | 2.0429 | 0.188 | 9.2 | ug/L | 147 | Standard | | | Zn | 66 | 3648.8 | 1.7 | 4.7519 | 0.373 | 7.8 | ug/L | 211 | Standard | | > | Ge | 72 | 220929.2 | 6.5 | | | | ug/L | 210599 | Standard | | | As | 75 | 446.1 | 7.9 | 0.6857 | 0.054 | 7.9 | ug/L | -47 | Standard | | | Se | 82 | 119.3 | 19.0 | 1.7661 | 0.462 | 26.1 | ug/L | 15 | Standard | | L | Se-1 | 77 | 110.0 | 7.8 | 1.5021 | 0.294 | 19.5 | ug/L | 65 | Standard | | Γ> | Ga | 71 | 36.7 | 15.7 | | | | mg/L | 27 | Standard | | L | Rb | 85 | 20048.3 | 4.5 | | | | ug/L | 17 | Standard | | Γ | Υ | 89 | 231537.4 | 7.6 | | | | ug/L | 216672 | Standard | | L> | Rh | 103 | 58.3 | 26.2 | | | | ug/L | 18 | Standard | | Γ | Мо | 98 | 824.1 | 1.7 | 0.5540 | 0.038 | 6.9 | ug/L | 11 | Standard | | | Ag | 107 | 114.3 | 53.4 | 0.0118 | 0.013 | 110.6 | ug/L | 55 | Standard | | | Cd | 111 | 40.3 | 63.2 | 0.0209 | 0.018 | 86.4 | mg/L | 7 | Standard | | | Cd | 114 | 118.5 | 36.1 | 0.0381 | 0.013 | 33.5 | ug/L | 4 | Standard | | > | In | 115 | 343336.5 | 6.1 | | | | ug/L | 322525 | Standard | | | Sn | 118 | 491.7 | 4.1 | -0.0361 | 0.002 | 6.3 | ug/L | 345 | Standard | | | Sb | 123 | 861.0 | 22.2 | 0.2057 | 0.058 | 28.2 | ug/L | 88 | Standard | | L | Ва | 135 | 10707.8 | 2.0 | 6.2845 | 0.487 | 7.8 | ug/L | 12 | Standard | | Γ | Ce | 140 | 441.7 | 24.9 | | | | ug/L | 37 | Standard | | _> | Tb | 159 | 657480.1 | 6.2 | | | | ug/L | 631826 | Standard | | Γ | Но | 165 | 60.0 | 30.0 | | | | ug/L | 3 | Standard | | | TI | 203 | 1436.1 | 10.6 | 0.2101 | 0.024 | 11.2 | ug/L | 7 | Standard | | | TI | 205 | 1005.0 | 17.6 | 0.2240 | 0.043 | 19.0 | ug/L | 7 | Standard | | | Pb | 206 | 323.0 | 27.6 | 0.0181 | 0.021 | 117.6 | ug/L | 159 | Standard | | ļ | Pb | 207 | 279.3 | 15.8 | 0.0174 | 0.013 | 76.7 | ug/L | 120 | Standard | | ļ | Pb | 208 | 974.7 | 9.9 | 0.0112 | 0.007 | 62.8 | ug/L | 503 | Standard | | ļ | U | 238 | 9907.2 | 2.6 | 1.7877 | 0.117 | 6.5 | ug/L | 5 | Standard | | _> | Bi | 209 | 348867.1 | 4.0 | | | | ug/L | 333509 | Standard | | | | | | | | | | | | | Sample ID: L1510122410 WG544285-01 Report Date/Time: Tuesday, October 27, 2015 18:55:48 Page 1 Approved: October 28, 2015 Page 619 L15101055 / Revision: 0 / 760 total pages Generated: 10/30/2015 10:11 | Γ | Na | 23 | 10.0 | 50.0 | | | | mg/L | 0 | Standard | |----|------|-----|----------|------|---------|-------|------|------|-------|----------| | | Mg | 24 | 18594.8 | 4.3 | 41.1662 | 4.897 | 11.9 | mg/L | 10 | Standard | | | K | 39 | 273.3 | 18.5 | 2.9343 | 0.558 | 19.0 | mg/L | 32 | Standard | | | Ca | 43 | 456.7 | 4.4 | 53.8031 | 4.083 | 7.6 | mg/L | 85 | Standard | | ĺ | Fe | 54 | 84.0 | 21.5 | 0.0576 | 0.048 | 82.8 | mg/L | 82 | Standard | | ĺ | Fe | 57 | 420.0 | 1.2 | 1.8073 | 0.272 | 15.0 | mg/L | 217 | Standard | | L> | Sc-1 | 45 | 15749.9 | 8.7 | | | | mg/L | 14524 | Standard | | | CI | 35 | 372017.3 | 5.9 | | | | ug/L | 53193 | Standard | | | Kr | 83 | 5.0 | 72.1 | | | | ug/L | 3 | Standard | | | Br | 81 | 8886.0 | 11.9 | | | | ug/L | 327 | Standard | | | Р | 31 | 17121.3 | 1.0 | | | | ug/L | 13329 | Standard | | | S | 34 | 4285.6 | 8.3 | | | | ug/L | 3234 | Standard | | | Sr | 88 | 155.0 | 5.6 | | | | ug/L | 87 | Standard | | | С | 12 | 426.7 | 17.6 | | | | mg/L | 103 | Standard | | | N | 14 | 0.0 | | | | | mg/L | 0 | Standard | | | Hg | 202 | 0.0 | | | | | mg/L | 3 | Standard | | | Dy | 164 | 90.9 | 36.3 | | | | mg/L | 10 | Standard | | | Ho-1 | 165 | 60.0 | 30.0 | | | | mg/L | 3 | Standard | | | Er | 166 | 50.0 | 40.0 | | | | mg/L | 7 | Standard | | | 1 | 127 | 46765.7 | 8.5 | | | | mg/L | 3612 | Standard | | | | | | | | | | | | | | Analyte | Mass | QC Std % Recovery | Int Std % Recovery | Spike % Recovery | |---------|------|-------------------|--------------------|------------------| | 「⊳ Li | 6 | | 130.323 | | | Be | 9 | | | | | L AI | 27 | | | | | 「 Sc | 45 | | | | | Ti | 47 | | | | | V | 51 | | | | | Cr | 52 | | | | | Cr | 53 | | | | | Mn | 55 | | | | | Co | 59 | | | | | Ni | 60 | | | | | Cu | 65 | | | | | Zn | 66 | | | | | > Ge | 72 | | 104.905 | | | As | 75 | | | | | Se | 82 | | | | | L Se-1 | 77 | | | | | √̄> Ga | 71 | | | | Sample ID: L1510122410 WG544285-01 Report Date/Time: Tuesday, October 27, 2015 18:55:48 Page 2 Approved: October 28, 2015 |

 | Ho
TI
TI
Pb
Pb
Pb | 85
89
103
98
107
111
114
115
118
123
135
140
159
165
203
205
206
207
208 | | | 106.453 | | |----------------|----------------------------------|--|---------|------|-----------------------|--| |
 - | U
Bi | 238
209 | | | 104.605 | | | Γ | Na | 23 | | | 104.000 | | | - | Mg | 24 | | | | | | i | K | 39 | | | | | | l
I | Ca | 43 | | | | | | i i | Fe | 54 | | | | | | l
I | Fe | 5 7 | | | | | | l
I. | | 45 | | | | | | <u>_</u> > | Cl | 35 | | | | | | | Kr | 83 | | | | | | | Br | 81 | | | | | | | P | 31 | | | | | | | S | 34 | | | | | | | Sr | 88 | | | | | | | С | 12 | | | | | | | N | 14 | | | | | | | Hg | 202 | | | | | | | Dy | 164 | | | | | | | Ho-1 | 165 | | | | | | | Er | 166 | | | | | | | | 127 | | | | | | | QC Out | of Limits | | | | | | | Measurem | | Analyte | Mass | Out of Limits Message | | | | Li 6 Int Sto | d for sample | Li | 6 | Rerun sample | | | | Al 27 Uppe | | Al | 27 | | | | | Ti 47 Lowe | er | Ti | 47 | | | | | | | | | | | Sample ID: L1510122410 WG544285-01 Report Date/Time: Tuesday, October 27, 2015 18:55:48 Page 3 Approved: October 28, 2015 Mn 55 Upper, S, EEE Mn 55 Sample ID: L1510122410 WG544285-01 Report Date/Time: Tuesday, October 27, 2015 18:55:48 Page 4 Approved: October 28, 2015 Sample ID: L1510122410DP WG544285-04 Sample Date/Time: Tuesday, October 27, 2015 18:56:42 Number of Replicates: 3 Autosampler Position: 208 Sample Description: 1 Method File: C:\NexIONData\Method\6020a.mth Aliquot Volume (mL): Diluted to Volume (mL): User Name: BKT Nexion300X Cumulative Autodilution Factor: 1 Nexion-ICP 200.8\6020 | 0 | ncon | tration | Results | | |----|------|----------|---------|--| | Lα | ncen | itration | Results | | | | Concentration Results | | | | | | | | | | |----|-----------------------|--------|------------|------|-----------|---------|-------|-------|---------------|----------| | IS | Analyt | e Mass | Intensity | RSD | Conc. | SD | RSD | Units | Blank Intens. | Mode | | Γ> | Li | 6 | 37149.0 | 8.2 | | | | ug/L | 26270 | Standard | | | Be | 9 | 15.0 | 33.3 | -0.0140 | 0.008 | 57.4 | ug/L | 2 | Standard | | L | Αl | 27 | 89485979.7 | 5.3 | 1136.0593 | 139.952 | 12.3 | ug/L | 403 | Standard | | Γ | Sc | 45 | 14889.0 | 8.1 | | | | ug/L | 14524 | Standard | | | Ti | 47 | 97.7 | 5.6 | -1.5347 | 0.059 | 3.9 | ug/L | 365 | Standard | | | V | 51 | 1551.1 | 5.8 | 0.1646 | 0.050 | 30.5 | ug/L | 805 | Standard | | | Cr | 52 | 8267.6 | 1.3 | 0.5183 | 0.137 | 26.4 | ug/L | 5481 | Standard | | | Cr | 53 | 983.4 | 9.5 | 1.2114 | 0.261 | 21.6 | ug/L | 268 | Standard | | | Mn | 55 | 1716475.4 | 1.7 | 488.0246 | 37.801 | 7.7 | ug/L | 670 | Standard | | | Co | 59 | 1840.4 | 2.4 | 0.5031 | 0.048 | 9.5 | ug/L | 146 | Standard | | | Ni | 60 | 8876.3 | 3.0 | 7.1892 | 0.719 | 10.0 | ug/L | 220 | Standard | | | Cu | 65 | 2554.9 | 4.6 | 2.0053 | 0.244 | 12.2 | ug/L | 147 | Standard | | | Zn | 66 | 3541.7 | 1.6 | 4.4931 | 0.419 | 9.3 | ug/L | 211 | Standard | | > | Ge | 72 | 225492.7 | 7.0 | | | | ug/L | 210599 | Standard | | | As | 75 | 359.1 | 10.9 | 0.5593 | 0.076 | 13.5 | ug/L | -47 | Standard | | | Se | 82 | 110.9 | 11.7 | 1.5893 | 0.304 | 19.1 | ug/L | 15 | Standard | | L | Se-1 | 77 | 106.3 | 10.8 | 1.3458 | 0.139 | 10.3 | ug/L | 65 | Standard | | Γ> | Ga | 71 | 26.7 | 39.0 | | | | mg/L | 27 | Standard | | L | Rb | 85 | 20243.5 | 4.0 | | | | ug/L | 17 | Standard | | Γ | Υ | 89 | 243708.7 | 6.8 | | | | ug/L | 216672 | Standard | | L> | Rh | 103 | 48.3 | 48.9 | | | | ug/L | 18 | Standard | | Γ | Мо | 98 | 816.0 | 2.2 | 0.5312 | 0.050 |
9.4 | ug/L | 11 | Standard | | | Ag | 107 | 65.7 | 27.3 | 0.0015 | 0.004 | 261.2 | ug/L | 55 | Standard | | | Cd | 111 | 19.6 | 49.0 | 0.0067 | 0.007 | 102.8 | mg/L | 7 | Standard | | | Cd | 114 | 35.5 | 35.9 | 0.0149 | 0.004 | 25.3 | ug/L | 4 | Standard | | > | In | 115 | 355193.0 | 7.6 | | | | ug/L | 322525 | Standard | | | Sn | 118 | 480.0 | 14.7 | -0.0423 | 0.019 | 44.0 | ug/L | 345 | Standard | | | Sb | 123 | 284.0 | 15.2 | 0.0584 | 0.015 | 25.8 | ug/L | 88 | Standard | | L | Ва | 135 | 10610.7 | 1.7 | 6.0267 | 0.535 | 8.9 | ug/L | 12 | Standard | | Γ | Ce | 140 | 431.7 | 18.6 | | | | ug/L | 37 | Standard | | L> | Tb | 159 | 663677.1 | 7.7 | | | | ug/L | 631826 | Standard | | Γ | Но | 165 | 40.0 | 21.7 | | | | ug/L | 3 | Standard | | | TI | 203 | 1356.7 | 3.3 | 0.1919 | 0.019 | 9.7 | ug/L | 7 | Standard | | | TI | 205 | 935.0 | 11.1 | 0.2019 | 0.032 | 15.9 | ug/L | 7 | Standard | | | Pb | 206 | 241.0 | 5.1 | -0.0036 | 0.001 | 28.0 | ug/L | 159 | Standard | | | Pb | 207 | 245.7 | 8.6 | 0.0058 | 0.002 | 35.8 | ug/L | 120 | Standard | | | Pb | 208 | 913.3 | 3.3 | 0.0049 | 0.002 | 41.6 | ug/L | 503 | Standard | | | U | 238 | 9758.1 | 2.2 | 1.7020 | 0.148 | 8.7 | ug/L | 5 | Standard | | L> | Bi | 209 | 361675.6 | 6.9 | | | | ug/L | 333509 | Standard | | | | | | | | | | | | | Sample ID: L1510122410DP WG544285-04 Report Date/Time: Tuesday, October 27, 2015 18:58:59 Page 1 Approved: October 28, 2015 | | | | | | | | | • | 0, , , | |------|---|--|--|---|---|---|--|---
--| | Na | | | | | | | • | | Standard | | Mg | 24 | 18599.8 | 6.0 | 43.5715 | 5.717 | 13.1 | mg/L | 10 | Standard | | K | 39 | 393.3 | 10.4 | 4.5691 | 0.141 | 3.1 | mg/L | 32 | Standard | | Ca | 43 | 503.3 | 8.1 | 65.3382 | 10.201 | 15.6 | mg/L | 85 | Standard | | Fe | 54 | 88.9 | 22.3 | 0.0778 | 0.033 | 42.2 | mg/L | 82 | Standard | | Fe | 57 | 433.3 | 3.5 | 2.1445 | 0.355 | 16.6 | mg/L | 217 | Standard | | Sc-1 | 45 | 14889.0 | 8.1 | | | | mg/L | 14524 | Standard | | CI | 35 | 403361.4 | 3.7 | | | | ug/L | 53193 | Standard | | Kr | 83 | 2.3 | 65.5 | | | | ug/L | 3 | Standard | | Br | 81 | 9953.3 | 6.7 | | | | ug/L | 327 | Standard | | Р | 31 | 18002.4 | 3.0 | | | | ug/L | 13329 | Standard | | S | 34 | 4537.3 | 1.8 | | | | ug/L | 3234 | Standard | | Sr | 88 | 168.3 | 14.7 | | | | ug/L | 87 | Standard | | С | 12 | 496.7 | 1.2 | | | | mg/L | 103 | Standard | | N | 14 | 3.3 | 173.2 | | | | mg/L | 0 | Standard | | Hg | 202 | 10.0 | 100.0 | | | | mg/L | 3 | Standard | | Dy | 164 | 54.1 | 37.6 | | | | mg/L | 10 | Standard | | Ho-1 | 165 | 40.0 | 21.7 | | | | mg/L | 3 | Standard | | Er | 166 | 53.3 | 39.0 | | | | mg/L | 7 | Standard | | I | 127 | 43450.7 | 5.7 | | | | mg/L | 3612 | Standard | | | K Ca Fe Fe Sc-1 CI Kr Br S S C N Hg Dy Ho-1 | Mg 24 K 39 Ca 43 Fe 54 Fe 57 Sc-1 45 Cl 35 Kr 83 Br 81 P 31 S 34 Sr 88 C 12 N 14 Hg 202 Dy 164 Ho-1 165 Er 166 | Mg 24 18599.8 K 39 393.3 Ca 43 503.3 Fe 54 88.9 Fe 57 433.3 Sc-1 45 14889.0 Cl 35 403361.4 Kr 83 2.3 Br 81 9953.3 P 31 18002.4 S 34 4537.3 Sr 88 168.3 C 12 496.7 N 14 3.3 Hg 202 10.0 Dy 164 54.1 Ho-1 165 40.0 Er 166 53.3 | Mg 24 18599.8 6.0 K 39 393.3 10.4 Ca 43 503.3 8.1 Fe 54 88.9 22.3 Fe 57 433.3 3.5 Sc-1 45 14889.0 8.1 Cl 35 403361.4 3.7 Kr 83 2.3 65.5 Br 81 9953.3 6.7 P 31 18002.4 3.0 S 34 4537.3 1.8 Sr 88 168.3 14.7 C 12 496.7 1.2 N 14 3.3 173.2 Hg 202 10.0 100.0 Dy 164 54.1 37.6 Ho-1 165 40.0 21.7 Er 166 53.3 39.0 | Mg 24 18599.8 6.0 43.5715 K 39 393.3 10.4 4.5691 Ca 43 503.3 8.1 65.3382 Fe 54 88.9 22.3 0.0778 Fe 57 433.3 3.5 2.1445 Sc-1 45 14889.0 8.1 1.2 CI 35 403361.4 3.7 7.7 Kr 83 2.3 65.5 65.5 Br 81 9953.3 6.7 7 P 31 18002.4 3.0 3.0 S 34 4537.3 1.8 3.8 Sr 88 168.3 14.7 7 C 12 496.7 1.2 1.2 N 14 3.3 173.2 Hg 202 10.0 100.0 Dy 164 54.1 37.6 Ho-1 165 40.0 21.7 Er 166 53.3 39.0 | Mg 24 18599.8 6.0 43.5715 5.717 K 39 393.3 10.4 4.5691 0.141 Ca 43 503.3 8.1 65.3382 10.201 Fe 54 88.9 22.3 0.0778 0.033 Fe 57 433.3 3.5 2.1445 0.355 Sc-1 45 14889.0 8.1 2.1445 0.355 Sc-1 45 403361.4 3.7 3.7 4.7 | Mg 24 18599.8 6.0 43.5715 5.717 13.1 K 39 393.3 10.4 4.5691 0.141 3.1 Ca 43 503.3 8.1 65.3382 10.201 15.6 Fe 54 88.9 22.3 0.0778 0.033 42.2 Fe 57 433.3 3.5 2.1445 0.355 16.6 Sc-1 45 14889.0 8.1 2.1445 0.355 16.6 Sc-1 45 14889.0 8.1 2.1445 0.355 16.6 Sc-1 45 14889.0 8.1 2.1445 0.355 16.6 Sr 81 9953.3 6.7 9 31 18002.4 3.0 3 <th>Mg 24 18599.8 6.0 43.5715 5.717 13.1 mg/L K 39 393.3 10.4 4.5691 0.141 3.1 mg/L Ca 43 503.3 8.1 65.3382 10.201 15.6 mg/L Fe 54 88.9 22.3 0.0778 0.033 42.2 mg/L Fe 57 433.3 3.5 2.1445 0.355 16.6 mg/L Sc-1 45 14889.0 8.1 403361.4 3.7 403361.4 4.7 40361.4 4.7 40361.4 4.7 4037.4 4.0</th> <th>Mg 24 18599.8 6.0 43.5715 5.717 13.1 mg/L 10 K 39 393.3 10.4 4.5691 0.141 3.1 mg/L 32 Ca 43 503.3 8.1 65.3382 10.201 15.6 mg/L 85 Fe 54 88.9 22.3 0.0778 0.033 42.2 mg/L 82 Fe 57 433.3 3.5 2.1445 0.355 16.6 mg/L 217 Sc-1 45 14889.0 8.1 14524</th> | Mg 24 18599.8 6.0 43.5715 5.717 13.1 mg/L K 39 393.3 10.4 4.5691 0.141 3.1 mg/L Ca 43 503.3 8.1 65.3382 10.201 15.6 mg/L Fe 54 88.9 22.3 0.0778 0.033 42.2 mg/L Fe 57 433.3 3.5 2.1445 0.355 16.6 mg/L Sc-1 45 14889.0 8.1 403361.4 3.7 403361.4 4.7 40361.4 4.7 40361.4 4.7 4037.4 4.0 | Mg 24 18599.8 6.0 43.5715 5.717 13.1 mg/L 10 K 39 393.3 10.4 4.5691 0.141 3.1 mg/L 32 Ca 43 503.3 8.1 65.3382 10.201 15.6 mg/L 85 Fe 54 88.9 22.3 0.0778 0.033 42.2 mg/L 82 Fe 57 433.3 3.5 2.1445 0.355 16.6 mg/L 217 Sc-1 45 14889.0 8.1 14524 | | Analyte | Mass | QC Std % Recovery | Int Std % Recovery | Spike % Recovery | |---------|------|-------------------|--------------------|------------------| | 「⊳ Li | 6 | | 141.414 | | | Be | 9 | | | | | L AI | 27 | | | | | 「 Sc | 45 | | | | | Ti | 47 | | | | | V | 51 | | | | | Cr | 52 | | | | | Cr | 53 | | | | | Mn | 55 | | | | | Co | 59 | | | | | Ni | 60 | | | | | Cu | 65 | | | | | Zn | 66 | | | | | > Ge | 72 | | 107.072 | | | As | 75 | | | | | Se | 82 | | | | | ∟ Se-1 | 77 | | | | | 「⊳ Ga | 71 | | | | **Sample ID: L1510122410DP WG544285-04**Report Date/Time: Tuesday, October 27, 2015 18:58:59 Page 2 Approved: October 28, 2015 | L | Rb | 85 | | | | | |--------|------------|------------|---------|------|-----------------------|--| | Γ | Υ | 89 | | | | | | L> | Rh | 103 | | | | | | Γ | Мо | 98 | | | | | | į | Ag | 107 | | | | | | i | Cd | 111 | | | | | | i | Cd | 114 | | | | | | i. | In | 115 | | | 110.129 | | | | Sn | 118 | | | 110.120 | | | | Sb | 123 | | | | | | l
I | Ва | 135 | | | | | | L | Се | 140 | | | | | | l | | | | | | | | L> | Tb | 159 | | | | | | | Ho | 165 | | | | | | | TI | 203 | | | | | | | TI | 205 | | | | | | | Pb | 206 | | | | | | | Pb | 207 | | | | | | | Pb | 208 | | | | | | ļ | U | 238 | | | | | | _> | | 209 | | | 108.445 | | | Γ | Na | 23 | | | | | | | Mg | 24 | | | | | | | K | 39 | | | | | | | Ca | 43 | | | | | | | Fe | 54 | | | | | | | Fe | 57 | | | | | | L> | Sc-1 | 45 | | | | | | | CI | 35 | | | | | | | Kr | 83 | | | | | | | Br | 81 | | | | | | | Р | 31 | | | | | | | S | 34 | | | | | | | Sr | 88 | | | | | | | C | 12 | | | | | | | N | 14 | | | | | | | Hg | 202 | | | | | | | Dy | 164 | | | | | | | Ho-1 | 165 | | | | | | | Er | 166 | | | | | | | | 127 | | | | | | | • | | | | | | | | | of Limits | | | | | | | Measurem | | Analyte | Mass | Out of Limits Message | | | | | for sample | Li | 6 | Rerun sample | | | | Al 27 Uppe | | Al | 27 | | | | | Ti 47 Lowe | er | Ti | 47 | | | | | | | | | | | **Sample ID: L1510122410DP WG544285-04**Report Date/Time: Tuesday, October 27, 2015 18:58:59 Page 3 Approved: October 28, 2015 Mn 55 Upper, S, EEE Mn 55 **Sample ID: L1510122410DP WG544285-04**Report Date/Time: Tuesday, October 27, 2015 18:58:59 Page 4 Approved: October 28, 2015 Sample ID: L1510122410S WG544285-05 Sample Date/Time: Tuesday, October 27, 2015 18:59:53 Number of Replicates: 3 Autosampler Position: 209 Sample Description: 1 Method File: C:\NexIONData\Method\6020a.mth Aliquot Volume (mL): Diluted to Volume (mL): User Name: BKT Nexion300X Cumulative Autodilution Factor: 1 Nexion-ICP 200.8\6020 | 0 | ncon | tration | Results | | |----|------|----------|---------|--| | Lα | ncen | itration | Results | | | | | | | | Concentia | lion ites | uito | | | | |----|--------|---------------|------------|------|-----------|-----------|------|-------|---------------|----------| | IS | Analyt | e Mass | Intensity | RSD | Conc. | SD | RSD | Units | Blank Intens. | Mode | | Γ> | Li | 6 | 35444.8 | 2.9 | | | | ug/L | 26270 | Standard | | | Be | 9 | 34526.0 | 0.5 | 49.3232 | 1.642 | 3.3 | ug/L | 2 | Standard | | L | ΑI | 27 | 98326255.5 | 3.0 | 1300.7683 | 62.148 | 4.8 | ug/L | 403 | Standard | | Γ | Sc | 45 | 13879.7 | 6.0 | | | | ug/L | 14524 | Standard | | | Ti | 47 | 116.0 | 14.7 | -1.3861 | 0.068 | 4.9 | ug/L | 365 | Standard | | | ٧ | 51 | 189457.2 | 1.1 | 54.7052 | 2.272 | 4.2 | ug/L | 805 | Standard | | | Cr | 52 | 219422.4 | 0.5 | 50.2971 | 2.791 | 5.5 | ug/L | 5481 | Standard | | | Cr | 53 | 26780.3 | 1.2 | 49.6785 | 2.030 | 4.1 | ug/L | 268 | Standard | | | Mn | 55 | 1926988.9 | 1.0 | 582.4816 | 35.252 | 6.1 | ug/L | 670 | Standard | | | Co | 59 | 180385.5 | 0.9 | 57.1135 | 3.357 | 5.9 | ug/L | 146 | Standard | | | Ni | 60 | 63872.7 | 1.2 | 56.4381 | 3.331 | 5.9 | ug/L | 220 | Standard | | | Cu | 65 | 56605.5 | 0.7 | 51.1535 | 2.577 | 5.0 | ug/L | 147 | Standard | | | Zn | 66 | 36484.5 | 0.7 | 55.4285 | 3.188 | 5.8 | ug/L | 211 | Standard | | > | Ge | 72 | 211808.5 | 5.3 | | | | ug/L | 210599 | Standard | |
 As | 75 | 39976.7 | 1.6 | 56.8630 | 2.342 | 4.1 | ug/L | -47 | Standard | | | Se | 82 | 3768.3 | 2.5 | 63.3283 | 2.623 | 4.1 | ug/L | 15 | Standard | | L | Se-1 | 77 | 2326.8 | 1.0 | 59.1320 | 3.344 | 5.7 | ug/L | 65 | Standard | | Γ> | Ga | 71 | 21.7 | 13.3 | | | | mg/L | 27 | Standard | | L | Rb | 85 | 21073.0 | 2.8 | | | | ug/L | 17 | Standard | | Γ | Υ | 89 | 227014.6 | 5.4 | | | | ug/L | 216672 | Standard | | L> | Rh | 103 | 95.0 | 9.1 | | | | ug/L | 18 | Standard | | Γ | Мо | 98 | 921.5 | 3.5 | 0.6383 | 0.036 | 5.7 | ug/L | 11 | Standard | | | Ag | 107 | 243298.2 | 1.7 | 50.4693 | 1.909 | 3.8 | ug/L | 55 | Standard | | | Cd | 111 | 75908.5 | 0.6 | 52.5381 | 2.341 | 4.5 | mg/L | 7 | Standard | | | Cd | 114 | 183534.8 | 1.4 | 51.9436 | 2.112 | 4.1 | ug/L | 4 | Standard | | > | In | 115 | 333017.5 | 5.0 | | | | ug/L | 322525 | Standard | | | Sn | 118 | 451.7 | 11.1 | -0.0425 | 0.007 | 16.9 | ug/L | 345 | Standard | | | Sb | 123 | 199996.3 | 0.2 | 51.4007 | 2.635 | 5.1 | ug/L | 88 | Standard | | L | Ва | 135 | 90330.8 | 0.4 | 54.7660 | 2.883 | 5.3 | ug/L | 12 | Standard | | Γ | Ce | 140 | 478.3 | 8.9 | | | | ug/L | 37 | Standard | | _> | Tb | 159 | 620457.1 | 4.5 | | | | ug/L | 631826 | Standard | | Γ | Но | 165 | 61.7 | 16.9 | | | | ug/L | 3 | Standard | | | TI | 203 | 340815.5 | 0.2 | 51.6307 | 2.824 | 5.5 | ug/L | 7 | Standard | | | TI | 205 | 239493.6 | 2.3 | 53.8256 | 1.738 | 3.2 | ug/L | 7 | Standard | | ļ | Pb | 206 | 222789.7 | 0.5 | 55.1040 | 2.715 | 4.9 | ug/L | 159 | Standard | | ļ | Pb | 207 | 191983.3 | 0.7 | 52.3645 | 2.620 | 5.0 | ug/L | 120 | Standard | | ļ | Pb | 208 | 741623.0 | 0.4 | 50.6215 | 2.560 | 5.1 | ug/L | 503 | Standard | | | U | 238 | 291236.0 | 0.1 | 53.8029 | 2.859 | 5.3 | ug/L | 5 | Standard | | L> | Bi | 209 | 341644.2 | 5.3 | | | | ug/L | 333509 | Standard | | | | | | | | | | | | | Sample ID: L1510122410S WG544285-05 Report Date/Time: Tuesday, October 27, 2015 19:02:10 Page 1 Approved: October 28, 2015 Page 627 L15101055 / Revision: 0 / 760 total pages Generated: 10/30/2015 10:11 | Γ | Na | 23 | 13.3 | 57.3 | | | | mg/L | 0 | Standard | |----|------|-----|----------|-------|---------|-------|-------|------|-------|----------| | | Mg | 24 | 20150.1 | 0.7 | 50.4162 | 3.236 | 6.4 | mg/L | 10 | Standard | | | K | 39 | 303.3 | 19.0 | 3.7793 | 0.964 | 25.5 | mg/L | 32 | Standard | | | Ca | 43 | 481.7 | 1.6 | 67.1888 | 4.653 | 6.9 | mg/L | 85 | Standard | | | Fe | 54 | 62.9 | 13.6 | 0.0292 | 0.032 | 110.6 | mg/L | 82 | Standard | | | Fe | 57 | 446.7 | 14.6 | 2.5355 | 0.396 | 15.6 | mg/L | 217 | Standard | | L> | Sc-1 | 45 | 13879.7 | 6.0 | | | | mg/L | 14524 | Standard | | | CI | 35 | 441621.2 | 1.6 | | | | ug/L | 53193 | Standard | | | Kr | 83 | 6.3 | 9.1 | | | | ug/L | 3 | Standard | | | Br | 81 | 13896.4 | 3.7 | | | | ug/L | 327 | Standard | | | Р | 31 | 18576.4 | 1.5 | | | | ug/L | 13329 | Standard | | | S | 34 | 4629.0 | 0.6 | | | | ug/L | 3234 | Standard | | | Sr | 88 | 196.7 | 1.5 | | | | ug/L | 87 | Standard | | | С | 12 | 540.0 | 4.9 | | | | mg/L | 103 | Standard | | | N | 14 | 0.0 | | | | | mg/L | 0 | Standard | | | Hg | 202 | 3.3 | 173.2 | | | | mg/L | 3 | Standard | | | Dy | 164 | 59.5 | 47.1 | | | | mg/L | 10 | Standard | | | Ho-1 | 165 | 61.7 | 16.9 | | | | mg/L | 3 | Standard | | | Er | 166 | 80.0 | 25.0 | | | | mg/L | 7 | Standard | | | I | 127 | 40156.5 | 1.2 | | | | mg/L | 3612 | Standard | | | | | | | | | | | | | | Analyte | Mass | QC Std % Recovery | Int Std % Recovery | Spike % Recovery | |---------|------|-------------------|--------------------|------------------| | 「⊳ Li | 6 | | 134.927 | | | Be | 9 | | | | | L AI | 27 | | | | | 「 Sc | 45 | | | | | Ti | 47 | | | | | V | 51 | | | | | Cr | 52 | | | | | Cr | 53 | | | | | Mn | 55 | | | | | Co | 59 | | | | | Ni | 60 | | | | | Cu | 65 | | | | | Zn | 66 | | | | | > Ge | 72 | | 100.574 | | | As | 75 | | | | | Se | 82 | | | | | L Se-1 | 77 | | | | | 「⊳ Ga | 71 | | | | **Sample ID: L1510122410S WG544285-05**Report Date/Time: Tuesday, October 27, 2015 19:02:10 Page 2 Approved: October 28, 2015 | Mo
Ag
Cd
Cd
In
Sn
Sb
Ba
Ce
Tb
Ho
Tl
Tl
Pb
Pb | 85
89
103
98
107
111
114
115
118
123
135
140
159
165
203
205
206
207
208
238
209
23
24
39
43
54
57
45
35
83
81
31
34
88
12
14
14
15
15
16
16
16
16
16
16
16
16
16
16 | | | 103.253 | | |--|--|----------|------|-----------------------|--| | C
N | 12
14 | | | | | | | 202 | | | | | | | | | | | | | Ho-1
Er | 165
166 | | | | | | Er
I | 166
127 | | | | | | = | | | | | | | | of Limits | | | | | | Measurem | | Analyte | Mass | Out of Limits Message | | | | for sample | Li | 6 | Rerun sample | | | Al 27 Uppe | | Al
Ti | 27 | | | | 11 17 L 0440 | r | Ti | 17 | | | Ti 47 Lower **Sample ID: L1510122410S WG544285-05**Report Date/Time: Tuesday, October 27, 2015 19:02:10 Τi 47 Page 3 Approved: October 28, 2015 Mn 55 Upper, S, EEE Mn 55 **Sample ID: L1510122410S WG544285-05**Report Date/Time: Tuesday, October 27, 2015 19:02:10 Page 4 Approved: October 28, 2015 Sample ID: L1510122410SD WG544285-06 Sample Date/Time: Tuesday, October 27, 2015 19:03:05 Number of Replicates: 3 Autosampler Position: 210 Sample Description: 1 Method File: C:\NexIONData\Method\6020a.mth Aliquot Volume (mL): Diluted to Volume (mL): User Name: BKT Nexion300X Cumulative Autodilution Factor: 1 Nexion-ICP 200.8\6020 | O | | 44! | D = = 4 = | | |-----|------|---------|------------|--| | COI | ıcen | tration | Results | | | | | | | | Concentra | tion Res | uits | | | | |----|--------|--------|------------|------|-----------|----------|------|-------|---------------|----------| | IS | Analyt | e Mass | Intensity | RSD | Conc. | SD | RSD | Units | Blank Intens. | Mode | | Γ> | Li | 6 | 36286.7 | 1.7 | | | | ug/L | 26270 | Standard | | | Be | 9 | 34469.2 | 1.8 | 48.0691 | 0.463 | 1.0 | ug/L | 2 | Standard | | L | Αl | 27 | 97485925.4 | 1.5 | 1258.8355 | 7.804 | 0.6 | ug/L | 403 | Standard | | Γ | Sc | 45 | 14084.9 | 2.6 | | | | ug/L | 14524 | Standard | | | Ti | 47 | 91.0 | 16.6 | -1.5458 | 0.089 | 5.7 | ug/L | 365 | Standard | | | ٧ | 51 | 183278.5 | 1.0 | 52.5182 | 1.421 | 2.7 | ug/L | 805 | Standard | | | Cr | 52 | 214726.7 | 1.3 | 48.7962 | 1.414 | 2.9 | ug/L | 5481 | Standard | | | Cr | 53 | 27588.4 | 1.2 | 50.8155 | 1.627 | 3.2 | ug/L | 268 | Standard | | | Mn | 55 | 1946287.7 | 2.3 | 583.5857 | 20.538 | 3.5 | ug/L | 670 | Standard | | | Co | 59 | 178507.1 | 1.1 | 56.0705 | 1.832 | 3.3 | ug/L | 146 | Standard | | | Ni | 60 | 63064.6 | 1.1 | 55.2866 | 2.120 | 3.8 | ug/L | 220 | Standard | | | Cu | 65 | 55661.1 | 0.9 | 49.9305 | 2.310 | 4.6 | ug/L | 147 | Standard | | | Zn | 66 | 35761.2 | 0.9 | 53.8911 | 1.965 | 3.6 | ug/L | 211 | Standard | | > | Ge | 72 | 213222.5 | 3.7 | | | | ug/L | 210599 | Standard | | | As | 75 | 39041.6 | 0.5 | 55.1335 | 1.785 | 3.2 | ug/L | -47 | Standard | | | Se | 82 | 3672.2 | 1.5 | 61.2814 | 2.708 | 4.4 | ug/L | 15 | Standard | | L | Se-1 | 77 | 2268.5 | 3.8 | 57.1154 | 0.422 | 0.7 | ug/L | 65 | Standard | | Γ> | Ga | 71 | 36.7 | 28.4 | | | | mg/L | 27 | Standard | | L | Rb | 85 | 22109.5 | 1.6 | | | | ug/L | 17 | Standard | | Γ | Υ | 89 | 230151.0 | 3.2 | | | | ug/L | 216672 | Standard | | L> | Rh | 103 | 73.3 | 21.9 | | | | ug/L | 18 | Standard | | Γ | Мо | 98 | 908.4 | 2.7 | 0.6110 | 0.012 | 2.0 | ug/L | 11 | Standard | | | Ag | 107 | 241622.1 | 0.7 | 48.7110 | 1.080 | 2.2 | ug/L | 55 | Standard | | | Cd | 111 | 75019.4 | 1.4 | 50.4516 | 1.436 | 2.8 | mg/L | 7 | Standard | | | Cd | 114 | 181111.2 | 2.9 | 49.8001 | 1.229 | 2.5 | ug/L | 4 | Standard | | > | In | 115 | 342359.6 | 2.4 | | | | ug/L | 322525 | Standard | | | Sn | 118 | 455.0 | 4.0 | -0.0445 | 0.006 | 12.9 | ug/L | 345 | Standard | | ļ | Sb | 123 | 194786.4 | 0.2 | 48.6329 | 1.259 | 2.6 | ug/L | 88 | Standard | | Ē | Ва | 135 | 90799.6 | 0.9 | 53.4782 | 1.543 | 2.9 | ug/L | 12 | Standard | | ļ | Ce | 140 | 428.3 | 22.6 | | | | ug/L | 37 | Standard | | Ľ> | Tb | 159 | 649455.3 | 2.7 | | | | ug/L | 631826 | Standard | | ļ | Но | 165 | 66.7 | 22.9 | | | | ug/L | 3 | Standard | | ļ | TI | 203 | 336931.7 | 0.1 | 50.0640 | 1.106 | 2.2 | ug/L | 7 | Standard | | ļ | TI | 205 | 234687.1 | 1.0 | 51.7693 | 0.620 | 1.2 | ug/L | 7 | Standard | | ! | Pb | 206 | 218928.7 | 0.6 | 53.1193 | 1.215 | 2.3 | ug/L | 159 | Standard | | - | Pb | 207 | 188164.3 | 1.1 | 50.3399 | 0.807 | 1.6 | ug/L | 120 | Standard | | - | Pb | 208 | 729064.4 | 0.9 | 48.8158 | 1.155 | 2.4 | ug/L | 503 | Standard | | - | U | 238 | 286107.8 | 0.8 | 51.8453 | 1.225 | 2.4 | ug/L | 5 | Standard | | L> | Bi | 209 | 347758.8 | 2.2 | | | | ug/L | 333509 | Standard | | | | | | | | | | | | | Sample ID: L1510122410SD WG544285-06 Report Date/Time: Tuesday, October 27, 2015 19:05:22 Page 1 Approved: October 28, 2015 Page 631 L15101055 / Revision: 0 / 760 total pages | Γ | Na | 23 | 15.0 | 57.7 | | | | mg/L | 0 | Standard | |----|------|-----|----------|-------|---------|-------|------|------|-------|----------| | - | | 24 | 20470.5 | 4.2 | 50.3316 | 0.957 | 1.9 | mg/L | 10 | Standard | | ! | Mg | | | | | | | • | | | | | K | 39 | 296.7 | 21.5 | 3.5927 | 0.718 | 20.0 | mg/L | 32 | Standard | | | Ca | 43 | 466.7 | 8.1 | 63.2491 | 4.284 | 6.8 | mg/L | 85 | Standard | | | Fe | 54 | 87.2 | 13.8 | 0.0873 | 0.034 | 39.2 | mg/L | 82 | Standard | | | Fe | 57 | 450.0 | 12.5 | 2.5293 | 0.653 | 25.8 | mg/L | 217 | Standard | | L> | Sc-1 | 45 | 14084.9 | 2.6 | | | | mg/L | 14524 | Standard | | | CI | 35 |
442574.9 | 0.6 | | | | ug/L | 53193 | Standard | | | Kr | 83 | 5.0 | 52.9 | | | | ug/L | 3 | Standard | | | Br | 81 | 11457.7 | 5.9 | | | | ug/L | 327 | Standard | | | Р | 31 | 17216.4 | 2.7 | | | | ug/L | 13329 | Standard | | | S | 34 | 4509.0 | 0.7 | | | | ug/L | 3234 | Standard | | | Sr | 88 | 171.7 | 13.1 | | | | ug/L | 87 | Standard | | | С | 12 | 503.3 | 16.1 | | | | mg/L | 103 | Standard | | | N | 14 | 0.0 | | | | | mg/L | 0 | Standard | | | Hg | 202 | 13.3 | 114.6 | | | | mg/L | 3 | Standard | | | Dy | 164 | 57.8 | 15.8 | | | | mg/L | 10 | Standard | | | Ho-1 | 165 | 66.7 | 22.9 | | | | mg/L | 3 | Standard | | | Er | 166 | 46.7 | 65.5 | | | | mg/L | 7 | Standard | | | I | 127 | 50168.0 | 2.6 | | | | mg/L | 3612 | Standard | | Analyte | Mass | QC Std % Recovery | Int Std % Recovery | Spike % Recovery | |---------|------|-------------------|--------------------|------------------| | 「⊳ Li | 6 | | 138.132 | | | Be | 9 | | | | | L AI | 27 | | | | | 「 Sc | 45 | | | | | Ti | 47 | | | | | V | 51 | | | | | Cr | 52 | | | | | Cr | 53 | | | | | Mn | 55 | | | | | Co | 59 | | | | | Ni | 60 | | | | | Cu | 65 | | | | | Zn | 66 | | | | | > Ge | 72 | | 101.246 | | | As | 75 | | | | | Se | 82 | | | | | L Se-1 | 77 | | | | | 「⊳ Ga | 71 | | | | **Sample ID: L1510122410SD WG544285-06**Report Date/Time: Tuesday, October 27, 2015 19:05:22 Page 2 Approved: October 28, 2015 | ∟ Rb | 85 | | | | | |----------------|---------------|---------|------|-----------------------|--| | ΓY | 89 | | | | | | $\lfloor_>$ Rh | 103 | | | | | | Г Мо | 98 | | | | | | Ag | 107 | | | | | | Cd | 111 | | | | | | Cd | 114 | | | | | | > In | 115 | | | 106.150 | | | Sn | 118 | | | | | | Sb | 123 | | | | | | L Ba | 135 | | | | | | Γ Ce | 140 | | | | | | > Tb | 159 | | | | | | Ho | 165 | | | | | | TI | 203 | | | | | | i Ti | 205 | | | | | | Pb | 206 | | | | | | Pb | 207 | | | | | | Pb | 208 | | | | | | U | 238 | | | | | | ∣ | 209 | | | 104.273 | | | [⊳ Na | 23 | | | 104.273 | | | Mg | 24 | | | | | | Wig
 K | 39 | | | | | | Ca | 43 | | | | | | Fe | 54 | | | | | | Fe | 57 | | | | | | 1 0 4 | 45 | | | | | | L> Sc-1
Cl | 35 | | | | | | Kr | 83 | | | | | | Br | 81 | | | | | | P | 31 | | | | | | S | 34 | | | | | | Sr | 88 | | | | | | C | 12 | | | | | | N | 14 | | | | | | Hg | 202 | | | | | | | 164 | | | | | | Dy
Ho-1 | 165 | | | | | | Er | 166 | | | | | |
 | 127 | | | | | | | | | | | | | | t of Limits | | | | | | | ment Type | Analyte | Mass | Out of Limits Message | | | Li 6 Int S | td for sample | Li | 6 | Rerun sample | | | Al 27 Up | oer, S, EEE | Al | 27 | | | | Ti 47 Lov | vor | T: | 47 | | | Ti 47 Lower **Sample ID: L1510122410SD WG544285-06**Report Date/Time: Tuesday, October 27, 2015 19:05:22 Τi 47 Page 3 Approved: October 28, 2015 Mn 55 Upper, S, EEE Mn 55 **Sample ID: L1510122410SD WG544285-06**Report Date/Time: Tuesday, October 27, 2015 19:05:22 Page 4 Approved: October 28, 2015 Sample ID: L1510122402 Sample Date/Time: Tuesday, October 27, 2015 19:06:16 Number of Replicates: 3 Autosampler Position: 211 Sample Description: 1 Method File: C:\NexIONData\Method\6020a.mth Aliquot Volume (mL): Diluted to Volume (mL): User Name: BKT Nexion300X Cumulative Autodilution Factor: 1 Nexion-ICP 200.8\6020 | Concentration | Results | |---------------|---------| |---------------|---------| | | | | | | Concentit | ation ites | uito | | | | |----|--------|--------|-----------|-------|-----------|------------|-------|-------|---------------|----------| | IS | Analyt | e Mass | Intensity | RSD | Conc. | SD | RSD | Units | Blank Intens. | Mode | | Γ> | Li | 6 | 37834.2 | 11.2 | | | | ug/L | 26270 | Standard | | | Ве | 9 | 36.7 | 41.7 | 0.0146 | 0.022 | 152.6 | ug/L | 2 | Standard | | L | Αl | 27 | 4026761.8 | 1.3 | 50.2806 | 5.807 | 11.5 | ug/L | 403 | Standard | | Γ | Sc | 45 | 15491.3 | 7.9 | | | | ug/L | 14524 | Standard | | | Ti | 47 | 97.7 | 10.8 | -1.5458 | 0.036 | 2.3 | ug/L | 365 | Standard | | | ٧ | 51 | 1243.5 | 9.9 | 0.0734 | 0.006 | 8.8 | ug/L | 805 | Standard | | | Cr | 52 | 7427.5 | 7.7 | 0.3034 | 0.043 | 14.2 | ug/L | 5481 | Standard | | | Cr | 53 | 566.7 | 13.2 | 0.4568 | 0.150 | 32.8 | ug/L | 268 | Standard | | | Mn | 55 | 764982.0 | 1.3 | 214.3354 | 18.458 | 8.6 | ug/L | 670 | Standard | | | Co | 59 | 9718.1 | 1.8 | 2.8118 | 0.250 | 8.9 | ug/L | 146 | Standard | | | Ni | 60 | 6138.6 | 1.7 | 4.8284 | 0.455 | 9.4 | ug/L | 220 | Standard | | | Cu | 65 | 528.7 | 6.2 | 0.2648 | 0.008 | 3.1 | ug/L | 147 | Standard | | | Zn | 66 | 3980.9 | 1.0 | 5.0476 | 0.479 | 9.5 | ug/L | 211 | Standard | | > | Ge | 72 | 228827.4 | 7.9 | | | | ug/L | 210599 | Standard | | | As | 75 | 1949.3 | 1.6 | 2.6485 | 0.215 | 8.1 | ug/L | -47 | Standard | | | Se | 82 | 28.7 | 20.3 | 0.2708 | 0.092 | 34.0 | ug/L | 15 | Standard | | L | Se-1 | 77 | 75.0 | 8.3 | 0.5626 | 0.125 | 22.2 | ug/L | 65 | Standard | | Γ> | Ga | 71 | 33.3 | 22.9 | | | | mg/L | 27 | Standard | | L | Rb | 85 | 4710.7 | 3.1 | | | | ug/L | 17 | Standard | | Γ | Υ | 89 | 242267.4 | 10.0 | | | | ug/L | 216672 | Standard | | L> | Rh | 103 | 11.7 | 24.7 | | | | ug/L | 18 | Standard | | Γ | Мо | 98 | 147.3 | 4.9 | 0.0903 | 0.010 | 11.0 | ug/L | 11 | Standard | | | Ag | 107 | 118.7 | 18.9 | 0.0109 | 0.005 | 41.5 | ug/L | 55 | Standard | | | Cd | 111 | 15.0 | 16.8 | 0.0031 | 0.002 | 59.5 | mg/L | 7 | Standard | | | Cd | 114 | 8.3 | 123.1 | 0.0074 | 0.003 | 34.2 | ug/L | 4 | Standard | | > | In | 115 | 369446.4 | 8.1 | | | | ug/L | 322525 | Standard | | | Sn | 118 | 745.0 | 13.4 | 0.0125 | 0.030 | 236.3 | ug/L | 345 | Standard | | | Sb | 123 | 253.0 | 7.7 | 0.0483 | 0.009 | 18.3 | ug/L | 88 | Standard | | L | Ва | 135 | 20440.4 | 0.7 | 11.1803 | 0.893 | 8.0 | ug/L | 12 | Standard | | Γ | Ce | 140 | 123.3 | 38.3 | | | | ug/L | 37 | Standard | | L> | Tb | 159 | 679402.7 | 7.3 | | | | ug/L | 631826 | Standard | | Γ | Но | 165 | 11.7 | 24.7 | | | | ug/L | 3 | Standard | | | TI | 203 | 135.7 | 13.1 | 0.0158 | 0.001 | 5.8 | ug/L | 7 | Standard | | | TI | 205 | 91.7 | 26.9 | 0.0212 | 0.006 | 27.9 | ug/L | 7 | Standard | | | Pb | 206 | 292.0 | 4.2 | 0.0057 | 0.008 | 135.8 | ug/L | 159 | Standard | | | Pb | 207 | 249.0 | 3.3 | 0.0042 | 0.005 | 115.0 | ug/L | 120 | Standard | | | Pb | 208 | 1031.7 | 6.1 | 0.0097 | 0.004 | 37.6 | ug/L | 503 | Standard | | | U | 238 | 110.3 | 6.4 | 0.0139 | 0.002 | 14.4 | ug/L | 5 | Standard | | L> | Bi | 209 | 378138.6 | 8.2 | | | | ug/L | 333509 | Standard | | | | | | | | | | | | | Sample ID: L1510122402 Report Date/Time: Tuesday, October 27, 2015 19:08:32 Page 1 Approved: October 28, 2015 | _ | | | | | | | | | _ | | |----|------|-----|---------|-------|--------|-------|------|------|-------|----------| | | Na | 23 | 6.7 | 86.6 | | | | mg/L | 0 | Standard | | | Mg | 24 | 208.3 | 9.1 | 0.4286 | 0.066 | 15.4 | mg/L | 10 | Standard | | | K | 39 | 70.0 | 21.4 | 0.6031 | 0.125 | 20.8 | mg/L | 32 | Standard | | | Ca | 43 | 130.0 | 26.9 | 5.0073 | 3.631 | 72.5 | mg/L | 85 | Standard | | | Fe | 54 | 1281.2 | 2.6 | 2.8197 | 0.176 | 6.3 | mg/L | 82 | Standard | | | Fe | 57 | 625.0 | 5.6 | 3.7111 | 0.719 | 19.4 | mg/L | 217 | Standard | | L> | Sc-1 | 45 | 15491.3 | 7.9 | | | | mg/L | 14524 | Standard | | | CI | 35 | 99891.8 | 3.1 | | | | ug/L | 53193 | Standard | | | Kr | 83 | 6.3 | 32.9 | | | | ug/L | 3 | Standard | | | Br | 81 | 1223.4 | 2.5 | | | | ug/L | 327 | Standard | | | Р | 31 | 17571.9 | 1.8 | | | | ug/L | 13329 | Standard | | | S | 34 | 3732.1 | 1.9 | | | | ug/L | 3234 | Standard | | | Sr | 88 | 123.3 | 18.3 | | | | ug/L | 87 | Standard | | | С | 12 | 383.3 | 6.0 | | | | mg/L | 103 | Standard | | | N | 14 | 0.0 | | | | | mg/L | 0 | Standard | | | Hg | 202 | 3.3 | 173.2 | | | | mg/L | 3 | Standard | | | Dy | 164 | 9.0 | 116.3 | | | | mg/L | 10 | Standard | | | Ho-1 | 165 | 11.7 | 24.7 | | | | mg/L | 3 | Standard | | | Er | 166 | 20.0 | 100.0 | | | | mg/L | 7 | Standard | | | I | 127 | 8242.2 | 2.3 | | | | mg/L | 3612 | Standard | | | Analyte | Mass | QC Std % Recovery | Int Std % Recovery | Spike % Recovery | |----|---------|------|-------------------|--------------------|------------------| | Γ> | Li | 6 | | 144.023 | | | | Be | 9 | | | | | L | Al | 27 | | | | | Γ | Sc | 45 | | | | | | Ti | 47 | | | | | | V | 51 | | | | | | Cr | 52 | | | | | | Cr | 53 | | | | | | Mn | 55 | | | | | | Co | 59 | | | | | | Ni | 60 | | | | | | Cu | 65 | | | | | | Zn | 66 | | | | | > | Ge | 72 | | 108.656 | | | | As | 75 | | | | | | Se | 82 | | | | | L | Se-1 | 77 | | | | | Γ> | Ga | 71 | | | | Sample ID: L1510122402 Report Date/Time: Tuesday, October 27, 2015 19:08:32 Page 2 Approved: October 28, 2015 | L Rb | 85 | | | | | |----------------------|--------------|---------|----------|-----------------------|--| | ΓΥ | 89 | | | | | | Ĺ _{>} Rh | 103 | | | | | | Mo | 98 | | | | | | Ag | 107 | | | | | | Cd | 111 | | | | | | Cd | 114 | | | | | | > In | 115 | | | 114.548 | | | Sn | 118 | | | 114.040 | | | Sb | 123 | | | | | | L Ba | 135 | | | | | | Г Се | 140 | | | | | | | | | | | | | [> Tb | 159
165 | | | | | | Γ Ho | 165 | | | | | | TI | 203 | | | | | | TI | 205 | | | | | | Pb | 206 | | | | | | Pb | 207 | | | | | | Pb | 208 | | | | | | U | 238 | | | 440.000 | | | L> Bi | 209 | | | 113.382 | | | Na | 23 | | | | | | Mg | 24 | | | | | | K | 39 | | | | | | Ca | 43 | | | | | | Fe | 54 | | | | | | Fe | 57 | | | | | | _> Sc-1 | 45 | | | | | | CI | 35 | | | | | | Kr | 83 | | | | | | Br | 81 | | | | | | Р | 31 | | | | | | S | 34 | | | | | | Sr | 88 | | | | | | С | 12 | | | | | | Ν | 14 | | | | | | Hg | 202 | | | | | | Dy | 164 | | | | | | Ho-1 | 165 | | | | | | Er | 166 | | | | | | I | 127 | | | | | | OC Ou | t of Limits | | | | | | | | A 1 1 | N4 | Out of Livette Man | | | | nent Type | Analyte | Mass | Out of Limits Message | | | | d for sample | Li
 | 6 | Rerun sample | | | Ti 47 Low | er | Ti | 47
55 | | | | N/10 EE 110 | nor C EEE | N/In | EE | | | Sample ID: L1510122402 Report Date/Time: Tuesday, October 27, 2015 19:08:32 Mn 55 Mn 55 Upper, S, EEE Page 3 Approved: October 28, 2015 Sample ID:
L1510122402PS WG544595-01 Sample Date/Time: Tuesday, October 27, 2015 19:09:27 Number of Replicates: 3 Autosampler Position: 212 Sample Description: 1 Method File: C:\NexIONData\Method\6020a.mth Aliquot Volume (mL): Diluted to Volume (mL): User Name: BKT Nexion300X Cumulative Autodilution Factor: 1 Nexion-ICP 200.8\6020 | 0 | ncon | tration | Results | | |----|------|----------|---------|--| | Lα | ncen | itration | Results | | | | | | | | Joneontia | centration results | | | | | | |----|----------|-----------------|-----------|------|-----------|--------------------|------|-------|---------------|----------|--| | IS | S Analyt | t e Mass | Intensity | RSD | Conc. | SD | RSD | Units | Blank Intens. | Mode | | | Γ> | . Li | 6 | 33844.5 | 5.8 | | | | ug/L | 26270 | Standard | | | | Be | 9 | 32935.8 | 1.9 | 49.3663 | 3.290 | 6.7 | ug/L | 2 | Standard | | | L | Αl | 27 | 4043833.1 | 4.4 | 56.1702 | 5.417 | 9.6 | ug/L | 403 | Standard | | | Γ | Sc | 45 | 14099.9 | 2.5 | | | | ug/L | 14524 | Standard | | | | Ti | 47 | 108.0 | 4.0 | -1.4352 | 0.044 | 3.1 | ug/L | 365 | Standard | | | | V | 51 | 191548.8 | 1.5 | 55.1109 | 1.368 | 2.5 | ug/L | 805 | Standard | | | | Cr | 52 | 226501.6 | 1.1 | 51.7638 | 2.055 | 4.0 | ug/L | 5481 | Standard | | | | Cr | 53 | 28206.2 | 2.0 | 52.1816 | 2.312 | 4.4 | ug/L | 268 | Standard | | | | Mn | 55 | 954368.5 | 1.4 | 287.2621 | 14.534 | 5.1 | ug/L | 670 | Standard | | | | Co | 59 | 192006.3 | 0.7 | 60.5687 | 2.646 | 4.4 | ug/L | 146 | Standard | | | | Ni | 60 | 64067.2 | 1.5 | 56.4065 | 2.792 | 4.9 | ug/L | 220 | Standard | | | | Cu | 65 | 57710.7 | 0.5 | 51.9671 | 1.931 | 3.7 | ug/L | 147 | Standard | | | | Zn | 66 | 38317.1 | 8.0 | 58.0140 | 2.016 | 3.5 | ug/L | 211 | Standard | | | > | Ge | 72 | 212397.1 | 3.8 | | | | ug/L | 210599 | Standard | | | | As | 75 | 41569.5 | 2.0 | 58.9278 | 2.255 | 3.8 | ug/L | -47 | Standard | | | | Se | 82 | 3397.1 | 1.2 | 56.8892 | 2.071 | 3.6 | ug/L | 15 | Standard | | | L | Se-1 | 77 | 2155.8 | 2.4 | 54.5142 | 3.287 | 6.0 | ug/L | 65 | Standard | | | Γ> | | 71 | 55.0 | 15.7 | | | | mg/L | 27 | Standard | | | L | Rb | 85 | 4730.7 | 6.4 | | | | ug/L | 17 | Standard | | | Γ | Υ | 89 | 227424.2 | 1.1 | | | | ug/L | 216672 | Standard | | | L> | Rh | 103 | 28.3 | 10.2 | | | | ug/L | 18 | Standard | | | Γ | Mo | 98 | 151.4 | 6.2 | 0.1008 | 0.006 | 6.4 | ug/L | 11 | Standard | | | | Ag | 107 | 246691.8 | 0.5 | 50.1656 | 1.212 | 2.4 | ug/L | 55 | Standard | | | | Cd | 111 | 79281.2 | 8.0 | 53.7776 | 1.299 | 2.4 | mg/L | 7 | Standard | | | | Cd | 114 | 190312.6 | 2.1 | 52.7909 | 1.383 | 2.6 | ug/L | 4 | Standard | | | > | | 115 | 339415.2 | 2.3 | | | | ug/L | 322525 | Standard | | | | Sn | 118 | 773.4 | 5.5 | 0.0329 | 0.013 | 40.1 | ug/L | 345 | Standard | | | | Sb | 123 | 200072.1 | 8.0 | 50.3835 | 1.273 | 2.5 | ug/L | 88 | Standard | | | L | Ва | 135 | 106333.5 | 0.9 | 63.1735 | 1.828 | 2.9 | ug/L | 12 | Standard | | | Γ | Ce | 140 | 116.7 | 10.8 | | | | ug/L | 37 | Standard | | | L> | | 159 | 635848.7 | 1.7 | | | | ug/L | 631826 | Standard | | | Γ | Но | 165 | 8.3 | 91.7 | | | | ug/L | 3 | Standard | | | | TI | 203 | 360915.1 | 0.7 | 53.3112 | 1.969 | 3.7 | ug/L | 7 | Standard | | | | TI | 205 | 249723.0 | 1.2 | 54.7545 | 1.417 | 2.6 | ug/L | 7 | Standard | | | | Pb | 206 | 226271.8 | 0.9 | 54.5844 | 2.250 | 4.1 | ug/L | 159 | Standard | | | | Pb | 207 | 203744.1 | 0.6 | 54.1931 | 1.834 | 3.4 | ug/L | 120 | Standard | | | | Pb | 208 | 780289.3 | 1.5 | 51.9345 | 1.803 | 3.5 | ug/L | 503 | Standard | | | | U | 238 | 288525.1 | 1.0 | 51.9751 | 1.980 | 3.8 | ug/L | 5 | Standard | | | L> | ∍ Bi | 209 | 350023.8 | 3.7 | | | | ug/L | 333509 | Standard | | | | | | | | | | | | | | | Sample ID: L1510122402PS WG544595-01 Report Date/Time: Tuesday, October 27, 2015 19:11:44 Page 1 Approved: October 28, 2015 | Γ | Na | 23 | 5.0 | 0.0 | | | | mg/L | 0 | Standard | |----|------|-----|---------|-------|--------|-------|------|------|-------|----------| | İ | Mg | 24 | 206.7 | 7.8 | 0.4684 | 0.050 | 10.6 | mg/L | 10 | Standard | | ĺ | ĸ | 39 | 71.7 | 21.3 | 0.7106 | 0.204 | 28.7 | mg/L | 32 | Standard | | ĺ | Ca | 43 | 130.0 | 21.4 | 7.1102 | 4.454 | 62.6 | mg/L | 85 | Standard | | | Fe | 54 | 1241.4 | 4.0 | 3.0006 | 0.087 | 2.9 | mg/L | 82 | Standard | | | Fe | 57 | 621.7 | 8.6 | 4.1840 | 0.414 | 9.9 | mg/L | 217 | Standard | | L> | Sc-1 | 45 | 14099.9 | 2.5 | | | | mg/L | 14524 | Standard | | | CI | 35 | 94242.9 | 0.5 | | | | ug/L | 53193 | Standard | | | Kr | 83 | 3.0 | 33.3 | | | | ug/L | 3 | Standard | | | Br | 81 | 1213.4 | 9.8 | | | | ug/L | 327 | Standard | | | Р | 31 | 18022.4 | 5.0 | | | | ug/L | 13329 | Standard | | | S | 34 | 3890.5 | 3.2 | | | | ug/L | 3234 | Standard | | | Sr | 88 | 128.3 | 27.6 | | | | ug/L | 87 | Standard | | | С | 12 | 266.7 | 19.2 | | | | mg/L | 103 | Standard | | | N | 14 | 3.3 | 173.2 | | | | mg/L | 0 | Standard | | | Hg | 202 | 3.3 | 173.2 | | | | mg/L | 3 | Standard | | | Dy | 164 | 5.5 | 117.2 | | | | mg/L | 10 | Standard | | | Ho-1 | 165 | 8.3 | 91.7 | | | | mg/L | 3 | Standard | | | Er | 166 | 23.3 | 89.2 | | | | mg/L | 7 | Standard | | | I | 127 | 8015.5 | 2.7 | | | | mg/L | 3612 | Standard | | _ | Analyte | | QC Std % Recovery | Int Std % Recovery | Spike % Recovery | |----|---------|----|-------------------|--------------------|------------------| | Γ> | Li | 6 | | 128.835 | | | | Be | 9 | | | | | L | Al | 27 | | | | | Γ | Sc | 45 | | | | | | Ti | 47 | | | | | | V | 51 | | | | | | Cr | 52 | | | | | | Cr | 53 | | | | | | Mn | 55 | | | | | | Co | 59 | | | | | | Ni | 60 | | | | | | Cu | 65 | | | | | | Zn | 66 | | | | | > | Ge | 72 | | 100.854 | | | | As | 75 | | | | | | Se | 82 | | | | | L | Se-1 | 77 | | | | | Γ> | Ga | 71 | | | | Sample ID: L1510122402PS WG544595-01 Report Date/Time: Tuesday, October 27, 2015 19:11:44 Page 2 Approved: October 28, 2015 | | 0= | | | | | |----------------|-------------------|---------|------|-----------------------|--| | L Rb | 85 | | | | | | ΓY | 89 | | | | | | Ĺ> Rh | 103 | | | | | | Мо | 98 | | | | | | Ag | 107 | | | | | | Cd | 111 | | | | | | Cd | 114 | | | | | | > In | 115 | | | 105.237 | | | Sn | 118 | | | | | | Sb | 123 | | | | | | ∟ Ba | 135 | | | | | | 「 Ce | 140 | | | | | | $\lfloor_>$ Tb | 159 | | | | | | Γ Ho | 165 | | | | | | TI | 203 | | | | | | TI | 205 | | | | | | Pb | 206 | | | | | | Pb | 207 | | | | | | Pb | 208 | | | | | | U | 238 | | | | | | L> Bi | 209 | | | 104.952 | | | Na | 23 | | | | | | Mg | 24 | | | | | | K | 39 | | | | | | Ca | 43 | | | | | | Fe | 54 | | | | | | Fe | 57 | | | | | | _> Sc-1 | 45 | | | | | | CI | 35 | | | | | | Kr | 83 | | | | | | Br | 81 | | | | | | Р | 31 | | | | | | S | 34 | | | | | | Sr | 88 | | | | | | С | 12 | | | | | | N | 14 | | | | | | Hg | 202 | | | | | | Dy | 164 | | | | | | Ho-1 | | | | | | | Er | 166 | | | | | | 00 | 127 | | | | | | | Out of Limits | | | | | | | surement Type | Analyte | Mass | Out of Limits Message | | | | nt Std for sample | Li | 6 | Rerun sample | | | Ti 47 | Lower | Ti | 47 | | | Mn 55 Upper, S, EEE Sample ID: L1510122402PS WG544595-01 Report Date/Time: Tuesday, October 27, 2015 19:11:44 Mn 55 Page 3 Approved: October 28, 2015 Sample ID: L1510122402SDL WG544595-02 Sample Date/Time: Tuesday, October 27, 2015 19:12:39 Number of Replicates: 3 Autosampler Position: 213 Sample Description: 5 Method File: C:\NexIONData\Method\6020a.mth Aliquot Volume (mL): Diluted to Volume (mL): User Name: BKT Nexion300X Cumulative Autodilution Factor: 1 Nexion-ICP 200.8\6020 | 0 | ncon | tration | Results | | |----|------|----------|---------|--| | Lα | ncen | itration | Results | | | | | | | | Concenti | ation Nes | uits | | | | |----|--------|--------|-----------|-------|----------|-----------|-------|-------|---------------|----------| | IS | Analyt | e Mass | Intensity | RSD | Conc. | SD | RSD | Units | Blank Intens. | Mode | | Γ> | Li | 6 | 33365.1 | 6.0 | | | | ug/L | 26270 | Standard | | | Be | 9 | 68.3 | 91.5 | 0.0656 | 0.086 | 131.4 | ug/L | 2 | Standard | | L | ΑI | 27 | 875155.8 | 0.7 | 12.3012 | 0.793 | 6.4 | ug/L | 403 | Standard | | Γ | Sc | 45 | 15172.6 | 4.8 | | | | ug/L | 14524 | Standard | | | Ti | 47 | 80.0 | 5.7 | -1.6355 | 0.034 | 2.1 | ug/L | 365 | Standard | | | ٧ | 51 | 1229.6 | 18.4 | 0.0782 | 0.053 | 67.2 | ug/L | 805 | Standard | | | Cr | 52 | 6745.5 | 8.0 | 0.1960 | 0.032 | 16.3 | ug/L | 5481 | Standard | | | Cr | 53 | 441.7 | 13.5 | 0.2568 | 0.087 | 33.9 | ug/L | 268 | Standard | | | Mn | 55 | 154160.8 | 1.6 | 43.9332 | 1.394 | 3.2 | ug/L | 670 | Standard | | | Co | 59 | 2248.5 | 7.3 | 0.6301 | 0.031 | 4.9 | ug/L | 146 | Standard | | | Ni | 60 | 1462.1 | 5.7 | 1.0047 | 0.037 | 3.7 | ug/L | 220 | Standard | | | Cu | 65 | 283.3 | 21.6 | 0.0646 | 0.046 | 71.1 | ug/L | 147 | Standard | | | Zn | 66 | 1461.7 | 1.3 | 1.5055 | 0.066 | 4.4 | ug/L | 211 | Standard | | > | Ge | 72 | 222647.4 | 2.8 | | | | ug/L | 210599 | Standard | | | As | 75 | 388.1 | 17.6 | 0.6004 | 0.079 | 13.1 | ug/L | -47 | Standard | | | Se | 82 | 20.9 | 41.5 | 0.1560 | 0.132 | 84.5 | ug/L | 15 | Standard | | L | Se-1 | 77 | 63.3 | 2.4 | 0.3230 | 0.007 | 2.3 | ug/L | 65 | Standard | | Γ> | Ga | 71 | 20.0 | 25.0 | | | | mg/L | 27 | Standard | | L | Rb | 85 | 968.4 | 3.0 | | | | ug/L | 17 | Standard | | Γ | Υ | 89 | 240395.1 | 3.3 | | | | ug/L | 216672 | Standard | | L> | Rh | 103 | 10.0 | 50.0 | | | | ug/L | 18 | Standard | | Γ | Мо | 98 | 38.0 | 13.3 | 0.0224 | 0.004 | 18.3 | ug/L | 11 | Standard | | | Ag | 107 | 212.0 | 106.7 | 0.0286 | 0.041 | 144.2 | ug/L | 55 | Standard | | | Cd | 111 | 64.6 | 134.6 | 0.0340 | 0.053 | 157.0 | mg/L | 7 | Standard | | | Cd | 114 | 154.4 | 117.5 | 0.0449 | 0.045 | 101.1 | ug/L | 4 | Standard | | > | In | 115 | 355957.2 | 4.2 | | | | ug/L | 322525 | Standard | | ļ | Sn | 118 | 458.3 | 8.9 | -0.0476 | 0.013 | 27.0 | ug/L | 345 | Standard | | ļ | Sb | 123 | 872.1 | 9.2 | 0.1984 | 0.011 | 5.7 | ug/L | 88 | Standard | | Ĺ | Ва | 135 | 4257.9 | 1.8 | 2.3904 | 0.094 | 3.9 | ug/L | 12 | Standard | | ! | Ce |
140 | 26.7 | 65.8 | | | | ug/L | 37 | Standard | | Ĺ> | Tb | 159 | 663545.9 | 2.5 | | | | ug/L | 631826 | Standard | | ! | Но | 165 | 5.0 | 100.0 | | | | ug/L | 3 | Standard | | ! | TI | 203 | 242.0 | 125.1 | 0.0308 | 0.041 | 134.2 | ug/L | 7 | Standard | | | TI | 205 | 176.7 | 153.6 | 0.0386 | 0.055 | 143.1 | ug/L | 7 | Standard | | | Pb | 206 | 350.7 | 62.9 | 0.0203 | 0.048 | 237.7 | ug/L | 159 | Standard | | | Pb | 207 | 284.7 | 69.0 | 0.0144 | 0.048 | 330.9 | ug/L | 120 | Standard | | | Pb | 208 | 1175.7 | 72.5 | 0.0201 | 0.052 | 257.5 | ug/L | 503 | Standard | | | U | 238 | 240.0 | 129.9 | 0.0359 | 0.052 | 144.6 | ug/L | 5 | Standard | | L> | Bi | 209 | 365271.1 | 2.6 | | | | ug/L | 333509 | Standard | Sample ID: L1510122402SDL WG544595-02 Report Date/Time: Tuesday, October 27, 2015 19:14:55 Page 1 Approved: October 28, 2015 | _ | | | | | | | | | | | |----|------|-----|---------|-------|---------|-------|-------|------|-------|----------| | | Na | 23 | 0.0 | | | | | mg/L | 0 | Standard | | | Mg | 24 | 53.3 | 32.9 | 0.0804 | 0.035 | 43.1 | mg/L | 10 | Standard | | | K | 39 | 26.7 | 92.5 | 0.1160 | 0.314 | 270.5 | mg/L | 32 | Standard | | | Ca | 43 | 65.0 | 7.7 | -4.4269 | 1.092 | 24.7 | mg/L | 85 | Standard | | | Fe | 54 | 324.1 | 1.5 | 0.6285 | 0.048 | 7.6 | mg/L | 82 | Standard | | | Fe | 57 | 321.7 | 5.0 | 1.0435 | 0.190 | 18.2 | mg/L | 217 | Standard | | L> | Sc-1 | 45 | 15172.6 | 4.8 | | | | mg/L | 14524 | Standard | | | CI | 35 | 87798.4 | 2.7 | | | | ug/L | 53193 | Standard | | | Kr | 83 | 4.3 | 13.3 | | | | ug/L | 3 | Standard | | | Br | 81 | 583.3 | 13.0 | | | | ug/L | 327 | Standard | | | Р | 31 | 16172.0 | 0.7 | | | | ug/L | 13329 | Standard | | | S | 34 | 3952.2 | 1.2 | | | | ug/L | 3234 | Standard | | | Sr | 88 | 135.0 | 11.1 | | | | ug/L | 87 | Standard | | | С | 12 | 200.0 | 10.0 | | | | mg/L | 103 | Standard | | | N | 14 | 0.0 | | | | | mg/L | 0 | Standard | | | Hg | 202 | 0.0 | | | | | mg/L | 3 | Standard | | | Dy | 164 | 12.2 | 51.9 | | | | mg/L | 10 | Standard | | | Ho-1 | 165 | 5.0 | 100.0 | | | | mg/L | 3 | Standard | | | Er | 166 | 23.3 | 65.5 | | | | mg/L | 7 | Standard | | | I | 127 | 4045.5 | 3.2 | | | | mg/L | 3612 | Standard | | | | | | | | | | | | | | Analyte | Mass | QC Std % Recovery | Int Std % Recovery | Spike % Recovery | |---------|------|-------------------|--------------------|------------------| | 「⊳ Li | 6 | | 127.010 | | | Be | 9 | | | | | L AI | 27 | | | | | 「 Sc | 45 | | | | | Ti | 47 | | | | | V | 51 | | | | | Cr | 52 | | | | | Cr | 53 | | | | | Mn | 55 | | | | | Co | 59 | | | | | Ni | 60 | | | | | Cu | 65 | | | | | Zn | 66 | | | | | > Ge | 72 | | 105.721 | | | As | 75 | | | | | Se | 82 | | | | | L Se-1 | 77 | | | | | 「⊳ Ga | 71 | | | | **Sample ID: L1510122402SDL WG544595-02**Report Date/Time: Tuesday, October 27, 2015 19:14:55 Page 2 Approved: October 28, 2015 | L Rb | 85 | | | | | |-----------------------------|----------------|---------|------|-----------------------|--| | [Y | 89 | | | | | | ∟ .
∟ _{>} Rh | 103 | | | | | | Mo | 98 | | | | | | Ag | 107 | | | | | | Cd | 111 | | | | | | Cd | 114 | | | | | | > In | 115 | | | 110.366 | | | Sn | 118 | | | | | | Sb | 123 | | | | | | L Ba | 135 | | | | | | Г Се | 140 | | | | | | [> Tb | 159 | | | | | | Γ Ho | 165 | | | | | | TI | 203 | | | | | | TI
 Pb | 205
206 | | | | | | Pb | 207 | | | | | | Pb | 208 | | | | | | U | 238 | | | | | | ∟> Bi | 209 | | | 109.524 | | | Na | 23 | | | | | | Mg | 24 | | | | | | K | 39 | | | | | | Ca | 43 | | | | | | Fe | 54 | | | | | | Fe | 57 | | | | | | L> Sc-1 | 45 | | | | | | Cl | 35 | | | | | | Kr
Br | 83
81 | | | | | | Р | 31 | | | | | | S | 34 | | | | | | Sr | 88 | | | | | | C | 12 | | | | | | N | 14 | | | | | | Hg | 202 | | | | | | Dy | 164 | | | | | | Ho-1 | 165 | | | | | | Er | 166 | | | | | | I | 127 | | | | | | QC O | ut of Limits | | | | | | | ement Type | Analyte | Mass | Out of Limits Message | | | | Std for sample | Li | 6 | Rerun sample | | | Ti 47 Lo | wer | Ti | 47 | | | **Sample ID: L1510122402SDL WG544595-02**Report Date/Time: Tuesday, October 27, 2015 19:14:55 Page 3 Approved: October 28, 2015 Sample ID: L1510122402SDL WG544595-02 Sample Date/Time: Tuesday, October 27, 2015 19:15:50 Number of Replicates: 3 Autosampler Position: 214 Sample Description: 25 Method File: C:\NexIONData\Method\6020a.mth Aliquot Volume (mL): Diluted to Volume (mL): User Name: BKT Nexion300X Cumulative Autodilution Factor: 1 Nexion-ICP 200.8\6020 | Concentration F | Results | |------------------------|---------| |------------------------|---------| | | | | | | Ouncenti | ation ites | Juita | | | | |----|--------|--------|-----------|-------|----------|------------|--------|-------|---------------|----------| | IS | Analyt | e Mass | Intensity | RSD | Conc. | SD | RSD | Units | Blank Intens. | Mode | | Γ> | Li | 6 | 31307.4 | 4.4 | | | | ug/L | 26270 | Standard | | | Ве | 9 | 20.0 | 109.0 | -0.0014 | 0.038 | 2671.9 | ug/L | 2 | Standard | | L | ΑI | 27 | 208934.4 | 26.0 | 3.1343 | 0.972 | 31.0 | ug/L | 403 | Standard | | Γ | Sc | 45 | 14558.7 | 6.6 | | | | ug/L | 14524 | Standard | | | Ti | 47 | 54.0 | 18.8 | -1.7753 | 0.074 | 4.2 | ug/L | 365 | Standard | | | ٧ | 51 | 1097.9 | 5.3 | 0.0571 | 0.008 | 14.2 | ug/L | 805 | Standard | | | Cr | 52 | 6599.4 | 2.6 | 0.2341 | 0.075 | 32.1 | ug/L | 5481 | Standard | | | Cr | 53 | 448.3 | 16.1 | 0.3104 | 0.153 | 49.3 | ug/L | 268 | Standard | | | Mn | 55 | 32123.4 | 2.9 | 9.3204 | 0.588 | 6.3 | ug/L | 670 | Standard | | | Co | 59 | 594.3 | 3.0 | 0.1418 | 0.012 | 8.1 | ug/L | 146 | Standard | | | Ni | 60 | 1320.4 | 3.2 | 0.9401 | 0.070 | 7.4 | ug/L | 220 | Standard | | | Cu | 65 | 178.3 | 23.6 | -0.0169 | 0.044 | 258.1 | ug/L | 147 | Standard | | | Zn | 66 | 988.4 | 1.3 | 0.8837 | 0.066 | 7.5 | ug/L | 211 | Standard | | > | Ge | 72 | 212559.6 | 3.1 | | | | ug/L | 210599 | Standard | | | As | 75 | 61.7 | 21.2 | 0.1655 | 0.021 | 12.7 | ug/L | -47 | Standard | | | Se | 82 | 11.7 | 35.1 | 0.0208 | 0.071 | 339.5 | ug/L | 15 | Standard | | L | Se-1 | 77 | 58.7 | 9.4 | 0.2767 | 0.135 | 48.9 | ug/L | 65 | Standard | | Γ> | Ga | 71 | 5.0 | 100.0 | | | | mg/L | 27 | Standard | | L | Rb | 85 | 190.0 | 7.0 | | | | ug/L | 17 | Standard | | Γ | Υ | 89 | 222353.9 | 2.9 | | | | ug/L | 216672 | Standard | | L> | Rh | 103 | 11.7 | 24.7 | | | | ug/L | 18 | Standard | | Γ | Мо | 98 | 11.8 | 43.9 | 0.0056 | 0.003 | 60.4 | ug/L | 11 | Standard | | | Ag | 107 | 60.0 | 18.9 | 0.0009 | 0.003 | 311.9 | ug/L | 55 | Standard | | | Cd | 111 | 11.0 | 79.5 | 0.0013 | 0.006 | 495.6 | mg/L | 7 | Standard | | | Cd | 114 | 33.7 | 143.1 | 0.0151 | 0.014 | 93.5 | ug/L | 4 | Standard | | > | In | 115 | 339337.5 | 4.7 | | | | ug/L | 322525 | Standard | | | Sn | 118 | 421.7 | 4.5 | -0.0516 | 0.001 | 1.8 | ug/L | 345 | Standard | | | Sb | 123 | 203.3 | 22.3 | 0.0403 | 0.010 | 25.3 | ug/L | 88 | Standard | | Ē | Ва | 135 | 889.7 | 1.7 | 0.5058 | 0.033 | 6.6 | ug/L | 12 | Standard | | ļ | Ce | 140 | 23.3 | 49.5 | | | | ug/L | 37 | Standard | | Ĺ> | Tb | 159 | 624934.5 | 3.3 | | | | ug/L | 631826 | Standard | | ļ | Но | 165 | 10.0 | | | | | ug/L | 3 | Standard | | ļ | TI | 203 | 30.3 | 93.5 | 0.0019 | 0.004 | 230.9 | ug/L | 7 | Standard | | ļ | TI | 205 | 108.3 | 149.5 | 0.0273 | 0.037 | 137.0 | ug/L | 7 | Standard | | ļ | Pb | 206 | 177.3 | 12.2 | -0.0165 | 0.007 | 40.9 | ug/L | 159 | Standard | | ļ | Pb | 207 | 151.7 | 5.6 | -0.0165 | 0.003 | 19.1 | ug/L | 120 | Standard | | ļ | Pb | 208 | 772.3 | 43.1 | -0.0015 | 0.025 | 1641.8 | ug/L | 503 | Standard | | ļ | U | 238 | 108.3 | 159.7 | 0.0159 | 0.033 | 206.4 | ug/L | 5 | Standard | | L> | Bi | 209 | 346144.8 | 3.3 | | | | ug/L | 333509 | Standard | Sample ID: L1510122402SDL WG544595-02 Report Date/Time: Tuesday, October 27, 2015 19:18:07 Page 1 Approved: October 28, 2015 | Γ | Na | 23 | 0.0 | | | | | mg/L | 0 | Standard | |---|------|-----|---------|------|---------|-------|-------|------|-------|----------| | i | Mg | 24 | 40.0 | 65.0 | 0.0578 | 0.070 | 121.7 | mg/L | 10 | Standard | | i | K | 39 | 35.0 | 49.5 | 0.2241 | 0.211 | 94.1 | mg/L | 32 | Standard | | i | Ca | 43 | 41.7 | 36.7 | -7.6728 | 2.888 | 37.6 | mg/L | 85 | Standard | | i | Fe | 54 | 122.5 | 32.7 | 0.1660 | 0.094 | 56.4 | mg/L | 82 | Standard | | i | Fe | 57 | 355.0 | 5.1 | 1.4951 | 0.401 | 26.8 | mg/L | 217 | Standard | | > | Sc-1 | 45 | 14558.7 | 6.6 | | | | mg/L | 14524 | Standard | | | CI | 35 | 86762.4 | 0.5 | | | | ug/L | 53193 | Standard | | | Kr | 83 | 4.7 | 32.7 | | | | ug/L | 3 | Standard | | | Br | 81 | 493.3 | 3.1 | | | | ug/L | 327 | Standard | | | Р | 31 | 16071.9 | 0.0 | | | | ug/L | 13329 | Standard | | | S | 34 | 3903.8 | 1.2 | | | | ug/L | 3234 | Standard | | | Sr | 88 | 113.3 | 14.2 | | | | ug/L | 87 | Standard | | | С | 12 | 173.3 | 8.8 | | | | mg/L | 103 | Standard | | | N | 14 | 0.0 | | | | | mg/L | 0 | Standard | | | Hg | 202 | 0.0 | | | | | mg/L | 3 | Standard | | | Dy | 164 | 13.3 | 43.3 | | | | mg/L | 10 | Standard | | | Ho-1 | 165 | 10.0 | | | | | mg/L | 3 | Standard | | | Er | 166 | 0.0 | | | | | mg/L | 7 | Standard | | | 1 | 127 | 3227.0 | 0.9 | | | | mg/L | 3612 | Standard | | | | | | | | | | - | | | | Analyte | | QC Std % Recovery | Int Std % Recovery | Spike % Recovery | |-------------|----|-------------------|--------------------|------------------| | 「> Li | 6 | | 119.177 | | | Be | 9 | | | | | L AI | 27 | | | | | 「 Sc | 45 | | | | | Ti | 47 | | | | | V | 51 | | | | | Cr | 52 | | | | | Cr | 53 | | | | | Mn | 55 | | | | | Co | 59 | | | | | Ni | 60 | | | | | Cu | 65 | | | | | Zn | 66 | | | | | > Ge | 72 | | 100.931 | | | As | 75 | | | | | Se | 82 | | | | | Se-1 | 77 | | | | | 「̄> Ga | 71 | | | | **Sample ID: L1510122402SDL WG544595-02**Report Date/Time: Tuesday, October 27, 2015 19:18:07 Page 2 Approved: October 28, 2015 | L Rb | 85 | | | | |----------------|--------------|---------|------|-----------------------| | ΓΥ | 89 | | | | | $\lfloor_>$ Rh | 103 | | | | | Г Мо | 98 | | | | | Ag | 107 | | | | | Cd | 111 |
| | | | Cd | 114 | | | | | > In | 115 | | | 105.213 | | Sn | 118 | | | | | Sb | 123 | | | | | L Ba | 135 | | | | | 「 Ce | 140 | | | | | L> Tb | 159 | | | | | 「 Ho | 165 | | | | | TI | 203 | | | | | TI | 205 | | | | | Pb | 206 | | | | | Pb | 207 | | | | | Pb | 208 | | | | | Ü | 238 | | | | | Ĺ> Bi | 209 | | | 103.789 | | - Na | 23 | | | | | Mg | 24 | | | | | K | 39 | | | | | Ca | 43 | | | | | Fe | 54 | | | | | Fe | 57 | | | | | _> Sc-1 | 45 | | | | | CI | 35 | | | | | Kr | 83 | | | | | Br | 81 | | | | | Р | 31 | | | | | S | 34 | | | | | Sr | 88 | | | | | С | 12 | | | | | Ν | 14 | | | | | Hg | 202 | | | | | Dy | 164 | | | | | Ho-1 | 165 | | | | | Er | 166 | | | | | 1 | 127 | | | | | QC O | ıt of Limits | | | | | | ment Type | Analyte | Mass | Out of Limits Message | | Ti 47 Lo | ment Type | Ti | 47 | Out of Limits Message | | 1141 LO | MCI | 11 | 41 | | **Sample ID: L1510122402SDL WG544595-02**Report Date/Time: Tuesday, October 27, 2015 19:18:07 Page 3 Approved: October 28, 2015 Sample ID: QC Std 6 Sample Date/Time: Tuesday, October 27, 2015 19:19:03 Number of Replicates: 3 Autosampler Position: 101 Sample Description: Method File: C:\NexIONData\Method\6020a.mth Aliquot Volume (mL): Diluted to Volume (mL): User Name: BKT Nexion300X Cumulative Autodilution Factor: 1 Nexion-ICP 200.8\6020 | Concentration Results | | | | | | | | | | | |-----------------------|------------------------|-----|-----------|------|----------|-------|-----|-------|---------------|----------| | IS | IS Analyte Mass | | Intensity | RSD | Conc. | SD | RSD | Units | Blank Intens. | Mode | | Γ> | Li | 6 | 31232.2 | 4.9 | | | | ug/L | 26270 | Standard | | İ | Be | 9 | 30625.9 | 0.7 | 49.6916 | 2.172 | 4.4 | ug/L | 2 | Standard | | Ĺ | Al | 27 | 3186544.9 | 1.3 | 47.8673 | 2.567 | 5.4 | ug/L | 403 | Standard | | Γ | Sc | 45 | 14450.2 | 2.5 | | | | ug/L | 14524 | Standard | | | Ti | 47 | 16331.5 | 1.7 | 101.6041 | 0.933 | 0.9 | ug/L | 365 | Standard | | | V | 51 | 181321.2 | 1.7 | 52.5186 | 0.621 | 1.2 | ug/L | 805 | Standard | | | Cr | 52 | 220351.5 | 1.0 | 50.6667 | 0.543 | 1.1 | ug/L | 5481 | Standard | | | Cr | 53 | 27321.3 | 1.7 | 50.8671 | 0.949 | 1.9 | ug/L | 268 | Standard | | | Mn | 55 | 180003.1 | 1.6 | 54.2352 | 0.643 | 1.2 | ug/L | 670 | Standard | | | Co | 59 | 172191.3 | 0.7 | 54.6660 | 0.188 | 0.3 | ug/L | 146 | Standard | | | Ni | 60 | 56735.0 | 0.7 | 50.2468 | 0.644 | 1.3 | ug/L | 220 | Standard | | | Cu | 65 | 55420.8 | 1.2 | 50.2302 | 0.139 | 0.3 | ug/L | 147 | Standard | | | Zn | 66 | 33204.4 | 1.7 | 50.5297 | 0.560 | 1.1 | ug/L | 211 | Standard | | > | Ge | 72 | 210800.4 | 0.9 | | | | ug/L | 210599 | Standard | | | As | 75 | 36452.8 | 2.4 | 52.0284 | 0.852 | 1.6 | ug/L | -47 | Standard | | | Se | 82 | 3186.4 | 2.1 | 53.7049 | 0.658 | 1.2 | ug/L | 15 | Standard | | L | Se-1 | 77 | 2056.1 | 3.0 | 52.2572 | 1.249 | 2.4 | ug/L | 65 | Standard | | Γ> | Ga | 71 | 15.0 | 66.7 | | | | mg/L | 27 | Standard | | L | Rb | 85 | 563.3 | 10.8 | | | | ug/L | 17 | Standard | | Γ | Υ | 89 | 221686.7 | 0.8 | | | | ug/L | 216672 | Standard | | <u>_</u> > | Rh | 103 | 20.0 | 50.0 | | | | ug/L | 18 | Standard | | Γ | Мо | 98 | 155661.2 | 0.2 | 106.4992 | 1.079 | 1.0 | ug/L | 11 | Standard | | | Ag | 107 | 237106.6 | 0.6 | 48.4201 | 0.539 | 1.1 | ug/L | 55 | Standard | | | Cd | 111 | 74839.8 | 0.5 | 50.9787 | 0.297 | 0.6 | mg/L | 7 | Standard | | ! | Cd | 114 | 178566.3 | 1.5 | 49.7485 | 0.935 | 1.9 | ug/L | 4 | Standard | | > | ln | 115 | 337882.2 | 0.8 | | | | ug/L | 322525 | Standard | | | Sn | 118 | 205154.9 | 1.9 | 49.2626 | 1.275 | 2.6 | ug/L | 345 | Standard | | ļ | Sb | 123 | 191596.7 | 0.6 | 48.4541 | 0.683 | 1.4 | ug/L | 88 | Standard | | Ĺ | Ва | 135 | 80370.3 | 1.8 | 47.9444 | 1.137 | 2.4 | ug/L | 12 | Standard | | Γ | Ce | 140 | 295.0 | 18.6 | | | | ug/L | 37 | Standard | | [> | Tb | 159 | 638331.8 | 1.2 | | | | ug/L | 631826 | Standard | | | Ho | 165 | 6.7 | 86.6 | | 0.404 | 0.0 | ug/L | 3 | Standard | | | TI
T' | 203 | 336650.4 | 0.7 | 50.3222 | 0.404 | 0.8 | ug/L | 7
7 | Standard | | | TI | 205 | 233997.3 | 2.8 | 51.9426 | 1.846 | 3.6 | ug/L | | Standard | | | Pb | 206 | 220590.9 | 0.7 | 53.8463 | 0.710 | 1.3 | ug/L | 159 | Standard | | 1 | Pb | 207 | 198109.4 | 0.4 | 53.3279 | 0.308 | 0.6 | ug/L | 120 | Standard | Sample ID: QC Std 6 208 238 209 Report Date/Time: Tuesday, October 27, 2015 19:21:19 771359.4 274415.5 345585.6 0.5 0.7 0.9 Page 1 Pb U ∟> Bi Approved: October 28, 2015 Standard Standard Standard 503 333509 5 Page 647 0.587 0.721 1.1 ug/L 1.4 ug/L ug/L 51.9625 50.0269 | Γ | Na | 23 | 1.7 | 173.2 | | | | mg/L | 0 | Standard | |----|------|-----|---------|-------|---------|-------|------|------|-------|----------| | | Mg | 24 | 2350.2 | 3.1 | 5.5992 | 0.181 | 3.2 | mg/L | 10 | Standard | | | K | 39 | 423.3 | 12.5 | 5.1085 | 0.803 | 15.7 | mg/L | 32 | Standard | | | Ca | 43 | 63.3 | 22.8 | -4.2451 | 2.160 | 50.9 | mg/L | 85 | Standard | | | Fe | 54 | 2156.6 | 0.4 | 5.1818 | 0.139 | 2.7 | mg/L | 82 | Standard | | | Fe | 57 | 863.4 | 3.7 | 6.3423 | 0.224 | 3.5 | mg/L | 217 | Standard | | L> | Sc-1 | 45 | 14450.2 | 2.5 | | | | mg/L | 14524 | Standard | | | CI | 35 | 80254.7 | 1.6 | | | | ug/L | 53193 | Standard | | | Kr | 83 | 4.0 | 43.3 | | | | ug/L | 3 | Standard | | | Br | 81 | 336.7 | 16.9 | | | | ug/L | 327 | Standard | | | Р | 31 | 16901.1 | 1.9 | | | | ug/L | 13329 | Standard | | | S | 34 | 4187.2 | 2.5 | | | | ug/L | 3234 | Standard | | | Sr | 88 | 111.7 | 18.1 | | | | ug/L | 87 | Standard | | | С | 12 | 176.7 | 28.5 | | | | mg/L | 103 | Standard | | | N | 14 | 0.0 | | | | | mg/L | 0 | Standard | | | Hg | 202 | 3.3 | 173.2 | | | | mg/L | 3 | Standard | | | Dy | 164 | -0.5 | 100.0 | | | | mg/L | 10 | Standard | | | Ho-1 | 165 | 6.7 | 86.6 | | | | mg/L | 3 | Standard | | | Er | 166 | 10.0 | 100.0 | | | | mg/L | 7 | Standard | | | I | 127 | 2140.2 | 5.3 | | | | mg/L | 3612 | Standard | | Analyte | Mass | QC Std % Recovery | Int Std % Recovery | Spike % Recovery | |---------|------|-------------------|--------------------|------------------| | 「> Li | 6 | • | | | | Be | 9 | 99.383 | | | | L AI | 27 | 95.735 | | | | 「 Sc | 45 | | | | | Ti | 47 | 101.604 | | | | V | 51 | 105.037 | | | | Cr | 52 | 101.333 | | | | Cr | 53 | | | | | Mn | 55 | 108.470 | | | | Co | 59 | 109.332 | | | | Ni | 60 | 100.494 | | | | Cu | 65 | 100.460 | | | | Zn | 66 | 101.059 | | | | > Ge | 72 | | 100.096 | | | As | 75 | 104.057 | | | | Se | 82 | 107.410 | | | | L Se-1 | 77 | | | | | 「⊳ Ga | 71 | | | | Sample ID: QC Std 6 Report Date/Time: Tuesday, October 27, 2015 19:21:19 Page 2 Approved: October 28, 2015 | ∟ Rb 8 | 35 | | | |-------------|------------|----------|-----------------------| | Γ Y 8 | 39 | | | | _> Rh 10 |)3 | | | | 「 Mo 9 | 98 106 | .499 | | | Ag 10 | | 5.840 | | | Cd 11 | 1 101 | .957 | | | Cd 11 | 4 | | | | > In 11 | 5 | | 104.762 | | Sn 11 | 8 98 | 3.525 | | | Sb 12 | 23 96 | 5.908 | | | L Ba 13 | 95 | 5.889 | | | 「 Ce 14 | 0 | | | | > Tb 15 | 59 | | | | _ Ho 16 | 55 | | | | TI 20 | 3 100 | .644 | | | TI 20 |)5 | | | | Pb 20 | 06 | | | | Pb 20 | 7 | | | | Pb 20 | 103 | .925 | | | U 23 | 38 100 | .054 | | | _> Bi 20 | | | 103.621 | | | 23 | | | | | 24 | | | | | 39 | | | | | 13 | | | | | 54 | | | | | 57 | | | | | ! 5 | | | | | 35 | | | | | 33 | | | | | 31 | | | | | 31 | | | | | 34 | | | | | 88 | | | | | 2 | | | | | 4 | | | | Hg 20 | | | | | Dy 16 | | | | | Ho-1 16 | | | | | Er 16 | | | | | 1 12 | | | | | QC Out of | | | | | Measurement | Type Analy | rte Mass | Out of Limits Message | Sample ID: QC Std 6 Report Date/Time: Tuesday, October 27, 2015 19:21:19 Page 3 Approved: October 28, 2015 Sample ID: QC Std 7 Sample Date/Time: Tuesday, October 27, 2015 19:22:14 Number of Replicates: 3 Autosampler Position: 102 Sample Description: Method File: C:\NexIONData\Method\6020a.mth Aliquot Volume (mL): Diluted to Volume (mL): User Name: BKT Nexion300X Cumulative Autodilution Factor: 1 Nexion-ICP 200.8\6020 | Concentration Results | | | | | | | | | | | | | |-----------------------|--------|--------|-----------|-------|---------|-------|-------|-------|---------------|----------|--|--| | IS | Analyt | e Mass | Intensity | RSD | Conc. | SD | RSD | Units | Blank Intens. | Mode | | | | Γ> | Li | 6 | 30458.9 | 2.8 | | | | ug/L | 26270 | Standard | | | | | Be | 9 | 16.7 | 17.3 | -0.0071 | 0.005 | 70.6 | ug/L | 2 | Standard | | | | L | Al | 27 | 9035.9 | 134.6 | 0.1188 | 0.189 | 158.8 | ug/L | 403 | Standard | | | | Γ | Sc | 45 | 15219.3 | 2.2 | | | | ug/L | 14524 | Standard | | | | | Ti | 47 | 62.3 | 7.6 | -1.7271 | 0.027 | 1.5 | ug/L | 365 | Standard | | | | | ٧ | 51 | 864.2 | 6.3 | -0.0120 | 0.014 | 116.5 | ug/L | 805 | Standard | | | | | Cr | 52 | 5519.3 | 1.1 | -0.0285 | 0.024 | 82.6 | ug/L | 5481 | Standard | | | | | Cr | 53 | 368.3 | 10.2 | 0.1540 | 0.071 | 46.1 | ug/L | 268 | Standard | | | | | Mn | 55 | 699.7 | 29.2 | -0.1439 | 0.063 | 43.6 | ug/L | 670 | Standard | | | | | Co | 59 | 236.0 | 9.2 | 0.0281 | 0.007 | 24.9 | ug/L | 146 | Standard | | | | | Ni | 60 | 201.3 | 4.6 | -0.0496 | 0.009 | 19.0 | ug/L | 220 | Standard | | | | | Cu | 65 | 151.7 | 11.6 | -0.0428 | 0.015 | 35.2 | ug/L | 147 | Standard | | | | | Zn | 66 | 146.0 | 9.1 | -0.4062 | 0.021 | 5.1 | ug/L | 211 | Standard | | | | > | Ge | 72 | 213999.7 | 0.8 | | | | ug/L | 210599 | Standard | | | | | As | 75 | -18.1 | 175.7 | 0.0525 | 0.045 | 85.0 | ug/L | -47 | Standard | | | | | Se | 82 | 19.3 | 46.0 | 0.1446 | 0.146 | 100.9 | ug/L | 15 | Standard | | | | L | Se-1 | 77 | 50.3 | 8.0 | 0.0523 | 0.094 | 180.0 | ug/L | 65 | Standard | | | | Γ> | Ga | 71 | 15.0 | 33.3 | | | | mg/L | 27 | Standard | | | | L | Rb | 85 | 16.7 | 86.6 | | | | ug/L | 17 | Standard | | | | Γ | Υ | 89 | 225435.0 | 1.7 | | | | ug/L | 216672 | Standard | | | | L> | Rh | 103 | 15.0 | 33.3 | | | | ug/L | 18 | Standard | | | | Γ | Мо | 98 | 137.7 | 29.1 | 0.0918 | 0.027 | 29.3 | ug/L | 11 | Standard | | | | | Ag | 107 | 76.0 | 15.8 | 0.0042 | 0.002 | 58.0 | ug/L | 55 | Standard | | | | | Cd |
111 | 13.4 | 57.7 | 0.0028 | 0.005 | 190.2 | mg/L | 7 | Standard | | | | | Cd | 114 | 21.0 | 66.1 | 0.0112 | 0.004 | 34.1 | ug/L | 4 | Standard | | | | > | In | 115 | 337657.2 | 0.6 | | | | ug/L | 322525 | Standard | | | | | Sn | 118 | 523.3 | 8.7 | -0.0266 | 0.011 | 41.8 | ug/L | 345 | Standard | | | | | Sb | 123 | 188.8 | 18.4 | 0.0371 | 0.009 | 24.3 | ug/L | 88 | Standard | | | | L | Ва | 135 | 20.3 | 41.8 | -0.0118 | 0.005 | 43.0 | ug/L | 12 | Standard | | | | Γ | Ce | 140 | 13.3 | 43.3 | | | | ug/L | 37 | Standard | | | | L> | Tb | 159 | 636527.1 | 0.2 | | | | ug/L | 631826 | Standard | | | | Γ | Но | 165 | 5.0 | 100.0 | | | | ug/L | 3 | Standard | | | | | TI | 203 | 36.0 | 48.8 | 0.0026 | 0.003 | 97.9 | ug/L | 7 | Standard | | | | | TI | 205 | 51.7 | 92.0 | 0.0136 | 0.010 | 74.8 | ug/L | 7 | Standard | | | | | Pb | 206 | 176.3 | 7.3 | -0.0176 | 0.003 | 18.3 | ug/L | 159 | Standard | | | | | Pb | 207 | 138.7 | 22.1 | -0.0206 | 0.008 | 39.3 | ug/L | 120 | Standard | | | | | Pb | 208 | 700.0 | 24.7 | -0.0077 | 0.011 | 139.5 | ug/L | 503 | Standard | | | | | U | 238 | 80.3 | 84.5 | 0.0097 | 0.012 | 122.7 | ug/L | 5 | Standard | | | Sample ID: QC Std 7 209 Report Date/Time: Tuesday, October 27, 2015 19:24:31 351438.0 1.6 Page 1 ∟> Bi Approved: October 28, 2015 Standard ug/L 333509 | г. | | 00 | 0.0 | | | | | // | 0 | Otan dand | |-------|------|-----|---------|-------|---------|-------|-------|------|-------|-----------| | : | Na | 23 | 0.0 | | | | | mg/L | 0 | Standard | | | Mg | 24 | 25.0 | 72.1 | 0.0161 | 0.040 | 249.4 | mg/L | 10 | Standard | | | K | 39 | 23.3 | 86.6 | 0.0633 | 0.233 | 368.2 | mg/L | 32 | Standard | | (| Ca | 43 | 35.0 | 42.9 | -9.0928 | 2.376 | 26.1 | mg/L | 85 | Standard | | | Fe | 54 | 65.7 | 8.5 | 0.0203 | 0.013 | 63.7 | mg/L | 82 | Standard | | 1 | Fe | 57 | 326.7 | 6.4 | 1.0744 | 0.135 | 12.6 | mg/L | 217 | Standard | | L> \$ | Sc-1 | 45 | 15219.3 | 2.2 | | | | mg/L | 14524 | Standard | | (| CI | 35 | 79502.7 | 0.4 | | | | ug/L | 53193 | Standard | | - 1 | Kr | 83 | 5.3 | 10.8 | | | | ug/L | 3 | Standard | | - 1 | Br | 81 | 350.0 | 7.6 | | | | ug/L | 327 | Standard | | ı | Р | 31 | 16565.7 | 2.2 | | | | ug/L | 13329 | Standard | | ; | s | 34 | 4202.3 | 5.1 | | | | ug/L | 3234 | Standard | | ; | Sr | 88 | 115.0 | 8.7 | | | | ug/L | 87 | Standard | | (| С | 12 | 126.7 | 18.2 | | | | mg/L | 103 | Standard | | ı | N | 14 | 3.3 | 173.2 | | | | mg/L | 0 | Standard | | ı | Hg | 202 | 0.0 | | | | | mg/L | 3 | Standard | | ı | Dy | 164 | 3.2 | 186.4 | | | | mg/L | 10 | Standard | | 1 | Ho-1 | 165 | 5.0 | 100.0 | | | | mg/L | 3 | Standard | | ı | Er | 166 | 3.3 | 173.2 | | | | mg/L | 7 | Standard | | ı | I | 127 | 1993.5 | 4.4 | | | | mg/L | 3612 | Standard | | Analyte | Mass | QC Std % Recovery | Int Std % Recovery | Spike % Recovery | |---------|------|-------------------|--------------------|------------------| | 「> Li | 6 | • | | | | Be | 9 | | | | | L AI | 27 | | | | | 「 Sc | 45 | | | | | Ti | 47 | | | | | V | 51 | | | | | Cr | 52 | | | | | Cr | 53 | | | | | Mn | 55 | | | | | Co | 59 | | | | | Ni | 60 | | | | | Cu | 65 | | | | | Zn | 66 | | | | | > Ge | 72 | | 101.615 | | | As | 75 | | | | | Se | 82 | | | | | L Se-1 | 77 | | | | | 「⊳ Ga | 71 | | | | Sample ID: QC Std 7 Report Date/Time: Tuesday, October 27, 2015 19:24:31 Page 2 Approved: October 28, 2015 | L Rb | 85 | | | | |--------------------------|--------------|---------|------|-----------------------| | Y | 89 | | | | |
 _{>} Rh | 103 | | | | | [Mo | 98 | | | | | Ag | 107 | | | | | Cd | 111 | | | | | Cd | 114 | | | | | _{>} In | 115 | | | 104.692 | | Sn | 118 | | | | | Sb | 123 | | | | | L Ba | 135 | | | | | ¯ Ce | 140 | | | | | _
_> Tb | 159 | | | | | ⊢ Ho | 165 | | | | | TI | 203 | | | | | į ΤΙ | 205 | | | | | Pb | 206 | | | | | Pb | 207 | | | | | Pb | 208 | | | | | U | 238 | | | | | L> Bi | 209 | | | 105.376 | | Г Na | 23 | | | | | Mg | 24 | | | | | K | 39 | | | | | Ca | 43 | | | | | Fe | 54 | | | | | Fe | 57 | | | | | _> Sc-1 | 45 | | | | | CI | 35 | | | | | Kr | 83 | | | | | Br | 81 | | | | | P | 31 | | | | | S | 34 | | | | | Sr | 88 | | | | | С | 12 | | | | | N | 14 | | | | | Hg | 202 | | | | | Dy | 164 | | | | | Ho-1 | 165 | | | | | Er | 166 | | | | | 00.0 | 127 | | | | | | ıt of Limits | | | | | Measurement Type | | Analyte | Mass | Out of Limits Message | | QC Std 7 | | Ti | 47 | | Sample ID: QC Std 7 Report Date/Time: Tuesday, October 27, 2015 19:24:31 Page 3 Approved: October 28, 2015 Sample ID: L1510122404 Sample Date/Time: Tuesday, October 27, 2015 19:25:27 Number of Replicates: 3 Autosampler Position: 215 Sample Description: 1 Method File: C:\NexIONData\Method\6020a.mth Aliquot Volume (mL): Diluted to Volume (mL): User Name: BKT Nexion300X Cumulative Autodilution Factor: 1 Nexion-ICP 200.8\6020 | Concentration | Results | |---------------|---------| |---------------|---------| | | | Concentration Results | | | | | | | | | | | | | |----|--------|-----------------------|-------------|------|-----------|---------|-------|-------|---------------|----------|--|--|--|--| | IS | Analyt | e Mass | Intensity | RSD | Conc. | SD | RSD | Units | Blank Intens. | Mode | | | | | | Γ> | Li | 6 | 39509.9 | 6.6 | | | | ug/L | 26270 | Standard | | | | | | | Be | 9 | 88.3 | 40.9 | 0.0806 | 0.055 | 68.7 | ug/L | 2 | Standard | | | | | | L | ΑI | 27 | 101597859.7 | 1.9 | 1207.5941 | 63.313 | 5.2 | ug/L | 403 | Standard | | | | | | Γ | Sc | 45 | 14206.7 | 2.9 | | | | ug/L | 14524 | Standard | | | | | | | Ti | 47 | 118.7 | 5.6 | -1.3826 | 0.046 | 3.3 | ug/L | 365 | Standard | | | | | | | ٧ | 51 | 1163.7 | 0.9 | 0.0703 | 0.009 | 13.4 | ug/L | 805 | Standard | | | | | | | Cr | 52 | 5898.8 | 2.2 | 0.0450 | 0.060 | 133.4 | ug/L | 5481 | Standard | | | | | | | Cr | 53 | 503.3 | 13.2 | 0.3957 | 0.144 | 36.4 | ug/L | 268 | Standard | | | | | | | Mn | 55 | 27172725.7 | 0.4 | 8028.6010 | 196.448 | 2.4 | ug/L | 670 | Standard | | | | | | | Co | 59 | 543679.8 | 8.0 | 168.2517 | 3.442 | 2.0 | ug/L | 146 | Standard | | | | | | | Ni | 60 | 272096.6 | 1.0 | 235.6165 | 6.715 | 2.8 | ug/L | 220 | Standard | | | | | | | Cu | 65 | 3639.4 | 1.3 | 3.0463 | 0.058 | 1.9 | ug/L | 147 | Standard | | | | | | | Zn | 66 | 101340.8 | 1.5 | 151.5345 | 5.826 | 3.8 | ug/L | 211 | Standard | | | | | | > | Ge | 72 | 216441.3 | 2.4 | | | | ug/L | 210599 | Standard | | | | | | | As | 75 | 1283.0 | 0.2 | 1.8597 | 0.048 | 2.6 | ug/L | -47 | Standard | | | | | | | Se | 82 | 40.0 | 17.0 | 0.4813 | 0.099 | 20.6 | ug/L | 15 | Standard | | | | | | L | Se-1 | 77 | 69.3 | 10.8 | 0.5235 | 0.234 | 44.7 | ug/L | 65 | Standard | | | | | | Γ> | Ga | 71 | 271.7 | 17.4 | | | | mg/L | 27 | Standard | | | | | | L | Rb | 85 | 15082.5 | 0.9 | | | | ug/L | 17 | Standard | | | | | | Γ | Υ | 89 | 237456.7 | 1.9 | | | | ug/L | 216672 | Standard | | | | | | L> | Rh | 103 | 55.0 | 15.7 | | | | ug/L | 18 | Standard | | | | | | Γ | Mo | 98 | 127.2 | 12.8 | 0.0825 | 0.009 | 11.3 | ug/L | 11 | Standard | | | | | | | Ag | 107 | 81.7 | 12.9 | 0.0049 | 0.002 | 36.8 | ug/L | 55 | Standard | | | | | | | Cd | 111 | 156.4 | 19.0 | 0.0975 | 0.018 | 18.4 | mg/L | 7 | Standard | | | | | | | Cd | 114 | 368.7 | 4.3 | 0.1057 | 0.006 | 5.3 | ug/L | 4 | Standard | | | | | | > | In | 115 | 346021.1 | 2.0 | | | | ug/L | 322525 | Standard | | | | | | | Sn | 118 | 545.0 | 10.6 | -0.0246 | 0.012 | 47.2 | ug/L | 345 | Standard | | | | | | | Sb | 123 | 144.4 | 24.9 | 0.0248 | 0.008 | 33.3 | ug/L | 88 | Standard | | | | | | L | Ва | 135 | 8854.9 | 0.5 | 5.1373 | 0.082 | 1.6 | ug/L | 12 | Standard | | | | | | Γ | Ce | 140 | 1778.4 | 7.4 | | | | ug/L | 37 | Standard | | | | | | _> | Tb | 159 | 653439.9 | 1.4 | | | | ug/L | 631826 | Standard | | | | | | Γ | Но | 165 | 53.3 | 23.6 | | | | ug/L | 3 | Standard | | | | | | | TI | 203 | 305.3 | 9.3 | 0.0416 | 0.003 | 8.3 | ug/L | 7 | Standard | | | | | | | TI | 205 | 173.3 | 24.0 | 0.0398 | 0.009 | 21.4 | ug/L | 7 | Standard | | | | | | | Pb | 206 | 513.7 | 7.4 | 0.0619 | 0.007 | 10.9 | ug/L | 159 | Standard | | | | | | ļ | Pb | 207 | 429.0 | 5.6 | 0.0549 | 0.004 | 7.6 | ug/L | 120 | Standard | | | | | | ļ | Pb | 208 | 1723.4 | 5.0 | 0.0589 | 0.004 | 7.2 | ug/L | 503 | Standard | | | | | | ļ | U | 238 | 132.7 | 20.7 | 0.0189 | 0.005 | 24.0 | ug/L | 5 | Standard | | | | | | L> | Bi | 209 | 355577.7 | 2.0 | | | | ug/L | 333509 | Standard | Sample ID: L1510122404 Report Date/Time: Tuesday, October 27, 2015 19:27:44 Page 1 Approved: October 28, 2015 Page 653 L15101055 / Revision: 0 / 760 total pages | Γ | Na | 23 | 11.7 | 49.5 | | | | mg/L | 0 | Standard | |----|------|-----|----------|-------|----------|-------|------|------|-------|----------| | | Mg | 24 | 928.4 | 5.8 | 2.2273 | 0.169 | 7.6 | mg/L | 10 | Standard | | | K | 39 | 103.3 | 43.4 | 1.1070 | 0.570 | 51.5 | mg/L | 32 | Standard | | | Ca | 43 | 951.7 | 6.3 | 142.9120 | 9.988 | 7.0 | mg/L | 85 | Standard | | | Fe | 54 | 22928.3 | 2.1 | 57.3502 | 1.909 | 3.3 | mg/L | 82 | Standard | | | Fe | 57 | 6368.0 | 3.4 | 59.7804 | 0.393 | 0.7 | mg/L | 217 | Standard | | L> | Sc-1 | 45 | 14206.7 | 2.9 | | | | mg/L | 14524 | Standard | | | CI | 35 | 601337.8 | 3.7 | | | | ug/L | 53193 | Standard | | | Kr | 83 | 3.7 | 15.7 | | | | ug/L | 3 | Standard | | | Br | 81 | 430.0 | 18.6 | | | | ug/L | 327 | Standard | | | Р | 31 | 19928.1 | 0.4 | | | | ug/L | 13329 | Standard | | | S | 34 | 4694.1 | 2.2 | | | | ug/L | 3234 | Standard | | | Sr | 88 | 195.0 | 11.2 | | | | ug/L | 87 | Standard | | | С | 12 | 393.3 | 5.3 | | | | mg/L | 103 | Standard | | | N | 14 | 0.0 | | | | | mg/L | 0 | Standard | | | Hg | 202 | 10.0 | 100.0 | | | | mg/L | 3 | Standard | | | Dy | 164 | 68.1 | 14.3 | | | | mg/L | 10 | Standard | | | Ho-1 | 165 | 53.3 | 23.6 | | | | mg/L | 3 | Standard | | | Er | 166 | 40.0 | 25.0 | | | | mg/L | 7 | Standard | | | I | 127 | 3665.4 | 1.8 | | | | mg/L | 3612 | Standard | | Analyte | Mass | QC Std % Recovery | Int Std % Recovery | Spike % Recovery | |---------|------
-------------------|--------------------|------------------| | 「⊳ Li | 6 | | 150.401 | | | Be | 9 | | | | | L AI | 27 | | | | | 「 Sc | 45 | | | | | Ti | 47 | | | | | V | 51 | | | | | Cr | 52 | | | | | Cr | 53 | | | | | Mn | 55 | | | | | Co | 59 | | | | | Ni | 60 | | | | | Cu | 65 | | | | | Zn | 66 | | | | | > Ge | 72 | | 102.774 | | | As | 75 | | | | | Se | 82 | | | | | L Se-1 | 77 | | | | | 「⊳ Ga | 71 | | | | Sample ID: L1510122404 Report Date/Time: Tuesday, October 27, 2015 19:27:44 Page 2 Approved: October 28, 2015 | L Rb | 85 | | | | |---------|----------------|--------------|-----------------------|--| | Γ̈Y | 89 | | | | | > Rh | 103 | | | | | Mo | 98 | | | | | Ag | 107 | | | | | Cd | 111 | | | | | Cd | 114 | | | | | | 115 | | 107.285 | | | Sn | 118 | | 107.200 | | | Sb | 123 | | | | | | | | | | | L Ba | 135 | | | | | Г Се | 140 | | | | | [> Tb | 159 | | | | | Γ Ho | 165 | | | | | TI | 203 | | | | | TI | 205 | | | | | Pb | 206 | | | | | Pb | 207 | | | | | Pb | 208 | | | | | U | 238 | | | | | L> Bi | 209 | | 106.617 | | | Г Nа | 23 | | | | | Mg | 24 | | | | | K | 39 | | | | | Ca | 43 | | | | | Fe | 54 | | | | | Fe | 57 | | | | | > Sc-1 | 45 | | | | | Cl | 35 | | | | | Kr | 83 | | | | | Br | 81 | | | | | P | 31 | | | | | S | 34 | | | | | Sr | 88 | | | | | C | 12 | | | | | N | 14 | | | | | | | | | | | Hg | 202 | | | | | Dy | 164 | | | | | Ho-1 | 165 | | | | | Er | 166 | | | | | ı | 127 | | | | | QC C | Out of Limits | | | | | Measu | rement Type | Analyte Mass | Out of Limits Message | | | | Std for sample | Li 6 | Rerun sample | | | | Jpper, S, EEE | Al 27 | | | | Ti 47 L | ower | Ti 47 | | | | 1171 L | .01101 | 11 7/ | | | Sample ID: L1510122404 Report Date/Time: Tuesday, October 27, 2015 19:27:44 Page 3 Approved: October 28, 2015 | Mn 55 Upper, S, EEE | Mn | 55 | |---------------------|----|----| | Co 59 Upper, S, EEE | Co | 59 | | Ni 60 Upper, S, EEE | Ni | 60 | | Zn 66 Upper, S, EEE | Zn | 66 | Sample ID: L1510122404 Report Date/Time: Tuesday, October 27, 2015 19:27:44 Page 4 Approved: October 28, 2015 Sample ID: L1510122406 Sample Date/Time: Tuesday, October 27, 2015 19:28:38 Number of Replicates: 3 Autosampler Position: 216 Sample Description: 1 Method File: C:\NexIONData\Method\6020a.mth Aliquot Volume (mL): Diluted to Volume (mL): User Name: BKT Nexion300X Cumulative Autodilution Factor: 1 Nexion-ICP 200.8\6020 | \sim | ncon | tration | Results | | |--------|------|---------|---------|--| | υu | ncen | urauon | Results | | | Concentration Results | | | | | | | | | | | |-----------------------|--------|--------|------------|------|-----------|--------|-------|-------|---------------|----------| | IS | Analyt | e Mass | Intensity | RSD | Conc. | SD | RSD | Units | Blank Intens. | Mode | | Γ> | Li | 6 | 36988.5 | 3.7 | | | | ug/L | 26270 | Standard | | | Be | 9 | 33.3 | 31.2 | 0.0112 | 0.016 | 144.7 | ug/L | 2 | Standard | | L | ΑI | 27 | 46958480.3 | 0.6 | 595.4114 | 23.886 | 4.0 | ug/L | 403 | Standard | | Γ | Sc | 45 | 13684.5 | 5.9 | | | | ug/L | 14524 | Standard | | | Ti | 47 | 79.7 | 11.3 | -1.6146 | 0.060 | 3.7 | ug/L | 365 | Standard | | | ٧ | 51 | 1134.4 | 2.0 | 0.0682 | 0.017 | 24.3 | ug/L | 805 | Standard | | | Cr | 52 | 7089.0 | 1.5 | 0.3496 | 0.089 | 25.5 | ug/L | 5481 | Standard | | | Cr | 53 | 493.3 | 10.3 | 0.3903 | 0.061 | 15.6 | ug/L | 268 | Standard | | | Mn | 55 | 4881011.7 | 1.4 | 1468.9183 | 48.767 | 3.3 | ug/L | 670 | Standard | | | Co | 59 | 10262.5 | 2.2 | 3.1917 | 0.153 | 4.8 | ug/L | 146 | Standard | | | Ni | 60 | 12305.7 | 2.2 | 10.6477 | 0.666 | 6.3 | ug/L | 220 | Standard | | | Cu | 65 | 2385.5 | 1.6 | 1.9747 | 0.054 | 2.7 | ug/L | 147 | Standard | | | Zn | 66 | 6303.0 | 1.1 | 9.0156 | 0.473 | 5.2 | ug/L | 211 | Standard | | > | Ge | 72 | 212542.4 | 3.8 | | | | ug/L | 210599 | Standard | | | As | 75 | 112.1 | 16.8 | 0.2360 | 0.022 | 9.2 | ug/L | -47 | Standard | | | Se | 82 | 44.6 | 13.2 | 0.5705 | 0.081 | 14.3 | ug/L | 15 | Standard | | L | Se-1 | 77 | 59.7 | 7.6 | 0.3063 | 0.168 | 55.0 | ug/L | 65 | Standard | | Γ> | Ga | 71 | 100.0 | 25.0 | | | | mg/L | 27 | Standard | | L | Rb | 85 | 23927.2 | 1.8 | | | | ug/L | 17 | Standard | | Γ | Υ | 89 | 230591.4 | 3.8 | | | | ug/L | 216672 | Standard | | L> | Rh | 103 | 83.3 | 17.3 | | | | ug/L | 18 | Standard | | Γ | Мо | 98 | 206.0 | 11.1 | 0.1361 | 0.015 | 10.7 | ug/L | 11 | Standard | | | Ag | 107 | 75.7 | 14.1 | 0.0039 | 0.002 | 64.3 | ug/L | 55 | Standard | | | Cd | 111 | 25.6 | 17.9 | 0.0108 | 0.003 | 27.2 | mg/L | 7 | Standard | | | Cd | 114 | 39.1 | 48.7 | 0.0160 | 0.005 | 31.3 | ug/L | 4 | Standard | | > | In | 115 | 344097.6 | 2.8 | | | | ug/L | 322525 | Standard | | ļ | Sn | 118 | 466.7 | 3.1 | -0.0423 | 0.006 | 13.2 | ug/L | 345 | Standard | | ļ | Sb | 123 | 204.6 | 10.2 | 0.0402 | 0.006 | 14.7 | ug/L | 88 | Standard | | Ĺ | Ва | 135 | 7898.4 | 1.0 | 4.6074 | 0.163 | 3.5 | ug/L | 12 | Standard | | ļ | Ce | 140 | 190.0 | 10.5 | | | | ug/L | 37 | Standard | | Ę> | Tb | 159 | 640973.0 | 1.0 | | | | ug/L | 631826 | Standard | | ļ | Но | 165 | 13.3 | 21.7 | | | | ug/L | 3 | Standard | | ļ | TI | 203 | 31.0 | 71.3 | 0.0019 | 0.003 | 172.9 | ug/L | 7 | Standard | | ļ | TI | 205 | 18.3 | 63.0 | 0.0065 | 0.003 | 39.8 | ug/L | 7 | Standard | | ! | Pb | 206 | 229.0 | 3.1 | -0.0045 | 0.002 | 43.5 | ug/L | 159 | Standard | | ! | Pb | 207 | 201.7 | 9.2 | -0.0036 | 0.004 | 117.2 | ug/L | 120 | Standard | | | Pb | 208 | 776.7 | 8.1 | -0.0022 | 0.003 | 159.6 | ug/L | 503 | Standard | | | U | 238 | 242.0 | 11.6 | 0.0391 | 0.004 | 10.7 | ug/L | 5 | Standard | | L> | Bi | 209 | 348977.2 | 2.8 | | | | ug/L | 333509 | Standard | Sample ID: L1510122406 Report Date/Time: Tuesday, October 27, 2015 19:30:55 Page 1 Approved: October 28, 2015 Page 657 L15101055 / Revision: 0 / 760 total pages | _ | | | | | | | | | | | |----|------|-----|----------|-------|----------|--------|------|------|-------|----------| | | Na | 23 | 10.0 | 86.6 | | | | mg/L | 0 | Standard | | | Mg | 24 | 1126.7 | 2.2 | 2.8183 | 0.112 | 4.0 | mg/L | 10 | Standard | | | K | 39 | 158.3 | 6.6 | 1.8874 | 0.141 | 7.5 | mg/L | 32 | Standard | | | Ca | 43 | 1006.7 | 13.2 | 158.1718 | 18.295 | 11.6 | mg/L | 85 | Standard | | | Fe | 54 | 540.6 | 11.1 | 1.2742 | 0.146 | 11.4 | mg/L | 82 | Standard | | | Fe | 57 | 828.4 | 3.9 | 6.4689 | 0.575 | 8.9 | mg/L | 217 | Standard | | L> | Sc-1 | 45 | 13684.5 | 5.9 | | | | mg/L | 14524 | Standard | | | CI | 35 | 455512.8 | 8.0 | | | | ug/L | 53193 | Standard | | | Kr | 83 | 2.7 | 94.4 | | | | ug/L | 3 | Standard | | | Br | 81 | 636.7 | 23.6 | | | | ug/L | 327 | Standard | | | Р | 31 | 19167.1 | 3.4 | | | | ug/L | 13329 | Standard | | | S | 34 | 4625.7 | 6.9 | | | | ug/L | 3234 | Standard | | | Sr | 88 | 241.7 | 24.2 | | | | ug/L | 87 | Standard | | | С | 12 | 390.0 | 22.8 | | | | mg/L | 103 | Standard | | | N | 14 | 0.0 | | | | | mg/L | 0 | Standard | | | Hg | 202 | 3.3 | 173.2 | | | | mg/L | 3 | Standard | | | Dy | 164 | 9.5 | 102.6 | | | | mg/L | 10 | Standard | | | Ho-1 | 165 | 13.3 | 21.7 | | | | mg/L | 3 | Standard | | | Er | 166 | 10.0 | 100.0 | | | | mg/L | 7 | Standard | | | I | 127 | 3758.8 | 2.7 | | | | mg/L | 3612 | Standard | | _ | Analyte | | QC Std % Recovery | Int Std % Recovery | Spike % Recovery | |----|---------|----|-------------------|--------------------|------------------| | Γ> | Li | 6 | | 140.803 | | | | Be | 9 | | | | | L | Al | 27 | | | | | Γ | Sc | 45 | | | | | | Ti | 47 | | | | | | V | 51 | | | | | | Cr | 52 | | | | | | Cr | 53 | | | | | | Mn | 55 | | | | | | Co | 59 | | | | | | Ni | 60 | | | | | | Cu | 65 | | | | | | Zn | 66 | | | | | > | Ge | 72 | | 100.923 | | | | As | 75 | | | | | | Se | 82 | | | | | L | Se-1 | 77 | | | | | Γ> | Ga | 71 | | | | Sample ID: L1510122406 Report Date/Time: Tuesday, October 27, 2015 19:30:55 Page 2 Approved: October 28, 2015 | | Rb | 85 | | | | | |-----|------------|------------|---------|------|-----------------------|--| | Γ, | Υ | 89 | | | | | | | Rh | 103 | | | | | | | Мо | 98 | | | | | | - | Ag | 107 | | | | | | | Cď | 111 | | | | | | | Cd | 114 | | | | | | | In | 115 | | | 106.689 | | | | Sn | 118 | | | 100.000 | | | | Sb | 123 | | | | | | | Ва | 135 | | | | | | | Ce | 140 | | | | | | | Tb | 159 | | | | | | | Но | 165 | | | | | | | TI | 203 | | | | | | | TI | 205 | | | | | | | Pb | 206 | | | | | | | Pb | 207 | | | | | | | Pb | 208 | | | | | | | U | 238 | | | | | | i . | Bi | 209 | | | 104.638 | | | | Na | 23 | | | 104.000 | | | | | 23
24 | | | | | | | Mg
⊭ | 39 | | | | | | | K
Co | 43 | | | | | | | Ca
Fe | 54 | | | | | | | re
Fe | | | | | | | | Sc-1 | 57
45 | | | | | | | Cl | 35 | | | | | | | | 83 | | | | | | | Kr
Br | 81 | | | | | | | Р | | | | | | | | | 31 | | | | | | | S
S= | 34 | | | | | | | Sr
C | 88 | | | | | | | C | 12 | | | | | | | N
 | 14 | | | | | | | Hg | 202 | | | | | | | Dy | 164 | | | | | | | Ho-1 | 165 | | | | | | | Er | 166 | | | | | | |
 | 127 | | | | | | (| QC Out | of Limits | | | | | | | Measurem | | Analyte | Mass | Out of Limits Message | | | | | for sample | Li | 6 | Rerun sample | | | A | Al 27 Uppε | er, S, EEE | Al | 27 | | | | | Γi 47 Lowe | | Ti | 47 | | | | | | | | | | | Report Date/Time: Tuesday, October 27, 2015 19:30:55 Page 3 Mn 55 Upper, S, EEE Mn 55 Sample ID: L1510122406 Report Date/Time: Tuesday, October 27, 2015 19:30:55 Page 4 Approved: October 28, 2015 Sample ID: L1510122408 Sample Date/Time: Tuesday, October 27, 2015 19:31:50 Number of Replicates: 3 Autosampler Position: 217 Sample Description: 1 Method File: C:\NexIONData\Method\6020a.mth Aliquot Volume (mL): Diluted to Volume (mL): User Name: BKT Nexion300X Cumulative Autodilution Factor: 1 Nexion-ICP 200.8\6020 | Concentration | Results | |---------------|---------| |---------------|---------| | | Concentration Results | | | | | | | | | | |----|-----------------------|--------|-------------|-------|-----------|--------|--------|-------|---------------|----------| | IS | Analyt | e Mass | Intensity | RSD | Conc. | SD | RSD | Units | Blank Intens.
 Mode | | Γ> | Li | 6 | 36280.1 | 1.9 | | | | ug/L | 26270 | Standard | | | Be | 9 | 38.3 | 19.9 | 0.0185 | 0.010 | 52.3 | ug/L | 2 | Standard | | L | ΑI | 27 | 130214381.3 | 2.4 | 1681.7743 | 30.586 | 1.8 | ug/L | 403 | Standard | | Γ | Sc | 45 | 13724.6 | 3.3 | | | | ug/L | 14524 | Standard | | | Ti | 47 | 85.7 | 2.9 | -1.5664 | 0.026 | 1.6 | ug/L | 365 | Standard | | | ٧ | 51 | 1416.6 | 8.6 | 0.1578 | 0.043 | 27.0 | ug/L | 805 | Standard | | | Cr | 52 | 7673.9 | 2.2 | 0.5196 | 0.020 | 3.9 | ug/L | 5481 | Standard | | | Cr | 53 | 1278.4 | 3.5 | 1.9041 | 0.099 | 5.2 | ug/L | 268 | Standard | | | Mn | 55 | 6173357.0 | 2.5 | 1893.5221 | 57.391 | 3.0 | ug/L | 670 | Standard | | | Co | 59 | 119728.0 | 1.8 | 38.4381 | 1.016 | 2.6 | ug/L | 146 | Standard | | | Ni | 60 | 88032.7 | 1.2 | 78.9940 | 1.713 | 2.2 | ug/L | 220 | Standard | | | Cu | 65 | 3069.6 | 1.9 | 2.6465 | 0.101 | 3.8 | ug/L | 147 | Standard | | | Zn | 66 | 22524.7 | 1.1 | 34.4773 | 0.557 | 1.6 | ug/L | 211 | Standard | | > | Ge | 72 | 208427.4 | 1.8 | | | | ug/L | 210599 | Standard | | | As | 75 | 1079.3 | 5.6 | 1.6332 | 0.070 | 4.3 | ug/L | -47 | Standard | | | Se | 82 | 198.8 | 2.8 | 3.2233 | 0.087 | 2.7 | ug/L | 15 | Standard | | L | Se-1 | 77 | 122.7 | 10.3 | 1.9883 | 0.289 | 14.5 | ug/L | 65 | Standard | | Γ> | Ga | 71 | 58.3 | 42.3 | | | | mg/L | 27 | Standard | | L | Rb | 85 | 21031.3 | 1.8 | | | | ug/L | 17 | Standard | | Γ | Υ | 89 | 228948.6 | 0.9 | | | | ug/L | 216672 | Standard | | L> | Rh | 103 | 88.3 | 37.7 | | | | ug/L | 18 | Standard | | Γ | Мо | 98 | 489.1 | 2.0 | 0.3399 | 0.007 | 1.9 | ug/L | 11 | Standard | | | Ag | 107 | 55.7 | 26.0 | 0.0003 | 0.003 | 1096.1 | ug/L | 55 | Standard | | | Cd | 111 | 12.0 | 50.6 | 0.0021 | 0.004 | 210.7 | mg/L | 7 | Standard | | | Cd | 114 | 7.4 | 145.8 | 0.0075 | 0.003 | 41.2 | ug/L | 4 | Standard | | > | In | 115 | 330340.7 | 1.0 | | | | ug/L | 322525 | Standard | | ļ | Sn | 118 | 470.0 | 21.7 | -0.0370 | 0.025 | 66.8 | ug/L | 345 | Standard | | ļ | Sb | 123 | 88.0 | 13.2 | 0.0121 | 0.003 | 25.2 | ug/L | 88 | Standard | | Ĺ | Ва | 135 | 15249.0 | 0.7 | 9.2849 | 0.139 | 1.5 | ug/L | 12 | Standard | | ! | Ce | 140 | 503.3 | 13.4 | | | | ug/L | 37 | Standard | | Ĺ> | Tb | 159 | 624312.1 | 1.9 | | | | ug/L | 631826 | Standard | | ! | Но | 165 | 148.3 | 13.6 | | | | ug/L | 3 | Standard | | ! | TI | 203 | 152.0 | 6.0 | 0.0208 | 0.002 | 8.2 | ug/L | 7 | Standard | | ! | TI | 205 | 96.7 | 41.8 | 0.0247 | 0.009 | 37.9 | ug/L | 7 | Standard | | ! | Pb | 206 | 240.3 | 13.6 | 0.0008 | 0.008 | 977.7 | ug/L | 159 | Standard | | ! | Pb | 207 | 184.7 | 12.5 | -0.0058 | 0.007 | 123.3 | ug/L | 120 | Standard | | | Pb | 208 | 765.3 | 5.3 | -0.0006 | 0.002 | 384.4 | ug/L | 503 | Standard | | | U | 238 | 9855.5 | 3.0 | 1.8556 | 0.050 | 2.7 | ug/L | 5 | Standard | | L> | Bi | 209 | 333798.6 | 1.4 | | | | ug/L | 333509 | Standard | Sample ID: L1510122408 Report Date/Time: Tuesday, October 27, 2015 19:34:07 Page 1 Approved: October 28, 2015 Such hum | _ | | | | | | | | | _ | a | |----|------|-----|----------|-------|----------|-------|------|------|-------|----------| | | Na | 23 | 18.3 | 41.7 | | | | mg/L | 0 | Standard | | | Mg | 24 | 33164.6 | 2.1 | 83.7586 | 1.577 | 1.9 | mg/L | 10 | Standard | | | K | 39 | 261.7 | 17.7 | 3.2335 | 0.508 | 15.7 | mg/L | 32 | Standard | | | Ca | 43 | 1101.7 | 5.0 | 174.0419 | 5.779 | 3.3 | mg/L | 85 | Standard | | | Fe | 54 | 1225.8 | 5.7 | 3.0456 | 0.131 | 4.3 | mg/L | 82 | Standard | | | Fe | 57 | 991.7 | 3.4 | 8.0717 | 0.506 | 6.3 | mg/L | 217 | Standard | | L> | Sc-1 | 45 | 13724.6 | 3.3 | | | | mg/L | 14524 | Standard | | | CI | 35 | 604382.7 | 0.5 | | | | ug/L | 53193 | Standard | | | Kr | 83 | 3.7 | 56.8 | | | | ug/L | 3 | Standard | | | Br | 81 | 18287.7 | 4.3 | | | | ug/L | 327 | Standard | | | Р | 31 | 17415.0 | 4.5 | | | | ug/L | 13329 | Standard | | | S | 34 | 4454.0 | 3.3 | | | | ug/L | 3234 | Standard | | | Sr | 88 | 276.7 | 17.1 | | | | ug/L | 87 | Standard | | | С | 12 | 720.0 | 7.3 | | | | mg/L | 103 | Standard | | | N | 14 | 0.0 | | | | | mg/L | 0 | Standard | | | Hg | 202 | 3.3 | 173.2 | | | | mg/L | 3 | Standard | | | Dy | 164 | 141.4 | 1.4 | | | | mg/L | 10 | Standard | | | Ho-1 | 165 | 148.3 | 13.6 | | | | mg/L | 3 | Standard | | | Er | 166 | 180.0 | 22.2 | | | | mg/L | 7 | Standard | | | I | 127 | 79987.3 | 1.7 | | | | mg/L | 3612 | Standard | | _ Analyte | | QC Std % Recovery | Int Std % Recovery | Spike % Recovery | |-----------|----|-------------------|--------------------|------------------| | 「> Li | 6 | | 138.106 | | | Be | 9 | | | | | L AI | 27 | | | | | 「 Sc | 45 | | | | | Ti | 47 | | | | | V | 51 | | | | | Cr | 52 | | | | | Cr | 53 | | | | | Mn | 55 | | | | | Co | 59 | | | | | Ni | 60 | | | | | Cu | 65 | | | | | Zn | 66 | | | | | > Ge | 72 | | 98.969 | | | As | 75 | | | | | Se | 82 | | | | | Se-1 | 77 | | | | | √> Ga | 71 | | | | Sample ID: L1510122408 Report Date/Time: Tuesday, October 27, 2015 19:34:07 Page 2 Approved: October 28, 2015 | L Rb | 85 | | | | |---------------|----------------|--------------|-----------------------|--| | ΓΥ | 89 | | | | | _
 > Rh | 103 | | | | | Γ Mo | 98 | | | | | Ag | 107 | | | | | Cd | 111 | | | | | Cd | 114 | | | | | > In | 115 | | 102.423 | | | Sn | 118 | | | | | Sb | 123 | | | | | ∟ Ba | 135 | | | | | 「 Ce | 140 | | | | | L> Tb | 159 | | | | | ГНо | 165 | | | | | TI | 203 | | | | | TI | 205 | | | | | Pb | 206 | | | | | Pb | 207 | | | | | Pb | 208 | | | | | U | 238 | | | | | _> Bi | 209 | | 100.087 | | | 「 Na | 23 | | | | | Mg | 24 | | | | | K | 39 | | | | | Ca | 43
54 | | | | | Fe
 Fe | 54
57 | | | | | Fe
 > Sc-1 | 45 | | | | | CI | 35 | | | | | Kr | 83 | | | | | Br | 81 | | | | | P | 31 | | | | | S | 34 | | | | | Sr | 88 | | | | | С | 12 | | | | | N | 14 | | | | | Hg | 202 | | | | | Dy | 164 | | | | | Ho-1 | 165 | | | | | Er | 166 | | | | | I | 127 | | | | | QC (| Out of Limits | | | | | Measu | rement Type | Analyte Mass | Out of Limits Message | | | | Std for sample | Li 6 | Rerun sample | | | | Jpper, S, EEE | Al 27 | • | | | Ti 47 L | | Ti 47 | | | | | | | | | Report Date/Time: Tuesday, October 27, 2015 19:34:07 Page 3 Mn 55 Upper, S, EEE Mn 55 Sample ID: L1510122408 Report Date/Time: Tuesday, October 27, 2015 19:34:07 Page 4 Approved: October 28, 2015 Sample ID: L1510122412 Sample Date/Time: Tuesday, October 27, 2015 19:35:01 Number of Replicates: 3 Autosampler Position: 218 Sample Description: 1 Method File: C:\NexIONData\Method\6020a.mth Aliquot Volume (mL): Diluted to Volume (mL): User Name: BKT Nexion300X Cumulative Autodilution Factor: 1 Nexion-ICP 200.8\6020 | \sim | ncon | tration | Results | | |--------|------|---------|---------|--| | υu | ncen | urauon | Results | | | | Concentration Results | | | | | | | | | | |------------|-----------------------|--------|------------|-------|----------|--------|--------|-------|---------------|----------| | IS | Analyt | e Mass | Intensity | RSD | Conc. | SD | RSD | Units | Blank Intens. | Mode | | Γ> | Li | 6 | 34521.0 | 2.9 | | | | ug/L | 26270 | Standard | | | Ве | 9 | 11.7 | 24.7 | -0.0177 | 0.004 | 24.5 | ug/L | 2 | Standard | | L | ΑI | 27 | 10836174.9 | 4.5 | 147.0176 | 2.497 | 1.7 | ug/L | 403 | Standard | | Γ | Sc | 45 | 14687.1 | 2.5 | | | | ug/L | 14524 | Standard | | | Ti | 47 | 69.0 | 12.4 | -1.6833 | 0.062 | 3.7 | ug/L | 365 | Standard | | | ٧ | 51 | 1347.5 | 12.1 | 0.1277 | 0.048 | 37.5 | ug/L | 805 | Standard | | | Cr | 52 | 7978.8 | 1.2 | 0.5479 | 0.057 | 10.4 | ug/L | 5481 | Standard | | | Cr | 53 | 966.7 | 7.2 | 1.2656 | 0.092 | 7.3 | ug/L | 268 | Standard | | | Mn | 55 | 967649.7 | 0.9 | 289.5760 | 11.409 | 3.9 | ug/L | 670 | Standard | | | Co | 59 | 3840.5 | 1.9 | 1.1598 | 0.051 | 4.4 | ug/L | 146 | Standard | | | Ni | 60 | 4002.5 | 1.9 | 3.2912 | 0.131 | 4.0 | ug/L | 220 | Standard | | | Cu | 65 | 1095.0 | 5.2 | 0.8061 | 0.078 | 9.7 | ug/L | 147 | Standard | | | Zn | 66 | 2396.2 | 3.6 | 3.0207 | 0.218 | 7.2 | ug/L | 211 | Standard | | > | Ge | 72 | 213536.5 | 3.1 | | | | ug/L | 210599 | Standard | | | As | 75 | 192.7 | 18.6 | 0.3493 | 0.051 | 14.7 | ug/L | -47 | Standard | | | Se | 82 | 75.0 | 18.6 | 1.0803 | 0.259 | 24.0 | ug/L | 15 | Standard | | L | Se-1 | 77 | 90.0 | 10.6 | 1.0809 | 0.315 | 29.1 | ug/L | 65 | Standard | | Γ> | Ga | 71 | 31.7 | 55.5 | | | | mg/L | 27 | Standard | | L | Rb | 85 | 6481.4 | 2.6 | | | | ug/L | 17 | Standard | | Γ | Υ | 89 | 227447.8 | 0.7 | | | | ug/L | 216672 | Standard | | L> | Rh | 103 | 11.7 | 24.7 | | | | ug/L | 18 | Standard | | Γ | Мо | 98 | 70.9 | 26.7 | 0.0451 | 0.013 | 28.3 | ug/L | 11 | Standard | | | Ag | 107 | 68.0 | 20.2 | 0.0022 | 0.003 | 123.5 | ug/L | 55 | Standard | | | Cd | 111 | 14.2 | 52.7 | 0.0031 | 0.005 | 160.6 | mg/L | 7 | Standard | | | Cd | 114 | 15.4 | 137.1 | 0.0096 | 0.006 | 60.3 | ug/L | 4 | Standard | | > | In | 115 | 345463.0 | 0.7 | | | | ug/L | 322525 | Standard | | | Sn | 118 | 418.3 | 9.3 | -0.0542 | 0.009 | 16.9 | ug/L | 345 | Standard | | | Sb | 123 | 83.8 | 21.0 | 0.0100 | 0.004 | 43.9 | ug/L | 88 | Standard | | Ĺ | Ва | 135 | 7697.6 | 2.7 | 4.4698 | 0.152 | 3.4 | ug/L | 12 | Standard | | ļ | Ce | 140 | 88.3 | 11.8 | | | | ug/L | 37 | Standard | | <u>_</u> > | Tb | 159 | 644501.5 | 1.8 | | | | ug/L | 631826 | Standard | | ļ | Но | 165 | 13.3 | 57.3 | | | | ug/L | 3 | Standard | | ļ | TI | 203 | 131.0 | 31.4 | 0.0167 | 0.006 | 35.3 | ug/L | 7 | Standard | | ļ | TI | 205 | 70.0 | 37.1 | 0.0179 | 0.006 | 32.6 | ug/L | 7 | Standard | | ļ | Pb | 206 | 246.3 | 15.7 | -0.0003 | 0.009 | 2643.3 | ug/L | 159 | Standard | | ļ | Pb | 207 | 213.0 | 26.4 | -0.0006 | 0.014 | 2504.3 | ug/L | 120 | Standard | | ļ | Pb | 208 | 851.0 | 12.6 | 0.0028 | 0.007 | 229.7 | ug/L | 503 | Standard | | ļ | U | 238 | 334.7 | 4.4 | 0.0559 | 0.002 | 3.4 | ug/L | 5 | Standard | | L> | Bi | 209 | 348457.2 | 1.7 | | | | ug/L | 333509 | Standard | Sample ID: L1510122412 Report Date/Time: Tuesday, October 27, 2015 19:37:17 Page 1 Approved: October 28, 2015 | _ | | | - 0 | 4000 | | | | | • |
| |----|------|-----|----------|-------|---------|-------|------|------|-------|----------| | | Na | 23 | 5.0 | 100.0 | | | | mg/L | 0 | Standard | | | Mg | 24 | 378.3 | 5.5 | 0.8527 | 0.046 | 5.4 | mg/L | 10 | Standard | | | K | 39 | 78.3 | 24.2 | 0.7564 | 0.243 | 32.1 | mg/L | 32 | Standard | | | Ca | 43 | 403.3 | 13.9 | 50.0688 | 9.710 | 19.4 | mg/L | 85 | Standard | | | Fe | 54 | 410.8 | 14.4 | 0.8604 | 0.118 | 13.7 | mg/L | 82 | Standard | | | Fe | 57 | 531.7 | 11.8 | 3.0985 | 0.515 | 16.6 | mg/L | 217 | Standard | | L> | Sc-1 | 45 | 14687.1 | 2.5 | | | | mg/L | 14524 | Standard | | | CI | 35 | 160722.7 | 8.0 | | | | ug/L | 53193 | Standard | | | Kr | 83 | 4.3 | 35.3 | | | | ug/L | 3 | Standard | | | Br | 81 | 6364.7 | 5.5 | | | | ug/L | 327 | Standard | | | Р | 31 | 16926.1 | 2.9 | | | | ug/L | 13329 | Standard | | | S | 34 | 3762.1 | 1.6 | | | | ug/L | 3234 | Standard | | | Sr | 88 | 146.7 | 18.8 | | | | ug/L | 87 | Standard | | | С | 12 | 363.3 | 15.2 | | | | mg/L | 103 | Standard | | | N | 14 | 0.0 | | | | | mg/L | 0 | Standard | | | Hg | 202 | 6.7 | 86.6 | | | | mg/L | 3 | Standard | | | Dy | 164 | 16.2 | 35.7 | | | | mg/L | 10 | Standard | | | Ho-1 | 165 | 13.3 | 57.3 | | | | mg/L | 3 | Standard | | | Er | 166 | 10.0 | | | | | mg/L | 7 | Standard | | | I | 127 | 10003.3 | 4.0 | | | | mg/L | 3612 | Standard | | Analyte | Mass | QC Std % Recovery | Int Std % Recovery | Spike % Recovery | |---------|------|-------------------|--------------------|------------------| | 「⊳ Li | 6 | | 131.410 | | | Be | 9 | | | | | L AI | 27 | | | | | 「 Sc | 45 | | | | | Ti | 47 | | | | | V | 51 | | | | | Cr | 52 | | | | | Cr | 53 | | | | | Mn | 55 | | | | | Co | 59 | | | | | Ni | 60 | | | | | Cu | 65 | | | | | Zn | 66 | | | | | > Ge | 72 | | 101.395 | | | As | 75 | | | | | Se | 82 | | | | | ∟ Se-1 | 77 | | | | | 「⊳ Ga | 71 | | | | Sample ID: L1510122412 Report Date/Time: Tuesday, October 27, 2015 19:37:17 Page 2 Approved: October 28, 2015 | | Rb
Y
Rh
Mo
Ag
Cd
Cd
In
Sh
Ba
Ce
Tb
Ho
Tl
Tl
Pb
Pb | 85
89
103
98
107
111
114
115
118
123
135
140
159
165
203
205
206
207
208 | | | 107.112 | |------|---|--|----------|----------|-----------------------| |
 | U
Bi | 238
209 | | | 104.482 | | Ĺ | Na | 23 | | | | | i | Mg | 24 | | | | | i | K | 39 | | | | | İ | Ca | 43 | | | | | ļ | Fe | 54 | | | | | İ | Fe | 57 | | | | | | Sc-1 | 45 | | | | | L/ | CI | 35 | | | | | | Kr | 83 | | | | | | Br | 81 | | | | | | Р | 31 | | | | | | S | 34 | | | | | | Sr | 88 | | | | | | С | 12 | | | | | | N | 14 | | | | | | Hg | 202 | | | | | | Dy | 164 | | | | | | Ho-1 | 165 | | | | | | Er | 166 | | | | | | I | 127 | | | | | | QC Out | of Limits | | | | | | Measurem | | Analyte | Mass | Out of Limits Message | | | | I for sample | Li | 6 | Rerun sample | | | 410711 | or C EEE | ΛI | 07 | | | | Al 27 Uppe
Ti 47 Lowe | | Al
Ti | 27
47 | | Report Date/Time: Tuesday, October 27, 2015 19:37:17 Page 3 Mn 55 Upper, S, EEE Mn 55 Sample ID: L1510122412 Report Date/Time: Tuesday, October 27, 2015 19:37:17 Page 4 Approved: October 28, 2015 Sample ID: L1510122414 Sample Date/Time: Tuesday, October 27, 2015 19:38:12 Number of Replicates: 3 Autosampler Position: 219 Sample Description: 1 Method File: C:\NexIONData\Method\6020a.mth Aliquot Volume (mL): Diluted to Volume (mL): User Name: BKT Nexion300X Cumulative Autodilution Factor: 1 Nexion-ICP 200.8\6020 | | | | | | Concentra | ation Res | sults | | | | |----|---------|------------|----------------|-------------|-------------------|----------------|----------------|--------------|----------------|----------------------| | IS | Analyt | e Mass | Intensity | RSD | Conc. | SD | RSD | Units | Blank Intens. | Mode | | Γ> | Li | 6 | 37359.4 | 2.6 | | | | ug/L | 26270 | Standard | | | Be | 9 | 41.7 | 42.1 | 0.0215 | 0.023 | 107.0 | ug/L | 2 | Standard | | L | Al | 27 | 50695029.8 | 2.6 | 635.8834 | 13.262 | 2.1 | ug/L | 403 | Standard | | Γ | Sc | 45 | 14396.8 | 2.5 | | | | ug/L | 14524 | Standard | | | Ti | 47 | 112.3 | 8.4 | -1.4156 | 0.080 | 5.7 | ug/L | 365 | Standard | | | ٧ | 51 | 817.4 | 7.0 | -0.0264 | 0.014 | 51.9 | ug/L | 805 | Standard | | | Cr | 52 | 5491.3 | 1.0 | -0.0395 | 0.053 | 134.9 | ug/L | 5481 | Standard | | | Cr | 53 | 506.7 | 14.1 | 0.4069 | 0.134 | 32.9 | ug/L | 268 | Standard | | | Mn | 55 | 17914409.6 | 0.9 | 5331.0544 | 131.904 | 2.5 | ug/L | 670 | Standard | | | Co | 59 | 267381.8 | 1.0 | 83.3204 | 1.834 | 2.2 | ug/L | 146 | Standard | | | Ni | 60 | 205630.7 | 0.9 | 179.2776 | 4.253 | 2.4 | ug/L | 220 | Standard | | | Cu | 65 | 2117.1 | 2.8 | 1.7104 | 0.022 | 1.3 | ug/L | 147 | Standard | | | Zn | 66 | 129021.1 | 1.5 | 194.4273 | 4.042 | 2.1 | ug/L | 211 | Standard | | > | Ge | 72 | 214918.2 | 3.1 | | | | ug/L | 210599 | Standard | | | As | 75 | 949.5 | 3.5 | 1.4062 | 0.067 | 4.8 | ug/L | -47 | Standard | | | Se | 82 | 27.5 | 6.7 | 0.2785 | 0.024 | 8.6 | ug/L | 15 | Standard | | L | Se-1 | 77 | 69.0 | 5.0 | 0.5253 | 0.118 | 22.4 | ug/L | 65 | Standard | | Γ> | Ga | 71 | 151.7 | 1.9 | | | | mg/L | 27 | Standard | | L | Rb | 85 | 10333.5 | 1.4 | | | | ug/L | 17 | Standard | | Γ | Υ | 89 | 238256.9 | 3.6 | | | | ug/L | 216672 | Standard | | L> | Rh | 103 | 36.7 | 34.3 | | | | ug/L | 18 | Standard | | Γ | Мо | 98 | 56.7 | 6.3 | 0.0360 | 0.003 | 8.0 | ug/L | 11 | Standard | | ļ | Ag | 107 | 57.7 | 22.0 | 0.0003 | 0.002 | 905.5 | ug/L | 55 | Standard | | ļ | Cd | 111 | 40.2 | 18.8 | 0.0207 | 0.005 | 24.1 | mg/L | 7 | Standard | | ļ | Cd | 114 | 88.2 | 18.3 | 0.0297 | 0.005 | 16.4 | ug/L | 4 | Standard | | > | In | 115 | 341836.8 | 2.1 | | | | ug/L | 322525 | Standard | | ļ | Sn | 118 | 441.7 | 20.3 | -0.0475 | 0.021 | 44.8 | ug/L | 345 | Standard | | | Sb | 123 | 53.5 | 27.5 | 0.0026 | 0.004 | 135.8 | ug/L | 88 | Standard | | Ļ | Ва | 135 | 8314.9 | 0.2 | 4.8822 | 0.095 | 1.9 | ug/L | 12 | Standard | | | Ce | 140 | 2466.9 | 9.4 | | | | ug/L | 37 | Standard | | L> | Tb | 159 | 633211.4 | 3.3
21.6 | | | | ug/L | 631826
3 | Standard | | - | Ho | 165 | 141.7 | 21.6
5.1 | 0.0004 | 0.004 | 0.4 | ug/L | | Standard | | - | TI | 203 | 59.3 | 38.6 | 0.0061 | 0.001
0.004 | 9.4 | ug/L | 7
7 | Standard | | | TI | 205 | 41.7 | | 0.0117 | | 32.7 | ug/L | | Standard | | I | Pb | 206
207 | 242.7
215.0 | 1.0
4.9 | -0.0011 | 0.001 | 96.0
3249.2 | ug/L | 159
120 | Standard | | 1 | Pb | 207 | 215.0
885.0 | 4.9
5.4 | 0.0001 | 0.002
0.002 | 3249.2
41.1 | ug/L
ug/L | 503 | Standard
Standard | | - | Pb
U | 208
238 | 18.7 | 5.4
62.1 | 0.0052
-0.0012 | 0.002 | 176.3 | ug/L
ug/L | 503
5 | Standard | | 1. | | 209 | 348415.2 | 2.6 | -0.0012 | 0.002 | 170.3 | • | 333509 | Standard | | L> | Bi | 209 | 340413.2 | 2.0 | | | | ug/L | <i>ააა</i> ი09 | Standard | Sample ID: L1510122414 Report Date/Time: Tuesday, October 27, 2015 19:40:29 Page 1 Approved: October 28, 2015 Page 669 L15101055 / Revision: 0 / 760 total pages | Γ | Na | 23 | 6.7 | 43.3 | | | | mg/L | 0 | Standard | |----|------|-----|----------|------|---------|--------|------|------|-------|----------| | | Mg | 24 | 670.0 | 7.2 | 1.5734 | 0.117 | 7.4 | mg/L | 10 | Standard | | | K | 39 | 125.0 | 10.6 | 1.3610 | 0.152 | 11.2 | mg/L | 32 | Standard | | | Ca | 43 | 645.0 | 10.9 | 90.8625 | 12.814 | 14.1 | mg/L | 85 | Standard | | ĺ | Fe | 54 | 15472.3 | 1.8 | 38.1529 | 1.653 | 4.3 | mg/L | 82 | Standard | | ĺ | Fe | 57 | 4639.0 | 2.8 | 42.4533 | 0.832 | 2.0 | mg/L | 217 | Standard | | L> | Sc-1 | 45 | 14396.8 | 2.5 | | | | mg/L | 14524 | Standard | | | CI | 35 | 364305.2 | 2.8 | | | | ug/L | 53193 | Standard | | | Kr | 83 | 4.3 | 13.3 | | | | ug/L | 3 | Standard | | | Br | 81 | 746.7 | 20.1 | | | | ug/L | 327 | Standard | | | Р | 31 | 19275.6 | 4.8 | | | | ug/L | 13329 | Standard | | | S | 34 | 4095.6 | 3.4 | | | | ug/L | 3234 | Standard | | | Sr | 88 | 183.3 | 6.9 | | | | ug/L | 87 | Standard | | | С | 12 | 346.7 | 14.5 | | | | mg/L | 103 | Standard | | | N | 14 | 0.0 | | | | | mg/L | 0 | Standard | | | Hg | 202 | 0.0 | | | | | mg/L | 3 | Standard | | | Dy | 164 | 180.9 | 37.3 | | | | mg/L | 10 | Standard | | | Ho-1 | 165 | 141.7 | 21.6 | | | | mg/L | 3 | Standard | | | Er | 166 | 120.0 | 22.0 | | | | mg/L | 7 | Standard | | | 1 | 127 | 4315.6 | 2.1 | | | | mg/L | 3612 | Standard | | | | | | | | | | | | | | _ Analyte | | QC Std % Recovery | Int Std % Recovery | Spike % Recovery | |-----------|----|-------------------|--------------------|------------------| | 「> Li | 6 | | 142.215 | | | Be | 9 | | | | | L AI | 27 | | | | | 「 Sc | 45 | | | | | Ti | 47 | | | | | V | 51 | | | | | Cr | 52 | | | | | Cr | 53 | | | | | Mn | 55 | | | | | Co | 59 | | | | | Ni | 60 | | | | | Cu | 65 | | | | | Zn | 66 | | | | | > Ge | 72 | | 102.051 | | | As | 75 | | | | | Se | 82 | | | | | Se-1 | 77 | | | | | 「̄> Ga | 71 | | | | Sample ID: L1510122414 Report Date/Time: Tuesday, October 27, 2015 19:40:29 Page 2 Approved: October 28, 2015 | L Rb 85 T Y 89 L> Rh 103 Mo 98 L Ag 107 Cd 111 Cd 114 In 115 Sn 118 Sb 123 L Ba 135 Ce 140 L> Tb 159 Ho 165 TI 203 TI 203 Pb 206 Pb 207 Pb 208 U 238 L Pb 208 L De 208 L Na 23 Mg 24 K 39 Ca 43 Fe 57 L> Sc-1 Kr 83 Br 81 P 31 S 34 Sr 88 C 12 | | 104.469 | |
--|----------------------|---------------------------------------|--| | I 127 QC Out of Limits Measurement Type Li 6 Int Std for sample | Analyte Mass
Li 6 | Out of Limits Message
Rerun sample | | | Al 27 Upper, S, EEE
Ti 47 Lower | Al 27
Ti 47 | rterum sampie | | Report Date/Time: Tuesday, October 27, 2015 19:40:29 Page 3 Approved: October 28, 2015 | Mn 55 Upper, S, EEE | Mn | 55 | |---------------------|----|----| | Ni 60 Upper, S, EEE | Ni | 60 | | Zn 66 Upper, S, EEE | Zn | 66 | Report Date/Time: Tuesday, October 27, 2015 19:40:29 Page 4 Approved: October 28, 2015 Sample ID: L1510122416 Sample Date/Time: Tuesday, October 27, 2015 19:41:23 RSD 3.1 Number of Replicates: 3 Autosampler Position: 220 Sample Description: 1 Method File: C:\NexIONData\Method\6020a.mth Intensity 37680.2 68.1 55.7 31.9 112.7 520.0 88.8 7687.0 5025.8 151.7 160.0 128.3 227.0 200.0 830.0 652890.5 350742.8 17.5 4.5 20.6 17.6 0.4 3.5 12.3 3.2 17.2 1.5 10.6 4.3 21.5 3.1 6.5 2.5 Aliquot Volume (mL): Diluted to Volume (mL): User Name: BKT Nexion300X Cumulative Autodilution Factor: 1 Nexion-ICP 200.8\6020 98 107 111 114 115 118 123 135 140 159 165 203 205 206 207 208 Мо Ag Cd Cd In Sn Sb Ва Се Th Но ΤI ΤI Ph Pb Pb Page 1 IS Analyte Mass | | Ве | 9 | 25.0 | 40.0 | -0.0013 | 0.013 | 1030.8 | ug/L | 2 | Standard | |---|--------------|-----|------------|------|-----------|--------|--------|------|--------|----------| | Į | Al | 27 | 50682233.4 | 5.2 | 629.9463 | 13.876 | 2.2 | ug/L | 403 | Standard | | | Sc | 45 | 14859.0 | 2.3 | | | | ug/L | 14524 | Standard | | | Ti | 47 | 90.7 | 6.6 | -1.5665 | 0.046 | 2.9 | ug/L | 365 | Standard | | | V | 51 | 898.2 | 6.5 | -0.0099 | 0.019 | 187.6 | ug/L | 805 | Standard | | | Cr | 52 | 5715.1 | 3.3 | -0.0237 | 0.024 | 103.0 | ug/L | 5481 | Standard | | | Cr | 53 | 458.3 | 8.9 | 0.2948 | 0.070 | 23.8 | ug/L | 268 | Standard | | | Mn | 55 | 17526002.9 | 2.5 | 5075.6529 | 42.336 | 0.8 | ug/L | 670 | Standard | | | Co | 59 | 246323.1 | 2.3 | 74.7015 | 0.501 | 0.7 | ug/L | 146 | Standard | | | Ni | 60 | 168665.8 | 2.8 | 143.0598 | 1.753 | 1.2 | ug/L | 220 | Standard | | | Cu | 65 | 2018.8 | 4.0 | 1.5747 | 0.042 | 2.7 | ug/L | 147 | Standard | | | Zn | 66 | 77542.6 | 1.7 | 113.4815 | 0.286 | 0.3 | ug/L | 211 | Standard | | | > Ge | 72 | 220706.8 | 1.6 | | | | ug/L | 210599 | Standard | | | As | 75 | 868.0 | 1.2 | 1.2598 | 0.029 | 2.3 | ug/L | -47 | Standard | | | Se | 82 | 29.1 | 12.3 | 0.2931 | 0.057 | 19.4 | ug/L | 15 | Standard | | | Se-1 | 77 | 62.3 | 12.0 | 0.3140 | 0.212 | 67.4 | ug/L | 65 | Standard | | | > G a | 71 | 161.7 | 18.9 | | | | mg/L | 27 | Standard | | | Rb | 85 | 11222.5 | 4.4 | | | | ug/L | 17 | Standard | | | Υ | 89 | 235585.5 | 3.5 | | | | ug/L | 216672 | Standard | | Į | > R h | 103 | 35.0 | 14.3 | | | | ug/L | 18 | Standard | | | | | | | | | | | | | 0.0425 -0.0004 0.0146 0.0356 -0.0321 0.0109 4.3952 0.0202 0.0298 -0.0068 -0.0058 -0.0004 **Concentration Results** Conc. SD 0.008 0.001 0.004 0.005 0.004 0.003 0.137 0.001 0.006 0.002 0.004 0.001 Page 673 18.3 126.1 29.8 14.6 12.4 25.0 3.1 4.7 20.0 26.9 60.9 285.7 ug/L ug/L mg/L ug/L RSD Units ug/L Blank Intens. 26270 Mode Standard 11 7 322525 631826 345 88 12 37 3 7 159 120 503 U 238 52.3 16.7 0.0046 0.002 34.0 ug/L 5 Standard Bi 209 360804.8 0.4 ug/L 333509 Standard Sample ID: L1510122416 Report Date/Time: Tuesday, October 27, 2015 19:43:40 | Γ | Na | 23 | 6.7 | 43.3 | | | | mg/L | 0 | Standard | |----|------|-----|----------|-------|---------|-------|------|------|-------|----------| | | Mg | 24 | 676.7 | 7.1 | 1.5374 | 0.082 | 5.3 | mg/L | 10 | Standard | | | K | 39 | 110.0 | 39.6 | 1.1329 | 0.538 | 47.5 | mg/L | 32 | Standard | | | Ca | 43 | 583.3 | 5.8 | 77.7950 | 6.905 | 8.9 | mg/L | 85 | Standard | | | Fe | 54 | 8818.6 | 2.2 | 20.9964 | 0.328 | 1.6 | mg/L | 82 | Standard | | | Fe | 57 | 2713.6 | 3.8 | 23.2503 | 0.947 | 4.1 | mg/L | 217 | Standard | | L> | Sc-1 | 45 | 14859.0 | 2.3 | | | | mg/L | 14524 | Standard | | | CI | 35 | 334903.4 | 1.5 | | | | ug/L | 53193 | Standard | | | Kr | 83 | 6.0 | 60.1 | | | | ug/L | 3 | Standard | | | Br | 81 | 796.7 | 13.1 | | | | ug/L | 327 | Standard | | | Р | 31 | 19596.0 | 1.6 | | | | ug/L | 13329 | Standard | | | S | 34 | 4292.3 | 1.8 | | | | ug/L | 3234 | Standard | | | Sr | 88 | 170.0 | 10.6 | | | | ug/L | 87 | Standard | | | С | 12 | 310.0 | 16.1 | | | | mg/L | 103 | Standard | | | N | 14 | 3.3 | 173.2 | | | | mg/L | 0 | Standard | | | Hg | 202 | 3.3 | 173.2 | | | | mg/L | 3 | Standard | | | Dy | 164 | 183.6 | 24.9 | | | | mg/L | 10 | Standard | | | Ho-1 | 165 | 151.7 | 10.6 | | | | mg/L | 3 | Standard | | | Er | 166 | 133.3 | 4.3 | | | | mg/L | 7 | Standard | | | 1 | 127 | 4295.6 | 4.6 | | | | mg/L | 3612 | Standard | | | | | | | | | | | | | | Analyte | Mass | QC Std % Recovery | Int Std % Recovery | Spike % Recovery | |---------|------|-------------------|--------------------|------------------| | 「⊳ Li | 6 | | 143.436 | | | Be | 9 | | | | | L AI | 27 | | | | | 「 Sc | 45 | | | | | Ti | 47 | | | | | V | 51 | | | | | Cr | 52 | | | | | Cr | 53 | | | | | Mn | 55 | | | | | Co | 59 | | | | | Ni | 60 | | | | | Cu | 65 | | | | | Zn | 66 | | | | | > Ge | 72 | | 104.800 | | | As | 75 | | | | | Se | 82 | | | | | L Se-1 | 77 | | | | | 「⊳ Ga | 71 | | | | Sample ID: L1510122416 Report Date/Time: Tuesday, October 27, 2015 19:43:40 Page 2 Approved: October 28, 2015 | L Rb 85 | | 108.749 | | |---|-------------------------------|---------------------------------------|--| | Pb 207
 Pb 208
 U 238
 Description 23 23 24 24 24 24 24 24 | | 108.184 | | | Br 81 P 31 S 34 Sr 88 C 12 N 14 Hg 202 Dy 164 Ho-1 165 Er 166 I 127 QC Out of Limits Measurement Type Li 6 Int Std for sample Al 27 Upper, S, EEE | Analyte Mass
Li 6
Al 27 | Out of Limits Message
Rerun sample | | Report Date/Time: Tuesday, October 27, 2015 19:43:40 Page 3 | Mn 55 Upper, S, EEE | Mn | 55 | |---------------------|----|----| | Ni 60 Upper, S, EEE | Ni | 60 | | Zn 66 Upper, S, EEE | Zn | 66 | Report Date/Time: Tuesday, October 27, 2015 19:43:40 Page 4 Approved: October 28, 2015 Sample ID: L1510122418 Sample Date/Time: Tuesday, October 27, 2015 19:44:35 Number of Replicates: 3 Autosampler Position: 221 Sample Description: 1 Method File: C:\NexIONData\Method\6020a.mth Aliquot Volume (mL): Diluted to Volume (mL): User Name: BKT Nexion300X Cumulative Autodilution Factor: 1 Nexion-ICP 200.8\6020 | Concentration | Results | |---------------|---------| |---------------|---------| | | | | | | Ooncentra | | Juita | | | | |----|--------|--------|-----------|------|-----------|--------|--------|-------|---------------|----------| | IS | Analyt | e Mass | Intensity | RSD | Conc. | SD | RSD | Units | Blank Intens. | Mode | | Γ> | Li | 6 | 34567.8 | 6.1 | | | | ug/L | 26270 | Standard | | | Be | 9 | 25.0 | 52.9 | 0.0015 | 0.018 | 1203.2 | ug/L | 2 | Standard | | L | Al | 27 | 3733633.6 | 3.7 | 50.7231 | 3.736 | 7.4 | ug/L | 403 | Standard | | Γ | Sc | 45 | 15322.8 | 6.0 | | | | ug/L | 14524 | Standard | | | Ti | 47 | 121.7 | 12.6 | -1.3919 | 0.121 | 8.7 | ug/L | 365 | Standard | | | V | 51 | 1646.7 | 3.2 | 0.1888 | 0.034 | 18.1 | ug/L | 805 | Standard | | | Cr | 52 | 6474.7 | 0.5 | 0.1168 | 0.072 | 61.6 | ug/L | 5481 | Standard | | | Cr | 53 | 545.0 | 3.2 | 0.4307 | 0.074 | 17.1 | ug/L | 268 | Standard | | | Mn | 55 | 1322651.2 | 1.1 | 374.4889 | 13.652 | 3.6 | ug/L | 670 | Standard | | | Co | 59 | 11618.1 | 0.5 | 3.4052 | 0.166 | 4.9 | ug/L | 146 | Standard | | | Ni | 60 | 10505.0 | 2.0 | 8.5138 | 0.549 | 6.5 | ug/L | 220 | Standard | | | Cu | 65 | 1936.8 | 1.9 | 1.4691 | 0.105 | 7.2 | ug/L | 147 | Standard | | | Zn | 66 | 64708.6 | 2.2 | 92.6267 | 6.155 | 6.6 | ug/L | 211 | Standard | | > | Ge | 72 | 225831.3 | 4.7 | | | | ug/L | 210599 | Standard | | | As | 75 | 1969.3 | 0.8 | 2.7016 | 0.123 | 4.6 | ug/L | -47 | Standard | | | Se | 82 | 19.7 | 22.6 | 0.1359 | 0.079 | 58.3 | ug/L | 15 | Standard | | L | Se-1 | 77 | 53.0 | 12.4 | 0.0520 | 0.176 | 338.6 | ug/L | 65 | Standard | | Γ> | Ga | 71 | 55.0 | 39.6 | | | | mg/L | 27 | Standard | | L | Rb | 85 | 6111.2 | 2.3 | | | | ug/L | 17 | Standard | | Γ | Υ | 89 | 242460.8 | 4.8 | | | | ug/L | 216672 | Standard | | L> | Rh | 103 | 15.0 | 33.3 | | | | ug/L | 18 | Standard | | Γ | Мо | 98 | 110.8 | 13.5 | 0.0693 | 0.012 | 16.9 | ug/L | 11 | Standard | | | Ag | 107 | 51.0 | 7.1 | -0.0015 | 0.000 | 28.6 | ug/L | 55 | Standard | | | Cd | 111 | 298.4 | 6.6 | 0.1858 | 0.020 | 10.6 | mg/L | 7 | Standard | | | Cd | 114 | 753.0 | 12.7 | 0.2038 | 0.031 | 15.3 | ug/L | 4 | Standard | | > | In | 115 | 358535.6 | 4.0 | | | | ug/L | 322525 | Standard | | | Sn | 118 | 508.3 | 11.9 | -0.0369 | 0.017 | 47.1 | ug/L | 345 | Standard | | | Sb | 123 | 54.9 | 4.6 | 0.0024 | 0.001 | 41.5 | ug/L | 88 | Standard | | L | Ва | 135 | 59651.9 | 2.1 | 33.5759 | 1.948 | 5.8 | ug/L | 12 | Standard | | Γ | Ce | 140 | 5104.2 | 5.8 | | | | ug/L | 37 | Standard | | L> | Tb | 159 | 660830.8 | 6.6 | | | | ug/L | 631826 | Standard | | Γ | Но | 165 | 110.0 | 24.1 | | | | ug/L | 3 | Standard | | | TI | 203 | 84.3 | 21.4 | 0.0092 |
0.003 | 31.9 | ug/L | 7 | Standard | | | TI | 205 | 38.3 | 32.8 | 0.0104 | 0.002 | 22.6 | ug/L | 7 | Standard | | | Pb | 206 | 3060.6 | 0.8 | 0.6439 | 0.037 | 5.7 | ug/L | 159 | Standard | | | Pb | 207 | 2551.5 | 1.1 | 0.5898 | 0.038 | 6.4 | ug/L | 120 | Standard | | | Pb | 208 | 10216.4 | 2.0 | 0.5946 | 0.042 | 7.1 | ug/L | 503 | Standard | | | U | 238 | 81.3 | 10.2 | 0.0094 | 0.001 | 12.9 | ug/L | 5 | Standard | | L> | Bi | 209 | 367825.7 | 5.0 | | | | ug/L | 333509 | Standard | | | | | | | | | | | | | Sample ID: L1510122418 Report Date/Time: Tuesday, October 27, 2015 19:46:52 Page 1 Approved: October 28, 2015 | Γ | Na | 23 | 0.0 | | | | | mg/L | 0 | Standard | |----|------|-----|---------|-------|--------|-------|------|------|-------|----------| | | Mg | 24 | 136.7 | 16.5 | 0.2703 | 0.062 | 23.0 | mg/L | 10 | Standard | | | K | 39 | 78.3 | 3.7 | 0.7184 | 0.087 | 12.1 | mg/L | 32 | Standard | | | Ca | 43 | 135.0 | 19.6 | 6.0877 | 2.916 | 47.9 | mg/L | 85 | Standard | | ĺ | Fe | 54 | 1399.6 | 7.7 | 3.1354 | 0.431 | 13.7 | mg/L | 82 | Standard | | ĺ | Fe | 57 | 620.0 | 5.6 | 3.7119 | 0.604 | 16.3 | mg/L | 217 | Standard | | Ĺ> | Sc-1 | 45 | 15322.8 | 6.0 | | | | mg/L | 14524 | Standard | | | CI | 35 | 90940.1 | 0.9 | | | | ug/L | 53193 | Standard | | | Kr | 83 | 4.7 | 44.6 | | | | ug/L | 3 | Standard | | | Br | 81 | 670.0 | 11.3 | | | | ug/L | 327 | Standard | | | Р | 31 | 18544.7 | 1.9 | | | | ug/L | 13329 | Standard | | | S | 34 | 3968.9 | 0.6 | | | | ug/L | 3234 | Standard | | | Sr | 88 | 128.3 | 34.0 | | | | ug/L | 87 | Standard | | | С | 12 | 233.3 | 10.8 | | | | mg/L | 103 | Standard | | | N | 14 | 3.3 | 173.2 | | | | mg/L | 0 | Standard | | | Hg | 202 | 3.3 | 173.2 | | | | mg/L | 3 | Standard | | | Dy | 164 | 125.2 | 14.2 | | | | mg/L | 10 | Standard | | | Ho-1 | 165 | 110.0 | 24.1 | | | | mg/L | 3 | Standard | | | Er | 166 | 100.0 | 17.3 | | | | mg/L | 7 | Standard | | | 1 | 127 | 3773.8 | 2.0 | | | | mg/L | 3612 | Standard | | | | | | | | | | | | | | Analyte | Mass | QC Std % Recovery | Int Std % Recovery | Spike % Recovery | |---------|------|-------------------|--------------------|------------------| | 「⊳ Li | 6 | | 131.588 | | | Be | 9 | | | | | L AI | 27 | | | | | 「 Sc | 45 | | | | | Ti | 47 | | | | | V | 51 | | | | | Cr | 52 | | | | | Cr | 53 | | | | | Mn | 55 | | | | | Co | 59 | | | | | Ni | 60 | | | | | Cu | 65 | | | | | Zn | 66 | | | | | > Ge | 72 | | 107.233 | | | As | 75 | | | | | Se | 82 | | | | | ∟ Se-1 | 77 | | | | | 「⊳ Ga | 71 | | | | Sample ID: L1510122418 Report Date/Time: Tuesday, October 27, 2015 19:46:52 Page 2 Approved: October 28, 2015 | L Rb | 85 | | | | | |------------------|-------------------------|----------|------|-----------------------|--| | ΓY | 89 | | | | | | Ĺ> Rh | 103 | | | | | | Г Мо | 98 | | | | | | Ag | 107 | | | | | | Cd | 111 | | | | | | Cd | 114 | | | | | | > In | 115 | | | 111.165 | | | Sn | 118 | | | | | | Sb | 123 | | | | | | ∟ Ba | 135 | | | | | | 「 Ce | 140 | | | | | | L> Tb | 159 | | | | | | Г Ho | 165 | | | | | | TI | 203 | | | | | | TI | 205 | | | | | | Pb | 206 | | | | | | Pb | 207 | | | | | | Pb | 208 | | | | | | U | 238 | | | | | | L> Bi | 209 | | | 110.289 | | | Г Na | 23 | | | | | | Mg | 24 | | | | | | K | 39 | | | | | | Ca | 43 | | | | | | Fe | 54 | | | | | | Fe | 57 | | | | | | _> Sc-1 | 45 | | | | | | CI | 35 | | | | | | Kr | 83 | | | | | | Br | 81 | | | | | | Р | 31 | | | | | | S | 34 | | | | | | Sr | 88 | | | | | | С | 12 | | | | | | N | 14 | | | | | | Hg | 202 | | | | | | Dy | 164 | | | | | | Ho-1 | 165 | | | | | | Er | 166 | | | | | | I | 127 | | | | | | QC Ou | t of Limits | | | | | | Measurement Type | | Analyte | Mass | Out of Limits Message | | | | Li 6 Int Std for sample | | 6 | Rerun sample | | | Ti 47 Lower | | Li
Ti | 47 | · | | Report Date/Time: Tuesday, October 27, 2015 19:46:52 Mn 55 Mn 55 Upper, S, EEE Page 3 Sample ID: L1510122420 Sample Date/Time: Tuesday, October 27, 2015 19:47:46 Number of Replicates: 3 Autosampler Position: 222 Sample Description: 1 Method File: C:\NexIONData\Method\6020a.mth Aliquot Volume (mL): Diluted to Volume (mL): User Name: BKT Nexion300X Cumulative Autodilution Factor: 1 Nexion-ICP 200.8\6020 | | | | | | Concentrat | ion Res | sults | | | | |----|----------|------------|----------------|--------------|------------|----------------|--------------|-------|---------------|----------| | IS | Analyt | e Mass | Intensity | RSD | Conc. | SD | RSD | Units | Blank Intens. | Mode | | Γ> | | 6 | 31577.9 | 4.5 | | | | ug/L | 26270 | Standard | | | Be | 9 | 11.7 | 24.7 | -0.0160 | 0.005 | 31.6 | ug/L | 2 | Standard | | L | Al | 27 | 102193.6 | 12.4 | 1.5002 | 0.228 | 15.2 | ug/L | 403 | Standard | | Γ | Sc | 45 | 14877.3 | 3.7 | | | | ug/L | 14524 | Standard | | | Ti | 47 | 57.0 | 7.6 | -1.7567 | 0.026 | 1.5 | ug/L | 365 | Standard | | | V | 51 | 947.2 | 6.6 | 0.0147 | 0.019 | 125.9 | ug/L | 805 | Standard | | | Cr | 52 | 5929.5 | 1.7 | 0.0811 | 0.031 | 38.4 | ug/L | 5481 | Standard | | | Cr | 53 | 336.7 | 20.1 | 0.1013 | 0.123 | 121.3 | ug/L | 268 | Standard | | | Mn | 55 | 36911.8 | 8.3 | 10.7918 | 0.989 | 9.2 | ug/L | 670 | Standard | | | Co | 59 | 604.3 | 4.0 | 0.1454 | 0.009 | 5.9 | ug/L | 146 | Standard | | | Ni | 60 | 649.0 | 7.7 | 0.3487 | 0.048 | 13.7 | ug/L | 220 | Standard | | | Cu | 65 | 359.7 | 5.5 | 0.1471 | 0.020 | 13.5 | ug/L | 147 | Standard | | | Zn | 66 | 1179.0 | 6.6 | 1.1806 | 0.129 | 10.9 | ug/L | 211 | Standard | | > | Ge | 72 | 211796.7 | 0.6 | | | | ug/L | 210599 | Standard | | | As | 75 | -51.9 | 73.1 | 0.0045 | 0.053 | 1174.4 | ug/L | -47 | Standard | | | Se | 82 | 10.8 | 76.9 | 0.0048 | 0.141 | 2928.2 | ug/L | 15 | Standard | | L | Se-1 | 77 | 59.7 | 15.2 | 0.3070 | 0.226 | 73.8 | ug/L | 65 | Standard | | Γ> | Ga | 71 | 33.3 | 45.8 | | | | mg/L | 27 | Standard | | L | Rb | 85 | 200.0 | 21.4 | | | | ug/L | 17 | Standard | | Γ | Υ | 89 | 228571.2 | 0.7 | | | | ug/L | 216672 | Standard | | | Rh | 103 | 18.3 | 56.8 | | | | ug/L | 18 | Standard | | Γ | Мо | 98 | 18.3 | 46.7 | 0.0100 | 0.006 | 57.8 | ug/L | 11 | Standard | | | Ag | 107 | 49.7 | 13.4 | -0.0013 | 0.001 | 101.1 | ug/L | 55 | Standard | | | Cd | 111 | 10.3 | 22.4 | 0.0006 | 0.002 | 264.8 | mg/L | 7 | Standard | | | Cd | 114 | 16.5 | 96.8 | 0.0099 | 0.004 | 44.1 | ug/L | 4 | Standard | | > | ln | 115 | 342462.2 | 0.4 | | | | ug/L | 322525 | Standard | | ļ | Sn | 118 | 380.0 | 1.3 | -0.0624 | 0.001 | 1.4 | ug/L | 345 | Standard | | ļ | Sb | 123 | 39.1 | 14.3 | -0.0010 | 0.001 | 149.0 | ug/L | 88 | Standard | | Ļ | Ва | 135 | 696.7 | 4.1 | 0.3862 | 0.015 | 3.9 | ug/L | 12 | Standard | | | Ce | 140 | 55.0 | | | | | ug/L | 37 | Standard | | [> | Tb
 | 159 | 637234.8 | 0.8 | | | | ug/L | 631826 | Standard | | | Ho | 165 | 13.3 | 94.4 | 0.0044 | 0.000 | 00.0 | ug/L | 3 | Standard | | | TI
Ti | 203 | 11.0 | 18.2 | -0.0011 | 0.000 | 28.3 | ug/L | 7 | Standard | | | TI | 205 | 8.3 | 91.7 | 0.0043 | 0.002 | 39.2 | ug/L | 7 | Standard | | | Pb | 206
207 | 220.7
183.3 | 10.3
10.1 | -0.0064 | 0.006
0.005 | 88.0
59.8 | ug/L | 159 | Standard | | | Pb | 207 | 763.7 | 4.3 | -0.0083 | 0.005 | 59.8
80.2 | ug/L | 120
503 | Standard | | | Pb | | | | -0.0028 | | | ug/L | | Standard | | | U | 238 | 4.0 | 25.0 | -0.0038 | 0.000 | 4.7 | ug/L | 5 | Standard | Sample ID: L1510122420 209 Report Date/Time: Tuesday, October 27, 2015 19:50:03 347634.5 0.3 Page 1 ∟> Bi Approved: October 28, 2015 Standard Page 680 ug/L 333509 | Γ | Na | 23 | 0.0 | | | | | mg/L | 0 | Standard | |----|------|-----|---------|-------|---------|-------|-------|------|-------|----------| | İ | Mg | 24 | 40.0 | 21.7 | 0.0534 | 0.024 | 44.6 | mg/L | 10 | Standard | | | K | 39 | 15.0 | 66.7 | -0.0312 | 0.115 | 369.3 | mg/L | 32 | Standard | | | Ca | 43 | 31.7 | 9.1 | -9.5045 | 0.641 | 6.7 | mg/L | 85 | Standard | | | Fe | 54 | 74.1 | 24.6 | 0.0449 | 0.050 | 111.6 | mg/L | 82 | Standard | | | Fe | 57 | 336.7 | 21.1 | 1.2479 | 0.712 | 57.1 | mg/L | 217 | Standard | | L> | Sc-1 | 45 | 14877.3 | 3.7 | | | | mg/L | 14524 | Standard | | | CI | 35 | 79812.3 | 0.2 | | | | ug/L | 53193 | Standard | | | Kr | 83 | 5.0 | 34.6 | | | | ug/L | 3 | Standard | | | Br | 81 | 470.0 | 6.4 | | | | ug/L | 327 | Standard | | | Р | 31 | 15052.5 | 1.8 | | | | ug/L | 13329 | Standard | | | S | 34 | 3872.2 | 3.0 | | | | ug/L | 3234 | Standard | | | Sr | 88 | 116.7 | 4.9 | | | | ug/L | 87 | Standard | | | С | 12 | 163.3 | 25.5 | | | | mg/L | 103 | Standard | | | N | 14 | 0.0 | | | | | mg/L | 0 | Standard | | | Hg | 202 | 0.0 | | | | | mg/L | 3 | Standard | | | Dy | 164 | -0.8 | 124.9 | | | | mg/L | 10 | Standard | | | Ho-1 | 165 | 13.3 | 94.4 | | | | mg/L | 3 | Standard | | | Er | 166 | 16.7 | 124.9 | | | | mg/L | 7 | Standard | | | I | 127 | 2568.6 | 5.0 | | | | mg/L | 3612 | Standard | | Analyte | Mass | QC Std % Recovery | Int Std % Recovery | Spike % Recovery | |---------|------|-------------------|--------------------|------------------| | 「⊳ Li | 6 | | 120.207 | | | Be | 9 | | | | | L AI | 27 | | | | | 「 Sc | 45 | | | | | Ti | 47 | | | | | V | 51 | | | | | Cr | 52 | | | | | Cr | 53 | | | | | Mn | 55 | | | | | Co | 59 | | | | | Ni | 60 | | | | | Cu | 65 | | | | | Zn | 66 | | | | | > Ge | 72 | | 100.569 | | | As | 75 | | | | | Se | 82 | | | | | ∟ Se-1 | 77 | | | | | 「> Ga | 71 | | | | Sample ID: L1510122420 Report Date/Time: Tuesday, October 27, 2015 19:50:03 Page 2 Approved: October 28, 2015 | ∟ Rb | 85 | | | | | |------------|----------------|---------|----|-----------------------|--| | Y | 89 | | | | | | ∟> Rh | 103 | | | | | | [> Mo | 98 | | | | | | • | 107 | | | | | | Ag | | | | | | | Cd | 111 | | | | | | Cd | 114 | | | 400 400 | | | > In | 115 | | | 106.182 | | | Sn | 118 | | | | | | Sb | 123 | | | | | | L Ba | 135 | | | | | | Г Се | 140 | | | | | | Ĺ> Tb | 159 | | | | | | Г Ho | 165 | | | | | | TI | 203 | | | | | | TI | 205 | | | | | | Pb | 206 | | | | | | Pb | 207 | | | | | | Pb | 208 | | | | | | U | 238 | | | | | | L> Bi | 209 | | | 104.235 | | | 「Na | 23 | | | | | | Mg
| 24 | | | | | | K | 39 | | | | | | Ca | 43 | | | | | | Fe | 54 | | | | | | Fe | 57 | | | | | | _> Sc-1 | 45 | | | | | | CI | 35 | | | | | | Kr | 83 | | | | | | Br | 81 | | | | | | P | 31 | | | | | | S | 34 | | | | | | Sr | 88 | | | | | | C | 12 | | | | | | N | 14 | | | | | | Hg | 202 | | | | | | | 164 | | | | | | Dy
Ho-1 | 165 | | | | | | Er | 166 | | | | | | ⊑ I | 127 | | | | | | 00.0 | | | | | | | | ut of Limits | | | | | | | ment Type | Analyte | | Out of Limits Message | | | | Std for sample | Li | 6 | Rerun sample | | | Ti 47 Lo | wer | Ti | 47 | | | | | | | | | | Report Date/Time: Tuesday, October 27, 2015 19:50:03 Page 3 Sample ID: QC Std 6 Sample Date/Time: Tuesday, October 27, 2015 19:51:00 Number of Replicates: 3 Autosampler Position: 101 Sample Description: Method File: C:\NexIONData\Method\6020a.mth Aliquot Volume (mL): Diluted to Volume (mL): User Name: BKT Nexion300X Cumulative Autodilution Factor: 1 Nexion-ICP 200.8\6020 | IS | Analyt | e Mass | Intensity | RSD | Conc. | SD | RSD | Units | Blank Intens. | Mode | |----|--------|--------|-----------|------|---------|-------|------|-------|---------------|----------| | Γ> | Li | 6 | 31973.7 | 2.6 | | | | ug/L | 26270 | Standard | | | Be | 9 | 30253.5 | 2.0 | 47.9180 | 2.178 | 4.5 | ug/L | 2 | Standard | | L | Al | 27 | 3162098.7 | 5.7 | 46.3849 | 3.816 | 8.2 | ug/L | 403 | Standard | | Γ | Sc | 45 | 16368.9 | 10.9 | | | | ug/L | 14524 | Standard | | | Ti | 47 | 16468.6 | 2.0 | 97.3629 | 8.180 | 8.4 | ug/L | 365 | Standard | | | V | 51 | 179976.6 | 2.6 | 49.5766 | 4.345 | 8.8 | ug/L | 805 | Standard | | | Cr | 52 | 220356.1 | 3.5 | 48.1531 | 4.745 | 9.9 | ug/L | 5481 | Standard | | | Cr | 53 | 27349.7 | 3.1 | 48.4077 | 4.282 | 8.8 | ug/L | 268 | Standard | | | Mn | 55 | 175683.0 | 6.0 | 50.3910 | 5.986 | 11.9 | ug/L | 670 | Standard | | | Co | 59 | 168244.3 | 3.3 | 50.8234 | 4.811 | 9.5 | ug/L | 146 | Standard | | | Ni | 60 | 56347.6 | 2.1 | 47.4483 | 3.955 | 8.3 | ug/L | 220 | Standard | | | Cu | 65 | 55078.6 | 1.3 | 47.4491 | 3.471 | 7.3 | ug/L | 147 | Standard | | | Zn | 66 | 33287.2 | 2.6 | 48.1604 | 4.251 | 8.8 | ug/L | 211 | Standard | | > | Ge | 72 | 222432.3 | 6.5 | | | | ug/L | 210599 | Standard | | | As | 75 | 35891.3 | 3.1 | 48.7497 | 4.462 | 9.2 | ug/L | -47 | Standard | | | Se | 82 | 3147.4 | 2.4 | 50.4519 | 4.316 | 8.6 | ug/L | 15 | Standard | | L | Se-1 | 77 | 2085.8 | 3.6 | 50.3894 | 4.667 | 9.3 | ug/L | 65 | Standard | | Γ> | Ga | 71 | 30.0 | 28.9 | | | | mg/L | 27 | Standard | | L | Rb | 85 | 551.7 | 7.0 | | | | ug/L | 17 | Standard | | Γ | Υ | 89 | 242975.0 | 6.6 | | | | ug/L | 216672 | Standard | | L> | Rh | 103 | 25.0 | 34.6 | | | | ug/L | 18 | Standard | | Γ | Mo | 98 | 152522.9 | 3.5 | 98.5843 | 8.821 | 8.9 | ug/L | 11 | Standard | | | Ag | 107 | 235697.1 | 2.4 | 45.4534 | 3.590 | 7.9 | ug/L | 55 | Standard | | | Cd | 111 | 73789.8 | 3.3 | 47.4756 | 4.032 | 8.5 | mg/L | 7 | Standard | | | Cd | 114 | 180579.3 | 3.2 | 47.5220 | 4.093 | 8.6 | ug/L | 4 | Standard | | > | In | 115 | 358877.0 | 5.9 | | | | ug/L | 322525 | Standard | | | Sn | 118 | 207809.0 | 4.6 | 47.1548 | 4.785 | 10.1 | ug/L | 345 | Standard | | | Sb | 123 | 189356.9 | 2.5 | 45.2211 | 3.590 | 7.9 | ug/L | 88 | Standard | | L | Ва | 135 | 79262.6 | 3.6 | 44.6647 | 3.981 | 8.9 | ug/L | 12 | Standard | 47.5732 49.0520 50.1967 49.8165 48.9697 46.6251 **Concentration Results** ug/L 9.2 9.1 9.1 8.5 9.7 8.7 37 7 159 503 333509 5 631826 Standard Sample ID: QC Std 6 Report Date/Time: Tuesday, October 27, 2015 19:53:16 316.7 5.0 662503.0 330326.4 229394.1 213468.1 192153.4 754358.7 265523.3 360242.6 15.0 6.4 2.4 2.4 2.3 1.8 3.0 2.0 7.1 100.0 Page 1 Се Tb Нο ΤI ΤI Ph Pb Pb U Bi 140 159 165 203 205 206 207 208 238 209 Approved: October 28, 2015 Page 683 4.357 4.468 4.563 4.251 4.772 4.067 | _ | | | | | | | | | _ | - · · · | |----|------|-----|---------|-------|---------|-------|------|------|-------|----------| | | Na | 23 | 1.7 | 173.2 | | | | mg/L | 0 | Standard | | | Mg | 24 | 2353.5 | 4.8 | 4.9964 | 0.726 | 14.5 | mg/L | 10 | Standard | | | K | 39 | 416.7 | 24.0 | 4.4433 | 1.330 | 29.9 | mg/L | 32 | Standard | | | Ca | 43 | 70.0 | 7.1 | -4.4365 | 0.693 | 15.6 | mg/L | 85 | Standard | | | Fe | 54 | 2274.0 | 5.1 | 4.8658 | 0.741 | 15.2 | mg/L | 82 | Standard | | | Fe | 57 | 803.4 | 1.9 | 4.9260 | 0.717 | 14.6 | mg/L | 217 | Standard | | L> | Sc-1 | 45 | 16368.9 | 10.9 | | | | mg/L | 14524 | Standard | | | CI | 35 | 78057.3 | 2.5 | | | | ug/L | 53193 | Standard | | | Kr | 83 | 4.3 | 13.3 | | | | ug/L | 3 | Standard | | | Br | 81 | 433.3 | 10.4 | | | | ug/L | 327 | Standard | | | Р | 31 | 17017.9 | 1.2 | | | | ug/L | 13329 | Standard | | | S | 34 | 4173.9 | 5.5 | | | | ug/L | 3234 | Standard | | | Sr | 88 | 128.3 | 15.7 | | | | ug/L | 87 | Standard | | | С | 12 | 163.3 | 24.7 | | | | mg/L | 103 | Standard | | | N | 14 | 0.0 | | | | | mg/L | 0 | Standard | | | Hg | 202 | 6.7 | 173.2 | | | | mg/L | 3 | Standard | | | Dy | 164 | 8.9 | 121.2 | | | | mg/L | 10 | Standard | | | Ho-1 | 165 | 5.0 | 100.0 | | | | mg/L | 3 | Standard | | | Er | 166 | 23.3 | 107.9 | | | | mg/L | 7 | Standard | | | I | 127 | 1908.5 | 4.6 | | | | mg/L | 3612 | Standard | | | | | | | | | | | | | | Analyte | Mass | QC Std % Recovery | Int Std % Recovery | Spike % Recovery | |---------|------|-------------------|--------------------|------------------| | 「> Li | 6 | | | | | Be | 9 | 95.836 | | | | L AI | 27 | 92.770 | | | | 「 Sc | 45 | | | | | Ti | 47 | 97.363 | | | | V | 51 | 99.153 | | | | Cr | 52 | 96.306 | | | | Cr | 53 | | | | | Mn | 55 | 100.782 | | | | Co | 59 | 101.647 | | | | Ni | 60 | 94.897 | | | | Cu | 65 | 94.898 | | | | Zn | 66 | 96.321 | | | | > Ge | 72 | | 105.619 | | | As | 75 | 97.499 | | | | Se | 82 | 100.904 | | | | ∟ Se-1 | 77 | | | | | 「⊳ Ga | 71 | | | | Sample ID: QC Std 6 Report Date/Time: Tuesday, October 27, 2015 19:53:16 Page 2 Approved: October 28, 2015 | ∟ Rb | 85 | | | |----------------|----------------|--------------|-----------------------| | ΓY | 89 | | | | $\lfloor_>$ Rh | 103 | | | | ГМо | 98 | 98.584 | | | Ag | 107 | 90.907 | | | Cd | 111 | 94.951 | | | Cd | 114 | | | | > In | 115 | | 111.271 | | Sn | 118 | 94.310 | | | Sb | 123 | 90.442 | | | Ba | 135 | 89.329 | | | _ Ce | 140 | | | | _
_> Tb | 159 | | | | Γ Ho | 165 | | | | į TI | 203 | 95.146 | | | j тı | 205 | | | | Pb | 206 | | | | Pb | 207 | | | | Pb | 208 | 97.939 | | | Ü | 238 | 93.250 | | | ∣ | 209 | 00.200 | 108.016 | | ∫ Na | 23 | | 100.010 | | Mg | 24 | | | | K | 39 | | | | Ca | 43 | | | | Fe | 54 | | | | Fe | 5 7 | | | | Sc-1 | 45 | | | | CI | 35 | | | | Kr | 83 | | | | Br | 81 | | | | P | 31 | | | | S | 34 | | | | Sr | | | | | C | 88
12 | | | | | | | | | N | 14 | | | | Hg | 202 | | | | Dy | 164
165 | | | | Ho-1 | 165 | | | | Er | 166 | | | | 1 | 127 | | | | QC O | ut of Limits | • | | | | ement Type | Analyte Mass | Out of Limits Message | | QC Std | | Ba 135 | | Sample ID: QC Std 6 Report Date/Time: Tuesday, October 27, 2015 19:53:16 Page 3 Sample ID: QC Std 7 Sample Date/Time: Tuesday, October 27, 2015 19:54:11 Number of Replicates: 3 Autosampler Position: 102 Sample Description: Method File: C:\NexIONData\Method\6020a.mth Aliquot Volume (mL): Diluted to Volume (mL): User Name: BKT Nexion300X Cumulative Autodilution Factor: 1 Nexion-ICP 200.8\6020 **Concentration Results** | | | | | | 0000 | u | | | | | |------------|--------|--------|-----------|-------|---------|-------|-------|-------|---------------|----------| | IS | Analyt | e Mass | Intensity | RSD | Conc. | SD | RSD | Units | Blank Intens. | Mode | | Γ> | Li | 6 | 30343.7 | 5.2 | | | | ug/L | 26270 | Standard | | | Be | 9 | 86.7 | 92.0 | 0.1148 | 0.144 | 125.6 | ug/L | 2 | Standard | | L | ΑI | 27 | 9420.5 | 114.3 | 0.1311 | 0.179 | 136.4 | ug/L | 403 | Standard | | Γ | Sc | 45 | 15326.1 | 3.6 | | | | ug/L | 14524 | Standard | | | Ti | 47 | 112.0 | 41.5 | -1.3813 | 0.338 | 24.4 | ug/L | 365 | Standard | | | ٧ | 51 | 1217.1 | 50.5 | 0.1075 | 0.201 | 187.2 | ug/L | 805 | Standard | | | Cr | 52 | 5990.9 | 9.5 | 0.1379 | 0.202 | 146.7 | ug/L | 5481 | Standard | | | Cr | 53 | 455.0 | 31.5 | 0.3547 | 0.321 | 90.4 | ug/L | 268 | Standard | | | Mn | 55 | 1007.0 | 50.7 | -0.0364 | 0.175 | 481.9 | ug/L | 670 | Standard | | | Co | 59 | 625.0 | 83.7 | 0.1622 | 0.183 | 112.7 | ug/L | 146 | Standard | | | Ni | 60 | 270.3 | 59.2 | 0.0239 | 0.159 | 665.2 | ug/L | 220 | Standard | | | Cu | 65 | 267.0 | 71.8 | 0.0749 | 0.193 | 258.2 | ug/L | 147 | Standard | | | Zn | 66 | 227.0 | 50.1 | -0.2651 | 0.199 | 75.0 | ug/L | 211 | Standard | | > | Ge | 72 | 206389.8 | 4.2 | | | | ug/L | 210599 | Standard | | | As | 75 | 66.1 | 152.2 | 0.1784 | 0.154 | 86.4 | ug/L | -47 | Standard | | | Se | 82 | 20.0 | 35.3 | 0.1709 | 0.125 | 73.3 | ug/L | 15 | Standard | | L | Se-1 | 77 | 57.0 | 31.6 | 0.2892 | 0.530 | 183.4 | ug/L | 65 | Standard | | Γ> | Ga | 71 | 23.3 | 12.4 | | | | mg/L | 27 | Standard | | L | Rb | 85 | 26.7 | 21.7 | | | | ug/L | 17 | Standard | | Γ | Υ | 89 | 217226.3 | 4.3 | | | | ug/L | 216672 | Standard | | L> | Rh | 103 | 23.3 | 24.7 | | | | ug/L | 18 | Standard | | Γ | Мо | 98 | 488.9 | 92.9 | 0.3556 | 0.347 | 97.6 | ug/L | 11 | Standard | | | Ag | 107 | 510.0 | 126.8 | 0.1013 | 0.146 | 144.1 | ug/L | 55 | Standard | | | Cd | 111 | 181.2 | 119.7 | 0.1270 | 0.163 | 128.6 | mg/L | 7 | Standard | | | Cd | 114 | 414.9 | 127.0 | 0.1305 | 0.162 | 124.0 | ug/L | 4 | Standard | | > | In | 115 | 326317.2 | 5.0 | | | | ug/L | 322525 | Standard | | | Sn | 118 | 1000.0 | 62.8 | 0.1024 | 0.173 | 169.2 | ug/L | 345 | Standard | | | Sb | 123 | 550.3 | 97.5 | 0.1384 | 0.151 | 109.4 | ug/L | 88 | Standard | | Ĺ | Ва | 135 | 200.0 | 127.5 | 0.1053 | 0.168 | 159.6 | ug/L | 12 | Standard | | ļ | Ce | 140 | 11.7 | 89.2 | | | | ug/L | 37 | Standard | | <u>_</u> > | Tb | 159 | 608744.6 | 5.3 | | | | ug/L | 631826 | Standard | | ļ | Но | 165 | 3.3 | 86.6 | | | | ug/L | 3 | Standard | | ļ | TI | 203 | 597.0 | 141.1 | 0.0927 | 0.136 | 147.0 | ug/L | 7 |
Standard | | ļ | TI | 205 | 395.0 | 129.9 | 0.0959 | 0.124 | 128.8 | ug/L | 7 | Standard | | ļ | Pb | 206 | 643.7 | 101.7 | 0.1064 | 0.175 | 164.4 | ug/L | 159 | Standard | | ļ | Pb | 207 | 578.0 | 101.3 | 0.1073 | 0.173 | 160.8 | ug/L | 120 | Standard | | ļ | Pb | 208 | 2261.1 | 103.4 | 0.1073 | 0.172 | 160.6 | ug/L | 503 | Standard | | ļ | U | 238 | 661.0 | 126.9 | 0.1238 | 0.166 | 134.0 | ug/L | 5 | Standard | | L> | Bi | 209 | 336386.5 | 4.1 | | | | ug/L | 333509 | Standard | Sample ID: QC Std 7 Report Date/Time: Tuesday, October 27, 2015 19:56:28 Page 1 Approved: October 28, 2015 Page 686 L15101055 / Revision: 0 / 760 total pages | г | | 00 | 4 - | 470.0 | | | | | • | 0111 | |----|------|-----|---------|-------|---------|-------|-------|------|-------|----------| | | Na | 23 | 1.7 | 173.2 | | | | mg/L | 0 | Standard | | | Mg | 24 | 23.3 | 53.9 | 0.0130 | 0.030 | 232.8 | mg/L | 10 | Standard | | | K | 39 | 21.7 | 87.4 | 0.0401 | 0.220 | 548.3 | mg/L | 32 | Standard | | | Ca | 43 | 46.7 | 43.3 | -7.3620 | 3.050 | 41.4 | mg/L | 85 | Standard | | | Fe | 54 | 72.6 | 4.6 | 0.0353 | 0.011 | 31.8 | mg/L | 82 | Standard | | | Fe | 57 | 361.7 | 8.1 | 1.3691 | 0.224 | 16.3 | mg/L | 217 | Standard | | L> | Sc-1 | 45 | 15326.1 | 3.6 | | | | mg/L | 14524 | Standard | | | CI | 35 | 76650.1 | 1.0 | | | | ug/L | 53193 | Standard | | | Kr | 83 | 6.3 | 24.1 | | | | ug/L | 3 | Standard | | | Br | 81 | 383.3 | 9.2 | | | | ug/L | 327 | Standard | | | Р | 31 | 16680.8 | 0.5 | | | | ug/L | 13329 | Standard | | | S | 34 | 4268.9 | 0.9 | | | | ug/L | 3234 | Standard | | | Sr | 88 | 135.0 | 23.1 | | | | ug/L | 87 | Standard | | | С | 12 | 176.7 | 22.9 | | | | mg/L | 103 | Standard | | | N | 14 | 0.0 | | | | | mg/L | 0 | Standard | | | Hg | 202 | 10.0 | 173.2 | | | | mg/L | 3 | Standard | | | Dy | 164 | -0.2 | 173.2 | | | | mg/L | 10 | Standard | | | Ho-1 | 165 | 3.3 | 86.6 | | | | mg/L | 3 | Standard | | | Er | 166 | 3.3 | 173.2 | | | | mg/L | 7 | Standard | | | I | 127 | 1853.4 | 3.1 | | | | mg/L | 3612 | Standard | | Analyte | Mass | QC Std % Recovery | Int Std % Recovery | Spike % Recovery | |---------|------|-------------------|--------------------|------------------| | 「> Li | 6 | | | | | Be | 9 | | | | | L AI | 27 | | | | | 「 Sc | 45 | | | | | Ti | 47 | | | | | V | 51 | | | | | Cr | 52 | | | | | Cr | 53 | | | | | Mn | 55 | | | | | Co | 59 | | | | | Ni | 60 | | | | | Cu | 65 | | | | | Zn | 66 | | | | | > Ge | 72 | | 98.001 | | | As | 75 | | | | | Se | 82 | | | | | ∟ Se-1 | 77 | | | | | 「⊳ Ga | 71 | | | | Sample ID: QC Std 7 Report Date/Time: Tuesday, October 27, 2015 19:56:28 Page 2 Approved: October 28, 2015 | ∟ Rb | 85 | | | | |----------------|--------------|---------|------|-----------------------| | ΓY | 89 | | | | | $\lfloor_>$ Rh | 103 | | | | | ¯ Mo | 98 | | | | | Ag | 107 | | | | | Cď | 111 | | | | | Cd | 114 | | | | | > In | 115 | | | 101.176 | | Sn | 118 | | | | | Sb | 123 | | | | | L Ba | 135 | | | | | ∟ Dα
Γ Ce | 140 | | | | | i | 159 | | | | | L> Ib
∫ Ho | 165 | | | | | TI | 203 | | | | | ''
 Ti | 205 | | | | | II
 Pb | 206 | | | | | Pb | 207 | | | | | Pb | 208 | | | | | | | | | | | U Di | 238 | | | 100.962 | | L> Bi
□ No | 209 | | | 100.863 | | Г Na
⊢ Ма | 23 | | | | | Mg | 24 | | | | | K | 39 | | | | | Ca | 43 | | | | | Fe | 54 | | | | | Fe | 57 | | | | | _> Sc-1 | 45 | | | | | Cl | 35 | | | | | Kr | 83 | | | | | Br | 81 | | | | | Р | 31 | | | | | S | 34 | | | | | Sr | 88 | | | | | С | 12 | | | | | N | 14 | | | | | Hg | 202 | | | | | Dy | 164 | | | | | Ho-1 | 165 | | | | | Er | 166 | | | | | I | 127 | | | | | QC Ou | it of Limits | | | | | | ment Type | Analyte | Mass | Out of Limits Message | | QC Std 7 | 7 | Be | 9 | | | QC Std 7 | | Ti | 47 | | | OC 844 2 | | C4 | 111 | | Sample ID: QC Std 7 QC Std 7 Report Date/Time: Tuesday, October 27, 2015 19:56:28 Cd 111 Page 3 QC Std 7 TI 203 Sample ID: QC Std 7 Report Date/Time: Tuesday, October 27, 2015 19:56:28 Page 4 Approved: October 28, 2015 Sample ID: L1510133901 Sample Date/Time: Tuesday, October 27, 2015 19:57:24 Number of Replicates: 3 Autosampler Position: 223 Sample Description: 50 Method File: C:\NexIONData\Method\6020a.mth Aliquot Volume (mL): Diluted to Volume (mL): User Name: BKT Nexion300X Cumulative Autodilution Factor: 1 Nexion-ICP 200.8\6020 | | | | | | Concentrat | tion Res | ults | | | | |-----|--------|--------|-----------|-------|------------|----------|-------|-------|---------------|----------| | IS | Analyt | e Mass | Intensity | RSD | Conc. | SD | RSD | Units | Blank Intens. | Mode | | Γ> | Li | 6 | 32256.0 | 6.0 | | | | ug/L | 26270 | Standard | | | Be | 9 | 11.7 | 65.5 | -0.0160 | 0.013 | 83.9 | ug/L | 2 | Standard | | L | Αl | 27 | 503531.3 | 1.4 | 7.3091 | 0.391 | 5.3 | ug/L | 403 | Standard | | Γ | Sc | 45 | 16767.6 | 3.3 | | | | ug/L | 14524 | Standard | | | Ti | 47 | 140.3 | 6.4 | -1.2824 | 0.046 | 3.6 | ug/L | 365 | Standard | | | ٧ | 51 | 1081.6 | 2.9 | 0.0356 | 0.023 | 63.8 | ug/L | 805 | Standard | | | Cr | 52 | 8278.3 | 2.1 | 0.5204 | 0.124 | 23.9 | ug/L | 5481 | Standard | | | Cr | 53 | 780.0 | 5.8 | 0.8496 | 0.149 | 17.6 | ug/L | 268 | Standard | | | Mn | 55 | 2115.8 | 3.8 | 0.2491 | 0.053 | 21.2 | ug/L | 670 | Standard | | | Co | 59 | 386.0 | 0.9 | 0.0692 | 0.006 | 8.6 | ug/L | 146 | Standard | | | Ni | 60 | 387.3 | 4.4 | 0.0966 | 0.011 | 11.0 | ug/L | 220 | Standard | | | Cu | 65 | 1122.7 | 1.0 | 0.7790 | 0.058 | 7.5 | ug/L | 147 | Standard | | | Zn | 66 | 2022.5 | 1.7 | 2.2924 | 0.128 | 5.6 | ug/L | 211 | Standard | | > | Ge | 72 | 225246.1 | 5.1 | | | | ug/L | 210599 | Standard | | | As | 75 | 35.2 | 93.3 | 0.1235 | 0.041 | 33.6 | ug/L | -47 | Standard | | | Se | 82 | 22.5 | 42.5 | 0.1741 | 0.132 | 75.9 | ug/L | 15 | Standard | | L | Se-1 | 77 | 68.0 | 11.7 | 0.4225 | 0.220 | 52.2 | ug/L | 65 | Standard | | Γ> | Ga | 71 | 26.7 | 39.0 | | | | mg/L | 27 | Standard | | Ĺ | Rb | 85 | 4283.9 | 1.6 | | | | ug/L | 17 | Standard | | Γ | Υ | 89 | 240716.0 | 6.7 | | | | ug/L | 216672 | Standard | | L> | Rh | 103 | 16.7 | 45.8 | | | | ug/L | 18 | Standard | | Γ | Мо | 98 | 155.6 | 15.1 | 0.0973 | 0.012 | 12.8 | ug/L | 11 | Standard | | ļ | Ag | 107 | 61.3 | 9.0 | 0.0004 | 0.001 | 192.6 | ug/L | 55 | Standard | | ļ | Cd | 111 | 15.3 | 19.9 | 0.0034 | 0.002 | 50.1 | mg/L | 7 | Standard | | ļ | Cd | 114 | 21.3 | 45.7 | 0.0109 | 0.002 | 22.2 | ug/L | 4 | Standard | | > | ln | 115 | 359818.8 | 2.8 | | | | ug/L | 322525 | Standard | | ļ | Sn | 118 | 883.4 | 6.6 | 0.0474 | 0.019 | 40.5 | ug/L | 345 | Standard | | ļ | Sb | 123 | 701.1 | 7.1 | 0.1561 | 0.017 | 10.6 | ug/L | 88 | Standard | | Ļ | Ва | 135 | 29475.3 | 2.3 | 16.5101 | 0.862 | 5.2 | ug/L | 12 | Standard | | ļ | Се | 140 | 235.0 | 11.8 | | | | ug/L | 37 | Standard | | L> | Tb | 159 | 670854.6 | 4.6 | | | | ug/L | 631826 | Standard | | ļ | Но | 165 | 13.3 | 108.3 | | | | ug/L | 3 | Standard | | - ! | TI | 203 | 27.0 | 13.4 | 0.0012 | 0.000 | 32.6 | ug/L | 7 | Standard | | - ! | TI | 205 | 26.7 | 84.5 | 0.0081 | 0.005 | 56.9 | ug/L | 7 | Standard | | - ! | Pb | 206 | 283.7 | 5.9 | 0.0064 | 0.006 | 101.2 | ug/L | 159 | Standard | | | Pb | 207 | 243.7 | 3.0 | 0.0053 | 0.002 | 45.7 | ug/L | 120 | Standard | | - [| Pb | 208 | 967.0 | 1.4 | 0.0083 | 0.003 | 39.5 | ug/L | 503 | Standard | | | U | 238 | 12.0 | 25.0 | -0.0025 | 0.001 | 25.3 | ug/L | 5 | Standard | | L> | Bi | 209 | 362094.9 | 4.5 | | | | ug/L | 333509 | Standard | Sample ID: L1510133901 Report Date/Time: Tuesday, October 27, 2015 19:59:41 Page 1 Approved: October 28, 2015 Page 690 | Γ | Na | 23 | 3.3 | 86.6 | | | | mg/L | 0 | Standard | |----|------|-----|---------|-------|---------|-------|------|------|-------|----------| | 1 | Mg | 24 | 12982.2 | 2.7 | 26.8355 | 1.619 | 6.0 | mg/L | 10 | Standard | | - | - | | | | | | | • | | | | | K | 39 | 75.0 | 23.1 | 0.6038 | 0.217 | 36.0 | mg/L | 32 | Standard | | | Ca | 43 | 33.3 | 31.2 | -9.8141 | 1.637 | 16.7 | mg/L | 85 | Standard | | | Fe | 54 | 82.3 | 9.1 | 0.0415 | 0.016 | 39.6 | mg/L | 82 | Standard | | | Fe | 57 | 313.3 | 18.7 | 0.6907 | 0.447 | 64.7 | mg/L | 217 | Standard | | L> | Sc-1 | 45 | 16767.6 | 3.3 | | | | mg/L | 14524 | Standard | | | CI | 35 | 76193.8 | 1.2 | | | | ug/L | 53193 | Standard | | | Kr | 83 | 4.0 | 100.0 | | | | ug/L | 3 | Standard | | | Br | 81 | 1063.4 | 9.6 | | | | ug/L | 327 | Standard | | | Р | 31 | 15589.7 | 2.1 | | | | ug/L | 13329 | Standard | | | S | 34 | 3912.2 | 3.8 | | | | ug/L | 3234 | Standard | | | Sr | 88 | 115.0 | 4.3 | | | | ug/L | 87 | Standard | | | С | 12 | 163.3 | 30.2 | | | | mg/L | 103 | Standard | | | N | 14 | 3.3 | 173.2 | | | | mg/L | 0 | Standard | | | Hg | 202 | 3.3 | 173.2 | | | | mg/L | 3 | Standard | | | Dy | 164 | 19.4 | 51.7 | | | | mg/L | 10 | Standard | | | Ho-1 | 165 | 13.3 | 108.3 | | | | mg/L | 3 | Standard | | | Er | 166 | 13.3 | 86.6 | | | | mg/L | 7 | Standard | | | I | 127 | 43845.2 | 7.4 | | | | mg/L | 3612 | Standard | | _ | Analyte | | QC Std % Recovery | Int Std % Recovery | Spike % Recovery | |----|---------|----|-------------------|--------------------|------------------| | Γ> | Li | 6 | | 122.788 | | | | Be | 9 | | | | | L | Al | 27 | | | | | Γ | Sc | 45 | | | | | | Ti | 47 | | | | | | V | 51 | | | | | | Cr | 52 | | | | | | Cr | 53 | | | | | | Mn | 55 | | | | | | Co | 59 | | | | | | Ni | 60 | | | | | | Cu | 65 | | | | | | Zn | 66 | | | | | > | Ge | 72 | | 106.955 | | | | As | 75 | | | | | | Se | 82 | | | | | L | Se-1 | 77 | | | | | Γ> | Ga | 71 | | | | Sample ID: L1510133901 Report Date/Time: Tuesday, October 27, 2015 19:59:41 Page 2 Approved: October 28, 2015 | ∟ Rb | 85 | | | | | |----------------|----------------|---------|------|-----------------------|--| | ΓY | 89 | | | | | | $\lfloor_>$ Rh | 103 | | | | | | ГМо | 98 | | | | | | Ag | 107 | | | | | | Cd | 111 | | | | | | Cd | 114 | | | | | | > In | 115 | | | 111.563 | | | Sn | 118 | | | | | | Sb | 123 | | | | | | Ва | 135 | | | | | | Ce | 140 | | | | | | Tb | 159 | | | | | | Ho | 165 | | | | | | TI | 203 | | | | | | ''
 Ti
 205 | | | | | | 11
 Pb | 206 | | | | | | Pb | 207 | | | | | | Pb | 208 | | | | | | U | 238 | | | | | | | | | | 100 571 | | | Ĺ> Bi
□ No | 209 | | | 108.571 | | | Γ Na | 23 | | | | | | Mg | 24 | | | | | | K | 39 | | | | | | Ca | 43 | | | | | | Fe | 54 | | | | | | Fe | 57 | | | | | | _> Sc-1 | 45 | | | | | | CI | 35 | | | | | | Kr | 83 | | | | | | Br | 81 | | | | | | Р | 31 | | | | | | S | 34 | | | | | | Sr | 88 | | | | | | С | 12 | | | | | | N | 14 | | | | | | Hg | 202 | | | | | | Dy | 164 | | | | | | Ho-1 | 165 | | | | | | Er | 166 | | | | | | I | 127 | | | | | | QC O | ut of Limits | | | | | | | ement Type | Analyte | Mass | Out of Limits Message | | | | Std for sample | Li | 6 | Rerun sample | | | Ti 47 Lo | | Ti | 47 | Refull Sumple | | | 1147 LO | VVCI | 11 | 71 | | | Report Date/Time: Tuesday, October 27, 2015 19:59:41 Page 3 Sample ID: L1510141301 Sample Date/Time: Tuesday, October 27, 2015 20:00:35 Number of Replicates: 3 Autosampler Position: 224 Sample Description: 1 Method File: C:\NexIONData\Method\6020a.mth Aliquot Volume (mL): Diluted to Volume (mL): User Name: BKT Nexion300X Cumulative Autodilution Factor: 1 Nexion-ICP 200.8\6020 **Concentration Results** | | | | Concentration Results | | | | | | | | | | |----|--------|--------|-----------------------|-------|---------|-------|-------|-------|---------------|----------|--|--| | IS | Analyt | e Mass | Intensity | RSD | Conc. | SD | RSD | Units | Blank Intens. | Mode | | | | Γ> | Li | 6 | 30694.4 | 2.1 | | | | ug/L | 26270 | Standard | | | | | Be | 9 | 18.3 | 15.7 | -0.0046 | 0.005 | 101.5 | ug/L | 2 | Standard | | | | L | Al | 27 | 1234993.0 | 2.0 | 18.8412 | 0.714 | 3.8 | ug/L | 403 | Standard | | | | Γ | Sc | 45 | 15242.7 | 7.0 | | | | ug/L | 14524 | Standard | | | | | Ti | 47 | 368.7 | 2.5 | 0.2302 | 0.126 | 54.9 | ug/L | 365 | Standard | | | | | V | 51 | 1248.6 | 6.8 | 0.1048 | 0.033 | 32.0 | ug/L | 805 | Standard | | | | | Cr | 52 | 56691.9 | 0.5 | 12.0871 | 0.397 | 3.3 | ug/L | 5481 | Standard | | | | | Cr | 53 | 9014.3 | 1.7 | 16.4560 | 0.298 | 1.8 | ug/L | 268 | Standard | | | | | Mn | 55 | 5275.9 | 1.7 | 1.2496 | 0.041 | 3.3 | ug/L | 670 | Standard | | | | | Co | 59 | 425.0 | 5.5 | 0.0897 | 0.011 | 12.5 | ug/L | 146 | Standard | | | | | Ni | 60 | 36931.0 | 0.4 | 32.6928 | 1.115 | 3.4 | ug/L | 220 | Standard | | | | | Cu | 65 | 16543.4 | 1.0 | 14.8954 | 0.322 | 2.2 | ug/L | 147 | Standard | | | | | Zn | 66 | 51395.0 | 0.9 | 78.7036 | 2.034 | 2.6 | ug/L | 211 | Standard | | | | > | Ge | 72 | 210518.3 | 3.0 | | | | ug/L | 210599 | Standard | | | | | As | 75 | 57.4 | 109.8 | 0.1584 | 0.088 | 55.4 | ug/L | -47 | Standard | | | | | Se | 82 | 24.4 | 17.9 | 0.2359 | 0.063 | 26.5 | ug/L | 15 | Standard | | | | L | Se-1 | 77 | 169.7 | 7.1 | 3.1795 | 0.185 | 5.8 | ug/L | 65 | Standard | | | | Γ> | Ga | 71 | 365.0 | 11.9 | | | | mg/L | 27 | Standard | | | | L | Rb | 85 | 9404.6 | 3.7 | | | | ug/L | 17 | Standard | | | | Γ | Υ | 89 | 217028.7 | 2.1 | | | | ug/L | 216672 | Standard | | | | L> | Rh | 103 | 36.7 | 43.8 | | | | ug/L | 18 | Standard | | | | Γ | Мо | 98 | 925.8 | 2.2 | 0.6544 | 0.015 | 2.3 | ug/L | 11 | Standard | | | | | Ag | 107 | 24089.5 | 1.0 | 5.0949 | 0.261 | 5.1 | ug/L | 55 | Standard | | | | | Cd | 111 | 108.6 | 13.3 | 0.0702 | 0.007 | 10.2 | mg/L | 7 | Standard | | | | | Cd | 114 | 300.8 | 18.0 | 0.0920 | 0.013 | 14.0 | ug/L | 4 | Standard | | | | > | In | 115 | 326054.4 | 4.4 | | | | ug/L | 322525 | Standard | | | | | Sn | 118 | 9786.5 | 3.0 | 2.2943 | 0.166 | 7.2 | ug/L | 345 | Standard | | | | | Sb | 123 | 550.7 | 3.4 | 0.1339 | 0.011 | 8.2 | ug/L | 88 | Standard | | | | L | Ва | 135 | 20728.5 | 1.4 | 12.8164 | 0.736 | 5.7 | ug/L | 12 | Standard | | | | Γ | Ce | 140 | 441.7 | 12.6 | | | | ug/L | 37 | Standard | | | | L> | Tb | 159 | 622926.3 | 5.1 | | | | ug/L | 631826 | Standard | | | | Γ | Но | 165 | 8.3 | 34.6 | | | | ug/L | 3 | Standard | | | | | TI | 203 | 157.3 | 28.0 | 0.0216 | 0.007 | 30.9 | ug/L | 7 | Standard | | | | | TI | 205 | 111.7 | 11.3 | 0.0281 | 0.003 | 11.6 | ug/L | 7 | Standard | | | | | Pb | 206 | 5156.9 | 1.6 | 1.2412 | 0.068 | 5.5 | ug/L | 159 | Standard | | | | | Pb | 207 | 4232.3 | 0.6 | 1.1201 | 0.057 | 5.0 | ug/L | 120 | Standard | | | | | Pb | 208 | 16926.0 | 1.6 | 1.1242 | 0.055 | 4.9 | ug/L | 503 | Standard | | | | | U | 238 | 36.7 | 45.0 | 0.0024 | 0.003 | 131.1 | ug/L | 5 | Standard | | | | L> | Bi | 209 | 335203.9 | 4.6 | | | | ug/L | 333509 | Standard | | | | | | | | | | | | | | | | | Sample ID: L1510141301 Report Date/Time: Tuesday, October 27, 2015 20:02:52 Page 1 Approved: October 28, 2015 Page 693 L15101055 / Revision: 0 / 760 total pages | _ | | | | | | | | | | | |----|------|-----|---------|------|---------|-------|--------|------|-------|----------| | | Na | 23 | 0.0 | | | | | mg/L | 0 | Standard | | | Mg | 24 | 13090.7 | 5.1 | 29.8062 | 2.098 | 7.0 | mg/L | 10 | Standard | | | K | 39 | 205.0 | 25.8 | 2.2029 | 0.479 | 21.7 | mg/L | 32 | Standard | | | Ca | 43 | 95.0 | 48.2 | -0.1421 | 6.364 | 4477.9 | mg/L | 85 | Standard | | | Fe | 54 | 99.7 | 6.7 | 0.0997 | 0.016 | 16.3 | mg/L | 82 | Standard | | | Fe | 57 | 350.0 | 12.9 | 1.2748 | 0.224 | 17.5 | mg/L | 217 | Standard | | L> | Sc-1 | 45 | 15242.7 | 7.0 | | | | mg/L | 14524 | Standard | | | CI | 35 | 85387.3 | 1.2 | | | | ug/L | 53193 | Standard | | | Kr | 83 | 4.3 | 26.6 | | | | ug/L | 3 | Standard | | | Br | 81 | 1293.4 | 4.3 | | | | ug/L | 327 | Standard | | | Р | 31 | 18264.3 | 1.7 | | | | ug/L | 13329 | Standard | | | S | 34 | 3668.8 | 8.0 | | | | ug/L | 3234 | Standard | | | Sr | 88 | 106.7 | 28.6 | | | | ug/L | 87 | Standard | | | С | 12 | 186.7 | 20.3 | | | | mg/L | 103 | Standard | | | N | 14 | 0.0 | | | | | mg/L | 0 | Standard | | | Hg | 202 | 16.7 | 34.6 | | | | mg/L | 3 | Standard | | | Dy | 164 | 32.7 | 18.1 | | | | mg/L | 10 | Standard | | | Ho-1 | 165 | 8.3 | 34.6 | | | | mg/L | 3 | Standard | | | Er | 166 | 13.3 | 43.3 | | | | mg/L | 7 | Standard | | | 1 | 127 | 25923.8 | 0.6 | | | | mg/L | 3612 | Standard | | | | | | | | | | | | | | Analyte | Mass | QC Std % Recovery | Int Std % Recovery | Spike % Recovery | |---------|------|-------------------|--------------------|------------------| | 「> Li | 6 | | 116.844 | | | Be | 9 | | | | | L AI | 27 | | | | | 「 Sc | 45 | | | | | Ti | 47 | | | | | V | 51 | | | | | Cr | 52 | | | | | Cr | 53 | | | | | Mn | 55 | | | | | Co | 59 | | | | | Ni | 60 | | | | | Cu | 65 | | | | | Zn | 66 | | | | | > Ge | 72 | | 99.962 | | | As | 75 | | | | | Se | 82 | | | | | ∟ Se-1 | 77 | | | | | 「⊳ Ga | 71 | | | | Sample ID: L1510141301 Report Date/Time: Tuesday, October 27, 2015 20:02:52 Page 2 Approved: October 28, 2015 | I | Rb | 85 | | | |--------|------------|------------|--|---------| | L
F | Y | 89 | | | | - 1 | Rh | 103 | | | | Ē | Мо | 98 | | | | | Ag | 107 | | | | | Cd | 111 | | | | | Cd | 114 | | 404.004 | | > | In
C | 115 | | 101.094 | | | Sn
Sb | 118
123 | | | | Ĺ | Ba | 135 | | | | Ė | Ce | 140 | | | | | Tb | 159 | | | | Ē | Но | 165 | | | | | TI | 203 | | | | | TI | 205 | | | | | Pb | 206 | | | | | Pb | 207 | | | | l | Pb
U | 208
238 | | | |
 > | Bi | 209 | | 100.508 | | Ī | Na | 23 | | | | į | Mg | 24 | | | | | K | 39 | | | | | Ca | 43 | | | | | Fe | 54 | | | | | Fe
So 1 | 57
45 | | | | _> | Sc-1
Cl | 45
35 | | | | | Kr | 83 | | | | | Br | 81 | | | | | Р | 31 | | | | | S | 34 | | | | | Sr | 88 | | | | | С | 12 | | | | | N | 14 | | | | | Hg | 202
164 | | | | | Dy | 165 | | | | | H()- I | 100 | | | | | Ho-1
Er | | | | | | Er
I | 166
127 | | | | | Er
I | 166 | | | Report Date/Time: Tuesday, October 27, 2015 20:02:52 Page 3 Sample ID: L1510142301 Sample Date/Time: Tuesday, October 27, 2015 20:03:46 Number of Replicates: 3 Autosampler Position: 225 Sample Description: 1 Method File: C:\NexIONData\Method\6020a.mth Aliquot Volume (mL): Diluted to Volume (mL): User Name: BKT Nexion300X Cumulative Autodilution Factor: 1 Nexion-ICP 200.8\6020 **Concentration Results** | | | | | | Gonoonia | | uito | | | | |----|--------|---------------|-----------|------|----------|-------|-------|-------|---------------|----------| | IS | Analyt | e Mass | Intensity | RSD | Conc. | SD | RSD | Units | Blank Intens. | Mode | | Γ> | Li | 6 | 33842.8 | 4.2 | | | | ug/L | 26270 | Standard | | | Be | 9 | 15.0 | 88.2 | -0.0120 | 0.020 | 169.5 | ug/L | 2 | Standard | | L | ΑI | 27 | 2189020.0 | 3.0 | 30.3461 | 2.129 | 7.0 | ug/L | 403 | Standard | | Γ | Sc | 45 | 17044.6 | 8.7 | | | | ug/L | 14524 | Standard | | | Ti | 47 | 465.3 | 6.2 | 0.6744 | 0.287 | 42.6 | ug/L | 365 | Standard | | | ٧ | 51 | 1266.7 | 16.4 | 0.0875 | 0.057 | 64.8 | ug/L | 805 | Standard | | | Cr | 52 | 9798.2 | 2.1 | 0.8706 | 0.165 | 19.0 | ug/L | 5481 | Standard | | | Cr | 53 | 2796.9 | 5.6 | 4.4443 | 0.544 | 12.2 | ug/L | 268 | Standard | | | Mn | 55 | 10402.9 | 12.0 | 2.6293 | 0.462 | 17.6 | ug/L | 670 | Standard | | | Co | 59 | 1560.1 | 5.6 | 0.4225 | 0.048 | 11.3 | ug/L | 146 | Standard | | | Ni | 60 | 3305.7 | 2.1 | 2.5493 | 0.199 | 7.8 | ug/L | 220 | Standard | | | Cu | 65 | 53488.9 | 1.6 | 45.7403 | 3.258 | 7.1 | ug/L | 147 | Standard | | | Zn | 66 | 17430.4 | 2.2 | 24.7141 | 1.738 | 7.0 | ug/L | 211 | Standard | | > | Ge | 72 | 223952.5 | 5.7 | | | | ug/L | 210599 | Standard | | | As | 75 | 167.5 | 8.7 | 0.3037 | 0.031 | 10.2 | ug/L | -47 | Standard | | | Se | 82 | 29.5 | 11.8 | 0.2923 | 0.030 | 10.3 | ug/L | 15 | Standard | | L | Se-1 | 77 | 138.3 | 14.8 | 2.1451 | 0.399 | 18.6 | ug/L | 65 | Standard | | Γ> | Ga | 71 | 60.0 | 43.3 | | | | mg/L | 27 | Standard | | L | Rb | 85 | 2823.6 | 2.2 | | | | ug/L | 17 | Standard | | Γ | Υ | 89 | 236415.5 | 7.6 | | | | ug/L | 216672 | Standard | | L> | Rh | 103 | 2526.9 | 1.8 | | | | ug/L | 18 | Standard | | Γ | Мо | 98 | 320.5 | 9.8 | 0.2080 | 0.026 | 12.3 | ug/L | 11 | Standard | | | Ag | 107 | 406.3 | 7.9 | 0.0681 | 0.005 | 7.5 | ug/L | 55 | Standard | | | Cd | 111 | 1560.7 | 4.2 | 1.0133 | 0.070 | 6.9 | mg/L | 7 | Standard | | | Cd |
114 | 3829.9 | 2.9 | 1.0286 | 0.065 | 6.3 | ug/L | 4 | Standard | | > | In | 115 | 352825.1 | 3.6 | | | | ug/L | 322525 | Standard | | | Sn | 118 | 23388.1 | 3.7 | 5.2493 | 0.355 | 6.8 | ug/L | 345 | Standard | | | Sb | 123 | 158.9 | 21.7 | 0.0280 | 0.009 | 33.7 | ug/L | 88 | Standard | | L | Ва | 135 | 27212.4 | 2.2 | 15.5495 | 0.890 | 5.7 | ug/L | 12 | Standard | | Γ | Ce | 140 | 5689.4 | 1.9 | | | | ug/L | 37 | Standard | | L> | Tb | 159 | 665093.5 | 6.0 | | | | ug/L | 631826 | Standard | | Γ | Но | 165 | 11.7 | 89.2 | | | | ug/L | 3 | Standard | | | TI | 203 | 86.7 | 30.4 | 0.0098 | 0.004 | 40.9 | ug/L | 7 | Standard | | | TI | 205 | 46.7 | 34.4 | 0.0125 | 0.004 | 28.8 | ug/L | 7 | Standard | | | Pb | 206 | 1341.1 | 1.6 | 0.2562 | 0.017 | 6.6 | ug/L | 159 | Standard | | | Pb | 207 | 1094.7 | 3.7 | 0.2273 | 0.020 | 8.9 | ug/L | 120 | Standard | | | Pb | 208 | 4502.6 | 1.6 | 0.2390 | 0.018 | 7.6 | ug/L | 503 | Standard | | | U | 238 | 362.3 | 8.0 | 0.0592 | 0.007 | 11.2 | ug/L | 5 | Standard | | L> | Bi | 209 | 358743.1 | 4.7 | | | | ug/L | 333509 | Standard | Sample ID: L1510142301 Report Date/Time: Tuesday, October 27, 2015 20:06:03 Page 1 Approved: October 28, 2015 Page 696 L15101055 / Revision: 0 / 760 total pages | Γ | Na | 23 | 0.0 | | | | | mg/L | 0 | Standard | |----|------|-----|---------|------|---------|-------|-------|------|-------|----------| | i | Mg | 24 | 5874.5 | 3.4 | 11.9685 | 1.115 | 9.3 | mg/L | 10 | Standard | | i | ĸ | 39 | 233.3 | 26.8 | 2,3139 | 0.878 | 37.9 | mg/L | 32 | Standard | | i | Ca | 43 | 150.0 | 30.0 | 6.4627 | 7.125 | 110.3 | mg/L | 85 | Standard | | i | Fe | 54 | 117.5 | 35.5 | 0.1083 | 0.064 | 59.5 | mg/L | 82 | Standard | | İ | Fe | 57 | 340.0 | 5.9 | 0.8899 | 0.395 | 44.4 | mg/L | 217 | Standard | | Ĺ> | Sc-1 | 45 | 17044.6 | 8.7 | | | | mg/L | 14524 | Standard | | | CI | 35 | 83345.3 | 2.1 | | | | ug/L | 53193 | Standard | | | Kr | 83 | 3.3 | 17.3 | | | | ug/L | 3 | Standard | | | Br | 81 | 1720.1 | 6.0 | | | | ug/L | 327 | Standard | | | Р | 31 | 16927.8 | 0.4 | | | | ug/L | 13329 | Standard | | | S | 34 | 3588.8 | 4.6 | | | | ug/L | 3234 | Standard | | | Sr | 88 | 133.3 | 26.6 | | | | ug/L | 87 | Standard | | | С | 12 | 400.0 | 17.3 | | | | mg/L | 103 | Standard | | | N | 14 | 0.0 | | | | | mg/L | 0 | Standard | | | Hg | 202 | 43.3 | 70.5 | | | | mg/L | 3 | Standard | | | Dy | 164 | 9.2 | 8.0 | | | | mg/L | 10 | Standard | | | Ho-1 | 165 | 11.7 | 89.2 | | | | mg/L | 3 | Standard | | | Er | 166 | 16.7 | 91.7 | | | | mg/L | 7 | Standard | | | I | 127 | 7386.8 | 6.5 | | | | mg/L | 3612 | Standard | | | | | | | | | | | | | | _ | Analyte | | QC Std % Recovery | Int Std % Recovery | Spike % Recovery | |----|---------|----|-------------------|--------------------|------------------| | Γ> | Li | 6 | | 128.828 | | | | Be | 9 | | | | | L | Al | 27 | | | | | Γ | Sc | 45 | | | | | | Ti | 47 | | | | | | V | 51 | | | | | | Cr | 52 | | | | | | Cr | 53 | | | | | | Mn | 55 | | | | | | Co | 59 | | | | | | Ni | 60 | | | | | | Cu | 65 | | | | | | Zn | 66 | | | | | > | Ge | 72 | | 106.341 | | | | As | 75 | | | | | | Se | 82 | | | | | L | Se-1 | 77 | | | | | Γ> | Ga | 71 | | | | Sample ID: L1510142301 Report Date/Time: Tuesday, October 27, 2015 20:06:03 Page 2 Approved: October 28, 2015 | L Rb | 85 | | | | |----------------|------------------------------|----------------------|---------------------------------------|--| | ΓΥ | 89 | | | | | $\lfloor_>$ Rh | 103 | | | | | - Mo | 98 | | | | | Ag | 107 | | | | | Cď | 111 | | | | | Cd | 114 | | | | | > In | 115 | | 109.395 | | | Sn | 118 | | | | | Sb | 123 | | | | | Ba | 135 | | | | | ∟ Ce | 140 | | | | | Tb | 159 | | | | | Ho | 165 | | | | | TI | 203 | | | | | Ti | 205 | | | | | Pb | 206 | | | | | Pb | 207 | | | | | Pb | 208 | | | | | U | 238 | | | | | ∟> Bi | 209 | | 107.566 | | | √ Na | 23 | | | | | Mg | 24 | | | | | K | 39 | | | | | Ca | 43 | | | | | Fe | 54 | | | | | Fe | 57 | | | | | > Sc-1 | 45 | | | | | CI | 35 | | | | | Kr | 83 | | | | | Br | 81 | | | | | Р | 31 | | | | | S | 34 | | | | | Sr | 88 | | | | | С | 12 | | | | | N | 14 | | | | | Hg | 202 | | | | | Dy | 164 | | | | | Ho-1 | 165 | | | | | Er | 166 | | | | | I | 127 | | | | | QC Oi | ut of Limits | | | | | | | Analyte Mass | Out of Limits Message | | | | ement Type
Std for sample | Analyte Mass
Li 6 | Out of Limits Message
Rerun sample | | | LIOIIICS | olu ioi sairipie | LI O | Refull Sample | | Report Date/Time: Tuesday, October 27, 2015 20:06:03 Page 3 Sample ID: L1510142901 Sample Date/Time: Tuesday, October 27, 2015 20:06:58 Number of Replicates: 3 Autosampler Position: 226 Sample Description: 1 Method File: C:\NexIONData\Method\6020a.mth Aliquot Volume (mL): Diluted to Volume (mL): User Name: BKT Nexion300X Cumulative Autodilution Factor: 1 Nexion-ICP 200.8\6020 | | | | Concentration Results | | | | | | | | | |----|----------|------------|-----------------------|-------------|------------------|-------|------|--------------|---------------|----------------------|--| | IS | Analyt | e Mass | Intensity | RSD | Conc. | SD | RSD | Units | Blank Intens. | Mode | | | Γ> | Li | 6 | 29592.2 | 2.9 | | | | ug/L | 26270 | Standard | | | | Be | 9 | 10.0 | 50.0 | -0.0176 | 0.009 | 50.8 | ug/L | 2 | Standard | | | L | ΑI | 27 | 4301629.6 | 1.3 | 68.1470 | 2.876 | 4.2 | ug/L | 403 | Standard | | | Γ | Sc | 45 | 15524.6 | 6.5 | | | | ug/L | 14524 | Standard | | | | Ti | 47 | 523.7 | 9.2 | 1.2510 | 0.424 | 33.9 | ug/L | 365 | Standard | | | | V | 51 | 1509.7 | 15.8 | 0.1834 | 0.061 | 33.2 | ug/L | 805 | Standard | | | | Cr | 52 | 10283.2 | 1.3 | 1.1403 | 0.104 | 9.1 | ug/L | 5481 | Standard | | | | Cr | 53 | 11669.5 | 9.2 | 21.5946 | 1.005 | 4.7 | ug/L | 268 | Standard | | | | Mn | 55 | 23517.9 | 1.3 | 6.8615 | 0.495 | 7.2 | ug/L | 670 | Standard | | | | Co | 59 | 721.0 | 5.8 | 0.1863 | 0.026 | 13.9 | ug/L | 146 | Standard | | | | Ni | 60 | 1551.4 | 2.4 | 1.1704 | 0.110 | 9.4 | ug/L | 220 | Standard | | | | Cu | 65 | 46427.0 | 8.0 | 42.5240 | 2.519 | 5.9 | ug/L | 147 | Standard | | | | Zn | 66 | 32419.7 | 1.9 | 49.8606 | 2.503 | 5.0 | ug/L | 211 | Standard | | | > | Ge | 72 | 208902.3 | 5.4 | | | | ug/L | 210599 | Standard | | | | As | 75 | 70.5 | 79.0 | 0.1784
1.1801 | 0.076 | 42.8 | ug/L | -47 | Standard | | | | Se | 82 | | 79.2 5.3 | | 0.149 | 12.6 | ug/L | 15 | Standard | | | Ē | Se-1 | 77 | 716.0 | 1.9 | 17.5904 | 0.824 | 4.7 | ug/L | 65 | Standard | | | [> | Ga | 71 | 101.7 | 12.4 | | | | mg/L | 27 | Standard | | | Ē | Rb | 85 | 39015.2 | 2.9 | | | | ug/L | 17 | Standard | | | | Υ | 89 | 221883.6 | 2.6 | | | | ug/L | 216672 | Standard | | | [> | Rh | 103 | 20.0 | 25.0 | | | | ug/L | 18 | Standard | | | ! | Мо | 98 | 14619.9 | 2.8 | 10.5444 | 0.491 | 4.7 | ug/L | 11 | Standard | | | ļ | Ag | 107 | 165.3 | 3.3 | 0.0242 | 0.000 | 1.8 | ug/L | 55 | Standard | | | | Cd | 111 | 29.6 | 7.6 | 0.0150 | 0.002 | 16.3 | mg/L | 7 | Standard | | | ! | Cd | 114 | 95.7 | 17.3 | 0.0336 | 0.006 | 18.2 | ug/L | 4 | Standard | | | > | In
O | 115 | 320769.1 | 4.1 | 0.0440 | 0.005 | 44.4 | ug/L | 322525 | Standard | | | | Sn | 118 | 1838.4 | 3.2 | 0.3146 | 0.035 | 11.1 | ug/L | 345 | Standard | | | | Sb | 123 | 246.0 | 5.9 | 0.0549 | 0.004 | 6.6 | ug/L | 88 | Standard | | | Ļ | Ва | 135
140 | 91932.7
288.3 | 0.5
24.7 | 57.8419 | 2.737 | 4.7 | ug/L | 12
37 | Standard
Standard | | | I. | Ce
Tb | 159 | 200.3
614395.2 | 5.0 | | | | ug/L
ug/L | 631826 | Standard | | | L> | Но | 165 | 18.3 | 56.8 | | | | ug/L
ug/L | 3 | Standard | | | 1 | по
Ti | 203 | 90.7 | 7.8 | 0.0110 | 0.001 | 10.3 | _ | 7 | Standard | | | | TI | 205 | 71.7 | 7.6
34.4 | 0.0110 | 0.001 | 33.7 | ug/L
ug/L | 7 | Standard | | | | Pb | 206 | 1947.1 | 1.6 | 0.4198 | 0.008 | 6.7 | ug/L
ug/L | 159 | Standard | | | 1 | Pb | 207 | 1667.1 | 2.5 | 0.3951 | 0.028 | 3.1 | ug/L
ug/L | 120 | Standard | | | 1 | PU
Db | 207 | 6676.0 | 2.0 | 0.3931 | 0.012 | | ug/L | 120
503 | Standard | | 0.4001 0.1799 Sample ID: L1510142901 208 238 209 Report Date/Time: Tuesday, October 27, 2015 20:09:15 6676.9 1004.4 343272.8 2.2 2.5 4.2 Page 1 Pb U Bi Approved: October 28, 2015 Generated: 10/30/2015 10:11 503 5 333509 Standard Standard Standard Page 699 0.029 0.004 7.3 ug/L 2.3 ug/L ug/L | _ | | | | | | | | | | | |----|------|-----|-----------|-------|----------|-------|------|------|-------|----------| | | Na | 23 | 0.0 | | | | | mg/L | 0 | Standard | | | Mg | 24 | 59262.3 | 0.9 | 132.7045 | 9.605 | 7.2 | mg/L | 10 | Standard | | | K | 39 | 590.0 | 13.2 | 6.6889 | 0.964 | 14.4 | mg/L | 32 | Standard | | | Ca | 43 | 113.3 | 15.5 | 2.6000 | 2.134 | 82.1 | mg/L | 85 | Standard | | | Fe | 54 | 144.2 | 19.2 | 0.2003 | 0.083 | 41.6 | mg/L | 82 | Standard | | | Fe | 57 | 388.3 | 3.9 | 1.5784 | 0.345 | 21.9 | mg/L | 217 | Standard | | L> | Sc-1 | 45 | 15524.6 | 6.5 | | | | mg/L | 14524 | Standard | | | CI | 35 | 90148.7 | 0.7 | | | | ug/L | 53193 | Standard | | | Kr | 83 | 4.0 | 66.1 | | | | ug/L | 3 | Standard | | | Br | 81 | 3650.4 | 2.6 | | | | ug/L | 327 | Standard | | | Р | 31 | 17903.9 | 2.4 | | | | ug/L | 13329 | Standard | | | S | 34 | 3817.1 | 3.1 | | | | ug/L | 3234 | Standard | | | Sr | 88 | 161.7 | 3.6 | | | | ug/L | 87 | Standard | | | С | 12 | 1046.7 | 14.9 | | | | mg/L | 103 | Standard | | | N | 14 | 0.0 | | | | | mg/L | 0 | Standard | | | Hg | 202 | 80.0 | 87.5 | | | | mg/L | 3 | Standard | | | Dy | 164 | 19.7 | 100.4 | | | | mg/L | 10 | Standard | | | Ho-1 | 165 | 18.3 | 56.8 | | | | mg/L | 3 | Standard | | | Er | 166 | 6.7 | 86.6 | | | | mg/L | 7 | Standard | | | I | 127 | 1884449.3 | 2.9 | | | | mg/L | 3612 | Standard | | Analyte | Mass | QC Std % Recovery | Int Std % Recovery | Spike % Recovery | |---------|------|-------------------|--------------------|------------------| | 「⊳ Li | 6 | | 112.648 | | | Be | 9 | | | | | L AI | 27 | | | | | 「 Sc | 45 | | | | | Ti | 47 | | | | | V | 51 | | | | | Cr | 52 | | | | | Cr | 53 | | | | | Mn | 55 | | | | | Co | 59 | | | | | Ni | 60 | | | | | Cu | 65
 | | | | Zn | 66 | | | | | > Ge | 72 | | 99.194 | | | As | 75 | | | | | Se | 82 | | | | | ∟ Se-1 | 77 | | | | | 「⊳ Ga | 71 | | | | Sample ID: L1510142901 Report Date/Time: Tuesday, October 27, 2015 20:09:15 Page 2 Approved: October 28, 2015 | L Rb | 85 | | | | |---------|------------------|---------|------|-----------------------| | ΓY | 89 | | | | | Ĺ> Rh | 103 | | | | | Мо | 98 | | | | | Ag | 107 | | | | | Cd | 111 | | | | | Cd | 114 | | | | | > In | 115 | | | 99.456 | | Sn | 118 | | | | | Sb | 123 | | | | | L Ba | 135 | | | | | ГСе | 140 | | | | | Ĺ> Tb | 159 | | | | | Г Но | 165 | | | | | TI | 203 | | | | | TI | 205 | | | | | Pb | 206 | | | | | Pb | 207 | | | | | Pb | 208 | | | | | U | 238 | | | | | Ĺ> Bi | 209 | | | 102.927 | | Г Na | 23 | | | | | Mg | 24 | | | | | K | 39 | | | | | Ca | 43 | | | | | Fe | 54 | | | | | Fe | 57 | | | | | _> Sc-1 | 45 | | | | | CI | 35 | | | | | Kr | 83 | | | | | Br | 81 | | | | | Р | 31 | | | | | S | 34 | | | | | Sr | 88 | | | | | С | 12 | | | | | N | 14 | | | | | Hg | 202 | | | | | Dy | 164 | | | | | Ho-1 | 165 | | | | | Er | 166 | | | | | | 127 | | | | | | ut of Limits | Analyte | | | | Measure | Measurement Type | | Mass | Out of Limits Message | Report Date/Time: Tuesday, October 27, 2015 20:09:15 Page 3 **Concentration Results** Conc. SD RSD Units Blank Intens. 12 37 3 7 159 503 333509 5 631826 Standard Mode Sample ID: L1510143001 Sample Date/Time: Tuesday, October 27, 2015 20:10:09 RSD Number of Replicates: 3 Autosampler Position: 227 Sample Description: 1 Method File: C:\NexIONData\Method\6020a.mth Intensity Aliquot Volume (mL): Diluted to Volume (mL): User Name: BKT Nexion300X Cumulative Autodilution Factor: 1 Nexion-ICP 200.8\6020 IS Analyte Mass | Γ> | Li | 6 | 31537.8 | 0.6 | | | | ug/L | 26270 | Standard | |----|------|-----|-----------|------|---------|-------|-------|------|--------|----------| | | Be | 9 | 16.7 | 62.4 | -0.0081 | 0.017 | 208.5 | ug/L | 2 | Standard | | L | ΑI | 27 | 5214987.0 | 1.7 | 77.4574 | 1.110 | 1.4 | ug/L | 403 | Standard | | Γ | Sc | 45 | 16197.0 | 4.0 | | | | ug/L | 14524 | Standard | | | Ti | 47 | 592.7 | 4.4 | 1.5504 | 0.140 | 9.0 | ug/L | 365 | Standard | | | V | 51 | 1182.6 | 28.6 | 0.0757 | 0.096 | 126.2 | ug/L | 805 | Standard | | | Cr | 52 | 10352.5 | 2.9 | 1.0688 | 0.084 | 7.8 | ug/L | 5481 | Standard | | | Cr | 53 | 14837.3 | 5.1 | 26.6749 | 1.582 | 5.9 | ug/L | 268 | Standard | | | Mn | 55 | 22796.8 | 1.1 | 6.3840 | 0.121 | 1.9 | ug/L | 670 | Standard | | | Co | 59 | 708.0 | 4.9 | 0.1735 | 0.012 | 6.9 | ug/L | 146 | Standard | | | Ni | 60 | 1688.4 | 5.4 | 1.2379 | 0.089 | 7.2 | ug/L | 220 | Standard | | | Cu | 65 | 45446.1 | 0.9 | 40.1010 | 0.319 | 8.0 | ug/L | 147 | Standard | | | Zn | 66 | 29733.2 | 1.7 | 44.0096 | 0.535 | 1.2 | ug/L | 211 | Standard | | > | Ge | 72 | 216335.2 | 0.7 | | | | ug/L | 210599 | Standard | | | As | 75 | 75.4 | 63.2 | 0.1829 | 0.067 | 36.5 | ug/L | -47 | Standard | | | Se | 82 | 66.6 | 3.3 | 0.9206 | 0.044 | 4.8 | ug/L | 15 | Standard | | L | Se-1 | 77 | 813.7 | 2.6 | 19.3938 | 0.585 | 3.0 | ug/L | 65 | Standard | | Γ> | Ga | 71 | 110.0 | 16.4 | | | | mg/L | 27 | Standard | | L | Rb | 85 | 41023.8 | 3.1 | | | | ug/L | 17 | Standard | | Γ | Υ | 89 | 229952.1 | 1.5 | | | | ug/L | 216672 | Standard | | L> | Rh | 103 | 28.3 | 40.8 | | | | ug/L | 18 | Standard | | Γ | Mo | 98 | 13174.8 | 0.9 | 9.1458 | 0.121 | 1.3 | ug/L | 11 | Standard | | | Ag | 107 | 128.7 | 9.0 | 0.0153 | 0.002 | 14.6 | ug/L | 55 | Standard | | | Cd | 111 | 25.3 | 9.4 | 0.0112 | 0.002 | 15.8 | mg/L | 7 | Standard | | | Cd | 114 | 122.7 | 27.4 | 0.0401 | 0.010 | 24.3 | ug/L | 4 | Standard | | > | In | 115 | 332923.8 | 0.7 | | | | ug/L | 322525 | Standard | | | Sn | 118 | 1640.1 | 9.8 | 0.2480 | 0.037 | 14.8 | ug/L | 345 | Standard | | | Sb | 123 | 229.6 | 12.3 | 0.0482 | 0.007 | 14.7 | ug/L | 88 | Standard | 32.5014 0.0106 0.0154 0.3405 0.3194 0.3254 0.1576 0.290 0.003 0.004 0.010 0.004 800.0 0.003 0.9 24.6 27.6 3.0 1.4 2.5 ug/L Sample ID: L1510143001 135 140 159 165 203 205 206 207 208 238 209 Report Date/Time: Tuesday, October 27, 2015 20:12:26 53703.0 641599.5 366.7 15.0 88.7 58.3 1637.1 1396.7 5620.4 888.4 345199.1 1.4 3.4 2.0 57.7 19.2 32.5 2.8 1.5 2.1 1.6 0.5 Page 1 Ва Се Tb Но ΤI ΤI Ph Pb Pb U Bi Approved: October 28, 2015 | _ | | | | | | | | | | | |----|------|-----|-----------|-------|----------|-------|------|------|-------|----------| | | Na | 23 | 5.0 | 100.0 | | | | mg/L | 0 | Standard | | | Mg | 24 | 62247.6 | 1.2 | 133.3297 | 5.495 | 4.1 | mg/L | 10 | Standard | | | K | 39 | 641.7 | 4.3 | 6.9657 | 0.188 | 2.7 | mg/L | 32 | Standard | | | Ca | 43 | 171.7 | 13.8 | 10.3147 | 2.502 | 24.3 | mg/L | 85 | Standard | | | Fe | 54 | 127.5 | 19.4 | 0.1457 | 0.044 | 30.5 | mg/L | 82 | Standard | | | Fe | 57 | 353.3 | 8.0 | 1.1335 | 0.364 | 32.1 | mg/L | 217 | Standard | | L> | Sc-1 | 45 | 16197.0 | 4.0 | | | | mg/L | 14524 | Standard | | | CI | 35 | 87587.2 | 1.8 | | | | ug/L | 53193 | Standard | | | Kr | 83 | 3.3 | 34.6 | | | | ug/L | 3 | Standard | | | Br | 81 | 3377.0 | 2.7 | | | | ug/L | 327 | Standard | | | Р | 31 | 18144.2 | 8.0 | | | | ug/L | 13329 | Standard | | | S | 34 | 3870.5 | 5.2 | | | | ug/L | 3234 | Standard | | | Sr | 88 | 151.7 | 13.3 | | | | ug/L | 87 | Standard | | | С | 12 | 986.7 | 9.8 | | | | mg/L | 103 | Standard | | | N | 14 | 0.0 | | | | | mg/L | 0 | Standard | | | Hg | 202 | 60.0 | 57.7 | | | | mg/L | 3 | Standard | | | Dy | 164 | 16.0 | 67.7 | | | | mg/L | 10 | Standard | | | Ho-1 | 165 | 15.0 | 57.7 | | | | mg/L | 3 | Standard | | | Er | 166 | 13.3 | 114.6 | | | | mg/L | 7 | Standard | | | I | 127 | 2212239.9 | 3.4 | | | | mg/L | 3612 | Standard | | Analyte | Mass | QC Std % Recovery | Int Std % Recovery | Spike % Recovery | |---------|------|-------------------|--------------------|------------------| | 「⊳ Li | 6 | | 120.054 | | | Be | 9 | | | | | L AI | 27 | | | | | 「 Sc | 45 | | | | | Ti | 47 | | | | | V | 51 | | | | | Cr | 52 | | | | | Cr | 53 | | | | | Mn | 55 | | | | | Co | 59 | | | | | Ni | 60 | | | | | Cu | 65 | | | | | Zn | 66 | | | | | > Ge | 72 | | 102.724 | | | As | 75 | | | | | Se | 82 | | | | | ∟ Se-1 | 77 | | | | | √̄> Ga | 71 | | | | Sample ID: L1510143001 Report Date/Time: Tuesday, October 27, 2015 20:12:26 Page 2 Approved: October 28, 2015 | L Rb 85 √ 89 L> Rh 103 √ Mo 98 Ag 107 Cd 111 Cd 114 > In 115 Sn 118 Sb 123 Ba 135 Ce 140 L> Tb 159 Ho 165 TI 203 | | 103.224 | |--|----------------------|---------------------------------------| | TI | | 103.505 | | Br 81 P 31 S 34 Sr 88 C 12 N 14 Hg 202 Dy 164 Ho-1 165 Er 166 I 127 QC Out of Limits Measurement Type Li 6 Int Std for sample | Analyte Mass
Li 6 | Out of Limits Message
Rerun sample | Report Date/Time: Tuesday, October 27, 2015 20:12:26 Page 3 Sample ID: L1510143101 Sample Date/Time: Tuesday, October 27, 2015 20:13:20 Number of Replicates: 3 Autosampler Position: 228 Sample Description: 5 Method File: C:\NexIONData\Method\6020a.mth Aliquot Volume (mL): Diluted to Volume (mL): User Name: BKT Nexion300X Cumulative Autodilution Factor: 1 Nexion-ICP 200.8\6020 **Concentration Results** | | | | | | Ooncential | 1011 1103 | uito | | | | |----|--------|---------------|-----------|------|------------|-----------|-------|-------|---------------|----------| | IS | Analyt | e Mass | Intensity | RSD | Conc. | SD | RSD | Units | Blank Intens. | Mode | | Γ> | Li | 6 | 32379.6 | 3.5 | | | | ug/L | 26270 | Standard | | | Ве | 9 | 16.7 | 17.3 | -0.0088 | 0.004 | 49.9 | ug/L | 2 | Standard | | L | Αl | 27 | 759732.8 | 2.6 | 10.9825 | 0.484 | 4.4 | ug/L | 403 | Standard | | Γ | Sc | 45 | 16987.9 | 4.3 | | | | ug/L | 14524 | Standard | | | Ti | 47 | 183.3 | 23.4 | -1.0422 | 0.243 | 23.3 | ug/L | 365 | Standard | | | V | 51 | 1300.3 | 1.4 | 0.0901 | 0.009 | 9.5 | ug/L | 805 | Standard | | | Cr | 52 | 8083.2 | 3.4 | 0.4510 | 0.056 | 12.4 | ug/L | 5481 | Standard | | | Cr | 53 | 3088.6 | 8.2 | 4.8403 | 0.421 | 8.7 | ug/L | 268 | Standard | | | Mn | 55 | 4520.3 | 2.2 | 0.9139 | 0.033 | 3.6 | ug/L | 670 | Standard | | | Co | 59 | 309.7 | 1.0 | 0.0452 | 0.003 | 5.6 | ug/L | 146 | Standard | | | Ni | 60 | 496.0 | 3.1 | 0.1818 | 0.017 | 9.4 | ug/L | 220 | Standard | | | Cu | 65 | 13240.1 | 3.0 | 10.9499 | 0.215 | 2.0 | ug/L | 147 | Standard | | | Zn | 66 | 3645.1 | 1.2 | 4.5640 | 0.153 | 3.4 | ug/L | 211 | Standard | | > | Ge | 72 | 228104.6 | 1.8 | | | | ug/L | 210599 | Standard | | | As | 75 | 75.7 | 47.8 | 0.1779 | 0.048 | 27.1 | ug/L | -47 | Standard | | | Se | 82 | 62.7 | 15.0 | 0.8048 | 0.162 | 20.1 | ug/L | 15 | Standard | | L | Se-1 | 77 | 167.7 | 5.1 | 2.7965 | 0.250 | 8.9 | ug/L | 65 | Standard | | Γ> | Ga | 71 | 45.0 | 11.1 | | | | mg/L | 27 | Standard | | L | Rb | 85 | 4469.0 | 5.3 | | | | ug/L | 17 | Standard | | Γ | Υ | 89 | 234873.3 | 1.2 | | | | ug/L | 216672 | Standard | | L> | Rh | 103 | 18.3 | 41.7 | | | | ug/L | 18 | Standard | | Γ | Mo | 98 | 2907.0 | 2.8 | 1.9452 | 0.067 | 3.4 | ug/L | 11 | Standard | | | Ag | 107 | 71.0 | 13.4 | 0.0029 | 0.002 | 75.7 | ug/L | 55 | Standard | | | Cd | 111 | 8.3 | 17.5 | -0.0008 | 0.001 | 102.5 | mg/L | 7 | Standard | | | Cd | 114 | 30.4 | 91.4 | 0.0138 | 0.008 | 57.0 | ug/L | 4 | Standard | | > | In | 115 | 345150.8 | 2.4 | | | | ug/L | 322525 | Standard | | | Sn | 118 | 731.7 | 6.8 | 0.0197 | 0.010 | 48.1 | ug/L | 345 | Standard | | | Sb | 123 | 65.9 | 1.2 | 0.0056 | 0.000 | 7.5 | ug/L | 88 | Standard | | L | Ва | 135 | 2504.5 | 1.9 | 1.4394 | 0.012 | 8.0 | ug/L | 12 | Standard | | Γ | Ce | 140 | 105.0 | 12.6 | | | | ug/L | 37 | Standard | | L> | Tb | 159 | 654393.3 | 3.7 | | | | ug/L | 631826 | Standard | | Γ | Но | 165 | 8.3 | 69.3 | | | | ug/L | 3 |
Standard | | | TI | 203 | 82.0 | 11.0 | 0.0093 | 0.001 | 16.1 | ug/L | 7 | Standard | | | TI | 205 | 60.0 | 14.4 | 0.0154 | 0.002 | 12.6 | ug/L | 7 | Standard | | | Pb | 206 | 562.3 | 6.3 | 0.0738 | 0.008 | 10.3 | ug/L | 159 | Standard | | | Pb | 207 | 485.3 | 2.1 | 0.0700 | 0.004 | 6.0 | ug/L | 120 | Standard | | | Pb | 208 | 1957.0 | 5.2 | 0.0744 | 0.005 | 6.4 | ug/L | 503 | Standard | | | U | 238 | 250.0 | 4.5 | 0.0399 | 0.003 | 7.1 | ug/L | 5 | Standard | | L> | Bi | 209 | 354898.7 | 1.9 | | | | ug/L | 333509 | Standard | | | | | | | | | | | | | Sample ID: L1510143101 Report Date/Time: Tuesday, October 27, 2015 20:15:37 Page 1 Approved: October 28, 2015 | _ | | | | | | | | | • | 0, , , | |----|------|-----|----------|-------|---------|-------|-------|------|-------|----------| | | Na | 23 | 0.0 | | | | | mg/L | 0 | Standard | | | Mg | 24 | 10645.4 | 0.5 | 21.7073 | 0.827 | 3.8 | mg/L | 10 | Standard | | | K | 39 | 98.3 | 7.8 | 0.8400 | 0.111 | 13.2 | mg/L | 32 | Standard | | | Ca | 43 | 41.7 | 38.6 | -8.7949 | 2.008 | 22.8 | mg/L | 85 | Standard | | | Fe | 54 | 76.0 | 17.2 | 0.0265 | 0.033 | 124.9 | mg/L | 82 | Standard | | | Fe | 57 | 308.3 | 6.8 | 0.6225 | 0.190 | 30.5 | mg/L | 217 | Standard | | L> | Sc-1 | 45 | 16987.9 | 4.3 | | | | mg/L | 14524 | Standard | | | CI | 35 | 85245.1 | 0.6 | | | | ug/L | 53193 | Standard | | | Kr | 83 | 4.0 | 90.1 | | | | ug/L | 3 | Standard | | | Br | 81 | 4810.8 | 10.9 | | | | ug/L | 327 | Standard | | | Р | 31 | 16467.3 | 2.2 | | | | ug/L | 13329 | Standard | | | S | 34 | 4028.9 | 5.7 | | | | ug/L | 3234 | Standard | | | Sr | 88 | 108.3 | 21.8 | | | | ug/L | 87 | Standard | | | С | 12 | 213.3 | 7.2 | | | | mg/L | 103 | Standard | | | N | 14 | 0.0 | | | | | mg/L | 0 | Standard | | | Hg | 202 | 3.3 | 173.2 | | | | mg/L | 3 | Standard | | | Dy | 164 | 12.7 | 123.3 | | | | mg/L | 10 | Standard | | | Ho-1 | 165 | 8.3 | 69.3 | | | | mg/L | 3 | Standard | | | Er | 166 | 13.3 | 114.6 | | | | mg/L | 7 | Standard | | | I | 127 | 100663.6 | 3.9 | | | | mg/L | 3612 | Standard | | | | | | | | | | | | | | Analyte | Mass | QC Std % Recovery | Int Std % Recovery | Spike % Recovery | |---------|------|-------------------|--------------------|------------------| | 「> Li | 6 | | 123.259 | | | Be | 9 | | | | | L AI | 27 | | | | | 「 Sc | 45 | | | | | Ti | 47 | | | | | V | 51 | | | | | Cr | 52 | | | | | Cr | 53 | | | | | Mn | 55 | | | | | Co | 59 | | | | | Ni | 60 | | | | | Cu | 65 | | | | | Zn | 66 | | | | | > Ge | 72 | | 108.312 | | | As | 75 | | | | | Se | 82 | | | | | L Se-1 | 77 | | | | | 「⊳ Ga | 71 | | | | Sample ID: L1510143101 Report Date/Time: Tuesday, October 27, 2015 20:15:37 Page 2 Approved: October 28, 2015 | L Rb 85 √ 89 L> Rh 103 √ Mo 98 Ag 107 Cd 111 Cd 114 In 115 Sn 118 Sb 123 Ba 135 Ce 140 L> Tb Tb 159 Ho 165 TI 203 TI 205 Pb 206 Pb 207 Pb 208 U 238 Bi 209 Na 23 Mg 24 K 39 Ca 43 Fe 54 | | 107.015 | |---|--------------|-----------------------| | Fe 57
 -> Sc-1 45
 Cl 35
 Kr 83 | | | | Br 81 | | | | P 31
S 34 | | | | Sr 88 | | | | C 12 | | | | N 14
Hg 202 | | | | Dy 164 | | | | Ho-1 165 | | | | Er 166
I 127 | | | | QC Out of Limits | | | | Measurement Type | Analyte Mass | Out of Limits Message | | Li 6 Int Std for sample | Li 6 | Rerun sample | | Ti 47 Lower | Ti 47 | | | | | | Report Date/Time: Tuesday, October 27, 2015 20:15:37 Page 3 Sample ID: L1510143201 Sample Date/Time: Tuesday, October 27, 2015 20:16:32 Number of Replicates: 3 Autosampler Position: 229 Sample Description: 5 Method File: C:\NexIONData\Method\6020a.mth Aliquot Volume (mL): Diluted to Volume (mL): User Name: BKT Nexion300X Cumulative Autodilution Factor: 1 Nexion-ICP 200.8\6020 | | | | | | Ooncentra | 11011 1103 | uito | | | | |----|--------|--------|-----------|------|-----------|------------|------|-------|---------------|----------| | IS | Analyt | e Mass | Intensity | RSD | Conc. | SD | RSD | Units | Blank Intens. | Mode | | Γ> | Li | 6 | 30031.5 | 5.2 | | | | ug/L | 26270 | Standard | | | Be | 9 | 3.3 | 86.6 | -0.0291 | 0.005 | 17.1 | ug/L | 2 | Standard | | L | Αl | 27 | 1464855.0 | 1.6 | 22.8660 | 0.917 | 4.0 | ug/L | 403 | Standard | | Γ | Sc | 45 | 16629.1 | 5.9 | | | | ug/L | 14524 | Standard | | | Ti | 47 | 1416.7 | 15.8 | 6.7540 | 1.659 | 24.6 | ug/L | 365 | Standard | | | ٧ | 51 | 6413.1 | 3.7 | 1.5758 | 0.113 | 7.2 | ug/L | 805 | Standard | | | Cr | 52 | 11052.0 | 1.2 | 1.2529 | 0.149 | 11.9 | ug/L | 5481 | Standard | | | Cr | 53 | 2235.2 | 6.6 | 3.6102 | 0.416 | 11.5 | ug/L | 268 | Standard | | | Mn | 55 | 15954.4 | 2.5 | 4.4069 | 0.330 | 7.5 | ug/L | 670 | Standard | | | Co | 59 | 555.0 | 3.2 | 0.1276 | 0.011 | 8.3 | ug/L | 146 | Standard | | | Ni | 60 | 876.7 | 2.6 | 0.5411 | 0.053 | 9.8 | ug/L | 220 | Standard | | | Cu | 65 | 10397.6 | 1.2 | 9.1245 | 0.587 | 6.4 | ug/L | 147 | Standard | | | Zn | 66 | 18880.4 | 1.7 | 27.9910 | 1.922 | 6.9 | ug/L | 211 | Standard | | > | Ge | 72 | 214744.2 | 5.0 | | | | ug/L | 210599 | Standard | | | As | 75 | 351.4 | 2.4 | 0.5700 | 0.013 | 2.3 | ug/L | -47 | Standard | | | Se | 82 | 164.9 | 4.2 | 2.5629 | 0.092 | 3.6 | ug/L | 15 | Standard | | L | Se-1 | 77 | 120.0 | 12.9 | 1.8210 | 0.276 | 15.1 | ug/L | 65 | Standard | | Γ> | Ga | 71 | 51.7 | 29.6 | | | | mg/L | 27 | Standard | | L | Rb | 85 | 11716.2 | 2.4 | | | | ug/L | 17 | Standard | | Γ | Υ | 89 | 223230.4 | 5.3 | | | | ug/L | 216672 | Standard | | L> | Rh | 103 | 10.0 | 86.6 | | | | ug/L | 18 | Standard | | Γ | Мо | 98 | 25495.5 | 2.0 | 17.8433 | 0.725 | 4.1 | ug/L | 11 | Standard | | | Ag | 107 | 104.7 | 9.6 | 0.0105 | 0.001 | 11.6 | ug/L | 55 | Standard | | | Cd | 111 | 35.8 | 33.3 | 0.0187 | 0.009 | 46.0 | mg/L | 7 | Standard | | | Cd | 114 | 199.3 | 8.3 | 0.0622 | 0.005 | 8.3 | ug/L | 4 | Standard | | > | In | 115 | 330667.8 | 5.0 | | | | ug/L | 322525 | Standard | | | Sn | 118 | 2323.5 | 2.0 | 0.4203 | 0.038 | 8.9 | ug/L | 345 | Standard | | | Sb | 123 | 209.0 | 11.6 | 0.0433 | 0.006 | 13.9 | ug/L | 88 | Standard | | L | Ва | 135 | 7595.2 | 1.4 | 4.6153 | 0.241 | 5.2 | ug/L | 12 | Standard | | Γ | Ce | 140 | 1853.4 | 6.3 | | | | ug/L | 37 | Standard | | L> | Tb | 159 | 626427.3 | 4.5 | | | | ug/L | 631826 | Standard | | Γ | Но | 165 | 43.3 | 6.7 | | | | ug/L | 3 | Standard | | | TI | 203 | 76.0 | 25.1 | 0.0080 | 0.003 | 38.8 | ug/L | 7 | Standard | | | TI | 205 | 40.0 | 50.0 | 0.0108 | 0.004 | 41.4 | ug/L | 7 | Standard | | | Pb | 206 | 3336.4 | 2.7 | 0.7019 | 0.053 | 7.5 | ug/L | 159 | Standard | | | Pb | 207 | 2716.2 | 1.6 | 0.6263 | 0.039 | 6.2 | ug/L | 120 | Standard | | | Pb | 208 | 11299.0 | 0.1 | 0.6574 | 0.031 | 4.7 | ug/L | 503 | Standard | | | U | 238 | 71.7 | 52.5 | 0.0078 | 0.007 | 90.1 | ug/L | 5 | Standard | | L> | Bi | 209 | 370540.3 | 4.2 | | | | ug/L | 333509 | Standard | | | | | | | | | | | | | Sample ID: L1510143201 Report Date/Time: Tuesday, October 27, 2015 20:18:49 Page 1 Approved: October 28, 2015 Page 708 L15101055 / Revision: 0 / 760 total pages | _ | | | | | | | | | | | |----|------|-----|---------|-------|---------|-------|------|------|-------|----------| | | Na | 23 | 0.0 | | | | | mg/L | 0 | Standard | | | Mg | 24 | 3910.5 | 4.4 | 8.1421 | 0.798 | 9.8 | mg/L | 10 | Standard | | | K | 39 | 165.0 | 8.0 | 1.5880 | 0.142 | 9.0 | mg/L | 32 | Standard | | | Ca | 43 | 48.3 | 6.0 | -7.6876 | 0.308 | 4.0 | mg/L | 85 | Standard | | | Fe | 54 | 177.6 | 14.0 | 0.2474 | 0.056 | 22.8 | mg/L | 82 | Standard | | | Fe | 57 | 373.3 | 17.3 | 1.1980 | 0.344 | 28.7 | mg/L | 217 | Standard | | L> | Sc-1 | 45 | 16629.1 | 5.9 | | | | mg/L | 14524 | Standard | | | CI | 35 | 83990.2 | 2.0 | | | | ug/L | 53193 | Standard | | | Kr | 83 | 5.3 | 47.2 | | | | ug/L | 3 | Standard | | | Br | 81 | 14470.2 | 1.5 | | | | ug/L | 327 | Standard | | | Р | 31 | 16297.1 | 3.1 | | | | ug/L | 13329 | Standard | | | S | 34 | 3882.2 | 2.8 | | | | ug/L | 3234 | Standard | | | Sr | 88 | 145.0 | 26.9 | | | | ug/L | 87 | Standard | | | С | 12 | 370.0 | 17.7 | | | | mg/L | 103 | Standard | | | N | 14 | 0.0 | | | | | mg/L | 0 | Standard | | | Hg | 202 | 13.3 | 173.2 | | | | mg/L | 3 | Standard | | | Dy | 164 | 72.1 | 19.8 | | | | mg/L | 10 | Standard | | | Ho-1 | 165 | 43.3 | 6.7 | | | | mg/L | 3 | Standard | | | Er | 166 | 26.7 | 78.1 | | | | mg/L | 7 | Standard | | | I | 127 | 8732.5 | 4.5 | | | | mg/L | 3612 | Standard | | | | | | | | | | | | | | | Analyte | Mass | QC Std % Recovery | Int Std % Recovery | Spike % Recovery | |----|---------|------|-------------------|--------------------|------------------| | Γ> | Li | 6 | | 114.320 | | | | Ве | 9 | | | | | L | Al | 27 | | | | | Γ | Sc | 45 | | | | | | Ti | 47 | | | | | | V | 51 | | | | | | Cr | 52 | | | | | | Cr | 53 | | | | | | Mn | 55 | | | | | | Co | 59 | | | | | | Ni | 60 | | | | | | Cu | 65 | | | | | | Zn | 66 | | | | | > | Ge | 72 | | 101.968 | | | | As | 75 | | | | | | Se | 82 | | | | | L | Se-1 | 77 | | | | | Γ> | Ga | 71 | | | | Sample ID: L1510143201 Report Date/Time: Tuesday, October 27, 2015 20:18:49 Page 2 Approved: October 28, 2015 ``` Rb 85 Υ 89 | > Rh 103 Мо 98 107 Ag Cd 111 Cd 114 102.525 | > In 115 Sn 118 123 Sb Ва 135 140 Ce L> Tb 159 Но 165 ΤI 203 ΤI 205 Pb 206 Pb 207 208 Pb U 238 209 L> Bi 111.103 Na 23 Mg 24 39 Κ Ca 43 Fe 54 Fe 57 45 |> Sc-1 CI 35 83 Kr Br 81 Ρ 31 S 34 Sr 88 С 12 Ν 14 202 Hg Dy 164 Ho-1 165 166 Er 127 QC Out of Limits Measurement Type Out of Limits Message Analyte Mass ``` Report Date/Time: Tuesday, October 27, 2015 20:18:49 Page 3 Sample
ID: L1510143401 Sample Date/Time: Tuesday, October 27, 2015 20:19:43 Number of Replicates: 3 Autosampler Position: 230 Sample Description: 1 Method File: C:\NexIONData\Method\6020a.mth Aliquot Volume (mL): Diluted to Volume (mL): User Name: BKT Nexion300X Cumulative Autodilution Factor: 1 Nexion-ICP 200.8\6020 | | Concentration Results | | | | | | | | | | |----|-----------------------|--------|-----------|------|---------|-------|-------|-------|---------------|----------| | IS | Analyt | e Mass | Intensity | RSD | Conc. | SD | RSD | Units | Blank Intens. | Mode | | Γ> | Li | 6 | 30717.8 | 2.1 | | | | ug/L | 26270 | Standard | | | Ве | 9 | 10.0 | 86.6 | -0.0182 | 0.014 | 78.8 | ug/L | 2 | Standard | | L | Αl | 27 | 3604452.2 | 2.7 | 54.9901 | 2.392 | 4.3 | ug/L | 403 | Standard | | Γ | Sc | 45 | 16452.3 | 3.8 | | | | ug/L | 14524 | Standard | | | Ti | 47 | 964.7 | 1.8 | 3.9355 | 0.309 | 7.8 | ug/L | 365 | Standard | | | ٧ | 51 | 1087.7 | 18.6 | 0.0526 | 0.057 | 108.7 | ug/L | 805 | Standard | | | Cr | 52 | 10403.2 | 2.9 | 1.1137 | 0.153 | 13.8 | ug/L | 5481 | Standard | | | Cr | 53 | 11854.6 | 2.0 | 21.4855 | 0.635 | 3.0 | ug/L | 268 | Standard | | | Mn | 55 | 28931.3 | 2.2 | 8.3150 | 0.490 | 5.9 | ug/L | 670 | Standard | | | Co | 59 | 681.3 | 4.0 | 0.1678 | 0.004 | 2.5 | ug/L | 146 | Standard | | | Ni | 60 | 1686.4 | 7.0 | 1.2576 | 0.152 | 12.1 | ug/L | 220 | Standard | | | Cu | 65 | 59949.4 | 0.6 | 53.6728 | 2.154 | 4.0 | ug/L | 147 | Standard | | | Zn | 66 | 15285.4 | 2.0 | 22.6346 | 1.181 | 5.2 | ug/L | 211 | Standard | | > | Ge | 72 | 213651.7 | 3.5 | | | | ug/L | 210599 | Standard | | | As | 75 | 455.9 | 9.3 | 0.7191 | 0.056 | 7.7 | ug/L | -47 | Standard | | | Se | 82 | 220.9 | 6.0 | 3.5126 | 0.250 | 7.1 | ug/L | 15 | Standard | | L | Se-1 | 77 | 597.7 | 9.4 | 14.0927 | 1.111 | 7.9 | ug/L | 65 | Standard | | Γ> | Ga | 71 | 146.7 | 22.2 | | | | mg/L | 27 | Standard | | L | Rb | 85 | 22217.9 | 1.7 | | | | ug/L | 17 | Standard | | Γ | Υ | 89 | 229605.1 | 1.0 | | | | ug/L | 216672 | Standard | | L> | Rh | 103 | 25.0 | 40.0 | | | | ug/L | 18 | Standard | | Γ | Mo | 98 | 14399.1 | 1.1 | 10.0191 | 0.422 | 4.2 | ug/L | 11 | Standard | | | Ag | 107 | 164.0 | 7.0 | 0.0228 | 0.003 | 14.9 | ug/L | 55 | Standard | | | Cd | 111 | 13.1 | 28.3 | 0.0027 | 0.002 | 85.3 | mg/L | 7 | Standard | | | Cd | 114 | 91.8 | 46.1 | 0.0312 | 0.011 | 36.8 | ug/L | 4 | Standard | | > | In | 115 | 332430.5 | 3.1 | | | | ug/L | 322525 | Standard | | | Sn | 118 | 2356.9 | 6.0 | 0.4250 | 0.048 | 11.3 | ug/L | 345 | Standard | | | Sb | 123 | 286.7 | 11.0 | 0.0629 | 0.006 | 9.3 | ug/L | 88 | Standard | | L | Ва | 135 | 13739.6 | 1.5 | 8.3169 | 0.343 | 4.1 | ug/L | 12 | Standard | | Γ | Ce | 140 | 430.0 | 13.4 | | | | ug/L | 37 | Standard | | L> | Tb | 159 | 628018.9 | 3.7 | | | | ug/L | 631826 | Standard | | Γ | Но | 165 | 25.0 | 20.0 | | | | ug/L | 3 | Standard | | | TI | 203 | 81.3 | 12.1 | 0.0094 | 0.002 | 18.0 | ug/L | 7 | Standard | | | TI | 205 | 46.7 | 6.2 | 0.0128 | 0.001 | 4.8 | ug/L | 7 | Standard | | | Pb | 206 | 2328.8 | 1.2 | 0.5060 | 0.017 | 3.4 | ug/L | 159 | Standard | | | Pb | 207 | 1913.5 | 2.9 | 0.4554 | 0.020 | 4.5 | ug/L | 120 | Standard | | | Pb | 208 | 7850.8 | 2.1 | 0.4727 | 0.026 | 5.4 | ug/L | 503 | Standard | | | U | 238 | 1211.7 | 8.9 | 0.2149 | 0.017 | 7.8 | ug/L | 5 | Standard | | L> | Bi | 209 | 347682.3 | 2.8 | | | | ug/L | 333509 | Standard | | | | | | | | | | | | | Sample ID: L1510143401 Report Date/Time: Tuesday, October 27, 2015 20:22:00 Page 1 | _ | | | | | | | | | | | |----|------|-----|----------|-------|----------|-------|------|------|-------|----------| | | Na | 23 | 1.7 | 173.2 | | | | mg/L | 0 | Standard | | | Mg | 24 | 56174.0 | 1.9 | 118.4798 | 6.271 | 5.3 | mg/L | 10 | Standard | | | K | 39 | 451.7 | 7.0 | 4.7737 | 0.514 | 10.8 | mg/L | 32 | Standard | | | Ca | 43 | 135.0 | 7.4 | 4.7563 | 1.209 | 25.4 | mg/L | 85 | Standard | | | Fe | 54 | 118.9 | 11.3 | 0.1233 | 0.020 | 16.5 | mg/L | 82 | Standard | | | Fe | 57 | 336.7 | 3.1 | 0.9416 | 0.159 | 16.9 | mg/L | 217 | Standard | | L> | Sc-1 | 45 | 16452.3 | 3.8 | | | | mg/L | 14524 | Standard | | | CI | 35 | 88892.7 | 0.4 | | | | ug/L | 53193 | Standard | | | Kr | 83 | 2.7 | 94.4 | | | | ug/L | 3 | Standard | | | Br | 81 | 20266.9 | 3.7 | | | | ug/L | 327 | Standard | | | Р | 31 | 18568.0 | 1.3 | | | | ug/L | 13329 | Standard | | | S | 34 | 3978.9 | 0.6 | | | | ug/L | 3234 | Standard | | | Sr | 88 | 136.7 | 13.9 | | | | ug/L | 87 | Standard | | | С | 12 | 586.7 | 23.6 | | | | mg/L | 103 | Standard | | | N | 14 | 0.0 | | | | | mg/L | 0 | Standard | | | Hg | 202 | 13.3 | 114.6 | | | | mg/L | 3 | Standard | | | Dy | 164 | 15.2 | 73.2 | | | | mg/L | 10 | Standard | | | Ho-1 | 165 | 25.0 | 20.0 | | | | mg/L | 3 | Standard | | | Er | 166 | 30.0 | 57.7 | | | | mg/L | 7 | Standard | | | I | 127 | 484421.9 | 3.1 | | | | mg/L | 3612 | Standard | | Analyte | Mass | QC Std % Recovery | Int Std % Recovery | Spike % Recovery | |---------|------|-------------------|--------------------|------------------| | 「> Li | 6 | | 116.933 | | | Be | 9 | | | | | L AI | 27 | | | | | 「 Sc | 45 | | | | | Ti | 47 | | | | | V | 51 | | | | | Cr | 52 | | | | | Cr | 53 | | | | | Mn | 55 | | | | | Co | 59 | | | | | Ni | 60 | | | | | Cu | 65 | | | | | Zn | 66 | | | | | > Ge | 72 | | 101.450 | | | As | 75 | | | | | Se | 82 | | | | | L Se-1 | 77 | | | | | 「⊳ Ga | 71 | | | | Sample ID: L1510143401 Report Date/Time: Tuesday, October 27, 2015 20:22:00 Page 2 Approved: October 28, 2015 ``` Rb 85 Υ 89 | > Rh 103 Мо 98 107 Ag Cd 111 Cd 114 103.071 | > In 115 Sn 118 123 Sb Ва 135 140 Ce L> Tb 159 Но 165 ΤI 203 ΤI 205 Pb 206 Pb 207 208 Pb U 238 209 L> Bi 104.250 Na 23 Mg 24 39 Κ Ca 43 Fe 54 Fe 57 45 |> Sc-1 CI 35 83 Kr Br 81 Ρ 31 S 34 Sr 88 С 12 Ν 14 202 Hg Dy 164 Ho-1 165 166 Er 127 QC Out of Limits Measurement Type Out of Limits Message Analyte Mass ``` Report Date/Time: Tuesday, October 27, 2015 20:22:00 Page 3 Sample ID: L1510144101 Sample Date/Time: Tuesday, October 27, 2015 20:22:54 Number of Replicates: 3 Autosampler Position: 231 Sample Description: 1 Method File: C:\NexIONData\Method\6020a.mth Aliquot Volume (mL): Diluted to Volume (mL): User Name: BKT Nexion300X Cumulative Autodilution Factor: 1 Nexion-ICP 200.8\6020 ### **Concentration Results** | | | | | | 0000 | | aito | | | | |----|--------|--------|-----------|-------|---------|-------|-------|-------|---------------|----------| | IS | Analyt | e Mass | Intensity | RSD | Conc. | SD | RSD | Units | Blank Intens. | Mode | | Γ> | Li | 6 | 31297.3 | 3.3 | | | | ug/L | 26270 | Standard | | | Be | 9 | 8.3 | 173.2 | -0.0209 | 0.024 | 115.1 | ug/L | 2 | Standard | | L | Al | 27 | 5204370.6 | 3.6 | 77.8920 | 0.666 | 0.9 | ug/L | 403 | Standard | | Γ | Sc | 45 | 16907.8 | 6.5 | | | | ug/L | 14524 | Standard | | | Ti | 47 | 4709.4 | 31.6 | 26.7633 | 8.680 | 32.4 | ug/L | 365 | Standard | | | V | 51 | 1396.0 | 40.6 | 0.1325 | 0.156 | 117.4 | ug/L | 805 | Standard | | | Cr | 52 | 10758.8 | 0.6 | 1.1469 | 0.037 | 3.2 | ug/L | 5481 | Standard | | | Cr | 53 | 16707.5 | 3.0 | 29.9019 | 0.483 | 1.6 | ug/L | 268 | Standard | | | Mn | 55 | 25389.3 | 3.4 | 7.1034 | 0.244 | 3.4 | ug/L | 670 | Standard | | | Co | 59 | 750.7 | 1.2 | 0.1853 | 0.006 | 3.3 | ug/L | 146 | Standard | | | Ni | 60 | 1752.4 | 1.5 | 1.2838 | 0.035 | 2.7 | ug/L | 220 | Standard | | | Cu | 65 | 50918.1 | 2.2 | 44.6735 | 0.860 | 1.9 | ug/L | 147 | Standard | | | Zn | 66 | 27937.8 | 3.3 | 41.0507 | 0.858 | 2.1 | ug/L | 211 | Standard | | > | Ge | 72 | 217678.8 | 1.5 | | | | ug/L | 210599 | Standard | | | As | 75 | 109.2 | 58.1 | 0.2278 | 0.085 | 37.3 | ug/L | -47 | Standard | | | Se | 82 | 76.4 | 5.6 | 1.0735 | 0.056 | 5.2 | ug/L | 15 | Standard | | L | Se-1 | 77 | 949.4 | 1.6 | 22.6904 | 0.710 | 3.1 | ug/L | 65 | Standard | | Γ> | Ga | 71 | 120.0 | 19.1 | | | | mg/L | 27 | Standard | | L | Rb | 85 | 41760.8 | 0.2 | | | | ug/L | 17 | Standard | | Γ | Υ | 89 | 229102.7 | 4.1 | | | | ug/L | 216672 | Standard | | L> | Rh | 103 | 33.3 | 37.7 | | | | ug/L | 18 | Standard | | Γ | Мо | 98 | 12901.2 | 1.4 | 9.0411 | 0.162 | 1.8 | ug/L | 11 | Standard | | | Ag | 107 | 162.3 | 4.1 | 0.0226 | 0.002 | 7.4 | ug/L | 55 | Standard | | | Cd | 111 | 20.1 | 15.0 | 0.0076 | 0.002 | 25.9 | mg/L | 7 | Standard | | | Cd | 114 | 108.1 | 22.2 | 0.0362 | 0.007 | 18.5 | ug/L | 4 | Standard | | > | In | 115 | 329792.4 | 8.0 | | | | ug/L | 322525 | Standard | | | Sn | 118 | 6843.2 | 2.2 | 1.5360 | 0.042 | 2.7 | ug/L | 345 | Standard | | | Sb | 123 | 327.4 | 10.4 | 0.0741 | 0.008 | 11.3 | ug/L | 88 | Standard | | L | Ва | 135 | 71342.3 | 1.8 | 43.5961 | 0.704 | 1.6 | ug/L | 12 | Standard | | Γ | Ce | 140 | 666.7 | 3.4 | | | | ug/L | 37 | Standard | | L> | Tb | 159 | 644730.2 | 0.6 | | | | ug/L | 631826 | Standard | | Γ | Но | 165 | 28.3 | 20.4 | | | | ug/L | 3 | Standard | | | TI | 203 | 78.0 | 5.1 | 0.0087 | 0.001 | 7.7 | ug/L | 7 | Standard | | | TI | 205 | 30.0 | 16.7 | 0.0090 | 0.001 | 12.3 | ug/L | 7 | Standard | | | Pb | 206 | 2001.5 | 1.7 | 0.4195 | 0.004 | 1.0 | ug/L | 159 | Standard | | | Pb | 207 | 1647.8 | 0.7 | 0.3779 | 0.007 | 1.8 | ug/L | 120 | Standard | | | Pb | 208 | 6535.9 | 1.9 | 0.3781 | 0.012 | 3.3 | ug/L | 503 | Standard | | | U | 238 | 916.0 | 1.8 | 0.1592 | 0.004 | 2.8 | ug/L | 5 | Standard | | L> | Bi | 209 | 352516.9 | 1.0 | | | | ug/L | 333509 | Standard | Sample ID: L1510144101 Report Date/Time: Tuesday, October 27, 2015 20:25:11 Page 1 Approved: October 28, 2015 | Γ | Na | 23 | 3.3 | 86.6 | | | | mg/L | 0 | Standard | |----|------|-----|-----------|------|----------|-------|------|------|-------|----------| | | Mg | 24 | 62853.4 | 0.9 | 129.1361 | 7.057 | 5.5 | mg/L | 10 | Standard | | | K | 39 | 706.7 | 5.0 | 7.3706 | 0.407 | 5.5 | mg/L | 32 | Standard | | | Ca | 43 | 150.0 | 11.5 | 6.3027 | 1.746 | 27.7 | mg/L | 85 | Standard | | | Fe | 54 | 187.3 | 14.5 | 0.2626 | 0.070 | 26.7 | mg/L | 82 | Standard | | | Fe | 57 | 368.3 | 8.0 | 1.1280 | 0.188 | 16.7 | mg/L | 217 | Standard | |
L> | Sc-1 | 45 | 16907.8 | 6.5 | | | | mg/L | 14524 | Standard | | | CI | 35 | 86973.6 | 8.0 | | | | ug/L | 53193 | Standard | | | Kr | 83 | 4.0 | 86.6 | | | | ug/L | 3 | Standard | | | Br | 81 | 4470.7 | 5.5 | | | | ug/L | 327 | Standard | | | Р | 31 | 18399.5 | 2.2 | | | | ug/L | 13329 | Standard | | | S | 34 | 4052.2 | 1.8 | | | | ug/L | 3234 | Standard | | | Sr | 88 | 158.3 | 31.8 | | | | ug/L | 87 | Standard | | | С | 12 | 896.7 | 4.2 | | | | mg/L | 103 | Standard | | | N | 14 | 0.0 | | | | | mg/L | 0 | Standard | | | Hg | 202 | 80.0 | 50.0 | | | | mg/L | 3 | Standard | | | Dy | 164 | 15.5 | 33.7 | | | | mg/L | 10 | Standard | | | Ho-1 | 165 | 28.3 | 20.4 | | | | mg/L | 3 | Standard | | | Er | 166 | 23.3 | 65.5 | | | | mg/L | 7 | Standard | | | I | 127 | 2784034.3 | 2.2 | | | | mg/L | 3612 | Standard | | | | | | | | | | | | | | Analyte | Mass | QC Std % Recovery | Int Std % Recovery | Spike % Recovery | |---------|------|-------------------|--------------------|------------------| | 「⊳ Li | 6 | | 119.139 | | | Be | 9 | | | | | L AI | 27 | | | | | 「 Sc | 45 | | | | | Ti | 47 | | | | | V | 51 | | | | | Cr | 52 | | | | | Cr | 53 | | | | | Mn | 55 | | | | | Co | 59 | | | | | Ni | 60 | | | | | Cu | 65 | | | | | Zn | 66 | | | | | > Ge | 72 | | 103.362 | | | As | 75 | | | | | Se | 82 | | | | | L Se-1 | 77 | | | | | 「⊳ Ga | 71 | | | | Sample ID: L1510144101 Report Date/Time: Tuesday, October 27, 2015 20:25:11 Page 2 Approved: October 28, 2015 | L Rb | 85 | | | | |------------------|--------------|-------------|------------------------|---| | [Y | 89 | | | | | $\lfloor_>$ Rh | 103 | | | | | Г Мо | 98 | | | | | Ag | 107 | | | | | Cd | 111 | | | | | Cd | 114 | | | | |
 > In | 115 | | 102.253 | | | Sn | 118 | | | | | Sb | 123 | | | | | L Ba | 135 | | | | | Ce | 140 | | | | | > Tb | 159 | | | | | Ho | 165 | | | | | j TI | 203 | | | | | į тı | 205 | | | | | Pb | 206 | | | | | Pb | 207 | | | | | Pb | 208 | | | | | Ü | 238 | | | | | ∟> Bi | 209 | | 105.699 | | | Na | 23 | | | | | Mg | 24 | | | | | ίκ | 39 | | | | | Ca | 43 | | | | | Fe | 54 | | | | | Fe | 57 | | | | | _> Sc-1 | 45 | | | | | CI | 35 | | | | | Kr | 83 | | | | | Br | 81 | | | | | Р | 31 | | | | | S | 34 | | | | | Sr | 88 | | | | | С | 12 | | | | | N | 14 | | | | | Hg | 202 | | | | | Dy | 164 | | | | | Ho-1 | 165 | | | | | Er | 166 | | | | | I | 127 | | | | | QC O | ut of Limits | | | | | Measurement Type | | Analyte Mas | s Out of Limits Messag | е | Report Date/Time: Tuesday, October 27, 2015 20:25:11 Page 3 Sample ID: QC Std 6 Sample Date/Time: Tuesday, October 27, 2015 20:26:08 Number of Replicates: 3 Autosampler Position: 101 Sample Description: Method File: C:\NexIONData\Method\6020a.mth Aliquot Volume (mL): Diluted to Volume (mL): User Name: BKT Nexion300X Cumulative Autodilution Factor: 1 Nexion-ICP 200.8\6020 | 0 | | 44: | D | 14. | |-----|-----|---------|------|-------| | COH | cen | tration | Resu | ILS - | | | | | | | Concential | | uito | | | | |----|--------|---------------|-----------|------|------------|-------|------|-------|---------------|----------| | IS | Analyt | e Mass | Intensity | RSD | Conc. | SD | RSD | Units | Blank Intens. | Mode | | Γ> | Li | 6 | 29767.6 | 3.0 | | | | ug/L | 26270 | Standard | | | Be | 9 | 29582.2 | 3.6 | 50.2837 | 0.389 | 8.0 | ug/L | 2 | Standard | | L | Αl | 27 | 3205697.0 | 2.8 | 50.4410 | 0.153 | 0.3 | ug/L | 403 | Standard | | Γ | Sc | 45 | 17017.9 | 1.6 | | | | ug/L | 14524 | Standard | | | Ti | 47 | 17976.3 | 1.7 | 108.5851 | 2.526 | 2.3 | ug/L | 365 | Standard | | | ٧ | 51 | 192580.1 | 0.8 | 54.0895 | 0.477 | 0.9 | ug/L | 805 | Standard | | | Cr | 52 | 236094.8 | 1.3 | 52.6855 | 1.038 | 2.0 | ug/L | 5481 | Standard | | | Cr | 53 | 29724.1 | 0.9 | 53.6829 | 0.729 | 1.4 | ug/L | 268 | Standard | | | Mn | 55 | 180350.4 | 0.5 | 52.6744 | 0.241 | 0.5 | ug/L | 670 | Standard | | | Co | 59 | 170280.2 | 0.8 | 52.4085 | 0.127 | 0.2 | ug/L | 146 | Standard | | | Ni | 60 | 59926.0 | 1.6 | 51.4615 | 1.124 | 2.2 | ug/L | 220 | Standard | | | Cu | 65 | 57726.1 | 1.6 | 50.7319 | 1.126 | 2.2 | ug/L | 147 | Standard | | | Zn | 66 | 34852.4 | 0.3 | 51.4351 | 0.389 | 8.0 | ug/L | 211 | Standard | | > | Ge | 72 | 217427.3 | 0.6 | | | | ug/L | 210599 | Standard | | | As | 75 | 37103.4 | 0.8 | 51.3476 | 0.204 | 0.4 | ug/L | -47 | Standard | | | Se | 82 | 3212.9 | 0.9 | 52.5011 | 0.199 | 0.4 | ug/L | 15 | Standard | | L | Se-1 | 77 | 2166.8 | 1.9 | 53.4225 | 0.912 | 1.7 | ug/L | 65 | Standard | | Γ> | Ga | 71 | 26.7 | 60.3 | | | | mg/L | 27 | Standard | | L | Rb | 85 | 553.3 | 8.9 | | | | ug/L | 17 | Standard | | Γ | Υ | 89 | 228214.9 | 2.5 | | | | ug/L | 216672 | Standard | | L> | Rh | 103 | 43.3 | 26.6 | | | | ug/L | 18 | Standard | | Γ | Мо | 98 | 148548.0 | 0.4 | 101.2046 | 0.967 | 1.0 | ug/L | 11 | Standard | | | Ag | 107 | 240146.7 | 1.2 | 48.8347 | 0.704 | 1.4 | ug/L | 55 | Standard | | | Cd | 111 | 74184.8 | 0.4 | 50.3213 | 0.482 | 1.0 | mg/L | 7 | Standard | | | Cd | 114 | 184840.8 | 0.3 | 51.2777 | 0.182 | 0.4 | ug/L | 4 | Standard | | > | In | 115 | 339303.9 | 0.6 | | | | ug/L | 322525 | Standard | | | Sn | 118 | 209578.0 | 1.2 | 50.1109 | 0.617 | 1.2 | ug/L | 345 | Standard | | | Sb | 123 | 193908.1 | 0.3 | 48.8301 | 0.230 | 0.5 | ug/L | 88 | Standard | | L | Ва | 135 | 81974.9 | 2.1 | 48.6907 | 0.886 | 1.8 | ug/L | 12 | Standard | | Γ | Ce | 140 | 321.7 | 12.6 | | | | ug/L | 37 | Standard | | L> | Tb | 159 | 651192.3 | 1.2 | | | | ug/L | 631826 | Standard | | Γ | Но | 165 | 3.3 | 86.6 | | | | ug/L | 3 | Standard | | | TI | 203 | 334621.4 | 1.3 | 50.2901 | 0.728 | 1.4 | ug/L | 7 | Standard | | | TI | 205 | 227266.8 | 0.6 | 50.7132 | 0.171 | 0.3 | ug/L | 7 | Standard | | | Pb | 206 | 218905.1 | 0.8 | 53.7231 | 0.634 | 1.2 | ug/L | 159 | Standard | | | Pb | 207 | 195968.9 | 0.9 | 53.0396 | 0.821 | 1.5 | ug/L | 120 | Standard | | | Pb | 208 | 765016.6 | 0.5 | 51.8142 | 0.608 | 1.2 | ug/L | 503 | Standard | | | U | 238 | 269851.5 | 0.5 | 49.4606 | 0.605 | 1.2 | ug/L | 5 | Standard | | L> | Bi | 209 | 343721.5 | 0.7 | | | | ug/L | 333509 | Standard | | | | | | | | | | | | | Sample ID: QC Std 6 Report Date/Time: Tuesday, October 27, 2015 20:28:25 Page 1 Approved: October 28, 2015 | _ | | | | | | | | | | <u> </u> | |----|------|-----|---------|-------|---------|-------|------|------|-------|----------| | | Na | 23 | 3.3 | 173.2 | | | | mg/L | 0 | Standard | | | Mg | 24 | 2528.5 | 4.9 | 5.1118 | 0.275 | 5.4 | mg/L | 10 | Standard | | | K | 39 | 448.3 | 16.4 | 4.5663 | 0.831 | 18.2 | mg/L | 32 | Standard | | | Ca | 43 | 73.3 | 10.4 | -4.3909 | 1.110 | 25.3 | mg/L | 85 | Standard | | | Fe | 54 | 2345.2 | 4.0 | 4.7728 | 0.193 | 4.0 | mg/L | 82 | Standard | | | Fe | 57 | 891.7 | 4.6 | 5.3342 | 0.400 | 7.5 | mg/L | 217 | Standard | | L> | Sc-1 | 45 | 17017.9 | 1.6 | | | | mg/L | 14524 | Standard | | | CI | 35 | 74676.3 | 2.5 | | | | ug/L | 53193 | Standard | | | Kr | 83 | 3.3 | 17.3 | | | | ug/L | 3 | Standard | | | Br | 81 | 473.3 | 6.1 | | | | ug/L | 327 | Standard | | | Р | 31 | 16967.8 | 3.1 | | | | ug/L | 13329 | Standard | | | S | 34 | 4382.3 | 8.8 | | | | ug/L | 3234 | Standard | | | Sr | 88 | 113.3 | 11.1 | | | | ug/L | 87 | Standard | | | С | 12 | 136.7 | 23.5 | | | | mg/L | 103 | Standard | | | N | 14 | 0.0 | | | | | mg/L | 0 | Standard | | | Hg | 202 | 0.0 | | | | | mg/L | 3 | Standard | | | Dy | 164 | 15.1 | 94.8 | | | | mg/L | 10 | Standard | | | Ho-1 | 165 | 3.3 | 86.6 | | | | mg/L | 3 | Standard | | | Er | 166 | 33.3 | 62.5 | | | | mg/L | 7 | Standard | | | I | 127 | 29104.8 | 52.9 | | | | mg/L | 3612 | Standard | | | | | | | | | | | | | | Analyte | Mass | QC Std % Recovery | Int Std % Recovery | Spike % Recovery | |---------|------|-------------------|--------------------|------------------| | 「> Li | 6 | | | | | Be | 9 | 100.567 | | | | L AI | 27 | 100.882 | | | | 「 Sc | 45 | | | | | Ti | 47 | 108.585 | | | | V | 51 | 108.179 | | | | Cr | 52 | 105.371 | | | | Cr | 53 | | | | | Mn | 55 | 105.349 | | | | Co | 59 | 104.817 | | | | Ni | 60 | 102.923 | | | | Cu | 65 | 101.464 | | | | Zn | 66 | 102.870 | | | | > Ge | 72 | | 103.242 | | | As | 75 | 102.695 | | | | Se | 82 | 105.002 | | | | ∟ Se-1 | 77 | | | | | 「⊳ Ga | 71 | | | | Sample ID: QC Std 6 Report Date/Time: Tuesday, October 27, 2015 20:28:25 Page 2 Approved: October 28, 2015 | l 51 | | | |------------------------------------|--------------|-----------------------| | L Rb 85 | | | | Γ Y 89 | | | | L> Rh 103 | 404.005 | | | 「 Mo 98 | 101.205 | | | Ag 107 | 97.669 | | | Cd 111
 Cd 114 | 100.643 | | | · | | 105.202 | | > In 115
 Sn 118 | 100.222 | 105.202 | | Sb 123 | 97.660 | | | Ba 135 | 97.381 | | | [Се 140 | 97.301 | | | Ce 140
 _{>} Tb 159 | | | | [> 10 139 | | | | TI 203 | 100.580 | | | TI 205 | 100.300 | | | Pb 206 | | | | Pb 207 | | | | Pb 208 | 103.628 | | | U 238 | 98.921 | | | > Bi 209 | | 103.062 | | Na 23 | | | | Mg 24 | | | | K 39 | | | | Ca 43 | | | | Fe 54 | | | | Fe 57 | | | | L> Sc-1 45 | | | | CI 35 | | | | Kr 83 | | | | Br 81 | | | | P 31 | | | | S 34 | | | | Sr 88 | | | | C 12 | | | | N 14 | | | | Hg 202 | | | | Dy 164 | | | | Ho-1 165 | | | | Er 166 | | | | 1 127 | | | | QC Out of Limits | | | | Measurement Type | Analyte Mass | Out of Limits Message | Sample ID: QC Std 6 Report Date/Time: Tuesday, October 27, 2015 20:28:25 Page 3 Sample ID: QC Std 7 Sample Date/Time: Tuesday, October 27, 2015 20:29:19 Number of Replicates: 3 Autosampler Position: 102 Sample Description: Method File: C:\NexIONData\Method\6020a.mth Aliquot Volume (mL): Diluted to Volume (mL): User Name: BKT Nexion300X Cumulative Autodilution Factor: 1 Nexion-ICP 200.8\6020 | | | | | | | Concentrat | tion Res | sults | | | | |-----|-----|-----------|-------|-----------|-------|------------|----------|--------|-------|---------------|----------| | 1 | s i | Analyte N | /lass | Intensity | RSD | Conc. | SD | RSD | Units | Blank Intens. | Mode | | Γ | | Li | 6 | 30176.7 | 1.7 | | | | ug/L | 26270 | Standard | | i | ı | Be | 9 | 25.0 | 0.0 | 0.0071 |
0.001 | 10.2 | ug/L | 2 | Standard | | i | , | Al | 27 | 1638.4 | 3.9 | 0.0049 | 0.001 | 13.6 | ug/L | 403 | Standard | | Ī | • | Sc | 45 | 17179.7 | 0.4 | | | | ug/L | 14524 | Standard | | i | • | Ti | 47 | 55.0 | 19.7 | -1.7795 | 0.070 | 3.9 | ug/L | 365 | Standard | | ĺ | , | V | 51 | 918.5 | 7.3 | -0.0017 | 0.022 | 1334.5 | ug/L | 805 | Standard | | ĺ | (| Cr | 52 | 5611.0 | 2.2 | -0.0341 | 0.040 | 116.8 | ug/L | 5481 | Standard | | ĺ | (| Cr | 53 | 628.3 | 20.4 | 0.6104 | 0.225 | 36.9 | ug/L | 268 | Standard | | | ı | Mn | 55 | 647.0 | 4.3 | -0.1640 | 0.007 | 4.0 | ug/L | 670 | Standard | | | (| Co | 59 | 262.0 | 6.5 | 0.0346 | 0.005 | 15.9 | ug/L | 146 | Standard | | | ı | Ni | 60 | 235.7 | 9.8 | -0.0237 | 0.022 | 92.7 | ug/L | 220 | Standard | | | (| Cu | 65 | 160.3 | 12.4 | -0.0381 | 0.016 | 42.1 | ug/L | 147 | Standard | | | 2 | Zn | 66 | 156.7 | 3.3 | -0.3950 | 0.007 | 1.8 | ug/L | 211 | Standard | | | > (| Ge | 72 | 218525.4 | 1.3 | | | | ug/L | 210599 | Standard | | | 1 | As | 75 | 4.0 | 500.6 | 0.0835 | 0.028 | 33.4 | ug/L | -47 | Standard | | | ; | Se | 82 | 14.6 | 14.2 | 0.0621 | 0.033 | 53.5 | ug/L | 15 | Standard | | L | . ; | Se-1 | 77 | 79.0 | 8.9 | 0.7443 | 0.151 | 20.3 | ug/L | 65 | Standard | | Γ | > (| Ga | 71 | 16.7 | 17.3 | | | | mg/L | 27 | Standard | | L | | Rb | 85 | 18.3 | 63.0 | | | | ug/L | 17 | Standard | | Γ | • | Υ | 89 | 230461.2 | 0.7 | | | | ug/L | 216672 | Standard | | L | > I | Rh | 103 | 15.0 | 57.7 | | | | ug/L | 18 | Standard | | Γ | ١ | Мо | 98 | 153.2 | 8.0 | 0.1031 | 0.009 | 8.5 | ug/L | 11 | Standard | | | 1 | Ag | 107 | 101.3 | 8.2 | 0.0095 | 0.002 | 20.0 | ug/L | 55 | Standard | | | | Cd | 111 | 26.4 | 16.9 | 0.0117 | 0.003 | 25.3 | mg/L | 7 | Standard | | | (| Cd | 114 | 49.8 | 20.6 | 0.0193 | 0.003 | 14.2 | ug/L | 4 | Standard | | | > I | In | 115 | 335739.5 | 1.0 | | | | ug/L | 322525 | Standard | | | | Sn | 118 | 565.0 | 4.9 | -0.0157 | 0.007 | 47.0 | ug/L | 345 | Standard | | | ; | Sb | 123 | 160.5 | 18.0 | 0.0302 | 0.008 | 25.4 | ug/L | 88 | Standard | | L | | Ва | 135 | 40.0 | 15.2 | 0.0001 | 0.003 | 4019.0 | ug/L | 12 | Standard | | Γ | (| Ce | 140 | 10.0 | 50.0 | | | | ug/L | 37 | Standard | | L | | Tb | 159 | 631644.0 | 0.1 | | | | ug/L | 631826 | Standard | | Γ | | Но | 165 | 6.7 | 114.6 | | | | ug/L | 3 | Standard | | | | TI | 203 | 93.7 | 33.7 | 0.0113 | 0.005 | 40.9 | ug/L | 7 | Standard | | | | TI | 205 | 70.0 | 14.3 | 0.0180 | 0.002 | 12.9 | ug/L | 7 | Standard | | | I | Pb | 206 | 218.0 | 5.7 | -0.0066 | 0.003 | 47.9 | ug/L | 159 | Standard | | - 1 | | | 007 | 000.7 | 400 | | 0 000 | 040.7 | - /1 | 400 | 01 1 1 | -0.0026 -0.0057 0.0110 Sample ID: QC Std 7 208 238 209 Report Date/Time: Tuesday, October 27, 2015 20:31:35 202.7 3.5 21.2 0.7 714.3 85.0 344747.4 Page 1 Pb Pb U Bi Approved: October 28, 2015 Standard Standard Standard Standard 503 333509 5 Page 720 0.006 219.7 30.5 30.7 0.002 0.003 ug/L ug/L ug/L ug/L | Na | 23 | 0.0 | | | | | mg/L | 0 | Standard | |------|---|--|--|---|---
--|---|---|---| | Mg | 24 | 26.7 | 28.6 | 0.0134 | 0.015 | 113.9 | mg/L | 10 | Standard | | K | 39 | 25.0 | 40.0 | 0.0524 | 0.105 | 200.2 | mg/L | 32 | Standard | | Ca | 43 | 31.7 | 59.8 | -10.1852 | 2.595 | 25.5 | mg/L | 85 | Standard | | Fe | 54 | 84.5 | 10.3 | 0.0415 | 0.017 | 41.8 | mg/L | 82 | Standard | | Fe | 57 | 311.7 | 11.8 | 0.6193 | 0.301 | 48.5 | mg/L | 217 | Standard | | Sc-1 | 45 | 17179.7 | 0.4 | | | | mg/L | 14524 | Standard | | CI | 35 | 74537.6 | 1.4 | | | | ug/L | 53193 | Standard | | Kr | 83 | 6.0 | 28.9 | | | | | 3 | Standard | | Br | 81 | 363.3 | 20.3 | | | | ug/L | 327 | Standard | | Р | 31 | 16557.4 | 2.1 | | | | ug/L | 13329 | Standard | | S | 34 | 4232.3 | 0.9 | | | | ug/L | 3234 | Standard | | Sr | 88 | 118.3 | 20.8 | | | | ug/L | 87 | Standard | | С | 12 | 146.7 | 40.0 | | | | mg/L | 103 | Standard | | N | 14 | 0.0 | | | | | mg/L | 0 | Standard | | Hg | 202 | 3.3 | 173.2 | | | | mg/L | 3 | Standard | | Dy | 164 | 13.2 | 114.0 | | | | mg/L | 10 | Standard | | Ho-1 | 165 | 6.7 | 114.6 | | | | mg/L | 3 | Standard | | Er | 166 | 3.3 | 173.2 | | | | mg/L | 7 | Standard | | I | 127 | 7823.7 | 7.8 | | | |
mg/L | 3612 | Standard | | | Mg
K
Ca
Fe
Fe
Sc-1
CI
Kr
Br
P
S C
C
N
Hg
Dy
Ho-1 | Mg 24 K 39 Ca 43 Fe 54 Fe 57 Sc-1 45 Cl 35 Kr 83 Br 81 P 31 S 34 Sr 88 C 12 N 14 Hg 202 Dy 164 Ho-1 165 Er 166 | Mg 24 26.7 K 39 25.0 Ca 43 31.7 Fe 54 84.5 Fe 57 311.7 Sc-1 45 17179.7 Cl 35 74537.6 Kr 83 6.0 Br 81 363.3 P 31 16557.4 S 34 4232.3 Sr 88 118.3 C 12 146.7 N 14 0.0 Hg 202 3.3 Dy 164 13.2 Ho-1 165 6.7 Er 166 3.3 | Mg 24 26.7 28.6 K 39 25.0 40.0 Ca 43 31.7 59.8 Fe 54 84.5 10.3 Fe 57 311.7 11.8 Sc-1 45 17179.7 0.4 Cl 35 74537.6 1.4 Kr 83 6.0 28.9 Br 81 363.3 20.3 20.3 P 31 16557.4 2.1 S 34 4232.3 0.9 Sr 88 118.3 20.8 C 12 146.7 40.0 N 14 0.0 40.0 Hg 202 3.3 173.2 Dy 164 13.2 114.0 Ho-1 165 6.7 114.6 Er 166 3.3 173.2 | Mg 24 26.7 28.6 0.0134 K 39 25.0 40.0 0.0524 Ca 43 31.7 59.8 -10.1852 Fe 54 84.5 10.3 0.0415 Fe 57 311.7 11.8 0.6193 Sc-1 45 17179.7 0.4 0.6193 Cl 35 74537.6 1.4 4 1.4 | Mg 24 26.7 28.6 0.0134 0.015 K 39 25.0 40.0 0.0524 0.105 Ca 43 31.7 59.8 -10.1852 2.595 Fe 54 84.5 10.3 0.0415 0.017 Fe 57 311.7 11.8 0.6193 0.301 Sc-1 45 17179.7 0.4 7.7 <th>Mg 24 26.7 28.6 0.0134 0.015 113.9 K 39 25.0 40.0 0.0524 0.105 200.2 Ca 43 31.7 59.8 -10.1852 2.595 25.5 Fe 54 84.5 10.3 0.0415 0.017 41.8 Fe 57 311.7 11.8 0.6193 0.301 48.5 Sc-1 45 17179.7 0.4 0.6193 0.301 48.5 Sc-1 45 17179.7 0.4 0.6193 0.301 48.5 Sc-1 45 17179.7 0.4 0.6193 0.301 48.5 Kr 83 6.0 28.9 8 1.2<</th> <th>Mg 24 26.7 28.6 0.0134 0.015 113.9 mg/L K 39 25.0 40.0 0.0524 0.105 200.2 mg/L Ca 43 31.7 59.8 -10.1852 2.595 25.5 mg/L Fe 54 84.5 10.3 0.0415 0.017 41.8 mg/L Fe 57 311.7 11.8 0.6193 0.301 48.5 mg/L Sc-1 45 17179.7 0.4 0.6193 0.301 48.5 mg/L Kr 83 6.0 28.9 mg/L ug/L ug/L Kr 83 6.0 28.9 ug/L ug/L ug/L P 31 16557.4 2.1 ug/L ug/L ug/L Sr 88 118.3 20.8 ug/L ug/L ug/L C 12 146.7 40.0 ug/L ug/L ug/L Mg/L<!--</th--><th>Mg 24 26.7 28.6 0.0134 0.015 113.9 mg/L 10 K 39 25.0 40.0 0.0524 0.105 200.2 mg/L 32 Ca 43 31.7 59.8 -10.1852 2.595 25.5 mg/L 85 Fe 54 84.5 10.3 0.0415 0.017 41.8 mg/L 82 Fe 57 311.7 11.8 0.6193 0.301 48.5 mg/L 217 Sc-1 45 17179.7 0.4 mg/L 48.5 mg/L 217 Sc-1 45 17179.7 0.4 mg/L 48.5 mg/L 14524 Cl 35 74537.6 1.4 mg/L 3</th></th> | Mg 24 26.7 28.6 0.0134 0.015 113.9 K 39 25.0 40.0 0.0524 0.105 200.2 Ca 43 31.7 59.8 -10.1852 2.595 25.5 Fe 54 84.5 10.3 0.0415 0.017 41.8 Fe 57 311.7 11.8 0.6193 0.301 48.5 Sc-1 45 17179.7 0.4 0.6193 0.301 48.5 Sc-1 45 17179.7 0.4 0.6193 0.301 48.5 Sc-1 45 17179.7 0.4 0.6193 0.301 48.5 Kr 83 6.0 28.9 8 1.2< | Mg 24 26.7 28.6 0.0134 0.015 113.9 mg/L K 39 25.0 40.0 0.0524 0.105 200.2 mg/L Ca 43 31.7 59.8 -10.1852 2.595 25.5 mg/L Fe 54 84.5 10.3 0.0415 0.017 41.8 mg/L Fe 57 311.7 11.8 0.6193 0.301 48.5 mg/L Sc-1 45 17179.7 0.4 0.6193 0.301 48.5 mg/L Kr 83 6.0 28.9 mg/L ug/L ug/L Kr 83 6.0 28.9 ug/L ug/L ug/L P 31 16557.4 2.1 ug/L ug/L ug/L Sr 88 118.3 20.8 ug/L ug/L ug/L C 12 146.7 40.0 ug/L ug/L ug/L Mg/L </th <th>Mg 24 26.7 28.6 0.0134 0.015 113.9 mg/L 10 K 39 25.0 40.0 0.0524 0.105 200.2 mg/L 32 Ca 43 31.7 59.8 -10.1852 2.595 25.5 mg/L 85 Fe 54 84.5 10.3 0.0415 0.017 41.8 mg/L 82 Fe 57 311.7 11.8 0.6193 0.301 48.5 mg/L 217 Sc-1 45 17179.7 0.4 mg/L 48.5 mg/L 217 Sc-1 45 17179.7 0.4 mg/L 48.5 mg/L 14524 Cl 35 74537.6 1.4 mg/L 3</th> | Mg 24 26.7 28.6 0.0134 0.015 113.9 mg/L 10 K 39 25.0 40.0 0.0524 0.105 200.2 mg/L 32 Ca 43 31.7 59.8 -10.1852 2.595 25.5 mg/L 85 Fe 54 84.5 10.3 0.0415 0.017 41.8 mg/L 82 Fe 57 311.7 11.8 0.6193 0.301 48.5 mg/L 217 Sc-1 45 17179.7 0.4 mg/L 48.5 mg/L 217 Sc-1 45 17179.7 0.4 mg/L 48.5 mg/L 14524 Cl 35 74537.6 1.4 mg/L 3 | | Analyte | Mass | QC Std % Recovery | Int Std % Recovery | Spike % Recovery | |---------|------|-------------------|--------------------|------------------| | 「> Li | 6 | | | | | Be | 9 | | | | | L AI | 27 | | | | | 「 Sc | 45 | | | | | Ti | 47 | | | | | V | 51 | | | | | Cr | 52 | | | | | Cr | 53 | | | | | Mn | 55 | | | | | Co | 59 | | | | | Ni | 60 | | | | | Cu | 65 | | | | | Zn | 66 | | | | | > Ge | 72 | | 103.764 | | | As | 75 | | | | | Se | 82 | | | | | ∟ Se-1 | 77 | | | | | 「⊳ Ga | 71 | | | | Sample ID: QC Std 7 Report Date/Time: Tuesday, October 27, 2015 20:31:35 Page 2 Approved: October 28, 2015 | L Rb | 85 | | | | |----------------------|--------------|---------|------|-----------------------| | [Y | 89 | | | | | ∟> Rh | 103 | | | | | [Mo | 98 | | | | | Ag | 107 | | | | | Ag
 Cd | 111 | | | | | Cd | 114 | | | | | | 115 | | | 104.097 | | Sn | 118 | | | 10 1.007 | | Sb | 123 | | | | | L Ba | 135 | | | | | ∟ Ce | 140 | | | | | Tb | 159 | | | | | Ho | 165 | | | | | TI | 203 | | | | | TI | 205 | | | | | Pb | 206 | | | | | Pb | 207 | | | | | Pb | 208 | | | | | į U | 238 | | | | | Ĺ _{>} Bi | 209 | | | 103.370 | | - Na | 23 | | | | | Mg | 24 | | | | | K | 39 | | | | | Ca | 43 | | | | | Fe | 54 | | | | | Fe | 57 | | | | | _> Sc-1 | 45 | | | | | CI | 35 | | | | | Kr | 83 | | | | | Br | 81 | | | | | Р | 31 | | | | | S | 34 | | | | | Sr | 88 | | | | | С | 12 | | | | | N | 14 | | | | | Hg | 202 | | | | | Dy | 164 | | | | | Ho-1 | 165 | | | | | Er | 166 | | | | | 00.0 | 127 | | | | | | ut of Limits | | | | | Measure | ement Type | Analyte | Mass | Out of Limits Message | | QC Std 7 | 7 | Ti | 47 | | Sample ID: QC Std 7 Report Date/Time: Tuesday, October 27, 2015 20:31:35 Page 3 # 2.1.3 Metals CVAA Data (Mercury) # 2.1.3.1 Summary Data Microbac Lab Project #: 2551.096 Project Name: Longhorn Army Ammunition Lab Contact: Stephanie Mossburg Certificate of Analysis Sample #: L15101055-01 Client ID: 35AWW13F-101515 Analyte Matrix: Water Workgroup #: WG543786 Collect Date: 10/15/2015 14:00 Sample Tag: 01 Mercury U PrePrep Method: N/A Prep Method: 7470A Analytical Method: 7470A Analyst: PDM Dilution: 1 Units: mg/L Result 0.000200 CAS# 7439-97-6 Analyte was not detected. The concentration is below the reported LOD. Instrument: CVAA1 Prep Date: 10/21/2015 07:09 Cal Date: 10/21/2015 14:31 Run Date: 10/21/2015 15:03 File ID: M7.102115.150358 | Qual | LOQ | LOD | DL | |------|----------|----------|----------| | U | 0.000400 | 0.000200 | 0.000100 | Page 1 of 2 Generated at Oct 30, 2015 10:22 Lab Project #: 2551.096 Project Name: Longhorn Army Ammunition Lab Contact: Stephanie Mossburg Page 2 of 2 Generated at Oct 30, 2015 10:22 # **2.1.3.2 QC Summary** #### Example Cold Vapor Mercury Calculations Hydra AA Mercury Analyzer / CETAC M-7600 Quick Trace Mercury Analyzer #### 1.0 Initial Calibration (ICAL) Parameters The system performs linear regression from data consisting of a blank and five standards. ## 2.0 Calculating the concentration (C) of an element in water using data from run log and quantitation report (note: the data system performs this calculation automatically when correction factors have been entered): $$Cx = Cs \times \frac{Vf}{Vi} \times D$$ | Where: | Example: | |---|----------| | Cs = Concentration computed by the data system (ug/L) | 0.1 | | Vf = Diluted to Volume (mL) | 40 | | Vi = Aliquot Volume (mL) | 40 | | D = Manual dilution factor, if required (10X = 10) | 1 | | Cx = Concentration of element in ppb (ug/L) | 0.1 | ## 3.0 Calculating the concentration (C) of an element in soil using data from prep log and quantitation report (note: the data system performs this calculation automatically when correction factors have been entered): $$Cx = Cs \times \frac{Vf}{Ws} \times D$$ | Where: | Example: | |---|----------| | Cs = Concentration computed by the data system (ug/L) | 0.1 | | Vf = Diluted to volume (mL) | 40 | | Ws = Aliquot weight (g) | 0.6 | | D = Manual dilution factor | 1 | | Cx = Concentration of element in ug/kg | 6.67 | #### 4.0 Adjusting the concentration to dry weight: $$Cdry = \frac{Cx \times 100}{Px}$$ | 1 Cx = Concentration calculated as received (wet basis) | 6.67 | |---|------| | Px = Percent solids of sample (%wt) | 80 | | Cdru = Concentration calculated as dry weight (ug/kg) | 8.33 | #### 8.33 ug/kg = 0.00833 mg/kg #### Microbac Laboratories Inc. Metals Digest Log Workgroup: WG543702 Analyst: REK Spike Analyst: REK Method: 7470A Run Date: 10/21/2015 07:09 Hotblock Start Temp: 95.5 @ 07:00 Hotblock End Temp: 95.5 @ 09:00 Instrument: HB6 SOP: ME404 Revison 17 Spike Solution: STD73091 Spike Witness: VC 40 & 50 ML. DIGESTION TUCOA18222 H2SO4 Lot #: COA18359 HNO3 Lot #: COA18442 K2S2O8 1:1 Lot #: RGT35013 KMnO4 1:1 Lot #: RGT35069 Mercury Water ICV Lot #: STD73093 HG H2O STDS 10PPM Lot #: STD73099 | | SAMPLE # | Type | Matrix | Initial Amount | Final Volume | Spike Amount | Due Date | |----|--------------|-------|--------|----------------|--------------|--------------|----------| | 1 | WG543702-03 | BLANK | 1 | 40 mL | 40 mL | | | | 2 | WG543702-04 | LCS | 1 | 40 mL | 40 mL | 4 mL | | | 3 | WG543702-01 | REF | 2 | 40 mL | 40 mL | | | | 4 | L15101042-01 | SAMP | 2 | 40 mL | 40 mL | | 10/23/15 | | 5 | L15101042-03 | SAMP | 2 | 40 mL | 40 mL | | 10/23/15 | | 6 | L15101042-05 | SAMP | 2 | 40 mL | 40 mL | | 10/23/15 | | 7 | L15101043-01 | SAMP | 2 | 40 mL | 40 mL | | 10/23/15 | | 8 | WG543702-02 | REF | 1 | 40 mL | 40 mL | | | | 9 | L15101055-01 | SAMP | 1 | 40 mL | 40 mL | | 10/27/15 | | 10 | L15101088-01 | SAMP | 2 | 40 mL | 40 mL | | 10/23/15 | | 11 | L15101088-02 | SAMP | 2 | 40 mL |
40 mL | | 10/23/15 | | 12 | L15101088-03 | SAMP | 2 | 40 mL | 40 mL | | 10/23/15 | | 13 | WG543702-05 | DUP | 1 | 40 mL | 40 mL | | | | 14 | WG543702-06 | MS | 1 | 36 mL | 40 mL | 4 mL | | | 15 | WG543702-07 | MSD | 1 | 36 mL | 40 mL | 4 mL | | * All calibration and check standards are prepared and digested with sample batch following the procedures in section 7.0 of SOP ME404/ME405. ${\tt HB_DIG}$ - Modified 07/26/2012 PDF ID: 4453999 Report generated: 10/21/2015 10:37 #### Microbac Laboratories Inc. Instrument Run Log | Instrument: | CVAA1 | Datas | set: 102115B.CSV | | | |----------------------|------------|----------------|------------------|----------------------|--| | Analyst1: | PDM | Analys | st2: N/A | | | | Method: | 7470/245.1 | | OP: ME404 | Rev: <u>17</u> | | | Maintenance Log ID: | | | | | | | Calibration Std: STD | 73099 | ICV Std: | STD73093 | Post Spike: STD73099 | | | ICSA: N/A | | ICSAB: | N/A | Int. Std: | | | CCV: | | LLCCV: | | Tuning Sol : | | | Stannous : RG | Γ33705 | Hydroxylamine: | RGT33707 | - | | | | | | | | | Workgroups: <u>543786</u> Comments: | Seq. | File ID | Sample | ID | Prep | Dil | Reference | Date/Time | |------|------------------|--------------|----------------------------------|-------|-----|--------------|----------------| | 1 | M7.102115.141819 | WG543825-01 | Calibration Point | | 1 | | 10/21/15 14:18 | | 2 | M7.102115.142051 | WG543825-02 | Calibration Point | | 1 | | 10/21/15 14:20 | | 3 | M7.102115.142323 | WG543825-03 | Calibration Point | | 1 | | 10/21/15 14:23 | | 4 | M7.102115.142555 | WG543825-04 | Calibration Point | | 1 | | 10/21/15 14:25 | | 5 | M7.102115.142828 | WG543825-05 | Calibration Point | | 1 | | 10/21/15 14:28 | | 6 | M7.102115.143102 | WG543825-06 | Calibration Point | | 1 | | 10/21/15 14:31 | | 7 | M7.102115.143336 | WG543825-07 | Initial Calibration Verification | | 1 | | 10/21/15 14:33 | | 8 | M7.102115.143607 | WG543825-08 | Initial Calib Blank | | 1 | | 10/21/15 14:36 | | 9 | M7.102115.143840 | WG543825-09 | CCV | | 1 | | 10/21/15 14:38 | | 10 | M7.102115.144110 | WG543825-10 | ССВ | | 1 | | 10/21/15 14:41 | | 11 | M7.102115.144341 | WG543702-03 | Method/Prep Blank | 40/40 | 1 | | 10/21/15 14:43 | | 12 | M7.102115.144612 | WG543702-04 | Laboratory Control S | 40/40 | 1 | | 10/21/15 14:46 | | 13 | M7.102115.144844 | WG543702-01 | Reference Sample | 40/40 | 1 | L15101042-01 | 10/21/15 14:48 | | 14 | M7.102115.145115 | WG543786-01 | Post Digestion Spike | | 1 | L15101042-01 | 10/21/15 14:51 | | 15 | M7.102115.145347 | WG543702-05 | Duplicate | 40/40 | 1 | L15101042-01 | 10/21/15 14:53 | | 16 | M7.102115.145619 | L15101042-03 | S5J1125-02 | 40/40 | 1 | | 10/21/15 14:56 | | 17 | M7.102115.145852 | L15101042-05 | S5J1125-03 | 40/40 | 1 | | 10/21/15 14:58 | | 18 | M7.102115.150125 | L15101043-01 | 15J0916-01 | 40/40 | 1 | | 10/21/15 15:01 | | 19 | M7.102115.150358 | WG543702-02 | Reference Sample | 40/40 | 1 | L15101055-01 | 10/21/15 15:03 | | 20 | M7.102115.150631 | WG543702-06 | Matrix Spike | 36/40 | 1 | L15101055-01 | 10/21/15 15:06 | | 21 | M7.102115.151158 | WG543825-11 | CCV | | 1 | | 10/21/15 15:11 | | 22 | M7.102115.151429 | WG543825-12 | CCB | | 1 | | 10/21/15 15:14 | | 23 | M7.102115.151703 | WG543702-07 | Matrix Spike Duplica | 36/40 | 1 | L15101055-01 | 10/21/15 15:17 | | 24 | M7.102115.151937 | L15101088-01 | J5K0016-02 | 40/40 | 1 | | 10/21/15 15:19 | | 25 | M7.102115.152207 | L15101088-02 | J5K0016-04 | 40/40 | 1 | | 10/21/15 15:22 | | 26 | M7.102115.152438 | L15101088-03 | J5K0016-06 | 40/40 | 1 | | 10/21/15 15:24 | | 27 | M7.102115.152710 | WG543825-13 | CCV | | 1 | | 10/21/15 15:27 | | 28 | M7.102115.152941 | WG543825-14 | ССВ | | 1 | | 10/21/15 15:29 | Page: 1 Approved: October 23, 2015 B. L. Zun Checklist ID: 1074320894593 ### Microbac Laboratories Inc. Data Checklist | Date: | 21-OCT-2015 | |------------------------|-------------| | Analyst: | PDM | | Analyst: | <u>NA</u> | | Method: | 7470/245.1 | | Instrument: | CVAA1 | | Curve Workgroup: | 543825 | | Runlog ID: | 71199 | | Analytical Workgroups: | 543786 | | Calibration/Linearity | X | |--|-----------| | ICV/CCV | X | | ICV RSD < 3% (EPA 200.7 only) | | | ICB/CCB | X | | ICSA/ICSAB | | | CRI | | | Blank/LCS | X | | MS/MSD | X | | Post Spike/Serial Dilution | X | | Upload Results | X | | Data Qualifiers | | | Generate PDF Instrument Data | X | | Sign/Annotate PDF Data | X | | Upload Curve Data | X | | Workgroup Forms | X | | Case Narrative | 1055,1043 | | Client Forms | X | | Level X | | | Level 3 | | | Level 4 | 1055 | | Check for compliance with method and project specific requirements | X | | Check the completeness of reported information | X | | Check the information for the report narrative | X | | Primary Reviewer | PDM | | Secondary Reviewer | BKT | | | | | Comments | | Primary Reviewer: 21-OCT-2015 Secondary Reviewer: 23-OCT-2015 Pierce Monis Bruh Zum CHECKLIST1 - Modified 03/05/2008 Generated: OCT-23-2015 13:28:57 Microbac Laboratories Inc. 00894594 ## HOLDING TIMES EQUIVALENT TO AFCEE FORM 9 Analytical Method: 7470A Login Number:L15101055 | AAB#:WG543786 | | |---------------|--| | AAD#:WG343/00 | | | Client ID | ID | Date
Collected | TCLP
Date | Time
Held | Max
Hold | Q | Extract
Date | Time
Held | Max
Hold | Q | Run
Date | Time
Held | Max
Hold | Q | |-----------------|----|-------------------|--------------|--------------|-------------|---|-----------------|--------------|-------------|---|-------------|--------------|-------------|---| | 35AWW13F-101515 | 01 | 10/15/15 | | | | | 10/21/2015 | 5.7 | 28 | | 10/21/15 | 6 | 28 | | * = SEE PROJECT QAPP REQUIREMENTS HOLD_TIMES - Modified 03/06/2008 PDF File ID: 4454633 Report generated 10/21/2015 15:50 Page 732 L15101055 / Revision: 0 / 760 total pages Generated: 10/30/2015 10:11 #### METHOD BLANK SUMMARY Login Number: L15101055 Blank File ID: M7.102115.144341 Prep Date: 10/21/15 07:09 Analyzed Date: 10/21/15 14:43 Work Group: WG543786 Blank Sample ID: WG543702-03 Instrument ID: CVAA1 Method: 7470A Analyst:PDM #### This Method Blank Applies To The Following Samples: | Client ID | Lab Sample ID | Lab File ID | Time Analyzed | TAG | |-----------------|---------------|------------------|----------------|-----| | LCS | WG543702-04 | M7.102115.144612 | 10/21/15 14:46 | 01 | | DUP | WG543702-05 | M7.102115.145347 | 10/21/15 14:53 | 01 | | 35AWW13F-101515 | L15101055-01 | M7.102115.150358 | 10/21/15 15:03 | 01 | Report Name: BLANK_SUMMARY PDF File ID: 4454634 Report generated 10/21/2015 15:50 ## Microbac Laboratories Inc. METHOD BLANK REPORT | Analytes | DL | LOQ | Concentration | Dilution | Qualifier | |----------|----------|----------|---------------|----------|-----------| | Mercury | 0.000100 | 0.000400 | 0.000100 | 1 | υ | DL Method Detection Limit LOQ Reporting/Practical Quantitation Limit ND Analyte Not detected at or above reporting limit * |Analyte concentration| > 1/2 RL Report Name:BLANK PDF ID: 4454635 21-OCT-2015 15:50 | Analytes | Expected | Found | % Rec | LCS Limits | Q | |----------|----------|---------|-------|------------|---| | Mercury | 0.00400 | 0.00434 | 109 | 80 - 120 | | LCS - Modified 03/06/2008 PDF File ID: 4454636 Report generated: 10/21/2015 15:50 ## Microbac Laboratories Inc. MATRIX SPIKE AND MATRIX SPIKE DUP (MS/MSD) Loginnum: L15101055 Cal ID: CVAA1 Worknum: WG543786 Instrument ID: CVAA1 Contract #: Method: 7470A Parent ID: WG543702-02 File ID: M7.102115.150358 Dil: 1 Matrix: WATER Sample ID: WG543702-06 MS File ID: M7.102115.150631 Dil: 1 Units: mg/L Sample ID: WG543702-07 MSD File ID: M7.102115.151703 Dil: 1 Dil: 1 | | Analyte | Parent | MS
Spiked | MS
Found | MS
%Rec | MSD
Spiked | MSD
Found | MSD
%Rec | %RPD | %Rec
Limits | RPD
Limit | Q | |----|---------|--------|--------------|-------------|------------|---------------|--------------|-------------|------|----------------|--------------|---| | Μe | ercury | ND | 0.00444 | 0.00425 | 95.5 | 0.00444 | 0.00409 | 92.0 | 3.76 | 80 - 120 | 20 | | ^{*} FAILS %REC LIMIT ${\tt NOTE:}$ This is an internal quality control sample. WG_MS_MSD_DRYWT - Modified 05/26/2011 PDF File ID: 4454637 Report generated 10/21/2015 15:50 [#] FAILS RPD LIMIT ## Microbac Laboratories Inc. POST SPIKE REPORT Sample Login ID: L15101055 Worknum: WG543786 Instrument ID: CVAA1 Method: 7470A Post Spike ID: WG543786-01 File ID:M7.102115.145115 Dil:1 Units: ug/L Sample ID: L15101042-01 File ID:M7.102115.144844 Dil:1 Matrix: Water | Analyte | Post Spike
Result | С | Sample
Result | С | Spike
Added(SA) | % R | Control
Limit %R | Q | |---------|----------------------|---|------------------|---|--------------------|-------|---------------------|---| | MERCURY | 1.06 | | 0 | U | 1 | 106.2 | 85 - 115 | | N = % Recovery exceeds control limits F = Result is between MDL and RL U = Sample result is below MDL. A value of zero is used in the calculation Login Number:L15101055 Analytical Method:7470A ICAL Worknum:WG543825 Workgroup (AAB#):WG543786 Instrument ID: CVAA1 Initial Calibration Date: 10/21/2015 14:31 | | WG543825-01 WG543825-02 WG543825-03 | | WG5 | 43825-04 | WG543825-05 | | WG543825-06 | | | | | | |---------|-------------------------------------|-------|-------|----------|-------------|-------|-------------|-------|------|-------|------|--------| | Analyte | STD | INT | STD | INT | STD | INT | STD | INT | STD | INT | STD | INT | | Mercury | 0 | 183.7 | 0.200 | 2784 | 1.00 | 13010 | 2.00 | 25860 | 5.00 | 63600 | 10.0 | 124200 | INT = Instrument intensity R = Coefficient of correlation Q = Data Qualifier * = Out of Compliance; R < 0.995 Login Number:L15101055 Analytical Method:7470A ICAL Worknum:WG543825 Workgroup (AAB#):WG543786 Instrument ID:CVAA1 Initial Calibration Date:10/21/2015 14:31 | Analyte | R | Q | |---------|-------|---| | Mercury | 1.000 | | INT = Instrument intensity R = Coefficient of correlation Q = Data Qualifier * = Out of
Compliance; R < 0.995 #### Microbac Laboratories Inc. INITIAL CALIBRATION BLANK (ICB) Login Number: L15101055 Run Date: 10/21/2015 Sample ID: WG543825-08 Instrument ID: CVAA1 Run Time: 14:36 Method: 7470A _____Units: ug/L File ID: M7.102115.143607 Analyst: PDM Matrix:WATER | Analytes | MDL | RDL | Concentration | Qualifier | |----------|-----|-----|---------------|-----------| | MERCURY | .1 | .4 | .1 | υ | U = Result is less than 2 x MDL F = Result is between MDL and 2 x MDL * = Result is above 2 x MDL ICB - Modified 07/14/2009 PDF File ID: 4454642 Report generated 10/21/2015 15:50 Login Number: L15101055 Run Date: 10/21/2015 Sample ID: WG543825-10 Instrument ID: CVAA1 Run Time: 14:41 Method: 7470A File ID: M7.102115.144110 Analyst: PDM Units: Units: Units: Units: Units: QAPP: DOD4 DOD4</td | Analytes | MDL | RDL | Concentration | Qualifier | |----------|-------|-------|---------------|-----------| | Mercury | 0.100 | 0.400 | 0.100 | Ū | U = Result is less than MDL. F = Result is between MDL and RL. * = Result is above RL. CCB - Modified 03/05/2008 PDF File ID: 4454644 Report generated 10/21/2015 15:50 | Analytes | MDL | RDL | Concentration | Qualifier | |----------|-------|-------|---------------|-----------| | Mercury | 0.100 | 0.400 | 0.100 | υ | U = Result is less than MDL. F = Result is between MDL and RL. * = Result is above RL. CCB - Modified 03/05/2008 PDF File ID: 4454644 Report generated 10/21/2015 15:50 #### Microbac Laboratories Inc. CONTINUING CALIBRATION BLANK (CCB) Login Number: L15101055 Run Date: 10/21/2015 Sample ID: WG543825-14 Instrument ID: CVAA1 Run Time: 15:29 Run Time: 15:29 Analyst: PDM Method: 7470A Units:ug/L Workgroup (AAB#): WG543786 Cal ID: CVAA1 - 21-OCT-15 Matrix:WATER QAPP: DOD4 | Analytes | MDL | RDL | Concentration | Qualifier | |----------|-------|-------|---------------|-----------| | Mercury | 0.100 | 0.400 | 0.100 | Ū | U = Result is less than MDL. F = Result is between MDL and RL. * = Result is above RL. CCB - Modified 03/05/2008 PDF File ID: 4454644 Report generated 10/21/2015 15:50 # Microbac Laboratories Inc. INITIAL CALIBRATION VERIFICATION (ICV) (Alternate Source) Login Number:L15101055 Run Date:10/21/2015 Sample ID:WG543825-07 Instrument ID:CVAA1 Run Time:14:33 Method:7470A File ID:M7.102115.143336 Analyst:PDM Units:ug/L Workgroup (AAB#):WG543786 Cal ID: CVAA1 - 21-OCT-15 QC Key:DOD4 | Analyte | Expected | Found | %REC | LIMITS | Q | |---------|----------|-------|------|----------|---| | Mercury | 2 | 2.01 | 101 | 90 - 110 | | ^{*} Exceeds LIMITS Limit ICV - Modified 03/06/2008 PDF File ID: 4454641 Report generated 10/21/2015 15:50 Login Number: L15101055 Run Date: 10/21/2015 Sample ID: WG543825-09 Instrument ID: CVAA1 Run Time: 14:38 Method: 7470A File ID: M7.102115.143840 Analyst: PDM QC Key: DOD4 Workgroup (AAB#): WG543786 Cal ID: CVAA1 - 21-OCT-15 COUNTY OF THE COUN | Analyte | Expected | Found | UNITS | %REC | LIMITS | Q | |----------------|----------|---------|-------|------|----------|---| | Mercury, Total | 0.00200 | 0.00211 | mg/L | 105 | 80 - 120 | | ^{*} Exceeds LIMITS Criteria CCV - Modified 03/05/2008 PDF File ID: 4454643 Report generated 10/21/2015 15:50 Login Number: L15101055 Run Date: 10/21/2015 Sample ID: WG543825-11 Instrument ID: CVAA1 Run Time: 15:11 Method: 7470A File ID: M7.102115.151158 Analyst: PDM QC Key: DOD4 Workgroup (AAB#): WG543786 Cal ID: CVAA1 - 21-OCT-15 COUNTY OF THE COUN | Analyte | Expected | Found | UNITS | %REC | LIMITS | Q | |----------------|----------|---------|-------|------|----------|---| | Mercury, Total | 0.00200 | 0.00191 | mg/L | 95.6 | 80 - 120 | | ^{*} Exceeds LIMITS Criteria CCV - Modified 03/05/2008 PDF File ID: 4454643 Report generated 10/21/2015 15:50 Login Number:L15101055 Run Date:10/21/2015 Sample ID:WG543825-13 Instrument ID:CVAA1 Run Time:15:27 Method:7470A File ID:M7.102115.152710 Analyst:PDM QC Key:DOD4 Workgroup (AAB#):WG543786 Cal ID: CVAA1 - 21-OCT-15 Matrix:WATER | Analyte | Expected | Found | UNITS | %REC | LIMITS | Q | |----------------|----------|---------|-------|------|----------|---| | Mercury, Total | 0.00200 | 0.00196 | mg/L | 97.9 | 80 - 120 | | ^{*} Exceeds LIMITS Criteria CCV - Modified 03/05/2008 PDF File ID: 4454643 Report generated 10/21/2015 15:50 ## **2.1.3.3 Raw Data** #### **PDM** Report Generated By CETAC QuickTrace Analyst: VOA Worksheet file: C:\Program Files (x86)\QuickTrace\Worksheets\102115B.wsz **Date Started:** 10/21/2015 2:03:24 PM **Comment:** #### Results | Sample Name | | | | Type | Date/Time | Conc
(ug/L) | μAbs | %RSD Flags | DF | |--|-------------------|-----------|----------|----------------|---------------------------|---------------------|--------|------------|------| | Standard #0
Replicates | 187.8 | 188.1 | 186.6 | STD
172. | 10/21/15 02:18:19 pm
3 | 0.0000 | 184 | 4.16 | 1.00 | | Standard #1 (0.2 ug/L)
Replicates | 2750.2 | 2794.3 | 2781.3 | STD
2809. | 10/21/15 02:20:51 pm
8 | 0.2000 | 2784 | 0.91 | 1.00 | | Standard #2 (1.0 ug/L)
Replicates | 12987.9 | 13022.9 | 13009.5 | STD
13006. | 10/21/15 02:23:23 pm
7 | 1.0000 | 13007 | 0.11 | 1.00 | | Standard #3 (2.0 ug/L)
Replicates | 25756.8 | 25875.0 | 25917.0 | STD
25897. | 10/21/15 02:25:55 pm
0 | 2.0000 | 25861 | 0.28 | 1.00 | | Standard #4 (5.0 ug/L)
Replicates | 63388.4 | 63658.0 | 63716.5 | STD
63634. | 10/21/15 02:28:28 pm
2 | 5.0000 | 63599 | 0.23 | 1.00 | | Standard #5 (10.0 ug/L)
Replicates | 123704.5 | 124311.1 | 124498.1 | STD
124459. | 10/21/15 02:31:02 pm
0 | 10.0000 | 124243 | 0.30 | 1.00 | | Calibration Equation: A = 62 R2: 0.9998 SEE: 623.98 Flags: | | 2414.570C | | uAbsorbance | 0 2 | 4 6 exentration (ug | /L) | 10 | | | ICV Replicates % Recovery | 25476.7
100.60 | 25614.5 | 25681.6 | ICV
25625. | 10/21/15 02:33:36 pm
6 | 2.0120 | 25600 | 0.34 | 1.00 | 10/21/2015 3:38:47 PM 102115B.wsz Page 1 Approved: October 28, 2015 DF | · | ie Name | | | | Type Date/Time | (ug/L) | μAbs | %RSD Flags | DF | |-------|-------------------------------------|-------------------|-------------------|---------|----------------------------------|--------------|-------|------------|------| | ICB | Replicates | 132.5 | 125.8 | 138.8 | ICB 10/21/15 02:36:07
130.5 | ′ pm -0.0395 | 132 | 4.09 | 1.00 | | CCV | Replicates
% Recovery | 26665.9
105.37 | 26786.2 | 26846.5 | CCV 10/21/15 02:38:40
26838.7 |) pm 2.1070 | 26784 | 0.31 | 1.00 | | ССВ | Replicates | 155.3 | 178.2 | 147.7 | CCB 10/21/15 02:41:10
147.7 |) pm -0.0374 | 157 | 9.18 | 1.00 | | WG54 | 3702-03
Replicates | 328.8 | 316.7 | 305.5 | MB 10/21/15 02:43:41
326.4 | pm -0.0244 | 319 | 3.32 | 1.00 | | WG54 | 3702-04
Replicates
% Recovery | 54203.8
108.59 | 54535.6 | 54682.2 | LCS 10/21/15 02:46:12
54754.7 | ? pm 4.3430 | 54544 | 0.45 | 1.00 | | L1510 | 104201
Replicates | 133.0 | 146.1 | 139.1 | UNK 10/21/15 02:48:44
148.7 | pm -0.0387 | 142 | 5.02 | 1.00 | | WG54 | 3786-01
Replicates
% Recovery | 13701.4
110.05 | 13793.7 | 13846.5 | SPK 10/21/15 02:51:15
13872.7 | 5 pm 1.0620 | 13804 | 0.55 | 1.00 | | WG54 | 3702-05
Replicates | 140.8 | 167.7
RPD 0.00 | 163.7 | DUP 10/21/15 02:53:47
169.5 | ′ pm -0.0372 | 160 | 8.28 | 1.00 | | L1510 | 104203
Replicates | 161.0 | 166.2 | 154.5 | UNK 10/21/15 02:56:19
159.9 |) pm -0.0372 | 160 | 2.98 | 1.00 | | L1510 | 104205
Replicates | 156.1 | 183.3 | 167.8 | UNK 10/21/15 02:58:52
185.5 | ? pm -0.0362 | 173 | 7.98 | 1.00 | | L1510 | 104301
Replicates | 253.2 | 263.8 | 223.9 | UNK 10/21/15 03:01:25
238.6 | 5 pm -0.0304 | 245 | 7.09 | 1.00 | | L1510 | 105501
Replicates | 204.7 | 215.9 | 212.3 | UNK 10/21/15 03:03:58
216.9 | 3 pm -0.0330 | 212 | 2.62 | 1.00 | Type Date/Time Conc μAbs %RSD Flags Approved: October 28, 2015 Pinel Monis 102115B.wsz 10/21/2015 3:38:47 PM Sample Name Page 2 | Samp | le Name | | | | Туре | Date/Time | Conc
(ug/L) | μAbs | %RSD Fla | gs DF | |-------|-------------------------------------|------------------|-----------------------|---------|----------------|----------------------------|----------------|-------|----------|-------| | WG54 | 3702-06
Replicates
% Recovery | 47519.4
96.36 | 47998.6 | 48307.4 | MSK
48426 | 10/21/15 03:06:31 pm
.6 | 3.8210 | 48063 | 0.84 | 1.00 | | CCV | Replicates
% Recovery | 24091.6
95.57 | 24349.2 | 24444.3 | CCV
24517 | 10/21/15 03:11:58 pm
.5 | 1.9110 | 24351 | 0.76 | 1.00 | | ССВ | Replicates | 151.3 | 154.0 | 173.7 | CCB
174 | 10/21/15 03:14:29 pm
.7 | -0.0370 | 163 | 7.64 | 1.00 | | WG54 | 3702-07
Replicates
% Recovery | 45742.9
92.83 | 46244.9
RPD 204.06 | 46534.7 | MSDUP
46718 | 10/21/15 03:17:03 pm
9 | 3.6800 | 46310 | 0.92 D | 1.00 | | L1510 | 108801
Replicates | 161.8 | 172.1 | 155.9 | UNK
149 | 10/21/15 03:19:37 pm
.9 | -0.0372 | 160 | 5.91 | 1.00 | | L1510 | 108802
Replicates | 536.0 | 550.5 | 544.3 | UNK
515 | 10/21/15 03:22:07 pm
.8 | -0.0069 | 537 | 2.81 | 1.00 | | L1510 | 108803
Replicates | 493.3 | 513.5 | 520.7 | UNK
519 | 10/21/15 03:24:38 pm
.2 | -0.0089 | 512 | 2.47 | 1.00 | | CCV | Replicates
% Recovery | 24686.7
97.88 | 24886.4 | 25043.6 | CCV
25085 | 10/21/15 03:27:10 pm
.9 | 1.9580 | 24926 | 0.73 | 1.00 | | ССВ | Replicates | 168.5 | 153.6 | 144.5 | CCB
120 | 10/21/15 03:29:41 pm
.8 | -0.0383 | 147 | 13.63 | 1.00 | 10/21/2015 3:38:47 PM 102115B.wsz Page 3 Approved: October 28, 2015 Pinel Monis # 3.0 Attachments # Microbac Laboratories Inc. Ohio Valley Division Analyst List October 30, 2015 001 - BIO-CHEM TESTING WVDEP 220 002 - REIC Consultants, Inc. WVDEP 060 003 - Sturm Environmental 004 - MICROBAC PITTSBURGH 005 - ES LABORATORIES 006 - ALCOSAN LABORATORIES 007 - ALS LABORATORIES 008 - BENCHMARK LABORATORIES AC - AMBER R. CARMICH ADG - APRIL D. GREENE 010 - MICROBAC CHICAGOLAND AC - AMBER R. CARMICHAEL ADC - ANTHONY D. CANTER AED - ALLEN E.
DAVIS ALS - ADRIANE L. STEED AZH - AFTER HOURS AWE - ANDREW W. ESSIG BLG - BRENDA L. GREENWALT CAA - CASSIE A. AUGENSTEIN CEB - CHAD E. BARNES BKT - BRENDAN TORRENCE BRG - BRENDA R. GREGORY CAF - CHERYL A. FLOWERS CID - COMMITTEE CO CJR - COURTNEY J. REXROAD CLC - CHRYS L. CRAWFORD CLS - CARA L. STRICKLER CPD - CHAD P. DAVIS CLW - CHARISSA L. WINTERS CSH - CHRIS S. HILL DAK - DEAN A. KETELSEN DCM - DAVID C. MERCKLE DEV - DAVID E. VANDENBERG DLB - DAVID L. BUMGARNER DIH - DEANNA I. HESSON DLP - DOROTHY L. PAYNE DLW - DIANA L. WRIGHT DSM - DAVID S. MOSSOR ECL - ERIC C. LAWSON EPT - ETHAN P. TIDD ENY - EMILY N. YOAK FJB - FRANCES J. BOLDEN JDH - JUSTIN D. HESSON JJS - JOHN J. STE MARIE ERP - ERIN R. PORTER JBK - JEREMY B. KINNEY JDS - JARED D. SMITH JKP - JACQUELINE K. PARSONS JLL - JOHN L. LENT JMW - JEANA M. WHITE JTP - JOSHUA T. PEMBERTON JWS - JACK W. SHEAVES JWR - JOHN W. RICHARDS KAJ - KELLIE A. JOHNSON KDW - KATHRYN D. WELCH KHR - KIM H. RHODES KRA - KATHY R. ALBERTSON KRP - KATHY R. PARSONS JYH - JI Y. HU KAT - KATHY A. TUCKER KEB - KATIE E. BARNES KKB - KERRI K. BUCK KRB - KAELY R. BECKER LKN - LINDA K. NEDEFF LEC - LAURA E. CARPENTER LLS - LARRY L. STEPHENS LSB - LESLIE S. BUCINA MBK - MORGAN B. KNOWLTON MDA - MIKE D. ALBERTSON MES - MARY E. SCHILLING MDC - MIKE D. COCHRAN MLB - MEGAN L. BACHE MMB - MAREN M. BEERY MRT - MICHELLE R. TAYLOR MSW - MATT S. WILSON PDM - PIERCE D. MORRIS PIT - MICROBAC WARRENDALE PRL - PAIGE R. LAMB PSW - PEGGY S. WEBB QX - QIN XU RAH - ROY A. HALSTEAD REK - BOB E. KYER RLB - BOB BUCHANAN RNP - RICK N. PETTY SAV - SARAH A. VAND RM - RAYMOND MALEKE RST - ROBIN S. TURNER SAV - SARAH A. VANDENBERG SCB - SARAH C. BOGOLIN SLM - STEPHANIE L. MOSSBURG SDC - SHALYN D. CONLEY SLP - SHERI L. PFALZGRAF TB - TODD BOYLE TGF - TIM G. FELTON TMB - TIFFANY M. BAILEY TMM - TAMMY M. MORRIS WJB - WILL J. BEASLEY VC - VICKI COLLIER WRR - WESLEY R. RICHARDS WTD - WADE T. DELONG XXX - UNAVAILABLE OR SUBCONTRACT #### Microbac Laboratories Inc. List of Valid Qualifiers October 30, 2015 Qualkey: DOD | Qualifier | Description | |----------------|---| | * | Surrogate or spike compound out of range | | + | Correlation coefficient for the MSA is less than 0.995 | | < | Result is less than the associated numerical value. | | > | Greater than | | A | See the report narrative | | В
В,Н1 | The reported result is associated with a contaminated method blank. Analyte present in method blank. Sample analysis performed past holding time. | | B1 | Target analyte detected in method blank at or above the method reporting limit | | B3 | Target analyte detected in calibration blank at or above the method reporting limit | | B4 | The BOD unseeded dilution water blank exceeded 0.2 mg/L | | С | Confirmed by GC/MS | | CG
CT1 | Confluent growth | | DL | Cooler temperature at sample reciept exceeded regulatory limit. Surrogate or spike compound was diluted out | | Ē | Estimated concentration due to sample matrix interference | | E,CT1 | Estimated results. The cooler temperature at receipt exceeded regulatory guidelines for requested testing. | | EDL | Elevated sample reporting limits, presence of non-target analytes | | EMPC | Estimated Maximum Possible Concentration Estimated result below quantitation limit, method of standard additions (MSA) | | F, S
F,CT1 | Estimated result below quantitation limit; method of standard additions(MSA) Estimated value; the analyte concentration was less than the RL/LOQ. The cooler temperature at receipt exceeded regula | | FL | Free Liquid | | FP1 | Did not İgnite. | | H1 | Sample analysis performed past holding time. | | H1,CT1 | Sample analysis performed past holding time. The cooler temperature at receipt exceeded regulatory guidelines for reque Semiguantitative result (out of instrument calibration range) | | I
J | Estimated concentration; sample matrix interference. | | Ĵ | Estimated value; the analyte concentration was greater than the highest standard | | J | Estimated value; the analyte concentration was less than the LOQ. | | J | The reported result is an estimated value. | | J,B
J,CT1 | Analyte detected in both the method blank and sample above the MDL. | | J,H1 | Estimated value; the analyte concentration was less than the LOQ. Cooler temperature at sample reciept exceeded regu Estimated value; the analyte concentration was less than the LOQ. Sample analysis performed past holding time. | | J,H1 | The reported result is an estimated value. Sample was analyzed past holding time. | | J,P | Estimate; columns don't agree to within 40% | | J,S | Estimated concentration; analyzed by method of standard addition (MSA) | | JB
IO | The reported result is an estimated value. The reported result is also associated with a contaminated method blank. | | JQ
L | The reported result is an estimated value and one or more quality control criteria failed. See narrative. Sample reporting limits elevated due to matrix interference | | | The associated blank spike (LCS) recovery was above the laboratory acceptance limits. | | L2 | The associated blank spike (LCS) recovery was below the laboratory acceptance limits. | | M | Matrix effect; the concentration is an estimate due to matrix effect. | | N | Nontarget analyte; the analyte is a tentativlely identified compound (TIC) by GC/MS | | NA
ND | Not applicable Not detected at or above the reporting limit (RL) | | ND, B | Not detected at or above the reporting limit (RL). Analyte present in method blank. | | ND, CT1 | Analyte was not detected. The concentration is below the reported LOD. The cooler temperature at receipt exceeded reg | | ND, L | Not detected; sample reporting limit (RL) elevated due to interference | | ND, S
ND,H1 | Not detected; analyzed by method of standard addition (MSA) Not detected; Sample analysis performed past holding time. | | ND,H1,CT1 | Not detected; Sample analysis performed past holding time. The cooler temperature at receipt exceeded regulatory guide | | NF | Not found by library search | | NFL | No free liquid | | NI | Non-ignitable | | NR
NS | Analyte is not required to be analyzed Not spiked | | P | Concentrations >40% difference between the two GC columns | | Q | One or more quality control criteria failed. See narrative. | | Q,H1 | One or more quality control criteria failed. Sample analyzed past holding time. See narrative. | | QNS | Quantity of sample not sufficient to perform analysis | | RA
RE | Reanalysis confirms reported results Reanalysis confirms sample matrix interference | | S | Analyzed by method of standard addition (MSA) | | SMI | Sample matrix interference on surrogate | | SP | Reported results are for spike compounds only | | T5
TIC | Laboratory not licensed for this parameter Library Search Compound | | TNTC | Too numerous to count | | | | #### Microbac Laboratories Inc. List of Valid Qualifiers October 30, 2015 Qualkey: DOD | TNTC, B | Too numerous to count. Analyte present in method blank. | |----------|--| | TNTC,CT1 | Too numerous to count. The cooler temperature at receipt exceeded regulatory guidelines for requested testing. | | TNTC,H1 | Too numerous to count. Sample analysis performed past holding time. | | U | Analyte was not detected. The concentration is below the reported LOD. | | U,CT1 | Analyte was not detected. The concentration is below the reported LOD. Cooler temperature at sample reciept exceeded | | U,H1 | Not detected; Sample analysis performed past holding time. | | UJ | Undetected; the MDL and RL are estimated due to quality control discrepancies. | | UQ | Undetected; the analyte was analyzed for, but not detected. | | W | Post-digestion spike for furnace AA out of control limits | | Χ | Exceeds regulatory limit | | X, S | Exceeds regulatory limit; method of standard additions (MSA) | | Z | Cannot be resolved from isomer - see below | Microbac ° | | AECOM | | | | ฉ | Chain of Custody Record | ರ | stod | ly Re | cord | | - | | | ၁၀၁ | COC Number: | | | ī | |------------------------|---|-------|------|-------------------|---|-------------------------|-----------------|-----------------|----------------------------------|--------------------------------------
--|--|-------------|--------------|--------------------|--|------------------------------|-------|-------------------| | Laboratory: | Microbac POC: Stephanie Mossburg | burg | ٢ | Project Manager: | anager: | l | Mark Heaston | ston | | | | | | Mail to: | • | Linda Raabe | pe | | | | Address: | te Drive |) | | Phone/Fax Number: | K Numbe | | 210-296-2000 | 2000 | | | | | | | • | 112 East Pecan | | 400 | | | | Marietta, OH 45750 | | | Sampler (print): | print): | တ္တ | Scott Beesinger | singer | | | | | | | • | San Antonio, TX | | 78205 | | | Phone: | 1-800-373-4071 | | | | | | | | | | | | | | | 210-296-2000 | 000 | | _ | | Client: | AECOM | | _ | Signature: | | Y | | ري
ح | ١ | , | | | | red Ex | red Ex Airbiil No: | :: | | | | | Address: | 112 East Pecan Ste. 400 | - | | | - |) | 3 | 1 | | 3 | | l | ŀ | | | | | | Т | | | San Antonio, TX 78205 | | | | | | | | | | | | • | Program: | ä | | | | | | Turn Around Time: | Time: STANDARD | | | Ä | | | | | s | | | | ···· | | | | | | | | Project Name/Location: | | | | | | | | | ergis | | | ······································ | | | | | | | -т | | Project Number: | | 2 | | | | | | | PIAI 1 | | | | | | ERPII | MS REQU | ERPIMS REQUIRED FIELDS | DS | | | | | | | | | | _ | 19qu | sìo' | | | | | BDE | ר ום | 101 | LOT CONTROL NUMBERS | MBERS | | | Site Name | Sample ID/Location ID | SBD | SED | Date | Time | moD
srĐ | ntsM | | | | ······································ | | - | ev co | elooD | ABLOT | EBLOT | TBLOT | | | | 35AWW(3R101515 | | | 00/11-0/9/o | 8 | 7 | 3 | | 7 | | | | | | | | | | Т | | | | | | | | | | | _ | | | | _ | —Т | 1 | | 7(| | | | | | | | | | | | | _ | | | | | | - | |) 3 | | | | | | | | | | | | | | | | | | | Т | | 111 | | | | | | | _ | | | | | | - | | | | | | | | S | | | | | | | | ; | | _
_ | | | | | | | | | | | | | | | | | | | Micr.
Receiv | Microbac UVD
Received: 10/16/ | Microbac UVD
Received: 10/16/2015 | 15 10:26 | 10 | | | | | | | _ | | | | | | | | | | | SHUA PI | By: JOSHUA PEMBERTON | | | 2210 | 221000076964 | 4 | | | | γ | 9 | Don Lort | + | and the second s | | | | | | | | | | | Comments: STANDARD TAT | J TAT | 1000 | | | Salahaya Ye | | | | | | | | | | | eranora ranga | | / Service Service | | Relinquished by | | Date | | Time 1/200/ | Received by: (Signature) | by: (Sig | nature) | | | - | Received by: (Signature) | by: (Sign | ature) | Date | Time | Relinquished | Relinquished by: (Signature) | re) | | | Relinquished by: | | Date | | 1 | Received for Laboratory by: (Signature) | for Labo
e) | ratory by | | | | Date | | | Ε | Time | Remarks: | | | 908 | | -Homogenize | -Homogenize all composite samples prior to analysis | | | | | | Distri | bution: | White to | Labor | atory, C. | anary to | Project | Manage | ır, Pink (| Distribution: White to Laboratory, Canary to Project Manager, Pink QA/QC Manager | ıager | | 9461 | | | | | | | | | , | | | | | | | | | | | | 8 | Microbac Laboratories Inc. Internal Chain of Custody Report Login: L15101055 Account: 2551 Project: 2551.096 Samples: 1 **Due Date:** 27-OCT-2015 <u>Samplenum</u> <u>Container ID</u> <u>Products</u> L15101055-01 648606 CU-MS FE HG K MG MN-MS NA NI-MS PB-MS SB-MS SF Bottle: 1 | Seq. | Purpose | From | То | Date/Time | Accept | Relinquish | Нq | |------|---------|--------|--------|-------------------|--------|------------|----| | 1 | LOGIN | COOLER | W1 | 17-OCT-2015 09:34 | CLS | | | | 2 | PREP | W1 | DIG | 19-OCT-2015 12:51 | ERP | CLS | | | 3 | STORE | DIG | A1 | 21-OCT-2015 13:07 | BRG | AC | | | 4 | ANALYZ* | DIG | METALS | 21-OCT-2015 13:16 | JYH | ERP | | ^{*}Sample extract/digestate/leachate A1 - Sample Archive (COLD) A2 - Sample Archive (AMBIENT) F1 - Volatiles Freezer in Login V1 - Volatiles Refrigerator in Login W1 - Walkin Cooler in Login #### NELAP Addendum - October 15, 2015 #### **Non-NELAP LIMS Product and Description** The following is a list of those tests that are not included in the Microbac – OVD NELAP Scope of Accreditation: Heat of Combustion (BTU) Total Halide by Bomb Combustion (TX) Particle Sizing - 200 Mesh (PS200) Specific Gravity/Density (SPGRAV) Total Residual Chlorine (CL-TRL) Total Volatile Solids (all forms) (TVS) Total Coliform Bacteria (all methods) Fecal Coliform Bacteria (all methods) Sulfite (SO3) Propionaldehyde (HPLC-UV) #### **SOLID AND HAZARDOUS CHEMICALS** Nitrogen, Ammonia by Method 350.1 Chromium, Hexavalent, Leachable by SM3500 Cr-B 2009 Phenolics, Total by Method 420.1 ASTM D3987-06 #### **NELAP Accreditation by Laboratory SOP** #### **NONPOTABLE WATER** #### OVD HPLC02/HPLC-UV Nitroglycerin Acetic acid Butyric acid Lactic acid Propionic acid Pyruvic acid #### OVD MSS01/GC-MS 1,4-Phenylenediamine 1-Methylnaphthalene 1,4-Dioxane Atrazine Benzaldehyde Biphenyl Caprolactam Hexamethylphosphoramide (HMPA) Pentachlorobenzene Pentachloroethane #### **NELAP Accreditation by Laboratory SOP** #### **NONPOTABLE WATER** #### OVD MSV01/GC-MS 1, 1, 2-Trichloro-1,2,2-trifluoroethane 1,3-Butadiene Cyclohexane Cyclohexanone Dimethyl disulfide Dimethylsulfide Ethyl-t-butylether (ETBE) Isoprene Methylacetate Methylcyclohexane T-amylmethylether (TAME) Tetrahydrofuran (THF) #### OVD HPLC07/HPLC-MS-MS Hexamethylphosphoramide (XMPA-LCMS) #### OVD HPLC12/HPLC/UV Acetate Formate #### OVD RSK01/GC-FID Acetylene Propane #### **OVD K9305/ISE** Fluoroborate #### **SOLID AND HAZARDOUS CHEMICALS** #### OVD MSS0I/GC-MS 1-Methylnaphthalene Benzaldehyde Biphenyl Caprolactam Pentachloroethane Page 759 #### **NELAP Accreditation by Laboratory SOP** #### **SOLID AND HAZARDOUS CHEMICALS** #### OVD MSV0I/GC-MS 1.3-Butadiene Cyclohexane Cyclohexanone Dimethyl disulfide Dimethylsulfide Ethyl-t-butylether (ETBE) Isoprene Methylacetate Methylcyclohexane n-Hexane T-amylmethylether (TAME) #### Non-DoD LIMS Product and Description The following is a list of those tests that are not included in the Microbac – OVD DoD Scope of Accreditation: #### **SOLID AND HAZARDOUS CHEMICALS** Fluoride by EPA 300.0/9056/9056A Bromide by EPA 9056/9056A Nitrate as N by EPA 9056/9056A **Laboratory Report Number:** L16050013 Kayla Teague AECOM Technical Services, Inc. 16000 Dallas Parkway Dallas, TX 75248 Please find enclosed the analytical results for the samples you submitted to Microbac Laboratories. Review and compilation of your report was completed by Microbac's Ohio Valley Division (OVD). If you have any questions, comments, or require further assistance regarding this report, please contact your service representative listed below. Laboratory Contact: Stephanie Mossburg – Team Chemist/Data Specialist (740) 373-4071 Stephanie.Mossburg@microbac.com I certify that all test results meet all of the requirements of the DoD QSM and other applicable contract terms and conditions. Any exceptions are attached to this cover page or addressed in the method narratives presented in the report. All results for soil samples are reported on a 'dry-weight' basis unless specified otherwise. Analytical results for water and wastes are reported on a 'as received' basis unless specified otherwise. A statement of uncertainty for each analysis is available upon request. This laboratory report shall not be reproduced, except in full, without the written approval of Microbac Laboratories, DoD ELAP certification number 2936.01. The reported results are related only to the samples analyzed as received. This report was certified on May 19 2016 David E. Vardenberg David Vandenberg – Managing Director State of Origin: TX Accrediting Authority: Texas Commission on Environmental Quality ID:T104704252-07-TX
QAPP: DOD Ver 4.1 Microbac Laboratories * Ohio Valley Division 158 Starlite Drive, Marietta, OH 45750 * T: (740) 373-4071 F: (740) 373-4835 * www.microbac.com Χ NA Discrepancy 0.0 Gun Н **Lab Project #:** 2551.096 Project Name: Longhorn Army Ammunition Lab Contact: Stephanie Mossburg Resolution J2317165670 # Record of Sample Receipt and Inspection #### Comments/Discrepancies This is the record of the shipment conditions and the inspection records for the samples received and reported as a sample delivery group (SDG). All of the samples were inspected and observed to conform to our receipt policies, except as noted below. There were no discrepancies. 00113843 12 | Coolers | | | | | | |----------|-------------|-------------|------|-----------|----------------| | Cooler # | Temperature | Temperature | COC# | Airbill # | Temp Required? | | Inspe | ction Checklist | | |-------|--|--------| | # | Question | Result | | 1 | Were shipping coolers sealed? | Yes | | 2 | Were custody seals intact? | Yes | | 3 | Were cooler temperatures in range of 0-6? | Yes | | 4 | Was ice present? | Yes | | 5 | Were COC's received/information complete/signed and dated? | Yes | | 6 | Were sample containers intact and match COC? | Yes | | 7 | Were sample labels intact and match COC? | Yes | | 8 | Were the correct containers and volumes received? | Yes | | 9 | Were samples received within EPA hold times? | Yes | | 10 | All samples were checked for pH and met the standard. Exceptions are noted above under discrepancy. (water only) | Yes | | 11 | Were pH ranges acceptable? (voa's excluded) | Yes | Were VOA samples free of headspace (less than 6mm)? **Lab Project #:** L16050013 **Lab Project #:** 2551.096 Project Name: Longhorn Army Ammunition Lab Contact: Stephanie Mossburg | amples Received | | | | |------------------------------------|---------------|------------------|------------------| | Client ID | Laboratory ID | Date Collected | Date Received | | 35AWW13-042916 | L16050013-01 | 04/29/2016 14:30 | 04/30/2016 11:41 | | 35AWW13FD-042916 | L16050013-02 | 04/29/2016 14:30 | 04/30/2016 11:41 | | 35AWW13MS-042916 | L16050013-03 | 04/29/2016 14:30 | 04/30/2016 11:41 | | 35AWW13MSD-042916 | L16050013-04 | 04/29/2016 14:30 | 04/30/2016 11:41 | | LHAAP02 EQUIPMENT RINSE-
042916 | L16050013-05 | 04/29/2016 14:45 | 04/30/2016 11:41 | #### Microbac REPORT L16050013 PREPARED FOR AECOM Technical Services, Inc. WORK ID: | 1.0 Summary Data | | |----------------------------------|------| | 1.1 Narratives | | | 1.2 Certificate of Analysis | | | 2.0 Full Sample Data Package | | | 2.1 Metals Data | | | 2.1.1 Metals I C P Data | 54 | | 2.1.1.1 Summary Data | 55 | | 2.1.1.2 QC Summary Data | | | 2.1.1.3 Raw Data | | | 2.1.2 Metals ICP-MS Data | | | 2.1.2.1 Summary Data | | | 2.1.2.2 QC Summary Data | | | 2.1.2.3 Raw Data | | | 2.1.3 Metals CVAA Data (Mercury) | | | 2.1.3.1 Summary Data | | | 2.1.3.2 QC Summary | | | 2.1.3.3 Raw Data | | | 3.0 Attachments | 1400 | # 1.0 Summary Data # 1.1 Narratives | Laboratory Name: | Microbac OVD | Laboratory Log Number: | L16050013 | |-----------------------|---------------------|------------------------|------------------| | Project Name: | | Method: | 6010 | | Prep Batch Number(s): | WG567310 | Reviewer Name: | Brendan Torrence | | LRC Date: | 2016-05-19 00:00:00 | | | Laboratory Data Package Cover Page | R2 S | Field chain-of-custody documentation; Sample identification cross-reference; Test reports (analytical data sheets) for each environmental sample that includes: (a) Items consistent with NELAC Chapter 5, (b) dilution factors, (c) preparation methods, (d) cleanup methods, and (e) a.if required for the project, tentatively identified compounds (TICs). Surrogate recovery data including: (a) Calculated recovery (%R), and (b) the laboratory's surrogate QC limits. | |-------|--| | R3 | Test reports (analytical data sheets) for each environmental sample that includes: (a) Items consistent with NELAC Chapter 5, (b) dilution factors, (c) preparation methods, (d) cleanup methods, and (e) a.if required for the project, tentatively identified compounds (TICs). Surrogate recovery data including: (a) Calculated recovery (%R), and (b) the laboratory's surrogate QC | | r | with NELAC Chapter 5, (b) dilution factors, (c) preparation methods, (d) cleanup methods, and (e) a.if required for the project, tentatively identified compounds (TICs). Surrogate recovery data including: (a) Calculated recovery (%R), and (b) the laboratory's surrogate QC | | R4 9 | | | | | | R5 - | Test reports/summary forms for blank samples; | | | Test reports/summary forms for laboratory control samples (LCSs) including: (a) LCS spiking amounts, (b) calculated %R for each analyte, and (c) the laboratory's LCS QC limits. | | \ 6 | Test reports for project matrix spike/matrix spike duplicates (MS/MSDs) including: (a) samples associated with the MS/MSD clearly identified, (b) MS/MSD spiking compounds, (c) concentration of each MS/MSD analyte measured in the parent and spiked samples, (d) calculated %Rs and relative percent differences (RPDs), and (e) the laboratory's MS/MSD QC limits. | | | Laboratory analytical duplicate (if applicable) recovery and precision: (a) the amount of analyte measured in the duplicate, (b) the calculated RPD, and (c) the laboratory's QC limits for analytical duplicates. | | | List of method quantitation limits (MQLs) and detectability check sample results for each analyte for each method and matrix. | | R10 (| Other problems or anomalies. | | Name (Printed) | Signature | Official Title (Printed) | Date | |------------------|-----------|--------------------------|---------------------| | Brendan Torrence | Buch Tun | Analyst | 2016-05-19 19:26:26 | | Laboratory Name: | Microbac OVD | Laboratory Log Number: | L16050013 | |-----------------------|---------------------|------------------------|------------------| | Project Name: | | Method: | 6010 | | Prep Batch Number(s): | WG567310 | Reviewer Name: | Brendan Torrence | | LRC Date: | 2016-05-19 00:00:00 | | | | Description | Yes | No | NA | NR | ER# | |---|-----|----|----|----|------| | Chain-of-custody (C-O-C) | | | | | | | Did samples meet the laboratory's standard conditions of sample acceptability upon receipt? | Х | | | | | | Were all departures from standard conditions described in an exception report? | Х | | | | | | Sample and quality control (QC) identification | Х | | | | | | Are all field sample ID numbers cross-referenced to the laboratory ID numbers? | Х | | | | | | Are all laboratory ID numbers cross-referenced to the corresponding QC data? | Х | | | | | | Test reports | Х | | | | | | Were all samples prepared and analyzed within holding times? | Х | | | | | | Other than those results < MQL, were all other raw values bracketed by calibration standards? | | Х | | | ER#4 | | Were calculations checked by a peer or supervisor? | Х | | | | | | Were all analyte identifications checked by a peer or supervisor? | Х | | | | | | Were sample detection limits reported for all analytes not detected? | Х | | | | | | Were all results for soil and sediment samples reported on a dry weight basis? | Х | | | | | | Were % moisture (or solids) reported for all soil and sediment samples? | Х | | | | | | Were bulk soils/solids samples for volatile analysis extracted with methanol per SW846 Method 5035? | | | Х | | | | If required for the project, are TICs reported? | | | Х | | | | Surrogate recovery data | | | | | | | Were surrogates added prior to extraction? | | | Х | | | | Were surrogate percent recoveries in all samples within the laboratory QC limits? | | | Х | | | | Test reports/summary forms for blank samples | | | | | | | Were appropriate type(s) of blanks analyzed? | Х | | | | | | Were blanks analyzed at the appropriate frequency? | Х | | | | | | Were method blanks taken through the entire analytical process, including preparation and, if applicable, cleanup procedures? | Х | | | | | | Were blank concentrations < MQL? | Х | | | | | | Laboratory control samples (LCS): | Х | | | | | | Were all COCs included in the LCS? | Х | | | | | RG-366/TRRP-13 May 2010 | Laboratory Name: | Microbac OVD | Laboratory Log Number: | L16050013 | |-----------------------|---------------------|------------------------|------------------| | Project Name: | | Method: | 6010 | | Prep Batch Number(s): | WG567310 | Reviewer Name: | Brendan Torrence | | LRC Date: | 2016-05-19 00:00:00 | | | | Was each LCC taken through the entire analytical presenting including areas and | V | | | | |--|---|---|---|------| | Was each LCS taken through the entire analytical procedure, including prep and cleanup steps? | Х | | | | | Were LCSs analyzed at the required frequency? | Х | | | | | Were LCS (and LCSD, if applicable) %Rs within the laboratory QC limits? | Х | | | | | Does the detectability check sample data document the laboratory's capability to detect the COCs at the MDL used to calculate the SDLs? | Х | | | | | Was the LCSD RPD within QC limits? | | | Х | | | Matrix spike (MS) and matrix spike duplicate (MSD) data | | | | | | Were the project/method specified
analytes included in the MS and MSD? | Х | | | | | Were MS/MSD analyzed at the appropriate frequency? | Х | | | | | Were MS (and MSD, if applicable) %Rs within the laboratory QC limits? | | Х | | ER#3 | | Were MS/MSD RPDs within laboratory QC limits? | Х | | | | | Analytical duplicate data | | | | | | Were appropriate analytical duplicates analyzed for each matrix? | | | Х | | | Were analytical duplicates analyzed at the appropriate frequency? | | | Х | | | Were RPDs or relative standard deviations within the laboratory QC limits? | | | Х | | | Method quantitation limits (MQLs): | | | | | | Are the MQLs for each method analyte included in the laboratory data package? | Х | | | | | Do the MQLs correspond to the concentration of the lowest non-zero calibration standard? | Х | | | | | Are unadjusted MQLs and DCSs included in the laboratory data package? | Х | | | | | Other problems/anomalies | | | | | | Are all known problems/anomalies/special conditions noted in this LRC and ER? | Х | | | | | Was applicable and available technology used to lower the SDL to minimize the matrix interference effects on the sample results? | Х | | | | | Is the laboratory NELAC-accredited under the Texas Laboratory Accreditation Program for the analytes, matrices and methods associated with this laboratory data package? | Х | | | | | Initial calibration (ICAL) | | | | | | Were response factors and/or relative response factors for each analyte within QC limits? | Х | | | | | Were percent RSDs or correlation coefficient criteria met? | | Х | | ER#1 | RG-366/TRRP-13 May 2010 | Laboratory Name: | Microbac OVD | Laboratory Log Number: | L16050013 | |-----------------------|---------------------|------------------------|------------------| | Project Name: | | Method: | 6010 | | Prep Batch Number(s): | WG567310 | Reviewer Name: | Brendan Torrence | | LRC Date: | 2016-05-19 00:00:00 | | | | Was the number of standards recommended in the method used for all analytes? | Х | | | | |--|---|---|---|------| | Were all points generated between the lowest and highest standard used to calculate the curve? | | | | | | Are ICAL data available for all instruments used? | Х | | | | | Has the initial calibration curve been verified using an appropriate second source standard? | Х | | | | | Initial and continuing calibration verification (ICCV and CCV) and continuing calibration blank (CCB): | | | | | | Was the CCV analyzed at the method-required frequency? | Х | | | | | Were percent differences for each analyte within the method-required QC limits? | | Х | | ER#2 | | Was the ICAL curve verified for each analyte? | Х | | | | | Was the absolute value of the analyte concentration in the inorganic CCB < MDL? | Х | | | | | Mass spectral tuning | | | | | | Was the appropriate compound for the method used for tuning? | | | Х | | | Were ion abundance data within the method-required QC limits? | | | Х | | | Internal standards (IS) | | | | | | Were IS area counts and retention times within the method-required QC limits? | | | Х | | | Raw data (NELAC Section 5.5.10) | | | | | | Were the raw data (for example, chromatograms, spectral data) reviewed by an analyst? | Х | | | | | Were data associated with manual integrations flagged on the raw data? | | | Х | | | Dual column confirmation | | | | | | Did dual column confirmation results meet the method-required QC? | | | Х | | | Tentatively identified compounds (TICs) | | | | | | If TICs were requested, were the mass spectra and TIC data subject to appropriate checks? | | | Х | | | Interference Check Sample (ICS) results | | | | | | Were percent recoveries within method QC limits? | Х | | | | | Serial dilutions, post digestion spikes, and method of standard additions | | | | | | Were percent differences, recoveries, and the linearity within the QC limits specified in the method? | Х | | | | | Method detection limit (MDL) studies | | | | | | | | | | | RG-366/TRRP-13 May 2010 | Laboratory Name: | Microbac OVD | Laboratory Log Number: | L16050013 | |-----------------------|---------------------|------------------------|------------------| | Project Name: | | Method: | 6010 | | Prep Batch Number(s): | WG567310 | Reviewer Name: | Brendan Torrence | | LRC Date: | 2016-05-19 00:00:00 | | | | Was a MDL study performed for each reported analyte? | Х | | |--|---|--| | Is the MDL either adjusted or supported by the analysis of DCSs? | Х | | | Proficiency test reports | | | | Was the laboratory's performance acceptable on the applicable proficiency tests or evaluation studies? | Х | | | Standards documentation | | | | Are all standards used in the analyses NIST-traceable or obtained from other appropriate sources? | X | | | Compound/analyte identification procedures | | | | Are the procedures for compound/analyte identification documented? | X | | | Demonstration of analyst competency (DOC) | | | | Was DOC conducted consistent with NELAC Chapter 5? | Х | | | Is documentation of the analyst's competency up-to-date and on file? | Х | | | Verification/validation documentation for methods (NELAC Chapter 5) | | | | Are all the methods used to generate the data documented, verified, and validated, where applicable? | Х | | | Laboratory standard operating procedures (SOPs) | | | | Are laboratory SOPs current and on file for each method performed | Х | | | | | | - 1. Items identified by the letter "R" must be included in the laboratory data package submitted in the TRRP-required report(s). Items identified by the letter "S" should be retained and made available upon request for the appropriate retention period; - 2. O = organic analyses; I = inorganic analyses (and general chemistry, when applicable); - 3. NA = Not applicable; - 4. NR = Not reviewed; - 5. ER# = Exception Report identification number (an Exception Report should be completed for an item if "NR" or "No" is checked). The Exception Report for each "No" or "Not Reviewed (NR)" item in Laboratory Review Checklist and for each analyte, matrix, and method for which the laboratory does not hold NELAC accreditation under the Texas Laboratory Accreditation Program. **Release Statement:** I am responsible for the release of this laboratory data package. This laboratory is NELAC accredited under the Texas Laboratory Accreditation Program for all the methods, analytes, and matrices reported in this data package except as noted in the Exception Reports. The data have been reviewed and are technically compliant with the requirements of the methods used, except where noted by the laboratory in the Exception Reports. By my signature RG-366/TRRP-13 May 2010 | Laboratory Name: | Microbac OVD | Laboratory Log Number: | L16050013 | |-----------------------|---------------------|------------------------|------------------| | Project Name: | | Method: | 6010 | | Prep Batch Number(s): | WG567310 | Reviewer Name: | Brendan Torrence | | LRC Date: | 2016-05-19 00:00:00 | | | | are noted in the Exception Reports herein. The official signing the cover page of the report in which these data are used is responsible for releasing this data package and is by signature affirming the above release statement is true. | |---| | Check, if applicable: [] This laboratory meets an exception under 30 TAC §25.6 and was last inspection by [] TCEQ or [] on (enter date of last inspection). Any findings affecting the data in this laboratory data package | | below, I affirm to the best of my knowledge all problems/anomalies observed by the laboratory have been identified in the Laboratory Review Checklist, and no information affecting the quality of the data has been knowingly withheld. | ER#1 - Due to initial calibration failure for magnesium, all client samples and batch QA/QC samples were reanalyzed on 16-May-2016 for magnesium. ER#2 - The closing low level continuing calibration verification analyzed on 16-May-2016 at 12:43 yielded a noncompliant recovery for magnesium. All client samples and batch QA/QC samples were reanalyzed on a later calibration which was compliant for magnesium. ER#3 - Sample 01 was chosen by the client for MS/MSD analysis. Samples 03 (MS) and 04 (MSD) yielded noncompliant recoveries for two analytes. ER#4 - Client samples 01, 02, 03, and 04 required dilution analyses in order to obtain results for calcium, magnesium, and sodium within the calibration range. | Laboratory Name: | Microbac OVD | Laboratory Log Number: | L16050013 | |-----------------------|---------------------|------------------------|------------------| | Project Name: | | Method: | 6020 | | Prep Batch Number(s): | WG567404 | Reviewer Name: | Brendan Torrence | | LRC Date: | 2016-05-19 00:00:00 | | | Laboratory Data Package Cover Page | R2 S | Field chain-of-custody documentation; Sample identification cross-reference; Test reports (analytical data sheets) for each environmental sample that includes: (a) Items consistent with NELAC Chapter 5, (b) dilution factors, (c) preparation methods, (d) cleanup methods, and (e) a.if required for the project, tentatively identified compounds (TICs). Surrogate recovery data including: (a) Calculated recovery (%R), and (b) the laboratory's surrogate QC limits. | |-------
--| | R3 | Test reports (analytical data sheets) for each environmental sample that includes: (a) Items consistent with NELAC Chapter 5, (b) dilution factors, (c) preparation methods, (d) cleanup methods, and (e) a.if required for the project, tentatively identified compounds (TICs). Surrogate recovery data including: (a) Calculated recovery (%R), and (b) the laboratory's surrogate QC | | r | with NELAC Chapter 5, (b) dilution factors, (c) preparation methods, (d) cleanup methods, and (e) a.if required for the project, tentatively identified compounds (TICs). Surrogate recovery data including: (a) Calculated recovery (%R), and (b) the laboratory's surrogate QC | | R4 9 | | | | | | R5 - | Test reports/summary forms for blank samples; | | | Test reports/summary forms for laboratory control samples (LCSs) including: (a) LCS spiking amounts, (b) calculated %R for each analyte, and (c) the laboratory's LCS QC limits. | | \ 6 | Test reports for project matrix spike/matrix spike duplicates (MS/MSDs) including: (a) samples associated with the MS/MSD clearly identified, (b) MS/MSD spiking compounds, (c) concentration of each MS/MSD analyte measured in the parent and spiked samples, (d) calculated %Rs and relative percent differences (RPDs), and (e) the laboratory's MS/MSD QC limits. | | | Laboratory analytical duplicate (if applicable) recovery and precision: (a) the amount of analyte measured in the duplicate, (b) the calculated RPD, and (c) the laboratory's QC limits for analytical duplicates. | | | List of method quantitation limits (MQLs) and detectability check sample results for each analyte for each method and matrix. | | R10 (| Other problems or anomalies. | | Name (Printed) | Signature | Official Title (Printed) | Date | |------------------|-----------|--------------------------|---------------------| | Brendan Torrence | Buch Tun | Analyst | 2016-05-19 19:19:49 | | Laboratory Name: | Microbac OVD | Laboratory Log Number: | L16050013 | |-----------------------|---------------------|------------------------|------------------| | Project Name: | | Method: | 6020 | | Prep Batch Number(s): | WG567404 | Reviewer Name: | Brendan Torrence | | LRC Date: | 2016-05-19 00:00:00 | | | | Description | Yes | No | NA | NR | ER# | |---|-----|----|----|----|------| | Chain-of-custody (C-O-C) | | | | | | | Did samples meet the laboratory's standard conditions of sample acceptability upon receipt? | Х | | | | | | Were all departures from standard conditions described in an exception report? | Х | | | | | | Sample and quality control (QC) identification | Х | | | | | | Are all field sample ID numbers cross-referenced to the laboratory ID numbers? | Х | | | | | | Are all laboratory ID numbers cross-referenced to the corresponding QC data? | Х | | | | | | Test reports | Х | | | | | | Were all samples prepared and analyzed within holding times? | Х | | | | | | Other than those results < MQL, were all other raw values bracketed by calibration standards? | | Х | | | ER#1 | | Were calculations checked by a peer or supervisor? | Х | | | | | | Were all analyte identifications checked by a peer or supervisor? | Х | | | | | | Were sample detection limits reported for all analytes not detected? | Х | | | | | | Were all results for soil and sediment samples reported on a dry weight basis? | Х | | | | | | Were % moisture (or solids) reported for all soil and sediment samples? | Х | | | | | | Were bulk soils/solids samples for volatile analysis extracted with methanol per SW846 Method 5035? | | | Х | | | | If required for the project, are TICs reported? | | | Х | | | | Surrogate recovery data | | | | | | | Were surrogates added prior to extraction? | | | Х | | | | Were surrogate percent recoveries in all samples within the laboratory QC limits? | | | Х | | | | Test reports/summary forms for blank samples | | | | | | | Were appropriate type(s) of blanks analyzed? | Х | | | | | | Were blanks analyzed at the appropriate frequency? | Х | | | | | | Were method blanks taken through the entire analytical process, including preparation and, if applicable, cleanup procedures? | Х | | | | | | Were blank concentrations < MQL? | Х | | | | | | Laboratory control samples (LCS): | | | | | | | Were all COCs included in the LCS? | Х | | | | | RG-366/TRRP-13 May 2010 | Laboratory Name: | Microbac OVD | Laboratory Log Number: | L16050013 | |-----------------------|---------------------|------------------------|------------------| | Project Name: | | Method: | 6020 | | Prep Batch Number(s): | WG567404 | Reviewer Name: | Brendan Torrence | | LRC Date: | 2016-05-19 00:00:00 | | | | Was each LCS taken through the entire analytical procedure, including prep and cleanup steps? | Х | | | |--|---|---|--| | Were LCSs analyzed at the required frequency? | Х | | | | Were LCS (and LCSD, if applicable) %Rs within the laboratory QC limits? | Х | | | | Does the detectability check sample data document the laboratory's capability to detect the COCs at the MDL used to calculate the SDLs? | Х | | | | Was the LCSD RPD within QC limits? | | Х | | | Matrix spike (MS) and matrix spike duplicate (MSD) data | | | | | Were the project/method specified analytes included in the MS and MSD? | Х | | | | Were MS/MSD analyzed at the appropriate frequency? | Х | | | | Were MS (and MSD, if applicable) %Rs within the laboratory QC limits? | Х | | | | Were MS/MSD RPDs within laboratory QC limits? | Х | | | | Analytical duplicate data | | | | | Were appropriate analytical duplicates analyzed for each matrix? | | Х | | | Were analytical duplicates analyzed at the appropriate frequency? | | Х | | | Were RPDs or relative standard deviations within the laboratory QC limits? | | Х | | | Method quantitation limits (MQLs): | | | | | Are the MQLs for each method analyte included in the laboratory data package? | Х | | | | Do the MQLs correspond to the concentration of the lowest non-zero calibration standard? | Х | | | | Are unadjusted MQLs and DCSs included in the laboratory data package? | Х | | | | Other problems/anomalies | | | | | Are all known problems/anomalies/special conditions noted in this LRC and ER? | Х | | | | Was applicable and available technology used to lower the SDL to minimize the matrix interference effects on the sample results? | Х | | | | Is the laboratory NELAC-accredited under the Texas Laboratory Accreditation Program for the analytes, matrices and methods associated with this laboratory data package? | Х | | | | Initial calibration (ICAL) | | | | | Were response factors and/or relative response factors for each analyte within QC limits? | Х | | | | Were percent RSDs or correlation coefficient criteria met? | Х | | | RG-366/TRRP-13 May 2010 | Laboratory Name: | Microbac OVD | Laboratory Log Number: | L16050013 | |-----------------------|---------------------|------------------------|------------------| | Project Name: | | Method: | 6020 | | Prep Batch Number(s): | WG567404 | Reviewer Name: | Brendan Torrence | | LRC Date: | 2016-05-19 00:00:00 | | | | Was the number of standards recommended in the method used for all analytes? | Х | | | |--|---|---|--| | Were all points generated between the lowest and highest standard used to calculate the curve? | | | | | Are ICAL data available for all instruments used? | Х | | | | Has the initial calibration curve been verified using an appropriate second source standard? | Х | | | | Initial and continuing calibration verification (ICCV and CCV) and continuing calibration blank (CCB): | | | | | Was the CCV analyzed at the method-required frequency? | Х | | | | Were percent differences for each analyte within the method-required QC limits? | Х | | | | Was the ICAL curve verified for each analyte? | Х | | | | Was the absolute value of the analyte concentration in the inorganic CCB < MDL? | Х | | | | Mass spectral tuning | | | | | Was the appropriate compound for the method used for tuning? | Х | | | | Were ion abundance data within the method-required QC limits? | Х | | | | Internal standards (IS) | | | | | Were IS area counts and retention times within the method-required QC limits? | Х | | | | Raw data (NELAC Section 5.5.10) | | | | | Were the raw data (for example, chromatograms, spectral data) reviewed by an analyst? | Х | | | | Were data associated with manual integrations flagged on the raw data? | | Х | | | Dual column confirmation | | | | | Did dual column confirmation results meet the method-required QC? | | Х | | | Tentatively identified compounds (TICs) | | | | | If TICs were requested, were the mass spectra and TIC data subject to appropriate checks? | | Х | | | Interference Check Sample (ICS) results | | | | | Were percent recoveries within method QC limits? | Х | | | | Serial dilutions, post digestion spikes, and method of standard additions | | | | | Were percent differences, recoveries, and the linearity within the QC limits specified in the method? | Х | | | | Method detection limit (MDL) studies | | | | | | | | | RG-366/TRRP-13 May 2010 | Laboratory Name: | Microbac OVD | Laboratory Log Number: | L16050013 | |-----------------------|---------------------|------------------------
------------------| | Project Name: | | Method: | 6020 | | Prep Batch Number(s): | WG567404 | Reviewer Name: | Brendan Torrence | | LRC Date: | 2016-05-19 00:00:00 | | | | Was a MDL study performed for each reported analyte? | Х | | | |--|-------------|------|--| | Is the MDL either adjusted or supported by the analysis of DCSs? | Х | | | | Proficiency test reports | | | | | Was the laboratory's performance acceptable on the applicable proficiency tests or evaluation studies? | X | | | | Standards documentation | | | | | Are all standards used in the analyses NIST-traceable or obtained from other appropriate sources? | X | | | | Compound/analyte identification procedures | | | | | Are the procedures for compound/analyte identification documented? | Х | | | | Demonstration of analyst competency (DOC) | | | | | Was DOC conducted consistent with NELAC Chapter 5? | Х | | | | Is documentation of the analyst's competency up-to-date and on file? | Х | | | | Verification/validation documentation for methods (NELAC Chapter 5) | | | | | Are all the methods used to generate the data documented, verified, and validated, where applicable? | X | | | | Laboratory standard operating procedures (SOPs) | | | | | Are laboratory SOPs current and on file for each method performed | Х | | | | | |
 | | - 1. Items identified by the letter "R" must be included in the laboratory data package submitted in the TRRP-required report(s). Items identified by the letter "S" should be retained and made available upon request for the appropriate retention period; - 2. O = organic analyses; I = inorganic analyses (and general chemistry, when applicable); - 3. NA = Not applicable; - 4. NR = Not reviewed; - 5. ER# = Exception Report identification number (an Exception Report should be completed for an item if "NR" or "No" is checked). The Exception Report for each "No" or "Not Reviewed (NR)" item in Laboratory Review Checklist and for each analyte, matrix, and method for which the laboratory does not hold NELAC accreditation under the Texas Laboratory Accreditation Program. **Release Statement:** I am responsible for the release of this laboratory data package. This laboratory is NELAC accredited under the Texas Laboratory Accreditation Program for all the methods, analytes, and matrices reported in this data package except as noted in the Exception Reports. The data have been reviewed and are technically compliant with the requirements of the methods used, except where noted by the laboratory in the Exception Reports. By my signature RG-366/TRRP-13 May 2010 | Laboratory Name: | Microbac OVD | Laboratory Log Number: | L16050013 | |-----------------------|---------------------|------------------------|------------------| | Project Name: | | Method: | 6020 | | Prep Batch Number(s): | WG567404 | Reviewer Name: | Brendan Torrence | | LRC Date: | 2016-05-19 00:00:00 | | | | Exceptions Report | |--| | Check, if applicable: [] This laboratory meets an exception under 30 TAC §25.6 and was last inspection by [] TCEQ or [] on (enter date of last inspection). Any findings affecting the data in this laboratory data package are noted in the Exception Reports herein. The official signing the cover page of the report in which these data are used is responsible for releasing this data package and is by signature affirming the above release statement is true. | | below, I affirm to the best of my knowledge all problems/anomalies observed by the laboratory have been identified in the Laboratory Review Checklist, and no information affecting the quality of the data has been knowingly withheld. | ER#1 - Client samples 01, 02, 03, and 04 required dilution analyses in order to obtain results for manganese within the calibration range. | Laboratory Name: | Microbac OVD | Laboratory Log Number: | L16050013 | |-----------------------|---------------------|------------------------|------------------| | Project Name: | | Method: | 7471 | | Prep Batch Number(s): | WG567297 | Reviewer Name: | Brendan Torrence | | LRC Date: | 2016-05-19 00:00:00 | | | Laboratory Data Package Cover Page | R2 S | Field chain-of-custody documentation; Sample identification cross-reference; Test reports (analytical data sheets) for each environmental sample that includes: (a) Items consistent with NELAC Chapter 5, (b) dilution factors, (c) preparation methods, (d) cleanup methods, and (e) a.if required for the project, tentatively identified compounds (TICs). Surrogate recovery data including: (a) Calculated recovery (%R), and (b) the laboratory's surrogate QC limits. | |-------|--| | R3 | Test reports (analytical data sheets) for each environmental sample that includes: (a) Items consistent with NELAC Chapter 5, (b) dilution factors, (c) preparation methods, (d) cleanup methods, and (e) a.if required for the project, tentatively identified compounds (TICs). Surrogate recovery data including: (a) Calculated recovery (%R), and (b) the laboratory's surrogate QC | | r | with NELAC Chapter 5, (b) dilution factors, (c) preparation methods, (d) cleanup methods, and (e) a.if required for the project, tentatively identified compounds (TICs). Surrogate recovery data including: (a) Calculated recovery (%R), and (b) the laboratory's surrogate QC | | R4 9 | | | | | | R5 - | Test reports/summary forms for blank samples; | | | Test reports/summary forms for laboratory control samples (LCSs) including: (a) LCS spiking amounts, (b) calculated %R for each analyte, and (c) the laboratory's LCS QC limits. | | \ 6 | Test reports for project matrix spike/matrix spike duplicates (MS/MSDs) including: (a) samples associated with the MS/MSD clearly identified, (b) MS/MSD spiking compounds, (c) concentration of each MS/MSD analyte measured in the parent and spiked samples, (d) calculated %Rs and relative percent differences (RPDs), and (e) the laboratory's MS/MSD QC limits. | | | Laboratory analytical duplicate (if applicable) recovery and precision: (a) the amount of analyte measured in the duplicate, (b) the calculated RPD, and (c) the laboratory's QC limits for analytical duplicates. | | | List of method quantitation limits (MQLs) and detectability check sample results for each analyte for each method and matrix. | | R10 (| Other problems or anomalies. | | Name (Printed) | Signature | Official Title (Printed) | Date | |------------------|-----------|--------------------------|---------------------| | Brendan Torrence | Buch Tun | Analyst | 2016-05-19 19:15:48 | | Laboratory Name: | Microbac OVD | Laboratory Log Number: | L16050013 | |-----------------------|---------------------|------------------------|------------------| | Project Name: | | Method: | 7471 | | Prep Batch Number(s): | WG567297 | Reviewer Name: | Brendan Torrence | | LRC Date: | 2016-05-19 00:00:00 | | | | Description | Yes | No | NA | NR | ER# | |---|-----|----|----|----|-----| | Chain-of-custody (C-O-C) | | | | | | | Did samples meet the laboratory's standard conditions of sample acceptability upon receipt? | Х | | | | | | Were all departures from standard conditions described in an exception report? | Х | | | | | | Sample and quality control (QC) identification | Х | | | | | | Are all field sample ID numbers cross-referenced to the laboratory ID numbers? | Х | | | | | | Are all laboratory ID numbers cross-referenced to the corresponding QC data? | Х | | | | | | Test reports | Х | | | | | | Were all samples prepared and analyzed within holding times? | Х | | | | | | Other than those results < MQL, were all other raw values bracketed by calibration standards? | Х | | | | | | Were calculations checked by a peer or supervisor? | Х | | | | | | Were all analyte identifications checked by a peer or supervisor? | Х | | | | | | Were sample detection limits reported for all analytes not detected? | Х | | | | | | Were all results for soil and sediment samples reported on a dry weight basis? | Х | | | | | | Were % moisture (or solids) reported for all soil and sediment samples? | Х | | | | | | Were bulk soils/solids samples for volatile analysis extracted with methanol per SW846 Method 5035? | | | Х | | | | If required for the project, are TICs reported? | | | Х | | | | Surrogate recovery data | | | | | | | Were surrogates added prior to extraction? | | | Х | | | | Were surrogate percent recoveries in all samples within the laboratory QC limits? | | | Х | | | | Test reports/summary forms for blank samples | | | | | | | Were appropriate type(s) of blanks analyzed? | Х | | | | | | Were blanks analyzed at the appropriate frequency? | Х | | | | | | Were method blanks taken through the entire analytical process, including preparation and, if applicable, cleanup procedures? | Х | | | | | | Were blank concentrations < MQL? | Х | | | | | | Laboratory control samples (LCS): | Х | | | | | | Were all
COCs included in the LCS? | Х | | | | | RG-366/TRRP-13 May 2010 | Laboratory Name: | Microbac OVD | Laboratory Log Number: | L16050013 | |-----------------------|---------------------|------------------------|------------------| | Project Name: | | Method: | 7471 | | Prep Batch Number(s): | WG567297 | Reviewer Name: | Brendan Torrence | | LRC Date: | 2016-05-19 00:00:00 | | | | Was each LCS taken through the entire analytical procedure, including prep and cleanup steps? | Х | | | | |--|---|---|---|--| | Were LCSs analyzed at the required frequency? | Х | | | | | Were LCS (and LCSD, if applicable) %Rs within the laboratory QC limits? | Х | | | | | Does the detectability check sample data document the laboratory's capability to detect the COCs at the MDL used to calculate the SDLs? | Х | | | | | Was the LCSD RPD within QC limits? | | Х | | | | Matrix spike (MS) and matrix spike duplicate (MSD) data | | | | | | Were the project/method specified analytes included in the MS and MSD? | Х | | | | | Were MS/MSD analyzed at the appropriate frequency? | X | | | | | Were MS (and MSD, if applicable) %Rs within the laboratory QC limits? | Х | | | | | Were MS/MSD RPDs within laboratory QC limits? | Х | | | | | Analytical duplicate data | | | | | | Were appropriate analytical duplicates analyzed for each matrix? | | Х | | | | Were analytical duplicates analyzed at the appropriate frequency? | | Х | | | | Were RPDs or relative standard deviations within the laboratory QC limits? | | Х | | | | Method quantitation limits (MQLs): | | | | | | Are the MQLs for each method analyte included in the laboratory data package? | X | | | | | Do the MQLs correspond to the concentration of the lowest non-zero calibration standard? | Х | | | | | Are unadjusted MQLs and DCSs included in the laboratory data package? | X | | | | | Other problems/anomalies | | | | | | Are all known problems/anomalies/special conditions noted in this LRC and ER? | Х | | | | | Was applicable and available technology used to lower the SDL to minimize the matrix interference effects on the sample results? | Х | | | | | Is the laboratory NELAC-accredited under the Texas Laboratory Accreditation Program for the analytes, matrices and methods associated with this laboratory data package? | Х | | | | | Initial calibration (ICAL) | | | | | | Were response factors and/or relative response factors for each analyte within QC limits? | Х | | | | | Were percent RSDs or correlation coefficient criteria met? | Х | | | | | | | | 1 | | RG-366/TRRP-13 May 2010 | Laboratory Name: | Microbac OVD | Laboratory Log Number: | L16050013 | |-----------------------|---------------------|------------------------|------------------| | Project Name: | | Method: | 7471 | | Prep Batch Number(s): | WG567297 | Reviewer Name: | Brendan Torrence | | LRC Date: | 2016-05-19 00:00:00 | | | | Was the number of standards recommended in the method used for all analytes? | Х | | | |--|-----|---|--| | Were all points generated between the lowest and highest standard used to calculate the curve? | | | | | Are ICAL data available for all instruments used? | Х | | | | Has the initial calibration curve been verified using an appropriate second source standard? | Х | | | | Initial and continuing calibration verification (ICCV and CCV) and continuing calibration blank (CCB): | | | | | Was the CCV analyzed at the method-required frequency? | Х | | | | Were percent differences for each analyte within the method-required QC limits? | Х | | | | Was the ICAL curve verified for each analyte? | Х | | | | Was the absolute value of the analyte concentration in the inorganic CCB < MDL? | Х | | | | Mass spectral tuning | | | | | Was the appropriate compound for the method used for tuning? | Х | | | | Were ion abundance data within the method-required QC limits? | Х | | | | Internal standards (IS) | | | | | Were IS area counts and retention times within the method-required QC limits? | Х | | | | Raw data (NELAC Section 5.5.10) | | | | | Were the raw data (for example, chromatograms, spectral data) reviewed by an analyst? | Х | | | | Were data associated with manual integrations flagged on the raw data? | | Х | | | Dual column confirmation | | | | | Did dual column confirmation results meet the method-required QC? | | Х | | | Tentatively identified compounds (TICs) | | | | | If TICs were requested, were the mass spectra and TIC data subject to appropriate checks? | | Х | | | Interference Check Sample (ICS) results | | | | | Were percent recoveries within method QC limits? | Х | | | | Serial dilutions, post digestion spikes, and method of standard additions | | | | | Were percent differences, recoveries, and the linearity within the QC limits specified in the method? | Х | | | | Method detection limit (MDL) studies | | | | | | 1 1 | | | RG-366/TRRP-13 May 2010 | Laboratory Name: | Microbac OVD | Laboratory Log Number: | L16050013 | |-----------------------|---------------------|------------------------|------------------| | Project Name: | | Method: | 7471 | | Prep Batch Number(s): | WG567297 | Reviewer Name: | Brendan Torrence | | LRC Date: | 2016-05-19 00:00:00 | | | | Was a MDL study performed for each reported analyte? | Х | | |--|---|--| | Is the MDL either adjusted or supported by the analysis of DCSs? | Х | | | Proficiency test reports | | | | Was the laboratory's performance acceptable on the applicable proficiency tests or evaluation studies? | Х | | | Standards documentation | | | | Are all standards used in the analyses NIST-traceable or obtained from other appropriate sources? | X | | | Compound/analyte identification procedures | | | | Are the procedures for compound/analyte identification documented? | X | | | Demonstration of analyst competency (DOC) | | | | Was DOC conducted consistent with NELAC Chapter 5? | Х | | | Is documentation of the analyst's competency up-to-date and on file? | Х | | | Verification/validation documentation for methods (NELAC Chapter 5) | | | | Are all the methods used to generate the data documented, verified, and validated, where applicable? | Х | | | Laboratory standard operating procedures (SOPs) | | | | Are laboratory SOPs current and on file for each method performed | Х | | | | | | - 1. Items identified by the letter "R" must be included in the laboratory data package submitted in the TRRP-required report(s). Items identified by the letter "S" should be retained and made available upon request for the appropriate retention period; - 2. O = organic analyses; I = inorganic analyses (and general chemistry, when applicable); - 3. NA = Not applicable; - 4. NR = Not reviewed; - 5. ER# = Exception Report identification number (an Exception Report should be completed for an item if "NR" or "No" is checked). The Exception Report for each "No" or "Not Reviewed (NR)" item in Laboratory Review Checklist and for each analyte, matrix, and method for which the laboratory does not hold NELAC accreditation under the Texas Laboratory Accreditation Program. **Release Statement:** I am responsible for the release of this laboratory data package. This laboratory is NELAC accredited under the Texas Laboratory Accreditation Program for all the methods, analytes, and matrices reported in this data package except as noted in the Exception Reports. The data have been reviewed and are technically compliant with the requirements of the methods used, except where noted by the laboratory in the Exception Reports. By my signature RG-366/TRRP-13 May 2010 | Laboratory Name: | Microbac OVD | Laboratory Log Number: | L16050013 | |-----------------------|---------------------|------------------------|------------------| | Project Name: | | Method: | 7471 | | Prep Batch Number(s): | WG567297 | Reviewer Name: | Brendan Torrence | | LRC Date: | 2016-05-19 00:00:00 | | | | Exceptions Report | |--| | Check, if applicable: [] This laboratory meets an exception under 30 TAC §25.6 and was last inspection by [] TCEQ or [] on (enter date of last inspection). Any findings affecting the data in this laboratory data package are noted in the Exception Reports herein. The official signing the cover page of the report in which these data are use is responsible for releasing this data package and is by signature affirming the above release statement is true. | | below, I affirm to the best of my knowledge all problems/anomalies observed by the laboratory have been identified in t Laboratory Review Checklist, and no information affecting the quality of the data has been knowingly withheld. | | | RG-366/TRRP-13 May 2010 # 1.2 Certificate of Analysis Lab Project #: 2551.096 Project Name: Longhorn Army Ammunition Lab Contact: Stephanie Mossburg #### Certificate of Analysis Sample #: L16050013-01 PrePrep Method: N/A Instrument: ICP-THERMO3 Client ID: 35AWW13-042916 Prep Method: 3015 Prep Date: 05/03/2016 11:48 Matrix: Water Analytical Method: 6010C Cal Date: 05/13/2016 15:26 Workgroup #: WG567345 Analyst: JYH Run Date: 05/13/2016 17:43 Sample Tag: 01 Units: mg/L | Analyte | CAS# | Result | Qual | LOQ | LOD | DL | | | |--|-----------|--------|------
--------|--------|---------|--|--| | Aluminum, Total | 7429-90-5 | 0.195 | J | 0.200 | 0.100 | 0.0500 | | | | Beryllium, Total | 7440-41-7 | 0.0100 | U | 0.0200 | 0.0100 | 0.00500 | | | | Iron, Total | 7439-89-6 | 0.465 | | 0.200 | 0.100 | 0.0500 | | | | Potassium, Total | 7440-09-7 | 0.685 | J | 2.00 | 1.00 | 0.500 | | | | Selenium, Total | 7782-49-2 | 0.0100 | U | 0.0200 | 0.0100 | 0.00500 | | | | 1 Festimated value is the analytic concentration was less than the LOO | | | | | | | | | J Estimated value ; the analyte concentration was less than the LOQ. U Analyte was not detected. The concentration is below the reported LOD. Page 1 of 25 Generated at May 19, 2016 16:33 Lab Project #: 2551.096 Project Name: Longhorn Army Ammunition Lab Contact: Stephanie Mossburg Certificate of Analysis Sample #: L16050013-01 PrePrep Method: N/A Instrument: ICP-THERMO3 Client ID: 35AWW13-042916 Prep Method: 3015 Prep Date: 05/03/2016 11:48 Matrix: Water Analytical Method: 6010C Cal Date: 05/16/2016 09:59 Workgroup #: WG567345 Analyst: JYH Run Date: 05/16/2016 12:08 Collect Date: 04/29/2016 14:30 Dilution: 10 File ID: T3.051616.120826 Sample Tag: DL01 Units: mg/L | Analyte | CAS# | Result | Qual | LOQ | LOD | DL | |----------------|-----------|--------|------|------|------|------| | Calcium, Total | 7440-70-2 | 38.4 | | 5.00 | 2.50 | 1.25 | | Sodium, Total | 7440-23-5 | 199 | | 10.0 | 5.00 | 2.50 | U Analyte was not detected. The concentration is below the reported LOD. Page 2 of 25 Generated at May 19, 2016 16:33 Lab Report #: L16050013 **Lab Project #:** 2551.096 Project Name: Longhorn Army Ammunition Lab Contact: Stephanie Mossburg Certificate of Analysis Sample #: L16050013-01 **Client ID:** 35AWW13-042916 Matrix: Water Workgroup #: WG567345 Analyst: JYH Collect Date: 04/29/2016 14:30 Sample Tag: DL02 PrePrep Method: N/A Prep Method: 3015 Analytical Method: 6010C Dilution: 10 Units: mg/L Instrument: ICP-THERMO3 Prep Date: 05/03/2016 11:48 Cal Date: 05/17/2016 10:10 Run Date: 05/17/2016 10:58 File ID: T3.051716.105823 | Analyte | CAS# | Result | Qual | LOQ | LOD | DL | |------------------|-----------|--------|------|------|------|------| | Magnesium, Total | 7439-95-4 | 29.3 | | 10.0 | 5.00 | 2.50 | | _ | | | | | | | |---|--|--------------------|---------------|--|--|--| | J | Estimated value ; the analyte concentrat | ion was less than | the LOQ. | | | | | U | Analyte was not detected. The concentra | ation is below the | reported LOD. | | | | Lab Project #: 2551.096 Project Name: Longhorn Army Ammunition Lab Contact: Stephanie Mossburg Certificate of Analysis Sample #: L16050013-01 PrePrep Method: N/A Instrument: ICP-MS2 Client ID: 35AWW13-042916 Prep Method: 3015 Prep Date: 05/04/2016 07:31 Matrix: Water Analytical Method: 6020A Cal Date: 05/04/2016 11:30 Workgroup #: WG567470 Analyst: JYH Run Date: 05/04/2016 12:04 Collect Date: 04/29/2016 14:30 Dilution: 1 File ID: NI.050416.120436 Sample Tag: 01 Units: mg/L | Analyte | CAS# | Result | Qual | LOQ | LOD | DL | |-----------------|-----------|----------|------|----------|----------|----------| | Antimony, Total | 7440-36-0 | 0.00135 | J | 0.00200 | 0.00100 | 0.000500 | | Arsenic, Total | 7440-38-2 | 0.00237 | | 0.00200 | 0.00100 | 0.000500 | | Barium, Total | 7440-39-3 | 0.0294 | | 0.00600 | 0.00300 | 0.00150 | | Cadmium, Total | 7440-43-9 | 0.000600 | U | 0.00120 | 0.000600 | 0.000300 | | Chromium, Total | 7440-47-3 | 0.00187 | J | 0.00400 | 0.00200 | 0.00100 | | Cobalt, Total | 7440-48-4 | 0.00390 | | 0.00200 | 0.00100 | 0.000500 | | Copper, Total | 7440-50-8 | 0.00207 | J | 0.00400 | 0.00200 | 0.00100 | | Lead, Total | 7439-92-1 | 0.00100 | U | 0.00200 | 0.00100 | 0.000500 | | Nickel, Total | 7440-02-0 | 0.00849 | | 0.00800 | 0.00400 | 0.00200 | | Silver, Total | 7440-22-4 | 0.00100 | U | 0.00200 | 0.00100 | 0.000500 | | Thallium, Total | 7440-28-0 | 0.000105 | J | 0.000400 | 0.000200 | 0.000100 | | Vanadium, Total | 7440-62-2 | 0.00231 | | 0.00200 | 0.00100 | 0.000500 | | Zinc, Total | 7440-66-6 | 0.0250 | U | 0.0500 | 0.0250 | 0.0125 | | J | Estimated value ; the analyte concentration was less than the LOQ. | |---|---| | J | Estimated value ; the analyte concentration was greater than the highest standard | | U | Analyte was not detected. The concentration is below the reported LOD. | Page 4 of 25 Generated at May 19, 2016 16:33 Lab Project #: 2551.096 Project Name: Longhorn Army Ammunition Lab Contact: Stephanie Mossburg Certificate of Analysis Sample #: L16050013-01 PrePrep Method: N/A Instrument: ICP-MS2 Client ID: 35AWW13-042916 Prep Method: 3015 Prep Date: 05/04/2016 07:31 Matrix: Water Analytical Method: 6020A Cal Date: 05/04/2016 11:30 Workgroup #: WG567470 Analyst: JYH Run Date: 05/04/2016 13:35 Collect Date: 04/29/2016 14:30 Dilution: 50 File ID: NI.050416.133555 Sample Tag: DL01 Units: mg/L | | Analyte | CAS# | Result | Qual | LOQ | LOD | DL | |------------|---|-----------|--------|------|-------|-------|--------| | Manganese, | Total | 7439-96-5 | 0.271 | | 0.200 | 0.100 | 0.0500 | | 11 | Analyte was not detected. The concentration is helow the reported LOD | | | | | | | Page 5 of 25 Generated at May 19, 2016 16:33 Page 30 Lab Project #: 2551.096 Project Name: Longhorn Army Ammunition Lab Contact: Stephanie Mossburg Certificate of Analysis Sample #: L16050013-01 PrePrep Method: N/A Instrument: CVAA1 Client ID: 35AWW13-042916 Prep Method: 7470A Analytical Method: 7470A **Prep Date:** 05/03/2016 10:12 **Cal Date:** 05/04/2016 13:43 Matrix: Water Workgroup #: WG567450 Analyst: PDM **Run Date:** 05/04/2016 14:47 **Collect Date:** 04/29/2016 14:30 Dilution: 1 **File ID:** M7.050416.144702 Sample Tag: 01 Units: mg/L | | Analyte | CAS# | Result | Qual | LOQ | LOD | DL | |---------|---|--------------------|---------------|------|----------|----------|----------| | Mercury | | 7439-97-6 | 0.000200 | U | 0.000400 | 0.000200 | 0.000100 | | U | Analyte was not detected. The concentra | ation is below the | reported LOD. | | | | | **Lab Project #:** L16050013 **Lab Project #:** 2551.096 Project Name: Longhorn Army Ammunition Lab Contact: Stephanie Mossburg Certificate of Analysis Sample #: L16050013-02 PrePrep Method: N/A Instrument: ICP-THERMO3 Client ID: 35AWW13FD-042916 Prep Method: 3015 Prep Date: 05/03/2016 11:48 Matrix: Water Analytical Method: 6010C Cal Date: 05/13/2016 15:26 Workgroup #: WG567345 Analyst: JYH Run Date: 05/13/2016 17:47 Sample Tag: 01 Units: mg/L | Analyte | CAS# | Result | Qual | LOQ | LOD | DL | |------------------|-----------|--------|------|--------|--------|---------| | Aluminum, Total | 7429-90-5 | 0.156 | J | 0.200 | 0.100 | 0.0500 | | Beryllium, Total | 7440-41-7 | 0.0100 | U | 0.0200 | 0.0100 | 0.00500 | | Iron, Total | 7439-89-6 | 0.378 | | 0.200 | 0.100 | 0.0500 | | Potassium, Total | 7440-09-7 | 0.581 | J | 2.00 | 1.00 | 0.500 | | Selenium, Total | 7782-49-2 | 0.0100 | U | 0.0200 | 0.0100 | 0.00500 | | J | Estimated value ; the analyte concentration was less than the LOQ. | |---|--| | U | Analyte was not detected. The concentration is below the reported LOD. | Page 7 of 25 Generated at May 19, 2016 16:33 U Lab Project #: 2551.096 Project Name: Longhorn Army Ammunition Lab Contact: Stephanie Mossburg Certificate of Analysis Sample #: L16050013-02 PrePrep Method: N/A Instrument: ICP-THERMO3 Client ID: 35AWW13FD-042916 Prep Method: 3015 Prep Date: 05/03/2016 11:48 Matrix: Water Analytical Method: 6010C Cal Date: 05/17/2016 10:10 Workgroup #: WG567345 Analyst: JYH Run Date: 05/17/2016 11:02 Sample Tag: DL02 Units: mg/L Analyte was not detected. The concentration is below the reported LOD. | | Analyte | CAS# | Result | Qual | LOQ | LOD | DL | |--|--------------|-----------|--------|------|------|------|------| | Magnesium, | Total | 7439-95-4 | 27.3 | | 10.0 | 5.00 | 2.50 | | J Estimated value ; the analyte concentration was less than the LOQ. | | | | | | | | **Lab Project #:** L16050013 **Lab Project #:** 2551.096 Project Name: Longhorn Army Ammunition Lab Contact: Stephanie Mossburg Certificate of Analysis Sample #: L16050013-02 PrePrep Method: N/A Instrument: ICP-THERMO3 Client ID: 35AWW13FD-042916 Prep Method: 3015 Prep Date: 05/03/2016 11:48 Matrix: Water Analytical Method: 6010C Cal Date: 05/16/2016 09:59 Workgroup #: WG567345 Analyst: JYH Run Date: 05/16/2016 12:12 Sample Tag: DL01 Units: mg/L | Analyte | CAS# | Result | Qual | LOQ | LOD | DL | | |----------------|-----------|--------|------|------|------|------|--| | Calcium, Total | 7440-70-2 | 41.5 | | 5.00 | 2.50 | 1.25 | | | Sodium, Total | 7440-23-5 | 215 | | 10.0 | 5.00 | 2.50 | | | | | | | | | | | U Analyte was not detected. The concentration is below the reported LOD. Lab Project #: 2551.096 Project Name: Longhorn Army Ammunition Lab Contact: Stephanie Mossburg Certificate of Analysis Sample #: L16050013-02 PrePrep Method: N/A Instrument: ICP-MS2 Client ID: 35AWW13FD-042916 Prep Method: 3015 Prep Date: 05/04/2016 07:31 Matrix: Water Analytical Method: 6020A Cal Date: 05/04/2016 11:30 Workgroup #: WG567470 Analyst: JYH Run Date: 05/04/2016 12:52 Collect Date: 04/29/2016 14:30 Dilution: 1 File ID: NI.050416.125232 Sample Tag: 01 Units: mg/L | Analyte | CAS# | Result | Qual | LOQ | LOD | DL | |-----------------|-----------|----------|------|----------|----------|----------| | Antimony, Total | 7440-36-0 | 0.00100 | U | 0.00200 | 0.00100 | 0.000500 | | Arsenic, Total | 7440-38-2 | 0.00242 | | 0.00200 | 0.00100 | 0.000500 | | Barium, Total | 7440-39-3 | 0.0303 | | 0.00600 | 0.00300 | 0.00150 | | Cadmium, Total | 7440-43-9 | 0.000600 | U | 0.00120 | 0.000600 | 0.000300 | | Chromium, Total | 7440-47-3 | 0.00160 | J
| 0.00400 | 0.00200 | 0.00100 | | Cobalt, Total | 7440-48-4 | 0.00407 | | 0.00200 | 0.00100 | 0.000500 | | Copper, Total | 7440-50-8 | 0.00193 | J | 0.00400 | 0.00200 | 0.00100 | | Lead, Total | 7439-92-1 | 0.00100 | U | 0.00200 | 0.00100 | 0.000500 | | Nickel, Total | 7440-02-0 | 0.00846 | | 0.00800 | 0.00400 | 0.00200 | | Silver, Total | 7440-22-4 | 0.00100 | U | 0.00200 | 0.00100 | 0.000500 | | Thallium, Total | 7440-28-0 | 0.000200 | U | 0.000400 | 0.000200 | 0.000100 | | Vanadium, Total | 7440-62-2 | 0.00220 | | 0.00200 | 0.00100 | 0.000500 | | Zinc, Total | 7440-66-6 | 0.0250 | U | 0.0500 | 0.0250 | 0.0125 | | J | Estimated value ; the analyte concentration was less than the LOQ. | | | | | |--|--|--|--|--|--| | J Estimated value; the analyte concentration was greater than the highest standard | | | | | | | U | Analyte was not detected. The concentration is below the reported LOD. | | | | | Page 10 of 25 Generated at May 19, 2016 16:33 **Lab Project #:** L16050013 **Lab Project #:** 2551.096 Project Name: Longhorn Army Ammunition Lab Contact: Stephanie Mossburg Certificate of Analysis Sample #: L16050013-02 PrePrep Method: N/A Instrument: ICP-MS2 Client ID: 35AWW13FD-042916 Prep Method: 3015 Prep Date: 05/04/2016 07:31 Matrix: Water Analytical Method: 6020A Cal Date: 05/04/2016 11:30 Workgroup #: WG567470 Analyst: JYH Run Date: 05/04/2016 13:45 Sample Tag: DL01 Units: mg/L | | Analyte | CAS# | Result | Qual | LOQ | LOD | DL | | |------------------|--|-----------|--------|------|-------|-------|--------|--| | Manganese, Total | | 7439-96-5 | 0.292 | | 0.200 | 0.100 | 0.0500 | | | U | Analyte was not detected. The concentration is below the reported LOD. | | | | | | | | Page 11 of 25 Generated at May 19, 2016 16:33 Lab Report #: L16050013 Lab Project #: 2551.096 Project Name: Longhorn Army Ammunition Lab Contact: Stephanie Mossburg Certificate of Analysis Sample #: L16050013-02 PrePrep Me Client ID: 35AWW13FD-042916 Prep Method: 7470A Matrix: Water Analytical Method: 7470A Workgroup #: WG567450 Analyst: PDM Collect Date: 04/29/2016 14:30 Dilution: 1 Sample Tag: 01 Units: mg/L PrePrep Method: N/A Instrument: CVAA1 Prep Date: 05/03/2016 10:12 Cal Date: 05/04/2016 13:43 Run Date: 05/04/2016 14:49 File ID: M7.050416.144935 | | Analyte | CAS# | Result | Qual | LOQ | LOD | DL | |--|---------|-----------|----------|------|----------|----------|----------| | Mercury | | 7439-97-6 | 0.000200 | U | 0.000400 | 0.000200 | 0.000100 | | U Analyte was not detected. The concentration is below the reported LOD. | | | | | | | | Page 12 of 25 Generated at May 19, 2016 16:33 Microbac Lab Project #: 2551.096 Project Name: Longhorn Army Ammunition Lab Contact: Stephanie Mossburg Certificate of Analysis Sample #: L16050013-03 PrePrep Method: N/A Instrument: ICP-THERMO3 Client ID: 35AWW13MS-042916 Prep Method: 3015 Prep Date: 05/03/2016 11:45 Matrix: Water Analytical Method: 6010C Cal Date: 05/13/2016 15:26 Workgroup #: WG567345 Analyst: JYH Run Date: 05/13/2016 17:51 Collect Date: 04/29/2016 14:30 Dilution: 1 File ID: T3.051316.175153 Sample Tag: 01 Units: mg/L | Analyte | CAS# | Result | Qual | LOQ | LOD | DL | |------------------|-----------|--------|------|--------|--------|---------| | Aluminum, Total | 7429-90-5 | 6.75 | | 0.200 | 0.100 | 0.0500 | | Beryllium, Total | 7440-41-7 | 0.0322 | | 0.0200 | 0.0100 | 0.00500 | | Iron, Total | 7439-89-6 | 3.02 | | 0.200 | 0.100 | 0.0500 | | Potassium, Total | 7440-09-7 | 33.7 | | 2.00 | 1.00 | 0.500 | | Selenium, Total | 7782-49-2 | 0.252 | | 0.0200 | 0.0100 | 0.00500 | Certificate of Analysis Sample #: L16050013-03 PrePrep Method: N/A Instrument: ICP-THERMO3 Client ID: 35AWW13MS-042916 Prep Method: 3015 Prep Date: 05/03/2016 11:45 Matrix: Water Analytical Method: 6010C Cal Date: 05/17/2016 10:10 Workgroup #: WG567345 Analyst: JYH Run Date: 05/17/2016 11:06 Collect Date: 04/29/2016 14:30 Dilution: 10 File ID: T3.051716.110632 Sample Tag: DL02 Units: mg/L | | Analyte | CAS# | Result | Qual | LOQ | LOD | DL | |--|---------|-----------|--------|------|------|------|------| | Magnesium, To | otal | 7439-95-4 | 34.6 | | 10.0 | 5.00 | 2.50 | | U Analyte was not detected. The concentration is below the reported LOD. | | | | | | | | Page 13 of 25 Generated at May 19, 2016 16:33 Generated: 05/19/2016 16:37 Microbac Lab Project #: 2551.096 Project Name: Longhorn Army Ammunition Lab Contact: Stephanie Mossburg Certificate of Analysis Sample #: L16050013-03 PrePrep Method: N/A Instrument: ICP-THERMO3 Client ID: 35AWW13MS-042916 Prep Method: 3015 Prep Date: 05/03/2016 11:45 Matrix: Water Analytical Method: 6010C Cal Date: 05/16/2016 09:59 Workgroup #: WG567345 Analyst: JYH Run Date: 05/16/2016 12:16 Sample Tag: DL01 Units: mg/L | Analyte | CAS# | Result | Qual | LOQ | LOD | DL | |----------------|-----------|--------|------|------|------|------| | Calcium, Total | 7440-70-2 | 47.1 | | 5.00 | 2.50 | 1.25 | | Sodium, Total | 7440-23-5 | 244 | | 10.0 | 5.00 | 2.50 | U Analyte was not detected. The concentration is below the reported LOD. Project Name: Longhorn Army Ammunition Lab Contact: Stephanie Mossburg Certificate of Analysis Sample #: L16050013-03 PrePrep Method: N/A Instrument: ICP-MS2 Client ID: 35AWW13MS-042916 Prep Method: 3015 Prep Date: 05/04/2016 07:31 Matrix: Water Analytical Method: 6020A Cal Date: 05/04/2016 11:30 Workgroup #: WG567470 Analyst: JYH Run Date: 05/04/2016 12:07 Collect Date: 04/29/2016 14:30 Dilution: 1 File ID: NI.050416.120748 Sample Tag: 01 Units: mg/L | Analyte | CAS# | Result | Qual | LOQ | LOD | DL | |-----------------|-----------|--------|------|----------|----------|----------| | Antimony, Total | 7440-36-0 | 0.128 | | 0.00200 | 0.00100 | 0.000500 | | Arsenic, Total | 7440-38-2 | 0.134 | | 0.00200 | 0.00100 | 0.000500 | | Barium, Total | 7440-39-3 | 0.152 | | 0.00600 | 0.00300 | 0.00150 | | Cadmium, Total | 7440-43-9 | 0.125 | | 0.00120 | 0.000600 | 0.000300 | | Chromium, Total | 7440-47-3 | 0.125 | | 0.00400 | 0.00200 | 0.00100 | | Cobalt, Total | 7440-48-4 | 0.131 | | 0.00200 | 0.00100 | 0.000500 | | Copper, Total | 7440-50-8 | 0.126 | | 0.00400 | 0.00200 | 0.00100 | | Lead, Total | 7439-92-1 | 0.134 | | 0.00200 | 0.00100 | 0.000500 | | Nickel, Total | 7440-02-0 | 0.130 | | 0.00800 | 0.00400 | 0.00200 | | Silver, Total | 7440-22-4 | 0.120 | | 0.00200 | 0.00100 | 0.000500 | | Thallium, Total | 7440-28-0 | 0.130 | | 0.000400 | 0.000200 | 0.000100 | | Vanadium, Total | 7440-62-2 | 0.130 | | 0.00200 | 0.00100 | 0.000500 | | Zinc, Total | 7440-66-6 | 0.132 | | 0.0500 | 0.0250 | 0.0125 | Estimated value, the analyte concentration was greater than the highest standard U **Lab Project #:** L16050013 **Lab Project #:** 2551.096 Project Name: Longhorn Army Ammunition Lab Contact: Stephanie Mossburg Certificate of Analysis Sample #: L16050013-03 PrePrep Method: N/A Instrument: ICP-MS2 Client ID: 35AWW13MS-042916 Prep Method: 3015 Prep Date: 05/04/2016 07:31 Matrix: Water Analytical Method: 6020A Cal Date: 05/04/2016 11:30 Workgroup #: WG567470 Analyst: JYH Run Date: 05/04/2016 13:39 **Collect Date:** 04/29/2016 14:30 **Dilution:** 50 **File ID:** NI.050416.133907 Sample Tag: DL01 Units: mg/L Analyte was not detected. The concentration is below the reported LOD. | | Analyte | CAS# | Result | Qual | LOQ | LOD | DL | |--|---------|-----------|--------|------|-------|-------|--------| | Manganese, Total | | 7439-96-5 | 0.398 | | 0.200 | 0.100 | 0.0500 | | J Estimated value ; the analyte concentration was less than the LOQ. | | | | | | | | Microbac Lab Project #: 2551.096 Project Name: Longhorn Army Ammunition Lab Contact: Stephanie Mossburg Certificate of Analysis Sample #: L16050013-03 PrePrep Method: N/A Instrument: CVAA1 Client ID: 35AWW13MS-042916 Prep Method: 7470A Prep Date: 05/03/2016 10:11 Matrix: Water Analytical Method: 7470A Cal Date: 05/04/2016 13:43 Workgroup #: WG567450 Analyst: PDM Run Date: 05/04/2016 14:57 Collect Date: 04/29/2016 14:30 Dilution: 1 File ID: M7.050416.145710 Sample Tag: 01 Units: mg/L | Analyte | CAS# | Result | Qual | LOQ | LOD | DL | |---------|-----------|---------|------|----------|----------|----------| | Mercury | 7439-97-6 | 0.00402 | | 0.000444 | 0.000222 | 0.000111 | Certificate of Analysis Sample #: L16050013-04 PrePrep Method: N/A Instrument: ICP-THERMO3 Client ID: 35AWW13MSD-042916 Prep Method: 3015 Prep Date: 05/03/2016 11:45 Matrix: Water Analytical Method: 6010C Cal Date: 05/13/2016 15:26 Workgroup #: WG567345 Analyst: JYH Run Date: 05/13/2016 17:55 Collect Date: 04/29/2016 14:30 Dilution: 1 File ID: T3.051316.175540 Sample Tag: 01 Units: mg/L | Analyte | CAS# | Result | Qual | LOQ | LOD | DL | |------------------|-----------|--------|------|--------|--------|---------| | Aluminum, Total | 7429-90-5 | 6.71 | | 0.200 | 0.100 | 0.0500 | | Beryllium, Total | 7440-41-7 | 0.0326 | | 0.0200 | 0.0100 | 0.00500 | | Iron, Total | 7439-89-6 | 2.94 | | 0.200 | 0.100 | 0.0500 | | Potassium, Total | 7440-09-7 | 33.7 | | 2.00 | 1.00 | 0.500 | | Selenium, Total | 7782-49-2 | 0.263 | | 0.0200 | 0.0100 | 0.00500 | #### Certificate of Analysis Sample #: L16050013-04 PrePrep Method: N/A Instrument: ICP-THERMO3 Client ID: 35AWW13MSD-042916 Prep Method: 3015 Prep Date: 05/03/2016 11:45 Matrix: Water Analytical Method: 6010C Cal Date: 05/16/2016 09:59 Workgroup #: WG567345 Analyst: JYH Run Date: 05/16/2016 12:20 Collect Date: 04/29/2016 14:30 Dilution: 10 File ID: T3.051616.122020 Sample Tag: DL01 Units: mg/L | Analyte | CAS# | Result | Qual | LOQ | LOD | DL | |
--|-----------|--------|------|------|------|------|--| | Calcium, Total | 7440-70-2 | 45.9 | | 5.00 | 2.50 | 1.25 | | | Sodium, Total | 7440-23-5 | 237 | | 10.0 | 5.00 | 2.50 | | | II Analyte was not detected. The concentration is helow the reported LOD | | | | | | | | Page 17 of 25 Lab Report #: L16050013 **Lab Project #: 2551.096** Project Name: Longhorn Army Ammunition Lab Contact: Stephanie Mossburg Certificate of Analysis Sample #: L16050013-04 Client ID: 35AWW13MSD-042916 Matrix: Water Workgroup #: WG567345 Collect Date: 04/29/2016 14:30 Sample Tag: DL02 PrePrep Method: N/A Prep Method: 3015 Analytical Method: 6010C > Analyst: JYH Dilution: 10 Units: mg/L Instrument: ICP-THERMO3 Prep Date: 05/03/2016 11:45 Cal Date: 05/17/2016 10:10 Run Date: 05/17/2016 11:10 File ID: T3.051716.111036 | | Analyte | CAS# | Result | Qual | LOQ | LOD | DL | | |---------------|---------|-----------|--------|------|------|------|------|--| | Magnesium, To | otal | 7439-95-4 | 34.6 | | 10.0 | 5.00 | 2.50 | | | | | | | | | | | | Analyte was not detected. The concentration is below the reported LOD. U Lab Report #: L16050013 **Lab Project #: 2551.096** Project Name: Longhorn Army Ammunition Lab Contact: Stephanie Mossburg Certificate of Analysis Sample #: L16050013-04 PrePrep Method: N/A Instrument: ICP-MS2 Client ID: 35AWW13MSD-042916 Prep Method: 3015 Prep Date: 05/04/2016 07:31 Matrix: Water Analytical Method: 6020A Cal Date: 05/04/2016 11:30 Workgroup #: WG567470 Analyst: JYH Run Date: 05/04/2016 12:10 Collect Date: 04/29/2016 14:30 Dilution: 1 File ID: NI.050416.121059 Sample Tag: 01 Units: mg/L | Analyte | CAS# | Result | Qual | LOQ | LOD | DL | |-----------------|-----------|--------|------|----------|----------|----------| | Antimony, Total | 7440-36-0 | 0.128 | | 0.00200 | 0.00100 | 0.000500 | | Arsenic, Total | 7440-38-2 | 0.133 | | 0.00200 | 0.00100 | 0.000500 | | Barium, Total | 7440-39-3 | 0.151 | | 0.00600 | 0.00300 | 0.00150 | | Cadmium, Total | 7440-43-9 | 0.125 | | 0.00120 | 0.000600 | 0.000300 | | Chromium, Total | 7440-47-3 | 0.124 | | 0.00400 | 0.00200 | 0.00100 | | Cobalt, Total | 7440-48-4 | 0.134 | | 0.00200 | 0.00100 | 0.000500 | | Copper, Total | 7440-50-8 | 0.125 | | 0.00400 | 0.00200 | 0.00100 | | Lead, Total | 7439-92-1 | 0.127 | | 0.00200 | 0.00100 | 0.000500 | | Nickel, Total | 7440-02-0 | 0.129 | | 0.00800 | 0.00400 | 0.00200 | | Silver, Total | 7440-22-4 | 0.122 | | 0.00200 | 0.00100 | 0.000500 | | Thallium, Total | 7440-28-0 | 0.127 | | 0.000400 | 0.000200 | 0.000100 | | Vanadium, Total | 7440-62-2 | 0.128 | | 0.00200 | 0.00100 | 0.000500 | | Zinc, Total | 7440-66-6 | 0.131 | | 0.0500 | 0.0250 | 0.0125 | Project Name: Longhorn Army Ammunition Lab Contact: Stephanie Mossburg Certificate of Analysis Sample #: L16050013-04 PrePrep Method: N/A Instrument: ICP-MS2 Client ID: 35AWW13MSD-042916 Prep Method: 3015 Prep Date: 05/04/2016 07:31 Matrix: Water Analytical Method: 6020A Cal Date: 05/04/2016 11:30 Workgroup #: WG567470 Analyst: JYH Run Date: 05/04/2016 13:42 Collect Date: 04/29/2016 14:30 Dilution: 50 File ID: NI.050416.134218 Sample Tag: DL01 Units: mg/L | | Analyte | CAS# | Result | Qual | LOQ | LOD | DL | |--|---------|-----------|--------|------|-------|-------|--------| | Manganese, Total | | 7439-96-5 | 0.411 | | 0.200 | 0.100 | 0.0500 | | 1 Estimated value: the analyte concentration was less than the LOO | | | | | | | | J Estimated value; the analyte concentration was less than the LOQ. U Analyte was not detected. The concentration is below the reported LOD. Microbac Lab Project #: 2551.096 Project Name: Longhorn Army Ammunition Lab Contact: Stephanie Mossburg Certificate of Analysis Sample #: L16050013-04 PrePrep Method: N/A Instrument: CVAA1 Client ID: 35AWW13MSD-042916 Prep Method: 7470A Prep Date: 05/03/2016 10:11 Matrix: Water Analytical Method: 7470A Cal Date: 05/04/2016 13:43 Workgroup #: WG567450 Analyst: PDM Run Date: 05/04/2016 14:59 Collect Date: 04/29/2016 14:30 Dilution: 1 File ID: M7.050416.145943 Sample Tag: 01 Units: mg/L | Analyte | CAS# | Result | Qual | LOQ | LOD | DL | |---------|-----------|---------|------|----------|----------|----------| | Mercury | 7439-97-6 | 0.00405 | | 0.000444 | 0.000222 | 0.000111 | Certificate of Analysis Sample #: L16050013-05 PrePrep Method: N/A Instrument: ICP-THERMO3 Client ID: LHAAP02 EQUIPMENT Prep Method: 3015 Prep Date: 05/03/2016 11:48 RINSE-042916 05/03/2016 11:48 05/03/2016 11:48 05/03/2016 11:48 05/03/2016 11:48 Matrix: Water Analytical Method: 6010C Cal Date: 05/13/2016 15:26 Workgroup #: WG567345 Analyst: JYH Run Date: 05/13/2016 17:59 Collect Date: 04/29/2016 14:45 Dilution: 1 File ID: T3.051316.175926 Sample Tag: 01 Units: mg/L | | Analyte | CAS# | Result | Qual | LOQ | LOD | DL | |--|---------|-----------|--------|------|--------|--------|---------| | Aluminum, Tota | al | 7429-90-5 | 0.100 | U | 0.200 | 0.100 | 0.0500 | | Beryllium, Tota | l | 7440-41-7 | 0.0100 | U | 0.0200 | 0.0100 | 0.00500 | | Calcium, Total | | 7440-70-2 | 0.250 | U | 0.500 | 0.250 | 0.125 | | Iron, Total | | 7439-89-6 | 0.100 | U | 0.200 | 0.100 | 0.0500 | | Potassium, Tot | al | 7440-09-7 | 1.00 | U | 2.00 | 1.00 | 0.500 | | Selenium, Tota | I | 7782-49-2 | 0.0100 | U | 0.0200 | 0.0100 | 0.00500 | | Sodium, Total | | 7440-23-5 | 0.500 | U | 1.00 | 0.500 | 0.250 | | U Analyte was not detected. The concentration is below the reported LOD. | | | | | | | | Page 21 of 25 Project Name: Longhorn Army Ammunition Lab Contact: Stephanie Mossburg Certificate of Analysis Sample #: L16050013-05 Client ID: LHAAP02 EQUIPMENT RINSE-042916 RINSE-042916 Matrix: Water Workgroup #: WG567345 Collect Date: 04/29/2016 14:45 Sample Tag: 03 PrePrep Method: N/A Prep Method: 3015 Analytical Method: 6010C Analyst: JYH Dilution: 1 Units: mg/L Instrument: ICP-THERMO3 **Prep Date:** 05/03/2016 11:48 **Cal Date:** 05/17/2016 10:10 **Run Date:** 05/17/2016 11:14 File ID: T3.051716.111439 | | | Analyte | CAS# | Result | Qual | LOQ | LOD | DL | | |---|--|---------|------|--------|------|-------|-----|----|--| | Magnesium, Total 7439-95-4 0.500 U 1.00 0.500 | | | | | | 0.250 | | | | | | U Analyte was not detected. The concentration is below the reported LOD. | | | | | | | | | Page 22 of 25 Generated at May 19, 2016 16:33 Lab Report #: L16050013 **Lab Project #: 2551.096** Project Name: Longhorn Army Ammunition Lab Contact: Stephanie Mossburg Certificate of Analysis Sample #: L16050013-05 PrePrep Method: N/A Instrument: ICP-MS2 Client ID: LHAAP02 EQUIPMENT RINSE-042916 Prep Method: 3015 Prep Date: 05/04/2016 07:31 Analytical Method: 6020A Cal Date: 05/04/2016 11:30 Matrix: Water Workgroup #: WG567470 Analyst: JYH Run Date: 05/04/2016 12:55 Collect Date: 04/29/2016 14:45 Dilution: 1 File ID: NI.050416.125543 | Sample Tag: | 01 | Units: | mg/L | |-------------|----|--------|------| | | | | | | Analyte | CAS# | Result | Qual | LOQ | LOD | DL | |------------------|-----------|----------|------|----------|----------|----------| | Antimony, Total | 7440-36-0 | 0.00100 | U | 0.00200 | 0.00100 | 0.000500 | | Arsenic, Total | 7440-38-2 | 0.00100 | U | 0.00200 | 0.00100 | 0.000500 | | Barium, Total | 7440-39-3 | 0.00300 | U | 0.00600 | 0.00300 | 0.00150 | | Cadmium, Total | 7440-43-9 | 0.000600 | U | 0.00120 | 0.000600 | 0.000300 | | Chromium, Total | 7440-47-3 | 0.00200 | U | 0.00400 | 0.00200 | 0.00100 | | Cobalt, Total | 7440-48-4 | 0.00100 | U | 0.00200 | 0.00100 | 0.000500 | | Copper, Total | 7440-50-8 | 0.00107 | J | 0.00400 | 0.00200 | 0.00100 | | Lead, Total | 7439-92-1 | 0.00100 | U | 0.00200 | 0.00100 | 0.000500 | | Manganese, Total | 7439-96-5 | 0.00200 | U | 0.00400 | 0.00200 | 0.00100 | | Nickel, Total | 7440-02-0 | 0.00400 | U | 0.00800 | 0.00400 | 0.00200 | | Silver, Total | 7440-22-4 | 0.00100 | U | 0.00200 | 0.00100 | 0.000500 | | Thallium, Total | 7440-28-0 | 0.000200 | U | 0.000400 | 0.000200 | 0.000100 | | Vanadium, Total | 7440-62-2 | 0.00100 | U | 0.00200 | 0.00100 | 0.000500 | | Zinc, Total | 7440-66-6 | 0.0250 | U | 0.0500 | 0.0250 | 0.0125 | | J | Estimated value ; the analyte concentration | on was less than | the LOQ. | | | | |---|---|--------------------|---------------|--|--|--| | U | Analyte was not detected. The concentrate | ion is below the i | reported LOD. | | | | **Lab Project #:** L16050013 **Lab Project #:** 2551.096 Project Name: Longhorn Army Ammunition Lab Contact: Stephanie Mossburg Certificate of Analysis Sample #: L16050013-05 PrePrep Method: N/A Instrument: CVAA1 Client ID: LHAAP02 EQUIPMENT RINSE-042916 Prep Method: 7470A Prep Date: 05/03/2016 10:12 Matrix: Water Analytical Method: 7470A Cal Date: 05/04/2016 13:43 Workgroup #: WG567450 Analyst: PDM Run Date: 05/04/2016 15:02 Collect Date: 04/29/2016 14:45 Dilution: 1 File ID: M7.050416.150216 Sample Tag: 01 Units: mg/L | Analyte | | CAS# | Result | Qual | LOQ | LOD | DL | |---|--|------|--------|------|----------|-----|----| | Mercury 7439-97-6 0.000200 U 0.000400 0.000200 0.000100 | | | | | 0.000100 | | | | U | U Analyte was not detected. The concentration is below the reported LOD. | | | | | | | Page 49 Page 24 of 25 Generated at May 19, 2016 16:33 Project Name: Longhorn Army Ammunition Lab Contact: Stephanie Mossburg Page 25 of 25 Microbac Lab Report #: L16050013 Lab Project #: 2551.096 Project Name: Longhorn Army Ammunition Lab Contact: Stephanie Mossburg Certificate of Analysis Page 1 of 1 # 2.0 Full Sample Data Package ### 2.1 Metals Data ### 2.1.1 Metals I C P Data ## 2.1.1.1 Summary Data Project Name:
Longhorn Army Ammunition Lab Contact: Stephanie Mossburg Certificate of Analysis Page 1 of 1 Microbac Lab Project #: 2551.096 Project Name: Longhorn Army Ammunition Lab Contact: Stephanie Mossburg Certificate of Analysis **Sample #**: L16050013-01 **Client ID**: 35AWW13-042916 PrePrep Method: N/A Prep Method: 3015 Instrument: ICP-THERMO3 Prep Date: 05/03/2016 11:48 Matrix: Water Workgroup #: WG567345 Analytical Method: 6010C Analyst: JYH Cal Date: 05/13/2016 15:26 Run Date: 05/13/2016 17:43 **Collect Date:** 04/29/2016 14:30 Dilution: 1 File ID: T3.051316.174353 Sample Tag: 01 Units: mg/L | Analyte | CAS# | Result | Qual | LOQ | LOD | DL | |------------------|-----------|--------|------|--------|--------|---------| | Aluminum, Total | 7429-90-5 | 0.195 | J | 0.200 | 0.100 | 0.0500 | | Beryllium, Total | 7440-41-7 | 0.0100 | U | 0.0200 | 0.0100 | 0.00500 | | Iron, Total | 7439-89-6 | 0.465 | | 0.200 | 0.100 | 0.0500 | | Potassium, Total | 7440-09-7 | 0.685 | J | 2.00 | 1.00 | 0.500 | | Selenium, Total | 7782-49-2 | 0.0100 | U | 0.0200 | 0.0100 | 0.00500 | J Estimated value; the analyte concentration was less than the LOQ. U Analyte was not detected. The concentration is below the reported LOD. Page 1 of 13 Collect Date: 04/29/2016 14:30 Lab Project #: 2551.096 Project Name: Longhorn Army Ammunition Lab Contact: Stephanie Mossburg Instrument: ICP-THERMO3 Prep Date: 05/03/2016 11:48 #### Certificate of Analysis Sample #: L16050013-01 PrePrep Method: N/A Client ID: 35AWW13-042916 Prep Method: 3015 Matrix: Water Analytical Method: 6010C Workgroup #: WG567345 Analyst: JYH ical Method: 6010C Cal Date: 05/17/2016 10:10 Analyst: JYH Run Date: 05/17/2016 10:58 Dilution: 10 File ID: T3.051716.105823 Sample Tag: DL02 Units: mg/L | Magnesium, Total 7439-95-4 29.3 10.0 5.00 2.5 | | Analyte | CAS# | Result | Qual | LOQ | LOD | DL | | |---|---------------|---------|-----------|--------|------|------|------|------|--| | Magnesiani, 18ta 1400 30 4 20.0 2.0 | Magnesium, To | otal | 7439-95-4 | 29.3 | | 10.0 | 5.00 | 2.50 | | | J | Estimated value ; the analyte concentration was less than the LOQ. | |---|--| | U | Analyte was not detected. The concentration is below the reported LOD. | Page 2 of 13 Project Name: Longhorn Army Ammunition Lab Contact: Stephanie Mossburg #### Certificate of Analysis Sample #: L16050013-01 PrePrep Method: N/A Client ID: 35AWW13-042916 Prep Method: 3015 Matrix: Water Analytical Method: 6010C Workgroup #: WG567345 Analyst: JYH Prep Date: 05/03/2016 11:48 Cal Date: 05/16/2016 09:59 Run Date: 05/16/2016 12:08 File ID: T3.051616.120826 Instrument: ICP-THERMO3 | | Analyte | CAS# | Result | Qual | LOQ | LOD | DL | |--|---------|-----------|--------|------|------|------|------| | Calcium, Total | | 7440-70-2 | 38.4 | | 5.00 | 2.50 | 1.25 | | Sodium, Total | | 7440-23-5 | 199 | | 10.0 | 5.00 | 2.50 | | U Analyte was not detected. The concentration is below the reported LOD. | | | | | | | | Page 3 of 13 Generated at May 19, 2016 16:34 Project Name: Longhorn Army Ammunition Lab Contact: Stephanie Mossburg #### Certificate of Analysis Sample #: L16050013-02 PrePrep Method: N/A Instrument: ICP-THERMO3 Client ID: 35AWW13FD-042916 Prep Method: 3015 Prep Date: 05/03/2016 11:48 Matrix: Water Analytical Method: 6010C Cal Date: 05/13/2016 15:26 Workgroup #: WG567345 Analyst: JYH Run Date: 05/13/2016 17:47 Collect Date: 04/29/2016 14:30 Dilution: 1 File ID: T3.051316.174753 Sample Tag: 01 Units: mg/L | Analyte | CAS# | Result | Qual | LOQ | LOD | DL | |------------------|-----------|--------|------|--------|--------|---------| | Aluminum, Total | 7429-90-5 | 0.156 | J | 0.200 | 0.100 | 0.0500 | | Beryllium, Total | 7440-41-7 | 0.0100 | U | 0.0200 | 0.0100 | 0.00500 | | Iron, Total | 7439-89-6 | 0.378 | | 0.200 | 0.100 | 0.0500 | | Potassium, Total | 7440-09-7 | 0.581 | J | 2.00 | 1.00 | 0.500 | | Selenium, Total | 7782-49-2 | 0.0100 | U | 0.0200 | 0.0100 | 0.00500 | | J | Estimated value ; the analyte concentration was less than the LOQ. | |---|--| | U | Analyte was not detected. The concentration is below the reported LOD. | Page 4 of 13 Collect Date: 04/29/2016 14:30 Lab Project #: 2551.096 Project Name: Longhorn Army Ammunition Lab Contact: Stephanie Mossburg Instrument: ICP-THERMO3 Prep Date: 05/03/2016 11:48 Cal Date: 05/17/2016 10:10 #### Certificate of Analysis Sample #: L16050013-02 PrePrep Method: N/A Client ID: 35AWW13FD-042916 Prep Method: 3015 Matrix: Water Analytical Method: 6010C Workgroup #: WG567345 Analyst: JYH Analyst: JYH Run Date: 05/17/2016 11:02 Dilution: 10 File ID: T3.051716.110228 Sample Tag: DL02 Units: mg/L | Analyte | CAS# | Result | Qual | LOQ | LOD | DL | | |------------------|-----------|--------|------|------|------|------|--| | Magnesium, Total | 7439-95-4 | 27.3 | | 10.0 | 5.00 | 2.50 | | | J | Estimated value ; the analyte concentration was less than the LOQ. | |---|--| | U | Analyte was not detected. The concentration is below the reported LOD. | Page 5 of 13 Collect Date: 04/29/2016 14:30 Lab Project #: 2551.096 Project Name: Longhorn Army Ammunition Lab Contact: Stephanie Mossburg Instrument: ICP-THERMO3 Prep Date: 05/03/2016 11:48 #### Certificate of Analysis Sample #: L16050013-02 PrePrep Method: N/A Client ID: 35AWW13FD-042916 Prep Method: 3015 Matrix: Water Analytical Method: 6010C Workgroup #: WG567345 Analyst: JYH Method: 6010C Cal Date: 05/16/2016 09:59 Analyst: JYH Run Date: 05/16/2016 12:12 Dilution: 10 File ID: T3.051616.121225 Sample Tag: DL01 Units: mg/L | | Analyte | CAS# | Result | Qual | LOQ | LOD | DL | |----------------|---|--------------------|---------------|------|------|------|------| | Calcium, Total | | 7440-70-2 | 41.5 | | 5.00 | 2.50 | 1.25 | | Sodium, Total | | 7440-23-5 | 215 | | 10.0 | 5.00 | 2.50 | | U | Analyte was not detected. The concentra | ation is below the | reported LOD. | | | | | Page 6 of 13 Lab Report #: L16050013 Lab Project #: 2551.096 Project Name: Longhorn Army Ammunition Lab Contact: Stephanie Mossburg #### Certificate of Analysis Sample #: L16050013-03 PrePrep Method: N/A Instrument: ICP-THERMO3 Client ID: 35AWW13MS-042916 Prep Method: 3015 Prep Date: 05/03/2016 11:45 Matrix: Water Analytical Method: 6010C Cal Date: 05/13/2016 15:26 Run Date: 05/13/2016 17:51 Workgroup #: WG567345 Analyst: JYH Collect Date: 04/29/2016 14:30 Dilution: 1 File ID: T3.051316.175153 Sample Tag: 01 Units: mg/L | Analyte | CAS# | Result | Qual | LOQ | LOD | DL | |------------------|-----------|--------|------|--------|--------|---------| | Aluminum, Total | 7429-90-5 | 6.75 | | 0.200 | 0.100 | 0.0500 | | Beryllium, Total | 7440-41-7 | 0.0322 | | 0.0200 | 0.0100 | 0.00500 | | Iron, Total | 7439-89-6 | 3.02 | | 0.200 | 0.100 | 0.0500 | | Potassium, Total | 7440-09-7 | 33.7 | | 2.00 | 1.00 | 0.500 | | Selenium, Total | 7782-49-2 | 0.252 | | 0.0200 | 0.0100 | 0.00500 | #### Certificate of Analysis Sample #: L16050013-03 PrePrep Method: N/A Instrument: ICP-THERMO3 Client ID: 35AWW13MS-042916 Prep Method: 3015 Prep Date: 05/03/2016 11:45 Matrix: Water Analytical Method: 6010C Cal Date: 05/16/2016 09:59 Workgroup #: WG567345 Analyst: JYH Run Date: 05/16/2016 12:16 Collect Date: 04/29/2016 14:30 Dilution: 10 File ID: T3.051616.121623 Sample Tag: DL01 Units: mg/L | Analyte | CAS# | Result | Qual | LOQ | LOD | DL | |----------------|-----------|--------|------|------|------|------| | Calcium, Total | 7440-70-2 | 47.1 | | 5.00 | 2.50 | 1.25 | | Sodium, Total | 7440-23-5 | 244 | | 10.0 | 5.00 | 2.50 | U Analyte was not detected. The concentration is below the reported LOD. Page 7 of 13 Project Name: Longhorn Army Ammunition Lab Contact: Stephanie Mossburg #### Certificate of Analysis Sample #: L16050013-03 Client ID: 35AWW13MS-042916 Matrix: Water PrePrep Method: N/A Prep Method: 3015 Analytical Method: 6010C Analyst: JYH Prep Date: 05/03/2016 11:45 Cal Date: 05/17/2016 10:10 Run Date: 05/17/2016 11:06 File ID: T3.051716.110632 Instrument: ICP-THERMO3 Workgroup #: WG567345 Collect Date: 04/29/2016 14:30 Sample Tag: DL02 Units: mg/L | Analyte | CAS# | Result | Qual | LOQ | LOD | DL | |------------------|-----------|--------|------|------|------|------| | Magnesium, Total | 7439-95-4 | 34.6 | | 10.0 | 5.00 | 2.50 | | | | | | | | | Dilution: 10 U Analyte was not detected. The concentration is below the reported LOD. Page 8 of 13 Generated at May 19, 2016 16:34 Microbac Lab Project #: 2551.096 Project Name: Longhorn Army Ammunition Lab Contact: Stephanie Mossburg #### Certificate of Analysis Sample #: L16050013-04 PrePrep Method: N/A Instrument: ICP-THERMO3 Client ID: 35AWW13MSD-042916 Prep Method: 3015 Prep Date: 05/03/2016 11:45 Matrix: Water Analytical Method: 6010C Cal Date: 05/13/2016 15:26 Workgroup #: WG567345 Analyst: JYH Run Date: 05/13/2016 17:55 Collect Date: 04/29/2016 14:30 Dilution: 1 File ID: T3.051316.175540 Sample Tag: 01 Units: mg/L | Analyte | CAS# | Result | Qual | LOQ | LOD | DL | |------------------|-----------|--------|------|--------|--------|---------| | Aluminum, Total | 7429-90-5 | 6.71 | | 0.200 | 0.100 | 0.0500 | | Beryllium, Total | 7440-41-7 | 0.0326 | | 0.0200 | 0.0100 | 0.00500 | | Iron, Total | 7439-89-6 | 2.94 | | 0.200 | 0.100 | 0.0500 | | Potassium, Total | 7440-09-7 | 33.7 | | 2.00 | 1.00 | 0.500 | | Selenium, Total | 7782-49-2 | 0.263 | | 0.0200 | 0.0100 | 0.00500 | #### Certificate of Analysis Sample #: L16050013-04 PrePrep Method: N/A Instrument: ICP-THERMO3 Client ID: 35AWW13MSD-042916 Prep Method: 3015 Prep Date: 05/03/2016 11:45 Matrix: Water Analytical Method: 6010C Cal Date: 05/17/2016 10:10 Workgroup #: WG567345 Analyst: JYH Run Date: 05/17/2016 11:10 Collect Date:
04/29/2016 14:30 Dilution: 10 File ID: T3.051716.111036 Sample Tag: DL02 Units: mg/L | Analyte | CAS# | Result | Qual | LOQ | LOD | DL | |---|-----------|--------|------|------|------|------| | Magnesium, Total | 7439-95-4 | 34.6 | | 10.0 | 5.00 | 2.50 | | Analyte was not detected. The concentration is below the reported LOD | | | | | | | U Analyte was not detected. The concentration is below the reported LOD. Page 9 of 13 Generated at May 19, 2016 16:34 Project Name: Longhorn Army Ammunition Lab Contact: Stephanie Mossburg #### Certificate of Analysis Sample #: L16050013-04 PrePrep Method: N/A Instrument: ICP-THERMO3 Client ID: 35AWW13MSD-042916 Prep Method: 3015 Prep Date: 05/03/2016 11:45 Matrix: Water Analytical Method: 6010C Cal Date: 05/16/2016 09:59 Workgroup #: WG567345 Analyst: JYH Run Date: 05/16/2016 12:20 Workgroup #: WG567345 Analyst: JYH Run Date: 05/16/2016 12:20 Collect Date: 04/29/2016 14:30 Dilution: 10 File ID: T3.051616.122020 Sample Tag: DL01 Units: mg/L | | Analyte | CAS# | Result | Qual | LOQ | LOD | DL | |----------------|---|--------------------|---------------|------|------|------|------| | Calcium, Total | | 7440-70-2 | 45.9 | | 5.00 | 2.50 | 1.25 | | Sodium, Total | | 7440-23-5 | 237 | | 10.0 | 5.00 | 2.50 | | U | Analyte was not detected. The concentra | ation is below the | reported LOD. | | | | | Page 10 of 13 Project Name: Longhorn Army Ammunition Lab Contact: Stephanie Mossburg #### Certificate of Analysis Sample #: L16050013-05 PrePrep Method: N/A Instrument: ICP-THERMO3 Client ID: LHAAP02 EQUIPMENT Prep Method: 3015 Prep Date: 05/03/2016 11:48 RINSE-042916 Matrix: Water Workgroup #: WG567345 Collect Date: 04/29/2016 14:45 Analytical Method: 6010C Cal Date: 05/13/2016 15:26 Analyst: JYH Run Date: 05/13/2016 17:59 Dilution: 1 File ID: T3.051316.175926 Sample Tag: 01 Units: mg/L | | Analyte | CAS# | Result | Qual | LOQ | LOD | DL | |-----------------|--|-----------|--------|------|--------|--------|---------| | Aluminum, Tota | al | 7429-90-5 | 0.100 | U | 0.200 | 0.100 | 0.0500 | | Beryllium, Tota | I | 7440-41-7 | 0.0100 | U | 0.0200 | 0.0100 | 0.00500 | | Calcium, Total | | 7440-70-2 | 0.250 | U | 0.500 | 0.250 | 0.125 | | Iron, Total | | 7439-89-6 | 0.100 | U | 0.200 | 0.100 | 0.0500 | | Potassium, Tot | al | 7440-09-7 | 1.00 | U | 2.00 | 1.00 | 0.500 | | Selenium, Tota | I | 7782-49-2 | 0.0100 | U | 0.0200 | 0.0100 | 0.00500 | | Sodium, Total | | 7440-23-5 | 0.500 | U | 1.00 | 0.500 | 0.250 | | U | Analyte was not detected. The concentration is below the reported LOD. | | | | | | | Page 11 of 13 Generated at May 19, 2016 16:34 Matrix: Water Workgroup #: WG567345 Collect Date: 04/29/2016 14:45 Lab Project #: 2551.096 Project Name: Longhorn Army Ammunition Lab Contact: Stephanie Mossburg File ID: T3.051716.111439 #### Certificate of Analysis Sample #: L16050013-05 PrePrep Method: N/A Instrument: ICP-THERMO3 Client ID: LHAAP02 EQUIPMENT Prep Method: 3015 Prep Date: 05/03/2016 11:48 Dilution: 1 RINSE-042916 Analytical Method: 6010C Cal Date: 05/17/2016 10:10 Analyst: JYH Run Date: 05/17/2016 11:14 Sample Tag: 03 Units: mg/L | | Analyte | CAS# | Result | Qual | LOQ | LOD | DL | |--|---------|-----------|--------|------|------|-------|-------| | Magnesium, To | otal | 7439-95-4 | 0.500 | U | 1.00 | 0.500 | 0.250 | | U Analyte was not detected. The concentration is below the reported LOD. | | | | | | | | Page 12 of 13 Generated at May 19, 2016 16:34 Project Name: Longhorn Army Ammunition Lab Contact: Stephanie Mossburg Page 13 of 13 ## 2.1.1.2 QC Summary Data ### Example 6010 Calculations Thermo Scientific iCAP #### 1.0 Initial Calibration (ICAL) Parameters For a multi-point calibration, the system performs linear regression from data consisting of a blank and four standards. 2.0 Calculating the concentration (C) of an element in water using data from prep log, run log, and quantitation report (note:the data system performs this calculation automatically when correction factors have been entered): $$Cx = Cs \times \frac{Vf}{Vi} \times D$$ | Where: | Example: | |---|----------| | Cs = Concentration computed by the data system in ug/mL (ppm) | 0.1 | | Vf = Final volume (mL) | 50 | | Vi = Initial volume (mL) | 50 | | D = Dilution factor as a multiplier (10X = 10) | 1 | | Cx = Concentration of element in ug/mL (mg/L) | 0.1 | 3.0 Calculating the concentration (C) of an element in soil using data from prep log, run log, and quantitation report (note: the data system performs this calculation automatically when correction factors have been entered): $$Cx = Cs \times \frac{Vf}{Vi} \times D$$ | Where: | Example: | |---|----------| | Cs = Concentration computed by the data system (mg/L) (ppm) | 0.1 | | Vf = Final volume (mL) | 50 | | Vi = Initial weight (g) | 1 | | D = Dilution factor as a multiplier (10X = 10) | 1 | | Cx = Concentration of element in ug/g (mg/kg) | 5 | #### 4.0 Adjusting the concentration to dry weight: $$Cdry = \frac{Cx \times 100}{Px}$$ | Where: | Example: | |---|----------| | Cx = Concentration calculated as received (wet basis) | 5 | | Px = Percent solids of sample (%wt) | 80 | | | | | Cdry = Concentration calculated as dry weight (mg/kg) | 6.25 | #### **TCLP Non-Volatile** | Filter Lot #: 94 86030 Microbac SOP: TCLP ()1 Rev #: 12 Agitator Speed 30 ± 2 rpm Jug | 5.05
4,98
6.21
5:36 | |--|--| | Microbac SOP: TCP 61 Rev #: 12 Agitator Speed 30 ± 2 rpm Jug Sample # Tests Method Fluid Matrix % Pretest pH Int. Wt. (g) Vol. (mL) NA 04-150101 ME 1311 FTL W <-5 N/A N/A 100.00 100.00 D 04-1604-01 ME 1 F1-175 6 100 0.24 260 100.207.004 100.00 D 04-1602-01 ME 1 F1-175 6 100 0.24 260 100.207.004 100.00 D 04-1601-01 ME, SV | Final extract pH 9.0 5.05 4.48 6.21 5.36 | | Microbac SOP: T(1P 61 Rev #: 12 Agitator Speed 30 ± 2 rpm Jug Sample # Tests Method # Matrix % Pretest pH Int. Wt. (g) Vol. (mL) MA 04-150761 ME 1311 FT1 N <-5 N/A N/A 100.00 100.00 D 04-1604-01 ME 1 F1-175 6 100 9.24 240 100.207.004 100.00 D 04-1602-01 ME 1 F1-175 6 100 9.24 240 100.207.004 100.00 D 04-1601-01 ME, SV | Final extract pH 9.0 5.05 4.98 6.21 5136 | | Agitator Speed 30 ± 2 rpm Jug | Final extract pH 9.0 5.05 4.98 6.21 5.36 | | Sample # Tests Method Fluid Matrix % Solid Int. Wt. (g) Fluid Vol. (mL) MA | extract pH 9.0 5.05 4.98 6.21 5136 | | Sample # Tests Method Fill Math Solid Initial Final (g) Vol. (mL) MA | extract pH 9.0 5.05 4.98 6.21 5136 | | D 04-1604-01 ME D 04-1602-01 ME SV S-1404-1547-01 ME, SV C-2 04-1607-01 ME, SV, PEST, Herb. L F2-577 L T. 67 5.81 100.09 2002 N/A FRIK 1 ME, SV N/A FRIK 1 ME, SV, PEST, Herb 1311 F2-377 L L L L SPEN 1 L L SPEN 2 N/A | 5.05
4,98
6.21
5:36 | | D 04-1604-01 ME D 04-1602-01 ME D 04-1602-01 ME D 04-1602-01 ME, SV S-1404-1547-01 ME, SV S-2 04-1607-01 ME, SV, PEST, Herb. D 14-1602-01 ME, SV D 1311 F1-175 N/A N/A N/A N/A N/A 100.00 100.00 N/A FRIX 1 ME, SV, PEST, Herb 1311 F2-371 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | 4,98
6.21
5136 | | D D4-1602-01 ME -1404-1547-01 ME, SV -2-1404-1547-01 ME, SV -2-204-1607-01 ME, SV, PEST, Herb. J F2-377 J J 7.67 5.81 100.09 2002 N/A FBLK 1 ME, SV 1311 F1-175 N/A N/A N/A N/A 100.00 100.00 N/A BBLK 2 ME, SV, Pest, Herb. 1311 F2-377 J J J J J J J J J J J J J J J J J J | 4,98
6.21
5136 | | 6-1404-1547-01 ME, SV 2-2 04-1607-01 ME, SV, PEST, Herb. I F2-377 I I 7.67 S.81 100.09 2002 N/A FBLK 1 ME, SV 1311 F1-175 N/A N/A N/A N/A 100.00 100.00 N/A BBLK 2 ME, SV, Pest, Herb 1311 F2-377 I I I I I I I SELVINOR OF THE | 6.21
5136 | | E-2 04-1607-01 ME, SV,
PEST, Herb. I F2-377 I I T.67 S.81 100.09 2002 N/A FRIK I ME, SV 1311 F1-715 N/A N/A N/A N/A 100.00 100.00 N/A BBLK 7 ME, SV, Pest, Herb 1311 F2-377 I I I I I I I I SBLW 1 SW. N/A BBLK 2 ME, SV, Pest, Herb 1311 F2-377 I I I I I I I I I I I I I I I I I I | 5,36 | | 1/A FBLK 1 ME, SV 1311 F1-N5 N/A N/A N/A N/A 100.00 100.00 1/A BBLV 7 ME, SV, Rest, Herb. 1311 F2-311 I I I I I I I I I I I I I I I I I I | | | N/A BBLK7 ME, SV, Pest, Herb 1311 F2-371 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | | | | | | | 2.91 | CRD SIZIN | The state of s | | | *Matrix Code: (S = solid, sand, soil or sludge) (P = paint) (O = organic) (W = water or aqueous waste) D = Disposable plastic jug | | | TCLP Pretest weight will be 5.0 g (± 0.1) unless otherwise noted. Temperature shall be maintained at 23° ± 2 for 18 ± 2 hours unless otherwise noted. | | | Temperature shall be maintained at 23° ± 2 for 18 ± 2 flours unless otherwise noted. | | | Comments: HIA | | | | | | | | | | | | | | | Door Boulow But | | | Peer Review By: | | Page 72 ### Microbac Laboratories Inc. Microwave Digestion Log Workgroup: WG567310 Analyst:AC Spike Analyst:AC Run Date: 05/03/2016 11:48 Method: 3015 Balance: BAL019 Instrument: MW-4 Instrument Start: 05/03/2016 11:48 SOP: ME407 Revison 19 Spike Solution: STD75837 Spike Witness: VC HNO3 Lot #: COA18838 HCL Lot #: COA18769 ICP Filters- fisher-Lot#RGT35619 40 & 50 ML. DIGESTION TUCOA18772 | | SAMPLE # | Type | Matrix | Initial Amount | Final Volume | Initial Vessel Wt | Final Vessel Wt | Spike Amount | Due Date | |----|--------------|-------|--------|----------------|--------------|-------------------|-----------------|--------------|----------| | 1 | WG567310-02 | BLANK | 1 | 40 mL | 50 mL | 206.087 g | 206.077 g | | | | 2 | WG567125-01 | FBLK1 | 17 | 5 mL | 50 mL | 204.105 g | 204.097 g | | | | 3 | WG567125-02 | FBLK2 | 17 | 5 mL | 50 mL | 204.824 g | 204.814 g | | | | 4 | WG567310-03 | LCS | 1 | 40 mL | 50 mL | 211.156 g | 211.147 g | 5 mL | | | 5 | L16041547-01 | SAMP | 17 | 5 mL | 50 mL | 204.841 g | 204.831 g | | 05/09/16 | | 6 | L16041602-01 | SAMP | 17 | 5 mL | 50 mL | 206.162 g | 206.15 g | | 05/06/16 | | 7 | L16041604-01 | SAMP | 17 | 5 mL | 50 mL | 207.862 g | 207.851 g | | 05/06/16 | | 8 | L16041607-01 | SAMP | 17 | 5 mL | 50 mL | 206.379 g | 206.357 g | | 05/10/16 | | 9 | L16041613-02 | SAMP | 1 | 40 mL | 50 mL | 203.488 g | 203.471 g | | 05/10/16 | | 10 | L16041613-04 | SAMP | 1 | 40 mL | 50 mL | 204.163 g | 204.148 g | | 05/10/16 | | 11 | L16041613-06 | SAMP | 1 | 40 mL | 50 mL | 206.058 g | 206.041 g | | 05/10/16 | | 12 | L16041613-08 | SAMP | 1 | 40 mL | 50 mL | 206.749 g | 206.74 g | | 05/10/16 | | 13 | L16041613-10 | SAMP | 1 | 40 mL | 50 mL | 206.201 g | 206.187 g | | 05/10/16 | | 14 | L16041613-12 | SAMP | 1 | 40 mL | 50 mL | 206.193 g | 206.173 g | | 05/10/16 | | 15 | L16041613-14 | SAMP | 1 | 40 mL | 50 mL | 207.515 g | 207.498 g | | 05/10/16 | | 16 | WG567310-01 | REF | 1 | 40 mL | 50 mL | 206.293 g | 206.271 g | | | | 17 | L16050013-01 | RS01 | 1 | 40 mL | 50 mL | 206.293 g | 206.271 g | | 05/13/16 | | 18 | L16050013-02 | SAMP | 1 | 40 mL | 50 mL | 207.315 g | 207.296 g | | 05/13/16 | | 19 | WG567310-04 | MS | 1 | 40 mL | 50 mL | 210.77 g | 210.753 g | 5 mL | | | 20 | L16050013-03 | MS01 | 1 | 40 mL | 50 mL | 210.77 g | 210.753 g | 5 mL | 05/13/16 | | 21 | WG567310-05 | MSD | 1 | 40 mL | 50 mL | 210.015 g | 209.991 g | 5 mL | | | 22 | L16050013-04 | SD01 | 1 | 40 mL | 50 mL | 210.015 g | 209.991 g | 5 mL | 05/13/16 | | 23 | L16050013-05 | SAMP | 1 | 40 mL | 50 mL | 207.388 g | 207.361 g | | 05/13/16 | | 24 | L16050029-01 | SAMP | 1 | 40 mL | 50 mL | 204.458 g | 204.437 g | | 05/09/16 | | 25 | L16050072-01 | SAMP | 12 | 1 mL | 50 mL | 205.885 g | 205.834 g | | 05/04/16 | | 26 | L16050072-02 | SAMP | 12 | 1 mL | 50 mL | 204.431 g | 203.555 g | | 05/04/16 | Analyst: Reviewer: MW_DIG - Modified 09/30/2009 PDF ID: 4744923 Report generated: 05/03/2016 12:41 Microbac Instrument Run Log | Instrument: | ICP-THERMO3 | Data | aset: <u>051316T3.3R.TX</u> | Т | |----------------------|-------------------|----------|-----------------------------|----------------------| | Analyst1: | JYH | Analy | /st2: N/A | | | Method: | 200.7/6010B/6010C | s | OP: <u>ME600G</u> | Rev: <u>8</u> | | Maintenance Log ID: | | | | | | Calibration Std: STE | 076065 | ICV Std: | STD76066 | Post Spike: STD75473 | | ICSA: STE | 75925 | ICSAB: | STD75702 | Int. Std: RGT35157 | | CCV: STE | 076132 | LLCCV: | STD76067 | Tuning Sol : | 568672,567345,568110,568231 Hydroxylamine: _ Comments: Stannous : Workgroups: | Seq. | File ID | Sample | ID | Prep | Dil | Reference | Date/Time | |------|------------------|--------------|----------------------------------|-------|-----|--------------|----------------| | 1 | T3.051316.151043 | WG568892-01 | Calibration Point | | 1 | | 05/13/16 15:10 | | 2 | T3.051316.151446 | WG568892-02 | Calibration Point | | 1 | | 05/13/16 15:14 | | 3 | T3.051316.151850 | WG568892-03 | Calibration Point | | 1 | | 05/13/16 15:18 | | 4 | T3.051316.152255 | WG568892-04 | Calibration Point | | 1 | | 05/13/16 15:22 | | 5 | T3.051316.152638 | WG568892-05 | Calibration Point | | 1 | | 05/13/16 15:26 | | 6 | T3.051316.153021 | WG568892-06 | Initial Calibration Verification | | 1 | | 05/13/16 15:30 | | 7 | T3.051316.153404 | WG568892-07 | Initial Calib Blank | | 1 | | 05/13/16 15:34 | | 8 | T3.051316.153808 | WG568892-08 | Low Level Initial Calibration V | | 1 | | 05/13/16 15:38 | | 9 | T3.051316.154211 | WG568892-09 | Low Level Initial Calibration V | | 1 | | 05/13/16 15:42 | | 10 | T3.051316.154612 | WG568892-10 | Interference Check | | 1 | | 05/13/16 15:46 | | 11 | T3.051316.155010 | WG568892-11 | Interference Check | | 1 | | 05/13/16 15:50 | | 12 | T3.051316.155400 | WG568892-12 | CCV | | 1 | | 05/13/16 15:54 | | 13 | T3.051316.155743 | WG568892-13 | ССВ | | 1 | | 05/13/16 15:57 | | 14 | T3.051316.160432 | WG568333-02 | Method/Prep Blank | 40/50 | 1 | | 05/13/16 16:04 | | 15 | T3.051316.160835 | WG568333-03 | Laboratory Control S | 40/50 | 1 | | 05/13/16 16:08 | | 16 | T3.051316.161223 | WG568186-01 | Fluid Blank 1 | | 1 | | 05/13/16 16:12 | | 17 | T3.051316.161626 | WG568186-02 | Fluid Blank 2 | | 1 | | 05/13/16 16:16 | | 18 | T3.051316.162029 | WG568333-01 | Reference Sample | | 1 | L16050434-05 | 05/13/16 16:20 | | 19 | T3.051316.162430 | WG568333-04 | Matrix Spike | 40/50 | 1 | L16050434-05 | 05/13/16 16:24 | | 20 | T3.051316.162818 | WG568333-05 | Matrix Spike Duplica | 40/50 | 1 | L16050434-05 | 05/13/16 16:28 | | 21 | T3.051316.163207 | L16050565-03 | 27-6-13 RW1 (T) | 40/50 | 1 | | 05/13/16 16:32 | | 22 | T3.051316.163608 | WG568672-03 | Post Digestion Spike | | 1 | L16050565-03 | 05/13/16 16:36 | | 23 | T3.051316.163955 | WG568672-04 | Serial Dilution | | 5 | L16050565-03 | 05/13/16 16:39 | | 24 | T3.051316.164358 | WG568892-14 | CCV | | 1 | | 05/13/16 16:43 | | 25 | T3.051316.164740 | WG568892-15 | ССВ | | 1 | | 05/13/16 16:47 | | 26 | T3.051316.165146 | L16050427-05 | K6E0168-05 | 5/50 | 5 | | 05/13/16 16:51 | | 27 | T3.051316.165556 | L16050427-05 | K6E0168-05 | | 10 | | 05/13/16 16:55 | | 28 | T3.051316.165959 | L16050427-01 | K6E0168-01 | 5/50 | 1 | | 05/13/16 16:59 | | 29 | T3.051316.170400 | L16050427-02 | K6E0168-02 | 5/50 | 1 | | 05/13/16 17:04 | | 30 | T3.051316.170810 | L16050427-03 | K6E0168-03 | 5/50 | 1 | | 05/13/16 17:08 | | 31 | T3.051316.171212 | L16050427-04 | K6E0168-04 | 5/50 | 1 | | 05/13/16 17:12 | | 32 | T3.051316.171611 | L16050477-02 | LH18/24-SP650-6359-GRAB | 40/50 | 1 | | 05/13/16 17:16 | | 33 | T3.051316.172011 | WG568892-16 | CCV | | 1 | | 05/13/16 17:20 | | 34 | T3.051316.172353 | WG568892-17 | ССВ | | 1 | | 05/13/16 17:23 | Page: 1 Approved: May 16, 2016 Hym H. Rhoder Instrument Run Log | Instrument: | ICP-THERMO3 | Dataset: | 051316T3.3R.TXT | | |---------------------|-------------------|-----------|-----------------|---------------| | Analyst1: | JYH | Analyst2: | N/A | | | Method: | 200.7/6010B/6010C | SOP: | ME600G | Rev: <u>8</u> | | Maintenance Log ID: | | | | | Stannous : _____ Hydroxylamine : _____ Workgroups: <u>568672,567345,568110,568231</u> Comments: | Seq. | File ID | Sample | ID | Prep | Dil | Reference | Date/Time | |------|------------------|--------------|------------------------------|-------|-----|--------------|----------------| | 35 | T3.051316.172800 | WG568892-18 | Low Level Continuing Calibra | | 1 | | 05/13/16 17:28 | | 36 | T3.051316.173203 | WG568892-19 | Low Level Continuing Calibra | | 1 | | 05/13/16 17:32 | | 37 | T3.051316.173603 | WG567310-02 | Method/Prep Blank | 40/50 | 1 | | 05/13/16 17:36 | | 38 | T3.051316.174006 | WG567310-03 | Laboratory Control S | 40/50 | 1 | | 05/13/16 17:40 | | 39 | T3.051316.174353 | WG567310-01 | Reference Sample | | 1 | L16050013-01 | 05/13/16 17:43 | | 40 | T3.051316.174753 | L16050013-02 | 35AWW13FD-042916 | 40/50 | 1 | | 05/13/16 17:47 | | 41 | T3.051316.175153 | WG567310-04 | Matrix Spike | 40/50 | 1 | L16050013-01 | 05/13/16 17:51 | | 42 | T3.051316.175540 | WG567310-05 | Matrix Spike Duplica | 40/50 | 1 | L16050013-01 | 05/13/16 17:55 | | 43 | T3.051316.175926 | L16050013-05 | LHAAP02 EQUIPMENT RINS | 40/50 | 1 | | 05/13/16 17:59 | | 44 | T3.051316.180330 | WG567345-03 | Post Digestion Spike | | 1 | L16050013-05 | 05/13/16 18:03 | | 45 | T3.051316.180718 | WG567345-04 | Serial Dilution | | 5 | L16050013-05 | 05/13/16 18:07 | | 46 | T3.051316.181121 | WG567345-04 | Serial Dilution | | 25 | L16050013-05 | 05/13/16 18:11 | | 47 | T3.051316.181526 | WG568892-20 | CCV | | 1 | | 05/13/16 18:15 | | 48 | T3.051316.181909 | WG568892-21 | ССВ | | 1 | | 05/13/16 18:19 | | 49 | T3.051316.182316 | WG568892-22 | Low Level Continuing Calibra | | 1 | | 05/13/16 18:23 | | 50 | T3.051316.182718 | WG567819-02 | Method/Prep Blank | 40/50 | 1 | | 05/13/16 18:27 | | 51 | T3.051316.183121 | WG567819-03 | Laboratory
Control S | 40/50 | 1 | | 05/13/16 18:31 | | 52 | T3.051316.183508 | WG567819-01 | Reference Sample | | 1 | L16050154-01 | 05/13/16 18:35 | | 53 | T3.051316.183909 | WG567819-04 | Matrix Spike | 40/50 | 1 | L16050154-01 | 05/13/16 18:39 | | 54 | T3.051316.184256 | WG567819-05 | Matrix Spike Duplica | 40/50 | 1 | L16050154-01 | 05/13/16 18:42 | | 55 | T3.051316.184642 | WG568110-03 | Post Digestion Spike | | 1 | L16050154-01 | 05/13/16 18:46 | | 56 | T3.051316.185029 | WG568110-04 | Serial Dilution | | 5 | L16050154-01 | 05/13/16 18:50 | | 57 | T3.051316.185434 | WG568892-23 | CCV | | 1 | | 05/13/16 18:54 | | 58 | T3.051316.185816 | WG568892-24 | CCB | | 1 | | 05/13/16 18:58 | | 59 | T3.051316.190221 | WG568184-02 | Method/Prep Blank | 40/50 | 1 | | 05/13/16 19:02 | | 60 | T3.051316.190625 | WG568184-03 | Laboratory Control S | 40/50 | 1 | | 05/13/16 19:06 | | 61 | T3.051316.191013 | WG568088-01 | Fluid Blank 1 | | 1 | | 05/13/16 19:10 | | 62 | T3.051316.191416 | WG568184-01 | Reference Sample | | 1 | L16050410-02 | 05/13/16 19:14 | | 63 | T3.051316.191816 | WG568184-04 | Matrix Spike | 5/50 | 1 | L16050410-02 | 05/13/16 19:18 | | 64 | T3.051316.192201 | WG568184-05 | Matrix Spike Duplica | 5/50 | 1 | L16050410-02 | 05/13/16 19:22 | | 65 | T3.051316.192546 | L16050121-01 | T1360 | 40/50 | 1 | | 05/13/16 19:25 | | 66 | T3.051316.192947 | L16050121-02 | T1362 | 40/50 | 1 | | 05/13/16 19:29 | | 67 | T3.051316.193348 | L16050121-03 | T1363 | 40/50 | 1 | | 05/13/16 19:33 | | 68 | T3.051316.193758 | WG568892-25 | CCV | | 1 | | 05/13/16 19:37 | Page: 2 Approved: May 16, 2016 Instrument Run Log | | ICP-THERMO3 | | aset: <u>051316T3.3R.</u> | TXT | |----------------------|----------------|-------------------|---------------------------|----------------------| | Analyst1: | JYH | Analy | /st2: <u>N/A</u> | | | Method: | 200.7/6010B/60 | 10C S | OP: <u>ME600G</u> | Rev: <u>8</u> | | Maintenance Log ID: | | | | | | Calibration Std: STI | 076065 | ICV Std: | STD76066 | Post Spike: STD75473 | | ICSA: STI | 075925 | ICSAB: | STD75702 | Int. Std: RGT35157 | | CCV: STI | 076132 | LLCCV: | STD76067 | Tuning Sol : | | Stannous : | | Hydroxylamine: | | _ | | | | | | | | | Workgroups: | 568672,567345,568 | 110,568231 | | | Comments: | | | | | | Seq. | File ID | Sample | ID | Prep | Dil | Reference | Date/Time | |------|------------------|--------------|----------------------|-------|-----|--------------|----------------| | 69 | T3.051316.194139 | WG568892-26 | ССВ | | 1 | | 05/13/16 19:41 | | 70 | T3.051316.194544 | L16050229-01 | B208 TANK 1 | 5/50 | 2 | | 05/13/16 19:45 | | 71 | T3.051316.194946 | +0.5 PPM AG | +0.5 PPM AG | | 2 | | 05/13/16 19:49 | | 72 | T3.051316.195347 | +1 PPM AG | +1 PPM AG | | 2 | | 05/13/16 19:53 | | 73 | T3.051316.195748 | +1.5 PPM AG | +1.5 PPM AG | | 2 | | 05/13/16 19:57 | | 74 | T3.051316.200149 | L16050121-04 | T1365 | 40/50 | 1 | | 05/13/16 20:01 | | 75 | T3.051316.200554 | WG568231-01 | Post Digestion Spike | | 1 | L16050121-04 | 05/13/16 20:05 | | 76 | T3.051316.200940 | WG568231-02 | Serial Dilution | | 5 | L16050121-04 | 05/13/16 20:09 | | 77 | T3.051316.201347 | WG568892-27 | CCV | | 1 | | 05/13/16 20:13 | | 78 | T3.051316.201729 | WG568892-28 | ССВ | | 1 | | 05/13/16 20:17 | ### Comments | Seq. | Rerun | Dil. | Reason | Analytes | | | | |------|----------|-----------|-------------------------|----------|--|--|--| | 70 | | | | | | | | | | Seq. 70- | 73: wrong | g dilution factors. JYH | | | | | Page: 3 Approved: May 16, 2016 Instrument Run Log | Instrument: | ICP-THERMO3 | Datas | et: <u>051616T3.1R</u> | .TXT | |----------------------|-------------------|----------|------------------------|----------------------| | Analyst1: | JYH | Analys | t2: N/A | | | Method: | 200.7/6010B/6010C | SC | P: <u>ME600G</u> | Rev: <u>8</u> | | Maintenance Log ID: | | | | | | Calibration Std: STE | 76065 | ICV Std: | STD76066 | Post Spike: STD75473 | | ICSA: STE | 75925 | ICSAB: | STD75702 | Int. Std: RGT35157 | | CCV: STE | 76132 | LLCCV: | STD76067 | Tuning Sol : | Workgroups: 568672,567345,568830,568394,568955,568110,569026 Hydroxylamine: __ Comments: Stannous : | Seq. | File ID | Sample | ID | Prep | Dil | Reference | Date/Time | |------|------------------|--------------|----------------------------------|-------|-----|--------------|----------------| | 1 | T3.051616.094341 | WG568963-01 | Calibration Point | | 1 | | 05/16/16 09:43 | | 2 | T3.051616.094742 | WG568963-02 | Calibration Point | | 1 | | 05/16/16 09:47 | | 3 | T3.051616.095142 | WG568963-03 | Calibration Point | | 1 | | 05/16/16 09:51 | | 4 | T3.051616.095541 | WG568963-04 | Calibration Point | | 1 | | 05/16/16 09:55 | | 5 | T3.051616.095920 | WG568963-05 | Calibration Point | | 1 | | 05/16/16 09:59 | | 6 | T3.051616.100259 | WG568963-06 | Initial Calibration Verification | | 1 | | 05/16/16 10:02 | | 7 | T3.051616.100626 | WG568963-07 | Initial Calib Blank | | 1 | | 05/16/16 10:06 | | 8 | T3.051616.101025 | WG568963-08 | Low Level Initial Calibration V | | 1 | | 05/16/16 10:10 | | 9 | T3.051616.101423 | WG568963-09 | Low Level Initial Calibration V | | 1 | | 05/16/16 10:14 | | 10 | T3.051616.101822 | WG568963-10 | Interference Check | | 1 | | 05/16/16 10:18 | | 11 | T3.051616.102217 | WG568963-11 | Interference Check | | 1 | | 05/16/16 10:22 | | 12 | T3.051616.102603 | WG568963-12 | CCV | | 1 | | 05/16/16 10:26 | | 13 | T3.051616.102941 | WG568963-13 | CCB | | 1 | | 05/16/16 10:29 | | 14 | T3.051616.103342 | WG568333-02 | Method/Prep Blank | 40/50 | 1 | | 05/16/16 10:33 | | 15 | T3.051616.103743 | WG568333-03 | Laboratory Control S | 40/50 | 1 | | 05/16/16 10:37 | | 16 | T3.051616.104617 | WG568186-01 | Fluid Blank 1 | | 1 | | 05/16/16 10:46 | | 17 | T3.051616.105016 | WG568186-02 | Fluid Blank 2 | | 1 | | 05/16/16 10:50 | | 18 | T3.051616.105415 | WG568333-01 | Reference Sample | | 1 | L16050434-05 | 05/16/16 10:54 | | 19 | T3.051616.105813 | WG568333-04 | Matrix Spike | 40/50 | 1 | L16050434-05 | 05/16/16 10:58 | | 20 | T3.051616.110155 | WG568333-05 | Matrix Spike Duplica | 40/50 | 1 | L16050434-05 | 05/16/16 11:01 | | 21 | T3.051616.110544 | L15060565-03 | L1506056503 | 40/50 | 1 | | 05/16/16 11:05 | | 22 | T3.051616.110942 | WG568672-03 | Post Digestion Spike | | 1 | L16050565-03 | 05/16/16 11:09 | | 23 | T3.051616.111325 | WG568672-04 | Serial Dilution | | 5 | L16050565-03 | 05/16/16 11:13 | | 24 | T3.051616.111724 | WG568963-14 | CCV | | 1 | | 05/16/16 11:17 | | 25 | T3.051616.112102 | WG568963-15 | CCB | | 1 | | 05/16/16 11:21 | | 26 | T3.051616.112502 | L16050427-05 | K6E0168-05 | 5/50 | 5 | | 05/16/16 11:25 | | 27 | T3.051616.112909 | L16050427-01 | K6E0168-01 | 5/50 | 1 | | 05/16/16 11:29 | | 28 | T3.051616.113307 | L16050427-02 | K6E0168-02 | 5/50 | 1 | | 05/16/16 11:33 | | 29 | T3.051616.113714 | L16050427-03 | K6E0168-03 | 5/50 | 1 | | 05/16/16 11:37 | | 30 | T3.051616.114111 | L16050427-04 | K6E0168-04 | 5/50 | 1 | | 05/16/16 11:41 | | 31 | T3.051616.114507 | WG568963-16 | CCV | | 1 | | 05/16/16 11:45 | | 32 | T3.051616.114845 | WG568963-17 | CCB | | 1 | | 05/16/16 11:48 | | 33 | T3.051616.115246 | WG568963-18 | Low Level Continuing Calibra | | 1 | | 05/16/16 11:52 | | 34 | T3.051616.115644 | WG568963-19 | Low Level Continuing Calibra | | 1 | | 05/16/16 11:56 | Page: 1 Approved: May 16, 2016 May 16, 2016 Hym 71. Rhoder Instrument Run Log | Analyst1: | JYH
200.7/6010B/6010C | _ Analyst2: | 051616T3.1R.TXT
N/A
ME600G |

Rev: 8 | |---|--------------------------|-------------|----------------------------------|----------------------| | Maintenance Log ID: Calibration Std: STD | | | | Post Spike: STD75473 | | ICSA: STD75925 | ICSAB: STD75702 | Int. Std: RGT35157 | | CCV: STD76132 | LLCCV: STD76067 | Tuning Sol : | Stannous : _____ Hydroxylamine : _____ Workgroups: 568672,567345,568830,568394,568955,568110,569026 Comments: | Seq. | File ID | Sample | ID | Prep | Dil | Reference | Date/Time | |------|------------------|--------------|------------------------------|-------|-----|--------------|----------------| | 35 | T3.051616.120042 | WG567310-02 | Method/Prep Blank | 40/50 | 1 | | 05/16/16 12:00 | | 36 | T3.051616.120443 | WG567310-03 | Laboratory Control S | 40/50 | 1 | | 05/16/16 12:04 | | 37 | T3.051616.120826 | WG567310-01 | Reference Sample | | 10 | L16050013-01 | 05/16/16 12:08 | | 38 | T3.051616.121225 | L16050013-02 | 35AWW13FD-042916 | 40/50 | 10 | | 05/16/16 12:12 | | 39 | T3.051616.121623 | WG567310-04 | Matrix Spike | 40/50 | 10 | L16050013-01 | 05/16/16 12:16 | | 40 | T3.051616.122020 | WG567310-05 | Matrix Spike Duplica | 40/50 | 10 | L16050013-01 | 05/16/16 12:20 | | 41 | T3.051616.122418 | L16050013-05 | LHAAP02 EQUIPMENT RINS | 40/50 | 1 | | 05/16/16 12:24 | | 42 | T3.051616.122817 | WG567345-03 | Post Digestion Spike | | 1 | L16050013-05 | 05/16/16 12:28 | | 43 | T3.051616.123159 | WG567345-04 | Serial Dilution | | 5 | L16050013-05 | 05/16/16 12:31 | | 44 | T3.051616.123559 | WG568963-20 | CCV | | 1 | | 05/16/16 12:35 | | 45 | T3.051616.123938 | WG568963-21 | ССВ | | 1 | | 05/16/16 12:39 | | 46 | T3.051616.124337 | WG568963-22 | Low Level Continuing Calibra | | 1 | | 05/16/16 12:43 | | 47 | T3.051616.124736 | WG568531-02 | Method/Prep Blank | 40/50 | 1 | | 05/16/16 12:47 | | 48 | T3.051616.125136 | WG568531-03 | Laboratory Control S | 40/50 | 1 | | 05/16/16 12:51 | | 49 | T3.051616.125521 | WG568371-01 | Fluid Blank 1 | | 1 | | 05/16/16 12:55 | | 50 | T3.051616.125920 | WG568531-01 | Reference Sample | | 1 | L16050579-01 | 05/16/16 12:59 | | 51 | T3.051616.130318 | WG568531-04 | Matrix Spike | 5/50 | 1 | L16050579-01 | 05/16/16 13:03 | | 52 | T3.051616.130701 | WG568531-05 | Matrix Spike Duplica | 5/50 | 1 | L16050579-01 | 05/16/16 13:07 | | 53 | T3.051616.131044 | WG568830-01 | Post Digestion Spike | | 1 | L16050579-01 | 05/16/16 13:10 | | 54 | T3.051616.131426 | WG568830-02 | Serial Dilution | | 5 | L16050579-01 | 05/16/16 13:14 | | 55 | T3.051616.131826 |
WG568963-23 | CCV | | 1 | | 05/16/16 13:18 | | 56 | T3.051616.132205 | WG568963-24 | ССВ | | 1 | | 05/16/16 13:22 | | 57 | T3.051616.132606 | L16050512-01 | AB10166 | 5/50 | 1 | | 05/16/16 13:26 | | 58 | T3.051616.133005 | L16050564-01 | 59-8-12.02 W1 | 40/50 | 1 | | 05/16/16 13:30 | | 59 | T3.051616.133403 | L16050567-01 | 2204-120 RW1 | 40/50 | 1 | | 05/16/16 13:34 | | 60 | T3.051616.133758 | L16050567-02 | 2204-120 RW1 | 40/50 | 1 | | 05/16/16 13:37 | | 61 | T3.051616.134153 | L16050586-01 | LF6-7SW10 | 40/50 | 1 | | 05/16/16 13:41 | | 62 | T3.051616.134549 | L16050586-02 | LF6-7SW10 | 40/50 | 1 | | 05/16/16 13:45 | | 63 | T3.051616.134946 | L16050589-02 | PERMEATE | 40/50 | 1 | | 05/16/16 13:49 | | 64 | T3.051616.135345 | L16050589-04 | BLEED | 40/50 | 1 | | 05/16/16 13:53 | | 65 | T3.051616.135741 | L16050589-06 | N. DOCK FLUME | 40/50 | 1 | | 05/16/16 13:57 | | 66 | T3.051616.140141 | L16050611-03 | W16 | 40/50 | 1 | | 05/16/16 14:01 | | 67 | T3.051616.140539 | WG568963-25 | CCV | | 1 | | 05/16/16 14:05 | | 68 | T3.051616.140917 | WG568963-26 | CCB | | 1 | | 05/16/16 14:09 | Page: 2 Approved: May 16, 2016 May 16, 2016 Fym 71. Rhoder Instrument Run Log | instrument. | ICP-THERIVIOS | _ Data | isei. <u>USTOTOTS.TR.TAT</u> | | | |----------------------|-------------------|----------|------------------------------|-------------|--------------| | Analyst1: | JYH | Analy | rst2: N/A | | | | Method: | 200.7/6010B/6010C | _ s | OP: ME600G | Re | ev: <u>8</u> | | Maintenance Log ID: | | _ | | | | | Calibration Std: STD | 76065 | ICV Std: | STD76066 | Post Spike: | STD75473 | | ICSA: STE | 75925 | ICSAB: | STD75702 | Int. Std: | RGT35157 | | CCV: STD | 076132 | LLCCV: | STD76067 | Tuning Sol: | | Hydroxylamine: _ Comments: [Stannous : _____ | 5 | Seq. | File ID | Sample | ID | Prep | Dil | Reference | Date/Time | |---|------|------------------|--------------|-----|-------|-----|-----------|----------------| | | 69 | T3.051616.141316 | L16050611-05 | W6 | 40/50 | 1 | | 05/16/16 14:13 | | | 70 | T3.051616.141713 | L16050611-06 | W6B | 40/50 | 1 | | 05/16/16 14:17 | | | 71 | T3.051616.142110 | L16050611-07 | W51 | 40/50 | 1 | | 05/16/16 14:21 | | | 72 | T3.051616.142646 | L16050611-09 | W7A | 40/50 | 1 | | 05/16/16 14:26 | Workgroups: 568672,567345,568830,568394,568955,568110,569026 | 69 | T3.051616.141316 | L16050611-05 | W6 | 40/50 | 1 | | 05/16/16 14:13 | |-----|------------------|--------------|----------------------|-------|----|--------------|----------------| | 70 | T3.051616.141713 | L16050611-06 | W6B | 40/50 | 1 | | 05/16/16 14:17 | | 71 | T3.051616.142110 | L16050611-07 | W51 | 40/50 | 1 | | 05/16/16 14:21 | | 72 | T3.051616.142646 | L16050611-09 | W7A | 40/50 | 1 | | 05/16/16 14:26 | | 73 | T3.051616.143047 | L16050611-11 | W7B | 40/50 | 1 | | 05/16/16 14:30 | | 74 | T3.051616.143432 | L16050611-13 | W5 | 40/50 | 1 | | 05/16/16 14:34 | | 75 | T3.051616.143828 | L16050611-15 | W17 | | 1 | | 05/16/16 14:38 | | 76 | T3.051616.144624 | L16050611-15 | W17 | 40/50 | 1 | | 05/16/16 14:46 | | 77 | T3.051616.145021 | L16050611-17 | W27 | 40/50 | 1 | | 05/16/16 14:50 | | 78 | T3.051616.145417 | WG568963-27 | CCV | | 1 | | 05/16/16 14:54 | | 79 | T3.051616.145756 | WG568963-28 | ССВ | | 1 | | 05/16/16 14:57 | | 80 | T3.051616.150155 | WG568346-02 | Method/Prep Blank | 40/50 | 1 | | 05/16/16 15:01 | | 81 | T3.051616.150555 | WG568346-03 | Laboratory Control S | 40/50 | 1 | | 05/16/16 15:05 | | 82 | T3.051616.150939 | WG568346-01 | Reference Sample | | 1 | L16050507-13 | 05/16/16 15:09 | | 83 | T3.051616.151334 | WG568346-04 | Matrix Spike | 40/50 | 1 | L16050507-13 | 05/16/16 15:13 | | 84 | T3.051616.151718 | WG568346-05 | Matrix Spike Duplica | 40/50 | 1 | L16050507-13 | 05/16/16 15:17 | | 85 | T3.051616.152100 | L16050446-01 | 6-10-8 S1 | 40/50 | 1 | | 05/16/16 15:21 | | 86 | T3.051616.152457 | L16050446-02 | 6-10-8 S2 | 40/50 | 1 | | 05/16/16 15:24 | | 87 | T3.051616.152853 | WG568394-03 | Post Digestion Spike | | 1 | L16050446-02 | 05/16/16 15:28 | | 88 | T3.051616.153236 | WG568394-04 | Serial Dilution | | 5 | L16050446-02 | 05/16/16 15:32 | | 89 | T3.051616.153635 | WG568394-04 | Serial Dilution | | 25 | L16050446-02 | 05/16/16 15:36 | | 90 | T3.051616.154034 | WG568963-29 | CCV | | 1 | | 05/16/16 15:40 | | 91 | T3.051616.154413 | WG568963-30 | ССВ | | 1 | | 05/16/16 15:44 | | 92 | T3.051616.154812 | L16050450-01 | 27-6-9 RS1 (T) | 40/50 | 1 | | 05/16/16 15:48 | | 93 | T3.051616.155209 | L16050450-02 | 27-6-9 RS1 (T) | 40/50 | 1 | | 05/16/16 15:52 | | 94 | T3.051616.155605 | L16050450-03 | 27-6-9 RW2 (T) | 40/50 | 1 | | 05/16/16 15:56 | | 95 | T3.051616.160004 | L16050450-04 | 27-6-9 RW2 (T) | 40/50 | 1 | | 05/16/16 16:00 | | 96 | T3.051616.160402 | L16050450-05 | 27-6-9 RS1 (U) | 40/50 | 1 | | 05/16/16 16:04 | | 97 | T3.051616.160758 | L16050450-06 | 27-6-9 RW2 (U) | 40/50 | 1 | | 05/16/16 16:07 | | 98 | T3.051616.161155 | L16050450-07 | 27-6-9 RW1 (U) | 40/50 | 1 | | 05/16/16 16:11 | | 99 | T3.051616.161551 | L16050450-08 | 27-6-9 RS2 (U) | 40/50 | 1 | | 05/16/16 16:15 | | 100 | T3.051616.161947 | L16050507-02 | W37WT | 40/50 | 1 | | 05/16/16 16:19 | | 101 | T3.051616.162343 | L16050507-03 | W1AR | 40/50 | 1 | | 05/16/16 16:23 | | 102 | T3.051616.162740 | WG568963-31 | CCV | | 1 | | 05/16/16 16:27 | Page: 3 Approved: May 16, 2016 Hym H. Rhoder Instrument Run Log | Instrument: | ICP-THERMO3 | _ Data | set: <u>05161613.1R.TXT</u> | | | |----------------------|-------------------|----------|-----------------------------|----------------------|--| | Analyst1: | JYH | Analy | vst2: N/A | | | | Method: | 200.7/6010B/6010C | _ s | OP: <u>ME600G</u> | Rev: <u>8</u> | | | Maintenance Log ID: | | _ | | | | | Calibration Std: STD | 76065 | ICV Std: | STD76066 | Post Spike: STD75473 | | | ICSA: STE | 75925 | ICSAB: | STD75702 | Int. Std: RGT35157 | | | CCV: STE | 076132 | H CCV. | STD76067 | Tuning Sol: | | Workgroups: 568672,567345,568830,568394,568955,568110,569026 Hydroxylamine: Comments: Stannous : _ | Seq. | File ID | Sample | ID | Prep | Dil | Reference | Date/Time | |------|------------------|--------------|-------------------------|-------|-----|--------------|----------------| | 103 | T3.051616.163117 | WG568963-32 | ССВ | | 1 | | 05/16/16 16:31 | | 104 | T3.051616.163517 | L16050507-04 | W50 | 40/50 | 1 | | 05/16/16 16:35 | | 105 | T3.051616.163913 | L16050507-05 | W18 | 40/50 | 1 | | 05/16/16 16:39 | | 106 | T3.051616.164310 | L16050507-07 | W31WB | 40/50 | 1 | | 05/16/16 16:43 | | 107 | T3.051616.164706 | L16050507-09 | W29 | 40/50 | 1 | | 05/16/16 16:47 | | 108 | T3.051616.165104 | L16050507-11 | W30WTR | 40/50 | 1 | | 05/16/16 16:51 | | 109 | T3.051616.165459 | WG568963-33 | CCV | | 1 | | 05/16/16 16:54 | | 110 | T3.051616.165837 | WG568963-34 | ССВ | | 1 | | 05/16/16 16:58 | | 111 | T3.051616.170237 | WG568687-02 | Method/Prep Blank | 40/50 | 1 | | 05/16/16 17:02 | | 112 | T3.051616.170637 | WG568687-03 | Laboratory Control S | 40/50 | 1 | | 05/16/16 17:06 | | 113 | T3.051616.171008 | WG568558-01 | Fluid Blank 1 | | 1 | | 05/16/16 17:10 | | 114 | T3.051616.171408 | WG568558-02 | Fluid Blank 2 | | 1 | | 05/16/16 17:14 | | 115 | T3.051616.171808 | WG568687-01 | Reference Sample | | 1 | L16050674-07 | 05/16/16 17:18 | | 116 | T3.051616.172230 | WG568687-04 | Matrix Spike | 40/50 | 1 | L16050674-07 | 05/16/16 17:22 | | 117 | T3.051616.172643 | WG568687-05 | Matrix Spike Duplica | 40/50 | 1 | L16050674-07 | 05/16/16 17:26 | | 118 | T3.051616.173057 | L16050674-10 | SW01-051116 | 40/50 | 1 | | 05/16/16 17:30 | | 119 | T3.051616.173453 | WG568955-01 | Post Digestion Spike | | 1 | L16050674-10 | 05/16/16 17:34 | | 120 | T3.051616.173834 | WG568955-02 | Serial Dilution | | 5 | L16050674-10 | 05/16/16 17:38 | | 121 | T3.051616.174231 | WG568963-35 | CCV | | 1 | | 05/16/16 17:42 | | 122 | T3.051616.174610 | WG568963-36 | ССВ | | 1 | | 05/16/16 17:46 | | 123 | T3.051616.175009 | L16050459-01 | FRN SALTCAKE | 5/50 | 1 | | 05/16/16 17:50 | | 124 | T3.051616.175414 | L16050459-02 | FRN FURNACE BAGHOUSE | 5/50 | 1 | | 05/16/16 17:54 | | 125 | T3.051616.175810 | L16050459-03 | FRN MILL FINES (SCREW 1 | 5/50 | 1 | | 05/16/16 17:58 | | 126 | T3.051616.180206 | L16050459-04 | FRN MILL FINES (SCREW 8 | 5/50 | 1 | | 05/16/16 18:02 | | 127 | T3.051616.180601 | L16050571-02 | 50WW22FF-051016 | 40/50 | 1 | | 05/16/16 18:06 | | 128 | T3.051616.180958 | L16050571-04 | 50WW11FF-051016 | 40/50 | 1 | | 05/16/16 18:09 | | 129 | T3.051616.181354 | L16050571-06 | 50WW06FF-051016 | 40/50 | 1 | | 05/16/16 18:13 | | 130 | T3.051616.181751 | L16050571-08 | 50WW12FF-051016 | 40/50 | 1 | | 05/16/16 18:17 | | 131 | T3.051616.182146 | L16050571-10 | 50WW24FF-051016 | 40/50 | 1 | | 05/16/16 18:21 | | 132 | T3.051616.182543 | L16050571-12 | 50WW23FF-051016 | 40/50 | 1 | | 05/16/16 18:25 | | 133 | T3.051616.182939 | WG568963-37 | CCV | | 1 | | 05/16/16 18:29 | | 134 | T3.051616.183317 | WG568963-38 | ССВ | | 1 | | 05/16/16 18:33 | | 135 | T3.051616.183717 | L16050624-01 | GH46_JACOBS_03-03-012 | 40/50 | 1 | | 05/16/16 18:37 | | 136 | T3.051616.184113 | L16050674-01 | MW31-GW-051016 | 40/50 | 1 | | 05/16/16 18:41 | Page: 4 Approved: May 16, 2016 Instrument Run Log | | ICP-THERMO3 | _ | set: <u>051616T3.1R.TXT</u> | | |-----------------------|-------------------|----------|-----------------------------|----------------------| | Analyst1: | JIH | _ Anaiy | vst2: N/A | | | Method: | 200.7/6010B/6010C | _ S | OP: <u>ME600G</u> | Rev: <u>8</u> | | Maintenance Log ID: | | _ | | | | Calibration Std: STE | 076065 | ICV Std: | STD76066 | Post Spike: STD75473 | | ICSA: <u>STD75925</u> | | ICSAB: | STD75702 | Int. Std: RGT35157 | | CCV: STE | 076132 | LLCCV: | STD76067 | Tuning Sol : | Hydroxylamine: _ Workgroups: 568672,567345,568830,568394,568955,568110,569026 Comments: Stannous : | Seq. | File ID | Sample | ID | Prep | Dil | Reference | Date/Time | |------|------------------|--------------|------------------------------|-------|-----|--------------
----------------| | 137 | T3.051616.184510 | L16050674-03 | TCF-EB01-051116 | 40/50 | 1 | | 05/16/16 18:45 | | 138 | T3.051616.184910 | L16050674-04 | MW32-GW-051116 | 40/50 | 1 | | 05/16/16 18:49 | | 139 | T3.051616.185306 | L16050674-05 | MW26-GW-051116 | | 1 | | 05/16/16 18:53 | | 140 | T3.051616.185725 | L16050674-06 | BW02-GW-051116 | 40/50 | 1 | | 05/16/16 18:57 | | 141 | T3.051616.190123 | WG568963-39 | CCV | | 1 | | 05/16/16 19:01 | | 142 | T3.051616.190501 | WG568963-40 | ССВ | | 1 | | 05/16/16 19:05 | | 143 | T3.051616.190901 | WG567819-02 | Method/Prep Blank | 40/50 | 1 | | 05/16/16 19:09 | | 144 | T3.051616.191300 | WG567819-03 | Laboratory Control S | 40/50 | 1 | | 05/16/16 19:13 | | 145 | T3.051616.191644 | L16050154-01 | POND OUTFALL | | 1 | WG567819-01 | 05/16/16 19:16 | | 146 | T3.051616.192042 | L16050154-02 | POND OUTFALL MS | 40/50 | 1 | WG567819-04 | 05/16/16 19:20 | | 147 | T3.051616.192425 | L16050154-03 | POND OUTFALL MSD | 40/50 | 1 | WG567819-05 | 05/16/16 19:24 | | 148 | T3.051616.192807 | L16050224-01 | 30500-F01-WQ-W0010 | 40/50 | 1 | | 05/16/16 19:28 | | 149 | T3.051616.193208 | WG568110-01 | Post Digestion Spike | | 1 | L16050224-01 | 05/16/16 19:32 | | 150 | T3.051616.193551 | WG568110-02 | Serial Dilution | | 5 | L16050224-01 | 05/16/16 19:35 | | 151 | T3.051616.193950 | WG568963-41 | CCV | | 1 | | 05/16/16 19:39 | | 152 | T3.051616.194329 | WG568963-42 | ССВ | | 1 | | 05/16/16 19:43 | | 153 | T3.051616.194729 | WG568963-43 | Low Level Continuing Calibra | | 1 | | 05/16/16 19:47 | | 154 | T3.051616.195128 | WG568963-44 | Low Level Continuing Calibra | | 1 | | 05/16/16 19:51 | | 155 | T3.051616.195527 | WG568874-02 | Method/Prep Blank | 40/50 | 1 | | 05/16/16 19:55 | | 156 | T3.051616.195926 | WG568874-03 | Laboratory Control S | 40/50 | 1 | | 05/16/16 19:59 | | 157 | T3.051616.200310 | WG568782-01 | Fluid Blank 1 | | 1 | | 05/16/16 20:03 | | 158 | T3.051616.200710 | WG568782-02 | Fluid Blank 2 | | 1 | | 05/16/16 20:07 | | 159 | T3.051616.201110 | WG568874-01 | Reference Sample | | 1 | L16050764-02 | 05/16/16 20:11 | | 160 | T3.051616.201507 | WG568874-04 | Matrix Spike | 5/50 | 1 | L16050764-02 | 05/16/16 20:15 | | 161 | T3.051616.201850 | WG568874-05 | Matrix Spike Duplica | 5/50 | 1 | L16050764-02 | 05/16/16 20:18 | | 162 | T3.051616.202230 | L16050627-01 | GH46_BURNS_03-03-0122 | 40/50 | 1 | | 05/16/16 20:22 | | 163 | T3.051616.202628 | WG569026-01 | Post Digestion Spike | | 1 | L16050627-01 | 05/16/16 20:26 | | 164 | T3.051616.203011 | WG569026-02 | Serial Dilution | | 5 | L16050627-01 | 05/16/16 20:30 | | 165 | T3.051616.203400 | WG568963-45 | CCV | | 1 | | 05/16/16 20:34 | | 166 | T3.051616.203738 | WG568963-46 | ССВ | | 1 | | 05/16/16 20:37 | | 167 | T3.051616.204138 | L16050658-02 | W22 | 40/50 | 1 | | 05/16/16 20:41 | | 168 | T3.051616.204535 | L16050658-04 | W14 | 40/50 | 1 | | 05/16/16 20:45 | | 169 | T3.051616.204932 | L16050658-06 | W13 | 40/50 | 1 | | 05/16/16 20:49 | | 170 | T3.051616.205328 | L16050658-07 | W30B | 40/50 | 1 | | 05/16/16 20:53 | Page: 5 Approved: May 16, 2016 Hym H. Rhoder Instrument Run Log | Instrument: ICP-THERMO3 | | | Datas | set: <u>051616T3.1R.TXT</u> | | | | |-------------------------|---------------|----------------|----------|-----------------------------|------------|-------------|--------------| | Analys | Analyst1: JYH | | Analyst2 | | st2: N/A | | | | Meth | od: | 200.7/6010B/60 | 10C | SC | DP: ME600G | R | ev: <u>8</u> | | Maintenance Log | ID: | | | | | | | | Calibration Std: | STD | 76065 | | ICV Std: | STD76066 | Post Spike: | STD75473 | | ICSA: | STD | 75925 | | ICSAB: | STD75702 | Int. Std: | RGT35157 | | CCV: | STD | 76132 | | LLCCV: | STD76067 | Tuning Sol | : | | Stannous: | | | Hydroxy | /lamine : | | | | | | | | | | | | | Workgroups: 568672,567345,568830,568394,568955,568110,569026 Comments: | Seq. | File ID | Sample | ID | Prep | Dil | Reference | Date/Time | |------|------------------|--------------|-----------------------|-------|-----|-----------|----------------| | | | | | | DII | Reference | | | 171 | T3.051616.205733 | L16050658-08 | W52 | 40/50 | 1 | | 05/16/16 20:57 | | 172 | T3.051616.210137 | L16050658-10 | W24 | 40/50 | 1 | | 05/16/16 21:01 | | 173 | T3.051616.210542 | L16050658-12 | W35WB | 40/50 | 1 | | 05/16/16 21:05 | | 174 | T3.051616.210940 | L16050658-14 | W10R1 | 40/50 | 1 | | 05/16/16 21:09 | | 175 | T3.051616.211342 | L16050759-01 | 30300-B01-WQ-W0002 | 40/50 | 1 | | 05/16/16 21:13 | | 176 | T3.051616.211742 | L16050764-01 | FLUME RESIDUE \#2 | 5/50 | 1 | | 05/16/16 21:17 | | 177 | T3.051616.212138 | WG568963-47 | CCV | | 1 | | 05/16/16 21:21 | | 178 | T3.051616.212515 | WG568963-48 | ССВ | | 1 | | 05/16/16 21:25 | | 179 | T3.051616.212915 | L16050764-03 | LIQ FLUME RESIDUE \#2 | 5/50 | 1 | | 05/16/16 21:29 | | 180 | T3.051616.213314 | L16050764-04 | LIQ FLUME RESIDUE \#1 | 5/50 | 1 | | 05/16/16 21:33 | | 181 | T3.051616.213715 | L16050765-01 | MW23-GW-051216 | 40/50 | 1 | | 05/16/16 21:37 | | 182 | T3.051616.214134 | L16050765-02 | MW28-GW-051216 | 40/50 | 1 | | 05/16/16 21:41 | | 183 | T3.051616.214547 | L16050765-03 | MW28-GW-051216D | 40/50 | 1 | | 05/16/16 21:45 | | 184 | T3.051616.215005 | L16050765-04 | MW35-GW-051216 | | 1 | | 05/16/16 21:50 | | 185 | T3.051616.215425 | WG568963-49 | CCV | | 1 | | 05/16/16 21:54 | | 186 | T3.051616.215803 | WG568963-50 | ССВ | | 1 | | 05/16/16 21:58 | | 187 | T3.051616.220203 | WG568963-51 | Interference Check | | 1 | | 05/16/16 22:02 | | 188 | T3.051616.220559 | WG568963-52 | Interference Check | | 1 | | 05/16/16 22:05 | | 189 | T3.051616.220943 | WG568963-53 | CCV | | 1 | | 05/16/16 22:09 | | 190 | T3.051616.221321 | WG568963-54 | ССВ | | 1 | | 05/16/16 22:13 | ### Comments | Seq. | Rerun | Dil. | Reason | Analytes | | | | | | |------|--|------|--------|----------|--|--|--|--|--| | 21 | 21 | | | | | | | | | | | Seq. 21- 23: Wrong sample label. JYH | | | | | | | | | | 49 | | | | | | | | | | | | Wrong QA label. JYH | | | | | | | | | | 148 | 8 | | | | | | | | | | | Seq. 148-150: wrong sample labels. JYH | | | | | | | | | Page: 6 Approved: May 16, 2016 Instrument Run Log | Instrument: | ICP-THERMO3 | Datase | et: 051716T3.2R.TXT | - | | |----------------------|-------------------|----------|---------------------|-------------|--------------| | Analyst1: | JYH | Analyst | 2: <u>N/A</u> | | | | Method: | 200.7/6010B/6010C | SO | P: ME600G | R | ev: <u>8</u> | | Maintenance Log ID: | | _ | | | | | Calibration Std: STD | 76065 | ICV Std: | STD76066 | Post Spike: | STD75473 | | ICSA: STE | 75925 | ICSAB: § | STD75702 | Int. Std: | RGT35157 | CCV: <u>STD76132</u> LLCCV: <u>STD76067</u> Tuning Sol: ______ Stannous: _____ Hydroxylamine: _____ Trydroxylamine : Workgroups: 567345,568955,569026,569089,569189,569225,569228,569222 Comments: | Seq. | File ID | Sample | ID | Prep | Dil | Reference | Date/Time | |------|------------------|----------------|----------------------------------|-------|-----|--------------|----------------| | 1 | T3.051716.095430 | WG569211-01 | Calibration Point | | 1 | | 05/17/16 09:54 | | 2 | T3.051716.095835 | WG569211-02 | Calibration Point | | 1 | | 05/17/16 09:58 | | 3 | T3.051716.100241 | WG569211-03 | Calibration Point | | 1 | | 05/17/16 10:02 | | 4 | T3.051716.100649 | WG569211-04 | Calibration Point | | 1 | | 05/17/16 10:06 | | 5 | T3.051716.101023 | WG569211-05 | Calibration Point | | 1 | | 05/17/16 10:10 | | 6 | T3.051716.101408 | WG569211-06 | Initial Calibration Verification | | 1 | | 05/17/16 10:14 | | 7 | T3.051716.101754 | WG569211-07 | Initial Calib Blank | | 1 | | 05/17/16 10:17 | | 8 | T3.051716.102200 | WG569211-08 | LLICV | | 1 | | 05/17/16 10:22 | | 9 | T3.051716.103037 | WG569211-09 | Low Level Initial Calibration V | | 1 | | 05/17/16 10:30 | | 10 | T3.051716.103442 | WG569211-10 | Interference Check | | 1 | | 05/17/16 10:34 | | 11 | T3.051716.103844 | WG569211-11 | Interference Check | | 1 | | 05/17/16 10:38 | | 12 | T3.051716.104236 | WG569211-12 | CCV | | 1 | | 05/17/16 10:42 | | 13 | T3.051716.104621 | WG569211-13 | ССВ | | 1 | | 05/17/16 10:46 | | 14 | T3.051716.105029 | WG567310-02 | Method/Prep Blank | 40/50 | 1 | | 05/17/16 10:50 | | 15 | T3.051716.105435 | WG567310-03 | Laboratory Control S | 40/50 | 1 | | 05/17/16 10:54 | | 16 | T3.051716.105823 | WG567310-01 | Reference Sample | | 10 | L16050013-01 | 05/17/16 10:58 | | 17 | T3.051716.110228 | L16050013-02 | 35AWW13FD-042916 | 40/50 | 10 | | 05/17/16 11:02 | | 18 | T3.051716.110632 | L160500130-3S | L1605001303S | 40/50 | 10 | | 05/17/16 11:06 | | 19 | T3.051716.111036 | L1605001304-SD | L1605001304SD | 40/50 | 10 | | 05/17/16 11:10 | | 20 | T3.051716.111439 | L16050013-05 | LHAAP02 EQUIPMENT RINS | 40/50 | 1 | | 05/17/16 11:14 | | 21 | T3.051716.111845 | L16041607-01 | XX9045 | 5/50 | 1 | | 05/17/16 11:18 | | 22 | T3.051716.112249 | WG567345-01 | Post Digestion Spike | | 1 | L16041607-01 | 05/17/16 11:22 | | 23 | T3.051716.112639 | WG567345-02 | Serial Dilution | | 5 | L16041607-01 | 05/17/16 11:26 | | 24 | T3.051716.113044 | WG569211-14 | CCV | | 1 | | 05/17/16 11:30 | | 25 | T3.051716.113428 | WG569211-15 | CCB | | 1 | | 05/17/16 11:34 | | 26 | T3.051716.113835 | WG569211-16 | Low Level Continuing Calibra | | 1 | | 05/17/16 11:38 | | 27 | T3.051716.114241 | L16050459-01 | FRN SALTCAKE | 5/50 | 100 | | 05/17/16 11:42 | | 28 | T3.051716.114647 | L16050459-02 | FRN FURNACE BAGHOUSE | 5/50 | 100 | | 05/17/16 11:46 | | 29 | T3.051716.115052 | L16050459-03 | FRN MILL FINES (SCREW 1 | 5/50 | 100 | | 05/17/16 11:50 | | 30 | T3.051716.115457 | L16050459-04 | FRN MILL FINES (SCREW 8 | 5/50 | 100 | | 05/17/16 11:54 | | 31 | T3.051716.115903 | L16050674-05 | MW26-GW-051116 | 40/50 | 100 | | 05/17/16 11:59 | | 32 | T3.051716.120306 | WG568687-01 | Reference Sample | | 100 | L16050674-07 | 05/17/16 12:03 | | 33 | T3.051716.120709 | WG568687-04 | Matrix Spike | 40/50 | 100 | L16050674-07 | 05/17/16 12:07 | | 34 | T3.051716.121113 |
WG568687-05 | Matrix Spike Duplica | 40/50 | 100 | L16050674-07 | 05/17/16 12:11 | | | | 1 | 1 | | | | | Page: 1 Approved: May 19, 2016 Instrument Run Log | Instrument: | ICP-THERMO3 | _ Data | set: 05171613.2R.TXT | | |----------------------|-------------------|----------|----------------------|----------------------| | Analyst1: | JYH | _ Analy | vst2: N/A | | | Method: | 200.7/6010B/6010C | _ s | OP: <u>ME600G</u> | Rev: <u>8</u> | | Maintenance Log ID: | | _ | | | | Calibration Std: STD | 076065 | ICV Std: | STD76066 | Post Spike: STD75473 | | ICSA: STE | 75925 | ICSAB: | STD75702 | Int. Std: RGT35157 | | CCV: STE | 76132 | LLCCV: | STD76067 | Tuning Sol: | Hydroxylamine: Workgroups: <u>567345,568955,569026,569089,569189,569225,569228,569222</u> Comments: | Seq. | File ID | Sample | ID | Prep | Dil | Reference | Date/Time | |------|------------------|--------------|-----------------------|-------|-----|--------------|----------------| | 35 | T3.051716.121516 | WG568955-03 | Post Digestion Spike | | 100 | L16050674-05 | 05/17/16 12:15 | | 36 | T3.051716.121905 | WG568955-04 | Serial Dilution | | 500 | L16050674-05 | 05/17/16 12:19 | | 37 | T3.051716.122310 | WG569211-17 | CCV | | 1 | | 05/17/16 12:23 | | 38 | T3.051716.122655 | WG569211-18 | ССВ | | 1 | | 05/17/16 12:26 | | 39 | T3.051716.123103 | WG569211-19 | Interference Check | | 1 | | 05/17/16 12:31 | | 40 | T3.051716.123505 | WG569211-20 | Interference Check | | 1 | | 05/17/16 12:35 | | 41 | T3.051716.123857 | WG569211-21 | CCV | | 1 | | 05/17/16 12:38 | | 42 | T3.051716.124243 | WG569211-22 | ССВ | | 1 | | 05/17/16 12:42 | | 43 | T3.051716.124651 | L16050764-01 | FLUME RESIDUE \#2 | 5/50 | 1 | | 05/17/16 12:46 | | 44 | T3.051716.125053 | L16050764-03 | LIQ FLUME RESIDUE \#2 | 5/50 | 1 | | 05/17/16 12:50 | | 45 | T3.051716.125458 | L16050764-04 | LIQ FLUME RESIDUE \#1 | 5/50 | 1 | | 05/17/16 12:54 | | 46 | T3.051716.125903 | L16050765-04 | MW35-GW-051216 | 40/50 | 100 | | 05/17/16 12:59 | | 47 | T3.051716.130308 | WG569211-23 | CCV | | 1 | | 05/17/16 13:03 | | 48 | T3.051716.130652 | WG569211-24 | ССВ | | 1 | | 05/17/16 13:06 | | 49 | T3.051716.131101 | WG569211-25 | ICSA | | 1 | | 05/17/16 13:11 | | 50 | T3.051716.131451 | WG569211-26 | ICSAB | | 1 | | 05/17/16 13:14 | | 51 | T3.051716.132020 | WG569211-27 | Interference Check | | 1 | | 05/17/16 13:20 | | 52 | T3.051716.132422 | WG569211-28 | Interference Check | | 1 | | 05/17/16 13:24 | | 53 | T3.051716.132814 | WG569211-29 | CCV | | 1 | | 05/17/16 13:28 | | 54 | T3.051716.133159 | WG569211-30 | ССВ | | 1 | | 05/17/16 13:31 | | 55 | T3.051716.135336 | WG568346-02 | Method/Prep Blank | | 1 | | 05/17/16 13:53 | | 56 | T3.051716.135741 | WG568346-03 | Laboratory Control S | | 1 | | 05/17/16 13:57 | | 57 | T3.051716.140131 | WG568346-01 | Reference Sample | | 1 | L16050507-13 | 05/17/16 14:01 | | 58 | T3.051716.140533 | WG568346-04 | Matrix Spike | | 1 | L16050507-13 | 05/17/16 14:05 | | 59 | T3.051716.140923 | WG568346-05 | Matrix Spike Duplica | | 1 | L16050507-13 | 05/17/16 14:09 | | 60 | T3.051716.141310 | L16050507-02 | W37WT | | 1 | | 05/17/16 14:13 | | 61 | T3.051716.141713 | L16050507-03 | W1AR | | 1 | | 05/17/16 14:17 | | 62 | T3.051716.142115 | L16050507-04 | W50 | | 1 | | 05/17/16 14:21 | | 63 | T3.051716.142516 | WG568394-05 | Post Digestion Spike | | 1 | L16050507-04 | 05/17/16 14:25 | | 64 | T3.051716.142904 | WG568394-06 | Serial Dilution | | 5 | L16050507-04 | 05/17/16 14:29 | | 65 | T3.051716.143311 | WG569211-31 | CCV | | 1 | | 05/17/16 14:33 | | 66 | T3.051716.143655 | WG569211-32 | ССВ | | 1 | | 05/17/16 14:36 | | 67 | T3.051716.144104 | L16050507-05 | W18 | | 1 | _ | 05/17/16 14:41 | | 68 | T3.051716.144506 | L16050507-07 | W31WB | | 1 | | 05/17/16 14:45 | Page: 2 Approved: May 19, 2016 Instrument Run Log | Instrument: | ICP-THERMO3 | Dataset | : <u>051716T3.2R.TXT</u> | | | |----------------------|-------------------|------------|--------------------------|-------------|--------------| | Analyst1: | JYH | Analyst2 | : <u>N/A</u> | | | | Method: | 200.7/6010B/6010C | SOP | : <u>ME600G</u> | Re | ev: <u>8</u> | | Maintenance Log ID: | - | | | | | | Calibration Std: STD | 76065 | ICV Std: S | TD76066 | Post Spike: | STD75473 | | ICSA: STD | 75925 | ICSAB: S | TD75702 | Int. Std: | RGT35157 | Hydroxylamine: _ Workgroups: 567345,568955,569026,569089,569189,569225,569228,569222 LLCCV: STD76067 Tuning Sol : Comments: CCV: <u>STD76132</u> Stannous : _____ | Seq. | File ID | Sample | ID | Prep | Dil | Reference | Date/Time | |------|------------------|--------------|----------------------|-------|-----|--------------|----------------| | 69 | T3.051716.144908 | L16050507-09 | W29 | | 1 | | 05/17/16 14:49 | | 70 | T3.051716.145310 | L16050507-11 | W30WTR | | 1 | | 05/17/16 14:53 | | 71 | T3.051716.145712 | WG569211-33 | CCV | | 1 | | 05/17/16 14:57 | | 72 | T3.051716.150056 | WG569211-34 | ССВ | | 1 | | 05/17/16 15:00 | | 73 | T3.051716.150504 | WG568673-01 | Method/Prep Blank | 1/50 | 1 | | 05/17/16 15:05 | | 74 | T3.051716.150908 | WG568673-02 | Laboratory Control S | 1/50 | 1 | | 05/17/16 15:09 | | 75 | T3.051716.151310 | WG568673-03 | Laboratory Control S | 1/50 | 1 | | 05/17/16 15:13 | | 76 | T3.051716.151713 | L16050644-41 | 17029-WP01-WP013 | 1/50 | 1 | | 05/17/16 15:17 | | 77 | T3.051716.152115 | L16050644-42 | 17029-WP01-WP014 | 1/50 | 1 | | 05/17/16 15:21 | | 78 | T3.051716.152518 | L16050644-43 | 17029-WP01-WP015 | 1/50 | 1 | | 05/17/16 15:25 | | 79 | T3.051716.152924 | L16050644-44 | 17029-WP01-WP016 | 1/50 | 1 | | 05/17/16 15:29 | | 80 | T3.051716.153328 | L16050644-45 | 17029-WP01-WP017 | 1/50 | 1 | | 05/17/16 15:33 | | 81 | T3.051716.153733 | L16050644-46 | 17029-WP01-WP018 | 1/50 | 1 | | 05/17/16 15:37 | | 82 | T3.051716.154136 | WG569089-01 | Post Digestion Spike | | 1 | L16050644-46 | 05/17/16 15:41 | | 83 | T3.051716.154530 | WG569211-35 | CCV | | 1 | | 05/17/16 15:45 | | 84 | T3.051716.154914 | WG569211-36 | ССВ | | 1 | | 05/17/16 15:49 | | 85 | T3.051716.155322 | WG569089-02 | Serial Dilution | | 5 | L16050644-46 | 05/17/16 15:53 | | 86 | T3.051716.155730 | WG569211-37 | CCV | | 1 | | 05/17/16 15:57 | | 87 | T3.051716.160114 | WG569211-38 | ССВ | | 1 | | 05/17/16 16:01 | | 88 | T3.051716.160521 | WG569080-02 | Method/Prep Blank | 40/50 | 1 | | 05/17/16 16:05 | | 89 | T3.051716.160926 | WG569080-03 | Laboratory Control S | 40/50 | 1 | | 05/17/16 16:09 | | 90 | T3.051716.161316 | WG569080-01 | Reference Sample | | 1 | L16050834-04 | 05/17/16 16:13 | | 91 | T3.051716.161719 | WG569080-04 | Matrix Spike | 40/50 | 1 | L16050834-04 | 05/17/16 16:17 | | 92 | T3.051716.162106 | WG569080-05 | Matrix Spike Duplica | 40/50 | 1 | L16050834-04 | 05/17/16 16:21 | | 93 | T3.051716.162455 | L16050903-01 | 22-12-0158-S3 | 40/50 | 1 | | 05/17/16 16:24 | | 94 | T3.051716.162859 | L16050903-02 | 22-12-0158-S4 | 40/50 | 1 | | 05/17/16 16:28 | | 95 | T3.051716.163301 | WG569189-01 | Post Digestion Spike | | 1 | L16050903-02 | 05/17/16 16:33 | | 96 | T3.051716.163650 | WG569189-02 | Serial Dilution | | 5 | L16050903-02 | 05/17/16 16:36 | | 97 | T3.051716.164055 | WG569189-02 | Serial Dilution | | 25 | L16050903-02 | 05/17/16 16:40 | | 98 | T3.051716.164503 | WG569211-39 | CCV | | 1 | | 05/17/16 16:45 | | 99 | T3.051716.164848 | WG569211-40 | ССВ | | 1 | | 05/17/16 16:48 | | 100 | T3.051716.165256 | L16050829-01 | 59-11-13.03 S1 | 40/50 | 1 | | 05/17/16 16:52 | | 101 | T3.051716.165659 | L16050829-02 | 59-11-13.03 S1 | 40/50 | 1 | | 05/17/16 16:56 | | 102 | T3.051716.170101 | L16050829-03 | 59-11-13.03 W1 | 40/50 | 1 | | 05/17/16 17:01 | Page: 3 Approved: May 19, 2016 Instrument Run Log | Instrument: | ICP-THERMO3 | _ Dataset: | 051716T3.2R.TXT | | |----------------------|-------------------|-------------|-----------------|----------------------| | Analyst1: | JYH | _ Analyst2: | N/A | | | Method: | 200.7/6010B/6010C | SOP: | ME600G | Rev: <u>8</u> | | Maintenance Log ID: | | _ | | | | Calibration Std: STD | 76065 | ICV Std: ST | D76066 | Post Spike: STD75473 | Workgroups: Comments: | • | | | | | | | | |---|---------|--------|----|------|-----|-----------|-----------| | | | | | | | | | | | File ID | Sample | ID | Prep | Dil | Reference | Date/Time | 567345,568955,569026,569089,569189,569225,569228,569222 | Seq. | File ID | Sample | ID | Prep | Dil | Reference | Date/Time | |------|------------------|--------------|----------------------|-------|-----|--------------|----------------| | 103 | T3.051716.170504 | L16050831-01 | 2211-129A RW2 (TB) | 40/50 | 1 | | 05/17/16 17:05 | | 104 | T3.051716.170909 | L16050831-02 | 2211-129A RW2 (TK) | 40/50 | 1 | | 05/17/16 17:09 | | 105 | T3.051716.171312 | L16050831-03 | 2211-129A RW2 (U) | 40/50 | 1 | | 05/17/16 17:13 | | 106 | T3.051716.171713 | L16050834-01 | 15-12-23 S6 | 40/50 | 1 | | 05/17/16 17:17 | | 107 | T3.051716.172116 | L16050834-02 | 15-12-23 S10 | 40/50 | 1 | | 05/17/16 17:21 | | 108 | T3.051716.172519 | L16050834-03 | 15-12-23 S9 | 40/50 | 1 | | 05/17/16 17:25 | | 109 | T3.051716.172922 | L16050845-01 | 340021029000 P-1 | 40/50 | 1 | | 05/17/16 17:29 | | 110 | T3.051716.173325 | WG569211-41 | CCV | | 1 | | 05/17/16 17:33 | | 111 | T3.051716.173709 | WG569211-42 | ССВ | | 1 | | 05/17/16 17:37 | | 112 | T3.051716.174116 | L16050846-01 | 340021084001 DS-1 | 40/50 | 1 | | 05/17/16 17:41 | | 113 | T3.051716.174518 | L16050846-02 | 340021084001 W-1 | 40/50 | 1 | | 05/17/16 17:45 | | 114 | T3.051716.174922 | L16050848-01 | 280140070000 W-1 | 40/50 | 1 | | 05/17/16 17:49 | | 115 | T3.051716.175323 | L16050848-02 | 280140070000 DS-1 | 40/50 | 1 | | 05/17/16 17:53 | | 116 | T3.051716.175726 | L16050848-03 | 280140070000 DS-2 | 40/50 | 1 | | 05/17/16 17:57 | | 117 | T3.051716.180128 | L16050855-01 | TP-WL01-051616 | 40/50 | 1 | | 05/17/16 18:01 | | 118 | T3.051716.180531 | WG569211-43 | CCV | | 1 | | 05/17/16 18:05 | | 119 | T3.051716.180915 | WG569211-44 | ССВ | | 1 | | 05/17/16 18:09 | | 120 | T3.051716.181321 | WG568666-01 | Method/Prep Blank |
1/50 | 1 | | 05/17/16 18:13 | | 121 | T3.051716.181726 | WG568666-02 | Laboratory Control S | 1/50 | 1 | | 05/17/16 18:17 | | 122 | T3.051716.182129 | WG568666-03 | Laboratory Control S | 1/50 | 1 | | 05/17/16 18:21 | | 123 | T3.051716.182531 | L16050644-01 | 15000-WP01-WP001 | 1/50 | 1 | | 05/17/16 18:25 | | 124 | T3.051716.182926 | L16050644-02 | 15000-WP01-WP002 | 1/50 | 1 | | 05/17/16 18:29 | | 125 | T3.051716.183323 | L16050644-03 | 15000-WP01-WP003 | 1/50 | 1 | | 05/17/16 18:33 | | 126 | T3.051716.183724 | L16050644-04 | 15000-WP01-WP004 | 1/50 | 1 | | 05/17/16 18:37 | | 127 | T3.051716.184120 | L16050644-05 | 15000-WP01-WP005 | 1/50 | 1 | | 05/17/16 18:41 | | 128 | T3.051716.184521 | WG569225-01 | Post Digestion Spike | | 1 | L16050644-05 | 05/17/16 18:45 | | 129 | T3.051716.184909 | WG569225-02 | Serial Dilution | | 5 | | 05/17/16 18:49 | | 130 | T3.051716.185311 | WG569211-45 | CCV | | 1 | | 05/17/16 18:53 | | 131 | T3.051716.185656 | WG569211-46 | ССВ | | 1 | | 05/17/16 18:56 | | 132 | T3.051716.190103 | L16050644-06 | 15000-WP01-WP006 | 1/50 | 1 | | 05/17/16 19:01 | | 133 | T3.051716.190500 | L16050644-07 | 15000-WP01-WP007 | 1/50 | 1 | | 05/17/16 19:05 | | 134 | T3.051716.190903 | L16050644-08 | 15000-WP01-WP008 | 1/50 | 1 | | 05/17/16 19:09 | | 135 | T3.051716.191305 | L16050644-09 | 15000-WP01-WP009 | 1/50 | 1 | | 05/17/16 19:13 | | 136 | T3.051716.191707 | L16050644-10 | 15000-WP01-WP010 | 1/50 | 1 | | 05/17/16 19:17 | Page: 4 Approved: May 19, 2016 Instrument Run Log | Instrument: | ICP-THERMO3 | Dataset: | 051716T3.2R.TXT | | |---------------------|-------------------|-----------|-----------------|---------------| | Analyst1: | JYH | Analyst2: | N/A | | | Method: | 200.7/6010B/6010C | SOP: | ME600G | Rev: <u>8</u> | | Maintenance Log ID: | | | | | | | | | | | Comments: Workgroups: 567345,568955,569026,569089,569189,569225,569228,569222 | Seq. | File ID | Sample | ID | Prep | Dil | Reference | Date/Time | |------|------------------|--------------|----------------------|------------------------|-----|----------------|----------------| | 137 | T3.051716.192109 | L16050644-11 | 15000-WP01-WP011 | 1/50 | 1 | | 05/17/16 19:21 | | 138 | T3.051716.192510 | L16050644-12 | 15000-WP01-WP012 | 5000-WP01-WP012 1/50 1 | | 05/17/16 19:25 | | | 139 | T3.051716.192912 | L16050644-13 | 15000-WP01-WP013 | 1/50 | 1 | | 05/17/16 19:29 | | 140 | T3.051716.193316 | L16050644-14 | 15000-WP01-WP014 | 1/50 | 1 | | 05/17/16 19:33 | | 141 | T3.051716.193717 | L16050644-15 | 16474-WP01-WP001 | 1/50 | 1 | | 05/17/16 19:37 | | 142 | T3.051716.194121 | WG569211-47 | CCV | | 1 | | 05/17/16 19:41 | | 143 | T3.051716.194506 | WG569211-48 | ССВ | | 1 | | 05/17/16 19:45 | | 144 | T3.051716.194913 | L16050644-16 | 16474-WP01-WP002 | 1/50 | 1 | | 05/17/16 19:49 | | 145 | T3.051716.195313 | L16050644-17 | 16474-WP01-WP003 | 1/50 | 1 | | 05/17/16 19:53 | | 146 | T3.051716.195712 | L16050644-18 | 16474-WP01-WP004 | 1/50 | 1 | | 05/17/16 19:57 | | 147 | T3.051716.200114 | L16050644-19 | 16474-WP01-WP005 | 1/50 | 1 | | 05/17/16 20:01 | | 148 | T3.051716.200518 | L16050644-20 | 16474-WP01-WP006 | 1/50 | 1 | | 05/17/16 20:05 | | 149 | T3.051716.200914 | WG569211-49 | CCV | | 1 | | 05/17/16 20:09 | | 150 | T3.051716.201258 | WG569211-50 | ССВ | | 1 | | 05/17/16 20:12 | | 151 | T3.051716.201705 | WG568671-01 | Method/Prep Blank | 1/50 | 1 | | 05/17/16 20:17 | | 152 | T3.051716.202109 | WG568671-02 | Laboratory Control S | 1/50 | 1 | | 05/17/16 20:21 | | 153 | T3.051716.202510 | WG568671-03 | Laboratory Control S | 1/50 | 1 | | 05/17/16 20:25 | | 154 | T3.051716.202912 | L16050644-21 | 16474-WP01-WP007 | 1/50 | 1 | | 05/17/16 20:29 | | 155 | T3.051716.203316 | L16050644-22 | 16474-WP01-WP008 | 1/50 | 1 | | 05/17/16 20:33 | | 156 | T3.051716.203719 | L16050644-23 | 16474-WP01-WP009 | 1/50 | 1 | | 05/17/16 20:37 | | 157 | T3.051716.204120 | L16050644-24 | 16474-WP01-WP010 | 1/50 | 1 | | 05/17/16 20:41 | | 158 | T3.051716.204524 | L16050644-25 | 16474-WP01-WP011 | 1/50 | 1 | | 05/17/16 20:45 | | 159 | T3.051716.204925 | WG569228-01 | Post Digestion Spike | | 1 | L16050644-25 | 05/17/16 20:49 | | 160 | T3.051716.205313 | WG569228-02 | Serial Dilution | | 1 | L16050644-25 | 05/17/16 20:53 | | 161 | T3.051716.205718 | WG569211-51 | CCV | | 1 | | 05/17/16 20:57 | | 162 | T3.051716.210103 | WG569211-52 | ССВ | | 1 | | 05/17/16 21:01 | | 163 | T3.051716.210510 | L16050644-26 | 16474-WP01-WP012 | 1/50 | 1 | | 05/17/16 21:05 | | 164 | T3.051716.210912 | L16050644-27 | 16474-WP01-WP013 | 1/50 | 1 | | 05/17/16 21:09 | | 165 | T3.051716.211314 | L16050644-28 | 16474-WP01-WP014 | 1/50 | 1 | | 05/17/16 21:13 | | 166 | T3.051716.211717 | L16050644-29 | 17029-WP01-WP001 | 1/50 | 1 | | 05/17/16 21:17 | | 167 | T3.051716.212114 | L16050644-30 | 17029-WP01-WP002 | 1/50 | 1 | | 05/17/16 21:21 | | 168 | T3.051716.212510 | L16050644-31 | 17029-WP01-WP003 | 1/50 | 1 | | 05/17/16 21:25 | | 169 | T3.051716.212913 | L16050644-32 | 17029-WP01-WP004 | 1/50 | 1 | | 05/17/16 21:29 | | 170 | T3.051716.213310 | L16050644-33 | 17029-WP01-WP005 | 1/50 | 1 | | 05/17/16 21:33 | Page: 5 Approved: May 19, 2016 Instrument Run Log | Instrument: | ICP-THERMO3 | Datase | t: <u>051716T3.2R.TXT</u> | | |----------------------|-------------------|------------|---------------------------|----------------------| | Analyst1: | JYH | _ Analyst2 | 2: <u>N/A</u> | | | Method: | 200.7/6010B/6010C | SOF | P: ME600G | Rev: <u>8</u> | | Maintenance Log ID: | | _ | | | | Calibration Std: STD | 76065 | ICV Std: S | TD76066 | Post Spike: STD75473 | | ICSA: STE | 75925 | ICSAB: S | TD75702 | Int. Std: RGT35157 | LLCCV: STD76067 567345,568955,569026,569089,569189,569225,569228,569222 Tuning Sol : _ Hydroxylamine: Comments: CCV: STD76132 Workgroups: Stannous: | Seq. | File ID | Sample | ID | Prep | Dil | Reference | Date/Time | |------|------------------|--------------|----------------------|-------|-----|--------------|----------------| | 171 | T3.051716.213708 | L16050644-34 | 17029-WP01-WP006 | 1/50 | 1 | | 05/17/16 21:37 | | 172 | T3.051716.214108 | L16050644-35 | 17029-WP01-WP007 | 1/50 | 1 | | 05/17/16 21:41 | | 173 | T3.051716.214511 | WG569211-53 | CCV | | 1 | | 05/17/16 21:45 | | 174 | T3.051716.214856 | WG569211-54 | ССВ | | 1 | | 05/17/16 21:48 | | 175 | T3.051716.215303 | L16050644-36 | 17029-WP01-WP008 | 1/50 | 1 | | 05/17/16 21:53 | | 176 | T3.051716.215707 | L16050644-37 | 17029-WP01-WP009 | 1/50 | 1 | | 05/17/16 21:57 | | 177 | T3.051716.220111 | L16050644-38 | 17029-WP01-WP010 | 1/50 | 1 | | 05/17/16 22:01 | | 178 | T3.051716.220514 | L16050644-39 | 17029-WP01-WP011 | 1/50 | 1 | | 05/17/16 22:05 | | 179 | T3.051716.220917 | L16050644-40 | 17029-WP01-WP012 | 1/50 | 1 | | 05/17/16 22:09 | | 180 | T3.051716.221322 | WG569211-55 | CCV | | 1 | | 05/17/16 22:13 | | 181 | T3.051716.221706 | WG569211-56 | ССВ | | 1 | | 05/17/16 22:17 | | 182 | T3.051716.222113 | WG569135-02 | Method/Prep Blank | 40/50 | 1 | | 05/17/16 22:21 | | 183 | T3.051716.222519 | WG569135-03 | Laboratory Control S | 40/50 | 1 | | 05/17/16 22:25 | | 184 | T3.051716.222909 | WG569135-01 | Reference Sample | | 1 | L16050807-04 | 05/17/16 22:29 | | 185 | T3.051716.223311 | WG569135-04 | Matrix Spike | 40/50 | 1 | L16050807-04 | 05/17/16 22:33 | | 186 | T3.051716.223658 | WG569135-05 | Matrix Spike Duplica | 40/50 | 1 | L16050807-04 | 05/17/16 22:36 | | 187 | T3.051716.224045 | L16050847-01 | 280140090000 W-1 | 40/50 | 1 | | 05/17/16 22:40 | | 188 | T3.051716.224448 | WG569221-01 | Post Digestion Spike | | 1 | L16050847-01 | 05/17/16 22:44 | | 189 | T3.051716.224837 | WG569221-02 | Serial Dilution | | 5 | L16050847-01 | 05/17/16 22:48 | | 190 | T3.051716.225240 | WG569221-02 | Serial Dilution | | 25 | L16050847-01 | 05/17/16 22:52 | | 191 | T3.051716.225647 | WG569211-57 | CCV | | 1 | | 05/17/16 22:56 | | 192 | T3.051716.230031 | WG569211-58 | ССВ | | 1 | | 05/17/16 23:00 | | 193 | T3.051716.230437 | L16050807-02 | W43WTR | 40/50 | 1 | | 05/17/16 23:04 | | 194 | T3.051716.230840 | L16050807-03 | W23 | 40/50 | 1 | | 05/17/16 23:08 | W32B W46WB W32WB 1805-132 W2 1805-132 W2 59-11-11.22 W1 59-11-11.11 W1 6-10-22 W1 CCV ССВ L16050807-07 L16050807-08 L16050807-10 L16050830-01 L16050830-02 L16050832-01 L16050832-02 L16050832-03 WG569211-59 WG569211-60 Page: 6 Approved: May 19, 2016 40/50 40/50 40/50 40/50 40/50 40/50 40/50 40/50 1 1 1 1 1 1 1 1 1 Him H. Rhoder 05/17/16 23:12 05/17/16 23:16 05/17/16 23:20 05/17/16 23:24 05/17/16 23:28 05/17/16 23:32 05/17/16 23:36 05/17/16 23:40 05/17/16 23:45 05/17/16 23:48 195 196 197 198 199 200 201 202 203 204 T3.051716.231242 T3.051716.231644 T3.051716.232047 T3.051716.232449 T3.051716.232851 T3.051716.233253 T3.051716.233655 T3.051716.234057 T3.051716.234501 T3.051716.234846 Instrument Run Log | Instrument: | ICP-THERMO3 | Dataset: | 051716T3.2R.TXT | | |---------------------|-------------------|-----------|-----------------|---------------| | Analyst1: | JYH | Analyst2: | N/A | | | Method: | 200.7/6010B/6010C | SOP: | ME600G | Rev: <u>8</u> | | Maintenance Log ID: | | | | | Stannous: _____ Hydroxylamine: ____ Workgroups: <u>567345,568955,569026,569089,569189,569225,569228,569222</u> Comments: | Seq. | File ID | Sample | ID | Prep | Dil | Reference | Date/Time | |------|------------------|--------------|----------------|-------|-----|-----------|----------------| | 205 | T3.051716.235254 | L16050832-04 | 59-11-11.10 W1 | 40/50 | 1 | | 05/17/16 23:52 | | 206 | T3.051716.235656 | L16050832-05 | 59-11-11.10 W1 | 40/50 | 1 | | 05/17/16 23:56 | | 207 | T3.051816.000059 | L16050832-06 | 59-10-1.22 W1 | 40/50 | 1 | | 05/18/16 00:00 | | 208 | T3.051816.000501 | L16050833-01 | 2211-109 RW3 | 40/50 | 1 | | 05/18/16 00:05 | | 209 | T3.051816.000901 | L16050833-02 | 2211-109 RW3 | 40/50 | 1 | | 05/18/16 00:09 | | 210 | T3.051816.001304 | WG569211-61 | CCV | | 1 | | 05/18/16 00:13 | | 211 | T3.051816.001649 | WG569211-62 | ССВ | | 1 | | 05/18/16 00:16 | ### Comments | Seq. | Rerun | Dil. | Reason |
Analytes | | | |----------------------------------|-------|------|--------|----------|--|--| | 18 | | | | | | | | Seq. 18-19: wrong WG number. JYH | | | | | | | Page: 7 Approved: May 19, 2016 Checklist ID: 114500894712 # Microbac Laboratories Inc. Data Checklist Date: 13-MAY-2016 Analyst: JYH Analyst: NA Method: 6010B/6010C/200.7 Instrument: ICP-THERMO3 Curve Workgroup: 568892 Runlog ID: 75088 Analytical Workgroups: 568672,567345,568110,568231 | Add'I WGs | | |--|-----| | STD ID#s on Runlog | X | | Calibration/Linearity | X | | ICV/CCV | X | | ICV RSD < 3% (EPA 200.7 only) | X | | ICB/CCB | X | | ICSA/ICSAB | X | | CRI | | | Blank/LCS | X | | MS/MSD | X | | Post Spike/Serial Dilution | X | | Upload Results | X | | Data Qualifiers | | | Generate PDF Instrument Data | X | | Sign/Annotate PDF Data | X | | Upload Curve Data | X | | Workgroup Forms | X | | Case Narrative | X | | Client Forms | X | | Level X | | | Level 3 | 154 | | Level 4 | 013 | | Check for compliance with method and project specific requirements | X | | Check the completeness of reported information | X | | Check the information for the report narrative | X | | Primary Reviewer | JYH | | Secondary Reviewer | KHR | | | | | Comments | | | | | Primary Reviewer: Secondary Reviewer: 16-MAY-2016 J' Ye low From H. Rhoden CHECKLIST1 - Modified 03/05/2008 Generated: MAY-16-2016 13:14:08 Checklist ID: 114600894713 ### Microbac Laboratories Inc. ### Data Checklist | Date: | 17-MAY-2016 | |------------------------|---| | Analyst: | <u>JYH</u> | | Analyst: | NA | | Method: | 6010B/6010C/200.7 | | Instrument: | ICP-THERMO3 | | Curve Workgroup: | 569211 | | Runlog ID: | <u>75128</u> | | Analytical Workgroups: | 567345,568955,569026,569089,569189,569225,569228,569222 | | Add'I WGs | | |--|-------------| | STD ID#s on Runlog | X | | Calibration/Linearity | X | | ICV/CCV | X | | ICV RSD < 3% (EPA 200.7 only) | X | | ICB/CCB | X | | ICSA/ICSAB | X | | CRI | | | Blank/LCS | X | | MS/MSD | X | | Post Spike/Serial Dilution | X | | Upload Results | X | | Data Qualifiers | | | Generate PDF Instrument Data | X | | Sign/Annotate PDF Data | X | | Upload Curve Data | X | | Workgroup Forms | X | | Case Narrative | X | | Client Forms | X | | Level X | | | Level 3 | | | Level 4 | 674,765,013 | | Check for compliance with method and project specific requirements | X | | Check the completeness of reported information | X | | Check the information for the report narrative | X | | Primary Reviewer | JYH | | Secondary Reviewer | KHR | | | | | Comments | | | | | Primary Reviewer: Secondary Reviewer: 19-MAY-2016 J'ye 1hr Fim H. Rhoder CHECKLIST1 - Modified 03/05/2008 Generated: MAY-19-2016 08:05:23 ### HOLDING TIMES EQUIVALENT TO AFCEE FORM 9 Analytical Method: 6010C Login Number: L16050013 AAB#: WG567345 | | ID | Date | TCLP | Time | Max | Q | Extract | Time | Max | Q | Run | Time | Max | Q | |--------------------------|----|-----------|------|------|------|---|------------|------|------|---|----------|------|------|---| | Client ID | | Collected | Date | Held | Hold | | Date | Held | Hold | | Date | Held | Hold | | | 35AWW13-042916 | 01 | 04/29/16 | | | | | 05/03/2016 | 3.9 | 180 | | 05/13/16 | 14.1 | 180 | | | 35AWW13-042916 | 01 | 04/29/16 | | | | | 05/03/2016 | 3.9 | 180 | | 05/16/16 | 16.9 | 180 | | | 35AWW13-042916 | 01 | 04/29/16 | | | | | 5/03/2016 | 3.9 | 180 | | 05/17/16 | 17.9 | 180 | | | 35AWW13FD-042916 | 02 | 04/29/16 | | | | | 5/03/2016 | 3.9 | 180 | | 05/17/16 | 17.9 | 180 | | | 35AWW13FD-042916 | 02 | 04/29/16 | | | | | 05/03/2016 | 3.9 | 180 | | 05/16/16 | 16.9 | 180 | | | 35AWW13FD-042916 | 02 | 04/29/16 | | | | | 5/03/2016 | 3.9 | 180 | | 05/13/16 | 14.1 | 180 | | | 35AWW13MS-042916 | 03 | 04/29/16 | | | | | 5/03/2016 | 3.9 | 180 | | 05/13/16 | 14.1 | 180 | | | 35AWW13MS-042916 | 03 | 04/29/16 | | | | | 5/03/2016 | 3.9 | 180 | | 05/17/16 | 17.9 | 180 | | | 35AWW13MS-042916 | 03 | 04/29/16 | | | | | 5/03/2016 | 3.9 | 180 | | 05/16/16 | 16.9 | 180 | | | 35AWW13MSD-042916 | 04 | 04/29/16 | | | | | 5/03/2016 | 3.9 | 180 | | 05/13/16 | 14.1 | 180 | | | 35AWW13MSD-042916 | 04 | 04/29/16 | | | | | 05/03/2016 | 3.9 | 180 | | 05/16/16 | 16.9 | 180 | | | 35AWW13MSD-042916 | 04 | 04/29/16 | | | | | 05/03/2016 | 3.9 | 180 | | 05/17/16 | 17.9 | 180 | | | LHAAP02 EQUIPMENT RINSE- | 05 | 04/29/16 | | | | | 05/03/2016 | 3.9 | 180 | | 05/17/16 | 17.9 | 180 | | | HAAP02 EQUIPMENT RINSE- | 05 | 04/29/16 | | | | | 05/03/2016 | 3.9 | 180 | | 05/13/16 | 14.1 | 180 | | * = SEE PROJECT QAPP REQUIREMENTS HOLD_TIMES - Modified 03/06/2008 PDF File ID: 4763317 Report generated 05/17/2016 14:18 ### METHOD BLANK SUMMARY Login Number: L16050013 Blank File ID: T3.051316.173603 Prep Date: 05/03/16 11:48 Analyzed Date: 05/13/16 17:36 Work Group: WG567345 Blank Sample ID: WG567310-02 Instrument ID: ICP-THERMO3 Method: 6010C Analyst:JYH ### This Method Blank Applies To The Following Samples: | Client ID | Lab Sample ID | Lab File ID | Time Analyzed | TAG | |--------------------------------|---------------|------------------|----------------|------| | LCS | WG567310-03 | T3.050316.144345 | 05/03/16 14:43 | 01 | | LCS | WG567310-03 | T3.051316.174006 | 05/13/16 17:40 | 02 | | 35AWW13-042916 | L16050013-01 | T3.051316.174353 | 05/13/16 17:43 | 01 | | 35AWW13FD-042916 | L16050013-02 | T3.051316.174753 | 05/13/16 17:47 | 01 | | 35AWW13MS-042916 | L16050013-03 | T3.051316.175153 | 05/13/16 17:51 | 01 | | 35AWW13MSD-042916 | L16050013-04 | T3.051316.175540 | 05/13/16 17:55 | 01 | | LHAAP02 EQUIPMENT RINSE-042916 | L16050013-05 | T3.051316.175926 | 05/13/16 17:59 | 01 | | LCS | WG567310-03 | T3.051616.120443 | 05/16/16 12:04 | 03 | | 35AWW13-042916 | L16050013-01 | T3.051616.120826 | 05/16/16 12:08 | DL01 | | 35AWW13FD-042916 | L16050013-02 | T3.051616.121225 | 05/16/16 12:12 | DL01 | | 35AWW13MS-042916 | L16050013-03 | T3.051616.121623 | 05/16/16 12:16 | DL01 | | 35AWW13MSD-042916 | L16050013-04 | T3.051616.122020 | 05/16/16 12:20 | DL01 | | LCS | WG567310-03 | T3.051716.105435 | 05/17/16 10:54 | 04 | | 35AWW13-042916 | L16050013-01 | T3.051716.105823 | 05/17/16 10:58 | DL02 | | 35AWW13FD-042916 | L16050013-02 | T3.051716.110228 | 05/17/16 11:02 | DL02 | | 35AWW13MS-042916 | L16050013-03 | T3.051716.110632 | 05/17/16 11:06 | DL02 | | 35AWW13MSD-042916 | L16050013-04 | T3.051716.111036 | 05/17/16 11:10 | DL02 | | LHAAP02 EQUIPMENT RINSE-042916 | L16050013-05 | T3.051716.111439 | 05/17/16 11:14 | 03 | Report Name: BLANK_SUMMARY PDF File ID: 4763318 Report generated 05/17/2016 14:18 ### METHOD BLANK SUMMARY Login Number:L16050013 Blank File ID:T3.051616.120042 Prep Date:05/03/16 11:48 Analyzed Date:05/16/16 12:00 Work Group: WG567345 Blank Sample ID: WG567310-02 Instrument ID: ICP-THERMO3 Method: 6010C Analyst:JYH ### This Method Blank Applies To The Following Samples: | Client ID | Lab Sample ID | Lab File ID | Time Analyzed | TAG | |--------------------------------|---------------|------------------|----------------|------| | LCS | WG567310-03 | T3.050316.144345 | 05/03/16 14:43 | 01 | | LCS | WG567310-03 | T3.051316.174006 | 05/13/16 17:40 | 02 | | 35AWW13-042916 | L16050013-01 | T3.051316.174353 | 05/13/16 17:43 | 01 | | 35AWW13FD-042916 | L16050013-02 | T3.051316.174753 | 05/13/16 17:47 | 01 | | 35AWW13MS-042916 | L16050013-03 | T3.051316.175153 | 05/13/16 17:51 | 01 | | 35AWW13MSD-042916 | L16050013-04 | T3.051316.175540 | 05/13/16 17:55 | 01 | | LHAAP02 EQUIPMENT RINSE-042916 | L16050013-05 | T3.051316.175926 | 05/13/16 17:59 | 01 | | LCS | WG567310-03 | T3.051616.120443 | 05/16/16 12:04 | 03 | | 35AWW13-042916 | L16050013-01 | T3.051616.120826 | 05/16/16 12:08 | DL01 | | 35AWW13FD-042916 | L16050013-02 | T3.051616.121225 | 05/16/16 12:12 | DL01 | | 35AWW13MS-042916 | L16050013-03 | T3.051616.121623 | 05/16/16 12:16 | DL01 | | 35AWW13MSD-042916 | L16050013-04 | T3.051616.122020 | 05/16/16 12:20 | DL01 | | LCS | WG567310-03 | T3.051716.105435 | 05/17/16 10:54 | 04 | | 35AWW13-042916 | L16050013-01 | T3.051716.105823 | 05/17/16 10:58 | DL02 | | 35AWW13FD-042916 | L16050013-02 | T3.051716.110228 | 05/17/16 11:02 | DL02 | | 35AWW13MS-042916 | L16050013-03 | T3.051716.110632 | 05/17/16 11:06 | DL02 | | 35AWW13MSD-042916 | L16050013-04 | T3.051716.111036 | 05/17/16 11:10 | DL02 | | LHAAP02 EQUIPMENT RINSE-042916 | L16050013-05 | T3.051716.111439 | 05/17/16 11:14 | 03 | Report Name: BLANK_SUMMARY PDF File ID: 4763318 Report generated 05/17/2016 14:18 ### METHOD BLANK SUMMARY Login Number:L16050013 Blank File ID:T3.051716.105029 Prep Date:05/03/16 11:48 Analyzed Date:05/17/16 10:50 Work Group: WG567345 Blank Sample ID: WG567310-02 Instrument ID: ICP-THERMO3 Method: 6010C Analyst:JYH ### This Method Blank Applies To The Following Samples: | Client ID | Lab Sample ID | Lab File ID | Time Analyzed | TAG | |--------------------------------|---------------|------------------|----------------|------| | LCS | WG567310-03 | T3.050316.144345 | 05/03/16 14:43 | 01 | | LCS | WG567310-03 | T3.051316.174006 | 05/13/16 17:40 | 02 | | 35AWW13-042916 | L16050013-01 | T3.051316.174353 | 05/13/16 17:43 | 01 | | 35AWW13FD-042916 | L16050013-02 | T3.051316.174753 | 05/13/16 17:47 | 01 | | 35AWW13MS-042916 | L16050013-03 | T3.051316.175153 | 05/13/16 17:51 | 01 | | 35AWW13MSD-042916 | L16050013-04 | T3.051316.175540 | 05/13/16 17:55 | 01 | | LHAAP02 EQUIPMENT RINSE-042916 | L16050013-05 | T3.051316.175926 | 05/13/16 17:59 | 01 | | LCS | WG567310-03 | T3.051616.120443 | 05/16/16 12:04 | 03 | | 35AWW13-042916 | L16050013-01 | T3.051616.120826 | 05/16/16 12:08 | DL01 | | 35AWW13FD-042916 | L16050013-02 | T3.051616.121225 | 05/16/16 12:12 | DL01 | | 35AWW13MS-042916 | L16050013-03 | T3.051616.121623 | 05/16/16 12:16 | DL01 | | 35AWW13MSD-042916 | L16050013-04 | T3.051616.122020 | 05/16/16 12:20 | DL01 | | LCS | WG567310-03 | T3.051716.105435 |
05/17/16 10:54 | 04 | | 35AWW13-042916 | L16050013-01 | T3.051716.105823 | 05/17/16 10:58 | DL02 | | 35AWW13FD-042916 | L16050013-02 | T3.051716.110228 | 05/17/16 11:02 | DL02 | | 35AWW13MS-042916 | L16050013-03 | T3.051716.110632 | 05/17/16 11:06 | DL02 | | 35AWW13MSD-042916 | L16050013-04 | T3.051716.111036 | 05/17/16 11:10 | DL02 | | LHAAP02 EQUIPMENT RINSE-042916 | L16050013-05 | T3.051716.111439 | 05/17/16 11:14 | 03 | Report Name: BLANK_SUMMARY PDF File ID: 4763318 Report generated 05/17/2016 14:18 | Login Number:L16050013 | Prep Date: 05/03/16 11:48 | Sample ID: WG567310-02 | |----------------------------|---------------------------|------------------------| | Instrument ID: ICP-THERMO3 | Run Date: 05/03/16 14:39 | Prep Method: 3015 | | File ID:T3.050316.143943 | Analyst:KKB | Method: 6010C | | Workgroup (AAB#):WG567345 | Matrix:Water | Units:mg/L | | Contract #: | Cal ID:ICP- |
ГН - 03-MAY-16 | | Analytes | DL | LOQ | Concentration | Dilution | Qualifier | |------------------|---------|--------|---------------|----------|-----------| | Aluminum, Total | 0.0500 | 0.200 | 0.0500 | 1 | υ | | Beryllium, Total | 0.00500 | 0.0200 | 0.00500 | 1 | υ | | Iron, Total | 0.0500 | 0.200 | 0.0500 | 1 | υ | | Potassium, Total | 0.500 | 2.00 | 0.500 | 1 | υ | | Selenium, Total | 0.00500 | 0.0200 | 0.00500 | 1 | υ | DL Method Detection Limit LOQ Reporting/Practical Quantitation Limit ND Analyte Not detected at or above reporting limit * |Analyte concentration| > 1/2 RL | Login Number: L16050013 | Prep Date: 05/03/16 11:48 | Sample ID: WG567310-02 | |----------------------------|---------------------------|------------------------| | Instrument ID: ICP-THERMO3 | Run Date: 05/13/16 17:36 | Prep Method: 3015 | | File ID:T3.051316.173603 | Analyst:JYH | Method: 6010C | | Workgroup (AAB#):WG567345 | Matrix:Water | Units:mg/L | | Contract #: | Cal ID:ICP-T | TH-13-MAY-16 | | Analytes | DL | LOQ | Concentration | Dilution | Qualifier | |------------------|---------|--------|---------------|----------|-----------| | Aluminum, Total | 0.0500 | 0.200 | 0.0500 | 1 | υ | | Beryllium, Total | 0.00500 | 0.0200 | 0.00500 | 1 | υ | | Iron, Total | 0.0500 | 0.200 | 0.0500 | 1 | υ | | Potassium, Total | 0.500 | 2.00 | 0.500 | 1 | υ | | Selenium, Total | 0.00500 | 0.0200 | -0.00820 | 1 | υ | DL Method Detection Limit LOQ Reporting/Practical Quantitation Limit ND Analyte Not detected at or above reporting limit * |Analyte concentration| > 1/2 RL | Login Number:L16050013 | Prep Date: 05/03/16 11:48 | Sample ID: WG567310-02 | |----------------------------|---------------------------|------------------------| | Instrument ID: ICP-THERMO3 | Run Date: 05/16/16 12:00 | Prep Method: 3015 | | File ID:T3.051616.120042 | Analyst:JYH | Method: 6010C | | Workgroup (AAB#):WG567345 | Matrix:Water | Units:mg/L | | Contract #: | Cal ID:ICP- | ГН - 16-MAY-16 | | Analytes | DL | LOQ | Concentration | Dilution | Qualifier | |----------------|-------|-------|---------------|----------|-----------| | Calcium, Total | 0.125 | 0.500 | 0.125 | 1 | υ | | Sodium, Total | 0.250 | 1.00 | 0.250 | 1 | υ | DL Method Detection Limit LOQ Reporting/Practical Quantitation Limit ND Analyte Not detected at or above reporting limit * |Analyte concentration| > 1/2 RL | Analytes | DL | LOQ | Concentration | Dilution | Qualifier | |------------------|-------|------|---------------|----------|-----------| | Magnesium, Total | 0.250 | 1.00 | 0.250 | 1 | υ | DL Method Detection Limit LOQ Reporting/Practical Quantitation Limit ND Analyte Not detected at or above reporting limit * |Analyte concentration| > 1/2 RL ## Microbac Laboratories Inc. LABORATORY CONTROL SAMPLE (LCS) Login Number: L16050013 Run Date: 05/13/2016 Sample ID: WG567310-03 Instrument ID: ICP-THERMO3 Run Time: 17:40 Prep Method: 3015 File ID:T3.051316.174006 Analyst: JYH Method: 6010C Workgroup (AAB#): WG567345 Matrix: Water Units: mg/L QC Key:DOD4 Lot#:STD75837 Cal ID:ICP-TH-13-MAY-16 | Analytes | Expected | Found | % Rec | LCS | Limi | ts | Q | |------------------|----------|--------|-------|-----|------|-----|---| | Aluminum, Total | 6.25 | 5.89 | 94.2 | 80 | - | 120 | | | Beryllium, Total | 0.0313 | 0.0292 | 93.3 | 80 | - | 120 | | | Calcium, Total | 6.25 | 6.08 | 97.3 | 80 | - | 120 | | | Iron, Total | 2.50 | 2.39 | 95.5 | 80 | - | 120 | | | Magnesium, Total | 6.25 | 5.83 | 93.2 | 80 | - | 120 | | | Potassium, Total | 31.3 | 30.7 | 98.2 | 80 | - | 120 | | | Selenium, Total | 0.250 | 0.237 | 94.6 | 80 | - | 120 | | | Sodium, Total | 31.3 | 30.5 | 97.7 | 80 | - | 120 | | LCS - Modified 03/06/2008 PDF File ID: 4763320 Report generated: 05/17/2016 14:18 Login Number: L16050013 Run Date: 05/16/2016 Sample ID: WG567310-03 Instrument ID: ICP-THERMO3 Run Time: 12:04 Prep Method: 3015 File ID: T3.051616.120443 Analyst: JYH Method: 6010C Workgroup (AAB#): WG567345 Matrix: Water Units: mg/L QC Key: DOD4 Lot#: STD75837 Cal ID: ICP-TH-16-MAY-16 | Analytes | Expected | Found | % Rec | LCS | Limi | its | Q | |----------------|----------|-------|-------|-----|------|-----|---| | Calcium, Total | 6.25 | 6.03 | 96.5 | 80 | - | 120 | | | Sodium, Total | 31.3 | 31.1 | 99.4 | 80 | - | 120 | | LCS - Modified 03/06/2008 PDF File ID: 4763320 Report generated: 05/17/2016 14:18 | Analytes | Expected | Found | % Rec | LCS Limits | Q | |------------------|----------|-------|-------|------------|---| | Magnesium, Total | 6.25 | 6.27 | 100 | 80 - 120 | | LCS - Modified 03/06/2008 PDF File ID: 4763320 Report generated: 05/17/2016 14:18 | Loginnum: <u>L16050013</u> | Cal ID: ICP-THERMO3-13-MAY-16 | Worknum: WG567345 | |--------------------------------|--------------------------------------|-------------------| | Instrument ID: ICP-THERMO3 | Contract #: | Prep Method:3015 | | Parent ID: <u>L16050013-01</u> | File ID: <u>T3.051316.174353</u> Dil | :1 Method:6010B | | Sample ID: L16050013-03 MS | File ID: <u>T3.051316.175153</u> Dil | :1 Matrix:Water | | Sample ID:L16050013-04 MSD | File ID:T3.051316.175540 Dil | :1 Units:mg/L | | | | MS | MS | MS | MSD | MSD | MSD | | %Rec | RPD | | |------------------|--------|--------|--------|------|--------|--------|------|--------|----------|-------|---| | Analyte | Parent | Spiked | Found | %Rec | Spiked | Found | %Rec | %RPD | Limits | Limit | Q | | Aluminum, Total | 0.195 | 6.25 | 6.75 | 105 | 6.25 | 6.71 | 104 | 0.594 | 80 - 120 | 20 | | | Beryllium, Total | υ | 0.0313 | 0.0322 | 103 | 0.0313 | 0.0326 | 104 | 1.04 | 80 - 120 | 20 | | | Iron, Total | 0.465 | 2.50 | 3.02 | 102 | 2.50 | 2.94 | 99.1 | 2.48 | 80 - 120 | 20 | | | Potassium, Total | 0.685 | 31.3 | 33.7 | 106 | 31.3 | 33.7 | 106 | 0.0668 | 80 - 120 | 20 | | | Selenium, Total | Ū | 0.250 | 0.252 | 101 | 0.250 | 0.263 | 105 | 3.99 | 80 - 120 | 20 | | ^{*} FAILS %REC LIMIT MS_MSD - Modified 03/06/2008 PDF File ID: 4763321 Report generated 05/17/2016 14:18 [#] FAILS RPD LIMIT | Loginnum: L16050013 | Cal ID: ICP-THERMO3-16-MAY-16 | Worknum: WG567345 | |--------------------------------|---|-------------------| | Instrument ID: ICP-THERMO3 | Contract #: | Prep Method:3015 | | Parent ID: <u>L16050013-01</u> | File ID: T3.051616.120826 Dil: 10 | Method: 6010B | | Sample ID: L16050013-03 MS | File ID: <u>T3.051616.121623</u> Dil: <u>10</u> | Matrix:Water | | Sample ID:L16050013-04 MSD | File ID:T3.051616.122020 Dil:10 | Units:mg/L | | | | MS | MS | MS | MSD | MSD | MSD | | %Rec | RPD | | |----------------|--------|--------|-------|------|--------|-------|------|------|----------|-------|---| | Analyte | Parent | Spiked | Found | %Rec | Spiked | Found | %Rec | %RPD | Limits | Limit | Q | | Calcium, Total | 38.4 | 6.25 | 47.1 | 140 | 6.25 | 45.9 | 121 | 2.61 | 80 - 120 | 20 | * | | Sodium, Total | 199 | 31.3 | 244 | 145 | 31.3 | 237 | 121 | 3.09 | 80 - 120 | 20 | * | ^{*} FAILS %REC LIMIT MS_MSD - Modified 03/06/2008 PDF File ID: 4763321 Report generated 05/17/2016 14:18 [#] FAILS RPD LIMIT | Loginnum: <u>L16050013</u> | Cal ID: ICP-THERMO3-17-MAY-16 | Worknum: WG567345 | |-----------------------------------|-----------------------------------|-------------------| | Instrument ID: ICP-THERMO3 | Contract #: | Prep Method:3015 | | Parent ID: <u>L16050013-01</u> | File ID: T3.051716.105823 Dil: 10 | Method: 6010B | | Sample ID: <u>L16050013-03 MS</u> | File ID:T3.051716.110632 Dil:10 | Matrix:Water | | Sample ID:L16050013-04 MSD | File ID:T3.051716.111036 Dil:10 | Units:mq/L | | | | MS | MS | MS | MSD | MSD | MSD | | %Rec | RPD | | |------------------|--------|--------|-------|------|--------|-------|------|--------|----------|-------|---| | Analyte | Parent | Spiked | Found | %Rec | Spiked | Found | %Rec | %RPD | Limits | Limit | Q | | Magnesium, Total | 29.3 | 6.25 | 34.6 | 84.9 | 6.25 | 34.6 | 84.6 | 0.0542 | 80 - 120 | 20 | П | * FAILS %REC LIMIT # FAILS RPD LIMIT MS_MSD - Modified 03/06/2008 PDF File ID: 4763321 Report generated 05/17/2016 14:18 ## Microbac Laboratories Inc. MATRIX SPIKE AND MATRIX SPIKE DUP (MS/MSD) | Analyte | Parent | MS
Spiked | MS
Found | MS
%Rec | MSD
Spiked | MSD
Found | MSD
%Rec | %RPD | %Rec
Limits | RPD
Limit | Q | |------------------|---------|--------------|-------------|------------|---------------|--------------|-------------|-------|----------------|--------------|---| | Aluminum, Total | 0.190 | 6.25 | 6.53 | 101 | 6.25 | 6.50 | 101 | 0.389 | 80 - 120 | 20 | | | Beryllium, Total | ND | 0.0313 | 0.0314 | 100 | 0.0313 | 0.0318 | 102 | 1.35 | 80 - 120 | 20 | | | Calcium, Total | 40.5 | 6.25 | 47.4 | 109 | 6.25 | 47.8 | 117 | 1.00 | 80 - 120 | 20 | | | Iron, Total | 0.477 | 2.50 | 2.93 | 98.3 | 2.50 | 2.93 | 98.1 | 0.188 | 80 - 120 | 20 | | | Magnesium, Total | 30.4 | 6.25 | 37.5 | 114 | 6.25 | 37.6 | 116 | 0.289 | 80 - 120 | 20 | | | Potassium, Total | 0.623 | 31.3 | 32.3 | 101 | 31.3 | 32.8 | 103 | 1.58 | 80 - 120 | 20 | | | Selenium, Total | 0.00721 | 0.250 | 0.250 | 96.9 | 0.250 | 0.240 | 93.0 | 3.98 | 80 - 120 | 20 | | | Sodium, Total | 201 |
31.3 | 235 | 108 | 31.3 | 238 | 116 | 1.00 | 80 - 120 | 20 | | ^{*} FAILS %REC LIMIT NOTE: This is an internal quality control sample. WG_MS_MSD_DRYWT - Modified 05/26/2011 PDF File ID: 4763322 Report generated 05/16/2016 10:40 [#] FAILS RPD LIMIT ## Microbac Laboratories Inc. MATRIX SPIKE AND MATRIX SPIKE DUP (MS/MSD) | Parent | MS
Spiked | MS
Found | MS
%Rec | MSD
Spiked | MSD
Found | MSD
%Rec | %RPD | %Rec
Limits | RPD
Limit | Q | |--------|---|--|---|--|---|---|---|---|---|---| | 0.195 | 6.25 | 6.75 | 105 | 6.25 | 6.71 | 104 | 0.594 | 80 - 120 | 20 | | | ND | 0.0313 | 0.0322 | 103 | 0.0313 | 0.0326 | 104 | 1.04 | 80 - 120 | 20 | | | 41.2 | 6.25 | 49.0 | 125 | 6.25 | 48.6 | 119 | 0.774 | 80 - 120 | 20 | * | | 0.465 | 2.50 | 3.02 | 102 | 2.50 | 2.94 | 99.1 | 2.48 | 80 - 120 | 20 | | | 30.6 | 6.25 | 38.9 | 133 | 6.25 | 38.5 | 126 | 1.20 | 80 - 120 | 20 | * | | 0.685 | 31.3 | 33.7 | 106 | 31.3 | 33.7 | 106 | 0.0668 | 80 - 120 | 20 | | | ND | 0.250 | 0.252 | 101 | 0.250 | 0.263 | 105 | 3.99 | 80 - 120 | 20 | | | 204 | 31.3 | 243 | 126 | 31.3 | 241 | 118 | 0.992 | 80 - 120 | 20 | * | | | 0.195
ND
41.2
0.465
30.6
0.685 | Parent Spiked 0.195 6.25 ND 0.0313 41.2 6.25 0.465 2.50 30.6 6.25 0.685 31.3 ND 0.250 | Parent Spiked Found 0.195 6.25 6.75 ND 0.0313 0.0322 41.2 6.25 49.0 0.465 2.50 3.02 30.6 6.25 38.9 0.685 31.3 33.7 ND 0.250 0.252 | Parent Spiked Found %Rec 0.195 6.25 6.75 105 ND 0.0313 0.0322 103 41.2 6.25 49.0 125 0.465 2.50 3.02 102 30.6 6.25 38.9 133 0.685 31.3 33.7 106 ND 0.250 0.252 101 | Parent Spiked Found %Rec Spiked 0.195 6.25 6.75 105 6.25 ND 0.0313 0.0322 103 0.0313 41.2 6.25 49.0 125 6.25 0.465 2.50 3.02 102 2.50 30.6 6.25 38.9 133 6.25 0.685 31.3 33.7 106 31.3 ND 0.250 0.252 101 0.250 | Parent Spiked Found %Rec Spiked Found 0.195 6.25 6.75 105 6.25 6.71 ND 0.0313 0.0322 103 0.0313 0.0326 41.2 6.25 49.0 125 6.25 48.6 0.465 2.50 3.02 102 2.50 2.94 30.6 6.25 38.9 133 6.25 38.5 0.685 31.3 33.7 106 31.3 33.7 ND 0.250 0.252 101 0.250 0.263 | Parent Spiked Found %Rec Spiked Found %Rec 0.195 6.25 6.75 105 6.25 6.71 104 ND 0.0313 0.0322 103 0.0313 0.0326 104 41.2 6.25 49.0 125 6.25 48.6 119 0.465 2.50 3.02 102 2.50 2.94 99.1 30.6 6.25 38.9 133 6.25 38.5 126 0.685 31.3 33.7 106 31.3 33.7 106 ND 0.250 0.252 101 0.250 0.263 105 | Parent Spiked Found %Rec Spiked Found %Rec %RPD 0.195 6.25 6.75 105 6.25 6.71 104 0.594 ND 0.0313 0.0322 103 0.0313 0.0326 104 1.04 41.2 6.25 49.0 125 6.25 48.6 119 0.774 0.465 2.50 3.02 102 2.50 2.94 99.1 2.48 30.6 6.25 38.9 133 6.25 38.5 126 1.20 0.685 31.3 33.7 106 31.3 33.7 106 0.0668 ND 0.250 0.252 101 0.250 0.263 105 3.99 | Parent Spiked Found %Rec Spiked Found %Rec %RPD Limits 0.195 6.25 6.75 105 6.25 6.71 104 0.594 80 - 120 ND 0.0313 0.0322 103 0.0313 0.0326 104 1.04 80 - 120 41.2 6.25 49.0 125 6.25 48.6 119 0.774 80 - 120 0.465 2.50 3.02 102 2.50 2.94 99.1 2.48 80 - 120 30.6 6.25 38.9 133 6.25 38.5 126 1.20 80 - 120 0.685 31.3 33.7 106 31.3 33.7 106 0.0668 80 - 120 ND 0.250 0.252 101 0.250 0.263 105 3.99 80 - 120 | Parent Spiked Found %Rec Spiked Found %Rec %RPD Limits Limits 0.195 6.25 6.75 105 6.25 6.71 104 0.594 80 - 120 20 ND 0.0313 0.0322 103 0.0313 0.0326 104 1.04 80 - 120 20 41.2 6.25 49.0 125 6.25 48.6 119 0.774 80 - 120 20 0.465 2.50 3.02 102 2.50 2.94 99.1 2.48 80 - 120 20 30.6 6.25 38.9 133 6.25 38.5 126 1.20 80 - 120 20 0.685 31.3 33.7 106 31.3 33.7 106 0.0668 80 - 120 20 ND 0.250 0.252 101 0.250 0.263 105 3.99 80 - 120 20 | ^{*} FAILS %REC LIMIT NOTE: This is an internal quality control sample. WG_MS_MSD_DRYWT - Modified 05/26/2011 PDF File ID: 4763322 Report generated 05/16/2016 10:40 [#] FAILS RPD LIMIT Serial Dilution Report Login: L16050013 Worknum: WG567345 Instrument: ICP-THERMO3 Method: 6010C Serial Dil: WG567345-04 File ID: T3.051616.123159 Dil: 5 Units: ug/L Sample:L16050013-05 File ID: T3.051616.122418 Dil: 1 | Analyte | Sample | Qual | Serial Dil | Qual | % Diff | Q | |-----------|--------|------|------------|------|---------|---| | Aluminum | ND | U | ND | U | | | | Beryllium | 0.140 | | 0.400 | | 186.00 | E | | Calcium | ND | U | ND | Ū | | | | Iron | ND | U | 19.2 | | 214.00 | | | Magnesium | ND | U | 198 | | 1680.00 | | | Potassium | 111 | | 1050 | | 845.00 | E | | Selenium | ND | U | 10.8 | | 2720.00 | | | Sodium | ND | U
| ND | U | | | - U = Result is below MDL. - ${\tt F}$ = Result is greater than or equal to MDL and less than the RL. - X = Result is greater than or equal to RL and less than 25 times the MDL. - E = %D exceeds control limit of 10% and initial sample result is greater than or equal to 25 times the MDL. SERIAL_DIL - Modified 09/22/2008 PDF File ID: 4763315 05/17/2016 14:18 Serial Dilution Report Login: L16050013 Worknum: WG567345 Instrument: ICP-THERMO3 Method: 6010C Serial Dil: WG567345-04 File ID: T3.051316.180718 Dil: 5 Units: ug/L Sample:L16050013-05 File ID: T3.051316.175926 Dil: 1 | Analyte | Sample | Qual | Serial Dil | Qual | % Diff | Q | |-----------|--------|------|------------|------|--------|---| | Aluminum | 11.4 | | 4.65 | | 59.10 | E | | Beryllium | 0.120 | | 0.450 | | 275.00 | E | | Calcium | 0.520 | Х | ND | Ū | | | | Iron | 10.2 | | ND | U | | | | Magnesium | ND | U | ND | Ū | | | | Potassium | 151 | | 687 | | 356.00 | E | | Selenium | 0.430 | | 3.00 | | 598.00 | E | | Sodium | 111 | | 205 | | 84.80 | E | - U = Result is below MDL. - ${\tt F}$ = Result is greater than or equal to MDL and less than the RL. - X = Result is greater than or equal to RL and less than 25 times the MDL. - E = %D exceeds control limit of 10% and initial sample result is greater than or equal to 25 times the MDL. SERIAL_DIL - Modified 09/22/2008 PDF File ID: 4763315 05/17/2016 14:18 #### Microbac Laboratories Inc. Serial Dilution Report Login: L16050013 Worknum: WG567345 Instrument: ICP-THERMO3 Method: 6010C Serial Dil: WG567345-02 File ID: T3.051716.112639 Dil: 5 Units: ug/L Sample: L16041607-01 File ID: T3.051716.111845 Dil: 1 | Analyte | Sample | Qual | Serial Dil | Qual | % Diff | Q | |-----------|--------|------|------------|------|--------|---| | Aluminum | 6.40 | | ND | U | | | | Beryllium | ND | U | ND | U | | | | Calcium | 169000 | | 155000 | | 8.39 | | | Iron | 26.0 | | 223 | | 757.00 | E | | Magnesium | 5840 | | 5290 | | 9.49 | | | Potassium | 399 | | 9.05 | F | 97.70 | E | | Selenium | 0.400 | | ND | U | | | | Sodium | 3170 | | 2840 | | 10.30 | E | | | | | | | | | - U = Result is below MDL. - ${\tt F}$ = Result is greater than or equal to MDL and less than the RL. - X = Result is greater than or equal to RL and less than 25 times the MDL. - E = %D exceeds control limit of 10% and initial sample result is greater than or equal to 25 times the MDL. SERIAL_DIL - Modified 09/22/2008 PDF File ID: 4763315 05/17/2016 14:18 ### Microbac Laboratories Inc. POST SPIKE REPORT Sample Login ID: L16050013 Worknum: WG567345 Instrument ID: ICP-THERMO3 Method: 6010C Post Spike ID: WG567345-03 File ID:T3.051316.180330 Dil:1 Units: ug/L Sample ID: L16050013-05 File ID:T3.051316.175926 Dil:1 Matrix: Water | Analyte | Post Spike
Result | C | Sample
Result | С | Spike
Added(SA) | % R | Control
Limit %R | Q | |-----------|----------------------|---|------------------|---|--------------------|-------|---------------------|---| | ALUMINUM | 4970 | | 0 | U | 5000 | 99.4 | 75 - 125 | | | BERYLLIUM | 24.5 | | 0 | U | 25 | 97.9 | 75 - 125 | | | CALCIUM | 5190 | | 0 | U | 5000 | 103.7 | 75 - 125 | | | IRON | 2030 | | 0 | Ū | 2000 | 101.3 | 75 - 125 | | | MAGNESIUM | 5020 | | 0 | U | 5000 | 100.5 | 75 - 125 | | | POTASSIUM | 25900 | | 0 | Ū | 25000 | 103.6 | 75 - 125 | | | SELENIUM | 184 | | 0 | U | 200 | 92.0 | 75 - 125 | | | SODIUM | 25800 | | 0 | Ū | 25000 | 103.3 | 75 - 125 | | N = % Recovery exceeds control limits F = Result is between MDL and RL U = Sample result is below MDL. A value of zero is used in the calculation ## Microbac Laboratories Inc. POST SPIKE REPORT Sample Login ID: L16050013 Worknum: WG567345 Instrument ID: ICP-THERMO3 Method: 6010C Post Spike ID: WG567345-01 File ID:T3.051716.112249 Dil:1 Units: ug/L Sample ID: <u>L16041607-01</u> File ID:<u>T3.051716.111845</u> Dil:1 Matrix: Water | Analyte | Post Spike
Result | С | Sample
Result | С | Spike
Added(SA) | % R | Control
Limit %R | Q | |-----------|----------------------|---|------------------|---|--------------------|-------|---------------------|---| | ALUMINUM | 5000 | | 0 | U | 5000 | 100.0 | 75 - 125 | | | BERYLLIUM | 25.0 | | 0 | U | 25 | 99.8 | 75 - 125 | | | CALCIUM | 158000 | | 169000 | | 5000 | 107.1 | 75 - 125 | | | IRON | 2070 | | 0 | U | 2000 | 103.7 | 75 - 125 | | | MAGNESIUM | 10300 | | 5840 | | 5000 | 100.5 | 75 - 125 | | | POTASSIUM | 26900 | | 0 | U | 25000 | 107.6 | 75 - 125 | | | SELENIUM | 198 | | 0 | U | 200 | 99.2 | 75 - 125 | | | SODIUM | 29100 | | 3170 | | 25000 | 104.9 | 75 - 125 | | N = % Recovery exceeds control limits F = Result is between MDL and RL U = Sample result is below MDL. A value of zero is used in the calculation #### Microbac Laboratories Inc. Initial Calibration Summary Login: L16050013 Workgroup (AAB#): WG567345 Analytical Method: 6010C Instrument ID: ICP-THERMO3 ICAL Worknum: WG568892 Initial Calibration Date: 13-MAY-2016 15:26 | | WG568 | 892-01 | WG568 | 892-02 | WG568 | 892-03 | WG568 | 892-04 | WG568 | 892-05 |] | | |-----------|-------|------------|-------|----------|-------|------------|-------|---------|-------|---------|---------|---| | | Conc | INT | Conc | INT | Conc | INT | Conc | INT | Conc | INT | R | Q | | ALUMINUM | 0 | 0.000700 | .1 | 0.00112 | .2 | 0.00144 | 10 | 0.0440 | 20 | 0.0919 | .999677 | | | BERYLLIUM | 0 | 0.000200 | .0005 | 0.000410 | .001 | 0.000650 | .05 | 0.0246 | .1 | 0.0518 | .999631 | | | CALCIUM | 0 | 0.00189 | .1 | 0.00350 | .2 | 0.00655 | 10 | 0.292 | 20 | 0.591 | .999844 | | | IRON | 0 | -0.000110 | .04 | 0.000140 | .08 | 0.000700 | 4 | 0.0500 | 8 | 0.101 | .999791 | | | MAGNESIUM | 0 | -0.0000200 | NA | NA | .2 | 0.0000200 | 10 | 0.0298 | 20 | 0.0609 | .997725 | | | POTASSIUM | 0 | 0.00888 | .5 | 0.0225 | 1 | 0.0395 | 50 | 1.84 | 100 | 3.71 | .999977 | | | SELENIUM | 0 | -0.000110 | NA | NA | .008 | -0.0000900 | .4 | 0.00300 | .8 | 0.00638 | .998879 | | | SODIUM | 0 | -0.0224 | .5 | 0.0231 | 1 | 0.0666 | 50 | 5.34 | 100 | 10.8 | .999988 | | INT = Instrument intensity R = Coefficient of correlation Q = Data Qualifier * = Out of Compliance; R < 0.995</pre> INT_CAL_ICP - Modified 03/06/2008 PDF File I D: 4763325 Report generated: 17-MAY-2016 14:19 #### Microbac Laboratories Inc. Initial Calibration Summary Workgroup (AAB#): WG567345 Instrument ID: ICP-THERMO3 Initial Calibration Date: 16-MAY-2016 09:59 Login: **L16050013** Analytical Method: 6010C ICAL Worknum: WG568963 | | WG568 | 963-01 | WG568 | 963-02 | WG568 | 963-03 | WG568 | 963-04 | WG568 | 963-05 |] | | |-----------|-------|-----------|-------|----------|-------|------------|-------|---------|-------|---------|---------|---| | | Conc | INT | Conc | INT | Conc | INT | Conc | INT | Conc | INT | R | Q | | ALUMINUM | 0 | 0.000350 | .1 | 0.000710 | .2 | 0.00101 | 10 | 0.0432 | 20 | 0.0860 | .999995 | | | BERYLLIUM | 0 | 0.000150 | .0005 | 0.000340 | .001 | 0.000540 | .05 | 0.0255 | .1 | 0.0514 | .999977 | | | CALCIUM | 0 | 0.0000500 | .1 | 0.00237 | .2 | 0.00445 | 10 | 0.297 | 20 | 0.598 | .99998 | | | IRON | 0 | -0.000240 | .04 | 0.000260 | .08 | 0.000520 | 4 | 0.0486 | 8 | 0.0975 | .999893 | | | MAGNESIUM | 0 | -0.000490 | NA | NA | .2 | 0.000120 | 10 | 0.0305 | 20 | 0.0605 | .999791 | | | POTASSIUM | 0 | 0.00382 | .5 | 0.0218 | 1 | 0.0350 | 50 | 1.84 | 100 | 3.71 | .999919 | | | SELENIUM | 0 | -0.000170 | NA | NA | .008 | -0.0000700 | .4 | 0.00288 | .8 | 0.00593 | .997398 | | | SODIUM | 0 | -0.0161 | .5 | 0.0270 | 1 | 0.0683 | 50 | 5.22 | 100 | 10.5 | .999998 | | INT = Instrument intensity R = Coefficient of correlation Q = Data Qualifier * = Out of Compliance; R < 0.995</pre> INT_CAL_ICP - Modified 03/06/2008 PDF File I D: 4763325 Report generated: 17-MAY-2016 14:19 #### Microbac Laboratories Inc. Initial Calibration Summary Workgroup (AAB#): WG567345 Instrument ID: ICP-THERMO3 Initial Calibration Date: 17-MAY-2016 10:10 Login: **L16050013** Analytical Method: 6010C ICAL Worknum: WG569211 | | WG569 | 211-01 | WG569 | 211-02 | WG569 | 211-03 | WG569 | 211-04 | WG569 | 211-05 | | | |-----------|-------|-----------|-------|-----------|-------|-----------|-------|---------|-------|---------|---------|---| | | Conc | INT | Conc | INT | Conc | INT | Conc | INT | Conc | INT | R | Q | | ALUMINUM | 0 | 0.000350 | .1 | 0.000710 | .2 | 0.00106 | 10 | 0.0434 | 20 | 0.0890 | .999913 | | | IRON | 0 | -0.000460 | .04 | 0.0000400 | .08 | 0.000720 | 4 | 0.0494 | 8 | 0.100 | .999349 | | | MAGNESIUM | 0 | -0.000440 | NA | NA | .2 | 0.000130 | 10 | 0.0311 | 20 | 0.0621 | .999938 | | | SELENIUM | 0 | -0.000180 | NA | NA | .008 | -0.000120 | .4 | 0.00276 | .8 | 0.00596 | .999626 | | | SODIUM | 0 | -0.0208 | .5 | 0.0224 | 1 | 0.0679 | 50 | 5.30 | 100 | 10.7 | .999989 | | INT = Instrument intensity R = Coefficient of correlation Q = Data Qualifier * = Out of Compliance; R < 0.995</pre> INT_CAL_ICP - Modified 03/06/2008 PDF File ID: 4763325 Report generated: 17-MAY-2016 14:19 ## Microbac Laboratories Inc. INITIAL CALIBRATION BLANK (ICB) Login Number: L16050013 Run Date: 05/13/2016 Sample ID: WG568892-07 Instrument ID: ICP-THERMO3 Run Time: 15:34 Method: 6010C File ID: T3.051316.153404 Analyst: JYH Units: mg/L Workgroup (AAB#):WG567345 Cal ID:ICP-THER: - 13-MAY-16 Matrix:WATER | Analytes | MDL | RDL | Concentration | Qualifier | |-----------|------|------|---------------|-----------| | ALUMINUM | .04 | .16 | .04 | υ | | BERYLLIUM | .004 | .016 | .004 | υ | | CALCIUM | .1 | .4 | .1 | υ | | IRON | .04 | .16 | .04 | υ | | MAGNESIUM | .2 | .8 | .2 | υ | | POTASSIUM | .4 | 1.6 | .4 | υ | | SELENIUM | .004 | .016 | .004 | υ | | SODIUM | .2 | .8 | .2 | υ | U = Result is less than 2 x MDL F = Result is between MDL and 2 x MDL * = Result is above 2 x MDL ## Microbac Laboratories Inc. INITIAL CALIBRATION BLANK (ICB) Login Number: L16050013 Run Date: 05/16/2016 Sample ID: WG568963-07 Instrument ID: ICP-THERMO3 Run Time: 10:06 Method: 6010C File ID: Time: Workgroup (AAB#):WG567345 Cal ID:ICP-THER - 16-MAY-16 Matrix:WATER | Analytes | MDL |
RDL | Concentration | Qualifier | |-----------|------|------|---------------|-----------| | ALUMINUM | .04 | .16 | .04 | υ | | BERYLLIUM | .004 | .016 | .004 | Ū | | CALCIUM | .1 | .4 | .1 | U | | IRON | .04 | .16 | .04 | υ | | MAGNESIUM | .2 | .8 | .2 | U | | POTASSIUM | .4 | 1.6 | .4 | U | | SELENIUM | .004 | .016 | .004 | U | | SODIUM | .2 | .8 | .2 | υ | U = Result is less than 2 x MDL F = Result is between MDL and 2 x MDL * = Result is above 2 x MDL ## Microbac Laboratories Inc. INITIAL CALIBRATION BLANK (ICB) Login Number: L16050013 Run Date: 05/17/2016 Sample ID: WG569211-07 Instrument ID: ICP-THERMO3 Run Time: 10:17 Method: 6010C File ID: T3.051716.101754 Analyst: JYH Units: mg/L Workgroup (AAB#): WG567345 Cal ID: ICP-THERI - 17-MAY-16 Matrix:WATER | Analytes | MDL | RDL | Concentration | Qualifier | |-----------|------|------|---------------|-----------| | ALUMINUM | .04 | .16 | .04 | ΰ | | BERYLLIUM | .004 | .016 | .004 | υ | | CALCIUM | .1 | .4 | .1 | υ | | IRON | .04 | .16 | .04 | υ | | MAGNESIUM | .2 | .8 | .2 | υ | | POTASSIUM | .4 | 1.6 | .4 | υ | | SELENIUM | .004 | .016 | .004 | υ | | SODIUM | .2 | .8 | .2 | υ | U = Result is less than 2 x MDL F = Result is between MDL and 2 x MDL * = Result is above 2 x MDL Login Number:L16050013 Run Date:05/13/2016 Sample ID:WG568892-13 Instrument ID:ICP-THERMO3 Run Time:15:57 Method:6010C File ID:T3.051316.155743 Analyst:JYH Units:mg/L Workgroup (AAB#):WG567345 Cal ID:ICP-TH - 13-MAY-16 Workgroup (AAB#):WG567345 Cal ID:ICP-TH - 13-MAY-16 Matrix:WATER QAPP:DOD4 | Analytes | MDL | RDL | Concentration | Qualifier | |-----------|---------|--------|---------------|-----------| | Aluminum | 0.0400 | 0.160 | 0.0400 | υ | | Beryllium | 0.00400 | 0.0160 | 0.00400 | υ | | Calcium | 0.100 | 0.400 | 0.100 | υ | | Iron | 0.0400 | 0.160 | 0.0400 | υ | | Magnesium | 0.200 | 0.800 | 0.200 | υ | | Potassium | 0.400 | 1.60 | 0.400 | υ | | Selenium | 0.00400 | 0.0160 | 0.00609 | F | | Sodium | 0.200 | 0.800 | 0.200 | υ | U = Result is less than MDL. F = Result is between MDL and RL. ^{* =} Result is above RL. Login Number: <u>L16050013</u> Run Date: <u>05/13/2016</u> Sample ID: <u>WG568892-17</u> Instrument ID: <u>ICP-THERMO3</u> Run Time: <u>17:23</u> Method: <u>6010C</u> File ID: <u>T3.051316.172353</u> Analyst: <u>JYH</u> Units: <u>mg/L</u> Workgroup (AAB#):WG567345 Cal ID:ICP-TH - 13-MAY-16 Matrix:WATER QAPP:DOD4 | Analytes | MDL | RDL | Concentration | Qualifier | |-----------|---------|--------|---------------|-----------| | Aluminum | 0.0400 | 0.160 | 0.0400 | υ | | Beryllium | 0.00400 | 0.0160 | 0.00400 | υ | | Calcium | 0.100 | 0.400 | 0.100 | υ | | Iron | 0.0400 | 0.160 | 0.0400 | υ | | Magnesium | 0.200 | 0.800 | 0.200 | υ | | Potassium | 0.400 | 1.60 | 0.400 | υ | | Selenium | 0.00400 | 0.0160 | 0.00589 | F | | Sodium | 0.200 | 0.800 | 0.200 | υ | U = Result is less than MDL. F = Result is between MDL and RL. ^{* =} Result is above RL. Login Number:L16050013 Run Date:05/13/2016 Sample ID:WG568892-21 Instrument ID:ICP-THERMO3 Run Time:18:19 Method:6010C File ID:T3.051316.181909 Analyst:JYH Units:mg/L Workgroup (AAB#):WG567345 Cal ID:ICP-TH - 13-MAY-16 Matrix:WATER QAPP:DOD4 | Analytes | MDL | RDL | Concentration | Qualifier | |-----------|---------|--------|---------------|-----------| | Aluminum | 0.0400 | 0.160 | 0.0400 | υ | | Beryllium | 0.00400 | 0.0160 | 0.00400 | Ū | | Calcium | 0.100 | 0.400 | 0.100 | Ū | | Iron | 0.0400 | 0.160 | 0.0400 | U | | Magnesium | 0.200 | 0.800 | 0.200 | U | | Potassium | 0.400 | 1.60 | 0.400 | Ū | | Selenium | 0.00400 | 0.0160 | 0.00400 | Ū | | Sodium | 0.200 | 0.800 | 0.200 | Ū | U = Result is less than MDL. F = Result is between MDL and RL. ^{* =} Result is above RL. Login Number: L16050013 Run Date: 05/16/2016 Sample ID: WG568963-13 Instrument ID: ICP-THERMO3 Run Time: 10:29 Method: 6010C File ID: T3.051616.102941 Analyst: Units: Units: WG567345 Workgroup (AAB#): WG567345 Cal ID: ICP-TH - 16-MAY-16 Matrix: WATER QAPP: DOD4 | Analytes | MDL RDL Concentration | | Qualifier | | |-----------|-----------------------|--------|-----------|---| | Aluminum | 0.0400 | 0.160 | 0.0400 | υ | | Beryllium | 0.00400 | 0.0160 | 0.00400 | υ | | Calcium | 0.100 | 0.400 | 0.100 | υ | | Iron | 0.0400 | 0.160 | 0.0400 | υ | | Magnesium | 0.200 | 0.800 | 0.200 | υ | | Potassium | 0.400 | 1.60 | 0.400 | υ | | Selenium | 0.00400 | 0.0160 | 0.00400 | υ | | Sodium | 0.200 | 0.800 | 0.200 | υ | U = Result is less than MDL. F = Result is between MDL and RL. * = Result is above RL. Login Number: L16050013 Run Date: 05/16/2016 Sample ID: WG568963-17 Instrument ID: ICP-THERMO3 Run Time: 11:48 Method: 6010C File ID: T3.051616.114845 Analyst: JYH Units: mg/L Workgroup (AAB#): WG567345 Cal ID: ICP-TH - 16-MAY-16 QAPP:DOD4 0.00400 0.200 0.0160 0.800 0.00400 0.200 U U Qualifier Analytes MDL RDL Concentration Aluminum 0.0400 0.160 0.0400 Ū Beryllium 0.00400 0.0160 0.00400 U Calcium 0.400 υ 0.100 0.100 Iron 0.0400 0.160 0.0400 U 0.800 0.200 Magnesium 0.200 υ Potassium 0.400 1.60 0.400 U Matrix:WATER Selenium Sodium U = Result is less than MDL. F = Result is between MDL and RL. ^{* =} Result is above RL. Login Number: L16050013 Run Date: 05/16/2016 Sample ID: WG568963-21 Instrument ID: ICP-THERMO3 Run Time: 12:39 Method: 6010C File ID: T3.051616.123938 Analyst: JYH Units: Units: Mg/L Workgroup (AAB#): WG567345 Cal ID: ICP-TH - 16-MAY-16 QAPP: DOD4 | Analytes | MDL RDL Concentration | | Qualifier | | |-----------|-----------------------|--------|-----------|---| | Aluminum | 0.0400 | 0.160 | 0.0400 | υ | | Beryllium | 0.00400 | 0.0160 | 0.00400 | υ | | Calcium | 0.100 | 0.400 | 0.100 | υ | | Iron | 0.0400 | 0.160 | 0.0400 | υ | | Magnesium | 0.200 | 0.800 | 0.200 | υ | | Potassium | 0.400 | 1.60 | 0.400 | υ | | Selenium | 0.00400 | 0.0160 | 0.00400 | υ | | Sodium | 0.200 | 0.800 | 0.200 | υ | U = Result is less than MDL. F = Result is between MDL and RL. ^{* =} Result is above RL. Login Number: L16050013 Run Date: 05/16/2016 Sample ID: WG568963-50 Instrument ID: ICP-THERMO3 Run Time: 21:58 Method: 6010C File ID: T3.051616.215803 Analyst: JYH Units: mg/L Workgroup (AAB#): WG567345 Cal ID: ICP-TH - 16-MAY-16 ICP-TH - 16-MAY-16 QAPP:DOD4 0.200 0.800 0.200 U | Analytes | MDL | RDL | Concentration | Qualifier | |-----------|---------|--------|---------------|-----------| | Aluminum | 0.0400 | 0.160 | 0.0400 | Ū | | Beryllium | 0.00400 | 0.0160 | 0.00400 | Ū | | Calcium | 0.100 | 0.400 | 0.100 | Ū | | Iron | 0.0400 | 0.160 | 0.0400 | Ū | | Magnesium | 0.200 | 0.800 | 0.200 | Ū | | Potassium | 0.400 | 1.60 | 0.400 | υ | | Selenium | 0.00400 | 0.0160 | 0.00400 | Ū | U = Result is less than MDL. Matrix:WATER Sodium F = Result is between MDL and RL. ^{* =} Result is above RL. Login Number: L16050013 Run Date: 05/16/2016 Sample ID: WG568963-54 Instrument ID: ICP-THERMO3 Run Time: 22:13 Method: 6010C File ID: T3.051616.221321 Analyst: JYH Units: Units: Mg/L Workgroup (AAB#): WG567345 Cal ID: ICP-TH - 16-MAY-16 QAPP: DOD4 | Analytes | MDL RDL Concentration | | Qualifier | | |-----------|-----------------------|--------|-----------|---| | Aluminum | 0.0400 | 0.160 | 0.0400 | υ | | Beryllium | 0.00400 | 0.0160 | 0.00400 | υ | | Calcium | 0.100 | 0.400 | 0.100 | υ | | Iron | 0.0400 | 0.160 | 0.0400 | υ | | Magnesium | 0.200 | 0.800 | 0.200 | υ | | Potassium | 0.400 | 1.60 | 0.400 | υ | | Selenium | 0.00400 | 0.0160 | 0.00400 | υ | | Sodium | 0.200 | 0.800 | 0.200 | υ | U = Result is less than MDL. F = Result is between MDL and RL. ^{* =} Result is above RL. Login Number: L16050013 Run Date: 05/17/2016 Sample ID: WG569211-13 Instrument ID: ICP-THERMO3 Run Time: 10:46 Method: 6010C File ID: T3.051716.104621 Analyst: JYH Units: mg/L Workgroup (AAB#): WG567345 Cal ID: ICP-TH - 17-MAY-16 Workgroup (AAB#):WG567345 Cal ID:ICP-TH - 17-MAY-16 Matrix:WATER QAPP:DOD4 | Analytes | MDL | RDL Concentration | | Qualifier | |-----------|---------|-------------------|---------|-----------| | Aluminum | 0.0400 | 0.160 | 0.0400 | υ | | Beryllium | 0.00400 | 0.0160 | 0.00400 | υ | | Calcium | 0.100 | 0.400 | 0.100 | υ | | Iron | 0.0400 | 0.160 | 0.0400 | υ | | Magnesium | 0.200 | 0.800 | 0.200 | υ | | Potassium | 0.400 | 1.60 | 0.400 | υ | | Selenium | 0.00400 | 0.0160 | 0.00400 | υ | | Sodium | 0.200 | 0.800 | 0.200 | υ | U = Result is less than MDL. F = Result is between MDL and RL. ^{* =} Result is above RL. Login Number: L16050013 Run Date: 05/17/2016 Sample ID: WG569211-15 Instrument ID: ICP-THERMO3 Run Time: 11:34 Method: 6010C File ID: T3.051716.113428 Analyst: Units: Units: WG567345 Workgroup (AAB#): WG567345 Cal ID: ICP-TH - 17-MAY-16 Matrix: WATER QAPP: DOD4 | Analytes | MDL | RDL | Concentration | Qualifier | |-----------|---------|--------|---------------|-----------| | Aluminum | 0.0400 | 0.160 | 0.0400 | υ | | Beryllium | 0.00400 | 0.0160 | 0.00400 | υ | | Calcium | 0.100 | 0.400 | 0.100 | υ | | Iron | 0.0400 | 0.160 | 0.0400 | υ | | Magnesium | 0.200 | 0.800 | 0.200 | υ | | Potassium | 0.400 | 1.60 | 0.400 | υ | | Selenium | 0.00400 | 0.0160 | 0.00400 | υ | | Sodium | 0.200 | 0.800 | 0.200 | υ | U = Result is less than MDL. F = Result is between MDL and RL. * = Result is above RL. Login Number: L16050013 Run Date: 05/17/2016 Sample ID: WG569211-18 Instrument ID: ICP-THERMO3 Run Time: 12:26 Analyst: JYH Method: 6010C Units:mg/L Workgroup (AAB#):WG567345 Cal ID:ICP-TH - 17-MAY-16 Matrix:WATER QAPP:DOD4 | Analytes | MDL | RDL | RDL Concentration | | |-----------|---------|--------|-------------------|---| | Aluminum | 0.0400 | 0.160 | 0.0400 | υ | | Beryllium | 0.00400 | 0.0160 | 0.00400 | υ | | Calcium | 0.100 | 0.400 | 0.100 | υ | | Iron | 0.0400 | 0.160 | 0.0400 | υ | | Magnesium | 0.200 | 0.800 | 0.200 | υ | | Potassium | 0.400 | 1.60 | 0.400 | υ | | Selenium | 0.00400 | 0.0160 | 0.00400 | υ | | Sodium | 0.200 | 0.800 | 0.200 | υ | U = Result is less than MDL. F = Result is between MDL and RL. * = Result is above RL. CCB - Modified 03/05/2008 PDF File ID: 4763330 Report generated
05/17/2016 14:19 Login Number: <u>L16050013</u> Run Date: <u>05/17/2016</u> Sample ID: <u>WG569211-22</u> Instrument ID: <u>ICP-THERMO3</u> Run Time: <u>12:42</u> Method: <u>6010C</u> File ID: <u>T3.051716.124243</u> Analyst: <u>JYH</u> Units: <u>mg/L</u> Workgroup (AAB#):WG567345 Cal ID:ICP-TH - 17-MAY-16 Matrix:WATER QAPP:DOD4 | Analytes | MDL RDL Concentration | | Qualifier | | |-----------|-----------------------|--------|-----------|---| | Aluminum | 0.0400 | 0.160 | 0.0400 | υ | | Beryllium | 0.00400 | 0.0160 | 0.00400 | υ | | Calcium | 0.100 | 0.400 | 0.100 | υ | | Iron | 0.0400 | 0.160 | 0.0400 | υ | | Magnesium | 0.200 | 0.800 | 0.200 | υ | | Potassium | 0.400 | 1.60 | 0.400 | υ | | Selenium | 0.00400 | 0.0160 | 0.00400 | υ | | Sodium | 0.200 | 0.800 | 0.200 | υ | U = Result is less than MDL. F = Result is between MDL and RL. ^{* =} Result is above RL. Login Number: L16050013 Run Date: 05/17/2016 Sample ID: WG569211-24 Instrument ID: ICP-THERMO3 Run Time: 13:06 Method: 6010C File ID: T3.051716.130652 Analyst: JYH Units: mg/L Workgroup (AAB#):WG567345 Cal ID:ICP-TH - 17-MAY-16 Matrix:WATER QAPP:DOD4 | Analytes | MDL RDL Concentration | | Qualifier | | |-----------|-----------------------|--------|-----------|---| | Aluminum | 0.0400 | 0.160 | 0.0400 | υ | | Beryllium | 0.00400 | 0.0160 | 0.00400 | υ | | Calcium | 0.100 | 0.400 | 0.100 | υ | | Iron | 0.0400 | 0.160 | 0.0400 | υ | | Magnesium | 0.200 | 0.800 | 0.200 | υ | | Potassium | 0.400 | 1.60 | 0.400 | υ | | Selenium | 0.00400 | 0.0160 | 0.00400 | υ | | Sodium | 0.200 | 0.800 | 0.200 | υ | U = Result is less than MDL. CCB - Modified 03/05/2008 PDF File ID: 4763330 Report generated 05/17/2016 14:19 F = Result is between MDL and RL. ^{* =} Result is above RL. Login Number: L16050013 Run Date: 05/17/2016 Sample ID: WG569211-30 Instrument ID: ICP-THERMO3 Run Time: 13:31 Method: 6010C File ID: T3.051716.133159 Analyst: JYH Units:mg/L Workgroup (AAB#):WG567345 Cal ID:ICP-TH - 17-MAY-16 Matrix:WATER QAPP:DOD4 | Analytes | MDL RDL Concentration | | Qualifier | | |-----------|-----------------------|--------|-----------|---| | Aluminum | 0.0400 | 0.160 | 0.0400 | υ | | Beryllium | 0.00400 | 0.0160 | 0.00400 | υ | | Calcium | 0.100 | 0.400 | 0.100 | υ | | Iron | 0.0400 | 0.160 | 0.0400 | υ | | Magnesium | 0.200 | 0.800 | 0.200 | υ | | Potassium | 0.400 | 1.60 | 0.400 | υ | | Selenium | 0.00400 | 0.0160 | 0.00400 | υ | | Sodium | 0.200 | 0.800 | 0.200 | υ | U = Result is less than MDL. F = Result is between MDL and RL. * = Result is above RL. # Microbac Laboratories Inc. INITIAL CALIBRATION VERIFICATION (ICV) (Alternate Source) Login Number: L16050013 Run Date: 05/13/2016 Sample ID: WG568892-06 Instrument ID: ICP-THERMO3 Run Time: 15:30 Method: 6010C File ID: T3.051316.153021 Analyst: JYH Units: mg/L Workgroup (AAB#):WG567345 Cal ID:ICP-TH - 13-MAY-16 QC Key: DOD4 | Analyte | | Expected | Found | %REC | LIMITS | Q | |-----------|--|----------|--------|------|----------|---| | Aluminum | | 10 | 10.3 | 103 | 90 - 110 | | | Beryllium | | .05 | 0.0512 | 102 | 90 - 110 | | | Calcium | | 10 | 10.2 | 102 | 90 - 110 | | | Iron | | 4 | 4.04 | 101 | 90 - 110 | | | Magnesium | | 10 | 10.3 | 103 | 90 - 110 | | | Potassium | | 50 | 50.4 | 101 | 90 - 110 | | | Selenium | | .4 | 0.403 | 101 | 90 - 110 | | | Sodium | | 50 | 50.7 | 101 | 90 - 110 | | ^{*} Exceeds LIMITS Limit # Microbac Laboratories Inc. INITIAL CALIBRATION VERIFICATION (ICV) (Alternate Source) Login Number: L16050013 Run Date: 05/16/2016 Sample ID: WG568963-06 Instrument ID: ICP-THERMO3 Run Time: 10:02 Method: 6010C File ID: T3.051616.100259 Analyst: JYH Units: Units: mg/L Workgroup (AAB#):WG567345 Cal ID:ICP-TH - 16-MAY-16 QC Key: DOD4 | Analyte | Expected | Found | %REC | LIMITS | Q | |-----------|----------|--------|------|----------|---| | Aluminum | 10 | 9.93 | 99.3 | 90 - 110 | | | Beryllium | .05 | 0.0492 | 98.3 | 90 - 110 | | | Calcium | 10 | 9.92 | 99.2 | 90 - 110 | | | Iron | 4 | 3.96 | 99.0 | 90 - 110 | | | Magnesium | 10 | 9.99 | 99.9 | 90 - 110 | | | Potassium | 50 | 49.8 | 99.7 | 90 - 110 | | | Selenium | .4 | 0.398 | 99.5 | 90 - 110 | | | Sodium | 50 | 49.9 | 99.7 | 90 - 110 | | ^{*} Exceeds LIMITS Limit # Microbac Laboratories Inc. INITIAL CALIBRATION VERIFICATION (ICV) (Alternate Source) Login Number: <u>L16050013</u> Run Date: <u>05/17/2016</u> Sample ID: <u>WG569211-06</u> Instrument ID: <u>ICP-THERMO3</u> Run Time: <u>10:14</u> Method: <u>6010C</u> File ID: <u>T3.051716.101408</u> Analyst: <u>JYH</u> Units: <u>mg/L</u> Workgroup (AAB#):WG567345 Cal ID:ICP-TH - 17-MAY-16 QC Key: DOD4 | Analyte | Expected | Found | %REC | LIMITS | Q | |-----------|----------|--------|------|----------|---| | Aluminum | 10 | 10.2 | 102 | 90 - 110 | | | Beryllium | .05 | 0.0512 | 102 | 90 - 110 | | | Calcium | 10 | 10.1 | 101 | 90 - 110 | | | Iron | 4 | 4.00 | 100 | 90 - 110 | | | Magnesium | 10 | 10.1 | 101 | 90 - 110 | | | Potassium | 50 | 50.2 | 100 | 90 - 110 | | | Selenium | .4 | 0.410 | 103 | 90 - 110 | | | Sodium | 50 | 50.2 | 100 | 90 - 110 | | ^{*} Exceeds LIMITS Limit | Analyte | Expected | Found | UNITS | %REC | LIMITS | Q | |-----------|----------|--------|-------|------|----------|---| | Aluminum | 10.0 | 9.40 | mg/L | 94.0 | 90 - 110 | | | Beryllium | 0.0500 | 0.0471 | mg/L | 94.2 | 90 - 110 | | | Calcium | 10.0 | 9.61 | mg/L | 96.1 | 90 - 110 | | | Iron | 4.00 | 3.79 | mg/L | 94.9 | 90 - 110 | | | Magnesium | 10.0 | 9.51 | mg/L | 95.1 | 90 - 110 | | | Potassium | 50.0 | 47.8 | mg/L | 95.6 | 90 - 110 | | | Selenium | 0.400 | 0.382 | mg/L | 95.4 | 90 - 110 | | | Sodium | 50.0 | 47.8 | mg/L | 95.6 | 90 - 110 | | ^{*} Exceeds LIMITS Criteria Login Number:L16050013 Run Date:05/13/2016 Sample ID:WG568892-16 Instrument ID:ICP-THERMO3 Run Time:17:20 Method:6010C File ID:T3.051316.172011 Analyst:JYH QC Key:DOD4 Workgroup (AAB#):WG567345 Cal ID:ICP-TH - 13-MAY-16 Matrix:WATER | Analyte | Expected | Found | UNITS | %REC | LIMITS | Q | |-----------|----------|--------|-------|------|----------|---| | Aluminum | 10.0 | 9.43 | mg/L | 94.3 | 90 - 110 | | | Beryllium | 0.0500 | 0.0470 | mg/L | 94.0 | 90 - 110 | | | Calcium | 10.0 | 9.50 | mg/L | 95.0 | 90 - 110 | | | Iron | 4.00 | 3.79 | mg/L | 94.7 | 90 - 110 | | | Magnesium | 10.0 | 9.44 | mg/L | 94.4 | 90 - 110 | | | Potassium | 50.0 | 47.6 | mg/L | 95.3 | 90 - 110 | | | Selenium | 0.400 | 0.384 | mg/L | 96.0 | 90 - 110 | | | Sodium | 50.0 | 48.0 | mg/L | 96.0 | 90 - 110 | | ^{*} Exceeds LIMITS Criteria Login Number: L16050013 Run Date: 05/13/2016 Sample ID: WG568892-20 Instrument ID: ICP-THERMO3 Run Time: 18:15 Method: 6010C File ID: T3.051316.181526 Analyst: JYH QC Key: DOD4 Workgroup (AAB#): WG567345 Cal ID: ICP-TH - 13-MAY-16 | Analyte | Expected | Found | UNITS | %REC | LIMITS | Q | |-----------|----------|--------|-------|------|----------|---| | Aluminum | 10.0 | 10.2 | mg/L | 102 | 90 - 110 | | | Beryllium | 0.0500 | 0.0503 | mg/L | 101 | 90 - 110 | | | Calcium | 10.0 | 10.3 | mg/L | 103 | 90 - 110 | | | Iron | 4.00 | 4.12 | mg/L | 103 | 90 - 110 | | | Magnesium | 10.0 | 10.2 | mg/L | 102 | 90 - 110 | | | Potassium | 50.0 | 50.9 | mg/L | 102 | 90 - 110 | | | Selenium | 0.400 | 0.399 | mg/L | 99.6 | 90 - 110 | | 50.0 51.2 mg/L Sodium Matrix:WATER CCV - Modified 03/05/2008 PDF File ID: 4763329 Report generated 05/17/2016 14:19 102 90 - 110 ^{*} Exceeds LIMITS Criteria Login Number: L16050013 Run Date: 05/16/2016 Sample ID: WG568963-12 Instrument ID: ICP-THERMO3 Run Time: 10:26 Method: 6010C File ID: T3.051616.102603 Analyst: JYH QC Key: DOD4 Workgroup (AAB#): WG567345 Cal ID: ICP-TH - 16-MAY-16 Matrix: WATER | Analyte | Expected | Found | UNITS | %REC | LIMITS | Q | |-----------|----------|--------|-------|------|----------|---| | Aluminum | 10.0 | 10.0 | mg/L | 100 | 90 - 110 | | | Beryllium | 0.0500 | 0.0501 | mg/L | 100 | 90 - 110 | | | Calcium | 10.0 | 10.1 | mg/L | 101 | 90 - 110 | | | Iron | 4.00 | 4.04 | mg/L | 101 | 90 - 110 | | | Magnesium | 10.0 | 10.2 | mg/L | 102 | 90 - 110 | | | Potassium | 50.0 | 50.3 | mg/L | 101 | 90 - 110 | | | Selenium | 0.400 | 0.401 | mg/L | 100 | 90 - 110 | | | Sodium | 50.0 | 50.6 | mg/L | 101 | 90 - 110 | | ^{*} Exceeds LIMITS Criteria | Analyte | Expected | Found | UNITS | %REC | LIMITS | Q | |-----------|----------|--------|-------|------|----------|---| | Aluminum | 10.0 | 9.81 | mg/L | 98.1 | 90 - 110 | | | Beryllium | 0.0500 | 0.0489 | mg/L | 97.7 | 90 - 110 | | | Calcium | 10.0 | 9.76 | mg/L | 97.6 | 90 - 110 | | | Iron | 4.00 | 3.99 | mg/L | 99.7 | 90 - 110 | | | Magnesium | 10.0 | 9.82 | mg/L | 98.2 | 90 - 110 | | | Potassium | 50.0 | 49.4 | mg/L | 98.8 | 90 - 110 | | | Selenium | 0.400 | 0.391 | mg/L | 97.9 | 90 - 110 | | | Sodium | 50.0 | 49.9 | mg/L | 99.7 | 90 - 110 | | ^{*} Exceeds LIMITS Criteria | Analyte | Expected | Found | UNITS | %REC | LIMITS | - | Q | |-----------|----------|--------|-------|------|----------|---|---| | Aluminum | 10.0 | 10.6 | mg/L | 106 | 90 - 110 | | | | Beryllium | 0.0500 | 0.0524 | mg/L | 105 | 90 - 110 | | | | Calcium | 10.0 | 10.3 | mg/L | 103 | 90 - 110 | | | | Iron | 4.00 | 4.30 | mg/L | 108 | 90 - 110 | | | | Magnesium | 10.0 | 10.7 | mg/L | 107 | 90 - 110 | | | | Potassium | 50.0 | 52.4 | mg/L | 105 | 90 - 110 | | | | Selenium | 0.400 | 0.406 | mg/L | 102 | 90 - 110 | | | | Sodium | 50.0 | 53.1 | mg/L | 106 | 90 - 110 | | | ^{*} Exceeds LIMITS Criteria | Analyte | Expected | Found | UNITS | %REC | LIMITS | Q | |-----------|----------|--------|-------|------|----------|---| | Aluminum | 10.0 | 9.46 | mg/L | 94.6 | 90 - 110 | | | Beryllium | 0.0500 | 0.0465 | mg/L | 93.1 | 90 - 110 | | | Calcium | 10.0 | 9.37 | mg/L | 93.7 | 90 - 110 | | | Iron | 4.00 | 3.81 | mg/L | 95.2 | 90 - 110 | | | Magnesium | 10.0 | 9.51 | mg/L | 95.1 | 90 - 110 | | | Potassium | 50.0 | 46.5 | mg/L | 93.0 | 90 - 110 | | | Selenium | 0.400 | 0.365 | mg/L | 91.2 | 90 - 110 | | | Sodium | 50.0 | 46.8 | mg/L | 93.5 | 90 - 110 | | ^{*} Exceeds LIMITS Criteria | Analyte | Expected | Found |
UNITS | %REC | LIMITS | Q | |-----------|----------|--------|-------|------|----------|---| | Aluminum | 10.0 | 9.41 | mg/L | 94.1 | 90 - 110 | | | Beryllium | 0.0500 | 0.0463 | mg/L | 92.6 | 90 - 110 | | | Calcium | 10.0 | 9.12 | mg/L | 91.2 | 90 - 110 | | | Iron | 4.00 | 3.77 | mg/L | 94.3 | 90 - 110 | | | Magnesium | 10.0 | 9.49 | mg/L | 94.9 | 90 - 110 | | | Potassium | 50.0 | 46.6 | mg/L | 93.2 | 90 - 110 | | | Selenium | 0.400 | 0.364 | mg/L | 90.9 | 90 - 110 | | | Sodium | 50.0 | 47.0 | mg/L | 93.9 | 90 - 110 | | ^{*} Exceeds LIMITS Criteria Login Number:L16050013 Run Date:05/17/2016 Sample ID:WG569211-12 Instrument ID:ICP-THERMO3 Run Time:10:42 Method:6010C File ID:T3.051716.104236 Analyst:JYH QC Key:DOD4 Workgroup (AAB#):WG567345 Cal ID:ICP-TH - 17-MAY-16 Matrix:WATER | Analyte | Expected | Found | UNITS | %REC | LIMITS | Q | |-----------|----------|--------|-------|------|----------|---| | Aluminum | 10.0 | 9.10 | mg/L | 91.0 | 90 - 110 | | | Beryllium | 0.0500 | 0.0458 | mg/L | 91.6 | 90 - 110 | | | Calcium | 10.0 | 9.16 | mg/L | 91.6 | 90 - 110 | | | Iron | 4.00 | 3.67 | mg/L | 91.8 | 90 - 110 | | | Magnesium | 10.0 | 9.17 | mg/L | 91.7 | 90 - 110 | | | Potassium | 50.0 | 46.5 | mg/L | 93.0 | 90 - 110 | | | Selenium | 0.400 | 0.360 | mg/L | 89.9 | 90 - 110 | * | | Sodium | 50.0 | 46.6 | mg/L | 93.2 | 90 - 110 | | ^{*} Exceeds LIMITS Criteria Login Number:L16050013 Run Date:05/17/2016 Sample ID:WG569211-14 Instrument ID:ICP-THERMO3 Run Time:11:30 Method:6010C File ID:T3.051716.113044 Analyst:JYH QC Key:DOD4 Workgroup (AAB#):WG567345 Cal ID:ICP-TH - 17-MAY-16 Matrix:WATER | Analyte | Expected | Found | UNITS | %REC | LIMITS | Q | |-----------|----------|--------|-------|------|----------|---| | Aluminum | 10.0 | 9.15 | mg/L | 91.5 | 90 - 110 | | | Beryllium | 0.0500 | 0.0465 | mg/L | 92.9 | 90 - 110 | | | Calcium | 10.0 | 9.25 | mg/L | 92.5 | 90 - 110 | | | Iron | 4.00 | 3.68 | mg/L | 92.1 | 90 - 110 | | | Magnesium | 10.0 | 9.25 | mg/L | 92.5 | 90 - 110 | | | Potassium | 50.0 | 47.3 | mg/L | 94.6 | 90 - 110 | | | Selenium | 0.400 | 0.373 | mg/L | 93.2 | 90 - 110 | | | Sodium | 50.0 | 47.2 | mg/L | 94.4 | 90 - 110 | | ^{*} Exceeds LIMITS Criteria Login Number:L16050013 Run Date:05/17/2016 Sample ID:WG569211-17 Instrument ID:ICP-THERMO3 Run Time:12:23 Method:6010C File ID:T3.051716.122310 Analyst:JYH QC Key:DOD4 Workgroup (AAB#):WG567345 Cal ID:ICP-TH - 17-MAY-16 Matrix:WATER | Analyte | Expected | Found | UNITS | %REC | LIMITS | Q | |-----------|----------|--------|-------|------|----------|---| | Aluminum | 10.0 | 9.14 | mg/L | 91.4 | 90 - 110 | | | Beryllium | 0.0500 | 0.0462 | mg/L | 92.4 | 90 - 110 | | | Calcium | 10.0 | 9.13 | mg/L | 91.3 | 90 - 110 | | | Iron | 4.00 | 3.67 | mg/L | 91.8 | 90 - 110 | | | Magnesium | 10.0 | 9.14 | mg/L | 91.4 | 90 - 110 | | | Potassium | 50.0 | 46.9 | mg/L | 93.7 | 90 - 110 | | | Selenium | 0.400 | 0.363 | mg/L | 90.7 | 90 - 110 | | | Sodium | 50.0 | 46.9 | mg/L | 93.9 | 90 - 110 | | ^{*} Exceeds LIMITS Criteria Login Number:L16050013 Run Date:05/17/2016 Sample ID:WG569211-21 Instrument ID:ICP-THERMO3 Run Time:12:38 Method:6010C File ID:T3.051716.123857 Analyst:JYH QC Key:DOD4 Workgroup (AAB#):WG567345 Cal ID:ICP-TH - 17-MAY-16 Matrix:WATER | Analyte | Expected | Found | UNITS | %REC | LIMITS | Q | |-----------|----------|--------|-------|------|----------|---| | Aluminum | 10.0 | 9.46 | mg/L | 94.6 | 90 - 110 | | | Beryllium | 0.0500 | 0.0476 | mg/L | 95.1 | 90 - 110 | | | Calcium | 10.0 | 9.47 | mg/L | 94.7 | 90 - 110 | | | Iron | 4.00 | 3.87 | mg/L | 96.8 | 90 - 110 | | | Magnesium | 10.0 | 9.50 | mg/L | 95.0 | 90 - 110 | | | Potassium | 50.0 | 48.4 | mg/L | 96.9 | 90 - 110 | | | Selenium | 0.400 | 0.380 | mg/L | 95.0 | 90 - 110 | | | Sodium | 50.0 | 48.7 | mg/L | 97.3 | 90 - 110 | | ^{*} Exceeds LIMITS Criteria Login Number:L16050013 Run Date:05/17/2016 Sample ID:WG569211-23 Instrument ID:ICP-THERMO3 Run Time:13:03 Method:6010C File ID:T3.051716.130308 Analyst:JYH QC Key:DOD4 Workgroup (AAB#):WG567345 Cal ID:ICP-TH - 17-MAY-16 Matrix:WATER | Analyte | Expected | Found | UNITS | %REC | LIMITS | Q | |-----------|----------|--------|-------|------|----------|---| | Aluminum | 10.0 | 9.54 | mg/L | 95.4 | 90 - 110 | | | Beryllium | 0.0500 | 0.0481 | mg/L | 96.1 | 90 - 110 | | | Calcium | 10.0 | 9.50 | mg/L | 95.0 | 90 - 110 | | | Iron | 4.00 | 3.89 | mg/L | 97.2 | 90 - 110 | | | Magnesium | 10.0 | 9.63 | mg/L | 96.3 | 90 - 110 | | | Potassium | 50.0 | 48.6 | mg/L | 97.3 | 90 - 110 | | | Selenium | 0.400 | 0.379 | mg/L | 94.6 | 90 - 110 | | | Sodium | 50.0 | 48.8 | mg/L | 97.6 | 90 - 110 | | ^{*} Exceeds LIMITS Criteria Login Number: L16050013 Run Date: 05/17/2016 Sample ID: WG569211-29 Instrument ID: ICP-THERMO3 Run Time: 13:28 Method: 6010C File ID: T3.051716.132814 Analyst: JYH QC Key: DOD4 Workgroup (AAB#): WG567345 Cal ID: ICP-TH - 17-MAY-16 | Analyte | Expected | Found | UNITS | %REC | LIMITS | Q | |-----------|----------|--------|-------|------|----------|---| | Aluminum | 10.0 | 9.34 | mg/L | 93.4 | 90 - 110 | | | Beryllium | 0.0500 | 0.0469 | mg/L | 93.8 | 90 - 110 | | | Calcium | 10.0 | 9.26 | mg/L | 92.6 | 90 - 110 | | | Iron | 4.00 | 3.79 | mg/L | 94.9 | 90 - 110 | | | Magnesium | 10.0 | 9.54 | mg/L | 95.4 | 90 - 110 | | | Potassium | 50.0 | 47.6 | mg/L | 95.1 | 90 - 110 | | | Selenium | 0.400 | 0.378 | mg/L | 94.4 | 90 - 110 | | | Sodium | 50.0 | 47.7 | mg/L | 95.3 | 90 - 110 | | ^{*} Exceeds LIMITS Criteria Matrix:WATER #### Microbac Laboratories Inc. LOW LEVEL CALIBRATION VERIFICATION Login Number: L16050013 Run Date: 05/13/2016 Sample ID: WG568892-08 Instrument ID: ICP-THERMO3 Run Time: 15:38 Method: 6010C File ID: T3.051316.153808 Analyst: JYH QC Key: DOD4 Workgroup (AAB#):WG567345 Cal ID:ICP-TH - 13-MAY-16 Matrix:WATER | Analyte | Expected | Found | UNITS | %REC | LIMITS | Q | |-----------|----------|---------|-------|------|----------|---| | Aluminum | 0.160 | 0.176 | mg/L | 110 | 70 - 130 | | | Beryllium | 0.00160 | 0.00165 | mg/L | 103 | 70 - 130 | | | Calcium | 0.400 | 0.408 | mg/L | 102 | 70 - 130 | | | Iron | 0.0800 | 0.0790 | mg/L | 98.7 | 70 - 130 | | | Potassium | 0.800 | 0.876 | mg/L | 110 | 70 - 130 | | | Selenium | 0.0160 | 0.0173 | mg/L | 108 | 70 - 130 | | | Sodium | 0.400 | 0.419 | mg/L | 105 | 70 - 130 | | ^{*} Exceeds LIMITS Criteria Login Number: L16050013 Run Date: 05/13/2016 Sample ID: WG568892-18 Instrument ID: ICP-THERMO3 Run Time: Method: 6010C File ID: T3.051316.172800 Analyst: QC Key: DOD4 Workgroup (AAB#): WG567345 Cal ID: ICP-TH - 13-MAY-16 Matrix: WATER | Analyte | Expected | Found | UNITS | %REC | LIMITS | Q | |-----------|----------|---------|-------|------|----------|---| | Aluminum | 0.160 | 0.166 | mg/L | 104 | 70 - 130 | | | Beryllium | 0.00160 | 0.00164 | mg/L | 103 | 70 - 130 | | | Calcium | 0.400 | 0.387 | mg/L | 96.9 | 70 - 130 | | | Iron | 0.0800 | 0.0690 | mg/L | 86.2 | 70 - 130 | | | Potassium | 0.800 | 0.799 | mg/L | 99.9 | 70 - 130 | | | Selenium | 0.0160 | 0.0179 | mg/L | 112 | 70 - 130 | | | Sodium | 0.400 | 0.437 | mg/L | 109 | 70 - 130 | | ^{*} Exceeds LIMITS Criteria Login Number: L16050013 Run Date: 05/13/2016 Sample ID: WG568892-22 Instrument ID: ICP-THERMO3 Run Time: 18:23 Method: 6010C File ID: T3.051316.182316 Analyst: JYH QC Key: DOD4 Workgroup (AAB#): WG567345 Cal ID: ICP-TH - 13-MAY-16 Cal ID: ICP-TH - 13-MAY-16 | Analyte | Expected | Found | UNITS | %REC | LIMITS | Q | |-----------|----------|---------|-------|------|----------|---| | Aluminum | 0.160 | 0.183 | mg/L | 114 | 70 - 130 | | | Beryllium | 0.00160 | 0.00172 | mg/L | 108 | 70 - 130 | | | Calcium | 0.400 | 0.408 | mg/L | 102 | 70 - 130 | | | Iron | 0.0800 | 0.0703 | mg/L | 87.9 | 70 - 130 | | | Potassium | 0.800 | 0.960 | mg/L | 120 | 70 - 130 | | | Selenium | 0.0160 | 0.0173 | mg/L | 108 | 70 - 130 | | | Sodium | 0.400 | 0.411 | mg/L | 103 | 70 - 130 | | ^{*} Exceeds LIMITS Criteria | Analyte | Expected | Found | UNITS | %REC | LIMITS | Q | |---------|----------|-------|-------|------|----------|---| | Calcium | 0.400 | 0.380 | mg/L | 95.1 | 70 - 130 | | | Sodium | 0.400 | 0.404 | mg/L | 101 | 70 - 130 | | ^{*} Exceeds LIMITS Criteria | Analyte | Expected | Found | UNITS | %REC | LIMITS | Q | |---------|----------|--------|-------|------|----------|---| | Iron | 0.100 | 0.0990 | mg/L | 99.0 | 70 - 130 | | ^{*} Exceeds LIMITS Criteria | Analyte | Expected | Found | UNITS | %REC | LIMITS | Q | |---------|----------|-------|-------|------|----------|---| | Calcium | 0.400 | 0.372 | mg/L | 93.1 | 70 - 130 | | | Sodium | 0.400 | 0.450 | mg/L | 113 | 70 - 130 | | ^{*} Exceeds LIMITS Criteria Login Number: L16050013 Run Date: 05/16/2016 Sample ID: WG568963-19 Instrument ID: ICP-THERMO3 Run Time: Method: 6010C File ID: T3.051616.115644 Analyst: QC Key: DOD4 Workgroup (AAB#): WG567345 Cal ID: ICP-TH - 16-MAY-16 Matrix: WATER | Analyte | Expected | Found | UNITS | %REC | LIMITS | Q | |---------|----------|-------|-------|------|----------|---| | Iron | 0.100 | 0.107 | mg/L | 107 | 70 - 130 | | ^{*} Exceeds LIMITS Criteria | Analyte | Expected | Found | UNITS | %REC | LIMITS | Q | |---------|----------|--------|-------|------|----------|---| | Calcium | 0.400 | 0.381 | mg/L | 95.4 | 70 - 130 | | | Iron | 0.0800 | 0.0996 | mg/L | 125 | 70 - 130 | | | Sodium | 0.400 | 0.393 | mg/L | 98.3 | 70 - 130 | | ^{*} Exceeds LIMITS Criteria Login Number:L16050013 Run Date:05/17/2016 Sample ID:WG569211-09 Instrument ID:ICP-THERMO3 Run Time:10:30 Method:6010C File ID:T3.051716.103037 Analyst:JYH QC Key:DOD4 Workgroup (AAB#):WG567345 Cal ID:ICP-TH - 17-MAY-16 Matrix:WATER | Analyte | | Expected | Found | UNITS | %REC | LIMITS | Q | |-----------|--|----------|-------|-------|------|----------|---| | Magnesium | | 0.500 | 0.434 | mg/L | 86.8 | 70 - 130 | | * Exceeds LIMITS Criteria Login Number:L16050013 Run Date:05/17/2016 Sample ID:WG569211-16 Instrument ID:ICP-THERMO3 Run Time:11:38 Method:6010C File ID:T3.051716.113835 Analyst:JYH QC Key:DOD4 Workgroup
(AAB#):WG567345 Cal ID:ICP-TH - 17-MAY-16 Matrix:WATER | Analyte | | Expected | Found | UNITS | %REC | LIMITS | Q | |-----------|--|----------|-------|-------|------|----------|---| | Magnesium | | 0.500 | 0.363 | mg/L | 72.7 | 70 - 130 | | ^{*} Exceeds LIMITS Criteria Method: 6010C Login number: L16050013 Workgroup (AAB#): WG567345 Instrument ID: ICP-THERMO3 Sol. A: WG568892-10 File ID: T3.051316.154612 Units: mg/L Sol. AB: WG568892-11 File ID: T3.051316.155010 Matrix: Water | | | Sol. A | | | Sol. AB | | | |-----------|------|-----------|-----------|-------|---------|-----------|---| | ANALYTE | True | Found | %Recovery | True | Found | %Recovery | Q | | Aluminum | 250 | 264 | 106 | 250 | 262 | 105 | | | Beryllium | NS | 0.0000500 | NS | 0.250 | 0.250 | 100 | | | Calcium | 250 | 246 | 98.4 | 250 | 242 | 96.8 | | | Iron | 100 | 97.2 | 97.2 | 100 | 94.5 | 94.5 | | | Magnesium | 250 | 252 | 101 | 250 | 246 | 98.4 | | | Potassium | NS | 0.176 | NS | 5.00 | 5.23 | 105 | | | Selenium | NS | 0.00329 | NS | 0.250 | 0.245 | 98.0 | | | Sodium | NS | 0.0290 | NS | 5.00 | 5.16 | 103 | | #### NS = Not spiked - * = Recovery of spiked element is outside acceptance limit of 80% 120% of true value. - # = Result for unspiked element is outside the acceptance limits of (+/-) the project reporting limit (RL). - + = Result for unspiked element is outside the acceptance limits of (+/-) 2 times the project method detection limit (MDL). This criteria is only applicable to specific QAPPs. Login number: L16050013 Workgroup (AAB#): WG567345 Instrument ID: ICP-THERMO3 Method: 6010C File ID: T3.051616.101822 **Sol. A:** WG568963-10 Units:mg/L File ID: T3.051616.102217 **Sol. AB**: WG568963-11 Matrix: Water | | | Sol. A | | | Sol. AB | | | |-----------|------|------------|-----------|-------|---------|-----------|---| | ANALYTE | True | Found | %Recovery | True | Found | %Recovery | Q | | Aluminum | 250 | 268 | 107 | 250 | 269 | 108 | | | Beryllium | NS | -0.0000500 | NS | 0.250 | 0.254 | 102 | | | Calcium | 250 | 246 | 98.4 | 250 | 243 | 97.2 | | | Iron | 100 | 97.9 | 97.9 | 100 | 96.5 | 96.5 | | | Magnesium | 250 | 250 | 100 | 250 | 246 | 98.4 | | | Potassium | NS | 0.115 | NS | 5.00 | 5.30 | 106 | | | Selenium | NS | -0.00535 | NS | 0.250 | 0.244 | 97.6 | | | Sodium | NS | 0.0195 | NS | 5.00 | 5.23 | 105 | | - * = Recovery of spiked element is outside acceptance limit of 80% 120% of true value. - # = Result for unspiked element is outside the acceptance limits of (+/-) the project reporting limit (RL). - + = Result for unspiked element is outside the acceptance limits of (+/-) 2 times the project method detection limit (MDL). This criteria is only applicable to specific QAPPs. Login number: L16050013 Workgroup (AAB#): WG567345 Instrument ID: ICP-THERMO3 Method: 6010C File ID: T3.051616.220203 **Sol. A:** WG568963-51 Units:mg/L File ID: T3.051616.220559 **Sol. AB**: <u>WG568963-52</u> Matrix: Water | | | Sol. A | | | Sol. AB | | | |-----------|------|-----------|-----------|-------|---------|-----------|---| | ANALYTE | True | Found | %Recovery | True | Found | %Recovery | Q | | Aluminum | 250 | 272 | 109 | 250 | 272 | 109 | | | Beryllium | NS | 0.0000100 | NS | 0.250 | 0.257 | 103 | | | Calcium | 250 | 245 | 98.0 | 250 | 244 | 97.6 | | | Iron | 100 | 100 | 100 | 100 | 97.8 | 97.8 | | | Magnesium | 250 | 254 | 102 | 250 | 249 | 99.6 | | | Potassium | NS | 0.157 | NS | 5.00 | 5.38 | 108 | | | Selenium | NS | 0.00260 | NS | 0.250 | 0.244 | 97.6 | | | Sodium | NS | 0.00649 | NS | 5.00 | 5.34 | 107 | | - * = Recovery of spiked element is outside acceptance limit of 80% 120% of true value. - # = Result for unspiked element is outside the acceptance limits of (+/-) the project reporting limit (RL). - + = Result for unspiked element is outside the acceptance limits of (+/-) 2 times the project method detection limit (MDL). This criteria is only applicable to specific QAPPs. Login number: L16050013 Workgroup (AAB#): WG567345 Instrument ID: ICP-THERMO3 Sol. A: WG569211-10 File ID:T3.051716.103442 Sol. AB: WG569211-11 File ID:T3.051716.103844 Method: 6010C Units: mg/L Matrix: Water | | | Sol. A | | | Sol. AB | | | |-----------|------|-----------|-----------|-------|---------|-----------|---| | ANALYTE | True | Found | %Recovery | True | Found | %Recovery | Q | | Aluminum | 250 | 256 | 102 | 250 | 253 | 101 | | | Beryllium | NS | -0.000150 | NS | 0.250 | 0.245 | 98.0 | | | Calcium | 250 | 236 | 94.4 | 250 | 233 | 93.2 | | | Iron | 100 | 93.6 | 93.6 | 100 | 91.6 | 91.6 | | | Magnesium | 250 | 239 | 95.6 | 250 | 233 | 93.2 | | | Potassium | NS | -0.160 | NS | 5.00 | 4.97 | 99.4 | | | Selenium | NS | 0.0103 | NS | 0.250 | 0.242 | 96.8 | | | Sodium | NS | 0.0203 | NS | 5.00 | 5.11 | 102 | | NS = Not spiked - * = Recovery of spiked element is outside acceptance limit of 80% 120% of true value. - # = Result for unspiked element is outside the acceptance limits of (+/-) the project reporting limit (RL). - + = Result for unspiked element is outside the acceptance limits of (+/-) 2 times the project method detection limit (MDL). This criteria is only applicable to specific QAPPs. Login number: L16050013 Workgroup (AAB#): WG567345 Instrument ID: ICP-THERMO3 Method: 6010C File ID: T3.051716.123103 **Sol. A:** WG569211-19 Units:mg/L File ID: T3.051716.123505 Sol. AB: WG569211-20 Matrix: Water | | | Sol. A | | | Sol. AB | | | |-----------|------|------------|-----------|-------|---------|-----------|---| | ANALYTE | True | Found | %Recovery | True | Found | %Recovery | Q | | Aluminum | 250 | 260 | 104 | 250 | 269 | 108 | | | Beryllium | NS | -0.0000800 | NS | 0.250 | 0.259 | 104 | | | Calcium | 250 | 240 | 96.0 | 250 | 248 | 99.2 | | | Iron | 100 | 96.1 | 96.1 | 100 | 98.1 | 98.1 | | | Magnesium | 250 | 244 | 97.6 | 250 | 249 | 99.6 | | | Potassium | NS | -0.111 | NS | 5.00 | 5.22 | 104 | | | Selenium | NS | -0.0109 | NS | 0.250 | 0.242 | 96.8 | | | Sodium | NS | 0.0826 | NS | 5.00 | 5.45 | 109 | | - * = Recovery of spiked element is outside acceptance limit of 80% 120% of true value. - # = Result for unspiked element is outside the acceptance limits of (+/-) the project reporting limit (RL). - + = Result for unspiked element is outside the acceptance limits of (+/-) 2 times the project method detection limit (MDL). This criteria is only applicable to specific QAPPs. Login number: L16050013 Workgroup (AAB#): WG567345 Instrument ID: ICP-THERMO3 Method: 6010C File ID: T3.051716.132020 **Sol. A:** WG569211-27 Units:mg/L Sol. AB: WG569211-28 File ID: T3.051716.132422 Matrix: Water | | | Sol. A | | | Sol. AB | | | |-----------|------|-----------|-----------|-------|---------|-----------|---| | ANALYTE | True | Found | %Recovery | True | Found | %Recovery | Q | | Aluminum | 250 | 269 | 108 | 250 | 269 | 108 | | | Beryllium | NS | -0.000110 | NS | 0.250 | 0.257 | 103 | | | Calcium | 250 | 247 | 98.8 | 250 | 245 | 98.0 | | | Iron | 100 | 99.0 | 99.0 | 100 | 97.1 | 97.1 | | | Magnesium | 250 | 252 | 101 | 250 | 247 | 98.8 | | | Potassium | NS | -0.0892 | NS | 5.00 | 5.24 | 105 | | | Selenium | NS | 0.00285 | NS | 0.250 | 0.257 | 103 | | | Sodium | NS | 0.00939 | NS | 5.00 | 5.34 | 107 | | - * = Recovery of spiked element is outside acceptance limit of 80% 120% of true value. - # = Result for unspiked element is outside the acceptance limits of (+/-) the project reporting limit (RL). - + = Result for unspiked element is outside the acceptance limits of (+/-) 2 times the project method detection limit (MDL). This criteria is only applicable to specific QAPPs. Login Number: L16050013 Date: 01/04/2016 Insturment ID: ICP-THERMO3 Method: 6010C | Analyte | Wave
Length | AG | AL | AS | В | ВА | |------------|----------------|----|------------|--------|---|------------| | ALUMINUM | 308.20 | 0 | 0 | 0 | 0 | 0 | | ANTIMONY | 206.80 | 0 | 0.0000410 | 0 | 0 | 0 | | ARSENIC | 189.00 | 0 | 0 | 0 | 0 | 0 | | BARIUM | 455.40 | 0 | 0 | 0 | 0 | 0 | | BERYLLIUM | 313.10 | 0 | 0 | 0 | 0 | 0 | | BORON | 249.60 | 0 | 0 | 0 | 0 | 0 | | CADMIUM | 228.80 | 0 | 0 | 0.0115 | 0 | -0.0000800 | | CALCIUM | 422.60 | 0 | 0 | 0 | 0 | 0 | | CHROMIUM | 267.70 | 0 | 0 | 0 | 0 | 0 | | COBALT | 228.60 | 0 | 0 | 0 | 0 | 0 | | COPPER | 224.70 | 0 | 0 | 0 | 0 | 0 | | IRON | 261.10 | 0 | 0 | 0 | 0 | 0 | | LEAD | 220.30 | 0 | 0.000260 | 0 | 0 | 0 | | LITHIUM | 670.70 | 0 | 0 | 0 | 0 | 0 | | MAGNESIUM | 279.00 | 0 | 0 | 0 | 0 | 0 | | MANGANESE | 257.60 | 0 | 0 | 0 | 0 | 0 | | MOLYBDENUM | 202.00 | 0 | 0 | 0 | 0 | 0 | | NICKEL | 231.60 | 0 | 0 | 0 | 0 | 0 | | PHOSPHORUS | 214.90 | 0 | -0.000289 | 0 | 0 | 0 | | POTASSIUM | 766.40 | 0 | 0 | 0 | 0 | 0 | | SELENIUM | 196.00 | 0 | -0.0000490 | 0 | 0 | 0 | | SILICON | 212.40 | 0 | 0 | 0 | 0 | 0 | | SILVER | 328.00 | 0 | 0 | 0 | 0 | 0 | | SODIUM | 589.50 | 0 | 0 | 0 | 0 | 0 | | STRONTIUM | 407.70 | 0 | 0 | 0 | 0 | 0 | | THALLIUM | 190.80 | 0 | -0.0000120 | 0 | 0 | 0 | | TIN | 189.90 | 0 | 0 | 0 | 0 | 0 | | TITANIUM | 337.20 | 0 | 0 | 0 | 0 | 0 | | VANADIUM | 292.40 | 0 | 0 | 0 | 0 | 0 | | ZINC | 206.20 | 0 | 0.0000300 | 0 | 0 | 0 | | ZIRCONIUM | 339.10 | 0 | 0 | 0 | 0 | 0 | CORR_FACTORS - Modified 03/05/2008 PDF File ID: 4763324 Report generated: 05/17/2016 14:19 Login Number: L16050013 Date: 01/04/2016 Insturment ID: ICP-THERMO3 Method: 6010C | | Wave | | | | | | |------------|--------|----|------------|----|------------|-----------| | Analyte | Length | BE | CA | CD | CO | CR | | ALUMINUM | 308.20 | 0 | 0 | 0 | -0.000820 | 0 | | ANTIMONY | 206.80 | 0 | 0 | 0 | 0 | 0.0200 | | ARSENIC | 189.00 | 0 | 0 | 0 | 0 | -0.00190 | | BARIUM | 455.40 | 0 | 0 | 0 | 0 | 0 | | BERYLLIUM | 313.10 | 0 | 0 | 0 | 0 | 0 | | BORON | 249.60 | 0 | 0 | 0 | 0.00343 | 0 | | CADMIUM | 228.80 | 0 | 0 | 0 | -0.00390 | 0 | | CALCIUM | 422.60 | 0 | 0 | 0 | 0 | 0 | | CHROMIUM | 267.70 | 0 | 0 | 0 | 0 | 0 | | COBALT | 228.60 | 0 | 0 | 0 | 0 | -0.000200 | | COPPER | 224.70 | 0 | 0 | 0 | 0.0000770 | -0.00100 | | IRON | 261.10 | 0 | 0 | 0 | 0 | -0.00100 | | LEAD | 220.30 | 0 | 0 | 0 | -0.0000130 |
-0.000132 | | LITHIUM | 670.70 | 0 | 0 | 0 | 0 | 0 | | MAGNESIUM | 279.00 | 0 | 0 | 0 | 0 | 0 | | MANGANESE | 257.60 | 0 | 0 | 0 | 0 | 0.0000500 | | MOLYBDENUM | 202.00 | 0 | 0 | 0 | 0 | 0 | | NICKEL | 231.60 | 0 | 0 | 0 | -0.000860 | 0 | | PHOSPHORUS | 214.90 | 0 | 0 | 0 | 0 | 0 | | POTASSIUM | 766.40 | 0 | 0 | 0 | 0 | 0 | | SELENIUM | 196.00 | 0 | 0 | 0 | 0 | 0 | | SILICON | 212.40 | 0 | 0 | 0 | 0 | 0 | | SILVER | 328.00 | 0 | 0 | 0 | 0 | 0 | | SODIUM | 589.50 | 0 | 0 | 0 | 0 | 0 | | STRONTIUM | 407.70 | 0 | 0.00000500 | 0 | 0 | 0 | | THALLIUM | 190.80 | 0 | 0 | 0 | 0.00240 | 0.000276 | | TIN | 189.90 | 0 | 0 | 0 | 0 | 0 | | TITANIUM | 337.20 | 0 | 0 | 0 | 0 | 0 | | VANADIUM | 292.40 | 0 | 0 | 0 | 0 | -0.00480 | | ZINC | 206.20 | 0 | 0 | 0 | 0 | -0.00180 | | ZIRCONIUM | 339.10 | 0 | 0 | 0 | 0 | 0 | CORR_FACTORS - Modified 03/05/2008 PDF File ID: 4763324 Report generated: 05/17/2016 14:19 Login Number: L16050013 Date: 01/04/2016 Insturment ID: ICP-THERMO3 Method: 6010C | Analyte | Wave
Length | CU | FE | ĸ | LI | MG | |------------|----------------|----------|------------|---|----|-----------| | ALUMINUM | 308.20 | 0 | 0 | 0 | 0 | 0 | | ANTIMONY | 206.80 | 0 | 0.0000560 | 0 | 0 | 0 | | ARSENIC | 189.00 | 0 | -0.0000500 | 0 | 0 | 0 | | BARIUM | 455.40 | 0 | 0 | 0 | 0 | 0 | | BERYLLIUM | 313.10 | 0 | 0 | 0 | 0 | 0 | | BORON | 249.60 | 0 | 0.000300 | 0 | 0 | 0 | | CADMIUM | 228.80 | 0 | -0.0000190 | 0 | 0 | 0 | | CALCIUM | 422.60 | 0 | 0 | 0 | 0 | 0 | | CHROMIUM | 267.70 | 0 | 0.0000500 | 0 | 0 | 0 | | COBALT | 228.60 | 0 | 0 | 0 | 0 | 0 | | COPPER | 224.70 | 0 | 0.00160 | 0 | 0 | 0 | | IRON | 261.10 | 0 | 0 | 0 | 0 | 0 | | LEAD | 220.30 | 0.000609 | 0 | 0 | 0 | 0 | | LITHIUM | 670.70 | 0 | 0 | 0 | 0 | 0 | | MAGNESIUM | 279.00 | 0 | 0 | 0 | 0 | 0 | | MANGANESE | 257.60 | 0 | 0 | 0 | 0 | 0.0000300 | | MOLYBDENUM | 202.00 | 0 | 0 | 0 | 0 | 0 | | NICKEL | 231.60 | 0 | 0.0000420 | 0 | 0 | 0 | | PHOSPHORUS | 214.90 | -0.323 | 0.000900 | 0 | 0 | 0 | | POTASSIUM | 766.40 | 0 | 0 | 0 | 0 | 0 | | SELENIUM | 196.00 | 0 | 0 | 0 | 0 | 0 | | SILICON | 212.40 | 0 | 0 | 0 | 0 | 0 | | SILVER | 328.00 | 0 | -0.000270 | 0 | 0 | 0 | | SODIUM | 589.50 | 0 | 0 | 0 | 0 | 0 | | STRONTIUM | 407.70 | 0 | 0 | 0 | 0 | 0 | | THALLIUM | 190.80 | 0 | 0 | 0 | 0 | 0 | | TIN | 189.90 | 0 | 0 | 0 | 0 | 0 | | TITANIUM | 337.20 | 0 | -0.000400 | 0 | 0 | 0 | | VANADIUM | 292.40 | 0 | 0.00000700 | 0 | 0 | 0 | | ZINC | 206.20 | 0 | 0 | 0 | 0 | 0 | | ZIRCONIUM | 339.10 | 0 | -0.0000300 | 0 | 0 | 0 | CORR_FACTORS - Modified 03/05/2008 PDF File ID: 4763324 Report generated: 05/17/2016 14:19 Login Number: L16050013 Date: 01/04/2016 Insturment ID: ICP-THERMO3 Method: 6010C | Analyte | Wave
Length | MN | MO | NA | NI | P | |------------|----------------|-----------|------------|-----|-----------|---| | ALUMINUM | 308.20 | 0 | 0.0163 | 0 | 0 | 0 | | ANTIMONY | 206.80 | 0 | -0.00310 | 0 | -0.00350 | 0 | | ARSENIC | 189.00 | 0 | 0.00120 | 0 | 0 | 0 | | BARIUM | 455.40 | 0 | 0 | 0 | 0 | 0 | | BERYLLIUM | 313.10 | 0 | 0 | 0 | 0 | 0 | | BORON | 249.60 | 0 | -0.00190 | 0 | 0 | 0 | | CADMIUM | 228.80 | 0 | 0.0000320 | 0 | -0.000770 | 0 | | CALCIUM | 422.60 | 0 | 0 | 0 | 0 | 0 | | CHROMIUM | 267.70 | 0.000360 | 0 | 0 | 0 | 0 | | COBALT | 228.60 | 0 | -0.00200 | 0 | 0.000100 | 0 | | COPPER | 224.70 | 0 | 0.00160 | 0 | -0.0123 | 0 | | IRON | 261.10 | 0 | 0 | 0 | 0 | 0 | | LEAD | 220.30 | 0 | -0.00210 | 0 | 0.000110 | 0 | | LITHIUM | 670.70 | 0 | 0 | 0 | 0 | 0 | | MAGNESIUM | 279.00 | -0.00290 | -0.0230 | 0 | 0 | 0 | | MANGANESE | 257.60 | 0 | 0.0000300 | 0 | 0 | 0 | | MOLYBDENUM | 202.00 | 0 | 0 | 0 | 0 | 0 | | NICKEL | 231.60 | 0 | 0 | 0 | 0 | 0 | | PHOSPHORUS | 214.90 | 0 | 0.00710 | 0 | 0 | 0 | | POTASSIUM | 766.40 | 0 | 0 | 0 | 0 | 0 | | SELENIUM | 196.00 | 0.000600 | 0.000580 | 0 | 0 | 0 | | SILICON | 212.40 | 0 | 0.0187 | 0 | 0 | 0 | | SILVER | 328.00 | 0 | -0.0000430 | 0 | 0 | 0 | | SODIUM | 589.50 | 0 | 0 | 0 | 0 | 0 | | STRONTIUM | 407.70 | 0 | 0 | 0 | 0 | 0 | | THALLIUM | 190.80 | 0.00100 | 0 | 0 | 0 | 0 | | TIN | 189.90 | 0 | 0 | l ĭ | 0 | 0 | | TITANIUM | 337.20 | 0 | -0.000153 | 0 | 0 | 0 | | VANADIUM | 292.40 | -0.000200 | -0.00830 | 0 | 0 | 0 | | ZINC | 206.20 | 0 | 0 | 0 | 0 | 0 | | ZIRCONIUM | 339.10 | 0 | 0 | 0 | 0 | 0 | CORR_FACTORS - Modified 03/05/2008 PDF File ID: 4763324 Report generated: 05/17/2016 14:19 Login Number: L16050013 Date: 01/04/2016 Insturment ID: ICP-THERMO3 Method: 6010C | 31 | Wave | | | | | | |------------|--------|---------|----|----|----|---------| | Analyte | Length | PB | SB | SE | SI | SN | | ALUMINUM | 308.20 | 0 | 0 | 0 | 0 | 0 | | ANTIMONY | 206.80 | 0 | 0 | 0 | 0 | -0.0220 | | ARSENIC | 189.00 | 0 | 0 | 0 | 0 | 0 | | BARIUM | 455.40 | 0 | 0 | 0 | 0 | 0 | | BERYLLIUM | 313.10 | 0 | 0 | 0 | 0 | 0 | | BORON | 249.60 | 0 | 0 | 0 | 0 | 0 | | CADMIUM | 228.80 | 0 | 0 | 0 | 0 | 0 | | CALCIUM | 422.60 | 0 | 0 | 0 | 0 | 0 | | CHROMIUM | 267.70 | 0 | 0 | 0 | 0 | 0 | | COBALT | 228.60 | 0 | 0 | 0 | 0 | 0 | | COPPER | 224.70 | 0.00440 | 0 | 0 | 0 | 0 | | IRON | 261.10 | 0 | 0 | 0 | 0 | 0 | | LEAD | 220.30 | 0 | 0 | 0 | 0 | 0 | | LITHIUM | 670.70 | 0 | 0 | 0 | 0 | 0 | | MAGNESIUM | 279.00 | 0 | 0 | 0 | 0 | 0 | | MANGANESE | 257.60 | 0 | 0 | 0 | 0 | 0 | | MOLYBDENUM | 202.00 | 0 | 0 | 0 | 0 | 0 | | NICKEL | 231.60 | 0 | 0 | 0 | 0 | 0 | | PHOSPHORUS | 214.90 | 0 | 0 | 0 | 0 | 0 | | POTASSIUM | 766.40 | 0 | 0 | 0 | 0 | 0 | | SELENIUM | 196.00 | 0 | 0 | 0 | 0 | 0 | | SILICON | 212.40 | 0 | 0 | 0 | 0 | 0 | | SILVER | 328.00 | 0 | 0 | 0 | 0 | 0 | | SODIUM | 589.50 | 0 | 0 | 0 | 0 | 0 | | STRONTIUM | 407.70 | 0 | 0 | 0 | 0 | 0 | | THALLIUM | 190.80 | 0 | 0 | 0 | 0 | 0 | | TIN | 189.90 | 0 | 0 | 0 | 0 | 0 | | TITANIUM | 337.20 | 0 | 0 | 0 | 0 | 0 | | VANADIUM | 292.40 | 0 | 0 | 0 | 0 | 0 | | ZINC | 206.20 | 0 | 0 | 0 | 0 | 0 | | ZIRCONIUM | 339.10 | 0 | 0 | 0 | 0 | 0 | CORR_FACTORS - Modified 03/05/2008 PDF File ID: 4763324 Report generated: 05/17/2016 14:19 Login Number: L16050013 Date: 01/04/2016 Insturment ID: ICP-THERMO3 Method: 6010C | 3 | Wave | | | | | | |------------|--------|----|-------------|----|-----------|----| | Analyte | Length | SR | TI | TL | v | ZN | | ALUMINUM | 308.20 | 0 | 0 | 0 | 0.0950 | 0 | | ANTIMONY | 206.80 | 0 | 0.00110 | 0 | -0.00360 | 0 | | ARSENIC | 189.00 | 0 | 0 | 0 | 0.000107 | 0 | | BARIUM | 455.40 | 0 | 0 | 0 | 0 | 0 | | BERYLLIUM | 313.10 | 0 | -0.00000700 | 0 | 0.000990 | 0 | | BORON | 249.60 | 0 | 0 | 0 | 0 | 0 | | CADMIUM | 228.80 | 0 | 0 | 0 | 0.000102 | 0 | | CALCIUM | 422.60 | 0 | 0 | 0 | 0 | 0 | | CHROMIUM | 267.70 | 0 | 0.0000550 | 0 | 0 | 0 | | COBALT | 228.60 | 0 | 0.00210 | 0 | 0.0000200 | 0 | | COPPER | 224.70 | 0 | 0.000269 | 0 | 0 | 0 | | IRON | 261.10 | 0 | 0 | 0 | 0 | 0 | | LEAD | 220.30 | 0 | 0 | 0 | -0.000126 | 0 | | LITHIUM | 670.70 | 0 | 0 | 0 | 0 | 0 | | MAGNESIUM | 279.00 | 0 | -0.00290 | 0 | 0 | 0 | | MANGANESE | 257.60 | 0 | 0 | 0 | 0 | 0 | | MOLYBDENUM | 202.00 | 0 | 0 | 0 | -0.000110 | 0 | | NICKEL | 231.60 | 0 | 0 | 0 | 0 | 0 | | PHOSPHORUS | 214.90 | 0 | 0 | 0 | -0.00100 | 0 | | POTASSIUM | 766.40 | 0 | 0 | 0 | 0 | 0 | | SELENIUM | 196.00 | 0 | 0 | 0 | 0 | 0 | | SILICON | 212.40 | 0 | 0 | 0 | 0 | 0 | | SILVER | 328.00 | 0 | -0.000720 | 0 | -0.000260 | 0 | | SODIUM | 589.50 | 0 | 0 | 0 | 0 | 0 | | STRONTIUM | 407.70 | 0 | 0 | 0 | 0 | 0 | | THALLIUM | 190.80 | 0 | -0.000800 | 0 | -0.00490 | 0 | | TIN | 189.90 | 0 | -0.00190 | 0 | 0 | 0 | | TITANIUM | 337.20 | 0 | 0 | 0 | 0 | 0 | | VANADIUM | 292.40 | 0 | 0.000820 | 0 | 0 | 0 | | ZINC | 206.20 | 0 | 0 | 0 | 0 | 0 | | ZIRCONIUM | 339.10 | 0 | 0 | 0 | 0 | 0 | CORR_FACTORS - Modified 03/05/2008 PDF File ID: 4763324 Report generated: 05/17/2016 14:19 Login Number: L16050013 Date: 01/04/2016 Insturment ID: ICP-THERMO3 Method: 6010C Sturment ID: ICP-THERMO3 Method: 6010C Wave Analyte Length ZR | | Wave | | |------------|--------|----| | Analyte | Length | ZR | | ALUMINUM | 308.20 | 0 | | ANTIMONY | 206.80 | 0 | | ARSENIC | 189.00 | 0 | | BARIUM | 455.40 | 0 | | BERYLLIUM | 313.10 | 0 | | BORON | 249.60 | 0 | | CADMIUM | 228.80 | 0 | | CALCIUM | 422.60 | 0 | | CHROMIUM | 267.70 | 0 | | COBALT | 228.60 | 0 | | COPPER | 224.70 | 0 | | IRON | 261.10 | 0 | | LEAD | 220.30 | 0 | | LITHIUM | 670.70 | 0 | | MAGNESIUM | 279.00 | 0 | | MANGANESE | 257.60 | 0 | | MOLYBDENUM | 202.00 | 0 | | NICKEL | 231.60 | 0 | | PHOSPHORUS | 214.90 | 0 | | POTASSIUM | 766.40 | 0 | | SELENIUM | 196.00 | 0 | | SILICON | 212.40 | 0 | | SILVER | 328.00 | 0 | | SODIUM | 589.50 | 0 | | STRONTIUM | 407.70 | 0 | | THALLIUM | 190.80 | 0 | | TIN | 189.90 | 0 | | TITANIUM | 337.20 | 0 | | VANADIUM | 292.40 | 0 | | ZINC | 206.20 | 0 | | ZIRCONIUM | 339.10 | 0 | | | | | CORR_FACTORS - Modified 03/05/2008 PDF File ID: 4763324 Report generated: 05/17/2016 14:19 #### Microbac Laboratories Inc. LINEAR RANGE (QUARTERLY) Login Number: L16050013 Date: 04/29/2016 Insturment ID: ICP-THERMO3 Method: 6010C | | Integration Time | Concentration | |------------|------------------|---------------| | Analyte | (Sec.) | (mg/L) | | Aluminum | 10.00 | 900.0 | | Antimony | 20.00 | 45.0 | | Arsenic | 10.00 | 45.0 | | Barium | 10.00 | 45.0 | | Beryllium | 10.00 | 1.8 | | Boron | 20.00 | 45.0 | | Cadmium | 20.00 | 4.5 | | Calcium | 5.00 | 270.0 | | Chromium | 20.00 | 36.0 | | Cobalt | 20.00 | 45.0 | | Copper | 20.00 | 180.0 | | Iron | 5.00 | 720.0 | | Lead | 20.00 | 225.0 | | Lithium | 5.00 | 36.0 | | Magnesium | 5.00 | 900.0 | | Manganese | 10.00 | 36.0 | | Molybdenum | 20.00 | 27.0 | | Nickel | 20.00 | 90.0 | | Phosphorus | 20.00 | 180.0 | | Potassium | 5.00 | 450.0 | | Selenium | 20.00 | 90.0 | | Silicon | 20.00 | 36.0 | | Silver | 10.00 | 9.0 | | Sodium | 5.00 | 270.0 | | Strontium | 5.00 | 9.0 | | Thallium | 20.00 | 18.0 | | Tin | 20.00 | 45.0 | | Titanium | 5.00 | 36.0 | | Vanadium | 20.00 | 27.0 | | Zinc | 20.00 | 45.0 | | Zirconium | 10.00 | 45.0 | #### Comments: All analytes passed acceptance criteria at the specified concentration. LINEAR_RANGE - Modified 03/06/2008 PDF File
ID: 4763323 Report generated: 05/17/2016 14:18 # **2.1.1.3 Raw Data** | Element,
Wavelength and
Order | Date of Fit | Date of Cal. | Type
of Fit | Weighting | A0 | A1 | A2 | n (Exponent) | |-------------------------------------|--------------------|-------------------------------|----------------|-----------|-----------|----------|----------|--------------| |
Ag 328.068 {103} | 5/13/2016 15:30:16 | 5/13/2016 15:30:16 | Linear | 1/Conc | -0.000116 | 0.027644 | 0.000000 | 1.000000 | |
Al 308.215 {109} | 5/13/2016 15:30:16 | 5/13/2016 15:30:16 | Linear | 1/Conc | 0.000698 | 0.004445 | 0.000000 | 1.000000 | | As 189.042 {478} | 5/13/2016 15:30:16 | 5/13/2016 15:30:16 | Linear | 1/Conc | -0.000028 | 0.012676 | 0.000000 | 1.000000 | | B 249.678 {135} | 5/13/2016 15:30:16 | 5/13/2016 15:30:16 | Linear | 1/Conc | 0.000058 | 0.011826 | 0.000000 | 1.000000 | |
Ba 455.403 { 74} | 5/13/2016 15:30:16 | 5/13/2016 15:30:16 | Linear | 1/Conc | 0.011678 | 1.395291 | 0.000000 | 1.000000 | |
Be 313.107 {108} | 5/13/2016 15:30:16 | 5/13/2016 15:30:16 | Linear | 1/Conc | 0.000204 | 0.497200 | 0.000000 | 1.000000 | |
Ca 422.673 { 80} | 5/13/2016 15:30:16 | 5/13/2016 15:30:16 | Linear | 1/Conc | 0.001892 | 0.029297 | 0.000000 | 1.000000 | |
Cd 228.802 {447} | 5/13/2016 15:30:16 | 5/13/2016 15:30:16 | Linear | 1/Conc | 0.000024 | 0.276981 | 0.000000 | 1.000000 | |
Co 228.616 {447} | 5/13/2016 15:30:16 | 5/13/2016 15:30:16 | Linear | 1/Conc | -0.000142 | 0.210445 | 0.000000 | 1.000000 | |
Cr 267.716 {126} | 5/13/2016 15:30:16 | 5/13/2016 15:30:16 | Linear | 1/Conc | 0.000139 | 0.029321 | 0.000000 | 1.000000 | |
Cu 224.700 {450} | 5/13/2016 15:30:16 | 5/13/2016 15:30:16 | Linear | 1/Conc | -0.000073 | 0.071649 | 0.000000 | 1.000000 | |
Fe 261.187 {129} | 5/13/2016 15:30:16 | 5/13/2016 15:30:16 | Linear | 1/Conc | -0.000115 | 0.012628 | 0.000000 | 1.000000 | |
K 766.490 { 44} | 5/13/2016 15:30:16 | 5/13/2016 15:30:16 | Linear | 1/Conc | 0.008877 | 0.036923 | 0.000000 | 1.000000 | |
Li 670.784 { 50} | 5/13/2016 15:30:16 | 5/13/2016 15:30:16 | Linear | 1/Conc | 0.009068 | 0.762455 | 0.000000 | 1.000000 | |
Mg 279.079 {121} | 5/13/2016 15:30:16 | 5/13/2016 15:30:16 | Linear | 1/Conc | -0.000022 | 0.003020 | 0.000000 | 1.000000 | |
Mn 257.610 {131} | 5/13/2016 15:30:16 | 5/13/2016 15:30:16 | Linear | 1/Conc | 0.000521 | 0.157649 | 0.000000 | 1.000000 | |
Mo 202.030 {467} | 5/13/2016 15:30:16 | 5/13/2016 15:30:16 | Linear | 1/Conc | 0.000003 | 0.098620 | 0.000000 | 1.000000 | |
Na 589.592 { 57} | 5/13/2016 15:30:16 | 5/13/2016 15:30:16 | Linear | 1/Conc | -0.022435 | 0.107736 | 0.000000 | 1.000000 | |
Ni 231.604 {446} | 5/13/2016 15:30:16 | 5/13/2016 15:30:16 | Linear | 1/Conc | -0.000437 | 0.079748 | 0.000000 | 1.000000 | |
P 214.914 {457} | 5/13/2016 15:30:16 | 5/13/2016 15:30:16 | Linear | 1/Conc | -0.000124 | 0.007038 | 0.000000 | 1.000000 | |
Pb 220.353 {453} | 5/13/2016 15:30:16 | 5/13/2016 15:30:16 | Linear | 1/Conc | -0.000253 | 0.035386 | 0.000000 | 1.000000 | |
Sb 206.833 {463} | 5/13/2016 15:30:16 | 5/13/2016 15:30:16 | Linear | 1/Conc | -0.000007 | 0.017962 | 0.000000 | 1.000000 | |
Se 196.090 (472) | 5/13/2016 15:30:16 | 5/13/2016 15:30:16 | Linear | 1/Conc | -0.000112 | 0.007967 | 0.000000 | 1.000000 | |
Si 212.412 {459} | 5/13/2016 15:30:16 | 5/13/2016 15:30:16 | Linear | 1/Conc | 0.000785 | 0.022813 | 0.000000 | 1.000000 | |
Sn 189.989 {477} | 5/13/2016 15:30:16 | 5/13/2016 15:30:16 | Linear | 1/Conc | 0.000006 | 0.036878 | 0.000000 | 1.000000 | |
Sr 407.771 { 83} | 5/13/2016 15:30:16 | 5/13/2016 15:30:16 | Linear | 1/Conc | 0.001516 | 2.347713 | 0.000000 | 1.000000 | |
Ti 337.280 {100} | 5/13/2016 15:30:16 | 5/13/2016 15:30:16 | Linear | 1/Conc | -0.001589 | 0.075569 | 0.000000 | 1.000000 | |
TI 190.856 (477) | 5/13/2016 15:30:16 | 5/13/2016 15:30:16 | Linear | 1/Conc | -0.000199 | 0.015102 | 0.000000 | 1.000000 | |
V 292.402 (115) | 5/13/2016 15:30:16 | 5/13/2016 15:30:16 | Linear | 1/Conc | 0.000036 | 0.027076 | 0.000000 | 1.000000 | |
Y 224.306 (450)* | <not fit=""></not> | <never calibrated=""></never> | Linear | 1/Conc | 0.000000 | 0.000000 | 0.000000 | 1.000000 | |
Y 360.073 { 94}* | <not fit=""></not> | <never calibrated=""></never> | Linear | 1/Conc | 0.000000 | 0.000000 | 0.000000 | 1.000000 | |
Y 377.433 { 89}* | <not fit=""></not> | <never calibrated=""></never> | Linear | 1/Conc | 0.000000 | 0.000000 | 0.000000 | 1.000000 | |
Zn 206.200 {463} | 5/13/2016 15:30:16 | 5/13/2016 15:30:16 | Linear | 1/Conc | 0.000049 | 0.214710 | 0.000000 | 1.000000 | |
Zr 339.198 { 99} | 5/13/2016 15:30:16 | 5/13/2016 15:30:16 | Linear | 1/Conc | -0.005412 | 0.001383 | 0.000000 | 1.000000 | | | Element, | Oud E of | | Burgara Burgara | | Reslope | | QC Norm | | | |-------------------------|------------------|---------------------|------------------|------------------|-----------|---------|----------|-----------------|--------|---| | Wavelength and
Order | Correlation | Std Error of
Est | Predicted
MDL | Predicted
MQL | Status | Slope | Y-int | Slope
factor | Offset | | | | Ag 328.068 {103} | 0.999397 | 0.000002 | 0.002327 | 0.007756 | OK. | 1.000000 | 0.000000 | 1 | 0 | | | Al 308.215 {109} | 0.999677 | 0.000007 | 0.009748 | 0.032492 | OK. | 1.000000 | 0.000000 | 1 | 0 | | | As 189.042 {478} | 0.999450 | 0.000002 | 0.004003 | 0.013344 | OK. | 1.000000 | 0.000000 | 1 | 0 | | | B 249.678 {135} | 0.999603 | 0.000002 | 0.003142 | 0.010474 | OK. | 1.000000 | 0.000000 | 1 | 0 | | | Ba 455.403 { 74} | 0.999965 | 0.000074 | 0.001069 | 0.003564 | OK. | 1.000000 | 0.000000 | 1 | 0 | | | Be 313.107 {108} | 0.999631 | 0.000004 | 0.000087 | 0.000291 | OK. | 1.000000 | 0.000000 | 1 | 0 | | | Ca 422.673 { 80} | 0.999844 | 0.000033 | 0.038290 | 0.127635 | OK. | 1.000000 | 0.000000 | 1 | 0 | | | Cd 228.802 {447} | 0.999374 | 0.000003 | 0.000311 | 0.001038 | OK. | 1.000000 | 0.000000 | 1 | 0 | | | Co 228.616 {447} | 0.999780 | 0.000006 | 0.000470 | 0.001567 | OK. | 1.000000 | 0.000000 | 1 | 0 | | | Cr 267.716 {126} | 0.999693 | 0.000002 | 0.001337 | 0.004456 | OK. | 1.000000 | 0.000000 | 1 | 0 | | | Cu 224.700 {450} | 0.999660 | 0.000006 | 0.001585 | 0.005285 | OK. | 1.000000 | 0.000000 | 1 | 0 | | | Fe 261.187 {129} | 0.999791 | 0.000007 | 0.028492 | 0.094973 | OK. | 1.000000 | 0.000000 | 1 | 0 | | • | K 766.490 { 44} | 0.999977 | 0.000079 | 0.113397 | 0.377991 | OK. | 1.000000 | 0.000000 | 1 | 0 | | | Li 670.784 { 50} | 0.999968 | 0.000060 | 0.005333 | 0.017775 | OK. | 1.000000 | 0.000000 | 1 | 0 | | | Mg 279.079 {121} | 0.997725 | 0.000020 | 0.129639 | 0.432131 | OK. | 1.000000 | 0.000000 | 1 | 0 | | | Mn 257.610 (131) | 0.999493 | 0.000016 | 0.003159 | 0.010530 | OK. | 1.000000 | 0.000000 | 1 | 0 | | | Mo 202.030 {467} | 0.999765 | 0.000014 | 0.000522 | 0.001739 | OK. | 1.000000 | 0.000000 | 1 | 0 | | | Na 589.592 { 57} | 0.999988 | 0.000170 | 0.034908 | 0.116361 | OK. | 1.000000 | 0.000000 | 1 | 0 | | | Ni 231.604 {446} | 0.999602 | 0.000007 | 0.001323 | 0.004409 | OK. | 1.000000 | 0.000000 | 1 | 0 | | | P 214.914 {457} | 0.999586 | 0.000013 | 0.009193 | 0.030643 | OK. | 1.000000 | 0.000000 | 1 | 0 | | | Pb 220.353 {453} | 0.997669 | 0.000008 | 0.004255 | 0.014184 | OK. | 1.000000 | 0.000000 | 1 | 0 | | | Sb 206.833 {463} | 0.999490 | 0.000004 | 0.004960 | 0.016532 | OK. | 1.000000 | 0.000000 | 1 | 0 | | ••••• | Se 196.090 (472) | 0.998879 | 0.000001 | 0.009004 | 0.030013 | OK. | 1.000000 | 0.000000 | 1 | 0 | | | Si 212.412 {459} | 0.999961 | 0.000006 | 0.002689 | 0.008965 | OK. | 1.000000 | 0.000000 | 1 | 0 | | | Sn 189.989 {477} | 0.999828 | 0.000004 | 0.001128 | 0.003760 | OK. | 1.000000 | 0.000000 | 1 | 0 | | •••• | Sr 407.771 { 83} | 0.999977 | 0.000102 | 0.000477 | 0.001589 | OK. | 1.000000 | 0.000000 | 1 | 0 | | | Ti 337.280 {100} | 0.999659 | 0.000013 | 0.008016 | 0.026720 | OK. | 1.000000 | 0.000000 | 1 | 0 | | | TI 190.856 {477} | 0.999952 | 0.000001 | 0.003949 | 0.013164 | OK. | 1.000000 | 0.000000 | 1 | 0 | | | V 292.402 {115} | 0.999702 | 0.000004 | 0.001327 | 0.004424 | OK. | 1.000000 | 0.000000 | 1 | 0 | | • | Y 224.306 {450}* | 0.000000 | 0.000000 | -1.000000 | -1.000000 | Warnin | 1.000000 | 0.000000 | 1 | 0 | | • | Y 360.073 { 94}* | 0.000000 | 0.000000 | -1.000000 | -1.000000 | Warnin | 1.000000 | 0.000000 | 1 | 0 | | | Y 377.433 { 89}* | 0.000000 | 0.000000 | -1.000000 | -1.000000 | Warnin | | 0.000000 | 1 | 0 | | | Zn 206.200 {463} | 0.999870 | 0.000022 | 0.000261 | 0.000869 | OK. | 1.000000 | 0.000000 | 1 | 0 | | •••• | Zr 339.198 { 99} | 0.451844 | 0.000017 | 0.746542 | 2.488474 | OK. | | 0.000000 | 1 | 0 | Sample Name: S0 Acquired: 5/13/2016 15:10:43 Type: Cal Method: ICP-THERMO3_6010_200.7WATER_3YLINES(v872) Mode: IR Corr. Factor: 1.000000 User: JYH Custom ID1: Custom ID2: Custom ID3: Comment: | Elem | Ag3280 | Al3082 | As1890 | B_2496 | Ba4554 | Be3131 | Ca4226 | | |--------|--------|----------------|----------------|--------|----------------|----------------|----------------|--| | Units | Cts/S | | Avg | 00012 | .00070 | 00003 | .00006 | .01168 | . 00020 | .00189 | | | Stddev | .00004 | .00001 | .00006 | .00002 | .00058 | .00002 | .00048 | | | %RSD | 31.284 | 1.1823 | 210.76 | 40.017 | 5.0017 | 10.772 | 25.596 | | | #1 | 00016 | .00070 | .00003 | .00005 | .01156 | .00019 | .00171 | | | #2 | 00008 | .00071 | 00008 | .00008 | .01116 | .00020 | .00152 | | | #3 | 00011 | .00069 | 00003 | .00004 | .01231 | .00023 | .00244 | | | Elem | Cd2288 | Co2286 | Cr2677 | Cu2247 | Fe2611 | K_7664 | Li6707 | | | Units | Cts/S | | Avg | .00002 | 00014 | .00014 | 00007 | 00011 | .00888 | . 00907 | | | Stddev | .00004 | .00004 | .00002 | .00008 | .00025 | .00088 | .00282 | | | %RSD | 156.64 | 31.380 | 15.789 | 105.32 | 214.31 | 9.8844 | 31.107 | | | #1 | .00002 | 00012 | .00016 | 00002 | .00006 | .00957 | .01042 | | | #2 | .00006 | 00011 | .00013 | 00004 | 00001 | .00789 |
.00583 | | | #3 | 00001 | 00019 | .00012 | 00016 | 00040 | .00917 | .01096 | | | Elem | Mg2790 | Mn2576 | Mo2020 | Na5895 | Ni2316 | P_2149 | Pb2203 | | | Units | Cts/S | | Avg | 00002 | . 00052 | . 00000 | 02244 | 00044 | 00012 | 00025 | | | Stddev | .00082 | .00018 | .00002 | .00190 | .00007 | .00002 | .00001 | | | %RSD | 3790.1 | 34.283 | 796.61 | 8.4859 | 16.061 | 13.902 | 4.4115 | | | #1 | 00028 | .00072 | 00001 | 02451 | 00041 | 00014 | 00025 | | | #2 | 00068 | .00046 | 00001 | 02076 | 00038 | 00012 | 00027 | | | #3 | .00090 | .00038 | .00003 | 02205 | 00052 | 00011 | 00025 | | | Elem | Sb2068 | Se1960 | Si2124 | Sn1899 | Sr4077 | Ti3372 | TI1908 | | | Units | Cts/S | | Avg | 00001 | 00011 | .00078 | .00001 | . 00152 | 00159 | 00020 | | | Stddev | .00005 | .00005 | .00008 | .00002 | .00028 | .00048 | .00005 | | | %RSD | 768.84 | 46.072 | 10.387 | 300.68 | 18.576 | 30.060 | 25.675 | | | #1 | .00002 | 00014 | .00074 | .00002 | .00156 | 00165 | 00026 | | | #2 | 00007 | 00014 | .00074 | 00001 | .00122 | 00203 | 00016 | | | #3 | .00003 | 00005 | .00088 | .00001 | .00177 | 00108 | 00018 | | Sample Name: S0 Acquired: 5/13/2016 15:10:43 Type: Cal Method: ICP-THERMO3_6010_200.7WATER_3YLINES(v872) Mode: IR Corr. Factor: 1.000000 User: JYH Custom ID1: Custom ID2: Custom ID3: Comment: Elem V_2924 Zn2062 Zr3391 Units Cts/S Cts/S Cts/S Avg .00004 .00005 -.00541 Stddev .00005 .00004 .00047 %RSD 127.25 73.762 8.6069 #1 .00006 .00005 -.00590 #2 .00007 .00001 -.00497 #3 -.00002 .00009 -.00537 Y_3600 Y_2243 Y_3774 Int. Std. Cts/S Cts/S Units Cts/S 3975.8 12487. 88616. Avg Stddev 276. 29. 51.8 %RSD 2.2139 .03246 1.3026 4009.3 4002.0 3916.1 Approved: May 16, 2016 #1 #2 #3 12475. 12770. 12217. 88645. 88614. 88588. Sample Name: S1 Acquired: 5/13/2016 15:14:46 Type: Cal Method: ICP-THERMO3_6010_200.7WATER_3YLINES(v872) Mode: IR Corr. Factor: 1.000000 User: JYH Custom ID1: Custom ID2: Custom ID3: Comment: Ag3280 AI3082 Ba4554 Be3131 Ca4226 Cd2288 Co2286 Elem Units Cts/S Cts/S Cts/S Cts/S Cts/S Cts/S Cts/S -.00006 .00112 .02290 .00041 .00350 .00018 .00024 Avg Stddev .00006 .00005 .00152 .00002 .00080 .00004 .00005 22.943 25.110 %RSD 95.751 4.2660 6.6586 5.9498 19.869 #1 -.00013 .00117 .00040 .00382 .00017 .00025 .02131 #2 -.00004 .00109 .02434 .00040 .00258 .00013 .00019 #3 -.00002 .00109 .02305 .00044 .00409 .00022 .00029 Cr2677 Cu2247 K 7664 Mn2576 Mo2020 Elem Fe2611 Na5895 Units Cts/S Cts/S Cts/S Cts/S Cts/S Cts/S Cts/S .00028 .00013 .00014 .02246 .00078 .00079 .02308 Avg Stddev .00003 .00009 .00016 .00178 .00023 .00002 .00247 %RSD 10.325 69.651 115.74 7.9046 30.134 2.4586 10.702 #1 .00026 .00011 -.00005 .02148 .00053 .00081 .02267 #2 .00032 .00005 .00021 .02139 .00100 .00077 .02573 #3 .00027 .00022 .00024 .02451 .00080 .00079 .02084 P_2149 Cts/S .00038 .00006 15.828 .00041 .00031 .00043 V_2924 Cts/S .00024 .00002 9.7605 .00026 .00025 .00022 Pb2203 -.00029 .00013 45.085 -.00037 -.00036 -.00014 Zn2062 Cts/S .00182 .00001 .57511 .00181 .00183 .00183 Cts/S Sb2068 Cts/S .00015 .00003 19.975 .00012 .00015 .00018 Zr3391 -.00506 .00094 18.542 -.00588 -.00404 -.00527 Cts/S Si2124 Cts/S .00170 .00005 2.8326 .00175 .00167 .00166 Sn1899 Cts/S .00033 .00002 5.7364 .00032 .00031 .00035 Sr4077 Cts/S .02000 .00104 5.1788 .02114 .01977 .01911 Ni2316 .00001 .00005 791.99 -.00005 .00003 .00004 Ti3372 -.00079 .00054 68.972 -.00102 -.00017 -.00118 Cts/S Cts/S Approved: May 16, 2016 Elem Units Avg #1 #2 #3 Elem Units Stddev %RSD Avg #1 #2 #3 Stddev %RSD | Sample Name
Method: ICP-T | Corr. Factor: 1.000000 | | | | | | |------------------------------|------------------------|--------|-------------|--------|--------|--| | User: JYH | Custom ID |)1: C | Custom ID2: | Custon | n ID3: | | | Comment: | | | | | | | | | | | | | | | | Int. Std. | Y_2243 | Y_3600 | Y_3774 | | | | | Units | Cts/S | Cts/S | Cts/S | | | | | Avg | 12248. | 87064. | 4015.0 | | | | | Stddev | 82. | 404. | 44.8 | | | | | %RSD | .67251 | .46355 | 1.1155 | | | | | #1 | 12216. | 86659. | 4054.3 | | | | | #2 | 12186. | 87068. | 4024.4 | | | | | #3 | 12342. | 87466. | 3966.2 | | | | Sample Name: S2 Acquired: 5/13/2016 15:18:50 Type: Cal Method: ICP-THERMO3_6010_200.7WATER_3YLINES(v872) Mode: IR Corr. Factor: 1.000000 User: JYH Custom ID1: Custom ID2: Custom ID3: Comment: | Elem | Ag3280 | Al3082 | As1890 | B_2496 | Ba4554 | Be3131 | Ca4226 | | |--------|----------------|----------------|----------------|----------------|--------|----------------|----------------|--| | Units | Cts/S | | Avg | .00005 | . 00144 | .00003 | . 00014 | .03559 | .00065 | .00655 | | | Stddev | .00004 | .00001 | .00005 | .00001 | .00087 | .00003 | .00049 | | | %RSD | 72.399 | .35173 | 144.85 | 5.0284 | 2.4489 | 4.2514 | 7.4452 | | | #1 | .00004 | .00144 | .00008 | .00015 | .03583 | .00067 | .00600 | | | #2 | .00009 | .00143 | .00001 | .00013 | .03462 | .00065 | .00690 | | | #3 | .00002 | .00144 | 00000 | .00015 | .03631 | .00062 | .00676 | | | Elem | Cd2288 | Co2286 | Cr2677 | Cu2247 | Fe2611 | K_7664 | Li6707 | | | Units | Cts/S | | Avg | .00020 | .00059 | .00039 | .00043 | .00070 | .03945 | . 02014 | | | Stddev | .00007 | .00010 | .00001 | .00003 | .00021 | .00206 | .00142 | | | %RSD | 32.924 | 16.863 | 3.4412 | 7.5329 | 30.622 | 5.2267 | 7.0534 | | | #1 | .00027 | .00058 | .00038 | .00043 | .00087 | .03718 | .01984 | | | #2 | .00015 | .00069 | .00040 | .00046 | .00046 | .03996 | .02168 | | | #3 | .00018 | .00049 | .00039 | .00040 | .00077 | .04121 | .01888 | | | Elem | Mg2790 | Mn2576 | Mo2020 | Na5895 | Ni2316 | P_2149 | Pb2203 | | | Units | Cts/S | | Avg | . 00002 | . 00175 | . 00160 | . 06657 | .00031 | . 00093 | 00003 | | | Stddev | .00047 | .00056 | .00003 | .00587 | .00005 | .00007 | .00013 | | | %RSD | 2469.2 | 31.773 | 2.0292 | 8.8134 | 16.519 | 7.9686 | 427.88 | | | #1 | .00051 | .00199 | .00163 | .06452 | .00025 | .00102 | .00006 | | | #2 | 00002 | .00112 | .00160 | .07319 | .00035 | .00088 | 00018 | | | #3 | 00043 | .00215 | .00157 | .06201 | .00034 | .00090 | .00003 | | | Elem | Sb2068 | Se1960 | Si2124 | Sn1899 | Sr4077 | Ti3372 | TI1908 | | | Units | Cts/S | | Avg | .00036 | 00009 | . 00268 | .00062 | .03955 | 00008 | 00008 | | | Stddev | .00007 | .00003 | .00003 | .00001 | .00080 | .00023 | .00006 | | | %RSD | 20.122 | 32.453 | .94196 | 1.6363 | 2.0300 | 280.04 | 69.079 | | | #1 | .00030 | 00009 | .00267 | .00062 | .04001 | .00016 | 00009 | | | #2 | .00034 | 00012 | .00265 | .00062 | .04002 | 00012 | 00014 | | | #3 | .00044 | 00007 | .00270 | .00060 | .03863 | 00029 | 00002 | | Approved: May 16, 2016 J'ye 1hu Sample Name: S2 Acquired: 5/13/2016 15:18:50 Type: Cal Method: ICP-THERMO3_6010_200.7WATER_3YLINES(v872) Mode: IR Corr. Factor: 1.000000 User: JYH Custom ID1: Custom ID2: Custom ID3: Comment: | Elem | V_2924 | Zn2062 | Zr3391 | | |-----------|---------------|----------------|---------------|--| | Units | Cts/S | Cts/S | Cts/S | | | Avg | .00048 | .00352 | 00574 | | | Stddev | .00001 | .00004 | .00013 | | | %RSD | 3.1137 | 1.2035 | 2.3507 | | | #1 | .00050 | .00354 | 00562 | | | #2 | .00047 | .00354 | 00570 | | | #3 | .00047 | .00347 | 00589 | | | Int. Std. | Y_2243 | Y_3600 | Y_3774 | | | Units | Cts/S | Cts/S | Cts/S | | | Avg | 12086. | 87387 . | 3931.3 | | | Stddev | 24. | 409. | 21.9 | | | %RSD | .20222 | .46749 | .55619 | | | #1 | 12087. | 87087. | 3946.8 | | | #2 | 12062. | 87852. | 3940.9 | | | #3 | 12111 | 87221 | 3906.3 | | Sample Name: S3 Acquired: 5/13/2016 15:22:55 Type: Cal Method: ICP-THERMO3_6010_200.7WATER_3YLINES(v872) Mode: IR Corr. Factor: 1.000000 User: JYH Custom ID1: Custom ID2: Custom ID3: Comment: | Elem | Ag3280 | Al3082 | As1890 | B_2496 | Ba4554 | Be3131 | Ca4226 | | |----------------|-------------------------|-------------------------|-------------------------|-------------------------|-------------------------|-------------------------|-------------------------|--| | Units
Avg | Cts/S
. 01051 | Cts/S
. 04400 | Cts/S
. 00482 | Cts/S
. 00573 | Cts/S
1.3934 | Cts/S
. 02459 | Cts/S
. 29219 | | | Stddev
%RSD | .00009
.89447 | .00028
.63642 | .00002
.36113 | .00004
.75726 | .0081
.57942 | .00007
.28699 | .00215
.73467 | | | | | | | | | | | | | #1
#2 | .01043
.01050 | .04431
.04376 | .00483
.00484 | .00571
.00571 | 1.3895
1.4027 | .02462
.02465 | .29047
.29460 | | | #3 | .01061 | .04394 | .00480 | .00578 | 1.3880 | .02451 | .29152 | | | Elem | Cd2288 | Co2286 | Cr2677 | Cu2247 | Fe2611 | K_7664 | Li6707 | | | Units
Ava | Cts/S
. 01468 | Cts/S
. 04074 | Cts/S
. 01435 | Cts/S
. 03497 | Cts/S
. 05000 | Cts/S
1.8429 | Cts/S
. 76738 | | | Stddev | .00011 | .00026 | .00003 | .00008 | .00047 | .0087 | .00714 | | | %RSD | .74827 | .63746 | .18962 | .22797 | .93135 | .47258 | .93062 | | | #1 | .01470 | .04067 | .01438 | .03505 | .04970 | 1.8354 | .76305 | | | #2
#3 | .01478
.01457 | .04103
.04053 | .01433
.01435 | .03499
.03489 | .05053
.04976 | 1.8525
1.8409 | .77562
.76345 | | | | | | | | | | | | | Elem
Units | Mg2790
Cts/S | Mn2576
Cts/S | Mo2020
Cts/S | Na5895
Cts/S | Ni2316
Cts/S | P_2149
Cts/S | Pb2203
Cts/S | | | Avg | .02981 | .07849 | .09557 | 5.3377 | .03851 | .06643 | .01724 | | | Stddev | .00020 | .00040 | .00069 | .0290 | .00023 | .00039 | .00015 | | | %RSD | .68341 | .50965 | .72158 | .54288 | .60180 | .59189 | .87079 | | | #1 | .03004 | .07808 | .09584 | 5.3168 | .03840 | .06615 | .01710 | | | #2 | .02972 | .07888 | .09610 | 5.3708 | .03877 | .06688 | .01740 | | | #3 | .02966 | .07851 | .09479 | 5.3257 | .03835 | .06625 | .01721 | | | Elem | Sb2068 | Se1960 | Si2124 | Sn1899 | Sr4077 | Ti3372 | TI1908 | | | Units
Ava | Cts/S
. 02022 | Cts/S
.00300 | Cts/S
. 11389 | Cts/S
. 03587 |
Cts/S
2.3268 | Cts/S
. 07279 | Cts/S
. 00662 | | | Stddev | .00015 | .00004 | .00070 | .00027 | .0147 | .00050 | .00002 | | | %RSD | .71726 | 1.3919 | .61455 | .75793 | .63181 | .69025 | .79439 | | | #1 | .02025 | .00301 | .11344 | .03569 | 2.3209 | .07285 | .00659 | | | #2 | .02035 | .00304 | .11469 | .03618 | 2.3435 | .07326 | .00668 | | | #3 | .02007 | .00295 | .11352 | .03574 | 2.3160 | .07226 | .00660 | | Approved: May 16, 2016 J'ye 1hu Acquired: 5/13/2016 15:22:55 Sample Name: S3 Type: Cal Method: ICP-THERMO3_6010_200.7WATER_3YLINES(v872) Mode: IR Corr. Factor: 1.000000 User: JYH Custom ID1: Custom ID2: Custom ID3: Comment: Elem V_2924 Zn2062 Zr3391 Units Cts/S Cts/S Cts/S Avg .02612 .20965 -.00327 Stddev .00013 .00143 .00097 %RSD .48185 .68365 29.668 #1 .02600 .20880 -.00439 #2 .02625 .21131 -.00278 #3 .02610 .20885 -.00265 Y_2243 Y_3600 Y_3774 Int. Std. Cts/S Cts/S Cts/S Units 12405. 88243. 4013.1 Avg Stddev 53. 513. 16.4 %RSD .42960 .58147 .40898 4031.3 3999.4 4008.7 Approved: May 16, 2016 #1 #2 #3 12453. 12348. 12414. 87653. 88583. 88493. Method: ICP-THERMO3_6010_200.7WATER_3YLINES(v872) Mode: IR Corr. Factor: 1.000000 User: JYH Custom ID1: Custom ID2: Custom ID3: Comment: | Elem | Ag3280 | Al3082 | As1890 | B_2496 | Ba4554 | Be3131 | Ca4226 | |--------|----------------|----------------|----------------|----------------|---------------|----------------|----------------| | Units | Cts/S | Avg | .02238 | .09185 | . 01026 | . 01209 | 2.8141 | . 05182 | . 59125 | | Stddev | .00010 | .00015 | .00002 | .00002 | .0461 | .00004 | .00962 | | %RSD | .46770 | .16822 | .19015 | .17724 | 1.6365 | .06945 | 1.6273 | | #1 | .02243 | .09203 | .01025 | .01206 | 2.7610 | .05186 | .58026 | | #2 | .02246 | .09175 | .01028 | .01209 | 2.8394 | .05180 | .59533 | | #3 | .02226 | .09177 | .01024 | .01211 | 2.8420 | .05179 | .59816 | | Elem | Cd2288 | Co2286 | Cr2677 | Cu2247 | Fe2611 | K_7664 | Li6707 | | Units | Cts/S | Avg | .03079 | . 08492 | . 02990 | . 07283 | .10144 | 3.7135 | 1.5393 | | Stddev | .00002 | .00018 | .00007 | .00015 | .00186 | .0569 | .0113 | | %RSD | .07698 | .21604 | .23337 | .20280 | 1.8365 | 1.5324 | .73165 | | #1 | .03082 | .08513 | .02983 | .07299 | .09948 | 3.6488 | 1.5263 | | #2 | .03078 | .08478 | .02997 | .07269 | .10165 | 3.7559 | 1.5469 | | #3 | .03078 | .08487 | .02990 | .07282 | .10319 | 3.7357 | 1.5445 | | Elem | Mg2790 | Mn2576 | Mo2020 | Na5895 | Ni2316 | P_2149 | Pb2203 | | Units | Cts/S | Avg | . 06094 | . 15946 | . 20024 | 10.773 | .08000 | . 14131 | . 03583 | | Stddev | .00041 | .00323 | .00094 | .148 | .00023 | .00031 | .00010 | | %RSD | .67817 | 2.0229 | .46935 | 1.3758 | .28591 | .22290 | .28695 | | #1 | .06050 | .15577 | .20123 | 10.602 | .08026 | .14167 | .03589 | | #2 | .06101 | .16087 | .20013 | 10.869 | .07982 | .14115 | .03571 | | #3 | .06132 | .16175 | .19936 | 10.847 | .07993 | .14110 | .03589 | | Elem | Sb2068 | Se1960 | Si2124 | Sn1899 | Sr4077 | Ti3372 | TI1908 | | Units | Cts/S | Avg | . 04325 | . 00638 | .23110 | . 07452 | 4.7195 | . 14984 | . 01372 | | Stddev | .00023 | .00005 | .00032 | .00018 | .0733 | .00247 | .00006 | | %RSD | .52940 | .79498 | .13891 | .24797 | 1.5524 | 1.6504 | .47294 | | #1 | .04350 | .00642 | .23144 | .07473 | 4.6350 | .14699 | .01379 | | #2 | .04319 | .00639 | .23108 | .07439 | 4.7638 | .15120 | .01371 | | #3 | .04306 | .00632 | .23080 | .07444 | 4.7598 | .15134 | .01367 | Acquired: 5/13/2016 15:26:38 Sample Name: S4 Type: Cal Method: ICP-THERMO3_6010_200.7WATER_3YLINES(v872) Mode: IR Corr. Factor: 1.000000 User: JYH Custom ID1: Custom ID2: Custom ID3: Comment: Elem V_2924 Zn2062 Zr3391 Units Cts/S Cts/S Cts/S Avg .05499 .43388 -.00339 Stddev .00005 .00087 .00096 %RSD .08186 .20018 28.439 #1 .05502 .43478 -.00450 #2 .05501 .43380 -.00289 #3 .05494 .43305 -.00278 Y_2243 Y_3600 Y_3774 Int. Std. Cts/S Cts/S Cts/S Units 11770. 84022. 3985.3 Avg Stddev 30. 128. 18.7 .46955 4004.5 3967.1 3984.3 Approved: May 16, 2016 %RSD #1 #2 #3 .25696 11736. 11791. 11785. .15259 83969. 84169. 83930. | Sample Nam
Method: ICP
User: JYH
Comment: | | _ | | LINES(v872 | e: QC
) Mode:
tom ID3: | CONC (| Corr. Factor: | 1.00000(| |--|----------------|----------------|----------------|----------------|------------------------------|----------------|----------------|----------| | Elem | Ag3280 | Al3082 | As1890 | B_2496 | Ba4554 | Be3131 | Ca4226 | | | Units | ppm | | Avg | . 40663 | 10.300 | . 41261 | . 50661 | 1.0270 | . 05120 | 10.155 | | | Stddev | .00204 | .016 | .00438 | .00275 | .0023 | .00010 | .072 | | | %RSD | .50050 | .15839 | 1.0612 | .54217 | .22699 | .18822 | .70967 | | | #1 | .40803 | 10.281 | .41448 | .50397 | 1.0290 | .05109 | 10.157 | | | #2 | .40756 | 10.312 | .41575 | .50641 | 1.0244 | .05127 | 10.226 | | | #3 | .40429 | 10.306 | .40761 | .50946 | 1.0275 | .05124 | 10.082 | | | Check ?
Value
Range | Chk Pass | | Elem | Cd2288 | Co2286 | Cr2677 | Cu2247 | Fe2611 | K_7664 | Li6707 | | | Units | ppm | | Avg | . 05091 | . 20429 | . 50702 | . 50945 | 4.0397 | 50.434 | 1.0221 | | | Stddev | .00016 | .00027 | .00175 | .00177 | .0340 | .186 | .0027 | | | %RSD | .31035 | .12997 | .34456 | .34761 | .84188 | .36955 | .26458 | | | #1 | .05077 | .20459 | .50501 | .51037 | 4.0603 | 50.603 | 1.0250 | | | #2 | .05108 | .20407 | .50781 | .51057 | 4.0584 | 50.463 | 1.0198 | | | #3 | .05088 | .20422 | .50822 | .50741 | 4.0004 | 50.234 | 1.0213 | | | Check ?
Value
Range | Chk Pass | | Elem | Mg2790 | Mn2576 | Mo2020 | Na5895 | Ni2316 | P_2149 | Pb2203 | | | Units | ppm | | Avg | 10.340 | . 50728 | . 98119 | 50.682 | . 50832 | 10.184 | . 50987 | | | Stddev | .074 | .00355 | .00156 | .150 | .00145 | .008 | .00237 | | | %RSD | .71652 | .69945 | .15909 | .29615 | .28607 | .07521 | .46402 | | | #1 | 10.411 | .50885 | .97941 | 50.850 | .50778 | 10.184 | .51258 | | | #2 | 10.345 | .50978 | .98233 | 50.560 | .50996 | 10.192 | .50883 | | | #3 | 10.263 | .50322 | .98184 | 50.636 | .50721 | 10.177 | .50821 | | | Check ?
Value
Range | Chk Pass | | Sample Nam
Method: ICP
User: JYH
Comment: | | | | _INES(v872 | e: QC
) Mode:
tom ID3: | CONC (| Corr. Factor: | 1.00000(| |--|---|---|---|---|---|---|---|----------| | Elem
Units
Avg
Stddev
%RSD | Sb2068
ppm
1.2478
.0041
.32766 | Se1960
ppm
. 40329
.00200
.49571 | Si2124
ppm
F 5.3730
.0016
.02928 | Sn1899
ppm
F 1.0550
.0019
.18397 | Sr4077
ppm
. 99731
.00136
.13624 | Ti3372
ppm
1.0223
.0091
.88665 | TI1908
ppm
. 51164
.00445
.87025 | | | #1
#2
#3 | 1.2434
1.2488
1.2514 | .40124
.40339
.40524 | 5.3717
5.3747
5.3726 | 1.0541
1.0572
1.0537 | .99878
.99610
.99706 | 1.0321
1.0142
1.0205 | .51593
.50704
.51196 | | | Check ?
Value
Range | Chk Pass | Chk Pass | Chk Fail
5.0000
5.0000% | Chk Fail
1.0000
5.0000% | Chk Pass | Chk Pass | Chk Pass | | | Elem
Units
Avg
Stddev
%RSD | V_2924
ppm
1.0087
.0036
.35255 | Zn2062
ppm
1.0165
.0011
.11174 | Zr3391
ppm
F .14787
.57753
390.56 | | | | | | | #1
#2
#3 | 1.0063
1.0069
1.0127 | 1.0155
1.0178
1.0164 | .48412
.47850
51900 | | | | | | | Check ?
Value
Range | Chk Pass | Chk Pass | Chk Fail
1.0000
-5.0000% | | | | | | | Int. Std.
Units
Avg
Stddev
%RSD | Y_2243
Cts/S
11932.
21.
.17454 | Y_3600
Cts/S
84531.
559.
.66090 | Y_3774
Cts/S
3922.7
66.6
1.6973 | | | | | | | #1
#2
#3 | 11948.
11908.
11941. | 85101.
84507.
83985. | 3911.2
3862.7
3994.4 | | | | | | | Sample Name
Method: ICP-1
User: JYH
Comment: | | | | 71 | Mode: CONG | C Corr. F | Factor: 1.000000 | |---|----------|----------|----------------|----------------|----------------|----------------|------------------| | Elem | Ag3280 | Al3082 | As1890 | B_2496 | Ba4554 | Be3131 | Ca4226 | | Units | ppm | Avg | 00210 | .01336 | .00243 | .00586 | . 00081 | . 00007 | 01574 | | Stddev | .00087 | .00210 | .00175 | .00209 | .00132 | .00003 | .06300 | | %RSD | 41.481 | 15.704 | 72.005 | 35.686 | 163.16 | 37.611 | 400.21 | | #1 | 00307 | .01097 | .00318 | .00672 | .00232 | .00007 | 08425 | | #2 | 00137 | .01427 | .00368 | .00348 | 00007 | .00011 | .03969 | | #3 | 00188 | .01486 | .00043 | .00738 | .00017 | .00005 | 00267 | | Check ?
High Limit
Low Limit | Chk Pass | Elem | Cd2288 | Co2286 | Cr2677 | Cu2247 | Fe2611 | K_7664 | Li6707 | | Units | ppm | Avg | 00026 | .00028 | .00159 | .00049 | 01434 | . 06814 | . 00100 | | Stddev | .00016 | .00016 | .00128 | .00031 | .02704 | .04625 | .00514 | | %RSD | 60.107 | 57.544 | 80.267 | 64.630 | 188.57 | 67.867 | 515.02 | | #1 | 00029 | .00010 | .00204 | .00026 | 02484 | .01833 | 00491 | | #2 | 00040 | .00040 | .00258 | .00036 | 03456 | .07639 | .00448 | | #3 | 00009 | .00034 | .00015 | .00085 | .01638 | .10971 | .00343 | | Check ?
High Limit
Low Limit | Chk Pass | Elem | Mg2790 | Mn2576 | Mo2020 | Na5895 | Ni2316 | P_2149 |
Pb2203 | | Units | ppm | Avg | 14732 | 00085 | . 00310 | . 01195 | . 00129 | . 00166 | 00057 | | Stddev | .03998 | .00208 | .00017 | .03520 | .00106 | .00356 | .00252 | | %RSD | 27.135 | 243.76 | 5.5068 | 294.60 | 81.616 | 214.63 | 443.61 | | #1 | 10921 | .00017 | .00301 | 00977 | .00038 | 00075 | 00321 | | #2 | 14383 | 00325 | .00330 | 00694 | .00245 | .00575 | 00030 | | #3 | 18893 | .00052 | .00299 | .05256 | .00105 | 00002 | .00181 | | Check ?
High Limit
Low Limit | Chk Pass | Sample Name
Method: ICP-1
User: JYH
Comment: | |)10_200.7W <i>A</i> | 016 15:34:04
ATER_3YLINI
stom ID2: | • • | Mode: CON | C Corr. F | Factor: 1.000000 | |---|---|--|--|--|---|---|---| | Elem
Units
Avg
Stddev
%RSD | Sb2068
ppm
. 00101
.00278
276.61 | Se1960
ppm
.00017
.00606
3614.0 | Si2124
ppm
.01293
.00258
19.953 | Sn1899
ppm
00041
.00069
168.77 | Sr4077
ppm
. 00036
.00022
60.681 | Ti3372
ppm
. 00102
.00279
272.58 | TI1908
ppm
. 00018
.00334
1876.6 | | #1
#2
#3 | .00274
00220
.00249 | 00678
.00291
.00437 | .01575
.01068
.01237 | .00038
00070
00090 | .00020
.00060
.00026 | 00198
.00354
.00152 | .00030
00322
.00346 | | Check ?
High Limit
Low Limit | Chk Pass | Elem
Units
Avg
Stddev
%RSD | V_2924
ppm
. 00113
.00054
47.617 | Zn2062
ppm
.00101
.00023
22.627 | Zr3391
ppm
F23475
.23699
100.95 | | | | | | #1
#2
#3 | .00170
.00104
.00064 | .00094
.00083
.00127 | 22090
00499
47836 | | | | | | Check ?
High Limit
Low Limit | Chk Pass | Chk Pass | Chk Fail
.04000
04000 | | | | | | Int. Std.
Units
Avg
Stddev
%RSD | Y_2243
Cts/S
11999.
27.
.22794 | Y_3600
Cts/S
86618.
142.
.16399 | Y_3774
Cts/S
3915.3
77.6
1.9808 | | | | | | #1
#2
#3 | 12021.
12007.
11968. | 86462.
86651.
86740. | 3831.0
3931.1
3983.7 | | | | | | Sample Nam
Method: ICP
User: JYH
Comment: | ne: LLICV
-THERMO3_
Custom I | 6010_200.7 | 5/13/2016 15
WATER_3Y
Custom ID2: | LINES(v872 | ype: Unk
) Mode:
tom ID3: | CONC (| Corr. Factor: | 1.000000 | |--|------------------------------------|----------------|---|----------------|---------------------------------|----------------|----------------|----------| | Elem | Ag3280 | Al3082 | As1890 | B_2496 | Ba4554 | Be3131 | Ca4226 | | | Units | ppm | | Avg | . 00724 | . 17585 | .00528 | .08151 | .00948 | .00165 | . 40796 | | | Stddev | .00199 | .00109 | .00184 | .00054 | .00089 | .00003 | .01228 | | | %RSD | 27.442 | .62236 | 34.894 | .65877 | 9.3907 | 1.8441 | 3.0101 | | | #1 | .00605 | .17711 | .00449 | .08203 | .00845 | .00168 | .39839 | | | #2 | .00954 | .17529 | .00738 | .08154 | .00989 | .00162 | .42180 | | | #3 | .00614 | .17515 | .00396 | .08095 | .01008 | .00165 | .40367 | | | Check ?
High Limit
Low Limit | Chk Pass | | Elem | Cd2288 | Co2286 | Cr2677 | Cu2247 | Fe2611 | K_7664 | Li6707 | | | Units | ppm | | Avg | . 00077 | .00435 | . 00484 | .00388 | .07898 | . 87648 | . 08183 | | | Stddev | .00040 | .00056 | .00002 | .00055 | .00815 | .08170 | .00225 | | | %RSD | 52.646 | 12.971 | .45176 | 14.069 | 10.319 | 9.3216 | 2.7484 | | | #1 | .00030 | .00387 | .00485 | .00430 | .08203 | .93365 | .08054 | | | #2 | .00100 | .00497 | .00485 | .00326 | .08516 | .78290 | .08053 | | | #3 | .00100 | .00419 | .00481 | .00409 | .06974 | .91288 | .08443 | | | Check ?
High Limit
Low Limit | Chk Pass | | Elem | Mg2790 | Mn2576 | Mo2020 | Na5895 | Ni2316 | P_2149 | Pb2203 | | | Units | ppm | | Avg | . 39120 | . 00566 | . 00874 | . 41947 | .01709 | . 79127 | . 00577 | | | Stddev | .05671 | .00103 | .00028 | .01660 | .00090 | .00562 | .00541 | | | %RSD | 14.498 | 18.228 | 3.1666 | 3.9575 | 5.2560 | .70963 | 93.783 | | | #1 | .43211 | .00471 | .00869 | .43764 | .01805 | .78781 | 00048 | | | #2 | .32646 | .00551 | .00904 | .40511 | .01627 | .79775 | .00897 | | | #3 | .41504 | .00676 | .00850 | .41565 | .01695 | .78826 | .00881 | | | Check ?
High Limit
Low Limit | Chk Pass | | Sample Nam
Method: ICP
User: JYH
Comment: | ne: LLICV
-THERMO3_
Custom I | 6010_200.7 | 5/13/2016 15
WATER_3Y
Custom ID2: | LINES(v872 | ype: Unk
) Mode:
tom ID3: | CONC (| Corr. Factor: 1.0000 |)0(| |--|---|---|---|---|---|---|---|-----| | Elem
Units
Avg
Stddev
%RSD | Sb2068
ppm
. 08491
.00126
1.4864 | Se1960
ppm
. 01730
.00278
16.057 | Si2124
ppm
. 87991
.00125
.14222 | Sn1899
ppm
. 41340
.00233
.56445 | Sr4077
ppm
. 04104
.00018
.44738 | Ti3372
ppm
. 02627
.00049
1.8632 | TI1908
ppm
. 16140
.00519
3.2142 | | | #1
#2
#3 | .08634
.08445
.08395 | .01616
.02047
.01528 | .88125
.87972
.87877 | .41465
.41484
.41071 | .04124
.04101
.04087 | .02671
.02575
.02636 | .15571
.16586
.16263 | | | Check ?
High Limit
Low Limit | Chk Pass | | Elem
Units
Avg
Stddev
%RSD | V_2924
ppm
. 00830
.00123
14.870 | Zn2062
ppm
.01698
.00026
1.5045 | Zr3391
ppm
F 59.616
1.248
2.0940 | | | | | | | #1
#2
#3 | .00963
.00719
.00808 | .01689
.01727
.01679 | 61.044
59.077
58.728 | | | | | | | Check ?
High Limit
Low Limit | Chk Pass | Chk Pass | Chk Fail
36.000
04000 | | | | | | | Int. Std.
Units
Avg
Stddev
%RSD | Y_2243
Cts/S
12165.
49.
.40353 | Y_3600
Cts/S
87647.
865.
.98710 | Y_3774
Cts/S
3947.5
38.0
.96335 | | | | | | | #1
#2
#3 | 12130.
12144.
12221. | 87193.
88644.
87102. | 3980.7
3955.8
3906.0 | | | | | | | Sample Nam
Method: ICP
User: JYH
Comment: | ne: LLICV
-THERMO3_
Custom I | 6010_200.7 | 5/13/2016 15
WATER_3Y
Custom ID2: | LINES(v872 | ype: Unk
) Mode:
tom ID3: | CONC (| Corr. Factor: | 1.000000 | |--|------------------------------------|----------------|---|----------------|---------------------------------|----------------|----------------|----------| | Elem | Ag3280 | Al3082 | As1890 | B_2496 | Ba4554 | Be3131 | Ca4226 | | | Units | ppm | | Avg | . 01783 | . 41044 | .01908 | . 19453 | .01973 | . 00397 | . 97376 | | | Stddev | .00124 | .00997 | .00392 | .00089 | .00093 | .00003 | .05285 | | | %RSD | 6.9466 | 2.4280 | 20.561 | .45560 | 4.7277 | .83769 | 5.4274 | | | #1 | .01925 | .41918 | .02125 | .19429 | .02073 | .00394 | .91979 | | | #2 | .01700 | .41257 | .01455 | .19551 | .01889 | .00401 | .97607 | | | #3 | .01723 | .39959 | .02144 | .19378 | .01956 | .00397 | 1.0254 | | | Check ?
High Limit
Low Limit | Chk Pass | | Elem | Cd2288 | Co2286 | Cr2677 | Cu2247 | Fe2611 | K_7664 | Li6707 | | | Units | ppm | | Avg | . 00202 | .01039 | . 01030 | . 00877 | .19339 | 2.1906 | . 19901 | | | Stddev | .00010 | .00039 | .00067 | .00020 | .00921 | .0413 | .00545 | | | %RSD | 5.1414 | 3.7673 | 6.4687 | 2.2941 | 4.7614 | 1.8843 | 2.7405 | | | #1 | .00208 | .01018 | .01034 | .00898 | .19145 | 2.1591 | .20404 | | | #2 | .00190 | .01015 | .01095 | .00875 | .20342 | 2.1754 | .19321 | | | #3 | .00207 | .01084 | .00962 | .00858 | .18531 | 2.2373 | .19977 | | | Check ?
High Limit
Low Limit | Chk Pass | | Elem | Mg2790 | Mn2576 | Mo2020 | Na5895 | Ni2316 | P_2149 | Pb2203 | | | Units | ppm | | Avg | 1.0314 | . 01760 | . 01985 | 1.0034 | .04141 | 1.9264 | . 02198 | | | Stddev | .1470 | .00396 | .00018 | .0123 | .00100 | .0074 | .00217 | | | %RSD | 14.249 | 22.511 | .90597 | 1.2259 | 2.4183 | .38458 | 9.8584 | | | #1 | 1.0247 | .02026 | .02005 | 1.0165 | .04193 | 1.9192 | .02448 | | | #2 | .88786 | .01949 | .01976 | .99207 | .04026 | 1.9340 | .02064 | | | #3 | 1.1816 | .01305 | .01973 | 1.0016 | .04205 | 1.9259 | .02083 | | | Check ?
High Limit
Low Limit | Chk Pass | | Sample Nam
Method: ICP-
User: JYH
Comment: | | 6010_200.7 | 5/13/2016 15
WATER_3YI
Custom ID2: | LINES(v872) | ype: Unk
) Mode:
tom ID3: | CONC (| Corr. Factor: 1 | .000000 | |---|---|---|--|---|---|---|---|---------| | Elem
Units
Avg
Stddev
%RSD | Sb2068
ppm
.
20677
.00342
1.6559 | Se1960
ppm
.03998
.00655
16.381 | Si2124
ppm
2.1347
.0034
.15837 | Sn1899
ppm
1.0054
.0017
.16893 | Sr4077
ppm
. 10011
.00042
.41504 | Ti3372
ppm
. 06473
.00430
6.6414 | TI1908
ppm
. 38768
.00085
.21892 | | | #1
#2
#3 | .20342
.20661
.21027 | .04501
.04234
.03257 | 2.1313
2.1381
2.1346 | 1.0045
1.0074
1.0044 | .10057
.09975
.10001 | .06853
.06558
.06007 | .38699
.38863
.38744 | | | Check ?
High Limit
Low Limit | Chk Pass | | Elem
Units
Avg
Stddev
%RSD | V_2924
ppm
. 02065
.00120
5.7920 | Zn2062
ppm
. 04012
.00021
.51524 | Zr3391
ppm
F 153.15
.71
.46112 | | | | | | | #1
#2
#3 | .01944
.02183
.02067 | .04035
.04006
.03995 | 153.84
153.17
152.43 | | | | | | | Check ?
High Limit
Low Limit | Chk Pass | Chk Pass | Chk Fail
36.000
04000 | | | | | | | Int. Std.
Units
Avg
Stddev
%RSD | Y_2243
Cts/S
12175.
29.
.24202 | Y_3600
Cts/S
87827.
149.
.16978 | Y_3774
Cts/S
4001.3
30.0
.75074 | | | | | | | #1
#2
#3 | 12141.
12197.
12185. | 87848.
87669.
87965. | 3973.6
3997.0
4033.2 | | | | | | | Sample Name
Method: ICP-
User: JYH
Comment: | | | | | Mode: CON | C Corr. F | Factor: 1.000000 | |--|---------------|----------------|----------------|-----------------------------|---------------|----------------|------------------| | Elem | Ag3280 | Al3082 | As1890 | B_2496 | Ba4554 | Be3131 | Ca4226 | | Units | ppm | Avg | 00263 | 264.24 | . 00335 | . 01888 | 00027 | .00005 | 245.84 | | Stddev | .00163 | .28 | .00434 | .00192 | .00043 | .00001 | 1.07 | | %RSD | 61.838 | .10783 | 129.61 | 10.180 | 157.96 | 16.200 | .43556 | | #1 | 00076 | 264.57 | .00806 | .01677 | 00030 | .00006 | 246.76 | | #2 | 00372 | 264.11 | .00246 | .02053 | 00068 | .00005 | 246.11 | | #3 | 00342 | 264.05 | 00048 | .01933 | .00017 | .00004 | 244.66 | | Check ?
High Limit
Low Limit | Chk Pass | Elem | Cd2288 | Co2286 | Cr2677 | Cu2247 | Fe2611 | K_7664 | Li6707 | | Units | ppm | Avg | 00049 | 00084 | 00186 | F 02303 | 97.246 | . 17617 | . 01084 | | Stddev | .00018 | .00033 | .00073 | .00056 | .265 | .03152 | .00347 | | %RSD | 36.031 | 39.373 | 39.041 | 2.4348 | .27260 | 17.894 | 31.982 | | #1 | 00064 | 00099 | 00174 | 02247 | 97.410 | .18816 | .00978 | | #2 | 00054 | 00046 | 00264 | 02359 | 97.387 | .19995 | .00803 | | #3 | 00029 | 00106 | 00120 | 02301 | 96.940 | .14041 | .01472 | | Check ?
High Limit
Low Limit | Chk Pass | Chk Pass | Chk Pass | Chk Fail
.00400
00400 | Chk Pass | Chk Pass | Chk Pass | | Elem | Mg2790 | Mn2576 | Mo2020 | Na5895 | Ni2316 | P_2149 | Pb2203 | | Units | ppm | Avg | 252.33 | . 00020 | 00044 | . 02902 | 00084 | . 04096 | 00079 | | Stddev | 1.17 | .00319 | .00004 | .01153 | .00134 | .00293 | .00312 | | %RSD | .46435 | 1590.2 | 9.3359 | 39.714 | 159.26 | 7.1554 | 392.59 | | #1 | 253.62 | .00377 | 00039 | .01884 | 00084 | .04419 | .00233 | | #2 | 252.05 | 00080 | 00047 | .04153 | .00050 | .03848 | 00391 | | #3 | 251.33 | 00237 | 00045 | .02670 | 00219 | .04021 | 00080 | | Check ?
High Limit
Low Limit | Chk Pass | • | | | | | | | | | | | |---|---|---|--|--|---|---|--|--|--|--| | Elem
Units
Avg
Stddev
%RSD | Sb2068
ppm
00750
.00373
49.752 | Se1960
ppm
.00329
.00842
255.88 | Si2124
ppm
.18164
.00370
2.0364 | Sn1899
ppm
00001
.00093
18307. | Sr4077
ppm
. 00008
.00028
346.34 | Ti3372
ppm
. 00993
.00108
10.847 | TI1908
ppm
00050
.00439
878.36 | | | | | #1
#2
#3 | 00339
01068
00844 | 00325
.01279
.00034 | .18184
.18523
.17784 | .00078
00103
.00023 | .00040
00007
00009 | .01114
.00908
.00956 | 00289
00318
.00456 | | | | | Check ?
High Limit
Low Limit | Chk Pass | | | | Elem
Units
Avg
Stddev
%RSD | V_2924
ppm
00623
.00083
13.264 | Zn2062
ppm
. 00459
.00005
1.1380 | Zr3391
ppm
F -6.0308
.0853
1.4151 | | | | | | | | | #1
#2
#3 | 00567
00718
00584 | .00465
.00457
.00455 | -6.1162
-5.9455
-6.0306 | | | | | | | | | Check ?
High Limit
Low Limit | Chk Pass | Chk Pass | Chk Fail
.02000
02000 | | | | | | | | | Int. Std.
Units
Avg
Stddev
%RSD | Y_2243
Cts/S
11631.
20.
.17474 | Y_3600
Cts/S
82439.
241.
.29267 | Y_3774
Cts/S
3915.5
41.0
1.0462 | | | | | | | | | #1
#2
#3 | 11614.
11654.
11626. | 82424.
82687.
82205. | 3871.0
3923.7
3951.7 | | | | | | | | | Sample Name: ICSAB Acquired: 5/13/2016 15:50:10 Type: QC Method: ICP-THERMO3_6010_200.7WATER_3YLINES(v872) Mode: CONC Corr. Factor: 1.000000 User: JYH Custom ID1: Custom ID2: Custom ID3: Comment: | | | | | | | | | | |--|----------------|----------------|----------------|----------------|----------------|----------------|----------------|--|--| | Elem | Ag3280 | Al3082 | As1890 | B_2496 | Ba4554 | Be3131 | Ca4226 | | | | Units | ppm | | | Avg | . 51475 | 261.71 | . 24888 | . 00282 | . 24637 | .25016 | 242.02 | | | | Stddev | .00479 | .24 | .00460 | .00162 | .00019 | .00039 | .37 | | | | %RSD | .93018 | .09352 | 1.8500 | 57.460 | .07600 | .15745 | .15455 | | | | #1 | .51986 | 261.97 | .25375 | .00204 | .24658 | .25057 | 242.45 | | | | #2 | .51037 | 261.68 | .24460 | .00174 | .24626 | .25014 | 241.87 | | | | #3 | .51402 | 261.48 | .24829 | .00468 | .24625 | .24978 | 241.74 | | | | Check ?
High Limit
Low Limit | Chk Pass | | | Elem | Cd2288 | Co2286 | Cr2677 | Cu2247 | Fe2611 | K_7664 | Li6707 | | | | Units | ppm | | | Avg | . 46466 | .23338 | . 24413 | . 22063 | 94.549 | 5.2260 | . 01201 | | | | Stddev | .00112 | .00089 | .00029 | .00105 | .147 | .0307 | .00317 | | | | %RSD | .24079 | .38301 | .12073 | .47641 | .15580 | .58657 | 26.389 | | | | #1 | .46595 | .23432 | .24388 | .21949 | 94.652 | 5.2176 | .01097 | | | | #2 | .46399 | .23328 | .24445 | .22157 | 94.380 | 5.2599 | .01556 | | | | #3 | .46404 | .23255 | .24405 | .22081 | 94.615 | 5.2004 | .00948 | | | | Check ?
High Limit
Low Limit | Chk Pass | | | Elem | Mg2790 | Mn2576 | Mo2020 | Na5895 | Ni2316 | P_2149 | Pb2203 | | | | Units | ppm | | | Avg | 245.86 | . 24405 | 00015 | 5.1551 | . 46626 | . 06288 | . 47993 | | | | Stddev | .20 | .00398 | .00073 | .0315 | .00091 | .00864 | .00620 | | | | %RSD | .08230 | 1.6314 | 492.74 | .61140 | .19583 | 13.739 | 1.2908 | | | | #1 | 246.03 | .24791 | 00066 | 5.1702 | .46725 | .06628 | .48090 | | | | #2 | 245.64 | .23995 | .00069 | 5.1762 | .46546 | .05306 | .48559 | | | | #3 | 245.91 | .24429 | 00047 | 5.1189 | .46606 | .06931 | .47331 | | | | Check ?
High Limit
Low Limit | Chk Pass | | | Sample Name
Method: ICP-T
User: JYH
Comment: | |)10_200.7W <i>A</i> | 3/2016 15:50
ATER_3YLIN
stom ID2: | | Mode: CON | C Corr. F | Factor: 1.000000 | |---|---|---|--|---|---|---|---| | Elem
Units
Avg
Stddev
%RSD | Sb2068
ppm
. 49394
.00466
.94247 | Se1960
ppm
.24492
.00631
2.5754 | Si2124
ppm
01902
.00371
19.522 | Sn1899
ppm
.00083
.00076
92.625 | Sr4077
ppm
. 00004
.00031
713.51 | Ti3372
ppm
.01054
.00247
23.476 | TI1908
ppm
. 44564
.00471
1.0570 | | #1
#2
#3 | .48978
.49308
.49897 | .23772
.24947
.24758 | 01482
02037
02187 | .00001
.00153
.00094 | .00033
00029
.00009 | .01320
.00831
.01010 | .44058
.44643
.44990 | | Check ?
High Limit
Low Limit | Chk Pass | Elem
Units
Avg
Stddev
%RSD | V_2924
ppm
. 24281
.00199
.81993 | Zn2062
ppm
. 47608
.00159
.33340 | Zr3391
ppm
F -6.3534
.3534
5.5625 | | | | | | #1
#2
#3 | .24051
.24385
.24405 | .47791
.47524
.47509 | -6.5793
-5.9461
-6.5349 | | | | | | Check ?
High Limit
Low Limit | Chk Pass | Chk Pass | Chk Fail
.02500
02500 | | | | | | Int. Std.
Units
Avg
Stddev
%RSD | Y_2243
Cts/S
11683.
4.
.03393 | Y_3600
Cts/S
82136.
189.
.23052 | Y_3774
Cts/S
3974.5
18.2
.45760 | | | | | | #1
#2
#3 | 11679.
11687.
11683. | 82345.
81976.
82086. | 3973.0
3957.1
3993.4 | | | | | | Sample Nam
Method: ICP
User: JYH
Comment: | | _ | | LINES(v872 | pe: QC
) Mode:
tom ID3: | CONC (| Corr. Factor: | 1.000000 |
--|----------------|----------------|----------------|----------------|-------------------------------|----------------|----------------|----------| | Elem | Ag3280 | Al3082 | As1890 | B_2496 | Ba4554 | Be3131 | Ca4226 | | | Units | ppm | | Avg | . 37777 | 9.3972 | . 37876 | . 47225 | . 95384 | . 04712 | 9.6051 | | | Stddev | .00284 | .0583 | .00358 | .00123 | .07623 | .00045 | .6787 | | | %RSD | .75195 | .62009 | .94585 | .25990 | 7.9920 | .95988 | 7.0663 | | | #1 | .37546 | 9.3581 | .37479 | .47158 | 1.0396 | .04666 | 10.356 | | | #2 | .37691 | 9.3692 | .37973 | .47150 | .89376 | .04712 | 9.0354 | | | #3 | .38094 | 9.4641 | .38176 | .47366 | .92815 | .04757 | 9.4240 | | | Check ?
Value
Range | Chk Pass | | Elem | Cd2288 | Co2286 | Cr2677 | Cu2247 | Fe2611 | K_7664 | Li6707 | | | Units | ppm | | Avg | . 04734 | .19132 | . 47651 | .47736 | 3.7948 | 47.784 | . 96262 | | | Stddev | .00023 | .00117 | .00087 | .00269 | .2609 | 3.577 | .07389 | | | %RSD | .47956 | .61331 | .18213 | .56350 | 6.8756 | 7.4865 | 7.6755 | | | #1 | .04710 | .19013 | .47558 | .47427 | 4.0846 | 51.795 | 1.0461 | | | #2 | .04755 | .19248 | .47666 | .47921 | 3.5785 | 44.922 | .90572 | | | #3 | .04737 | .19135 | .47730 | .47858 | 3.7214 | 46.636 | .93601 | | | Check ?
Value
Range | Chk Pass | | Elem | Mg2790 | Mn2576 | Mo2020 | Na5895 | Ni2316 | P_2149 | Pb2203 | | | Units | ppm | | Avg | 9.5139 | . 47502 | . 95278 | 47.813 | . 47996 | 9.4064 | . 48294 | | | Stddev | .7087 | .03854 | .00265 | 3.612 | .00291 | .0251 | .00785 | | | %RSD | 7.4489 | 8.1125 | .27774 | 7.5547 | .60543 | .26686 | 1.6246 | | | #1 | 10.321 | .51680 | .95093 | 51.855 | .47682 | 9.3826 | .47445 | | | #2 | 8.9942 | .44088 | .95581 | 44.902 | .48051 | 9.4042 | .48445 | | | #3 | 9.2263 | .46737 | .95160 | 46.681 | .48256 | 9.4326 | .48993 | | | Check ?
Value
Range | Chk Pass | | Sample Nam
Method: ICP
User: JYH
Comment: | | 6010_200.7 | 13/2016 15:5
WATER_3Y
Custom ID2: | LINES(v872 | pe: QC
) Mode:
tom ID3: | CONC (| Corr. Factor: 1 | .000000 | |--|---|---|---|---|---|---|---|---------| | Elem
Units
Avg
Stddev
%RSD | Sb2068
ppm
1.1262
.0032
.28400 | Se1960
ppm
. 38173
.00501
1.3111 | Si2124
ppm
4.8323
.0132
.27305 | Sn1899
ppm
. 95630
.00341
.35704 | Sr4077
ppm
. 95632
.06885
7.1997 | Ti3372
ppm
. 95030
.07873
8.2846 | TI1908
ppm
. 48394
.00595
1.2299 | | | #1
#2
#3 | 1.1243
1.1244
1.1299 | .37745
.38051
.38724 | 4.8191
4.8324
4.8454 | .95249
.95733
.95909 | 1.0350
.90693
.92707 | 1.0384
.88689
.92558 | .48755
.47707
.48720 | | | Check ?
Value
Range | Chk Pass | | Elem
Units
Avg
Stddev
%RSD | V_2924
ppm
. 94905
.00375
.39525 | Zn2062
ppm
. 95768
.00422
.44085 | Zr3391
ppm
F 1.7832
.3334
18.698 | | | | | | | #1
#2
#3 | .94904
.95281
.94531 | .95281
.96020
.96004 | 1.3982
1.9735
1.9778 | | | | | | | Check ?
Value
Range | Chk Pass | Chk Pass | Chk Fail
1.0000
10.000% | | | | | | | Int. Std.
Units
Avg
Stddev
%RSD | Y_2243
Cts/S
12475.
54.
.43357 | Y_3600
Cts/S
90478.
699.
.77251 | Y_3774
Cts/S
4218.7
242.9
5.7580 | | | | | | | #1
#2
#3 | 12536.
12434.
12455. | 91138.
90549.
89746. | 3970.1
4455.4
4230.7 | | | | | | | • | | | | | | | | | | |------------------------------------|----------|----------|----------------|----------------|----------|----------------|----------|--|--| | Elem | Ag3280 | Al3082 | As1890 | B_2496 | Ba4554 | Be3131 | Ca4226 | | | | Units | ppm | | | Avg | .00040 | .00256 | 00055 | . 00450 | .00080 | . 00004 | .00060 | | | | Stddev | .00128 | .00132 | .00478 | .00064 | .00009 | .00007 | .02316 | | | | %RSD | 321.45 | 51.504 | 870.70 | 14.229 | 11.584 | 178.15 | 3883.1 | | | | #1 | .00130 | .00116 | .00069 | .00486 | .00070 | .00004 | .00898 | | | | #2 | 00107 | .00274 | .00349 | .00376 | .00083 | .00011 | 02559 | | | | #3 | .00096 | .00379 | 00583 | .00487 | .00088 | 00003 | .01839 | | | | Check ?
High Limit
Low Limit | Chk Pass | | | Elem | Cd2288 | Co2286 | Cr2677 | Cu2247 | Fe2611 | K_7664 | Li6707 | | | | Units | ppm | | | Avg | 00017 | .00043 | 00039 | 00093 | 03289 | . 05204 | 00026 | | | | Stddev | .00029 | .00009 | .00104 | .00075 | .03823 | .09231 | .00500 | | | | %RSD | 167.99 | 21.016 | 269.67 | 80.602 | 116.25 | 177.39 | 1934.6 | | | | #1 | 00039 | .00051 | 00130 | 00173 | 06453 | 05140 | 00075 | | | | #2 | 00029 | .00033 | 00062 | 00024 | .00959 | .08146 | 00499 | | | | #3 | .00016 | .00043 | .00075 | 00082 | 04372 | .12605 | .00497 | | | | Check ?
High Limit
Low Limit | Chk Pass | | | Elem | Mg2790 | Mn2576 | Mo2020 | Na5895 | Ni2316 | P_2149 | Pb2203 | | | | Units | ppm | | | Avg | 18028 | 00187 | . 00360 | . 00216 | .00077 | . 00212 | 00095 | | | | Stddev | .04429 | .00197 | .00069 | .01537 | .00030 | .01458 | .00328 | | | | %RSD | 24.567 | 105.38 | 19.121 | 712.72 | 39.587 | 686.31 | 346.61 | | | | #1 | 23126 | 00042 | .00296 | 00177 | .00111 | 00895 | 00261 | | | | #2 | 15836 | 00411 | .00350 | .01910 | .00052 | .01864 | .00283 | | | | #3 | 15123 | 00107 | .00433 | 01087 | .00067 | 00332 | 00306 | | | | Check ?
High Limit
Low Limit | Chk Pass | | | Sample Nam
Method: ICP
User: JYH
Comment: | | 6010_200.7 | 13/2016 15:5
WATER_3YI
Custom ID2: | LINES(v872) | pe: Blank
) Mode:
tom ID3: | CONC (| Corr. Factor: | 1.000000 | |--|---|---|--|---|---|---|--|----------| | Elem
Units
Avg
Stddev
%RSD | Sb2068
ppm
. 00731
.00284
38.864 | Se1960
ppm
. 00609
.00290
47.584 | Si2124
ppm
.00607
.00150
24.690 | Sn1899
ppm
. 00004
.00039
920.98 | Sr4077
ppm
. 00013
.00025
195.27 | Ti3372
ppm
. 00624
.00419
67.080 | TI1908
ppm
00108
.00116
108.01 | | | #1
#2
#3 | .00878
.00404
.00912 | .00748
.00803
.00276 | .00774
.00561
.00485 | 00035
.00005
.00043 | .00005
.00041
00008 | .00978
.00162
.00733 | .00025
00191
00157 | | | Check ?
High Limit
Low Limit | Chk Pass | | Elem
Units
Avg
Stddev
%RSD | V_2924
ppm
.00066
.00029
43.380 | Zn2062
ppm
.00024
.00020
83.640 | Zr3391
ppm
F .04415
.56987
1290.7 | | | | | | | #1
#2
#3 | .00094
.00037
.00067 | .00007
.00046
.00018 | .26168
60245
.47323 | | | | | | | Check ?
High Limit
Low Limit | Chk Pass | Chk Pass | Chk Fail
.04000
04000 | | | | | | | Int. Std.
Units
Avg
Stddev
%RSD | Y_2243
Cts/S
12267.
68.
.55734 | Y_3600
Cts/S
88415.
867.
.98011 | Y_3774
Cts/S
3929.7
41.9
1.0654 | | | | | | | #1
#2
#3 | 12191.
12289.
12322. | 88364.
87576.
89307. | 3890.2
3925.2
3973.6 | | | | | | Sample Name: PBW 13 Acquired: 5/13/2016 16:04:32 Type: Unk Method: ICP-THERMO3_6010_200.7WATER_3YLINES(v872) Mode: Mode: CONC Corr. Factor: 1.000000 User: JYH Custom ID1: Custom ID2: Custom ID3: Comment: WG568333-02 | Elem | Ag3280 | Al3082 | As1890 | B_2496 | Ba4554 | Be3131 | Ca4226 | |------------------------------------|----------------|----------------|----------------|----------------|----------------|----------------|----------------| | Units | ppm | Avg | 00297 | . 00584 | 00154 | 00093 | .00082 | .00008 | 00884 | | Stddev | .00277 | .00242 | .00220 | .00151 | .00047 | .00004 | .03039 | | %RSD | 93.168 | 41.391 | 143.45 | 161.82 | 57.125 | 54.773 | 343.61 | | #1 | .00022 | .00365 | 00301 | 00214 | .00134 | .00006 | 03888 | | #2 | 00447 | .00543 | .00100 | 00142 | .00073 | .00013 | .02188 | | #3 | 00468 | .00844 | 00259 | .00076 | .00041 | .00005 | 00953 | | Check ?
High Limit
Low Limit | Chk Pass | Elem | Cd2288 | Co2286 | Cr2677 | Cu2247 | Fe2611 | K_7664 | Li6707 | | Units | ppm | Avg | . 00002 | .00024 | 00025 | .00052 | .00168 | . 04276 | 00187 | | Stddev | .00017 | .00030 | .00163 | .00148 | .01030 | .07947 | .00343 | | %RSD | 678.37 | 126.61 | 657.14 | 285.75 | 611.93 | 185.86 | 183.53 | | #1 | 00015 | .00033 | .00016 | 00088 | 00713 | .12422 | 00260 | | #2 | .00005 | 00010 | 00204 | .00037 | 00084 | 03456 | 00488 | | #3 | .00018 | .00048 | .00113 | .00207 | .01301 | .03862 | .00187 | | Check ?
High Limit
Low Limit | Chk Pass | Elem | Mg2790 | Mn2576 | Mo2020 | Na5895 | Ni2316 | P_2149 | Pb2203 | | Units | ppm | Avg | 08283 | 00133 | . 00077 | . 00190 | . 00197 | 00157 | . 00209 | | Stddev | .08706 | .00158 | .00017 | .01810 | .00018 | .00732 | .00202 | | %RSD | 105.11 | 118.92 | 22.557 | 954.64 | 8.9773 | 465.50 | 96.405 | | #1 | 06229 | .00016 |
.00057 | .02031 | .00217 | .00080 | .00020 | | #2 | 00787 | 00299 | .00083 | .00125 | .00183 | 00979 | .00187 | | #3 | 17832 | 00116 | .00090 | 01587 | .00191 | .00427 | .00421 | | Check ?
High Limit
Low Limit | Chk Pass | Sample Name: PBW 13 Acquired: 5/13/2016 16:04:32 Type: Unk Method: ICP-THERMO3_6010_200.7WATER_3YLINES(v872) Mode: CONC Corr. Factor: 1.000000 User: JYH Custom ID1: Custom ID2: Custom ID3: Comment: WG568333-02 | | | | | | | | | | |--|---|---|--|---|--|---|---|--|--| | Elem
Units
Avg
Stddev
%RSD | Sb2068
ppm
00029
.00368
1246.2 | Se1960
ppm
. 00460
.00358
77.803 | Si2124
ppm
00959
.00081
8.4289 | Sn1899
ppm
. 00042
.00064
150.87 | Sr4077
ppm
00005
.00028
536.89 | Ti3372
ppm
. 00923
.00336
36.396 | TI1908
ppm
. 00393
.00054
13.647 | | | | #1
#2
#3 | 00364
00089
.00364 | .00862
.00346
.00173 | 00870
00979
01028 | 00020
.00108
.00039 | .00020
00036
.00000 | .00567
.00966
.01234 | .00455
.00355
.00370 | | | | Check ?
High Limit
Low Limit | Chk Pass | | | Elem
Units
Avg
Stddev
%RSD | V_2924
ppm
. 00128
.00066
51.569 | Zn2062
ppm
.00113
.00016
13.845 | Zr3391
ppm
F37230
.69184
185.83 | | | | | | | | #1
#2
#3 | .00066
.00121
.00198 | .00098
.00114
.00129 | -1.1702
00726
.06057 | | | | | | | | Check ?
High Limit
Low Limit | Chk Pass | Chk Pass | Chk Fail
36.000
04000 | | | | | | | | Int. Std.
Units
Avg
Stddev
%RSD | Y_2243
Cts/S
12598.
42.
.33376 | Y_3600
Cts/S
91239.
358.
.39228 | Y_3774
Cts/S
4040.7
14.2
.35143 | | | | | | | | #1
#2
#3 | 12558.
12596.
12642. | 90856.
91565.
91297. | 4029.4
4056.7
4036.1 | | | | | | | Sample Name: LCSW 13 Acquired: 5/13/2016 16:08:35 Type: Unk Method: ICP-THERMO3_6010_200.7WATER_3YLINES(v872) Mode: CONC Corr. Factor: 1.000000 User: JYH Custom ID1: Custom ID2: Custom ID3: Comment: WG568333-03 | Elem | Ag3280 | Al3082 | As1890 | B_2496 | Ba4554 | Be3131 | Ca4226 | Cd2288 | |--------|--------|--------|--------|--------|--------|--------|--------|--------| | Units | ppm | Avg | .19623 | 4.8637 | .19617 | .96010 | .50068 | .02423 | 5.0445 | .02496 | | Stddev | .00148 | .0070 | .00165 | .00193 | .00191 | .00004 | .0385 | .00021 | | %RSD | .75510 | .14381 | .84145 | .20092 | .38186 | .15738 | .76361 | .85730 | | #1 | .19597 | 4.8577 | .19524 | .95853 | .50154 | .02425 | 5.0401 | .02494 | | #2 | .19489 | 4.8619 | .19808 | .95951 | .50200 | .02425 | 5.0084 | .02518 | | #3 | .19782 | 4.8714 | .19520 | .96225 | .49848 | .02418 | 5.0850 | .02475 | Chk Pass Check? High Limit Low Limit | Elem | Co2286 | Cr2677 | Cu2247 | Fe2611 | K_7664 | Li6707 | Mg2790 | Mn2576 | |--------|--------|----------------|----------------|---------------|---------------|----------------|---------------|----------------| | Units | ppm | Avg | .10145 | . 24701 | . 25451 | 1.9963 | 25.436 | . 49816 | 4.9800 | . 25079 | | Stddev | .00057 | .00204 | .00131 | .0269 | .028 | .00525 | .1235 | .00252 | | %RSD | .56478 | .82616 | .51475 | 1.3482 | .10817 | 1.0534 | 2.4801 | 1.0046 | | #1 | .10185 | .24502 | .25369 | 2.0100 | 25.448 | .50044 | 5.1158 | .24847 | | #2 | .10079 | .24910 | .25602 | 1.9653 | 25.455 | .49216 | 4.9500 | .25347 | | #3 | .10170 | .24691 | .25382 | 2.0136 | 25.404 | .50189 | 4.8743 | .25042 | Check? Chk Pass High Limit Low Limit | Elem
Units
Avg
Stddev
%RSD | Mo2020
ppm
. 50863
.00028
.05476 | Na5895
ppm
25.299
.025
.10070 | Ni2316
ppm
. 25273
.00169
.66799 | P_2149
ppm
4.8504
.0077
.15985 | Pb2203
ppm
. 25524
.00337
1.3199 | Sb2068
ppm
. 59561
.00516
.86677 | Se1960
ppm
. 18947
.00969
5.1162 | Si2124
ppm
2.6017
.0050
.19022 | |--|---|--|---|---|---|---|---|---| | #1 | .50867 | 25.321 | .25081 | 4.8538 | .25505 | .59569 | .19936 | 2.5980 | | #2 | .50889 | 25.271 | .25398 | 4.8558 | .25870 | .59040 | .18906 | 2.5997 | | #3 | .50834 | 25.305 | .25341 | 4.8415 | .25197 | .60073 | .17998 | 2.6073 | Check? Chk Pass High Limit Low Limit Sample Name: LCSW 13 Acquired: 5/13/2016 16:08:35 Type: Unk Method: ICP-THERMO3_6010_200.7WATER_3YLINES(v872) Mode: CONC Corr. Factor: 1.000000 User: JYH Custom ID1: Custom ID2: Custom ID3: Comment: WG568333-03 | Elem | Sn1899 | Sr4077 | Ti3372 | TI1908 | V_2924 | Zn2062 | Zr3391 | |--------|--------|--------|--------|--------|--------|--------|--------| | Units | ppm | Avg | .50431 | .50277 | .49561 | .25453 | .49319 | .49801 | .43907 | | Stddev | .00077 | .00129 | .00824 | .00295 | .00154 | .00070 | .29399 | | %RSD | .15276 | .25629 | 1.6626 | 1.1575 | .31270 | .14123 | 66.958 | | #1 | .50417 | .50426 | .49323 | .25303 | .49141 | .49770 | .24422 | | #2 | .50363 | .50196 | .48883 | .25263 | .49403 | .49882 | .77723 | | #3 | .50515 | .50211 | .50478 | .25792 | .49413 | .49753 | .29575 | Check? Chk Pass P Low Limit | Int. Std. | Y_2243 | Y_3600 | Y_3774 | |-----------|---------------|---------------|---------------| | Units | Cts/S | Cts/S | Cts/S | | Avg | 12301. | 88748. | 4040.1 | | Stddev | 16. | 692. | 24.8 | | %RSD | .12762 | .78017 | .61427 | | #1 | 12308. | 87949. | 4016.0 | | #2 | 12283. | 89139. | 4038.7 | | #3 | 12312. | 89157. | 4065.6 | | Sample Name: F BLANK Acquired: 5/13/2016 16:12:23 Type: Unk Method: ICP-THERMO3_6010_200.7WATER_3YLINES(v872) Mode: CONC Corr. Factor: 1.000000 User: JYH Custom ID1: Custom ID2: Custom ID3: Comment: WG568186-01 | | | | | | | | | | |---|-----------------------------|------------------------------|-----------------------------|----------------------------|-----------------------------|------------------------------|----------------------------|--|--| | Elem | Ag3280 | Al3082 | As1890 | B_2496 | Ba4554 | Be3131 | Ca4226 | | | | Units | ppm | | | Avg | 00070 | .01938 | .00193 | . 00335 | 00063 | .00011 | 01493 | | | | Stddev | .00167 | .00200 | .00071 | .00177 | .00032 | .00002 | .01445 | | | | %RSD | 237.98 | 10.333 | 36.713 | 52.890 | 50.547 | 22.521 | 96.806 | | | | #1 | 00022 | .01818 | .00274 | .00363 | 00063 | .00012 | 02568 | | | | #2 | .00067 | .01826 | .00155 | .00496 | 00030 | .00012 | 02060 | | | | #3 | 00255 | .02169 | .00149 | .00145 | 00094 | .00008 | .00150 | | | | Check ?
High Limit
Low Limit | Chk Pass | | | Elem | Cd2288 | Co2286 | Cr2677 | Cu2247 | Fe2611 | K_7664 | Li6707 | | | | Units | ppm | | | Avg | 00012 | .00022 | .00035 | 00142 | 00151 | .11307 | 00464 | | | | Stddev | .00028 | .00036 | .00052 | .00116 | .00952 | .10237 | .00146 | | | | %RSD | 223.30 | 162.93 | 148.59 | 81.352 | 631.99 | 90.534 | 31.419 | | | | #2
#3
Check ?
High Limit
Low Limit | .00014
00010
Chk Pass | .00034
.00051
Chk Pass | 00009
.00022
Chk Pass | 00152
00022
Chk Pass | .00006
01172
Chk Pass | .04201
.06680
Chk Pass | 00543
00296
Chk Pass | | | | Elem | Mg2790 | Mn2576 | Mo2020 | Na5895 | Ni2316 | P_2149 | Pb2203 | | | | Units | ppm | | | Avg | F16443 | 00152 | .00070 | 124.92 | .00099 | 00530 | 00346 | | | | Stddev | .10465 | .00102 | .00022 | .67 | .00050 | .00304 | .00349 | | | | %RSD | 63.646 | 67.535 | 32.025 | .53839 | 50.749 | 57.289 | 100.97 | | | | #1 | 18249 | 00038 | .00046 | 124.19 | .00141 | 00880 | 00405 | | | | #2 | 25887 | 00238 | .00091 | 125.52 | .00043 | 00340 | .00029 | | | | #3 | 05192 | 00179 | .00072 | 125.03 | .00113 | 00369 | 00662 | | | | Check ?
High Limit
Low Limit | Chk Fail
900.00
10000 | Chk Pass | Chk Pass | Chk Pass | Chk Pass | Chk Pass | Chk Pass | | | | Sample Name: F BLANK Acquired: 5/13/2016 16:12:23 Type: Unk Method: ICP-THERMO3_6010_200.7WATER_3YLINES(v872) Mode: CONC Corr. Factor: 1.000000 User: JYH Custom ID1: Custom ID2: Custom ID3: Comment: WG568186-01 | | | | | | | | | |---|---|---|---|---|--|---|--|--| | Elem
Units
Avg
Stddev
%RSD | Sb2068
ppm
.
00046
.00431
945.76 | Se1960
ppm
.00287
.00225
78.466 | Si2124
ppm
00727
.00169
23.284 | Sn1899
ppm
. 00035
.00016
45.743 | Sr4077
ppm
00006
.00002
35.761 | Ti3372
ppm
. 01445
.00809
55.997 | TI1908
ppm
00100
.00100
99.499 | | | #1
#2
#3 | .00475
00386
.00047 | .00542
.00208
.00112 | 00602
00660
00920 | .00029
.00053
.00023 | 00004
00008
00008 | .00630
.01456
.02249 | 00210
00075
00015 | | | Check ?
High Limit
Low Limit | Chk Pass | | Elem
Units
Avg
Stddev
%RSD | V_2924
ppm
.00028
.00080
284.79 | Zn2062
ppm
. 00295
.00017
5.9116 | Zr3391
ppm
. 34482
.47363
137.36 | | | | | | | #1
#2
#3 | .00067
00064
.00082 | .00276
.00297
.00311 | .13952
.88646
.00848 | | | | | | | Check ?
High Limit
Low Limit | Chk Pass | Chk Pass | Chk Pass | | | | | | | Int. Std.
Units
Avg
Stddev
%RSD | Y_2243
Cts/S
12358.
27.
.22237 | Y_3600
Cts/S
88919.
151.
.17014 | Y_3774
Cts/S
4059.2
16.8
.41484 | | | | | | | #1
#2
#3 | 12332.
12354.
12387. | 88772.
89074.
88912. | 4047.5
4078.5
4051.5 | | | | | | Sample Name: F BLANK Acquired: 5/13/2016 16:16:26 Type: Unk Method: ICP-THERMO3 6010 200.7WATER 3YLINES(v872) Mode: CONC Corr. Factor: 1.000000 User: JYH Custom ID1: Custom ID2: Custom ID3: Comment: WG568186-02 Al3082 As1890 B 2496 Ba4554 Ca4226 Cd2288 Elem Ag3280 Be3131 Units ppm ppm ppm ppm ppm ppm ppm ppm Avg -.00136 .00262 .00032 .00180 .09150 .00005 .40009 .00004 Stddev .00203 .00448 .00383 .00146 .00028 .00010 .01617 .00009 %RSD 149.49 170.61 1200.0 80.928 .30966 195.44 4.0426 264.10 #1 .00099 .00288 -.00377 .00295 .09183 .00014 .00011 .41012 #2 -.00252 -.00197 .00091 .00229 .09137 -.00007 .38143 -.00004 #3 -.00255 .00697 .00382 .00016 .09131 .00011 .40872 .00000 Chk Pass Chk Pass Chk Pass Chk Pass Check? Chk Pass Chk Pass Chk Pass **High Limit** Low Limit Elem Co2286 Cr2677 Cu2247 Fe2611 K_7664 Li6707 Mg2790 Mn2576 Units ppm ppm ppm ppm ppm ppm ppm ppm .00033 .00000 .00070 -.00516 .00074 -.00061 Avg .04708 .04970 .00035 .00059 .01100 .00141 .09314 Stddev .00030 .04479 .00147 %RSD 91.299 9134.7 83.962 213.21 95.141 191.24 187.39 240.27 #1 .00029 -.00007 .00084 -.00352 .07339 .00197 .10537 -.00025 #2 .00005 .00039 .00005 -.01688 -.00464 .00104 .10156 -.00223-.00030 .07249 -.00080 #3 .00064 .00120 .00493 -.05782 .00064 Check? Chk Pass High Limit Low Limit Elem Mo2020 Na5895 Ni2316 P_2149 Pb2203 Sb2068 Se1960 Si2124 Units ppm ppm ppm ppm ppm ppm ppm ppm -.00004 1.7283 .00034 -.00321 .00271 .00259 -.00023 -.00482 Avg .00013 .00039 .00262 .00253 .00425 Stddev .0101 .00137 .00174 114.11 52.918 %RSD 331.28 .58166 81.724 93.315 1850.9 36.063 #1 -.00003 -.00193 1.7306 .00078 .00354 .00378 -.00500 -.00675 .00019 .00008 -.00623 .00290 #2 1.7173 -.00013 .00317 -.00431 #3 -.00017 1.7370 .00005 -.00147 .00473 .00109 .00114 -.00339 Check? Chk Pass Chk Pass Chk Pass Chk Pass Chk Pass Chk Pass **Chk Pass** High Limit Approved: May 16, 2016 Low Limit | Sample Name: F BLANK Acquired: 5/13/2016 16:16:26 Type: Unk | | | | | | | | | |---|------------------------|--------------------------|--------------------------|--------------------------|---------------------|--------------------------|--------------------------|--| | Method: ICP-THERMO3_6010_200.7WATER_3YLINES(v872) Mode: CONC Corr. Factor: 1.000000 | | | | | | | | | | User: JYH | Custom | ID1: | Custom ID |)2: (| Custom ID3 | : | | | | Comment: \ | VG568186-0 |)2 | | | | | | | | Elem | Sn1899 | Sr4077 | Ti3372 | TI1908 | V_2924 | Zn2062 | Zr3391 | | | Units | ppm | | Avg
Stddev | 00001
.00044 | . 08056
.00042 | . 00522
.00040 | . 00242
.00475 | 00022 .00039 | . 00348
.00024 | . 29297
.88809 | | | %RSD | 4355.0 | .52279 | 7.7151 | 196.16 | 175.43 | 7.0358 | 303.13 | | | | | | | | | | | | | #1 | 00049 | .08044 | .00485 | 00306 | 00029 | .00326 | 01915 | | | #2 | .00037 | .08103 | .00516 | .00531 | .00020 | .00344 | 1.2950 | | | #3 | .00009 | .08021 | .00565 | .00501 | 00057 | .00374 | 39693 | | | Check ?
High Limit
Low Limit | Chk Pass | | Int. Std. | Y 2243 | Y 3600 | Y 3774 | | | | | | | Units | _Cts/S | _Cts/S | _Cts/S | | | | | | | Avg | 12762. | 92528. | 4107.6 | | | | | | | Stddev
%RSD | 33.
.25838 | 298.
.32193 | 20.9
.50914 | | | | | | | %K3D | .23030 | .32 193 | .50914 | | | | | | | #1 | 12800. | 92287. | 4083.7 | | | | | | | #2 | 12737. | 92436. | 4116.1 | | | | | | | #3 | 12750. | 92861. | 4122.8 | | | | | | Sample Name: L1605043505 Acquired: 5/13/2016 16:20:29 Type: Unk Method: ICP-THERMO3_6010_200.7WATER_3YLINES(v872) Mode: CONC Corr. Factor: 1.000000 User: JYH Custom ID1: Custom ID2: Custom ID3: Comment: WG568333-01 | Elem | Ag3280 | Al3082 | As1890 | B_2496 | Ba4554 | Be3131 | Ca4226 | |------------------------------------|----------------|----------------|----------------|-----------------------------|----------------|----------------|----------------| | Units | ppm | Avg | 00232 | . 02633 | .00082 | . 25550 | .02996 | .00004 | 4.0822 | | Stddev | .00111 | .00044 | .00260 | .00196 | .00128 | .00010 | .0623 | | %RSD | 47.863 | 1.6538 | 316.33 | .76892 | 4.2703 | 253.43 | 1.5257 | | #1 | 00131 | .02679 | .00205 | .25498 | .02922 | .00016 | 4.0142 | | #2 | 00213 | .02630 | .00257 | .25767 | .03143 | 00003 | 4.1365 | | #3 | 00350 | .02592 | 00216 | .25384 | .02922 | 00001 | 4.0958 | | Check ?
High Limit
Low Limit | Chk Pass | Elem | Cd2288 | Co2286 | Cr2677 | Cu2247 | Fe2611 | K_7664 | Li6707 | | Units | ppm | Avg | 00010 | .00192 | . 00204 | . 00014 | . 09274 | 2.0015 | . 01753 | | Stddev | .00019 | .00012 | .00051 | .00091 | .04439 | .0909 | .00238 | | %RSD | 186.56 | 6.2343 | 24.909 | 631.06 | 47.866 | 4.5409 | 13.557 | | #1 | .00008 | .00200 | .00252 | .00086 | .06335 | 1.8970 | .01556 | | #2 | 00030 | .00197 | .00209 | 00088 | .14380 | 2.0618 | .01685 | | #3 | 00008 | .00178 | .00151 | .00045 | .07106 | 2.0458 | .02017 | | Check ?
High Limit
Low Limit | Chk Pass | Elem | Mg2790 | Mn2576 | Mo2020 | Na5895 | Ni2316 | P_2149 | Pb2203 | | Units | ppm | Avg | . 76082 | . 01987 | . 03924 | F 442.57 | . 07986 | . 00457 | . 00144 | | Stddev | .09864 | .00156 | .00040 | .58 | .00170 | .00619 | .00269 | | %RSD | 12.965 | 7.8404 | 1.0240 | .13097 | 2.1311 | 135.65 | 187.39 | | #1 | .87069 | .01932 | .03966 | 442.35 | .07861 | 00133 | .00385 | | #2 | .73190 | .01867 | .03919 | 443.22 | .07916 | .01102 | 00147 | | #3 | .67987 | .02163 | .03886 | 442.12 | .08180 | .00400 | .00193 | | Check ?
High Limit
Low Limit | Chk Pass | Chk Pass | Chk Pass | Chk Fail
270.00
50000 | Chk Pass | Chk Pass | Chk Pass | Approved: May 16, 2016 J'ye 1hu Sample Name: L1605043505 Acquired: 5/13/2016 16:20:29 Type: Unk Method: ICP-THERMO3_6010_200.7WATER_3YLINES(v872) Mode: CONC Corr. Factor: 1.000000 User: JYH Custom ID1: Custom ID2: Custom ID3: Comment: WG568333-01 Sb2068 Se1960 Si2124 Sn1899 Sr4077 Ti3372 TI1908 Elem Units ppm ppm ppm ppm ppm ppm ppm -.00009 1.9195 -.00059 .26429 -.00067 Avg -.00114 .00297 Stddev .00152 .00383 .0041 .00096 .00074 .00195 .00218 324.19 %RSD 133.52 4075.4 .21334 163.24 .28131 65.647 #1 -.00180 .00110 1.9215 -.00038 .26356 .00425 .00178 #2 .00060 -.00438 1.9222 -.00164 .26504 .00394 -.00240 #3 -.00222 .00300 1.9148 .00025 .26428 .00073 -.00140 **Chk Pass** Check? Chk Pass Chk Pass Chk Pass Chk Pass Chk Pass **Chk Pass** High Limit Low Limit Elem V_2924 Zn2062 Zr3391 Units ppm ppm ppm -.00048 .00211 .45071 Avg .00132 80000. .35467 Stddev %RSD 272.65 3.8707 78.692 #1 .00082 .00216 .17172 #2 -.00183 .00216 .84985 #3 -.00044 .00202 .33056 Check? Chk Pass Chk Pass **Chk Pass** High Limit Low Limit Int. Std. Y_2243 Y_3600 Y_3774 Units Cts/S Cts/S Cts/S 12093. 85195. 4046.6 Avg Stddev 30. 25.6 91. .25143 %RSD .10650 .63203 #1 12088. 85128. 4059.2 12126. 85159. 4017.2 #2 85298. 12066. 4063.5 Approved: May 16, 2016 #3 Sample Name: L1605043507S Acquired: 5/13/2016 16:24:30 Type: Unk Method: ICP-THERMO3_6010_200.7WATER_3YLINES(v872) Mode: CONC Corr. Factor: 1.000000 User: JYH Custom ID1: Custom ID2: Custom ID3: Comment: WG568333-04 | Elem | Ag3280 | Al3082 | As1890 | B_2496 | Ba4554 | Be3131 | Ca4226 | |------------------------------------|----------------|----------------|----------------|-----------------------------|----------------|---------------|----------------| | Units | ppm | Avg | .19236 | 4.8212 | . 20117 | 1.2141 | . 51456 | .02427 | 9.0122 | | Stddev | .00406 | .1115 | .00210 | .0301 | .00243 | .00054 | .0709 | | %RSD | 2.1085 | 2.3130 | 1.0428 | 2.4780 | .47196 | 2.2355 | .78632 | | #1 | .18768 | 4.7080 | .20242 | 1.1843 | .51709 | .02367 | 8.9319 | | #2 | .19477 | 4.8248 | .20234 | 1.2137 | .51225 | .02440 | 9.0660 | | #3 | .19464 | 4.9309 | .19874 | 1.2444 | .51435 | .02474 | 9.0386 | | Check ?
High Limit
Low Limit | Chk Pass | Elem | Cd2288 | Co2286 | Cr2677 | Cu2247 | Fe2611 | K_7664 | Li6707 | | Units | ppm | Avg | . 02478 | .09817 | .23982 | . 24556 | 2.0258 | 26.839 | . 50214 | | Stddev | .00038 | .00019 | .00656 | .00062 | .0312 | .033 | .00666 | | %RSD | 1.5196 | .19529 | 2.7341 | .25203 | 1.5423 | .12175 | 1.3270 | | #1 | .02494 | .09803 | .23279 | .24563 | 2.0619 | 26.858 | .50718 | | #2 | .02434 | .09810 | .24091 | .24614 | 2.0081 | 26.801 | .49458 | | #3 | .02504 | .09839 | .24577 | .24491 | 2.0074 | 26.857 | .50465 | | Check ?
High Limit
Low Limit | Chk Pass | Elem | Mg2790 | Mn2576 | Mo2020 | Na5895 | Ni2316 | P_2149 | Pb2203 | | Units | ppm | Avg | 5.7298
| . 26414 | . 54247 | F 466.99 | . 32243 | 4.9624 | . 24423 | | Stddev | .1041 | .00151 | .00166 | 2.65 | .00102 | .0055 | .00603 | | %RSD | 1.8164 | .57074 | .30607 | .56696 | .31716 | .10985 | 2.4708 | | #1 | 5.7218 | .26516 | .54355 | 469.94 | .32361 | 4.9685 | .23831 | | #2 | 5.6299 | .26241 | .54331 | 466.23 | .32187 | 4.9604 | .25037 | | #3 | 5.8376 | .26485 | .54056 | 464.81 | .32181 | 4.9582 | .24402 | | Check ?
High Limit
Low Limit | Chk Pass | Chk Pass | Chk Pass | Chk Fail
270.00
50000 | Chk Pass | Chk Pass | Chk Pass | Sample Name: L1605043507S Acquired: 5/13/2016 16:24:30 Type: Unk Method: ICP-THERMO3_6010_200.7WATER_3YLINES(v872) Mode: CONC Corr. Factor: 1.000000 User: JYH Custom ID1: Custom ID2: Custom ID3: Comment: WG568333-04 Sb2068 Se1960 Si2124 Sn1899 Sr4077 Ti3372 TI1908 Elem Units ppm ppm ppm ppm ppm ppm ppm .75795 .59547 .19414 .49832 .22993 Avg 4.5721 .49331 Stddev .00217 .01268 .0067 .00080 .00259 .01076 .00181 .34139 %RSD .36506 6.5313 .14717 .16259 2.1596 .78907 #1 .59612 .20259 .49321 .76089 .50594 4.5775 .23114 #2 .59723 .20026 4.5744 .49416 .75692 .50301 .22784 #3 .59304 .17956 4.5646 .49257 .75603 .48601 .23080 **Chk Pass** Check? Chk Pass Chk Pass Chk Pass Chk Pass Chk Pass **Chk Pass** High Limit Low Limit Elem V_2924 Zn2062 Zr3391 Units ppm ppm ppm .48809 .49940 .35265 Avg .01299 .00078 Stddev .28008 %RSD .15686 79.422 2.6621 #1 .47344 .49939 .67018 #2 .49264 .50018 .24701 #3 .49862 .14075 .49820 Chk Pass Check? Chk Pass **Chk Pass** High Limit Low Limit Int. Std. Y_2243 Y_3600 Y_3774 Units Cts/S Cts/S Cts/S 11791. 84580. 4051.9 Avg Stddev 1447. 35.9 41. .34563 %RSD 1.7111 .88653 #1 11836. 86122. 4064.1 11757. 84366. 4011.5 #2 Approved: May 16, 2016 #3 11781. 83251. 4080.1 Sample Name: L1605043509SD Acquired: 5/13/2016 16:28:18 Type: Unk Method: ICP-THERMO3_6010_200.7WATER_3YLINES(v872) Mode: CONC Corr. Factor: 1.000000 User: JYH Custom ID1: Custom ID2: Custom ID3: Comment: WG568333-05 | Elem | Ag3280 | Al3082 | As1890 | B_2496 | Ba4554 | Be3131 | Ca4226 | |------------------------------------|----------------|----------------|----------------|-----------------------------|----------------|----------------|----------------| | Units | ppm | Avg | . 19790 | 4.9457 | .20075 | 1.2596 | . 52021 | . 02488 | 9.2296 | | Stddev | .00615 | .1080 | .00101 | .0295 | .00024 | .00050 | .0181 | | %RSD | 3.1054 | 2.1831 | .50162 | 2.3391 | .04654 | 1.9897 | .19608 | | #1 | .19482 | 4.8923 | .19974 | 1.2462 | .52048 | .02464 | 9.2314 | | #2 | .19391 | 4.8748 | .20176 | 1.2392 | .52014 | .02455 | 9.2107 | | #3 | .20498 | 5.0699 | .20075 | 1.2934 | .52002 | .02545 | 9.2467 | | Check ?
High Limit
Low Limit | Chk Pass | Elem | Cd2288 | Co2286 | Cr2677 | Cu2247 | Fe2611 | K_7664 | Li6707 | | Units | ppm | Avg | . 02438 | .09854 | . 24602 | . 24405 | 2.0463 | 27.041 | . 50400 | | Stddev | .00044 | .00029 | .00644 | .00137 | .0272 | .050 | .00514 | | %RSD | 1.7904 | .29728 | 2.6193 | .56279 | 1.3309 | .18304 | 1.0193 | | #1 | .02473 | .09856 | .24360 | .24316 | 2.0161 | 27.037 | .50609 | | #2 | .02389 | .09824 | .24113 | .24336 | 2.0542 | 26.994 | .49815 | | #3 | .02454 | .09883 | .25332 | .24563 | 2.0688 | 27.093 | .50777 | | Check ?
High Limit
Low Limit | Chk Pass | Elem | Mg2790 | Mn2576 | Mo2020 | Na5895 | Ni2316 | P_2149 | Pb2203 | | Units | ppm | Avg | 5.7745 | . 26551 | . 54228 | F 485.66 | . 32614 | 4.9381 | . 24176 | | Stddev | .1984 | .00398 | .00253 | 13.64 | .00052 | .0118 | .00206 | | %RSD | 3.4367 | 1.4991 | .46647 | 2.8083 | .16075 | .23974 | .85238 | | #1 | 5.6532 | .26372 | .54446 | 494.38 | .32571 | 4.9418 | .24008 | | #2 | 6.0035 | .26275 | .53951 | 492.64 | .32599 | 4.9248 | .24114 | | #3 | 5.6668 | .27008 | .54286 | 469.94 | .32673 | 4.9476 | .24406 | | Check ?
High Limit
Low Limit | Chk Pass | Chk Pass | Chk Pass | Chk Fail
270.00
50000 | Chk Pass | Chk Pass | Chk Pass | Sample Name: L1605043509SD Acquired: 5/13/2016 16:28:18 Type: Unk Method: ICP-THERMO3_6010_200.7WATER_3YLINES(v872) Mode: CONC Corr. Factor: 1.000000 User: JYH Custom ID1: Custom ID2: Custom ID3: Comment: WG568333-05 Sb2068 Se1960 Si2124 Sn1899 Sr4077 Ti3372 TI1908 Elem Units ppm ppm ppm ppm ppm ppm ppm .59155 .19569 4.6669 .49203 .23068 Avg .77663 .49792 Stddev .00503 .00887 .0131 .00311 .00349 .00399 .00515 .44894 %RSD .85094 4.5319 .28074 .63174 .80150 2.2334 #1 .59149 .20588 4.6751 .49560 .49541 .23343 .77315 #2 .58654 .18975 4.6518 .48993 .77662 .49583 .22474 #3 .59661 .19143 4.6738 .49057 .78012 .50252 .23388 **Chk Pass** Check? Chk Pass Chk Pass Chk Pass Chk Pass Chk Pass **Chk Pass** High Limit Low Limit Elem V_2924 Zn2062 Zr3391 Units ppm ppm ppm .49889 .50102 Avg .48150 .01030 .32843 Stddev .00153 %RSD 2.0656 .30492 68.209 #1 .49349 .50098 .10303 #2 .49241 .49952 .64995 #3 .50257 .51077 .69153 Check? Chk Pass Chk Pass **Chk Pass** High Limit Low Limit Int. Std. Y_2243 Y_3600 Y_3774 Units Cts/S Cts/S Cts/S 11747. 82630. 3993.1 Avg Stddev 57. 1134. 43.1 .48826 1.3727 %RSD 1.0798 #1 83321. 11737. 3982.3 83248. 3956.4 #2 11808. 81321. 4040.5 Approved: May 16, 2016 #3 11695. | Sample Name
Method: ICP-7
User: JYH
Comment: | | Type: Unk
Mode: CON
ID3: | C Corr. F | Factor: 1.00000(| | | | |---|-----------------------------|--------------------------------|----------------|------------------|----------------|----------------|----------------| | Elem | Ag3280 | Al3082 | As1890 | B_2496 | Ba4554 | Be3131 | Ca4226 | | Units | ppm | Avg | 00047 | . 03741 | . 00228 | . 03452 | . 00151 | .00006 | . 19638 | | Stddev | .00265 | .00635 | .00309 | .00044 | .00065 | .00008 | .02287 | | %RSD | 563.29 | 16.970 | 135.69 | 1.2673 | 42.935 | 144.62 | 11.646 | | #1 | 00287 | .03688 | .00111 | .03455 | .00226 | .00013 | .20363 | | #2 | .00237 | .04401 | .00579 | .03407 | .00113 | 00003 | .17077 | | #3 | 00090 | .03135 | 00006 | .03495 | .00114 | .00006 | .21475 | | Check ?
High Limit
Low Limit | Chk Pass | Elem | Cd2288 | Co2286 | Cr2677 | Cu2247 | Fe2611 | K_7664 | Li6707 | | Units | ppm | Avg | .00014 | .00046 | .00149 | . 09329 | . 15961 | . 10678 | 00124 | | Stddev | .00026 | .00051 | .00053 | .00113 | .01499 | .05242 | .00159 | | %RSD | 187.35 | 110.79 | 35.448 | 1.2096 | 9.3912 | 49.094 | 128.68 | | #1 | .00003 | 00013 | .00142 | .09228 | .16394 | .16401 | 00017 | | #2 | .00043 | .00075 | .00100 | .09307 | .17196 | .09524 | 00307 | | #3 | 00005 | .00075 | .00205 | .09451 | .14293 | .06108 | 00047 | | Check ?
High Limit
Low Limit | Chk Pass | Elem | Mg2790 | Mn2576 | Mo2020 | Na5895 | Ni2316 | P_2149 | Pb2203 | | Units | ppm | Avg | F13499 | . 00473 | . 00065 | 114.49 | .00106 | . 03913 | . 00482 | | Stddev | .07061 | .00230 | .00037 | .32 | .00069 | .00268 | .00237 | | %RSD | 52.305 | 48.649 | 57.377 | .28272 | 64.663 | 6.8413 | 49.231 | | #1 | 15098 | .00725 | .00032 | 114.86 | .00097 | .03604 | .00682 | | #2 | 05776 | .00419 | .00057 | 114.28 | .00042 | .04051 | .00220 | | #3 | 19623 | .00275 | .00105 | 114.33 | .00179 | .04083 | .00544 | | Check ?
High Limit
Low Limit | Chk Fail
900.00
10000 | Chk Pass | Chk Pass | Chk Pass | Chk Pass | Chk Pass | Chk Pass | | Sample Name: L1605056503 Acquired: 5/13/2016 16:32:0 Method: ICP-THERMO3_6010_200.7WATER_3YLINES(v872) User: JYH Custom ID1: Custom ID2: C | | | | | Type: Unk
Mode: CONO
ID3: | C Corr. F | Factor: 1.00000(| |--|---|---|---|--
---|---|--| | Elem
Units
Avg
Stddev
%RSD | Sb2068
ppm
. 00313
.00335
106.96 | Se1960
ppm
.00315
.00572
181.55 | Si2124
ppm
5.8227
.0075
.12852 | Sn1899
ppm
00003
.00102
3063.2 | Sr4077
ppm
. 00131
.00034
26.213 | Ti3372
ppm
. 00307
.00405
131.98 | TI1908
ppm
00143
.00054
37.806 | | #1
#2
#3 | .00173
.00071
.00696 | 00125
.00109
.00962 | 5.8186
5.8314
5.8182 | .00104
00099
00015 | .00099
.00167
.00127 | .00709
00101
.00314 | 00149
00194
00086 | | Check ?
High Limit
Low Limit | Chk Pass | Elem
Units
Avg
Stddev
%RSD | V_2924
ppm
.00168
.00066
39.330 | Zn2062
ppm
. 41084
.00138
.33604 | Zr3391
ppm
. 08010
.49164
613.76 | | | | | | #1
#2
#3 | .00244
.00135
.00125 | .40925
.41171
.41156 | .38126
48723
.34628 | | | | | | Check ?
High Limit
Low Limit | Chk Pass | Chk Pass | Chk Pass | | | | | | Int. Std.
Units
Avg
Stddev
%RSD | Y_2243
Cts/S
12071.
67.
.55889 | Y_3600
Cts/S
86467.
253.
.29283 | Y_3774
Cts/S
4006.2
35.7
.89065 | | | | | | #1
#2
#3 | 12105.
11993.
12115. | 86182.
86553.
86666. | 3972.7
4043.7
4002.3 | | | | | Sample Name: L1605056503PS Acquired: 5/13/2016 16:36:08 Type: Unk Method: ICP-THERMO3_6010_200.7WATER_3YLINES(v872) Mode: CONC Corr. Factor: 1.000000 User: JYH Custom ID1: Custom ID2: Custom ID3: Comment: WG568672-03 Ag3280 Al3082 B_2496 Ba4554 Ca4226 Cd2288 Elem As1890 Be3131 Units ppm ppm ppm ppm ppm ppm ppm ppm 1.0028 Avg .19513 4.9282 .19854 .49886 .02459 5.2140 .02466 Stddev .00225 .0247 .00162 .0072 .00209 .00010 .0208 .00026 %RSD 1.1538 .50078 .81357 .71508 .41924 .40521 .39836 1.0431 #1 4.9387 1.0052 5.2194 .19770 .19787 .50127 .02469 .02470 #2 .19349 4.9458 .19737 1.0084 .49781 .02457 5.1911 .02438 #3 .19421 4.9000 .20038 .99467 .49751 .02450 5.2316 .02489 Chk Pass Check? **High Limit** Low Limit Mg2790 Elem Co2286 Cr2677 Cu2247 Fe2611 K_7664 Li6707 Mn2576 Units ppm ppm ppm ppm ppm ppm ppm ppm .24923 .32959 2.1114 25.314 .25074 Avg .10020 .50287 4.9190 .00089 .00147 .0269 Stddev .00017 .069 .00592 .1249 .00077 %RSD .17259 .35702 .44479 1.2744 .27253 1.1767 2.5397 .30634 #1 .10000 .24925 .32962 2.0808 25.238 .50199 4.9451 .25055 #2 .10026 .25011 .32810 2.1316 25.373 .49745 4.7831 .25158 5.0288 .24833 2.1217 25.331 #3 .10033 .33104 .50918 .25008 Check? Chk Pass High Limit Low Limit | Elem | Mo2020 | Na5895 | Ni2316 | P_2149 | Pb2203 | Sb2068 | Se1960 | Si2124 | |--------|----------------|---------------|----------------|---------------|----------------|----------------|--------|---------------| | Units | ppm | Avg | . 50313 | 127.53 | . 25055 | 4.9017 | . 25650 | . 59230 | .19156 | 7.8206 | | Stddev | .00040 | .26 | .00174 | .0122 | .00120 | .00759 | .00194 | .0668 | | %RSD | .07912 | .20406 | .69267 | .24868 | .46870 | 1.2817 | 1.0106 | .85440 | | #1 | .50281 | 127.79 | .24875 | 4.8931 | .25788 | .59005 | .19377 | 7.7694 | | #2 | .50300 | 127.27 | .25067 | 4.8964 | .25583 | .58608 | .19016 | 7.7963 | | #3 | .50357 | 127.52 | .25222 | 4.9157 | .25577 | .60076 | .19075 | 7.8962 | Check? Chk Pass P Sample Name: L1605056503PS Acquired: 5/13/2016 16:36:08 Type: Unk Method: ICP-THERMO3_6010_200.7WATER_3YLINES(v872) Mode: CONC Corr. Factor: 1.000000 User: JYH Custom ID1: Custom ID2: Custom ID3: Comment: WG568672-03 | Elem | Sn1899 | Sr4077 | Ti3372 | TI1908 | V_2924 | Zn2062 | Zr3391 | |--------|--------|--------|--------|--------|--------|--------|--------| | Units | ppm | Avg | .50227 | .49957 | .50404 | .24752 | .49735 | .85897 | .85440 | | Stddev | .00295 | .00272 | .00250 | .00387 | .00303 | .00258 | .70290 | | %RSD | .58636 | .54497 | .49545 | 1.5632 | .60958 | .30078 | 82.268 | | | | | | | | | | | #1 | .50230 | .49706 | .50627 | .24316 | .49681 | .85618 | .10841 | | #2 | .49932 | .49919 | .50134 | .25056 | .50061 | .85947 | 1.5043 | | #3 | .50521 | .50246 | .50451 | .24884 | .49461 | .86127 | .95045 | Check? Chk Pass P Low Limit | Int. Std.
Units
Avg
Stddev
%RSD | Y_2243
Cts/S
11964.
12.
.10041 | Y_3600
Cts/S
85377.
286.
.33510 | Y_3774
Cts/S
3985.9
14.3 | |---|--|--|--| | #1 | 11970. | 85707. | 3969.8 | | #2 | 11972. | 85228. | 3990.8 | | #3 | 11950. | 85196. | 3997.0 | | Sample Name: L1605056503SDL Acquired: 5/13/2016 16:39:55 Type: Unk Method: ICP-THERMO3_6010_200.7WATER_3YLINES(v872) Mode: CONC Corr. Factor: 1.000000 User: JYH Custom ID1: 5 Custom ID2: Custom ID3: Comment: WG568672-04 | | | | | | | | | |--|----------------|---------------|----------|----------------|----------------|----------------|----------|----------------| | Elem | Ag3280 | Al3082 | As1890 | B_2496 | Ba4554 | Be3131 | Ca4226 | Cd2288 | | Units | ppm | Avg | 00234 | .00788 | 00206 | . 01036 | .00091 | .00008 | .03983 | . 00003 | | Stddev | .00299 | .00477 | .00348 | .00131 | .00054 | .00005 | .01789 | .00041 | | %RSD | 127.92 | 60.542 | 169.19 | 12.601 | 59.165 | 57.547 | 44.916 | 1517.0 | | #1 | .00111 | .01305 | 00067 | .01150 | .00086 | .00003 | .04378 | 00018 | | #2 | 00409 | .00367 | .00051 | .00893 | .00040 | .00010 | .05541 | 00024 | | #3 | 00403 | .00690 | 00602 | .01064 | .00148 | .00011 | .02029 | .00050 | | Check ?
High Limit
Low Limit | Chk Pass | Elem | Co2286 | Cr2677 | Cu2247 | Fe2611 | K_7664 | Li6707 | Mg2790 | Mn2576 | | Units | ppm | Avg | .00036 | 00005 | .01820 | . 02087 | . 04806 | 00250 | 06880 | 00088 | | Stddev | .00008 | .00037 | .00129 | .01604 | .05867 | .00709 | .12278 | .00131 | | %RSD | 21.122 | 799.59 | 7.0987 | 76.818 | 122.08 | 283.61 | 178.45 | 150.00 | | #1 | .00028 | 00033 | .01929 | .01106 | .11011 | 01060 | .06855 | 00041 | | #2 | .00037 | 00019 | .01853 | .03938 | .04059 | .00051 | 10705 | 00236 | | #3 | .00043 | .00038 | .01677 | .01219 | 00652 | .00259 | 16791 | .00014 | | Check ?
High Limit
Low Limit | Chk Pass | Elem | Mo2020 | Na5895 | Ni2316 | P_2149 | Pb2203 | Sb2068 | Se1960 | Si2124 | | Units | ppm | Avg | . 00117 | 22.551 | .00101 | . 01105 | .00005 | . 00071 | 00468 | 1.1608 | | Stddev | .00030 | .134 | .00037 | .00573 | .00087 | .00218 | .00541 | .0095 | | %RSD | 25.410 | .59400 | 36.276 | 51.828 | 1738.0 | 305.34 | 115.56 | .82263 | | #1 | .00083 | 22.448 | .00143 | .00453 | 00074 | 00126 | 00842 | 1.1520 | | #2 | .00129 | 22.504 | .00078 | .01335 | 00010 | .00305 | 00713 | 1.1595 | | #3 | .00139 | 22.703 | .00082 | .01527 | .00098 | .00035 | .00152 | 1.1709 | | Check ?
High Limit
Low Limit | Chk Pass | Sample Nar | ne: L160505 | 6503SDL | Acquired | I: 5/13/2016 | 16:39:55 | Type: Un | ık | | |---|---|--|---|---|--|---|---|---------------| | Method: ICF | P-THERMO3 | 3_6010_200 | .7WATER_ | 3YLINES(v8 | 372) Mc | de: CONC | Corr. Fac | tor: 1.00000(| | User: JYH | Custom | ID1: 5 | Custom I | D2: | Custom ID3 | 3: | | | | Comment: \ | VG568672-0 |)4 | | | | | | | | Elem
Units
Avg
Stddev
%RSD | Sn1899
ppm
00027
.00063
230.14 | Sr4077
ppm
00011
.00019
164.46 | Ti3372
ppm
. 00319
.00040
12.631 | TI1908
ppm
. 00168
.00606
359.79 | V_2924
ppm
00056
.00105
187.77 | Zn2062
ppm
.08416
.00068
.80596 | Zr3391
ppm
. 09696
.63742
657.41 | | | #1
#2
#3 | 00075
.00044
00050 | .00007
00010
00031 | .00340
.00345
.00273 | 00474
.00730
.00249 | 00083
.00060
00146 | .08368
.08387
.08494 | .32404
.58974
62290 | | | Check ?
High Limit
Low Limit | Chk Pass | | Int. Std.
Units
Avg
Stddev
%RSD | Y_2243
Cts/S
12518.
61.
.48975 | Y_3600
Cts/S
89863.
582.
.64775 | Y_3774
Cts/S
4019.8
14.3
.35564 | | | | | | | #1
#2
#3 | 12499.
12587.
12468. | 89720.
89365.
90503. | 4004.5
4022.2
4032.7 | | | | | | | Sample Name
Method: ICP-T
User: JYH
Comment: | | 010_200.7W <i>A</i> | 2016 16:43:5
ATER_3YLIN
stom ID2: | | Mode: CON | C Corr. F | Factor: 1.00000(| |---|----------------|---------------------|---|----------------|----------------|----------------|------------------| | Elem | Ag3280 | Al3082 | As1890 | B_2496 | Ba4554 | Be3131 | Ca4226 | | Units | ppm | Avg | . 39855 | 10.102 | . 40122 | . 50195 | 1.0106 | . 04985 | 10.124 | | Stddev | .00158 | .099 | .00516 | .00487 | .0029 | .00048 | .041 | | %RSD | .39649 | .97529 | 1.2866 | .96988 | .28524 | .95900 | .40974 | | #1 | .39765 | 10.193 | .39956 | .50476 | 1.0135 | .05018 | 10.167 | | #2 | .39762 | 9.9976 | .39710 | .49633 | 1.0106 | .04930 | 10.122 | | #3 | .40037 | 10.115 | .40701 | .50477 |
1.0077 | .05006 | 10.084 | | Check ?
Value
Range | Chk Pass | Elem | Cd2288 | Co2286 | Cr2677 | Cu2247 | Fe2611 | K_7664 | Li6707 | | Units | ppm | Avg | . 05037 | . 20321 | . 50408 | . 50798 | 4.0539 | 50.667 | 1.0183 | | Stddev | .00060 | .00025 | .00656 | .00237 | .0503 | .331 | .0037 | | %RSD | 1.1871 | .12252 | 1.3011 | .46720 | 1.2414 | .65419 | .36336 | | #1 | .05009 | .20345 | .50910 | .50617 | 4.0578 | 50.697 | 1.0224 | | #2 | .05105 | .20322 | .49666 | .51067 | 4.1023 | 50.982 | 1.0171 | | #3 | .04996 | .20295 | .50649 | .50711 | 4.0018 | 50.321 | 1.0153 | | Check ?
Value
Range | Chk Pass | Elem | Mg2790 | Mn2576 | Mo2020 | Na5895 | Ni2316 | P_2149 | Pb2203 | | Units | ppm | Avg | 10.205 | . 50785 | 1.0061 | 50.870 | . 50803 | 10.007 | . 51269 | | Stddev | .022 | .00115 | .0068 | .226 | .00270 | .043 | .00475 | | %RSD | .21171 | .22603 | .67787 | .44411 | .53180 | .42807 | .92717 | | #1 | 10.229 | .50816 | 1.0118 | 51.086 | .50835 | 10.007 | .50843 | | #2 | 10.194 | .50881 | 1.0081 | 50.889 | .51056 | 10.051 | .51782 | | #3 | 10.191 | .50658 | .99854 | 50.635 | .50518 | 9.9650 | .51183 | | Check ?
Value
Range | Chk Pass | Sample Name: CCV Acquired: 5/13/2016 16:43:58 Type: QC Method: ICP-THERMO3_6010_200.7WATER_3YLINES(v872) Mode: CONC Corr. Factor: 1.000000 User: JYH Custom ID1: Custom ID2: Custom ID3: Comment: | | | | | | | | | | |--|--|---|--|---|---|---|---|--|--| | Elem
Units
Avg
Stddev
%RSD | Sb2068
ppm
1.1981
.0054
.45408 | Se1960
ppm
. 40665
.00952
2.3420 | Si2124
ppm
5.1158
.0126
.24588 | Sn1899
ppm
1.0153
.0048
.47017 | Sr4077
ppm
1.0080
.0062
.61601 | Ti3372
ppm
1.0105
.0042
.41142 | TI1908
ppm
. 50888
.00287
.56341 | | | | #1
#2
#3 | 1.1926
1.2035
1.1982 | .41062
.39578
.41354 | 5.1118
5.1299
5.1058 | 1.0189
1.0171
1.0099 | 1.0146
1.0070
1.0023 | 1.0148
1.0104
1.0065 | .50862
.50615
.51187 | | | | Check ?
Value
Range | Chk Pass | | | Elem
Units
Avg
Stddev
%RSD | V_2924
ppm
1.0078
.0075
.74238 | Zn2062
ppm
1.0179
.0030
.29512 | Zr3391
ppm
F20375
.65352
320.75 | | | | | | | | #1
#2
#3 | 1.0140
.99952
1.0100 | 1.0184
1.0206
1.0147 | .22519
95590
.11946 | | | | | | | | Check ?
Value
Range | Chk Pass | Chk Pass | Chk Fail
1.0000
-10.000% | | | | | | | | Int. Std.
Units
Avg
Stddev
%RSD | Y_2243
Cts/S
11941 .
28.
.23462 | Y_3600
Cts/S
85557.
684.
.79968 | Y_3774
Cts/S
3894.0
31.6
.81237 | | | | | | | | #1
#2
#3 | 11946.
11911.
11967. | 85098.
86343.
85229. | 3857.5
3911.2
3913.3 | | | | | | | | • | | | | | | | | | | | |------------------------------------|----------|----------------|----------------|----------------|----------------|----------------|----------|--|--|--| | Elem | Ag3280 | Al3082 | As1890 | B_2496 | Ba4554 | Be3131 | Ca4226 | | | | | Units | ppm | | | | Avg | 00176 | . 01517 | . 00110 | . 00490 | . 00170 | .00006 | .00255 | | | | | Stddev | .00131 | .00113 | .00217 | .00156 | .00020 | .00003 | .03111 | | | | | %RSD | 74.225 | 7.4597 | 197.97 | 31.721 | 11.709 | 46.557 | 1218.8 | | | | | #1 | 00125 | .01465 | 00087 | .00509 | .00156 | .00008 | .00395 | | | | | #2 | 00325 | .01647 | .00073 | .00326 | .00193 | .00003 | 02923 | | | | | #3 | 00079 | .01439 | .00343 | .00636 | .00160 | .00006 | .03293 | | | | | Check ?
High Limit
Low Limit | Chk Pass | | | | Elem | Cd2288 | Co2286 | Cr2677 | Cu2247 | Fe2611 | K_7664 | Li6707 | | | | | Units | ppm | | | | Avg | 00037 | 0006 | .00062 | .00048 | 03069 | . 12806 | 00385 | | | | | Stddev | .00005 | .00028 | .00120 | .00193 | .00871 | .05292 | .00313 | | | | | %RSD | 13.429 | 505.57 | 193.38 | 402.74 | 28.365 | 41.323 | 81.235 | | | | | #1 | 00043 | 00016 | 00015 | .00133 | 03633 | .18249 | 00450 | | | | | #2 | 00034 | 00027 | .00001 | .00185 | 03508 | .07680 | 00659 | | | | | #3 | 00034 | .00027 | .00201 | 00173 | 02067 | .12488 | 00045 | | | | | Check ?
High Limit
Low Limit | Chk Pass | | | | Elem | Mg2790 | Mn2576 | Mo2020 | Na5895 | Ni2316 | P_2149 | Pb2203 | | | | | Units | ppm | | | | Avg | 08770 | 00196 | . 00413 | . 03217 | 00009 | 00259 | 00209 | | | | | Stddev | .08384 | .00259 | .00068 | .00569 | .00032 | .00413 | .00277 | | | | | %RSD | 95.599 | 131.98 | 16.359 | 17.704 | 339.55 | 159.55 | 132.63 | | | | | #1 | 10276 | 00271 | .00335 | .03787 | 00046 | 00377 | .00054 | | | | | #2 | 16298 | .00092 | .00450 | .02649 | .00008 | 00600 | 00182 | | | | | #3 | .00265 | 00409 | .00453 | .03214 | .00010 | .00200 | 00498 | | | | | Check ?
High Limit
Low Limit | Chk Pass | | | | Sample Name
Method: ICP-1
User: JYH
Comment: | | 010_200.7W <i>A</i> | 2016 16:47:4
ATER_3YLINI
stom ID2: | • • | Mode: CON | C Corr. F | Factor: 1.000000 | |---|---|--|--|---|---|---|---| | Elem
Units
Avg
Stddev
%RSD | Sb2068
ppm
. 00867
.00187
21.613 | Se1960
ppm
00304
.00856
281.78 | Si2124
ppm
.00697
.00208
29.826 | Sn1899
ppm
. 00047
.00017
35.946 | Sr4077
ppm
. 00009
.00017
190.29 | Ti3372
ppm
. 00230
.00499
217.23 | TI1908
ppm
.00038
.00061
160.52 | | #1
#2
#3 | .00812
.01076
.00714 | 01291
.00157
.00223 | .00936
.00564
.00590 | .00066
.00040
.00035 | 00005
.00004
.00028 | .00342
00316
.00662 | .00000
.00005
.00108 | | Check ?
High Limit
Low Limit | Chk Pass | Elem
Units
Avg
Stddev
%RSD | V_2924
ppm
. 00090
.00106
116.97 | Zn2062
ppm
.00018
.00025
141.02 | Zr3391
ppm
F81851
.54970
67.159 | | | | | | #1
#2
#3 | .00120
.00179
00027 | 00010
.00038
.00026 | 33599
70263
-1.4169 | | | | | | Check ?
High Limit
Low Limit | Chk Pass | Chk Pass | Chk Fail
.04000
04000 | | | | | | Int. Std.
Units
Avg
Stddev
%RSD | Y_2243
Cts/S
12094.
44.
.36453 | Y_3600
Cts/S
86724.
571.
.65887 | Y_3774
Cts/S
3846.9
51.1
1.3296 | | | | | | #1
#2
#3 | 12082.
12057.
12143. | 87207.
86093.
86870. | 3893.7
3854.8
3792.3 | | | | | | Sample Name: L1605042705 Acquired: 5/13/2016 16:51:46 Type: Unk Method: ICP-THERMO3_6010_200.7WATER_3YLINES(v872) Mode: CONC Corr. Fac User: JYH Custom ID1: 5 Custom ID2: Custom ID3: Comment: | | | | | | | | |--|---|---|---|---|---|---|---| | Elem
Units
Avg
Stddev
%RSD | Ag3280
ppm
00237
.00126
53.049 | Al3082
ppm
.03742
.00319
8.5248 | As1890
ppm
. 00279
.00152
54.548 | B_2496
ppm
. 01216
.00124
10.168 | Ba4554
ppm
. 00189
.00099
52.480 | Be3131
ppm
.00001
.00005
662.57 | Ca4226
ppm
. 25828
.02635
10.204 | | #1
#2
#3 | 00380
00184
00146 | .03374
.03934
.03918 | .00454
.00200
.00183 | .01250
.01078
.01318 | .00299
.00106
.00163 | .00001
00005
.00006 | .28791
.23744
.24949 | | Check ?
High Limit
Low Limit | Chk Pass | Elem
Units
Avg
Stddev
%RSD | Cd2288
ppm
F00123
.00031
25.043 | Co2286
ppm
.00105
.00008
7.5032 | Cr2677
ppm
.01789
.00056
3.1427 | Cu2247
ppm
F 231.88
6.33
2.7313 | Fe2611
ppm
3.2022
.0454
1.4173 | K_7664
ppm
. 31997
.09821
30.692 | Li6707
ppm
00184
.00380
206.71 | | #1
#2
#3 | 00087
00144
00136 | .00096
.00111
.00107 | .01804
.01837
.01727 | 224.76
233.97
236.90 | 3.2344
3.1503
3.2220 | .24108
.28887
.42997 | .00106
00044
00614 | | Check ?
High Limit
Low Limit | Chk Fail
4.5000
00050 | Chk Pass | Chk Pass | Chk Fail
180.00
00500 | Chk Pass | Chk Pass | Chk Pass | | Elem
Units
Avg
Stddev
%RSD | Mg2790
ppm
01559
.06013
385.70 | Mn2576
ppm
.03278
.00309
9.4205 | Mo2020
ppm
. 00161
.00022
13.384 | Na5895
ppm
1.7315
.0249
1.4357 | Ni2316
ppm
.
01656
.00100
6.0154 | P_2149
ppm
^ *****
 | Pb2203
ppm
. 03870
.00299
7.7257 | | #1
#2
#3 | 00558
08009
.03891 | .03629
.03050
.03154 | .00185
.00143
.00156 | 1.7593
1.7115
1.7237 | .01578
.01623
.01768 | ^
^ | .03565
.04163
.03882 | | Check ?
High Limit
Low Limit | Chk Pass | Sample Name
Method: ICP-T
User: JYH
Comment: | |)10_200.7W <i>A</i> | ed: 5/13/2016
ATER_3YLINI
Istom ID2: | | Type: Unk
Mode: CONO
ID3: | C Corr. F | Factor: 1.00000(| |---|---|--|---|---|---|---|---| | Elem
Units
Avg
Stddev
%RSD | Sb2068
ppm
00285
.00184
64.356 | Se1960
ppm
00286
.00078
27.294 | Si2124
ppm
.14935
.00502
3.3582 | Sn1899
ppm
. 00077
.00090
116.85 | Sr4077
ppm
. 00121
.00056
46.327 | Ti3372
ppm
. 01330
.00516
38.822 | TI1908
ppm
. 00097
.00293
302.00 | | #1
#2
#3 | 00371
00411
00075 | 00268
00372
00219 | .14356
.15194
.15253 | .00092
00020
.00158 | .00078
.00184
.00101 | .00814
.01846
.01328 | .00086
.00395
00190 | | Check ?
High Limit
Low Limit | Chk Pass | Elem
Units
Avg
Stddev
%RSD | V_2924
ppm
. 00173
.00011
6.3817 | Zn2062
ppm
.03004
.00076
2.5263 | Zr3391
ppm
. 04469
.29812
667.06 | | | | | | #1
#2
#3 | .00185
.00164
.00170 | .02916
.03047
.03048 | .07527
26754
.32635 | | | | | | Check ?
High Limit
Low Limit | Chk Pass | Chk Pass | Chk Pass | | | | | | Int. Std.
Units
Avg
Stddev
%RSD | Y_2243
Cts/S
12304.
271.
2.2059 | Y_3600
Cts/S
89285.
353.
.39538 | Y_3774
Cts/S
4007 .1
88.7
2.2141 | | | | | | #1
#2
#3 | 12611.
12201.
12098. | 89431.
89542.
88883. | 3919.5
4096.9
4005.0 | | | | | | Sample Name
Method: ICP-7
User: JYH
Comment: | |)10_200.7W <i>F</i> | red: 5/13/201
ATER_3YLIN
ustom ID2: | | | | Factor: 1.00000(| |---|---|---|---|---|---|---|---| | Elem
Units
Avg
Stddev
%RSD | Ag3280
ppm
00188
.00146
77.783 | Al3082
ppm
. 01706
.00678
39.714 | As1890
ppm
. 00528
.00078
14.691 | B_2496
ppm
. 00534
.00299
56.035 | Ba4554
ppm
.00156
.00032
20.720 | Be3131
ppm
. 00005
.00008
155.67 | Ca4226
ppm
. 11934
.00948
7.9431 | | #1
#2
#3 | 00255
00289
00020 | .02136
.02058
.00925 | .00543
.00597
.00444 | .00260
.00489
.00854 | .00118
.00177
.00172 | .00013
00003
.00005 | .12560
.12398
.10843 | | Check ?
High Limit
Low Limit | Chk Pass | Elem
Units
Avg
Stddev
%RSD | Cd2288
ppm
F00071
.00021
29.642 | Co2286
ppm
.00075
.00036
47.683 | Cr2677
ppm
.00880
.00060
6.8470 | Cu2247
ppm
115.54
.78
.67100 | Fe2611
ppm
1.5707
.0268
1.7038 | K_7664
ppm
.12404
.06091
49.105 | Li6707
ppm
00485
.00294
60.542 | | #2
#3 | 00059
00058 | .00040 | .00887 | 115.47
116.35 | 1.5427
1.5960 | .05835 | 00783
00772
00498 | | Check ?
High Limit
Low Limit | Chk Fail
4.5000
00050 | Chk Pass | Chk Pass | Chk Pass | Chk Pass | Chk Pass | Chk Pass | | Elem
Units
Avg
Stddev
%RSD | Mg2790
ppm
04929
.04268
86.593 | Mn2576
ppm
. 01561
.00242
15.528 | Mo2020
ppm
. 00067
.00031
46.521 | Na5895
ppm
. 84180
.01983
2.3552 | Ni2316
ppm
. 00867
.00060
6.8721 | P_2149
ppm
^ *****
 | Pb2203
ppm
. 01536
.00338
22.015 | | #1
#2
#3 | 06301
00143
08342 | .01400
.01443
.01840 | .00083
.00031
.00087 | .85325
.81890
.85323 | .00818
.00850
.00933 | ^
^ | .01164
.01621
.01825 | | Check ?
High Limit
Low Limit | Chk Pass | Sample Name
Method: ICP-1
User: JYH
Comment: | |)10_200.7W <i>A</i> | red: 5/13/2010
ATER_3YLIN
ustom ID2: | | Type: Unk
Mode: CONO
n ID3: | C Corr. F | Factor: 1.00000(| |---|---|--|---|---|---|---|---| | Elem
Units
Avg
Stddev
%RSD | Sb2068
ppm
. 00087
.00329
379.11 | Se1960
ppm
.00368
.00285
77.500 | Si2124
ppm
. 05973
.00091
1.5167 | Sn1899
ppm
. 00025
.00083
337.00 | Sr4077
ppm
. 00047
.00031
66.370 | Ti3372
ppm
. 01072
.00254
23.671 | TI1908
ppm
. 00082
.00274
333.13 | | #1
#2
#3 | 00291
.00307
.00245 | .00066
.00632
.00406 | .05868
.06028
.06022 | 00048
.00006
.00116 | .00083
.00036
.00023 | .00965
.00889
.01361 | 00007
00136
.00390 | | Check ?
High Limit
Low Limit | Chk Pass | Elem
Units
Avg
Stddev
%RSD | V_2924
ppm
.00051
.00021
40.815 | Zn2062
ppm
.01533
.00028
1.8560 | Zr3391
ppm
. 35969
.57976
161.18 | | | | | | #1
#2
#3 | .00044
.00035
.00075 | .01510
.01565
.01523 | .74161
30742
.64489 | | | | | | Check ?
High Limit
Low Limit | Chk Pass | Chk Pass | Chk Pass | | | | | | Int. Std.
Units
Avg
Stddev
%RSD | Y_2243
Cts/S
12627.
85.
.67017 | Y_3600
Cts/S
91066.
127.
.13934 | Y_3774
Cts/S
4073.0
64.6
1.5851 | | | | | | #1
#2
#3 | 12724.
12589.
12568. | 90923.
91164.
91112. | 4141.6
4064.2
4013.4 | | | | | | • | | | | | | | | | | | |------------------------------------|----------------|----------------|----------------|----------------|----------------|----------------|----------------|----------------|--|--| | Elem | Ag3280 | Al3082 | As1890 | B_2496 | Ba4554 | Be3131 | Ca4226 | Cd2288 | | | | Units | ppm | | | Avg | 00155 | . 12468 | . 00067 | . 06332 | . 06629 | .00021 | . 93265 | . 00047 | | | | Stddev | .00199 | .00767 | .00433 | .00293 | .00103 | .00009 | .01359 | .00022 | | | | %RSD | 128.42 | 6.1494 | 649.91 | 4.6276 | 1.5552 | 42.572 | 1.4571 | 47.210 | | | | #1 | .00055 | .13305 | 00174 | .06588 | .06687 | .00016 | .91729 | .00056 | | | | #2 | 00179 | .11799 | 00193 | .06012 | .06510 | .00016 | .94313 | .00063 | | | | #3 | 00341 | .12301 | .00567 | .06396 | .06689 | .00031 | .93752 | .00022 | | | | Check ?
High Limit
Low Limit | Chk Pass | | | Elem | Co2286 | Cr2677 | Cu2247 | Fe2611 | K_7664 | Li6707 | Mg2790 | Mn2576 | | | | Units | ppm | | | Avg | . 00120 | .00308 | .00567 | . 04524 | . 12257 | . 00615 | 05947 | . 03328 | | | | Stddev | .00048 | .00014 | .00150 | .00720 | .09245 | .00275 | .12433 | .00272 | | | | %RSD | 39.726 | 4.5391 | 26.505 | 15.920 | 75.421 | 44.770 | 209.07 | 8.1790 | | | | #1 | .00165 | .00313 | .00518 | .03842 | .18260 | .00480 | 09610 | .03492 | | | | #2 | .00123 | .00319 | .00447 | .05277 | .16901 | .00432 | .07907 | .03478 | | | | #3 | .00071 | .00292 | .00735 | .04453 | .01611 | .00931 | 16136 | .03013 | | | | Check ?
High Limit
Low Limit | Chk Pass | | | Elem | Mo2020 | Na5895 | Ni2316 | P_2149 | Pb2203 | Sb2068 | Se1960 | Si2124 | | | | Units | ppm | | | Avg | .00017 | 133.06 | . 00400 | . 00016 | 00068 | . 00113 | .00408 | . 15339 | | | | Stddev | .00066 | .07 | .00071 | .00376 | .00213 | .00300 | .00245 | .00186 | | | | %RSD | 399.32 | .05338 | 17.770 | 2351.2 | 312.73 | 265.35 | 60.089 | 1.2152 | | | | #1 | 00050 | 133.05 | .00434 | .00042 | 00130 | .00302 | .00430 | .15146 | | | | #2 | .00083 | 132.99 | .00448 | 00372 | .00169 | .00270 | .00640 | .15354 | | | | #3 | .00016 | 133.13 | .00318 | .00379 | 00244 | 00233 | .00152 | .15518 | | | | Check ?
High Limit
Low Limit | Chk Pass | | | Sample Name: L1605042701 | | | | | | | | | |------------------------------------|-----------------------------------|-----------------------------------|----------------------------------|----------|------------|----------|---------------|----------| | | | | _ | • | • | | Corr. Factor: | 1.000000 | | User: JYH | Custom | וטו: | Custom ID |)2: (| Custom ID3 | : | | | | Comment: | | | | | | | | | | Elem | Sn1899 | Sr4077 | Ti3372 | TI1908 | V_2924 | Zn2062 | Zr3391 | | | Units | ppm | | Avg | 00024 | .12215 | .00636 | .00020 | .00104 | .09582 | 2.4780 | | | Stddev | .00035 | .00070 | .00397 | .00128 | .00133 | .00073 | .2967 | | | %RSD | 144.43 | .57459 | 62.432 | 649.78 | 127.98 | .76685 | 11.974 | | | #1 | 00058 | .12233 | .00404 | .00077 | .00086 | .09544 | 2.8200 | |
 #2 | .00012 | .12138 | .01094 | .00109 | 00019 | .09534 | 2.3255 | | | #3 | 00026 | .12275 | .00409 | 00127 | .00244 | .09666 | 2.2885 | | | Check ?
High Limit
Low Limit | Chk Pass | | Int. Std.
Units
Avg | Y_2243
Cts/S
12073 . | Y_3600
Cts/S
86799 . | Y_3774
Cts/S
4023.5 | | | | | | | Stddev | 25. | 302. | 26.0 | | | | | | | %RSD | .20752 | .34815 | .64736 | | | | | | | #1 | 12077. | 86940. | 4023.1 | | | | | | | #1
#2 | 12077. | 87005. | 3997.6 | | | | | | | #3 | 12096. | 86452. | 4049.7 | | | | | | | | | | | | | | | | | Sample Name
Method: ICP-1
User: JYH
Comment: | |)10_200.7W <i>A</i> | ed: 5/13/2010
ATER_3YLIN
Stom ID2: | | Type: Unk Mode: CONC Corr. Factor: 1.0000 ID3: | | | |---|-----------------------------|---------------------|--|-----------------------------|---|----------------|----------------| | Elem | Ag3280 | Al3082 | As1890 | B_2496 | Ba4554 | Be3131 | Ca4226 | | Units | ppm | Avg | 00181 | .06660 | 00107 | . 08952 | .00959 | .00003 | . 61200 | | Stddev | .00082 | .00374 | .00393 | .00275 | .00059 | .00008 | .01419 | | %RSD | 44.986 | 5.6226 | 367.58 | 3.0674 | 6.1334 | 259.88 | 2.3189 | | #1 | 00275 | .07081 | .00000 | .09257 | .00907 | 00005 | .59646 | | #2 | 00129 | .06535 | 00543 | .08724 | .01023 | .00011 | .61527 | | #3 | 00139 | .06365 | .00222 | .08874 | .00948 | .00003 | .62428 | | Check ?
High Limit
Low Limit | Chk Pass | Elem | Cd2288 | Co2286 | Cr2677 | Cu2247 | Fe2611 | K_7664 | Li6707 | | Units | ppm | Avg | . 00006 | .00293 | .03190 | .01589 | .01891 | 9.0686 | 00422 | | Stddev | .00016 | .00036 | .00068 | .00158 | .01810 | .0353 | .00381 | | %RSD | 279.44 | 12.186 | 2.1322 | 9.9659 | 95.712 | .38892 | 90.217 | | #1 | .00010 | .00300 | .03182 | .01732 | .00597 | 9.0382 | 00162 | | #2 | .00019 | .00254 | .03126 | .01419 | .01117 | 9.0604 | 00245 | | #3 | 00012 | .00325 | .03261 | .01616 | .03959 | 9.1073 | 00859 | | Check ?
High Limit
Low Limit | Chk Pass | Elem | Mg2790 | Mn2576 | Mo2020 | Na5895 | Ni2316 | P_2149 | Pb2203 | | Units | ppm | Avg | F17440 | . 00674 | . 00538 | F 2338.7 | 00041 | . 88064 | . 00267 | | Stddev | .09461 | .00137 | .00047 | 47.5 | .00061 | .00624 | .00215 | | %RSD | 54.249 | 20.268 | 8.8046 | 2.0295 | 149.11 | .70842 | 80.794 | | #1 | 06699 | .00820 | .00593 | 2393.4 | .00022 | .87610 | .00515 | | #2 | 24539 | .00653 | .00515 | 2308.5 | 00099 | .87807 | .00157 | | #3 | 21081 | .00549 | .00506 | 2314.2 | 00045 | .88776 | .00128 | | Check ?
High Limit
Low Limit | Chk Fail
900.00
10000 | Chk Pass | Chk Pass | Chk Fail
270.00
50000 | Chk Pass | Chk Pass | Chk Pass | | Sample Name
Method: ICP-T
User: JYH
Comment: | |)10_200.7W <i>A</i> | 10_200.7WATER_3YLINES(v872) | | | Type: Unk Mode: CONC Corr. Factor: 1.00000 ID3: | | | |---|---|---|--|---|---|---|--|--| | Elem
Units
Avg
Stddev
%RSD | Sb2068
ppm
. 00891
.00221
24.807 | Se1960
ppm
.00468
.00416
89.028 | Si2124
ppm
F 76.100
.389
.51074 | Sn1899
ppm
. 01912
.00046
2.4149 | Sr4077
ppm
. 00023
.00036
155.15 | Ti3372
ppm
. 61792
.00738
1.1936 | TI1908
ppm
00488
.00157
32.264 | | | #1
#2
#3 | .00852
.01129
.00692 | .00679
00012
.00736 | 76.491
76.097
75.714 | .01965
.01888
.01882 | 00009
.00017
.00062 | .61949
.62438
.60988 | 00612
00542
00311 | | | Check ?
High Limit
Low Limit | Chk Pass | Chk Pass | Chk Fail
36.000
-1.0000 | Chk Pass | Chk Pass | Chk Pass | Chk Pass | | | Elem
Units
Avg
Stddev
%RSD | V_2924
ppm
. 10766
.00180
1.6703 | Zn2062
ppm
. 00646
.00031
4.8376 | Zr3391
ppm
1.3413
.6466
48.202 | | | | | | | #1
#2
#3 | .10562
.10835
.10901 | .00640
.00619
.00680 | .61397
1.5593
1.8508 | | | | | | | Check ?
High Limit
Low Limit | Chk Pass | Chk Pass | Chk Pass | | | | | | | Int. Std.
Units
Avg
Stddev
%RSD | Y_2243
Cts/S
11398.
8.
.06742 | Y_3600
Cts/S
78485.
354.
.45128 | Y_3774
Cts/S
4187.3
6.1
.14619 | | | | | | | #1
#2
#3 | 11402.
11402.
11389. | 78151.
78856.
78448. | 4189.0
4192.4
4180.5 | | | | | | | Sample Name
Method: ICP-T
User: JYH
Comment: | | 010_200.7W | red: 5/13/201
ATER_3YLIN
stom ID2: | | Type: Unk Mode: CONC Corr. Factor: 1.0000 ID3: | | | |---|----------------|----------------|--|----------------|--|----------------|----------------| | Elem | Ag3280 | Al3082 | As1890 | B_2496 | Ba4554 | Be3131 | Ca4226 | | Units | ppm | Avg | 00221 | . 04050 | 00103 | . 08727 | . 03058 | .00010 | 2.0502 | | Stddev | .00217 | .00623 | .00178 | .00146 | .00044 | .00007 | .0343 | | %RSD | 98.139 | 15.374 | 173.40 | 1.6730 | 1.4451 | 68.541 | 1.6744 | | #1 | 00416 | .04054 | 00191 | .08709 | .03022 | .00003 | 2.0120 | | #2 | .00013 | .04671 | 00220 | .08590 | .03045 | .00016 | 2.0600 | | #3 | 00261 | .03426 | .00102 | .08881 | .03108 | .00009 | 2.0785 | | Check ?
High Limit
Low Limit | Chk Pass | Elem | Cd2288 | Co2286 | Cr2677 | Cu2247 | Fe2611 | K_7664 | Li6707 | | Units | ppm | Avg | . 00011 | .00161 | . 01320 | . 17496 | 2.6556 | . 22263 | 00265 | | Stddev | .00010 | .00019 | .00204 | .00280 | .0237 | .03809 | .00219 | | %RSD | 94.602 | 11.786 | 15.439 | 1.5989 | .89056 | 17.109 | 82.580 | | #1 | .00021 | .00153 | .01539 | .17502 | 2.6758 | .26130 | 00105 | | #2 | .00001 | .00183 | .01135 | .17774 | 2.6296 | .22143 | 00175 | | #3 | .00010 | .00148 | .01286 | .17214 | 2.6613 | .18515 | 00514 | | Check ?
High Limit
Low Limit | Chk Pass | Elem | Mg2790 | Mn2576 | Mo2020 | Na5895 | Ni2316 | P_2149 | Pb2203 | | Units | ppm | Avg | . 20937 | . 03980 | . 00046 | 127.89 | . 02612 | . 01078 | . 00245 | | Stddev | .16608 | .00168 | .00066 | .18 | .00052 | .00407 | .00168 | | %RSD | 79.324 | 4.2157 | 144.24 | .14226 | 1.9916 | 37.791 | 68.606 | | #1 | .04499 | .03996 | .00038 | 128.08 | .02672 | .01547 | .00297 | | #2 | .20602 | .03804 | .00115 | 127.85 | .02579 | .00865 | .00381 | | #3 | .37711 | .04138 | 00016 | 127.72 | .02585 | .00820 | .00057 | | Check ?
High Limit
Low Limit | Chk Pass | Sample Name
Method: ICP-T
User: JYH
Comment: | |)10_200.7W <i>A</i> | red: 5/13/2010
ATER_3YLIN
stom ID2: | | Type: Unk
Mode: CONO
ID3: | C Corr. F | Corr. Factor: 1.00000(| | | |---|---|--|---|---|---|---|--|--|--| | Elem
Units
Avg
Stddev
%RSD | Sb2068
ppm
. 00348
.00345
99.315 | Se1960
ppm
00334
.00425
127.26 | Si2124
ppm
. 21757
.00425
1.9520 | Sn1899
ppm
. 00016
.00023
148.01 | Sr4077
ppm
. 00472
.00017
3.6698 | Ti3372
ppm
. 00422
.00145
34.397 | TI1908
ppm
00266
.00574
216.16 | | | | #1
#2
#3 | .00000
.00352
.00691 | 00143
00039
00822 | .22232
.21625
.21415 | 00010
.00034
.00023 | .00454
.00489
.00474 | .00494
.00255
.00516 | 00916
00053
.00172 | | | | Check ?
High Limit
Low Limit | Chk Pass | | | Elem
Units
Avg
Stddev
%RSD | V_2924
ppm
00051
.00070
137.66 | Zn2062
ppm
.13862
.00059
.42811 | Zr3391
ppm
F36270
.46832
129.12 | | | | | | | | #1
#2
#3 | 00128
00036
.00010 | .13922
.13860
.13804 | 83230
.10432
36011 | | | | | | | | Check ?
High Limit
Low Limit | Chk Pass | Chk Pass | Chk Fail
36.000
04000 | | | | | | | | Int. Std.
Units
Avg
Stddev
%RSD | Y_2243
Cts/S
12022.
35.
.29217 | Y_3600
Cts/S
86272.
397.
.46061 | Y_3774
Cts/S
4062.4
16.2
.39870 | | | | | | | | #1
#2
#3 | 11984.
12029.
12054. | 86249.
86681.
85887. | 4051.7
4054.5
4081.1 | | | | | | | | • | | | | | | | | | | | |------------------------------------|----------------|---------------|----------------|----------------|----------------|----------------|----------------|----------------|--|--| | Elem | Ag3280 | Al3082 | As1890 | B_2496 | Ba4554 | Be3131 | Ca4226 | Cd2288 | | | | Units | ppm | | | Avg | 00093 | .00975 | . 00438 | . 00493 | .01177 | 00001 | . 22523 | . 00522 | | | | Stddev | .00089 | .00556 | .00202 | .00071 | .00030 | .00007 | .01232 | .00020 | | | | %RSD | 95.948 | 56.969 | 46.189 | 14.332 | 2.5329 | 1098.8 | 5.4716 | 3.7426 | | | | #1 | 00048 | .01486 | .00332 | .00524 | .01189 | .00006 | .23797 | .00542 | | | | #2 | 00035 | .00384 | .00311 | .00412 | .01200 | 00009 | .21337 | .00521 | | | | #3 | 00196
| .01056 | .00672 | .00543 | .01144 | .00001 | .22434 | .00503 | | | | Check ?
High Limit
Low Limit | Chk Pass | | | Elem | Co2286 | Cr2677 | Cu2247 | Fe2611 | K_7664 | Li6707 | Mg2790 | Mn2576 | | | | Units | ppm | | | Avg | . 00057 | .00308 | . 01504 | .03066 | .01459 | 00790 | 00429 | 00099 | | | | Stddev | .00034 | .00024 | .00128 | .01174 | .06690 | .00183 | .02803 | .00070 | | | | %RSD | 59.739 | 7.7977 | 8.5389 | 38.300 | 458.57 | 23.220 | 653.10 | 71.024 | | | | #1 | .00043 | .00294 | .01389 | .01760 | 01725 | 00761 | .01957 | 00168 | | | | #2 | .00032 | .00335 | .01643 | .03406 | 03045 | 00986 | 03516 | 00100 | | | | #3 | .00095 | .00294 | .01482 | .04034 | .09147 | 00623 | .00272 | 00028 | | | | Check ?
High Limit
Low Limit | Chk Pass | | | Elem | Mo2020 | Na5895 | Ni2316 | P_2149 | Pb2203 | Sb2068 | Se1960 | Si2124 | | | | Units | ppm | | | Avg | . 00082 | 9.2169 | .00412 | 21.232 | . 39578 | . 01813 | . 01165 | 6.5683 | | | | Stddev | .00025 | .0058 | .00092 | .063 | .00118 | .00245 | .00892 | .0105 | | | | %RSD | 30.307 | .06273 | 22.282 | .29465 | .29732 | 13.535 | 76.567 | .15925 | | | | #1 | .00111 | 9.2213 | .00307 | 21.264 | .39705 | .01572 | .00544 | 6.5655 | | | | #2 | .00063 | 9.2191 | .00453 | 21.272 | .39555 | .01804 | .00765 | 6.5798 | | | | #3 | .00074 | 9.2104 | .00477 | 21.160 | .39473 | .02063 | .02188 | 6.5595 | | | | Check ?
High Limit
Low Limit | Chk Pass | | | Sample Nar
Method: ICF
User: JYH
Comment: | | 3_6010_200 | .cquired: 5/1
.7WATER_:
Custom IE | 3YLINES(v8 | | ype: Unk
ode: CONC
: | Corr. Factor: 1 | .000000 | |--|---|---|--|--|---|---|---|---------| | Elem
Units
Avg
Stddev
%RSD | Sn1899
ppm
2.0904
.0072
.34238 | Sr4077
ppm
. 00049
.00018
37.313 | Ti3372
ppm
.00859
.00352
41.013 | TI1908
ppm
00314
.00207
65.952 | V_2924
ppm
.00013
.00032
235.45 | Zn2062
ppm
. 06180
.00022
.35562 | Zr3391
ppm
2.5978
.2623
10.095 | | | #1
#2
#3 | 2.0982
2.0888
2.0842 | .00064
.00054
.00029 | .00487
.01187
.00902 | 00184
00552
00205 | .00005
00013
.00048 | .06205
.06173
.06163 | 2.6920
2.3015
2.8000 | | | Check ?
High Limit
Low Limit | Chk Pass | | Int. Std.
Units
Avg
Stddev
%RSD | Y_2243
Cts/S
14718.
29.
.19762 | Y_3600
Cts/S
108980.
403.
.36959 | Y_3774
Cts/S
5222.9
21.4
.41036 | | | | | | | #1
#2
#3 | 14712.
14693.
14750. | 108520.
109270.
109160. | 5198.3
5232.6
5237.7 | | | | | | | Sample Nam
Method: ICP
User: JYH
Comment: | ne: L1605047
-THERMO3_
Custom I | 6010_200.7 | | • • | | | Corr. Factor: | 1.00000(| |--|---------------------------------------|----------------|----------|-----------------------------|----------------|----------------|----------------|----------| | Elem | Ag3280 | Al3082 | As1890 | B_2496 | Ba4554 | Be3131 | Ca4226 | | | Units | ppm | | Avg | 00140 | .08260 | .00146 | . 02627 | .11863 | . 00007 | 13.872 | | | Stddev | .00076 | .00581 | .00113 | .00010 | .00037 | .00004 | .086 | | | %RSD | 54.077 | 7.0330 | 77.486 | .36188 | .30980 | 57.666 | .62252 | | | #1 | 00072 | .07747 | .00019 | .02617 | .11820 | .00007 | 13.820 | | | #2 | 00127 | .08143 | .00237 | .02636 | .11884 | .00003 | 13.823 | | | #3 | 00222 | .08891 | .00182 | .02627 | .11884 | .00011 | 13.971 | | | Check ?
High Limit
Low Limit | Chk Pass | | Elem | Cd2288 | Co2286 | Cr2677 | Cu2247 | Fe2611 | K_7664 | Li6707 | | | Units | ppm | | Avg | 00005 | .00191 | .00076 | .00418 | . 14940 | 1.1392 | . 01759 | | | Stddev | .00025 | .00054 | .00084 | .00138 | .02895 | .0667 | .00121 | | | %RSD | 475.69 | 28.148 | 110.52 | 32.975 | 19.380 | 5.8533 | 6.8630 | | | #1 | 00019 | .00135 | .00091 | .00278 | .14772 | 1.0912 | .01644 | | | #2 | .00024 | .00242 | 00014 | .00422 | .17916 | 1.1110 | .01750 | | | #3 | 00021 | .00196 | .00152 | .00554 | .12133 | 1.2153 | .01885 | | | Check ?
High Limit
Low Limit | Chk Pass | | Elem | Mg2790 | Mn2576 | Mo2020 | Na5895 | Ni2316 | P_2149 | Pb2203 | | | Units | ppm | | Avg | 27.492 | . 02747 | .00048 | F 293.72 | .00313 | . 83179 | 00037 | | | Stddev | .256 | .00150 | .00008 | 1.21 | .00040 | .00328 | .00177 | | | %RSD | .93130 | 5.4442 | 16.241 | .41154 | 12.864 | .39446 | 476.24 | | | #1 | 27.368 | .02799 | .00056 | 295.09 | .00359 | .83505 | 00230 | | | #2 | 27.321 | .02579 | .00047 | 292.79 | .00297 | .82849 | .00001 | | | #3 | 27.786 | .02864 | .00041 | 293.28 | .00284 | .83184 | .00117 | | | Check ?
High Limit
Low Limit | Chk Pass | Chk Pass | Chk Pass | Chk Fail
270.00
50000 | Chk Pass | Chk Pass | Chk Pass | | | Sample Nam
Method: ICP-
User: JYH
Comment: | | 6010_200.7 | | ` , | • • | | Corr. Factor: | 1.00000(| |---|---|--|---|---|---|---|--|----------| | Elem
Units
Avg
Stddev
%RSD | Sb2068
ppm
. 00447
.00494
110.57 | Se1960
ppm
.00084
.00253
300.65 | Si2124
ppm
13.747
.023
.16875 | Sn1899
ppm
. 00103
.00112
108.25 | Sr4077
ppm
. 22431
.00092
.40927 | Ti3372
ppm
. 00730
.00618
84.599 | TI1908
ppm
00016
.00134
828.93 | | | #1
#2
#3 | .01013
.00226
.00102 | 00155
.00348
.00059 | 13.763
13.757
13.720 | 00018
.00125
.00203 | .22518
.22335
.22438 | .01087
.00017
.01087 | 00128
.00133
00054 | | | Check ?
High Limit
Low Limit | Chk Pass | | Elem
Units
Avg
Stddev
%RSD | V_2924
ppm
00010
.00145
1395.1 | Zn2062
ppm
.00818
.00028
3.3632 | Zr3391
ppm
. 70322
.27180
38.651 | | | | | | | #1
#2
#3 | .00155
00070
00116 | .00843
.00789
.00821 | .90889
.80571
.39508 | | | | | | | Check ?
High Limit
Low Limit | Chk Pass | Chk Pass | Chk Pass | | | | | | | Int. Std.
Units
Avg
Stddev
%RSD | Y_2243
Cts/S
13041.
26.
.20119 | Y_3600
Cts/S
93265.
266.
.28573 | Y_3774
Cts/S
4535.4
8.6
.18852 | | | | | | | #1
#2
#3 | 13014.
13044.
13066. | 93088.
93136.
93572. | 4527.9
4544.7
4533.5 | | | | | | | Sample Nam
Method: ICP
User: JYH
Comment: | | _ | | LINES(v872 | pe: QC
) Mode:
tom ID3: | CONC (| Corr. Factor: | 1.00000(| |--|---|---|---|---|---|---|---|----------| | Elem
Units
Avg
Stddev
%RSD | Ag3280
ppm
. 37833
.00170
.44882 | Al3082
ppm
9.4345
.0398
.42187 | As1890
ppm
. 38431
.00403
1.0478 | B_2496
ppm
. 47472
.00091
.19254 | Ba4554
ppm
. 95395
.00862
.90338 | Be3131
ppm
. 04698
.00011
.22474 | Ca4226
ppm
9.5038
.1487
1.5646 | | | #1
#2
#3 | .37780
.38023
.37697 | 9.4387
9.4719
9.3927 | .38710
.37969
.38615 | .47548
.47371
.47496 | .94560
.95345
.96281 | .04705
.04703
.04685 | 9.3350
9.5612
9.6153 | | | Check ?
Value
Range | Chk Pass | | Elem
Units
Avg
Stddev
%RSD | Cd2288
ppm
. 04761
.00017
.35041 | Co2286
ppm
.19147
.00091
.47318 | Cr2677
ppm
. 47155
.00129
.27365 | Cu2247
ppm
.48205
.00203
.42173 | Fe2611
ppm
3.7861
.0447
1.1817
3.7360 | K_7664
ppm
47.643
.317
.66460 | Li6707
ppm
. 94895
.00557
.58661 | | | #1
#2
#3 | .04749
.04755
.04780 | .19201 | .47299
.47049
.47117 | .47985
.48245 | 3.8001
3.8222 | 47.277
47.815
47.836 | .95385
.95012 | | | Check ?
Value
Range | Chk Pass | | Elem
Units
Avg
Stddev
%RSD | Mg2790
ppm
9.4448
.0132
.13946 | Mn2576
ppm
. 47729
.00066
.13916 | Mo2020
ppm
. 95034
.00660
.69426 | Na5895
ppm
48.006
.345
.71791 | Ni2316
ppm
.48029
.00134
.27933 | P_2149
ppm
9.4959
.0374
.39380 | Pb2203
ppm
. 48441
.00328
.67789 | | | #1
#2
#3 | 9.4564
9.4474
9.4305 | .47754
.47653
.47779 | .95660
.94345
.95098 | 47.612
48.154
48.252 | .48146
.47882
.48059 | 9.5218
9.4530
9.5129 | .48409
.48129
.48784 | | | Check ?
Value
Range | Chk Pass | | Sample Nam
Method: ICP-
User: JYH
Comment: | | 6010_200.7 | 13/2016 17:2
WATER_3YI
Custom ID2: | LINES(v872)
 pe: QC
) Mode:
tom ID3: | CONC (| Corr. Factor: 1 | 1.000000 | |---|---|---|--|---|---|---|---|----------| | Elem
Units
Avg
Stddev
%RSD | Sb2068
ppm
1.1380
.0039
.34077 | Se1960
ppm
.38405
.01225
3.1904 | Si2124
ppm
4.9014
.0167
.34046 | Sn1899
ppm
. 95516
.00380
.39817 | Sr4077
ppm
. 95411
.00559
.58615 | Ti3372
ppm
. 95670
.00807
.84379 | TI1908
ppm
. 48044
.00288
.60020 | | | #1
#2
#3 | 1.1381
1.1340
1.1418 | .38454
.37155
.39604 | 4.9088
4.8822
4.9130 | .95870
.95114
.95564 | .94766
.95705
.95762 | .94862
.95674
.96476 | .48201
.47712
.48220 | | | Check ?
Value
Range | Chk Pass | | Elem
Units
Avg
Stddev
%RSD | V_2924
ppm
. 94706
.00460
.48575 | Zn2062
ppm
. 94981
.00252
.26540 | Zr3391
ppm
F 1.1221
.3723
33.181 | | | | | | | #1
#2
#3 | .94849
.95078
.94192 | .95169
.94694
.95080 | 1.5167
.77704
1.0725 | | | | | | | Check ?
Value
Range | Chk Pass | Chk Pass | Chk Fail
1.0000
10.000% | | | | | | | Int. Std.
Units
Avg
Stddev
%RSD | Y_2243
Cts/S
13904.
67.
.48355 | Y_3600
Cts/S
100380.
263.
.26206 | Y_3774
Cts/S
4738.9
19.4
.40964 | | | | | | | #1
#2
#3 | 13957.
13926.
13828. | 100680.
100200.
100250. | 4756.2
4742.6
4717.9 | | | | | | | Sample Name: CCB Acquired: 5/13/2016 17:23:53 Type: Blank Method: ICP-THERMO3_6010_200.7WATER_3YLINES(v872) Mode: CONC Corr. Factor: 1.000000 User: JYH Custom ID1: Custom ID2: Custom ID3: Comment: | | | | | | | | | | |--|----------|----------|----------------|----------------|----------------|----------------|-----------------------------|--|--| | Elem | Ag3280 | Al3082 | As1890 | B_2496 | Ba4554 | Be3131 | Ca4226 | | | | Units | ppm | | | Avg | 00151 | 00214 | . 00271 | . 00233 | 00017 | .00011 | 02319 | | | | Stddev | .00169 | .00697 | .00174 | .00263 | .00110 | .00003 | .01834 | | | | %RSD | 112.12 | 325.94 | 64.145 | 112.84 | 667.36 | 30.642 | 79.104 | | | | #1 | .00001 | 00365 | .00073 | 00061 | .00091 | .00013 | 00497 | | | | #2 | 00333 | .00546 | .00401 | .00446 | 00130 | .00013 | 04166 | | | | #3 | 00120 | 00822 | .00339 | .00314 | 00010 | .00007 | 02295 | | | | Check ?
High Limit
Low Limit | Chk Pass | | | Elem | Cd2288 | Co2286 | Cr2677 | Cu2247 | Fe2611 | K_7664 | Li6707 | | | | Units | ppm | | | Avg | 00011 | .00002 | . 00027 | 00015 | 01140 | 02561 | . 00090 | | | | Stddev | .00005 | .00056 | .00046 | .00029 | .01518 | .12224 | .00317 | | | | %RSD | 44.473 | 2440.0 | 167.90 | 195.48 | 133.16 | 477.31 | 351.73 | | | | #1 | 00006 | 00001 | .00026 | 00004 | 02649 | .03888 | .00405 | | | | #2 | 00015 | 00052 | 00018 | .00007 | .00387 | 16659 | .00093 | | | | #3 | 00012 | .00061 | .00073 | 00048 | 01157 | .05088 | 00228 | | | | Check ?
High Limit
Low Limit | Chk Pass | | | Elem | Mg2790 | Mn2576 | Mo2020 | Na5895 | Ni2316 | P_2149 | Pb2203 | | | | Units | ppm | | | Avg | 10900 | 00089 | . 00418 | .09770 | . 00101 | . 00606 | F00508 | | | | Stddev | .06167 | .00428 | .00014 | .02522 | .00091 | .00113 | .00261 | | | | %RSD | 56.577 | 480.73 | 3.3077 | 25.818 | 89.979 | 18.573 | 51.404 | | | | #1 | 17697 | 00470 | .00407 | .10101 | .00195 | .00646 | 00774 | | | | #2 | 05662 | .00374 | .00412 | .07098 | .00014 | .00479 | 00499 | | | | #3 | 09340 | 00171 | .00433 | .12110 | .00094 | .00693 | 00251 | | | | Check ?
High Limit
Low Limit | Chk Pass | Chk Pass | Chk Pass | Chk Pass | Chk Pass | Chk Pass | Chk Fail
.00500
00500 | | | | • | | | | | | | | | | |---|---|---|--|---|--|---|--|--|--| | Elem
Units
Avg
Stddev
%RSD | Sb2068
ppm
. 00875
.00462
52.767 | Se1960
ppm
.00589
.01010
171.38 | Si2124
ppm
.00529
.00283
53.516 | Sn1899
ppm
. 00042
.00159
375.36 | Sr4077
ppm
00017
.00036
212.58 | Ti3372
ppm
.00458
.00280
61.165 | TI1908
ppm
00176
.00289
164.66 | | | | #1
#2
#3 | .00375
.01286
.00964 | .01564
00453
.00658 | .00785
.00225
.00578 | .00224
00025
00072 | 00051
00020
.00020 | .00165
.00722
.00486 | 00505
.00037
00058 | | | | Check ?
High Limit
Low Limit | Chk Pass | | | Elem
Units
Avg
Stddev
%RSD | V_2924
ppm
.00080
.00050
63.137 | Zn2062
ppm
.00010
.00012
119.68 | Zr3391
ppm
F .20697
.45985
222.18 | | | | | | | | #1
#2
#3 | .00024
.00094
.00121 | .00024
.00001
.00005 | 20510
.12301
.70302 | | | | | | | | Check ?
High Limit
Low Limit | Chk Pass | Chk Pass | Chk Fail
.04000
04000 | | | | | | | | Int. Std.
Units
Avg
Stddev
%RSD | Y_2243
Cts/S
12376.
84.
.67907 | Y_3600
Cts/S
90722.
77.
.08538 | Y_3774
Cts/S
4179.2
63.9
1.5290 | | | | | | | | #1
#2
#3 | 12470.
12346.
12310. | 90715.
90803.
90649. | 4247.2
4170.1
4120.4 | | | | | | | | Sample Nam
Method: ICP
User: JYH
Comment: | | 6010_200.7 | 5/13/2016 1
WATER_3Y
Custom ID2: | LINES(v872 | Type: Unk
) Mode:
tom ID3: | CONC (| Corr. Factor: | 1.00000(| |--|----------------|----------------|--|----------------|----------------------------------|----------------|----------------|----------| | Elem | Ag3280 | Al3082 | As1890 | B_2496 | Ba4554 | Be3131 | Ca4226 | | | Units | ppm | | Avg | . 00550 | .16575 | .01083 | . 07905 | .00867 | .00164 | . 38746 | | | Stddev | .00123 | .00513 | .00137 | .00482 | .00014 | .00007 | .01126 | | | %RSD | 22.307 | 3.0932 | 12.612 | 6.0929 | 1.6077 | 4.1468 | 2.9072 | | | #1 | .00669 | .16784 | .01028 | .07786 | .00881 | .00172 | .40033 | | | #2 | .00555 | .15991 | .01239 | .08436 | .00853 | .00159 | .37943 | | | #3 | .00424 | .16950 | .00983 | .07495 | .00867 | .00162 | .38260 | | | Check ?
High Limit
Low Limit | Chk Pass | | Elem | Cd2288 | Co2286 | Cr2677 | Cu2247 | Fe2611 | K_7664 | Li6707 | | | Units | ppm | | Avg | . 00078 | . 00426 | .00476 | .00359 | .06895 | . 79914 | . 07480 | | | Stddev | .00015 | .00052 | .00062 | .00052 | .01702 | .07914 | .00199 | | | %RSD | 19.070 | 12.174 | 13.115 | 14.500 | 24.680 | 9.9028 | 2.6595 | | | #1 | .00062 | .00445 | .00408 | .00396 | .08580 | .75772 | .07650 | | | #2 | .00090 | .00367 | .00531 | .00299 | .05176 | .74931 | .07528 | | | #3 | .00083 | .00464 | .00490 | .00381 | .06930 | .89039 | .07261 | | | Check ?
High Limit
Low Limit | Chk Pass | | Elem | Mg2790 | Mn2576 | Mo2020 | Na5895 | Ni2316 | P_2149 | Pb2203 | | | Units | ppm | | Avg | . 25992 | .00711 | . 00837 | . 43746 | .01650 | . 77689 | . 00989 | | | Stddev | .09081 | .00186 | .00075 | .00732 | .00093 | .00768 | .00206 | | | %RSD | 34.939 | 26.160 | 8.9354 | 1.6739 | 5.6467 | .98826 | 20.866 | | | #1 | .33218 | .00602 | .00914 | .43999 | .01660 | .77175 | .01073 | | | #2 | .15798 | .00606 | .00765 | .44318 | .01738 | .78571 | .01141 | | | #3 | .28959 | .00926 | .00832 | .42921 | .01552 | .77320 | .00754 | | | Check ?
High Limit
Low Limit | Chk Pass | | Sample Nam
Method: ICP
User: JYH
Comment: | ne: LLCCV
-THERMO3_
Custom I | 6010_200.7 | 5/13/2016 1
WATER_3Y
Custom ID2: | LINES(v872 | Type: Unk
) Mode:
tom ID3: | CONC (| Corr. Factor: 1 | .000000 | |--|---|---|---|---|---|---|---|---------| | Elem
Units
Avg
Stddev
%RSD | Sb2068
ppm
. 08650
.00439
5.0777 | Se1960
ppm
. 01792
.00247
13.790 | Si2124
ppm
. 85707
.00734
.85584 | Sn1899
ppm
. 40368
.00348
.86129 | Sr4077
ppm
. 04049
.00037
.90743 | Ti3372
ppm
. 03039
.00537
17.661 | TI1908
ppm
. 15810
.00327
2.0672 | | | #1
#2
#3 | .08516
.09141
.08294 | .01974
.01511
.01890 | .84988
.86454
.85680 | .40417
.40689
.39998 | .04006
.04069
.04071 | .02862
.03642
.02613 | .15987
.16010
.15433 | | | Check ?
High Limit
Low Limit | Chk Pass | | Elem
Units
Avg
Stddev
%RSD | V_2924
ppm
. 00748
.00081
10.862 | Zn2062
ppm
.01664
.00026
1.5763 |
Zr3391
ppm
F 60.704
.226
.37257 | | | | | | | #1
#2
#3 | .00726
.00680
.00838 | .01645
.01694
.01652 | 60.486
60.688
60.937 | | | | | | | Check ?
High Limit
Low Limit | Chk Pass | Chk Pass | Chk Fail
36.000
04000 | | | | | | | Int. Std.
Units
Avg
Stddev
%RSD | Y_2243
Cts/S
12214.
99.
.81105 | Y_3600
Cts/S
88027.
603.
.68503 | Y_3774
Cts/S
3891.2
28.4
.72976 | | | | | | | #1
#2
#3 | 12289.
12102.
12251. | 87897.
87499.
88684. | 3923.1
3881.6
3868.8 | | | | | | | • | | | | | | | | | |--|---|---|---|---|---|--|---|--| | Elem
Units
Avg
Stddev
%RSD | Ag3280
ppm
. 01935
.00284
14.655 | Al3082
ppm
. 40742
.00916
2.2495 | As1890
ppm
.01810
.00060
3.2905 | B_2496
ppm
. 19464
.00106
.54411 | Ba4554
ppm
.02105
.00063
3.0119 | Be3131
ppm
.00401
.00006
1.5373 | Ca4226
ppm
. 96612
.03081
3.1892 | | | #1
#2
#3 | .02220
.01933
.01653 | .39941
.40543
.41741 | .01838
.01742
.01851 | .19446
.19368
.19577 | .02139
.02032
.02145 | .00402
.00406
.00394 | .99026
.93141
.97668 | | | Check ?
High Limit
Low Limit | Chk Pass | | Elem
Units
Avg
Stddev
%RSD | Cd2288
ppm
.00200
.00007
3.7020 | Co2286
ppm
.01037
.00044
4.2169 | Cr2677
ppm
.01012
.00104
10.325 | Cu2247
ppm
.00983
.00058
5.8964 | Fe2611
ppm
.18229
.03179
17.441 | K_7664
ppm
2.0376
.0390
1.9140
2.0585 | Li6707
ppm
. 19820
.00881
4.4446 | | | #2
#3 | .00204 | .01021
.01004
.01086 | .01036 | .01020 | .21367 | 1.9926
2.0617 | .19308 | | | Check ?
High Limit
Low Limit | Chk Pass | | Elem
Units
Avg
Stddev
%RSD | Mg2790
ppm
. 99944
.08268
8.2727 | Mn2576
ppm
.01887
.00243
12.876 | Mo2020
ppm
. 01938
.00026
1.3198 | Na5895
ppm
1.0313
.0158
1.5317 | Ni2316
ppm
.04084
.00086
2.1111 | P_2149
ppm
1.9140
.0050
.26287 | Pb2203
ppm
. 02097
.00201
9.5669 | | | #1
#2
#3 | .90514
1.0595
1.0337 | .01802
.01698
.02161 | .01916
.01966
.01932 | 1.0308
1.0473
1.0157 | .04000
.04172
.04079 | 1.9165
1.9082
1.9173 | .01932
.02038
.02320 | | | Check ?
High Limit
Low Limit | Chk Pass | | Sample Nam
Method: ICP
User: JYH
Comment: | ne: LLCCV
-THERMO3_
Custom I | 6010_200.7 | 5/13/2016 1
WATER_3Y
Custom ID2: | LINES(v872 | Type: Unk
) Mode:
stom ID3: | CONC (| Corr. Factor: 1 | .000000 | |--|---|---|--|---|---|---|---|---------| | Elem
Units
Avg
Stddev
%RSD | Sb2068
ppm
. 20617
.00324
1.5705 | Se1960
ppm
.03310
.00388
11.734 | Si2124
ppm
2.1256
.0149
.70028 | Sn1899
ppm
1.0008
.0054
.53884 | Sr4077
ppm
. 09981
.00071
.71356 | Ti3372
ppm
. 06317
.00369
5.8438 | TI1908
ppm
. 38582
.00251
.65169 | | | #1
#2
#3 | .20531
.20976
.20346 | .02884
.03644
.03403 | 2.1095
2.1285
2.1389 | .99480
1.0053
1.0022 | .09913
.09976
.10055 | .06296
.06697
.05959 | .38291
.38736
.38717 | | | Check ?
High Limit
Low Limit | Chk Pass | | Elem
Units
Avg
Stddev
%RSD | V_2924
ppm
. 01992
.00016
.81931 | Zn2062
ppm
. 04060
.00044
1.0934 | Zr3391
ppm
F 155.23
1.20
.77594 | | | | | | | #1
#2
#3 | .01990
.01976
.02009 | .04055
.04019
.04107 | 155.31
153.98
156.39 | | | | | | | Check ?
High Limit
Low Limit | Chk Pass | Chk Pass | Chk Fail
36.000
04000 | | | | | | | Int. Std.
Units
Avg
Stddev
%RSD | Y_2243
Cts/S
12192.
33.
.26704 | Y_3600
Cts/S
87652.
476.
.54268 | Y_3774
Cts/S
3926.7
30.0
.76326 | | | | | | | #1
#2
#3 | 12227.
12188.
12162. | 87167.
87671.
88118. | 3906.6
3961.2
3912.5 | | | | | | Sample Name: PBW XT Acquired: 5/13/2016 17:36:03 Type: Unk Method: ICP-THERMO3_6010_200.7WATER_3YLINES(v872) Mode: CONC Corr. Factor: 1.000000 User: JYH Custom ID1: Custom ID2: Custom ID3: Comment: WG567310-02 Al3082 As1890 B_2496 Ba4554 Be3131 Ca4226 Elem Ag3280 Units ppm ppm ppm ppm ppm ppm ppm -.01847 .00689 Avg -.00165 .00201 .00185 .00035 .00011 Stddev .00084 .00768 .00340 .00053 .00041 80000. .00615 %RSD 51.307 111.43 168.97 28.605 116.40 72.167 33.289 #1 -.00141 -.00178 .00423 .00044 .00020 -.01158 .00124 #2 -.00095 .00964 -.00190 .00215 .00071 .00008 -.02043 #3 -.00258 .01282 .00371 .00216 -.00009 .00005 -.02340 Check? Chk Pass Chk Pass **Chk Pass Chk Pass Chk Pass Chk Pass Chk Pass High Limit** Low Limit Elem Cd2288 Co2286 Cr2677 Cu2247 Fe2611 K_7664 Li6707 Units ppm ppm ppm ppm ppm ppm ppm -.00012 .00040 .00112 F-.02980 -.00097 Avg .00016 .04022 .00015 .00016 .00081 .00058 .00269 Stddev .02977 .06662 %RSD 125.33 40.457 71.949 356.50 99.905 165.66 277.74 #1 -.00025 .00025 .00023 .00080 -.01419 .02757 -.00161 .00181 .00133 **Chk Pass** Mo2020 ppm .00019 .00042 222.97 -.00029 .00036 .00049 **Chk Pass** .00005 -.00035 **Chk Pass** Na5895 ppm .04569 .02387 52.255 .01819 .05775 .06113 **Chk Pass** -.06413 -.01108 Chk Fail 720.00 -.02000 Ni2316 .00200 .00070 34.775 .00126 .00265 .00209 **Chk Pass** ppm .11226 -.01917 **Chk Pass** P_2149 -.00469 .00356 75.949 -.00688 -.00058 -.00661 **Chk Pass** ppm .00198 -.00327 **Chk Pass** Pb2203 -.00165 .00223 135.75 .00029 -.00409 -.00114 **Chk Pass** ppm Approved: May 16, 2016 #2 #3 Check? High Limit Low Limit Elem Units Stddev %RSD Check? High Limit Low Limit Avg #1 #2 #3 .00004 -.00014 **Chk Pass** Mg2790 -.08648 .15623 180.66 -.22017 .08526 -.12452 **Chk Pass** ppm .00038 .00057 **Chk Pass** Mn2576 -.00289 .00069 23.690 -.00255 -.00368 -.00245 Chk Pass ppm | Method: ICP-
User: JYH | Sample Name: PBW XT Acquired: 5/13/2016 17:36:03 Type: Unk Method: ICP-THERMO3_6010_200.7WATER_3YLINES(v872) Mode: CONC Corr. Factor: 1.000000 User: JYH Custom ID1: Custom ID2: Custom ID3: Comment: WG567310-02 | | | | | | | | | |---|--|--|---|--|---|---|---|--|--| | Elem
Units
Avg
Stddev
%RSD | Sb2068
ppm
00023
.00240
1049.2 | Se1960
ppm
00656
.00115
17.488 | Si2124
ppm
.00597
.00308
51.589 | Sn1899
ppm
00004
.00043
986.13 | Sr4077
ppm
. 00007
.00058
796.79 | Ti3372
ppm
.00541
.00646
119.28 | TI1908
ppm
. 00212
.00241
113.70 | | | | #1
#2
#3 | 00201
00118
.00250 | 00787
00607
00573 | .00818
.00245
.00726 | 00043
.00042
00011 | 00020
.00074
00033 | .00005
.00361
.01258 | 00063
.00316
.00383 | | | | Check ?
High Limit
Low Limit | Chk Pass | | | Elem
Units
Avg
Stddev
%RSD | V_2924
ppm
. 00043
.00061
141.74 | Zn2062
ppm
00002
.00018
1181.1 | Zr3391
ppm
. 07322
.68618
937.15 | | | | | | | | #1
#2
#3 | .00086
00027
.00070 | 00020
.00015
.00001 | .37707
71243
.55502 | | | | | | | | Check ?
High Limit
Low Limit | Chk Pass | Chk Pass | Chk Pass | | | | | | | | Int. Std.
Units
Avg
Stddev
%RSD | Y_2243
Cts/S
12259.
58.
.46911 | Y_3600
Cts/S
88122.
428.
.48537 | Y_3774
Cts/S
3927.4
26.5
.67597 | | | | | | | | #1
#2
#3 | 12224.
12228.
12326. | 88572.
88072.
87721. | 3912.8
3911.4
3958.1 | | | | | | | Sample Name: LCSW XT Acquired: 5/13/2016 17:40:06 Type: Unk Method: ICP-THERMO3_6010_200.7WATER_3YLINES(v872) Mode: CONC Corr. Factor: 1.000000 User: JYH Custom ID1: Custom ID2: Custom ID3: Comment: WG567310-03 | Elem | Ag3280 | Al3082 | As1890 | B_2496 | Ba4554 | Be3131 | Ca4226 | Cd2288 | |--------|--------|--------|--------|--------|--------|--------|--------|--------| | Units | ppm | Avg | .18924 | 4.7110 | .18888 | .93114 | .48071 | .02332 | 4.8662 | .02375 | | Stddev | .00158 | .0069 | .00339 | .00510 | .00202 | .00009 | .0611 | .00025 | | %RSD | .83458 | .14680 | 1.7945 | .54780 | .42094 | .39573 | 1.2553 | 1.0604 | | #1 | .18783 | 4.7170 | .18520 | .92655 | .48294 | .02334 | 4.9150 | .02379 | | #2 | .18893 | 4.7034 | .19188 | .93024 | .48020 | .02322 | 4.7977 | .02399 | | #3 | .19095 | 4.7127 | .18954 | .93663 | .47900 | .02340 |
4.8860 | .02349 | Check? Chk Pass P | Elem | Co2286 | Cr2677 | Cu2247 | Fe2611 | K_7664 | Li6707 | Mg2790 | Mn2576 | |--------|--------|--------|--------|--------|--------|--------|--------|--------| | Units | ppm | mqq | ppm | ppm | ppm | ppm | ppm | ppm | | Avg | .09725 | .23938 | .24499 | 1.9091 | 24.544 | .48542 | 4.6604 | .23670 | | Stddev | .00052 | .00049 | .00059 | .0118 | .061 | .00235 | .0809 | .00211 | | %RSD | .52983 | .20458 | .24277 | .61630 | .24843 | .48507 | 1.7355 | .89191 | | | | | | | | | | | | #1 | .09669 | .23989 | .24461 | 1.8957 | 24.501 | .48316 | 4.5720 | .23481 | | #2 | .09770 | .23892 | .24567 | 1.9139 | 24.517 | .48786 | 4.7306 | .23898 | | #3 | .09735 | .23934 | .24468 | 1.9177 | 24.614 | .48525 | 4.6787 | .23630 | Check? Chk Pass P | Elem | Mo2020 | Na5895 | Ni2316 | P_2149 | Pb2203 | Sb2068 | Se1960 | Si2124 | |--------|----------------|---------------|----------------|---------------|----------------|----------------|----------------|---------------| | Units | ppm | Avg | . 48994 | 24.420 | . 24647 | 4.6646 | . 24629 | . 57844 | . 18923 | 2.4545 | | Stddev | .00088 | .052 | .00066 | .0178 | .00514 | .00365 | .00542 | .0034 | | %RSD | .17955 | .21131 | .26841 | .38138 | 2.0853 | .63132 | 2.8660 | .13815 | | #1 | .49078 | 24.471 | .24610 | 4.6704 | .24644 | .57561 | .18527 | 2.4583 | | #2 | .49001 | 24.368 | .24607 | 4.6787 | .25134 | .57715 | .19541 | 2.4519 | | #3 | .48902 | 24.423 | .24723 | 4.6446 | .24108 | .58256 | .18700 | 2.4532 | Check? Chk Pass P Sample Name: LCSW XT Acquired: 5/13/2016 17:40:06 Type: Unk Method: ICP-THERMO3_6010_200.7WATER_3YLINES(v872) Mode: CONC Corr. Factor: 1.000000 User: JYH Custom ID1: Custom ID2: Custom ID3: Comment: WG567310-03 | Elem | Sn1899 | Sr4077 | Ti3372 | TI1908 | V_2924 | Zn2062 | Zr3391 | |--------|--------|--------|--------|--------|--------|--------|--------| | Units | ppm | Avg | .48768 | .48434 | .47968 | .24401 | .47620 | .48088 | 2.0210 | | Stddev | .00067 | .00051 | .00879 | .00439 | .00257 | .00099 | 1.0370 | | %RSD | .13799 | .10602 | 1.8318 | 1.7993 | .53906 | .20494 | 51.312 | | #1 | .48694 | .48465 | .48565 | .24626 | .47420 | .47977 | .86953 | | #2 | .48785 | .48462 | .46959 | .24682 | .47910 | .48167 | 2.8813 | | #3 | .48825 | .48374 | .48381 | .23895 | .47531 | .48118 | 2.3122 | Check? Chk Pass P Low Limit | Int. Std. | Y_2243 | Y_3600 | Y_3774 | |-----------|----------------|---------------|---------------| | Units | Cts/S | Cts/S | Cts/S | | Avg | 12077 . | 86933. | 3967.7 | | Stddev | 65. | 228. | 24.4 | | %RSD | .54182 | .26201 | .61466 | | #1 | 12137. | 86723. | 3942.6 | | #2 | 12087. | 86902. | 3991.4 | | #3 | 12008. | 87175. | 3969.2 | Sample Name: L1605001301 Acquired: 5/13/2016 17:43:53 Type: Unk Method: ICP-THERMO3 6010 200.7WATER 3YLINES(v872) Mode: CONC Corr. Factor: 1.000000 User: JYH Custom ID1: Custom ID2: Custom ID3: Comment: WG567310-01 Al3082 As1890 B 2496 Ba4554 Be3131 Ca4226 Cd2288 Elem Ag3280 Units ppm ppm ppm ppm ppm ppm ppm ppm .01598 Avg -.00252 .15583 -.00079 .02691 .00009 32.924 .00012 Stddev .00159 .01700 .00423 .00105 .00044 .00005 .00037 .112 %RSD 63.156 10.911 537.62 6.5541 1.6193 58.505 .34010 309.42 #1 -.00068 .00406 .01505 .00005 -.00029 .15701 .02723 32.810 #2 -.00348 -.00272 .01711 .02708 .00014 33.033 .00043 .17221 32.928 #3 -.00339 .13827 -.00370 .01578 .02641 .00006 .00022 Check? Chk Pass **High Limit** Low Limit Mg2790 Elem Co2286 Cr2677 Cu2247 Fe2611 K_7664 Li6707 Mn2576 Units ppm ppm ppm ppm ppm ppm ppm ppm .00366 -.00046 .08254 24.470 Avg .00272 .37212 .54777 .24849 .00045 .00087 .05984 .00370 Stddev .00051 .01897 .148 .00163 %RSD 13.867 189.84 5.0984 10.924 4.4851 .60446 16.714 .65737 #1 .00346 .00284 -.00060 .35237 .55171 .08402 24.303 .24708 #2 .00423 .00310 .00048 .39020 .48606 .08528 24.523 .25028 .00222 -.00126 24.584 #3 .00328 .37380 .60554 .07833 .24810 Check? Chk Pass High Limit Low Limit Elem Mo2020 Na5895 Ni2316 P_2149 Pb2203 Sb2068 Se1960 Si2124 Units ppm ppm ppm ppm ppm ppm ppm ppm .00098 163.09 .00655 .12413 -.00006 .00386 .00123 25.538 Avg .00016 .00091 .00784 .00144 .00097 .00584 Stddev .43 .189 %RSD 15.853 .26499 13.899 6.3125 2528.7 25.238 474.80 .73917 #1 .00097 .00283 162.64 .00759 .11706 .00007 .00444 25.545 .00083 .12279 -.00156 .00477 .00477 25.345 #2 163.15 .00619 .00397 #3 .00114 163.50 .00588 .13255 .00132 -.00551 25.722 Check? Chk Pass High Limit Approved: May 16, 2016 Low Limit Sample Name: L1605001301 Acquired: 5/13/2016 17:43:53 Type: Unk Method: ICP-THERMO3_6010_200.7WATER_3YLINES(v872) Mode: CONC Corr. Factor: 1.000000 User: JYH Custom ID1: Custom ID2: Custom ID3: Comment: WG567310-01 Elem Sn1899 Sr4077 Ti3372 TI1908 V_2924 Zn2062 Zr3391 Units ppm ppm ppm ppm ppm ppm ppm .10040 -.00038 .79897 .00927 -.00133 .00133 .00499 Avg Stddev .00108 .00133 .00300 .00157 .00066 .00028 .62305 283.18 32.365 %RSD .16670 117.97 49.528 5.5201 620.56 #1 -.00145 .79788 .01273 -.00036 .00171 .00529 .36152 #2 .00071 .79858 .00752 -.00313 .00057 .00476 -.61072 #3 -.00040 .80046 .00755 -.00049 .00172 .00492 .55041 Check? Chk Pass Chk Pass Chk Pass Chk Pass Chk Pass Chk Pass High Limit Low Limit Y_3774 Int. Std. Y_2243 Y_3600 Units Cts/S Cts/S Cts/S 11838. 84397. 3881.8 Avg Stddev 93. 1303. 11.2 %RSD .78782 1.5439 .28855 #1 11805. 85095. 3877.3 #2 11943. 82893. 3873.5 #3 11766. 85201. 3894.5 | Sample Name: L1605001302 Acquired: 5/13/2016 17:47:53 Type: Unk Method: ICP-THERMO3_6010_200.7WATER_3YLINES(v872) Mode: CONC Corr. Factor: 1.000000 User: JYH Custom ID1: Custom ID2: Custom ID3: Comment: | | | | | | | | | | |---|----------------|---------------|----------|----------------|----------------|----------------|---------------|----------------|--| | Elem | Ag3280 | Al3082 | As1890 | B_2496 | Ba4554 | Be3131 | Ca4226 | Cd2288 | | | Units | ppm | | Avg | 00222 | .12448 | 00235 | . 01937 | . 02424 | .00005 | 32.442 | . 00007 | | | Stddev | .00082 | .00302 | .00474 | .00144 | .00142 | .00003 | 1.351 | .00029 | | | %RSD | 36.975 | 2.4296 | 201.57 | 7.4300 | 5.8681 | 69.920 | 4.1657 | 433.63 | | | #1 | 00235 | .12745 | 00442 | .02087 | .02471 | .00007 | 33.136 | 00004 | | | #2 | 00135 | .12457 | 00572 | .01800 | .02264 | .00007 | 30.885 | .00040 | | | #3 | 00298 | .12141 | .00307 | .01923 | .02536 | .00001 | 33.307 | 00016 | | | Check ?
High Limit
Low Limit | Chk Pass | | Elem | Co2286 | Cr2677 | Cu2247 | Fe2611 | K_7664 | Li6707 | Mg2790 | Mn2576 | | | Units | ppm | | Avg | . 00364 | .00188 | 00084 | .30235 | . 46459 | .08326 | 24.351 | . 24663 | | | Stddev | .00047 | .00140 | .00018 | .01874 | .05701 | .00484 | .932 | .01347 | | | %RSD | 13.017 | 74.360 | 21.429 | 6.1992 | 12.271 | 5.8122 | 3.8265 | 5.4602 | | | #1 | .00314 | .00028 | 00063 | .32385 | .52878 | .08384 | 24.572 | .25418 | | | #2 | .00408 | .00248 | 00093 | .29375 | .41985 | .07815 | 23.329 | .23109 | | | #3 | .00371 | .00287 | 00095 | .28944 | .44513 | .08778 | 25.152 | .25463 | | | Check ?
High Limit
Low Limit | Chk Pass | | Elem | Mo2020 | Na5895 | Ni2316 | P_2149 | Pb2203 | Sb2068 | Se1960 | Si2124 | | | Units | ppm | | Avg | . 00020 | 159.53 | .00573 | . 12244 | 00229 | . 00233 | 00612 | 26.119 | | | Stddev | .00039 | 6.44 | .00081 | .00229 | .00145 | .00111 | .00571 | .052 | | | %RSD | 199.13 | 4.0358 | 14.179 | 1.8676 | 63.487 | 47.438 | 93.310 | .20073 | | | #1 | .00063 | 162.24 | .00491 | .12043 | 00369 | .00265 | 00639 | 26.161 | | | #2 | .00009 | 152.18 | .00574 | .12195 | 00079 | .00110 | 01168 | 26.135 | | | #3 | 00013 | 164.17 | .00654 | .12493 | 00239 | .00324 | 00028 | 26.060 | | | Check ?
High Limit
Low Limit | Chk Pass | | Sample Name: L1605001302 Acquired: 5/13/2016 17:47:53 Type: Unk Method: ICP-THERMO3_6010_200.7WATER_3YLINES(v872) Mode: CONC Corr. Factor: 1.000000 User: JYH Custom ID1: Custom ID2: Custom ID3: Comment: | | | | | | | | | | |---|---|---|---|--|---|---|---|--|--| | Elem
Units
Avg
Stddev
%RSD | Sn1899
ppm
00022
.00051
225.36 | Sr4077
ppm
. 78106
.03270
4.1867 | Ti3372
ppm
.00083
.00580
695.40 | TI1908
ppm
00042
.00111
265.37 | V_2924
ppm
. 00129
.00095
73.567 | Zn2062
ppm
. 00478
.00011
2.2896 | Zr3391
ppm
.29781
.60135
201.92 | | | | #1
#2
#3 | .00031
00070
00028 | .79715
.74344
.80261 | 00569
.00275
.00543 | 00108
00104
.00086 | .00046
.00108
.00232 | .00477
.00489
.00467 | .13396
.96410
20463 | | | | Check ?
High Limit
Low Limit | Chk Pass | | | Int. Std.
Units
Avg
Stddev
%RSD | Y_2243
Cts/S
11807.
34.
.28956 | Y_3600
Cts/S
84402.
701.
.83084 | Y_3774
Cts/S
4071.6
150.0
3.6840 | | | | | | | | #1
#2
#3 | 11846.
11782.
11792. | 85200.
84127.
83881. | 3964.8
4243.1
4006.9 | | | | | | | Sample Name: L1605001303S Acquired: 5/13/2016 17:51:53 Type: Unk Mode: CONC Method: ICP-THERMO3 6010 200.7WATER 3YLINES(v872) Corr. Factor: 1.000000 User: JYH Custom ID1: Custom ID2: Custom ID3: Comment: WG567310-04 Al3082
B_2496 Ba4554 Ca4226 Cd2288 Elem Ag3280 As1890 Be3131 Units ppm ppm ppm ppm ppm ppm ppm ppm Avg .20462 5.4038 .20165 1.0470 .54540 .02577 39.173 .02583 Stddev .00253 .0273 .00095 .0038 .00690 .00021 .537 .00014 %RSD 1.2372 .50587 .47126 .35890 1.2648 .81484 1.3709 .54549 #1 .20688 1.0432 .02566 .02578 5.4114 .20206 .53842 38.599 #2 .20188 5.3735 .20056 1.0507 .54557 .02564 39.256 .02599 .20510 #3 5.4265 .20232 1.0470 .55221 .02602 39.663 .02573 Check? Chk Pass **High Limit** Low Limit Elem Co2286 Cr2677 Cu2247 Fe2611 K_7664 Mg2790 Mn2576 Li6707 Units ppm ppm ppm ppm ppm ppm ppm ppm .25948 .25843 2.4132 26.941 .51743 Avg .10557 .60300 31.144 .00290 .00032 .0523 Stddev .00056 .163 .00881 .272 .00829 .53474 %RSD 1.1170 .12494 2.1679 .60389 1.4607 .87313 1.6014 #1 .10602 .25709 .25866 2.3563 26.757 .59459 30.851 .50811 #2 .10493 .25864 .25857 2.4240 27.003 .60224 31.192 .52023.26270 .25806 27.064 #3 .10574 2.4592 .61216 31.389 .52396 Check? Chk Pass High Limit Low Limit Elem Mo2020 Na5895 Ni2316 P_2149 Pb2203 Sb2068 Se1960 Si2124 Units ppm ppm ppm ppm ppm ppm ppm ppm Avg .52411 194.50 .26181 5.2514 .25323 .62371 .20186 29.285 .00154 .00415 Stddev .00112 2.01 .00167 .0147 .00082 .073 .13170 .24996 %RSD .21450 1.0357 .63957 .28056 .60618 2.0549 #1 .52504 192.39 5.2492 .25351 .26229 .62329 .19747 29.278 5.2379 .52442 194.72 .20571 #2 .26319 .25158 .62319 29.362 #3 .52286 196.40 .25994 5.2671 .25461 .62466 .20239 29.216 Check? Chk Pass Approved: May 16, 2016 High Limit Low Limit Sample Name: L1605001303S Acquired: 5/13/2016 17:51:53 Type: Unk Method: ICP-THERMO3_6010_200.7WATER_3YLINES(v872) Mode: CONC Corr. Factor: 1.000000 User: JYH Custom ID1: Custom ID2: Custom ID3: Comment: WG567310-04 | Elem | Sn1899 | Sr4077 | Ti3372 | TI1908 | V_2924 | Zn2062 | Zr3391 | |--------|--------|--------|--------|--------|--------|--------|--------| | Units | ppm | Avg | .51998 | 1.3269 | .52317 | .24828 | .52227 | .51844 | 1.1222 | | Stddev | .00151 | .0147 | .00484 | .00220 | .00178 | .00081 | .3960 | | %RSD | .29039 | 1.1059 | .92419 | .88698 | .34041 | .15540 | 35.287 | | #1 | .51881 | 1.3114 | .51760 | .25005 | .52022 | .51791 | .77189 | | #2 | .52169 | 1.3286 | .52565 | .24898 | .52321 | .51936 | 1.5519 | | #3 | .51945 | 1.3407 | .52626 | .24581 | .52337 | .51804 | 1.0429 | Check? Chk Pass P Low Limit | Int. Std. | Y_2243 | Y_3600 | Y_3774 | |-----------|--------|---------------|---------------| | Units | Cts/S | Cts/S | Cts/S | | Avg | 11688. | 83566. | 3891.6 | | Stddev | 16. | 89. | 34.1 | | %RSD | .13553 | .10622 | .87669 | | #1 | 11671. | 83557. | 3894.7 | | #2 | 11691. | 83482. | 3924.0 | | #3 | 11702. | 83659. | 3856.0 | Method: ICP-THERMO3_6010_200.7WATER_3YLINES(v872) Mode: CONC Corr. Factor: 1.000000 User: JYH Custom ID1: Custom ID2: Custom ID3: Comment: WG567310-05 | Elem | Ag3280 | Al3082 | As1890 | B_2496 | Ba4554 | Be3131 | Ca4226 | Cd2288 | |--------|--------|--------|--------|--------|--------|--------|--------|--------| | Units | ppm | Avg | .20531 | 5.3718 | .20762 | 1.0520 | .54380 | .02604 | 38.871 | .02632 | | Stddev | .00108 | .0058 | .00497 | .0057 | .00321 | .00005 | .357 | .00045 | | %RSD | .52814 | .10805 | 2.3938 | .54171 | .58997 | .19107 | .91800 | 1.7160 | | #1 | .20515 | 5.3755 | .20260 | 1.0541 | .54704 | .02608 | 39.223 | .02613 | | #2 | .20432 | 5.3651 | .20771 | 1.0456 | .54373 | .02598 | 38.881 | .02599 | | #3 | .20647 | 5.3748 | .21254 | 1.0563 | .54063 | .02605 | 38.509 | .02683 | Check? Chk Pass P | Elem | Co2286 | Cr2677 | Cu2247 | Fe2611 | K_7664 | Li6707 | Mg2790 | Mn2576 | |--------|----------------|----------------|----------------|---------------|---------------|----------------|---------------|----------------| | Units | ppm | Avg | . 10727 | . 26022 | . 26522 | 2.3540 | 26.923 | . 60016 | 30.774 | . 51348 | | Stddev | .00156 | .00128 | .00472 | .0088 | .137 | .00498 | .219 | .00308 | | %RSD | 1.4499 | .49252 | 1.7814 | .37297 | .50901 | .82985 | .71072 | .60019 | | #1 | .10672 | .26059 | .26132 | 2.3641 | 26.951 | .60541 | 30.902 | .51321 | | #2 | .10606 | .25879 | .26387 | 2.3488 | 27.044 | .59957 | 30.899 | .51669 | | #3 | .10902 | .26128 | .27048 | 2.3490 | 26.774 | .59551 | 30.522 | .51054 | Check? Chk Pass P | Elem | Mo2020 | Na5895 | Ni2316 | P_2149 | Pb2203 | Sb2068 | Se1960 | Si2124 | |--------|----------------|---------------|----------------|---------------|----------------|----------------|--------|---------------| | Units | ppm | Avg | . 53454 | 192.58 | . 26668 | 5.3327 | . 26429 | . 63461 | .21008 | 29.219 | | Stddev | .00872 | 1.33 | .00444 | .0623 | .00296 | .00637 | .00671 | .375 | | %RSD | 1.6306 | .68813 | 1.6634 | 1.1688 | 1.1198 | 1.0036 | 3.1929 | 1.2849 | | #1 | .53040 | 193.60 | .26512 | 5.3011 | .26261 | .63336 | .20992 | 29.078 | | #2 | .52866 | 193.07 | .26323 | 5.2924 | .26254 | .62895 | .20345 | 28.935 | | #3 | .54455 | 191.09 | .27168 | 5.4045 | .26770 | .64150 | .21686 | 29.645 | Check? Chk Pass P Method: ICP-THERMO3_6010_200.7WATER_3YLINES(v872) Mode: CONC Corr. Factor: 1.000000 User: JYH Custom ID1: Custom ID2: Custom ID3: Comment: WG567310-05 | Elem | Sn1899 | Sr4077 | Ti3372 | TI1908 | V_2924 | Zn2062 | Zr3391 | |--------|--------|--------|--------|--------|--------|--------|--------| | Units | ppm | Avg | .52909 | 1.3135 | .52455 | .25325 | .52764 | .52661 | .43356 | | Stddev | .00868 | .0072 | .00253 | .00170 | .00114 | .00828 | .66529 | | %RSD | 1.6408 | .54831 | .48320 | .67040 | .21634 | 1.5714 | 153.45 | | | | | | | | | | | #1 | .52670 | 1.3193 | .52620 | .25135 | .52869 | .52300 | 20130 | | #2 | .52186 | 1.3158 | .52583 | .25377 | .52642 | .52075 | .37638 | | #3 | .53872 | 1.3054 | .52163 | .25462 | .52780 | .53608 | 1.1256 | Check? Chk Pass P Low Limit | Int. Std. | Y_2243 | Y_3600 | Y_3774 | |-----------|--------|---------------|---------------| | Units | Cts/S | Cts/S | Cts/S | | Avg | 11635. | 83506. | 3923.5 | | Stddev | 135. | 356. | 24.2 | | %RSD | 1.1599 | .42643 | .61617 | | #1 | 11679. | 83506. | 3897.4 | | #2 | 11742. | 83150. | 3945.2 | | #3 | 11483. | 83862. | 3927.8 | | Sample Name
Method: ICP-1
User: JYH
Comment: | |)10_200.7W <i>A</i> | ed: 5/13/2010
ATER_3YLIN
Stom ID2: | | Type: Unk
Mode: CONO
ID3: | C Corr. F | Factor: 1.000000 | |---|-----------------------------|-----------------------------|--|----------------|---------------------------------|----------------|------------------| | Elem | Ag3280 | Al3082 | As1890 | B_2496 | Ba4554 | Be3131 | Ca4226 | | Units | ppm | Avg | 00276 | .01136 | 00100 | . 00423 | . 00213 | .00012 | . 00052 | | Stddev | .00105 | .00523 | .00081 | .00230 | .00017 | .00008 | .07104 | | %RSD | 38.098 | 46.091 | 80.362 | 54.321 | 7.9059 | 68.015 | 13734. | | #1 | 00369 | .01586 | 00179 | .00685 | .00194 | .00016 | .04747 | | #2 | 00298 | .01260 | 00106 | .00255 | .00217 | .00003 | .03530 | | #3 | 00162 | .00561 | 00017 | .00329 | .00227 | .00017 | 08121 | | Check ?
High Limit
Low Limit | Chk Pass | Elem | Cd2288 | Co2286 | Cr2677 | Cu2247 | Fe2611 | K_7664 | Li6707 | | Units | ppm | Avg | . 00003 | .00023 | . 00120 | 00028 | .01021 | . 15073 | . 00255 | | Stddev | .00015 | .00035 | .00050 | .00091 | .02236 | .09754 | .00249 | | %RSD | 548.33 | 148.30 | 41.779 | 324.50 | 218.98 | 64.713 | 97.954 | | #1 | 00003 | 00017 | .00113 | .00068 | .03319 | .26104 | 00021 | | #2 | .00019 | .00046 | .00074 | 00040 | 01148 | .07586 | .00465 | | #3 | 00008 | .00040 | .00173 | 00112 | .00892 | .11530 | .00319 | | Check ?
High Limit
Low Limit | Chk Pass | Elem | Mg2790 | Mn2576 | Mo2020 | Na5895 | Ni2316 | P_2149 | Pb2203 | | Units | ppm | Avg | F13264 | F00315 | . 00101 | .11104 | . 00164 | 01172 | 00036 | | Stddev | .06749 | .00255 | .00040 | .00649 | .00068 | .00173 | .00260 | | %RSD | 50.878 | 80.940 | 39.955 | 5.8485 | 41.150 | 14.740 | 716.27 | | #1 | 14279 | 00104 | .00055 | .10392 | .00160 | 01089 | .00175 | | #2 | 06066 | 00243 | .00130 | .11258 | .00099 | 01056 | .00043 | | #3 | 19448 | 00598 | .00118 | .11663 | .00234 | 01371 | 00327 | | Check ?
High Limit
Low Limit | Chk Fail
900.00
10000 | Chk Fail
36.000
00300 | Chk Pass | Chk Pass | Chk Pass | Chk Pass | Chk Pass | | Sample Name: L1605001305 Acquired: 5/13/2016 17:59:26 Method: ICP-THERMO3_6010_200.7WATER_3YLINES(v872) User: JYH Custom ID1: Custom ID2: Custom Comment: | | | Type: Unk
Mode: CONO
ID3: | C Corr. F | Factor: 1.00000(| | | |---|---|--|--|---|--|---|--| | Elem
Units
Avg
Stddev
%RSD | Sb2068
ppm
. 00245
.00440
179.65 | Se1960
ppm
.00043
.00522
1206.1 | Si2124
ppm
01580
.00199
12.577 | Sn1899
ppm
. 00059
.00067
113.37 | Sr4077
ppm
00009
.00030
349.20 | Ti3372
ppm
. 00243
.00563
231.89 | TI1908
ppm
00369
.00187
50.827 | | #1
#2
#3 | .00552
.00442
00259 | 00362
00141
.00632 | 01372
01767
01601 | .00100
00018
.00095 | .00014
00043
.00003 | .00484
.00645
00401 | 00176
00379
00551 | | Check ?
High Limit
Low Limit | Chk Pass | Elem
Units
Avg
Stddev
%RSD | V_2924
ppm
.00067
.00041
60.360 |
Zn2062
ppm
.00176
.00009
4.8418 | Zr3391
ppm
F08963
.50937
568.32 | | | | | | #1
#2
#3 | .00020
.00090
.00091 | .00167
.00183
.00179 | 39790
.49831
36929 | | | | | | Check ?
High Limit
Low Limit | Chk Pass | Chk Pass | Chk Fail
36.000
04000 | | | | | | Int. Std.
Units
Avg
Stddev
%RSD | Y_2243
Cts/S
11919.
20.
.17109 | Y_3600
Cts/S
86565.
481.
.55595 | Y_3774
Cts/S
3882.0
32.1
.82691 | | | | | | #1
#2
#3 | 11927.
11934.
11895. | 86203.
87111.
86381. | 3914.8
3850.6
3880.4 | | | | | Sample Name: L1605001305PS Acquired: 5/13/2016 18:03:30 Type: Unk Method: ICP-THERMO3_6010_200.7WATER_3YLINES(v872) Mode: CONC Corr. Factor: 1.000000 User: JYH Custom ID1: Custom ID2: Custom ID3: Comment: WG567345-03 Ag3280 Al3082 As1890 B_2496 Ba4554 Be3131 Ca4226 Elem Units ppm ppm ppm ppm ppm ppm ppm .19752 4.9702 .19637 .97649 .50866 5.1856 Avg .02447 Stddev .00047 .0354 .00431 .00269 .00310 .00003 .0275 %RSD .23872 .71232 2.1950 .27565 .60888 .11769 .52956 #1 .19775 5.0111 .19547 .97840 .50628 .02448 5.1575 #2 .19784 4.9515 .19258 .97765 .51216 .02444 5.1870 .97341 .50753 .02450 5.2124 | Check ?
High Limit
Low Limit | Chk Pass |--|---|---|---|---|---|--|---| | Elem
Units
Avg
Stddev
%RSD | Cd2288
ppm
. 02483
.00012
.50190 | Co2286
ppm
.10180
.00030
.29488 | Cr2677
ppm
. 25262
.00119
.47156 | Cu2247
ppm
. 25589
.00229
.89301 | Fe2611
ppm
2.0254
.0163
.80298 | K_7664
ppm
25.898
.103
.39765 | Li6707
ppm
. 51350
.00163
.31764 | | #1
#2
#3 | .02485
.02469
.02493 | .10214
.10157
.10169 | .25355
.25304
.25128 | .25382
.25551
.25834 | 2.0167
2.0153
2.0442 | 25.789
25.993
25.912 | .51233
.51280
.51536 | | Check ?
High Limit
Low Limit | Chk Pass | | 14 0700 | NA 0570 | | N. 5005 | N:0040 | D 0440 | DI 0000 | .20106 Elem Mg2790 Mn2576 Mo2020 Na5895 Ni2316 P_2149 Pb2203 Units ppm ppm ppm ppm ppm ppm ppm 5.0243 .25142 .50948 25.818 .25741 4.8814 .25794 Avg Stddev .0766 .00579 .00051 .081 .00047 .0172 .00107 .18141 .35180 %RSD 1.5257 2.3016 .09980 .31213 .41526 #1 4.9607 .24476 4.8948 .25670 .50997 25.750 .25687 #2 5.1094 .25431 .50952 25.907 .25768 4.8621 .25856 #3 .25519 25.798 5.0028 .50896 .25769 4.8874 .25855 Check? **Chk Pass Chk Pass Chk Pass Chk Pass Chk Pass Chk Pass Chk Pass** High Limit Low Limit #3 .19698 4.9482 | Sample Name
Method: ICP-
User: JYH
Comment: WO | THERMO3_60
Custom ID |) Type: U
Mode: CON
ID3: | | Factor: 1.00000(| | | | |---|---|---|--|---|---|---|---| | Elem
Units
Avg
Stddev
%RSD | Sb2068
ppm
. 60060
.00591
.98403 | Se1960
ppm
.18404
.00147
.79986 | Si2124
ppm
2.5331
.0085
.33607 | Sn1899
ppm
. 50791
.00275
.54191 | Sr4077
ppm
. 51066
.00118
.23031 | Ti3372
ppm
. 51182
.00402
.78542 | TI1908
ppm
. 25622
.00057
.22423 | | #1
#2
#3 | .60679
.59502
.59998 | .18570
.18348
.18292 | 2.5318
2.5253
2.5422 | .51029
.50489
.50853 | .50944
.51179
.51074 | .51527
.50740
.51278 | .25587
.25689
.25592 | | Check ?
High Limit
Low Limit | Chk Pass | Elem
Units
Avg
Stddev
%RSD | V_2924
ppm
. 50426
.00285
.56590 | Zn2062
ppm
. 50674
.00185
.36562 | Zr3391
ppm
F50191
.28372
56.528 | | | | | | #1
#2
#3 | .50498
.50668
.50111 | .50833
.50470
.50717 | 27611
40924
82037 | | | | | | Check ?
High Limit
Low Limit | Chk Pass | Chk Pass | Chk Fail
36.000
04000 | | | | | | Int. Std.
Units
Avg
Stddev
%RSD | Y_2243
Cts/S
11971.
40.
.33355 | Y_3600
Cts/S
86136.
276.
.32025 | Y_3774
Cts/S
3886.5
31.1
.80030 | | | | | | #1
#2
#3 | 11959.
12015.
11938. | 86429.
85882.
86097. | 3879.8
3859.3
3920.4 | | | | | Sample Name: L1605001305SDL Acquired: 5/13/2016 18:07:18 Type: Unk Method: ICP-THERMO3_6010_200.7WATER_3YLINES(v872) Mode: CONC Corr. Factor: 1.000000 User: JYH Custom ID1: 5 Custom ID2: Custom ID3: Comment: WG567345-04 AI3082 As1890 B_2496 Ba4554 Be3131 Ca4226 Elem Ag3280 Units ppm ppm ppm ppm ppm ppm ppm .00294 .00093 -.00913 Avg -.00163 .00378 .00121 .00009 Stddev .00054 .00530 .00609 .00123 .00045 .00005 .05133 %RSD 33.107 571.35 207.27 32.523 37.163 53.613 562.56 -.00402 #1 -.00218 .00686 .00152 .00015 -.02296 .00467 #2 -.00162 -.00334 .00553 .00430 .00142 .00006 -.05212 #3 -.00110 -.00074 .00730 .00238 .00069 .00006 .04771 **Chk Pass** Check? Chk Pass **Chk Pass** Chk Pass **Chk Pass Chk Pass Chk Pass High Limit** Low Limit Elem Cd2288 Co2286 Cr2677 Cu2247 Fe2611 K_7664 Li6707 Units ppm ppm ppm ppm ppm ppm ppm -.00016 -.00912 -.00021 .00045 .00039 Avg .13732 -.00216 .00016 .00006 .00042 .00073 .00368 Stddev .01751 .18722 %RSD 76.503 12.529 108.37 468.04 191.91 136.34 170.63 .32823 #1 -.00003 .00041 .00000 -.00049 .00688 .00047 #2 -.00027 .00052 .00084 -.00066 -.02783.12969 -.00636 .00043 #3 -.00033 .00032 .00068 -.00642-.04597 -.00057 Check? **Chk Pass Chk Pass Chk Pass Chk Pass Chk Pass Chk Pass Chk Pass** High Limit Low Limit Elem Mg2790 Mn2576 Mo2020 Na5895 Ni2316 P_2149 Pb2203 Units ppm ppm ppm ppm ppm ppm ppm -.06408 -.00203 .00059 .04105 .00033 .00354 -.00024 Avg .11430 .00162 .00048 .03932 .00166 .00515 .00388 Stddev %RSD 95.784 178.36 79.501 81.390 496.76 145.50 1611.2 #1 -.00026 .00419 -.18165 .00039 .04989 -.00144 .00539 .04664 -.00243 .00024 -.00194 .00058 .00752 -.00301 #2 #3 -.05724 -.00341 .00114 .07520 .00186 -.00228 -.00190 Check? **Chk Pass** Chk Pass **Chk Pass Chk Pass Chk Pass Chk Pass Chk Pass** High Limit Approved: May 16, 2016 Low Limit | Sample Name: L1605001305SDL Acquired: 5/13/2016 18:07:18 Type: Unk Method: ICP-THERMO3_6010_200.7WATER_3YLINES(v872) Mode: CONC Corr. Factor: 1.000000 User: JYH Custom ID1: 5 Custom ID2: Custom ID3: Comment: WG567345-04 | | | | | | | | | | |--|---|--|--|--|---|---|--|--|--| | Elem
Units
Avg
Stddev
%RSD | Sb2068
ppm
00247
.00672
271.82 | Se1960
ppm
.00060
.00458
759.98 | Si2124
ppm
02511
.00245
9.7529 | Sn1899
ppm
00004
.00060
1472.2 | Sr4077
ppm
. 00004
.00033
793.31 | Ti3372
ppm
. 00240
.00666
277.82 | TI1908
ppm
00214
.00221
103.19 | | | | #1
#2
#3 | 00828
.00489
00402 | 00357
.00550
00013 | 02236
02706
02590 | .00026
.00035
00073 | 00034
.00021
.00025 | 00473
.00845
.00347 | 00426
.00015
00231 | | | | Check ?
High Limit
Low Limit | Chk Pass | | | Elem
Units
Avg
Stddev
%RSD | V_2924
ppm
. 00048
.00117
246.49 | Zn2062
ppm
.00158
.00011
6.9159 | Zr3391
ppm
F54446
.67746
124.43 | | | | | | | | #1
#2
#3 | .00100
.00130
00087 | .00159
.00147
.00169 | 09235
21766
-1.3234 | | | | | | | | Check ?
High Limit
Low Limit | Chk Pass | Chk Pass | Chk Fail
36.000
04000 | | | | | | | | Int. Std.
Units
Avg
Stddev
%RSD | Y_2243
Cts/S
12231.
11.
.09303 | Y_3600
Cts/S
88447.
886.
1.0014 | Y_3774
Cts/S
3885.9
26.5
.68236 | | | | | | | | #1
#2
#3 | 12219.
12241.
12234. | 88995.
87425.
88921. | 3882.4
3861.3
3914.0 | | | | | | | Sample Name: L1605001305SDL Acquired: 5/13/2016 18:11:21 Type: Unk Method: ICP-THERMO3 6010 200.7WATER 3YLINES(v872) Mode: CONC Corr. Factor: 1.000000 User: JYH Custom ID1: 25 Custom ID2: Custom ID3: Comment: WG567345-04 AI3082 As1890 B_2496 Ba4554 Be3131 Ca4226 Elem Ag3280 Units ppm ppm ppm ppm ppm ppm ppm Avg -.00148 -.00108 -.00043.00337 .00150 .00010 -.02113 Stddev .00130 .00536 .00077 .00213 .00042 .00002 .02574 %RSD 87.899 497.52 179.29 63.313 27.884 18.742 121.79 #1 -.00251 -.00527 -.00118 .00242 .00179 .00010 -.02788 #2 -.00002 -.00293 -.00047 .00188 .00102 .00008 .00731 #3 -.00191 .00496 .00036 .00581 .00169 .00012 -.04283 Check? Chk Pass Chk Pass **Chk Pass** Chk Pass **Chk Pass Chk Pass Chk Pass High Limit** Low Limit Elem Cd2288 Co2286 Cr2677 Cu2247 Fe2611 K_7664 Li6707 Units ppm ppm ppm ppm ppm ppm ppm -.00147 -.00212 .00006 .00029 .00122 -.01065 Avg .05811 .00062 .00090 .00118 .00647 Stddev .00036 .01974 .10154 %RSD 555.81 209.02 73.773 80.295 185.47 174.74 304.64 -.00284 #1 .00032
-.00028 .00159 .00641 .03333 -.00897 #2 .00022 .00094 .00020 -.00084 -.03227.16975 -.00128 .00022 #3 -.00035 .00188 -.00074 -.00608 -.02875 .00388 Check? **Chk Pass** Chk Pass **Chk Pass Chk Pass Chk Pass Chk Pass** Chk Pass High Limit Low Limit Elem Mg2790 Mn2576 Mo2020 Na5895 Ni2316 P_2149 Pb2203 Units ppm ppm ppm ppm ppm ppm ppm F-.10828 -.00228 -.00024 .00020 .00071 -.00135 -.00278 Avg .11920 .00040 .00060 .02402 .00088 .00502 .00158 Stddev %RSD 110.08 17.472 251.39 12040. 124.02 373.01 56.678 #1 -.00097 -.24368 -.00272 -.00086 .00206 .00078 -.00686 -.00220 .00035 -.02469 .00154 .00297 -.00380 #2 -.01913 #3 -.06204 -.00193 -.00021 .02323 -.00020 -.00015 -.00358 Check? Chk Fail Chk Pass **Chk Pass Chk Pass Chk Pass Chk Pass Chk Pass** High Limit 900.00 Approved: May 16, 2016 Low Limit -.10000 | Sample Name: L1605001305SDL Acquired: 5/13/2016 18:11:21 Type: Unk Method: ICP-THERMO3_6010_200.7WATER_3YLINES(v872) Mode: CONC Corr. Factor: 1.000000 User: JYH Custom ID1: 25 Custom ID2: Custom ID3: Comment: WG567345-04 | | | | | | | | | | |---|---|---|--|--|--|---|---|--|--| | Elem
Units
Avg
Stddev
%RSD | Sb2068
ppm
00024
.00598
2531.0 | Se1960
ppm
00401
.00986
246.14 | Si2124
ppm
02454
.00261
10.641 | Sn1899
ppm
00011
.00102
957.67 | Sr4077
ppm
00002
.00016
768.71 | Ti3372
ppm
. 00711
.00493
69.346 | TI1908
ppm
. 00209
.00147
70.149 | | | | #1
#2
#3 | .00089
00670
.00510 | .00586
00402
01386 | 02392
02741
02230 | .00041
00128
.00055 | 00010
00013
.00016 | .00787
.00185
.01163 | .00369
.00180
.00080 | | | | Check ?
High Limit
Low Limit | Chk Pass | | | Elem
Units
Avg
Stddev
%RSD | V_2924
ppm
.00010
.00060
624.40 | Zn2062
ppm
. 00100
.00004
4.0845 | Zr3391
ppm
.29028
.08912
30.702 | | | | | | | | #1
#2
#3 | .00079
00020
00030 | .00096
.00098
.00104 | .27101
.21237
.38746 | | | | | | | | Check ?
High Limit
Low Limit | Chk Pass | Chk Pass | Chk Pass | | | | | | | | Int. Std.
Units
Avg
Stddev
%RSD | Y_2243
Cts/S
12407.
41.
.32773 | Y_3600
Cts/S
90023.
412.
.45782 | Y_3774
Cts/S
3984.5
33.4
.83934 | | | | | | | | #1
#2
#3 | 12361.
12422.
12438. | 90198.
89552.
90318. | 3945.9
4004.7
4002.8 | | | | | | | | Sample Name
Method: ICP-
User: JYH
Comment: | | | | • • | Mode: CON | C Corr. F | Factor: 1.00000(| |--|----------------|----------------|----------------|----------------|----------------|----------------|------------------| | Elem | Ag3280 | Al3082 | As1890 | B_2496 | Ba4554 | Be3131 | Ca4226 | | Units | ppm | Avg | . 40146 | 10.150 | . 40252 | . 50672 | 1.0171 | . 05027 | 10.257 | | Stddev | .00396 | .044 | .00230 | .00443 | .0106 | .00030 | .119 | | %RSD | .98680 | .43042 | .57147 | .87497 | 1.0407 | .59845 | 1.1624 | | #1 | .40227 | 10.140 | .40025 | .50614 | 1.0277 | .05017 | 10.385 | | #2 | .39715 | 10.112 | .40485 | .50261 | 1.0172 | .05003 | 10.238 | | #3 | .40495 | 10.198 | .40245 | .51142 | 1.0065 | .05061 | 10.149 | | Check ?
Value
Range | Chk Pass | Elem | Cd2288 | Co2286 | Cr2677 | Cu2247 | Fe2611 | K_7664 | Li6707 | | Units | ppm | Avg | . 05095 | .20515 | . 51520 | . 51370 | 4.1230 | 50.885 | 1.0202 | | Stddev | .00028 | .00074 | .00353 | .00130 | .0430 | .624 | .0131 | | %RSD | .55621 | .35833 | .68487 | .25347 | 1.0435 | 1.2259 | 1.2841 | | #1 | .05069 | .20448 | .51283 | .51275 | 4.1328 | 51.421 | 1.0320 | | #2 | .05092 | .20503 | .51351 | .51519 | 4.1602 | 51.034 | 1.0225 | | #3 | .05125 | .20593 | .51925 | .51317 | 4.0759 | 50.200 | 1.0061 | | Check ?
Value
Range | Chk Pass | Elem | Mg2790 | Mn2576 | Mo2020 | Na5895 | Ni2316 | P_2149 | Pb2203 | | Units | ppm | Avg | 10.242 | . 50508 | 1.0135 | 51.228 | . 51541 | 10.094 | . 51712 | | Stddev | .056 | .00883 | .0039 | .650 | .00321 | .036 | .00220 | | %RSD | .54952 | 1.7479 | .38809 | 1.2680 | .62377 | .35337 | .42586 | | #1 | 10.296 | .51265 | 1.0099 | 51.858 | .51251 | 10.054 | .51556 | | #2 | 10.184 | .50720 | 1.0177 | 51.265 | .51485 | 10.109 | .51615 | | #3 | 10.246 | .49538 | 1.0128 | 50.561 | .51887 | 10.120 | .51964 | | Check ?
Value
Range | Chk Pass | Sample Name
Method: ICP-T
User: JYH
Comment: | |)10_200.7W <i>A</i> | 2016 18:15:2
ATER_3YLINI
stom ID2: | • • | Mode: CON | C Corr. F | Factor: 1.000000 | |---|---|---|---|---|---|---|---| | Elem
Units
Avg
Stddev
%RSD | Sb2068
ppm
1.2069
.0045
.37311 | Se1960
ppm
. 39859
.00160
.40089 | Si2124
ppm
5.1678
.0228
.44120 | Sn1899
ppm
1.0248
.0040
.38826 | Sr4077
ppm
1.0128
.0138
1.3596 | Ti3372
ppm
1.0198
.0180
1.7628 | TI1908
ppm
. 51036
.00176
.34390 | | #1
#2
#3 | 1.2037
1.2121
1.2050 | .39836
.39711
.40028 | 5.1426
5.1870
5.1736 | 1.0202
1.0265
1.0276 | 1.0265
1.0131
.99896 | 1.0404
1.0116
1.0073 | .51101
.51169
.50837 | | Check ?
Value
Range | Chk Pass | Elem
Units
Avg
Stddev
%RSD | V_2924
ppm
1.0156
.0051
.50337 | Zn2062
ppm
1.0280
.0045
.44075 | Zr3391
ppm
F17763
1.0704
602.61 | | | | | | #1
#2
#3 | 1.0147
1.0110
1.0211 | 1.0229
1.0316
1.0296 | 83338
1.0576
75709 | | | | | | Check ?
Value
Range | Chk Pass | Chk Pass | Chk Fail
1.0000
-10.000% | | | | | | Int. Std.
Units
Avg
Stddev
%RSD | Y_2243
Cts/S
11727.
39.
.33421 | Y_3600
Cts/S
83838.
728.
.86812 | Y_3774
Cts/S
3822.8
5.5
.14261 | | | | | | #1
#2
#3 | 11772.
11703.
11706. | 84672.
83509.
83333. | 3818.0
3821.7
3828.8 | | | | | | Sample Name: CCB Acquired: 5/13/2016 18:19:09 Type: Blank Method: ICP-THERMO3_6010_200.7WATER_3YLINES(v872) Mode: CONC Corr. Factor: 1.000000 User: JYH Custom ID1: Custom ID2: Custom ID3: Comment: | | | | | | | | | | |--|----------|----------|----------------|----------------|----------------|----------------|----------|--|--| | Elem | Ag3280 | Al3082 | As1890 | B_2496 | Ba4554 | Be3131 | Ca4226 | | | | Units | ppm | | | Avg | 00181 | .01618 | .00486 | . 00377 | . 00210 | . 00014 | 00819 | | | | Stddev | .00217 | .00962 | .00116 | .00049 | .00092 | .00005 | .04862 | | | | %RSD | 119.89 | 59.442 | 23.947 | 12.935 | 44.062 | 35.115 | 593.57 | | | | #1 | 00336 | .02041 | .00405 | .00326 | .00194 | .00012 | .04332 | | | | #2 | .00067 | .02296 | .00620 | .00423 | .00126 | .00020 | 01461 | | | | #3 | 00274 | .00517 | .00434 | .00383 | .00309 | .00011 | 05328 | | | | Check ?
High Limit
Low Limit | Chk Pass | | | Elem | Cd2288 | Co2286 | Cr2677 | Cu2247 | Fe2611 | K_7664 | Li6707 | | | | Units | ppm | | | Avg | 00042 | .00046 | 00049 | 00085 | 02303 | . 07749 | 00107 | | | | Stddev | .00011 | .00046 | .00112 | .00069 | .01278 | .07770 | .00386 | | | | %RSD | 24.893 | 99.305 | 230.00 | 81.772 | 55.511 | 100.27 | 361.86 | | | | #1 | 00036 | 00001 | 00165 | 00013 | 00884 | .06706 | .00312 | | | | #2 | 00036 | .00091 | .00059 | 00089 | 02659 | .15987 | 00183 | | | | #3 | 00054 | .00049 | 00040 | 00152 | 03366 | .00553 | 00449 | | | | Check ?
High Limit
Low Limit | Chk Pass | | | Elem | Mg2790 | Mn2576 | Mo2020 | Na5895 | Ni2316 | P_2149 | Pb2203 | | | | Units | ppm | | | Avg | 07755 | 00334 | . 00462 | 01364 | 00001 | . 00002 | 00154 | | | | Stddev | .08119 | .00309 | .00024 | .03974 | .00058 | .00629 | .00332 | | | | %RSD | 104.69 | 92.486 | 5.2662 | 291.36 | 9860.8 | 27935. | 215.25 | | | | #1 | 00209 | 00670 | .00485 | .01337 | 00038 | .00575 | .00228 | | | | #2 | 16346 | 00274 | .00437 | .00498 | .00066 | 00671 | 00368 | | | | #3 | 06710 | 00060 | .00463 | 05927 | 00030 | .00103 | 00323 | | | | Check ?
High Limit
Low Limit | Chk Pass | | | Sample Name: CCB Acquired: 5/13/2016 18:19:09 Type: Blank Method: ICP-THERMO3_6010_200.7WATER_3YLINES(v872) Mode: CONC Corr. Factor: 1.000000 User: JYH Custom ID1: Custom ID2: Custom ID3: Comment: | | | | | | | | | | |--|---|--
--|---|--|---|--|--|--| | Elem
Units
Avg
Stddev
%RSD | Sb2068
ppm
. 01188
.00599
50.399 | Se1960
ppm
00310
.00958
309.16 | Si2124
ppm
.00664
.00136
20.541 | Sn1899
ppm
. 00095
.00102
107.88 | Sr4077
ppm
00000
.00042
9428.0 | Ti3372
ppm
.00182
.00706
388.95 | TI1908
ppm
00125
.00452
360.76 | | | | #1
#2
#3 | .00733
.01866
.00965 | 00834
.00796
00891 | .00821
.00597
.00574 | .00186
.00114
00016 | .00016
00048
.00031 | 00441
.00037
.00949 | 00538
.00357
00195 | | | | Check ?
High Limit
Low Limit | Chk Pass | | | Elem
Units
Avg
Stddev
%RSD | V_2924
ppm
.00084
.00180
213.33 | Zn2062
ppm
.00021
.00019
89.353 | Zr3391
ppm
F28074
.70579
251.41 | | | | | | | | #1
#2
#3 | 00123
.00201
.00174 | .00035
00000
.00029 | -1.0954
.10776
.14545 | | | | | | | | Check ?
High Limit
Low Limit | Chk Pass | Chk Pass | Chk Fail
.04000
04000 | | | | | | | | Int. Std.
Units
Avg
Stddev
%RSD | Y_2243
Cts/S
11657.
38.
.32578 | Y_3600
Cts/S
84021.
438.
.52169 | Y_3774
Cts/S
3716.5
35.5
.95531 | | | | | | | | #1
#2
#3 | 11637.
11701.
11633. | 84144.
84384.
83534. | 3680.4
3717.9
3751.4 | | | | | | | | • | | | | | | | | | | |------------------------------------|----------------|----------|----------------|----------------|----------|----------------|----------------|--|--| | Elem | Ag3280 | Al3082 | As1890 | B_2496 | Ba4554 | Be3131 | Ca4226 | | | | Units | ppm | | | Avg | .00757 | .18308 | .00902 | .08099 | .01105 | .00172 | . 40794 | | | | Stddev | .00218 | .00572 | .00273 | .00249 | .00040 | .00008 | .03388 | | | | %RSD | 28.849 | 3.1271 | 30.221 | 3.0763 | 3.6303 | 4.5372 | 8.3054 | | | | #1 | .00959 | .17672 | .01178 | .08166 | .01100 | .00180 | .43785 | | | | #2 | .00786 | .18470 | .00895 | .07824 | .01147 | .00164 | .41484 | | | | #3 | .00526 | .18782 | .00633 | .08308 | .01067 | .00173 | .37114 | | | | Check ?
High Limit
Low Limit | Chk Pass | | | Elem | Cd2288 | Co2286 | Cr2677 | Cu2247 | Fe2611 | K_7664 | Li6707 | | | | Units | ppm | | | Avg | .00076 | .00436 | . 00517 | . 00403 | .07028 | . 96042 | . 08425 | | | | Stddev | .00029 | .00016 | .00095 | .00247 | .00573 | .06426 | .00315 | | | | %RSD | 38.729 | 3.6679 | 18.336 | 61.300 | 8.1507 | 6.6912 | 3.7363 | | | | #1 | .00109 | .00419 | .00408 | .00584 | .07042 | .90359 | .08193 | | | | #2 | .00056 | .00449 | .00563 | .00121 | .07593 | 1.0302 | .08784 | | | | #3 | .00062 | .00441 | .00580 | .00502 | .06448 | .94752 | .08299 | | | | Check ?
High Limit
Low Limit | Chk Pass | | | Elem | Mg2790 | Mn2576 | Mo2020 | Na5895 | Ni2316 | P_2149 | Pb2203 | | | | Units | ppm | | | Avg | . 33356 | .00811 | .00896 | . 41136 | .01782 | . 80623 | . 00571 | | | | Stddev | .03919 | .00039 | .00023 | .01868 | .00058 | .00278 | .00145 | | | | %RSD | 11.750 | 4.8275 | 2.5332 | 4.5402 | 3.2804 | .34451 | 25.303 | | | | #1 | .35057 | .00791 | .00876 | .38996 | .01841 | .80716 | .00672 | | | | #2 | .36138 | .00786 | .00921 | .42437 | .01781 | .80310 | .00406 | | | | #3 | .28874 | .00856 | .00892 | .41976 | .01724 | .80842 | .00637 | | | | Check ?
High Limit
Low Limit | Chk Pass | | | Sample Nam
Method: ICP
User: JYH
Comment: | ne: LLCCV
-THERMO3_
Custom I | 6010_200.7 | 5/13/2016 1
WATER_3Y
Custom ID2: | LINES(v872 | Type: Unk
) Mode:
tom ID3: | CONC (| Corr. Factor: | 1.000000 | |--|---|---|---|---|---|---|---|----------| | Elem
Units
Avg
Stddev
%RSD | Sb2068
ppm
. 08502
.00300
3.5339 | Se1960
ppm
.01729
.00611
35.368 | Si2124
ppm
. 88728
.00217
.24502 | Sn1899
ppm
. 41828
.00281
.67072 | Sr4077
ppm
. 04153
.00046
1.1123 | Ti3372
ppm
. 03047
.00068
2.2425 | TI1908
ppm
. 16191
.00215
1.3255 | | | #1
#2
#3 | .08822
.08456
.08226 | .01082
.02297
.01807 | .88638
.88569
.88975 | .41522
.41889
.42073 | .04133
.04205
.04120 | .03119
.02983
.03039 | .16293
.15944
.16335 | | | Check ?
High Limit
Low Limit | Chk Pass | | Elem
Units
Avg
Stddev
%RSD | V_2924
ppm
.00872
.00113
12.983 | Zn2062
ppm
. 01746
.00026
1.4849 | Zr3391
ppm
F 62.909
1.093
1.7368 | | | | | | | #1
#2
#3 | .00936
.00939
.00741 | .01728
.01776
.01735 | 63.924
63.049
61.753 | | | | | | | Check ?
High Limit
Low Limit | Chk Pass | Chk Pass | Chk Fail
36.000
04000 | | | | | | | Int. Std.
Units
Avg
Stddev
%RSD | Y_2243
Cts/S
11763.
77.
.65530 | Y_3600
Cts/S
85132.
528.
.61999 | Y_3774
Cts/S
3751.6
89.2
2.3776 | | | | | | | #1
#2
#3 | 11849.
11742.
11700. | 84603.
85658.
85135. | 3733.8
3672.7
3848.4 | | | | | | Sample Name: PBW 81 Acquired: 5/13/2016 18:27:18 Type: Unk Method: ICP-THERMO3_6010_200.7WATER_3YLINES(v872) Mode: CONC Corr. Factor: 1.000000 User: JYH Custom ID1: Custom ID2: Custom ID3: Comment: WG567819-02 AI3082 B_2496 Ba4554 Be3131 Ca4226 Elem Ag3280 As1890 Units ppm ppm ppm ppm ppm ppm ppm -.00383 .00954 .00489 .00028 Avg -.00318 .00153 .00008 Stddev .00095 .00589 .00518 .00134 .00031 .00002 .03339 %RSD 29.812 61.716 105.94 480.00 20.413 31.495 872.58 #1 -.00376 .00690 .00296 -.00035 .00182 .00005 -.00820 #2 -.00369 .01629 .01075 .00182 .00120 .00010 -.03481 #3 -.00208 .00544 .00095 -.00063 .00157 .00008 .03154 **Chk Pass** Check? Chk Pass **Chk Pass Chk Pass Chk Pass Chk Pass Chk Pass High Limit** Low Limit Elem Cd2288 Co2286 Cr2677 Cu2247 Fe2611 K_7664 Li6707 Units ppm ppm ppm ppm ppm ppm ppm -.00018 .00010 .00058 -.00026 -.00517 .12544 Avg -.00275 .00033 .00014 .00048 .01135 .18976 .00193 Stddev .00117 %RSD 179.63 140.47 200.88 185.04 219.32 151.27 70.385 -.00331 #1 -.00006 -.00006 .00015 -.00069 .00539 -.05307 #2 -.00055 .00014 -.00031 .00026 -.00374.32475 -.00434 .00022 #3 .00007 .00190 -.00034 -.01717 .10465 -.00060 Check? **Chk Pass** Chk Pass **Chk Pass Chk Pass Chk Pass Chk Pass Chk Pass** High Limit Low Limit Elem Mg2790 Mn2576 Mo2020 Na5895 Ni2316 P_2149 Pb2203 Units ppm ppm ppm ppm ppm ppm ppm F -.15312 -.00214 -.00011 -.02859 .00078 -.00263 -.00079 Avg .00431 .00021 .02147 .00012 .01340 Stddev .15218 .00363 %RSD 99.389 458.19 201.85 185.13 75.077 14.952 509.98 #1 -.32603 -.00308 .00011 -.05132 .00090 -.00660 .00338 -.03955 -.00589 -.00015 -.02581 .00067 .01231 -.00259 #2 Approved: May 16, 2016 -.00316 **Chk Pass** #3 Check? High Limit Low Limit -.09377 Chk Fail 900.00 .00257 Chk Pass -.00031 **Chk Pass** -.00865 **Chk Pass** .00077 **Chk Pass** -.01360 **Chk Pass** | Sample Name: PBW 81 Acquired: 5/13/2016 18:27:18 Type: Unk Method: ICP-THERMO3_6010_200.7WATER_3YLINES(v872) Mode: CONC Corr. Factor: 1.000000 User: JYH Custom ID1: Custom ID2: Custom ID3: Comment: WG567819-02 | | | | | | | | | | |--|---|--|---|---|---|---|--|--|--| | Elem
Units
Avg
Stddev
%RSD | Sb2068
ppm
. 00023
.00343
1496.3 | Se1960
ppm
00899
.00552
61.372 | Si2124
ppm
. 00467
.00218
46.780 | Sn1899
ppm
. 00033
.00086
256.99 | Sr4077
ppm
. 00019
.00047
247.45 | Ti3372
ppm
. 00304
.00287
94.571 | TI1908
ppm
00220
.00285
129.66 | | | | #1
#2
#3 | .00395
00282
00044 | 00262
01240
01195 | .00540
.00221
.00640 | 00065
.00076
.00089 | .00032
00033
.00058 | 00006
.00356
.00561 | 00521
.00047
00186 | | | | Check ?
High Limit
Low Limit | Chk Pass | | | Elem
Units
Avg
Stddev
%RSD | V_2924
ppm
00078
.00088
112.59 | Zn2062
ppm
.00080
.00022
28.016 | Zr3391
ppm
F20770
.26230
126.28 | | | | | | | | #1
#2
#3 | 00120
00136
.00023 | .00101
.00083
.00056 | 49141
15768
.02598 | | | | | | | | Check ?
High Limit
Low Limit | Chk Pass | Chk Pass | Chk Fail
36.000
04000 | | | | | | | | Int. Std.
Units
Avg
Stddev
%RSD | Y_2243
Cts/S
11720.
51.
.43240 | Y_3600
Cts/S
84220.
664.
.78890 | Y_3774
Cts/S
3748. 1
7.0
.18807 | | | | | | | | #1
#2
#3 | 11695.
11778.
11686. | 83841.
84987.
83832. | 3744.1
3756.2
3743.9 | | | | | | | Sample Name: LCSW 81 Acquired: 5/13/2016 18:31:21 Type: Unk Method: ICP-THERMO3_6010_200.7WATER_3YLINES(v872) Mode: CONC Corr. Factor: 1.000000
User: JYH Custom ID1: Custom ID2: Custom ID3: Comment: WG567819-03 | Elem | Ag3280 | Al3082 | As1890 | B_2496 | Ba4554 | Be3131 | Ca4226 | Cd2288 | |--------|--------|--------|--------|--------|--------|--------|--------|--------| | Units | ppm | Avg | .19086 | 4.7442 | .18900 | .93861 | .48494 | .02339 | 4.9173 | .02365 | | Stddev | .00178 | .0075 | .00414 | .00393 | .00385 | .00014 | .0313 | .00038 | | %RSD | .93155 | .15788 | 2.1913 | .41824 | .79482 | .59201 | .63579 | 1.6129 | | #1 | .19103 | 4.7379 | .18422 | .94206 | .48776 | .02323 | 4.9341 | .02366 | | #2 | .18901 | 4.7525 | .19145 | .93434 | .48055 | .02350 | 4.8812 | .02403 | | #3 | .19256 | 4.7424 | .19133 | .93944 | .48650 | .02343 | 4.9365 | .02327 | Check? Chk Pass P | Elem | Co2286 | Cr2677 | Cu2247 | Fe2611 | K_7664 | Li6707 | Mg2790 | Mn2576 | |--------|--------|----------------|----------------|---------------|---------------|----------------|---------------|----------------| | Units | ppm | Avg | .09728 | . 24207 | . 24382 | 1.9522 | 24.746 | . 48131 | 4.7613 | . 24093 | | Stddev | .00052 | .00165 | .00176 | .0440 | .348 | .00207 | .0337 | .00337 | | %RSD | .53535 | .68226 | .71997 | 2.2530 | 1.4045 | .43061 | .70810 | 1.3983 | | #1 | .09789 | .24099 | .24433 | 1.9645 | 25.028 | .48175 | 4.7849 | .24430 | | #2 | .09701 | .24124 | .24526 | 1.9034 | 24.358 | .47905 | 4.7227 | .23756 | | #3 | .09696 | .24397 | .24186 | 1.9888 | 24.853 | .48313 | 4.7763 | .24094 | Check? Chk Pass P | Elem
Units
Avg
Stddev
%RSD | Mo2020
ppm
. 48759
.00200
.41102 | Na5895
ppm
24.608
.198
.80403 | Ni2316
ppm
. 24717
.00096
.38941 | P_2149
ppm
4.6691
.0137
.29388 | Pb2203
ppm
. 24689
.00574
2.3240 | Sb2068
ppm
. 57348
.00622
1.0852 | Se1960
ppm
. 18744
.00647
3.4514 | Si2124
ppm
2.4623
.0012
.04969 | |--|---|--|---|---|---|---|---|---| | #1 | .48845 | 24.738 | .24611 | 4.6818 | .24502 | .57915 | .19488 | 2.4612 | | #2 | .48902 | 24.380 | .24741 | 4.6709 | .24231 | .57448 | .18433 | 2.4621 | | #3 | .48530 | 24.706 | .24799 | 4.6545 | .25333 | .56682 | .18311 | 2.4636 | Check? Chk Pass P Sample Name: LCSW 81 Acquired: 5/13/2016 18:31:21 Type: Unk Method: ICP-THERMO3_6010_200.7WATER_3YLINES(v872) Mode: CONC Corr. Factor: 1.000000 User: JYH Custom ID1: Custom ID2: Custom ID3: Comment: WG567819-03 | Elem | Sn1899 | Sr4077 | Ti3372 | TI1908 | V_2924 | Zn2062 | Zr3391 | |--------|--------|--------|--------|--------|--------|--------|--------| | Units | ppm | Avg | .48755 | .48698 | .48344 | .24235 | .47962 | .48309 | 2.1285 | | Stddev | .00193 | .00406 | .00659 | .00268 | .00243 | .00078 | .7743 | | %RSD | .39549 | .83458 | 1.3625 | 1.1066 | .50576 | .16064 | 36.379 | | #1 | .48918 | .48900 | .49103 | .24251 | .47710 | .48367 | 1.2466 | | #2 | .48805 | .48230 | .47919 | .24495 | .47982 | .48339 | 2.6969 | | #3 | .48542 | .48963 | .48011 | .23959 | .48194 | .48221 | 2.4421 | Check? Chk Pass P Low Limit | Int. Std. | Y_2243 | Y_3600 | Y_3774 | |-----------|---------------|----------------|---------------| | Units | Cts/S | Cts/S | Cts/S | | Avg | 12111. | 87282 . | 3920.2 | | Stddev | 41. | 235. | 54.2 | | %RSD | .34156 | .26940 | 1.3829 | | #1 | 12066. | 87024. | 3862.4 | | #2 | 12148. | 87340. | 3928.3 | | #3 | 12119. | 87483. | 3970.0 | Sample Name: L1605015401 Acquired: 5/13/2016 18:35:08 Type: Unk Method: ICP-THERMO3_6010_200.7WATER_3YLINES(v872) Mode: CONC Corr. Factor: 1.000000 User: JYH Custom ID1: Custom ID2: Custom ID3: Comment: WG567819-01 Al3082 As1890 B_2496 Ba4554 Be3131 Ca4226 Elem Ag3280 Units ppm ppm ppm ppm ppm ppm ppm .00295 -.00047 Avg .02648 .01413 .02000 .00012 31.851 Stddev .00152 .00433 .00244 .00072 .00036 80000. .141 %RSD 323.60 16.345 82.950 5.1006 1.7894 71.217 .44234#1 -.00168 .03085 .00452 .01986 .00018 .01451 31.694 #2 .00123 .02219 .00013 .01458 .02040 .00015 31.967 #3 -.00096 .02640 .00418 .01330 .01973 .00002 31.891 **Chk Pass** Check? Chk Pass **Chk Pass Chk Pass Chk Pass Chk Pass Chk Pass High Limit** Low Limit Elem Cd2288 Co2286 Cr2677 Cu2247 Fe2611 K_7664 Li6707 Units ppm ppm ppm ppm ppm ppm ppm -.00071 -.00012 .00013 .00113 .53719 2.3733 .00358 Avg .00011 .00033 .00093 .00054 .00280 Stddev .01702 .0541 %RSD 89.922 255.51 81.779 76.408 3.1678 2.2792 78.127 #1 .00000 .00037 .00021 -.00084 .51995 2.4046 .00523 #2 -.00017 -.00025 .00113 -.00011 .53764 2.4044 .00516 #3 -.00020 .00027 .00206 -.00117 .55398 2.3108 .00035 Check? **Chk Pass** Chk Pass **Chk Pass Chk Pass Chk Pass Chk Pass Chk Pass** High Limit Low Limit Elem Mg2790 Mn2576 Mo2020 Na5895 Ni2316 P_2149 Pb2203 Units ppm ppm ppm ppm ppm ppm ppm 4.4519 .09373 .00103 5.5135 .00050 .00507 -.00222 Avg .00135 .00035 .0107 .00072 .00526 .00322 Stddev .1527 %RSD 3.4310 1.4361 34.131 .19471 144.39 103.83 144.95 #1 -.00043 4.3438 .09516 .00091 5.5029 -.00005 .00654 4.6266 .09248 .00143 5.5131 .00023 -.00077 -.00029 #2 -.00595 #3 4.3852 .09356 .00076 5.5244 .00131 .00944 Check? **Chk Pass** Chk Pass **Chk Pass Chk Pass Chk Pass Chk Pass Chk Pass** High Limit Approved: May 16, 2016 Low Limit | Sample Name
Method: ICP-
User: JYH
Comment: W0 | THERMO3_60
Custom ID |)10_200.7W <i>A</i> | 0_200.7WATER_3YLINES(v872) | | | Type: Unk Mode: CONC Corr. Factor: 1.00 ID3: | | | |---|---|--|--|--|---|--|--|--| | Elem
Units
Avg
Stddev
%RSD | Sb2068
ppm
. 00335
.00145
43.189 | Se1960
ppm
.00364
.00772
211.97 | Si2124
ppm
2.0231
.0019
.09542 | Sn1899
ppm
00010
.00065
678.11 | Sr4077
ppm
. 11691
.00154
1.3182 | Ti3372
ppm
00186
.00886
475.89 | TI1908
ppm
00275
.00460
167.10 | | | #1
#2
#3 | .00170
.00399
.00438 | .01148
.00338
00395 | 2.0251
2.0232
2.0212 | .00051
00079
00001 | .11598
.11869
.11606 | 00623
.00833
00768 | .00193
00727
00293 | | | Check ?
High Limit
Low Limit | Chk Pass | | Elem
Units
Avg
Stddev
%RSD | V_2924
ppm
. 00106
.00040
38.224 | Zn2062
ppm
.00458
.00018
3.9723 | Zr3391
ppm
F50315
.96390
191.57 | | | | | | | #1
#2
#3 | .00138
.00060
.00118 | .00479
.00450
.00445 | -1.5318
35702
.37934 | | | | | | | Check ?
High Limit
Low Limit | Chk Pass | Chk Pass | Chk Fail
36.000
04000 | | | | | | | Int. Std.
Units
Avg
Stddev
%RSD | Y_2243
Cts/S
12117.
25.
.20663 | Y_3600
Cts/S
87843.
622.
.70789 | Y_3774
Cts/S
3957.4
22.5
.56823 | | | | | | | #1
#2
#3 | 12093.
12117.
12143. | 87571.
88554.
87403. | 3942.3
3946.5
3983.2 | | | | | | Sample Name: L1605015402S Acquired: 5/13/2016 18:39:09 Type: Unk Mode: CONC Method: ICP-THERMO3 6010 200.7WATER 3YLINES(v872) Corr. Factor: 1.000000 User: JYH Custom ID1: Custom ID2: Custom ID3: Comment: WG567819-04 Al3082 B_2496 Ba4554 Ca4226 Cd2288 Elem Ag3280 As1890 Be3131 Units ppm ppm ppm ppm ppm ppm ppm ppm Avg .19113 4.8510 .19218 .96574 .50523 .02396 36.003 .02412 Stddev .00043 .0407 .00392 .00594 .00223 .00005 .113 .00040 %RSD .22642 .83990 2.0405 .61491 .44063 .21835 .31277 1.6401 #1 .96310 .19163 4.8188 .19452 .50428 .02401 35.875 .02407 #2 .19092 4.8968 .19437 .97254 50364 .02391 36.047 .02375 .19084 #3 4.8374 .18766 .96158 .50777 .02395 36.087 .02453 Check? Chk Pass **High Limit** Low Limit Elem Co2286 Cr2677 Cu2247 Fe2611 K_7664 Mg2790 Mn2576 Li6707 Units ppm ppm ppm ppm ppm ppm ppm ppm .09809 .24563 27.186 9.1413 Avg .24452 2.4841 .48813 .33279 .00105 .0128 .00538 .0687 .00299 Stddev .00019 .00176 .092 %RSD .18959 .71547 .42795 .51521 .33782 .75173 .89860 1.1022 #1 .09807 .24399 .24528 2.4720 27.104 .48979 9.1353 .33083 #2 .09828 .24749 .24332 2.4830 27.285 .48211 9.2128 .33130 .24542 27.169 #3 .09791 .24495 2.4975 .49248 9.0758 .33623 Check? Chk Pass High Limit Low Limit P_2149 Elem Mo2020 Na5895 Ni2316 Pb2203 Sb2068 Se1960 Si2124 Units ppm ppm ppm ppm ppm ppm ppm ppm Avg .49495 30.097 .24615 4.8344 .24755 .58941 .18992 4.5637 .0130 .00127 .00398 Stddev .00157 .028 .00260 .00056 .0126 .31713 1.0560 .21511 %RSD .09385 .26955 .22678 2.0968 .27553 #1 30.065 4.8217 .49316 .24834 .24722 .59000 .19204 4.5503 .24820 .19240 #2 .49607 30.106 .24682 4.8338 .59027 4.5657 #3 .49562 30.119 .24328 4.8477 .24723 .58795 .18533 4.5752 Chk Pass Approved: May 16, 2016 Check? High Limit Low Limit Sample Name: L1605015402S Acquired: 5/13/2016 18:39:09 Type: Unk Method: ICP-THERMO3_6010_200.7WATER_3YLINES(v872) Mode: CONC Corr. Factor: 1.000000 User: JYH Custom ID1: Custom ID2: Custom ID3: Comment: WG567819-04 | Elem | Sn1899 | Sr4077 | Ti3372 | TI1908 | V_2924 | Zn2062 | Zr3391 | |--------|--------|--------|--------|--------|--------|--------|--------| | Units | ppm | Avg | .49532 | .60265 | .48431 | .24521 | .49181 | .49058 | .73716 | | Stddev | .00142 | .00244 | .00407 | .00816 | .00327 | .00208 | .46378 | | %RSD | .28654 | .40427 | .83957 | 3.3268 | .66576 | .42489 | 62.915 | | #1 |
.49628 | .60020 | .48115 | .23801 | .48961 | .48832 | 1.2116 | | #2 | .49369 | .60266 | .48890 | .24356 | .49557 | .49100 | .71508 | | #3 | .49599 | .60507 | .48287 | .25407 | .49025 | .49243 | .28481 | Check? Chk Pass P Low Limit | Int. Std. | Y_2243 | Y_3600 | Y_3774 | |-----------|--------|---------------|---------------| | Units | Cts/S | Cts/S | Cts/S | | Avg | 11988. | 85827. | 3925.7 | | Stddev | 19. | 301. | 26.8 | | %RSD | .15719 | .35083 | .68239 | | #1 | 11986. | 86173. | 3931.0 | | #2 | 11970. | 85687. | 3896.7 | | #3 | 12007. | 85622. | 3949.4 | Method: ICP-THERMO3_6010_200.7WATER_3YLINES(v872) Mode: CONC Corr. Factor: 1.000000 User: JYH Custom ID1: Custom ID2: Custom ID3: Comment: WG567819-05 | Elem | Ag3280 | Al3082 | As1890 | B_2496 | Ba4554 | Be3131 | Ca4226 | Cd2288 | |--------|--------|--------|--------|--------|--------|--------|--------|--------| | Units | ppm | Avg | .19296 | 4.8104 | .19315 | .96170 | .51203 | .02380 | 36.246 | .02419 | | Stddev | .00136 | .0355 | .00109 | .00426 | .00432 | .00011 | .336 | .00045 | | %RSD | .70705 | .73804 | .56287 | .44254 | .84419 | .47399 | .92783 | 1.8401 | | #1 | .19316 | 4.8480 | .19190 | .96595 | .50868 | .02392 | 35.999 | .02384 | | #2 | .19151 | 4.7774 | .19373 | .95744 | .51050 | .02379 | 36.111 | .02469 | | #3 | .19422 | 4.8057 | .19382 | .96171 | .51691 | .02369 | 36.629 | .02403 | Check? Chk Pass P | Elem | Co2286 | Cr2677 | Cu2247 | Fe2611 | K_7664 | Li6707 | Mg2790 | Mn2576 | |--------|--------|----------------|----------------|---------------|---------------|----------------|---------------|--------| | Units | ppm | Avg | .09853 | . 24205 | . 24647 | 2.5240 | 27.390 | . 48761 | 9.3812 | .33754 | | Stddev | .00110 | .00145 | .00290 | .0211 | .230 | .00373 | .0864 | .00248 | | %RSD | 1.1188 | .59760 | 1.1784 | .83802 | .84027 | .76430 | .92070 | .73443 | | #1 | .09844 | .24363 | .24508 | 2.5186 | 27.143 | .48781 | 9.3326 | .33624 | | #2 | .09967 | .24079 | .24981 | 2.5061 | 27.429 | .48378 | 9.3302 | .33598 | | #3 | .09747 | .24171 | .24451 | 2.5473 | 27.598 | .49123 | 9.4809 | .34040 | Check? Chk Pass P | Elem
Units
Avg
Stddev
%RSD | Mo2020
ppm
. 49778
.00654
1.3147 | Na5895
ppm
30.366
.269
.88446 | Ni2316
ppm
. 24723
.00278
1.1245 | P_2149
ppm
4.8623
.0482
.99181 | Pb2203
ppm
. 25096
.00476
1.8967 | Sb2068
ppm
. 59056
.01253
2.1223 | Se1960
ppm
.19736
.00250
1.2669 | Si2124
ppm
4.5788
.0432
.94285 | |--|---|--|---|---|---|---|---|---| | #1 | .49408 | 30.182 | .24700 | 4.8452 | .24706 | .58661 | .19848 | 4.5712 | | #2 | .50533 | 30.242 | .25012 | 4.9167 | .25627 | .60459 | .19910 | 4.6252 | | #3 | .49392 | 30.674 | .24457 | 4.8249 | .24957 | .58047 | .19449 | 4.5399 | Check? Chk Pass P Method: ICP-THERMO3_6010_200.7WATER_3YLINES(v872) Mode: CONC Corr. Factor: 1.000000 User: JYH Custom ID1: Custom ID2: Custom ID3: Comment: WG567819-05 | Elem | Sn1899 | Sr4077 | Ti3372 | TI1908 | V_2924 | Zn2062 | Zr3391 | |--------|--------|--------|--------|--------|--------|--------|--------| | Units | ppm | Avg | .49751 | .61082 | .49681 | .24653 | .48454 | .49324 | .10755 | | Stddev | .00601 | .00606 | .00456 | .00077 | .00372 | .00639 | .21627 | | %RSD | 1.2070 | .99266 | .91840 | .31289 | .76822 | 1.2961 | 201.09 | | | | | | | | | | | #1 | .49519 | .60692 | .49463 | .24738 | .48878 | .49065 | .16070 | | #2 | .50433 | .60775 | .49376 | .24637 | .48306 | .50052 | 13034 | | #3 | .49301 | .61781 | .50206 | .24586 | .48179 | .48854 | .29228 | Check? Chk Pass P Low Limit | Int. Std. | Y_2243 | Y_3600 | Y_3774 | |-----------|--------|---------------|---------------| | Units | Cts/S | Cts/S | Cts/S | | Avg | 11991. | 86877. | 3939.3 | | Stddev | 129. | 601. | 26.9 | | %RSD | 1.0773 | .69172 | .68387 | | #1 | 12061. | 86418. | 3968.8 | | #2 | 11842. | 87558. | 3933.1 | | #3 | 12070. | 86656. | 3915.9 | Corr. Factor: 1.000000 Sample Name: L1605015401PS Acquired: 5/13/2016 18:46:42 Type: Unk Method: ICP-THERMO3_6010_200.7WATER_3YLINES(v872) Mode: CONC User: JYH Custom ID1: Custom ID2: Custom ID3: Comment: WG568110-03 | Elem | Ag3280 | Al3082 | As1890 | B_2496 | Ba4554 | Be3131 | Ca4226 | Cd2288 | |--------|--------|--------|--------|--------|--------|--------|--------|--------| | Units | ppm | Avg | .19372 | 4.8671 | .19526 | .97103 | .51100 | .02405 | 33.055 | .02406 | | Stddev | .00313 | .0114 | .00254 | .00270 | .00462 | .00013 | .073 | .00027 | | %RSD | 1.6140 | .23503 | 1.3034 | .27791 | .90453 | .54440 | .22217 | 1.1368 | | #1 | .19549 | 4.8752 | .19238 | .96919 | .51329 | .02397 | 33.041 | .02437 | | #2 | .19556 | 4.8721 | .19719 | .97413 | .51402 | .02398 | 33.134 | .02385 | | #3 | .19011 | 4.8540 | .19621 | .96977 | .50568 | .02420 | 32.989 | .02396 | Check? Chk Pass P | Elem | Co2286 | Cr2677 | Cu2247 | Fe2611 | K_7664 | Li6707 | Mg2790 | Mn2576 | |--------|--------|----------------|----------------|---------------|---------------|----------------|---------------|----------------| | Units | ppm | Avg | .09804 | . 24439 | . 24559 | 2.4515 | 27.412 | . 48746 | 8.8474 | . 32842 | | Stddev | .00016 | .00066 | .00257 | .0239 | .090 | .00664 | .0513 | .00487 | | %RSD | .16672 | .26921 | 1.0460 | .97300 | .32914 | 1.3612 | .57978 | 1.4815 | | #1 | .09823 | .24498 | .24801 | 2.4771 | 27.485 | .49274 | 8.8675 | .32564 | | #2 | .09796 | .24451 | .24290 | 2.4299 | 27.441 | .48964 | 8.8856 | .33404 | | #3 | .09794 | .24368 | .24586 | 2.4475 | 27.311 | .48002 | 8.7891 | .32558 | Check? Chk Pass P | Elem | Mo2020 | Na5895 | Ni2316 | P_2149 | Pb2203 | Sb2068 | Se1960 | Si2124 | |--------|----------------|---------------|----------------|---------------|----------------|----------------|--------|---------------| | Units | ppm | Avg | . 49733 | 29.954 | . 24626 | 4.8362 | . 24628 | . 58724 | .19032 | 4.3448 | | Stddev | .00068 | .175 | .00073 | .0174 | .00288 | .00659 | .00710 | .0098 | | %RSD | .13724 | .58385 | .29646 | .35934 | 1.1704 | 1.1222 | 3.7327 | .22563 | | #1 | .49685 | 30.027 | .24637 | 4.8267 | .24502 | .58740 | .18544 | 4.3388 | | #2 | .49701 | 30.080 | .24694 | 4.8256 | .24958 | .58057 | .19847 | 4.3395 | | #3 | .49811 | 29.754 | .24549 | 4.8562 | .24425 | .59375 | .18705 | 4.3561 | Check? Chk Pass P Sample Name: L1605015401PS Acquired: 5/13/2016 18:46:42 Type: Unk Method: ICP-THERMO3_6010_200.7WATER_3YLINES(v872) Mode: CONC Corr. Factor: 1.000000 User: JYH Custom ID1: Custom ID2: Custom ID3: Comment: WG568110-03 | Elem | Sn1899 | Sr4077 | Ti3372 | TI1908 | V_2924 | Zn2062 | Zr3391 | |--------|--------|--------|--------|--------|--------|--------|--------| | Units | ppm | Avg | .49708 | .60006 | .49420 | .24490 | .48943 | .49528 | .17030 | | Stddev | .00117 | .00285 | .00319 | .00057 | .00258 | .00111 | .19592 | | %RSD | .23602 | .47484 | .64529 | .23384 | .52636 | .22317 | 115.05 | | #1 | .49615 | .60063 | .49243 | .24447 | .48798 | .49584 | .38981 | | #2 | .49670 | .60258 | .49788 | .24467 | .49240 | .49401 | .01316 | | #3 | .49840 | .59697 | .49229 | .24555 | .48790 | .49599 | .10793 | Check? Chk Pass P Low Limit | Int. Std. | Y_2243 | Y_3600 | Y_3774 | |-----------|---------------|----------------|---------------| | Units | Cts/S | Cts/S | Cts/S | | Avg | 12065. | 87084 . | 3892.0 | | Stddev | 52. | 248. | 30.3 | | %RSD | .43071 | .28433 | .77961 | | #1 | 12082. | 87348. | 3857.9 | | #2 | 12107. | 87046. | 3916.1 | | #3 | 12007. | 86857. | 3902.0 | Sample Name: L1605015401SDL Acquired: 5/13/2016 18:50:29 Type: Unk Method: ICP-THERMO3_6010_200.7WATER_3YLINES(v872) Mode: CONC Corr. Factor: 1.000000 User: JYH Custom ID1: 5 Custom ID2: Custom ID3: Comment: WG568110-04 Al3082 As1890 B_2496 Ba4554 Be3131 Ca4226 Elem Ag3280 Units ppm ppm ppm ppm ppm ppm ppm .01482 .00844 6.3948 Avg -.00170 -.00157 .00523 .00003 Stddev .00234 .00556 .00238 .00194 .00057 .00005 .0620 %RSD 137.43 37.483 151.19 22.941 10.886 186.16 .96973 #1 -.00251 -.00373 .00467 .00001 6.4089 .01275 .00627 #2 -.00353 .02112 -.00198 .00906 .00523 .00009 6.4485 #3 .00093 .01060 .00098 .01000 .00581 -.00001 6.3269 **Chk Pass** Check? Chk Pass **Chk Pass Chk Pass Chk Pass Chk Pass Chk Pass High Limit** Low Limit Elem Cd2288 Co2286 Cr2677 Cu2247 Fe2611 K_7664 Li6707 Units ppm ppm ppm ppm ppm ppm ppm .00029 -.00061 -.00021 .00068 .08158 .59290 Avg .00031 .00010 .00041 .00056 .00062 .03544 .00576 Stddev .00443 %RSD 48.300 143.25 82.853 102.72 5.4261 5.9781 1836.1 #1 -.00010 -.00018 .00003 -.00132 .08507 .57254 -.00159 #2 -.00030 .00047 .00101 -.00034 .07660 .63383 -.00425 .00059 -.00016 #3 -.00024 .00100 .08307 .57234 .00679 Check? **Chk Pass** Chk Pass **Chk Pass Chk Pass Chk Pass Chk Pass** Chk Pass High Limit Low Limit Mo2020 Elem Mg2790 Mn2576 Na5895 Ni2316 P_2149 Pb2203 Units ppm ppm ppm ppm ppm ppm ppm .73199 .01923 .00098 1.0845 .00037 .00110 -.00102 Avg .00343 .00062 .0213 .00151 .00329 Stddev .07753 .00214 %RSD 10.592 17.842 63.626 1.9629 406.21 299.09 209.19 #1 .71179 .02071 .00075 1.1057 .00125 -.00219 .00068 .01530 1.0847 .00439 -.00033 #2 .81763 .00168 -.00137 #3 .66656 .02167 .00050 1.0632 .00123 .00109 -.00343 Check? **Chk Pass** Chk Pass **Chk Pass Chk Pass Chk Pass Chk Pass Chk Pass** High Limit Approved: May 16, 2016 Low Limit | Sample Name: L1605015401SDL Acquired: 5/13/2016 18:50:29 Type: Unk Method:
ICP-THERMO3_6010_200.7WATER_3YLINES(v872) Mode: CONC Corr. Factor: 1.000000 User: JYH Custom ID1: 5 Custom ID2: Custom ID3: Comment: WG568110-04 | | | | | | | | |--|---|--|---|--|---|---|---| | Elem
Units
Avg
Stddev
%RSD | Sb2068
ppm
. 00049
.00167
342.03 | Se1960
ppm
00208
.00427
205.10 | Si2124
ppm
. 39345
.00576
1.4645 | Sn1899
ppm
00031
.00049
156.58 | Sr4077
ppm
. 02372
.00048
2.0133 | Ti3372
ppm
. 00221
.00543
246.06 | TI1908
ppm
. 00052
.00085
162.41 | | #1
#2
#3 | 00088
00001
.00236 | 00648
.00206
00183 | .38682
.39627
.39726 | 00087
00007
.00001 | .02323
.02419
.02375 | .00791
00291
.00162 | .00043
00028
.00141 | | Check ?
High Limit
Low Limit | Chk Pass | Elem
Units
Avg
Stddev
%RSD | V_2924
ppm
00047
.00080
168.64 | Zn2062
ppm
.00162
.00004
2.7021 | Zr3391
ppm
F47053
.25669
54.554 | | | | | | #1
#2
#3 | .00018
00024
00136 | .00157
.00163
.00165 | 37584
27463
76112 | | | | | | Check ?
High Limit
Low Limit | Chk Pass | Chk Pass | Chk Fail
36.000
04000 | | | | | | Int. Std.
Units
Avg
Stddev
%RSD | Y_2243
Cts/S
12136.
102.
.83752 | Y_3600
Cts/S
87703.
955.
1.0891 | Y_3774
Cts/S
3856.3
23.8
.61737 | | | | | | #1
#2
#3 | 12253.
12084.
12071. | 87458.
86894.
88757. | 3882.2
3851.2
3835.4 | | | | | | Sample Name: CCV Acquired: 5/13/2016 18:54:34 Type: QC Method: ICP-THERMO3_6010_200.7WATER_3YLINES(v872) Mode: CONC Corr. Factor: 1.000000 User: JYH Custom ID1: Custom ID2: Custom ID3: Comment: | | | | | | | | |--|----------------|----------------|----------------|----------------|----------------|----------------|----------------| | Elem | Ag3280 | Al3082 | As1890 | B_2496 | Ba4554 | Be3131 | Ca4226 | | Units | ppm | Avg | . 40367 | 10.188 | . 40627 | . 50790 | 1.0234 | . 05055 | 10.310 | | Stddev | .00668 | .114 | .00391 | .00846 | .0037 | .00080 | .047 | | %RSD | 1.6550 | 1.1144 | .96191 | 1.6659 | .36168 | 1.5915 | .45535 | | #1 | .39598 | 10.057 | .40448 | .49820 | 1.0275 | .04962 | 10.316 | | #2 | .40795 | 10.239 | .40358 | .51377 | 1.0203 | .05102 | 10.353 | | #3 | .40710 | 10.266 | .41075 | .51174 | 1.0225 | .05100 | 10.260 | | Check ?
Value
Range | Chk Pass | Elem | Cd2288 | Co2286 | Cr2677 | Cu2247 | Fe2611 | K_7664 | Li6707 | | Units | ppm | Avg | . 05111 | . 20633 | . 51519 | . 51639 | 4.1493 | 51.184 | 1.0317 | | Stddev | .00018 | .00015 | .00922 | .00131 | .0272 | .113 | .0054 | | %RSD | .35794 | .07360 | 1.7893 | .25368 | .65542 | .21986 | .52283 | | #1 | .05132 | .20648 | .50464 | .51700 | 4.1337 | 51.285 | 1.0379 | | #2 | .05098 | .20634 | .52167 | .51489 | 4.1335 | 51.063 | 1.0292 | | #3 | .05104 | .20617 | .51926 | .51728 | 4.1807 | 51.203 | 1.0280 | | Check ?
Value
Range | Chk Pass | Elem | Mg2790 | Mn2576 | Mo2020 | Na5895 | Ni2316 | P_2149 | Pb2203 | | Units | ppm | Avg | 10.188 | . 51089 | 1.0185 | 51.711 | . 51935 | 10.122 | . 51819 | | Stddev | .124 | .00385 | .0042 | .239 | .00155 | .032 | .00467 | | %RSD | 1.2165 | .75281 | .41292 | .46143 | .29920 | .31492 | .90113 | | #1 | 10.281 | .51377 | 1.0230 | 51.971 | .52013 | 10.132 | .51962 | | #2 | 10.235 | .51238 | 1.0147 | 51.661 | .51756 | 10.087 | .51297 | | #3 | 10.047 | .50652 | 1.0177 | 51.501 | .52035 | 10.148 | .52198 | | Check ?
Value
Range | Chk Pass | Sample Name
Method: ICP-T
User: JYH
Comment: | | 010_200.7W <i>A</i> | 2016 18:54:3
ATER_3YLINI
stom ID2: | | Mode: CON | C Corr. F | Factor: 1.00000(| |---|---|---|--|---|---|---|---| | Elem
Units
Avg
Stddev
%RSD | Sb2068
ppm
1.2143
.0045
.37098 | Se1960
ppm
. 41012
.00231
.56267 | Si2124
ppm
5.1874
.0154
.29635 | Sn1899
ppm
1.0317
.0018
.17045 | Sr4077
ppm
1.0190
.0015
.14496 | Ti3372
ppm
1.0250
.0014
.13371 | TI1908
ppm
. 51568
.00293
.56819 | | #1
#2
#3 | 1.2178
1.2092
1.2159 | .41276
.40914
.40847 | 5.1822
5.1752
5.2047 | 1.0320
1.0299
1.0334 | 1.0205
1.0190
1.0175 | 1.0266
1.0240
1.0245 | .51231
.51708
.51765 | | Check ?
Value
Range | Chk Pass | Elem
Units
Avg
Stddev
%RSD | V_2924
ppm
1.0229
.0184
1.7938 | Zn2062
ppm
1.0369
.0021
.19731 | Zr3391
ppm
F11557
.25815
223.38 | | | | | | #1
#2
#3 | 1.0023
1.0375
1.0288 | 1.0383
1.0346
1.0380 | .11624
39378
06916 | | | | | | Check ?
Value
Range | Chk Pass | Chk Pass | Chk Fail
1.0000
-10.000% | | | | | | Int. Std.
Units
Avg
Stddev
%RSD | Y_2243
Cts/S
11627.
2.
.01567 | Y_3600
Cts/S
83461.
728.
.87207 | Y_3774
Cts/S
3745.3
49.0
1.3082 | | | | | | #1
#2
#3 | 11627.
11629.
11626. | 84181.
83477.
82726. | 3688.8
3771.0
3776.1 | | | | | | Sample Name
Method: ICP-
User: JYH
Comment: | | - | | • • | Mode: CON | C Corr. F | Factor: 1.00000(| |--|----------|--------------|----------------|----------------|-----------|----------------|------------------| | Elem | Ag3280 | Al3082 | As1890 | B_2496 | Ba4554 | Be3131 | Ca4226 | | Units | ppm | Avg | 00037 | .01508 | . 00329 | . 00419 | .00184 | .00017 | 05119 | | Stddev | .00178 | .00426 | .00156 | .00053 | .00032 | .00003 | .01021 | | %RSD | 484.31 | 28.270 | 47.384 | 12.588 | 17.550 | 18.403 | 19.956 | | #1 | 00004 | .01047 | .00369 | .00461 | .00222 | .00020 | 04050 | | #2 | .00122 | .01589 | .00157 | .00435 | .00164 | .00017 | 05221 | | #3 | 00228 | .01889 | .00461 | .00360 | .00168 | .00014 | 06085 | | Check ?
High Limit
Low Limit | Chk Pass | Elem | Cd2288 | Co2286 | Cr2677 | Cu2247 | Fe2611 | K_7664 | Li6707 | | Units | ppm | Avg | 00022 | .00038 | . 00167 | 00102 | 01224 | . 15292 | . 00121 | | Stddev | .00024 | .00035 | .00058 | .00135 | .02653 | .10886 | .00298 | | %RSD | 111.59 | 91.943 | 35.039 | 132.21 | 216.65 | 71.184 | 246.17 | | #1 | 00049 | .00042 | .00207 | .00034 | .01645 | .27580 | .00035 | | #2 | 00011 | .00001 | .00194 | 00237 | 01732 | .06857 | .00453 | | #3 | 00005 | .00070 | .00100 | 00104 | 03587 | .11440 | 00125 | | Check ?
High Limit
Low Limit | Chk Pass | Elem | Mg2790 | Mn2576 | Mo2020 | Na5895 | Ni2316 | P_2149 | Pb2203 | | Units | ppm | Avg | 04632 | 00413 | . 00420 | 00641 | .00109 | 00436 | . 00089 | | Stddev | .08074 | .00217 | .00009 | .01430 | .00103 | .00260 | .00382 | | %RSD | 174.31 | 52.572 | 2.1571 | 223.02 | 94.031 | 59.475 | 426.45 | | #1 | 04886 | 00302 | .00412 | 01516 | .00059 | 00493 | .00529 | | #2 | .03566 | 00275 | .00430 | 01417 | .00228 | 00153 | 00151 | | #3 | 12576 | 00664 | .00419 | .01009 | .00041 | 00663 | 00110 | | Check ?
High Limit
Low Limit | Chk Pass | Sample Name
Method: ICP-T
User: JYH
Comment: | | 010_200.7W <i>A</i> | 2016 18:58:1
ATER_3YLIN
stom ID2: | | Mode: CON | C Corr. F | Factor: 1.00000(| | |---|---|--|---|---|---|---|--|--| | Elem
Units
Avg
Stddev
%RSD | Sb2068
ppm
. 00569
.00496
87.201 | Se1960
ppm
00360
.00435
120.72 | Si2124
ppm
. 00498
.00258
51.831 | Sn1899
ppm
. 00070
.00102
146.11 | Sr4077
ppm
.00033
.00016
48.540 | Ti3372
ppm
.00198
.00750
379.08 | TI1908
ppm
00023
.00189
805.99 | | | #1
#2
#3 | .00863
00004
.00846 | 00631
00590
.00141 | .00796
.00357
.00341 | .00175
00028
.00061 | .00026
.00051
.00021 | 00019
00420
.01032 | 00043
.00174
00202 | | | Check ?
High Limit
Low Limit | Chk Pass | | Elem
Units
Avg
Stddev
%RSD | V_2924
ppm
.00095
.00098
103.23 | Zn2062
ppm
.00028
.00020
71.160 | Zr3391
ppm
F41510
.23705
57.108 | | | | | | | #1
#2
#3 | 00002
.00091
.00194 | .00033
.00006
.00045 |
52584
57651
14294 | | | | | | | Check ?
High Limit
Low Limit | Chk Pass | Chk Pass | Chk Fail
.04000
04000 | | | | | | | Int. Std.
Units
Avg
Stddev
%RSD | Y_2243
Cts/S
11661.
54.
.46509 | Y_3600
Cts/S
84157.
512.
.60865 | Y_3774
Cts/S
3730.2
50.8
1.3613 | | | | | | | #1
#2
#3 | 11711.
11604.
11668. | 84707.
83693.
84070. | 3674.3
3773.5
3742.8 | | | | | | Sample Name: PBW 8P Acquired: 5/13/2016 19:02:21 Type: Unk Method: ICP-THERMO3_6010_200.7WATER_3YLINES(v872) Mode: CONC Corr. Factor: 1.000000 User: JYH Custom ID1: Custom ID2: Custom ID3: Comment: WG568184-02 | Elem | Ag3280 | Al3082 | As1890 | B_2496 | Ba4554 | Be3131 | Ca4226 | |------------------------------------|----------|-----------------------------|----------------|----------------|----------------|----------------|----------------| | Units | ppm | Avg | 00341 | . 00656 | .00053 | . 00607 | . 00116 | .00004 | 02964 | | Stddev | .00053 | .00422 | .00186 | .00123 | .00035 | .00009 | .02304 | | %RSD | 15.563 | 64.308 | 348.65 | 20.328 | 30.159 | 227.06 | 77.745 | | #1 | 00319 | .01063 | 00101 | .00511 | .00149 | 00005 | 05625 | | #2 | 00402 | .00220 | .00260 | .00746 | .00118 | .00014 | 01601 | | #3 | 00303 | .00686 | .00001 | .00565 | .00080 | .00004 | 01666 | | Check ?
High Limit
Low Limit | Chk Pass | Elem | Cd2288 | Co2286 | Cr2677 | Cu2247 | Fe2611 | K_7664 | Li6707 | | Units | ppm | Avg | 00004 | .00036 | . 00038 | 00018 | .00925 | . 04599 | . 00016 | | Stddev | .00016 | .00014 | .00073 | .00177 | .00873 | .02017 | .00418 | | %RSD | 428.90 | 40.072 | 191.24 | 968.59 | 94.412 | 43.864 | 2673.6 | | #1 | .00003 | .00046 | .00034 | 00169 | .01483 | .06223 | 00090 | | #2 | 00022 | .00019 | 00033 | 00062 | .01372 | .05234 | .00476 | | #3 | .00008 | .00041 | .00112 | .00176 | 00081 | .02341 | 00339 | | Check ?
High Limit
Low Limit | Chk Pass | Elem | Mg2790 | Mn2576 | Mo2020 | Na5895 | Ni2316 | P_2149 | Pb2203 | | Units | ppm | Avg | 08819 | F00401 | . 00107 | 00452 | .00159 | 00522 | . 00110 | | Stddev | .02805 | .00424 | .00014 | .01903 | .00080 | .00202 | .00092 | | %RSD | 31.809 | 105.53 | 12.782 | 421.19 | 50.213 | 38.744 | 83.659 | | #1 | 06475 | .00088 | .00120 | 02377 | .00104 | 00366 | .00075 | | #2 | 11927 | 00650 | .00109 | 00406 | .00250 | 00751 | .00215 | | #3 | 08055 | 00642 | .00092 | .01428 | .00123 | 00449 | .00041 | | Check ?
High Limit
Low Limit | Chk Pass | Chk Fail
36.000
00300 | Chk Pass | Chk Pass | Chk Pass | Chk Pass | Chk Pass | | Method: ICP-
User: JYH | Sample Name: PBW 8P Acquired: 5/13/2016 19:02:21 Type: Unk Method: ICP-THERMO3_6010_200.7WATER_3YLINES(v872) Mode: CONC Corr. Factor: 1.000000 User: JYH Custom ID1: Custom ID2: Custom ID3: Comment: WG568184-02 | | | | | | | | | | | |---|---|---|--|--|--|---|---|--|--|--|--| | Elem
Units
Avg
Stddev
%RSD | Sb2068
ppm
. 00424
.00436
102.79 | Se1960
ppm
. 00288
.00533
185.37 | Si2124
ppm
.01082
.00066
6.1425 | Sn1899
ppm
00001
.00066
6419.7 | Sr4077
ppm
00022
.00028
122.66 | Ti3372
ppm
. 00586
.00359
61.313 | TI1908
ppm
. 00062
.00471
762.74 | | | | | | #1
#2
#3 | .00250
.00919
.00102 | .00046
00082
.00899 | .01156
.01030
.01059 | .00067
00006
00064 | 00023
.00005
00050 | .00850
.00731
.00177 | 00416
.00525
.00076 | | | | | | Check ?
High Limit
Low Limit | Chk Pass | | | | | Elem
Units
Avg
Stddev
%RSD | V_2924
ppm
. 00080
.00134
166.88 | Zn2062
ppm
. 00222
.00013
5.7527 | Zr3391
ppm
F79385
.30357
38.240 | | | | | | | | | | #1
#2
#3 | .00203
00062
.00099 | .00207
.00230
.00228 | 91801
-1.0156
44788 | | | | | | | | | | Check ?
High Limit
Low Limit | Chk Pass | Chk Pass | Chk Fail
36.000
04000 | | | | | | | | | | Int. Std.
Units
Avg
Stddev
%RSD | Y_2243
Cts/S
11975.
55.
.46137 | Y_3600
Cts/S
87463.
822.
.93970 | Y_3774
Cts/S
3832.9
37.8
.98530 | | | | | | | | | | #1
#2
#3 | 11913.
12018.
11994. | 88306.
87419.
86664. | 3791.3
3842.3
3865.0 | | | | | | | | | Sample Name: LCSW 8P Acquired: 5/13/2016 19:06:25 Type: Unk Method: ICP-THERMO3_6010_200.7WATER_3YLINES(v872) Mode: CONC Corr. Factor: 1.000000 User: JYH Custom ID1: Custom ID2: Custom ID3: Comment: WG568184-03 | Elem | Ag3280 | Al3082 | As1890 | B_2496 | Ba4554 | Be3131 | Ca4226 | Cd2288 | |--------|--------|--------|--------|--------|--------|--------|--------|--------| | Units | ppm | Avg | .19781 | 4.9975 | .19615 | .98917 | .51411 | .02460 | 5.1892 | .02527 | | Stddev | .00453 | .0091 | .00541 | .00378 | .00219 | .00009 | .0401 | .00002 | | %RSD | 2.2897 | .18212 | 2.7585 | .38245 | .42585 | .37410 | .77327 | .08778 | | #1 | .19591 | 5.0079 | .20089 | .98935 | .51158 | .02453 | 5.1564 | .02528 | | #2 | .19454 | 4.9908 | .19025 | .98530 | .51549 | .02471 | 5.2339 | .02529 | | #3 | .20298 | 4.9939 | .19731 | .99286 | .51525 | .02457 | 5.1772 | .02525 | Check? Chk Pass P | Elem | Co2286 | Cr2677 | Cu2247 | Fe2611 | K_7664 | Li6707 | Mg2790 | Mn2576 | |--------|----------------|----------------|----------------|---------------|---------------|----------------|---------------|----------------| | Units | ppm | Avg | . 10297 | . 25418 | . 25713 | 2.0490 | 26.202 | . 51260 | 5.0449 | . 25526 | | Stddev | .00056 | .00122 | .00156 | .0553 | .109 | .00363 | .1349 | .00257 | | %RSD | .54617 | .48076 | .60586 | 2.7000 | .41469 | .70808 | 2.6741 | 1.0074 | | #1 | .10239 | .25299 | .25756 | 2.0462 | 26.081 | .50845 | 4.9301 | .25234 | | #2 | .10351 | .25543 | .25843 | 2.1057 | 26.231 | .51414 | 5.1935 | .25716 | | #3 | .10302 | .25410 | .25540 | 1.9952 | 26.292 | .51520 | 5.0112 | .25630 | Check? Chk Pass P | Elem
Units
Avg
Stddev
%RSD | Mo2020
ppm
. 51553
.00093
.18108 | Na5895
ppm
26.082
.188
.71892 | Ni2316
ppm
.26140
.00138
.52928 | P_2149
ppm
4.9179
.0056
.11491 | Pb2203
ppm
. 25999
.00325
1.2482 | Sb2068
ppm
. 61059
.00254
.41560 | Se1960
ppm
.19600
.00922
4.7041 | Si2124
ppm
2.7501
.0043
.15576 | |--|---|--|---|---|---|---|---|---| | #1 | .51633 | 25.876 | .26267 | 4.9160 | .25857 | .60788 | .20650 | 2.7487 | | #2 | .51451 | 26.242 | .26160 | 4.9135 | .25770 | .61291 | .19228 | 2.7466 | | #3 | .51574 | 26.129 | .25993 | 4.9243 | .26370 | .61098 | .18922 | 2.7549 | Check? Chk Pass P Sample Name: LCSW 8P Acquired: 5/13/2016 19:06:25 Type: Unk Method: ICP-THERMO3_6010_200.7WATER_3YLINES(v872) Mode: CONC Corr. Factor: 1.000000 User: JYH Custom ID1: Custom ID2: Custom ID3: Comment: WG568184-03 | Elem | Sn1899 | Sr4077 | Ti3372 | TI1908 | V_2924 | Zn2062 | Zr3391 | |--------|----------------|----------------|----------------|----------------|----------------|----------------|----------------| | Units | ppm | Avg | . 51468 | . 51557 | . 51021 | . 25586 | . 50422 | . 51078 | . 34849 | | Stddev | .00166 | .00240 | .01134 | .00102 | .00241 | .00019 | .31297 | | %RSD | .32286 | .46540 | 2.2228 | .39804 | .47895 | .03687 | 89.806 | | #1 | .51628 | .51310 | .51030 | .25704 | .50636 | .51056 | .25433 | | #2 | .51479 | .51789 | .52150 | .25533 | .50471 | .51084 | .09342 | | #3 | .51297 | .51571 | .49882 | .25523 | .50160 | .51093 | .69773 | Check? Chk Pass P | Int. Std. | Y_2243 | Y_3600 | Y_3774 | |-----------|----------------|---------------|---------------| | Units | Cts/S | Cts/S | Cts/S | | Avg | 11917 . | 86129. | 3844.2 | | Stddev | 17. | 149. | 35.5 | | %RSD | .14120 | .17333 | .92390 | | #1 | 11919. | 85979. | 3885.2 | | #2 | 11932. | 86131. | 3822.4 | | #3 | 11899. | 86277. | 3825.0 | Sample Name: F BLANK Acquired: 5/13/2016 19:10:13 Type: Unk Method: ICP-THERMO3 6010 200.7WATER 3YLINES(v872) Mode: CONC Corr. Factor: 1.000000 User: JYH Custom ID1: Custom ID2: Custom ID3: Comment: WG568088-01 Al3082 As1890 B 2496 Ba4554 Be3131 Ca4226 Cd2288 Elem Ag3280 Units ppm ppm ppm ppm ppm ppm ppm ppm -.00258 .00456 Avg -.00178 .01478 .00080 .00010 -.01041 -.00014 Stddev .00149 .00475 .00429 .00231 .00069 .00004 .01827 .00019 %RSD 83.207 32.160 166.08 50.582 86.994 39.812 175.39 128.56 #1 -.00059 .00155 .00708 .00091 .00005 -.00016 .01251 -.03131 #2 -.00131 .02025 -.00701 .00256 .00005 .00012 -.00241 -.00032 #3 -.00345 .01159 -.00229 .00403 .00142 .00013 .00249 .00005 Check? Chk Pass High Limit Low Limit Elem Co2286 Cr2677 Cu2247 Fe2611 K_7664 Li6707 Mg2790 Mn2576 Units ppm ppm ppm ppm ppm ppm ppm ppm -.07127 .00032 -.00084 -.00449 .00126 -.00051 Avg .00048 .03117 .00004 .00030 .02741 .00373
.19460 Stddev .00021 .01958 .00146 %RSD 65.957 9.1850 35.251 610.97 62.831 296.36 273.06 287.15 #1 .00008 .00043 -.00071 .00142 .04275 -.00049.09862 -.00112 #2 .00041 .00052 -.00118 .01948 .04220 -.00128-.02883 .00115 .00050 -.00063 .00554 #3 .00046 -.03436.00856 -.28358 -.00156 Check? Chk Pass High Limit Low Limit Elem Mo2020 Na5895 Ni2316 P_2149 Pb2203 Sb2068 Se1960 Si2124 Units ppm ppm ppm ppm ppm ppm ppm ppm .00060 129.18 .00040 .00142 -.00008 .00323 .00111 .01174 Avg Stddev .00007 .00035 .00377 .00034 .00234 .00182 .00017 .57 419.07 %RSD 11.576 .44128 88.608 265.59 72.416 163.32 1.4454 #1 .00564 .00068 129.39 .00055 -.00043 .00542 .00305 .01166 .00066 .00056 128.53 .00077 .00085 #2 .00024 .00025 .01163 .00349 #3 .00056 129.61 -.00000 -.00162 -.00006 -.00056 .01194 Check? Chk Pass High Limit Approved: May 16, 2016 Low Limit | Sample Name: F BLANK Acquired: 5/13/2016 19:10:13 Type: Unk Method: ICP-THERMO3_6010_200.7WATER_3YLINES(v872) Mode: CONC Corr. Factor: 1.000000 | | | | | | | | | |--|---|---|--|--|---|---|---|--| | User: JYH | Custom | | Custom ID | 02: | Custom ID3 | : | | | | Comment: \ | NG568088-0 |)1 | | | | | | | | Elem
Units
Avg
Stddev
%RSD | Sn1899
ppm
.00041
.00061
147.68 | Sr4077
ppm
. 00023
.00017
76.336 | Ti3372
ppm
.00536
.00500
93.226 | TI1908
ppm
00205
.00313
152.64 | V_2924
ppm
.00066
.00142
215.55 | Zn2062
ppm
. 00329
.00027
8.0913 | Zr3391
ppm
.03145
.19196
610.40 | | | #1
#2
#3 | 00016
.00035
.00104 | .00033
.00003
.00033 | 00017
.00669
.00957 | 00088
00560
.00033 | 00091
.00102
.00187 | .00357
.00327
.00304 | .08955
.18764
18285 | | | Check ?
High Limit
Low Limit | Chk Pass | | Int. Std.
Units
Avg
Stddev
%RSD | Y_2243
Cts/S
12121.
15.
.12347 | Y_3600
Cts/S
86259.
271.
.31458 | Y_3774
Cts/S
3913.4
43.3
1.1064 | | | | | | | #1
#2
#3 | 12122.
12106.
12136. | 86070.
86137.
86570. | 3947.9
3927.6
3864.8 | | | | | | Sample Name: L1605041002 Acquired: 5/13/2016 19:14:16 Type: Unk Method: ICP-THERMO3 6010 200.7WATER 3YLINES(v872) Mode: CONC Corr. Factor: 1.000000 User: JYH Custom ID1: Custom ID2: Custom ID3: Comment: WG568184-01 Al3082 As1890 B 2496 Ba4554 Ca4226 Cd2288 Elem Ag3280 Be3131 Units ppm ppm ppm ppm ppm ppm ppm ppm Avg -.00149 .02204 .00076 .02160 .10587 .00009 65.466 .01694 Stddev .00155 .00395 .00149 .00058 .00061 .00001 .242 .00026 %RSD 103.88 17.929 196.28 2.6798 .57169 16.353 .36946 1.5561 #1 -.00176 -.00096 .02120 .10518 80000. .01758 65.712 .01724 #2 -.00288 .02346 .00150 .02226 .10632 .00010 65.229 .01678 #3 .00018 .02509 .00174 .02134 .10610 .00007 65.455 .01679 Check? Chk Pass **High Limit** Low Limit Elem Co2286 Cr2677 Cu2247 Fe2611 K_7664 Li6707 Mg2790 Mn2576 Units ppm ppm ppm ppm ppm ppm ppm ppm .00090 .00176 -.01352 -.00588 Avg .00244 .53838 1.4766 .08497 .00071 .00082 .00472 Stddev .00045 .00613 .02279 .0776 .00354 %RSD 49.818 28.941 46.834 45.336 4.2331 80.274 5.2544 4.1703 #1 .00072 .00290 .00109 -.02026.54825 -.007521.4961 .08645 #2 .00057 .00163 .00150 -.01203 .51232 -.000561.3912 .08754 .00268 .00280 -.00957#3 .00141 -.00827 .55457 1.5426 .08093 Check? Chk Pass High Limit Low Limit Elem Mo2020 Na5895 Ni2316 P_2149 Pb2203 Sb2068 Se1960 Si2124 Units ppm ppm ppm ppm ppm ppm ppm ppm .00060 128.74 .00274 .01076 .00767 .00289 .00125 .46692 Avg .00021 .00026 .00753 .00190 .00263 .00298 .00152 Stddev .48 %RSD 69.988 35.222 .37542 9.5442 24.711 91.161 237.99 .32584 #1 .00465 .00072 129.28 .00282 .00896 .00016 .00376 .46776 .00036 128.36 .00245 .00845 .00857 .00542 .00204 #2 .46784 #3 .00072 128.56 .00296 .01918 .00550 .00309 -.00204 .46516 Check? Chk Pass High Limit Low Limit | Sample Name: L1605041002 | | | | | | | | | | | |------------------------------------|---|------------------|------------------|------------------|------------------|-----------------|------------------|---------------|--|--| | Method: ICF | P-THERMO3 | 3_6010_200 | .7WATER_ | 3YLINES(v8 | 372) Mo | de: CONC | Corr. Fac | tor: 1.00000(| | | | User: JYH | User: JYH Custom ID1: Custom ID2: Custom ID3: | | | | | | | | | | | Comment: \ | VG568184-0 |)1 | | | | | | | | | | Elem | Sn1899 | Sr4077 | Ti3372 | TI1908 | V_2924 | Zn2062 | Zr3391 | | | | | Units | ppm | | | | Avg | .00028 | .19306 | 00262 | 00139 | .00031 | 1.3065 | .79724 | | | | | Stddev
%RSD | .00151
529.95 | .00031
.16143 | .00439
167.85 | .00308
221.26 | .00080
257.41 | .0017
.12601 | .38825
48.699 | | | | | /0N3D | 329.93 | .10143 | 107.03 | 221.20 | 237.41 | .12001 | 40.033 | | | | | #1 | 00137 | .19341 | 00717 | .00173 | 00022 | 1.3051 | 1.1517 | | | | | #2 | .00065 | .19293 | 00228 | 00444 | .00123 | 1.3083 | .85765 | | | | | #3 | .00158 | .19283 | .00160 | 00147 | 00008 | 1.3061 | .38233 | | | | | Check ?
High Limit
Low Limit | Chk Pass | | | | Int. Std. | Y_2243 | Y_3600 | Y_3774 | | | | | | | | | Units | Cts/S | Cts/S | Cts/S | | | | | | | | | Avg | 12047. | 86441. | 3992.0 | | | | | | | | | Stddev
%RSD | 77.
.63757 | 114.
.13169 | 7.6
.19062 | | | | | | | | | 701\GD | .03737 | .13103 | .13002 | | | | | | | | | #1 | 12081. | 86346. | 4000.8 | | | | | | | | | #2 | 11959. | 86410. | 3987.4 | | | | | | | | | #3 | 12101. | 86567. | 3987.8 | | | | | | | | Sample Name: L1605041002S Acquired: 5/13/2016 19:18:16 Type: Unk Mode: CONC Method: ICP-THERMO3 6010 200.7WATER 3YLINES(v872) Corr. Factor: 1.000000 User: JYH Custom ID1: Custom ID2: Custom ID3: Comment: WG568184-04 Al3082 B_2496 Ba4554 Ca4226 Cd2288 Elem Ag3280 As1890 Be3131 Units ppm ppm ppm ppm ppm ppm ppm ppm 5.0492 1.0260 Avg .20190 .20334 .62005 .02535 71.933 .04246 Stddev .00361 .0156 .00600 .0018 .00279 .00017 .379 .00010 %RSD 1.7901 .30851 2.9505 .17218 .45051 .66685 .52626 .24084 #1 1.0255 .02518 .04252 .20607 5.0317 .20961 .62321 72.368 #2 .19965 5.0617 .19766 1.0280 .61793 .02552 71.756 .04251 #3 .19997 5.0541 .20273 1.0246 .61900 .02536 71.676 .04234 Check? Chk Pass **High Limit** Low Limit Elem Co2286 Cr2677 Cu2247 Fe2611 K_7664 Mg2790 Mn2576 Li6707 Units ppm ppm ppm ppm ppm ppm ppm ppm .25257 .25519 2.0537 26.808 Avg .10051 .50915 6.7096 .34554 .0065 .00426 Stddev .00013 .00019 .00174 .017 .00369 .0346 1.2316 %RSD .07678 .68073 .31657 .06216 .72536 .51542 .12731 #1 .10042 .25242 .25637 2.0612 26.815 .51306 6.7024 .34955 #2 .10066 .25250 .25601 2.0504 26.820 .50572 6.7472 .34600 .25279 .25320 .50867 #3 .10046 2.0495 26.789 6.6791 .34108 Check? Chk Pass High Limit Low Limit P_2149 Elem Mo2020 Na5895 Ni2316 Pb2203 Sb2068 Se1960 Si2124 Units ppm ppm ppm ppm ppm ppm ppm ppm .51834 157.01 .25465 5.1305 .25894 .61450 .20334 3.2342 Avg .00040 .0233 .00077 .01426 .0062 Stddev .00133 .95 .00162 .25646 .15723 .29917 %RSD .60603 .45465 .26432 7.0137 .19029 #1 .51941 158.09 .25432 5.1542 .25970 .61324 .21928 3.2403 3.2280 156.65 #2 .51877 .25510 5.1297 .25896 .61392 .19180 #3 .51685 156.29 .25453 5.1076 .25815 .61633 .19894 3.2342 Check? Chk Pass High Limit Approved: May 16, 2016 Low Limit Sample Name: L1605041002S Acquired: 5/13/2016 19:18:16 Type: Unk Method: ICP-THERMO3_6010_200.7WATER_3YLINES(v872) Mode: CONC Corr. Factor: 1.000000 User: JYH Custom ID1: Custom ID2: Custom ID3: Comment: WG568184-04 | Elem | Sn1899 | Sr4077 | Ti3372 | TI1908 | V_2924 | Zn2062 | Zr3391 | |--------|--------|--------|--------|--------|--------|--------|--------| | Units | ppm | Avg | .51245 | .71324 | .51633 | .24929 | .51355 | 1.8164 | .18688 | | Stddev | .00099 | .00246 | .00165 | .00034 | .00126 | .0009 | .79957 | | %RSD | .19316 | .34450 | .31943 | .13801 | .24494 | .05081 | 427.85 | | #1 | .51185 | .71607 | .51765 | .24968 | .51494 | 1.8172 | 1.0285 | | #2 | .51192 | .71193 | .51685 | .24906 | .51249 | 1.8167 | 56271 | | #3 | .51360 | .71171 | .51448 | .24912 | .51323 | 1.8154 | .09487 | Check? Chk Pass P | Int. Std. | Y_2243 | Y_3600 | Y_3774 | |-----------|----------------|----------------|---------------| | Units | Cts/S | Cts/S | Cts/S | | Avg | 11872 . | 84384 . | 3907.8 | | Stddev | 45. | 330. | 41.7 | | %RSD | .37563 | .39147 | 1.0681 | | #1 | 11891. | 84574. | 3862.0 | | #2 | 11821. | 84002. | 3943.6 | | #3 | 11904. | 84575. | 3917.7 | Sample Name: L1605041002SD Acquired: 5/13/2016 19:22:01 Type: Unk Method: ICP-THERMO3_6010_200.7WATER_3YLINES(v872) Mode: CONC Corr. Factor: 1.000000 User: JYH Custom ID1: Custom ID2: Custom ID3: Comment: WG568184-05 Ag3280 Al3082 B_2496 Ba4554 Ca4226 Cd2288 Elem As1890 Be3131 Units ppm ppm ppm ppm ppm ppm ppm ppm 4.9558 1.0075 Avg .19805 .20331 .60834 .02489 69.510 .04142 Stddev .00264 .0174 .00082 .0059 .00170 .00006 .183 .00018 %RSD 1.3309 .35031 .40116 .58106 .27959 .23040 .26325 .42570 #1 .19584 .20335 1.0062 .61005 4.9414 .02489 69.665 .04122 #2 .20097 4.9750 .20411 1.0139 .60831 .02495 69.308 .04156 1.0025 #3 .19733 4.9509 .20248 .60665 .02484 69.557 .04147 Chk Pass Check? **High Limit** Low Limit Mg2790 Elem Co2286 Cr2677 Cu2247 Fe2611 K_7664 Li6707 Mn2576 Units ppm ppm ppm ppm ppm ppm ppm ppm .09985 .25042 .25078 26.259 .33343 Avg 1.9832 .50510 6.4491 .00062 .0272 .00337 Stddev .00021 .00145 .0181 .180 .00744 %RSD .20876 .24576 .57894 .91415 .68611 1.4733 .42178 1.0114 #1 .09998 .24975 .25232 2.0024 26.454 .51239 6.4507 .33022 #2 .09997 .25053 .25059 1.9807 26.098 .50540 6.4754 .33311 6.4211 .09961 .25097 .24944 1.9664
26.225 #3 .49751 .33695 Check? Chk Pass High Limit Low Limit | Elem | Mo2020 | Na5895 | Ni2316 | P_2149 | Pb2203 | Sb2068 | Se1960 | Si2124 | |--------|----------------|---------------|----------------|---------------|----------------|----------------|--------|---------------| | Units | ppm | Avg | . 51274 | 151.83 | . 24973 | 5.0637 | . 25460 | . 60516 | .19973 | 3.1786 | | Stddev | .00043 | .64 | .00199 | .0164 | .00120 | .00429 | .00510 | .0054 | | %RSD | .08407 | .42104 | .79718 | .32293 | .47172 | .70833 | 2.5555 | .17095 | | #1 | .51323 | 152.56 | .25110 | 5.0813 | .25518 | .60104 | .20070 | 3.1724 | | #2 | .51243 | 151.38 | .25064 | 5.0490 | .25322 | .60484 | .19422 | 3.1823 | | #3 | .51255 | 151.54 | .24744 | 5.0608 | .25541 | .60959 | .20429 | 3.1812 | Check? Chk Pass High Limit Low Limit Method: ICP-THERMO3_6010_200.7WATER_3YLINES(v872) Mode: CONC Corr. Factor: 1.000000 User: JYH Custom ID1: Custom ID2: Custom ID3: Comment: WG568184-05 | Elem | Sn1899 | Sr4077 | Ti3372 | TI1908 | V_2924 | Zn2062 | Zr3391 | |--------|--------|--------|--------|--------|--------|--------|--------| | Units | ppm | Avg | .50472 | .69610 | .49520 | .24673 | .50357 | 1.7656 | .16463 | | Stddev | .00077 | .00267 | .00838 | .00532 | .00153 | .0021 | .62393 | | %RSD | .15301 | .38396 | 1.6923 | 2.1553 | .30336 | .11879 | 378.99 | | #1 | .50472 | .69914 | .48990 | .24072 | .50342 | 1.7669 | 02851 | | #2 | .50548 | .69499 | .49084 | .25084 | .50517 | 1.7667 | 33989 | | #3 | .50394 | .69415 | .50486 | .24862 | .50212 | 1.7632 | .86228 | Check? Chk Pass P Low Limit | Int. Std. | Y_2243 | Y_3600 | Y_3774 | |-----------|--------|---------------|---------------| | Units | Cts/S | Cts/S | Cts/S | | Avg | 11863. | 85315. | 3939.4 | | Stddev | 21. | 104. | 5.9 | | %RSD | .17627 | .12204 | .14995 | | #1 | 11886. | 85295. | 3946.1 | | #2 | 11845. | 85223. | 3937.2 | | #3 | 11859. | 85428. | 3934.8 | | Sample Name: L1605012101 Acquired: 5/13/2016 19:25:46 Type: Unk Method: ICP-THERMO3_6010_200.7WATER_3YLINES(v872) Mode: CONC Corr. Factor: 1.00000 User: JYH Custom ID1: Custom ID2: Custom ID3: Comment: | | | | | | | | |---|---|---|---|---|--|---|---| | Elem | Ag3280 | Al3082 | As1890 | B_2496 | Ba4554 | Be3131 | Ca4226 | | Units | ppm | Avg | 00191 | 53.297 | . 00800 | . 41261 | . 24388 | .00004 | 79.848 | | Stddev | .00263 | .058 | .00110 | .00035 | .00208 | .00002 | .484 | | %RSD | 137.91 | .10956 | 13.777 | .08468 | .85284 | 57.298 | .60582 | | #1 | .00086 | 53.319 | .00851 | .41300 | .24517 | .00007 | 80.361 | | #2 | 00437 | 53.342 | .00875 | .41234 | .24498 | .00004 | 79.783 | | #3 | 00221 | 53.231 | .00674 | .41247 | .24148 | .00002 | 79.400 | | Check ?
High Limit
Low Limit | Chk Pass | Elem
Units
Avg
Stddev
%RSD
#1
#2 | Cd2288
ppm
.00608
.00016
2.6635
.00590
.00621 | Co2286
ppm
3.6254
.0065
.17874
3.6323
3.6243 | Cr2677
ppm
. 05435
.00145
2.6696
.05268 | Cu2247
ppm
.33455
.00217
.64798
.33645
.33502 | Fe2611
ppm
2.8633
.0375
1.3100
2.8233
2.8688 | K_7664
ppm
11.417
.027
.23887
11.444
11.416 | Li6707
ppm
4.4153
.0254
.57612
4. 4398
4. 4171 | | #3 Check ? High Limit Low Limit | .00612 | 3.6195 | .05510 | .33219 | 2.8977 | 11.390 | 4.3890 | | | Chk Pass | Elem | Mg2790 | Mn2576 | Mo2020 | Na5895 | Ni2316 | P_2149 | Pb2203 | | Units | ppm | Avg | 24.601 | . 24099 | . 08206 | F 568.98 | 19.688 | 49.501 | . 01138 | | Stddev | .119 | .00127 | .00042 | 8.48 | .049 | .102 | .00371 | | %RSD | .48214 | .52810 | .51165 | 1.4905 | .24708 | .20607 | 32.594 | | #1 | 24.508 | .24240 | .08223 | 577.65 | 19.739 | 49.610 | .01420 | | #2 | 24.734 | .23992 | .08237 | 568.58 | 19.683 | 49.486 | .00718 | | #3 | 24.560 | .24064 | .08158 | 560.71 | 19.643 | 49.407 | .01278 | | Check ?
High Limit
Low Limit | Chk Pass | Chk Pass | Chk Pass | Chk Fail
270.00
50000 | Chk Pass | Chk Pass | Chk Pass | | Sample Name: L1605012101 Acquired: 5/13/2016 19:25:46 T Method: ICP-THERMO3_6010_200.7WATER_3YLINES(v872) Method: JYH Custom ID1: Custom ID2: Custom ID3: Comment: | | | | | | C Corr. F | Factor: 1.000000 | |--|---|---|---|--|---|---|---| | Elem
Units
Avg
Stddev
%RSD | Sb2068
ppm
F02368
.00605
25.554 | Se1960
ppm
00094
.00572
611.34 | Si2124
ppm
4.1590
.0116
.27860 | Sn1899
ppm
00052
.00073
140.71 | Sr4077
ppm
. 51692
.00184
.35648 | Ti3372
ppm
. 00017
.00609
3520.1 | TI1908
ppm
. 00820
.00181
22.126 | | #1
#2
#3 | 01733
02937
02433 | 00502
.00560
00338 | 4.1702
4.1598
4.1471 | 00018
00137
00002 | .51905
.51594
.51578 | 00169
.00697
00476 | .00923
.00927
.00611 | | Check ?
High Limit
Low Limit | Chk Fail
45.000
02000 | Chk Pass | Chk Pass | Chk Pass | Chk Pass | Chk Pass | Chk Pass | | Elem
Units
Avg
Stddev
%RSD | V_2924
ppm
. 00316
.00067
21.166 | Zn2062
ppm
1.0209
.0024
.23921 | Zr3391
ppm
. 62866
.70347
111.90 | | | | | | #1
#2
#3 | .00252
.00312
.00386 | 1.0236
1.0200
1.0190 | 1.3294
.63410
07751 | | | | | | Check ?
High Limit
Low Limit | Chk Pass | Chk Pass | Chk Pass | | | | | | Int. Std.
Units
Avg
Stddev
%RSD | Y_2243
Cts/S
12640.
10.
.08183 | Y_3600
Cts/S
89634.
77.
.08622 | Y_3774
Cts/S
4299.8
106.3
2.4729 | | | | | | #1
#2
#3 | 12628.
12645.
12647. | 89570.
89720.
89611. | 4219.3
4259.7
4420.3 | | | | | | Sample Name
Method: ICP-
User: JYH
Comment: | | 010_200.7W <i>A</i> | red: 5/13/201
ATER_3YLIN
stom ID2: | | Type: Unk
Mode: CON0
ID3: | C Corr. F | Factor: 1.00000(| |--|----------------|---------------------|--|-----------------------------|---------------------------------|---------------|------------------| | Elem | Ag3280 | Al3082 | As1890 | B_2496 | Ba4554 | Be3131 | Ca4226 | | Units | ppm | Avg | 00302 | 59.828 | . 00937 | . 38523 | . 39612 | .00009 | 68.193 | | Stddev | .00056 | .086 | .00291 | .00083 | .00091 | .00002 | .163 | | %RSD | 18.454 | .14398 | 31.060 | .21636 | .22904 | 27.711 | .23925 | | #1 | 00365 | 59.918 | .00601 | .38553 | .39603 | .00006 | 68.345 | | #2 | 00281 | 59.746 | .01100 | .38429 | .39525 | .00010 | 68.021 | | #3 | 00260 | 59.820 | .01111 | .38587 | .39706 | .00010 | 68.213 | | Check ?
High Limit
Low Limit | Chk Pass | Elem | Cd2288 | Co2286 | Cr2677 | Cu2247 | Fe2611 | K_7664 | Li6707 | | Units | ppm | Avg | . 00597 | 3.5565 | . 06408 | . 34781 | 7.6774 | 10.618 | 4.2424 | | Stddev | .00007 | .0069 | .00125 | .00174 | .0561 | .027 | .0032 | | %RSD | 1.2489 | .19407 | 1.9490 | .50059 | .73059 | .25472 | .07537 | | #1 | .00604 | 3.5526 | .06476 | .34719 | 7.6716 | 10.587 | 4.2438 | | #2 | .00589 | 3.5645 | .06264 | .34978 | 7.6244 | 10.631 | 4.2387 | | #3 | .00598 | 3.5524 | .06485 | .34646 | 7.7362 | 10.637 | 4.2446 | | Check ?
High Limit
Low Limit | Chk Pass | Elem | Mg2790 | Mn2576 | Mo2020 | Na5895 | Ni2316 | P_2149 | Pb2203 | | Units | ppm | Avg | 19.652 | . 23028 | . 20217 | F 476.96 | 20.334 | 57.931 | . 01890 | | Stddev | .028 | .00283 | .00048 | 4.60 | .043 | .098 | .00286 | | %RSD | .14179 | 1.2284 | .23670 | .96518 | .20980 | .16948 | 15.131 | | #1 | 19.639 | .22822 | .20164 | 478.80 | 20.317 | 57.874 | .01702 | | #2 | 19.633 | .23350 | .20256 | 471.72 | 20.382 | 58.045 | .01749 | | #3 | 19.684 | .22911 | .20232 | 480.36 | 20.302 | 57.876 | .02219 | | Check ?
High Limit
Low Limit | Chk Pass | Chk Pass | Chk Pass | Chk Fail
270.00
50000 | Chk Pass | Chk Pass | Chk Pass | | Sample Name: L1605012102 Acquired: 5/13/2016 19:29:4 Method: ICP-THERMO3_6010_200.7WATER_3YLINES(v872) User: JYH Custom ID1: Custom ID2: C | | | | | Type: Unk
Mode: CONO
ID3: | C Corr. F | Factor: 1.00000(|
--|---|---|---|---|---|---|---| | Elem
Units
Avg
Stddev
%RSD | Sb2068
ppm
F02281
.00437
19.157 | Se1960
ppm
. 00726
.01345
185.28 | Si2124
ppm
4.3035
.0053
.12238 | Sn1899
ppm
. 00069
.00033
48.225 | Sr4077
ppm
. 50148
.00132
.26312 | Ti3372
ppm
.01838
.00090
4.8982 | TI1908
ppm
. 00934
.00058
6.1861 | | #1
#2
#3 | 02262
01854
02727 | .01054
00753
.01878 | 4.3029
4.3091
4.2986 | .00090
.00086
.00031 | .50167
.50269
.50007 | .01923
.01848
.01744 | .00870
.00982
.00950 | | Check ?
High Limit
Low Limit | Chk Fail
45.000
02000 | Chk Pass | Chk Pass | Chk Pass | Chk Pass | Chk Pass | Chk Pass | | Elem
Units
Avg
Stddev
%RSD | V_2924
ppm
.00325
.00065
19.890 | Zn2062
ppm
1.0787
.0028
.26116 | Zr3391
ppm
. 59501
.27182
45.683 | | | | | | #1
#2
#3 | .00258
.00388
.00329 | 1.0761
1.0817
1.0784 | .46428
.90749
.41326 | | | | | | Check ?
High Limit
Low Limit | Chk Pass | Chk Pass | Chk Pass | | | | | | Int. Std.
Units
Avg
Stddev
%RSD | Y_2243
Cts/S
12744.
17.
.13684 | Y_3600
Cts/S
90550.
206.
.22723 | Y_3774
Cts/S
4478.2
24.4
.54391 | | | | | | #1
#2
#3 | 12764.
12737.
12731. | 90321.
90718.
90613. | 4484.0
4499.1
4451.4 | | | | | | Sample Name
Method: ICP-1
User: JYH
Comment: | | 010_200.7W | Acquired: 5/13/2016 19:33:48
0_200.7WATER_3YLINES(v872)
Custom ID2: Custom I | | | Type: Unk Mode: CONC Corr. Factor: 1.0000 ID3: | | | |---|---------------|----------------|--|-----------------------------|----------------|---|---------------|--| | Elem | Ag3280 | Al3082 | As1890 | B_2496 | Ba4554 | Be3131 | Ca4226 | | | Units | ppm | | Avg | 00290 | . 29421 | .00324 | . 08322 | . 01085 | .00012 | 27.623 | | | Stddev | .00066 | .00420 | .00279 | .00198 | .00113 | .00004 | .217 | | | %RSD | 22.848 | 1.4287 | 85.973 | 2.3809 | 10.434 | 36.938 | .78420 | | | #1 | 00356 | .29021 | .00543 | .08124 | .01163 | .00016 | 27.463 | | | #2 | 00290 | .29859 | .00420 | .08520 | .01137 | .00012 | 27.538 | | | #3 | 00224 | .29383 | .00010 | .08321 | .00955 | .00007 | 27.870 | | | Check ?
High Limit
Low Limit | Chk Pass | | Elem | Cd2288 | Co2286 | Cr2677 | Cu2247 | Fe2611 | K_7664 | Li6707 | | | Units | ppm | | Avg | 00011 | .01683 | . 00211 | 00012 | .01291 | 3.3001 | 4.0432 | | | Stddev | .00024 | .00040 | .00058 | .00133 | .00911 | .0513 | .0256 | | | %RSD | 216.22 | 2.3855 | 27.613 | 1096.6 | 70.588 | 1.5538 | .63229 | | | #1 | 00038 | .01713 | .00164 | 00066 | .00358 | 3.2841 | 4.0433 | | | #2 | .00006 | .01637 | .00192 | .00139 | .01335 | 3.3575 | 4.0176 | | | #3 | 00001 | .01699 | .00276 | 00109 | .02179 | 3.2588 | 4.0687 | | | Check ?
High Limit
Low Limit | Chk Pass | | Elem | Mg2790 | Mn2576 | Mo2020 | Na5895 | Ni2316 | P_2149 | Pb2203 | | | Units | ppm | | Avg | 7.2120 | . 00035 | . 19166 | F 641.81 | .01995 | 3.1288 | 00192 | | | Stddev | .1407 | .00332 | .00031 | 7.54 | .00082 | .0126 | .00167 | | | %RSD | 1.9502 | 952.58 | .16271 | 1.1743 | 4.1250 | .40292 | 87.065 | | | #1 | 7.1473 | .00235 | .19201 | 645.63 | .02076 | 3.1224 | 00002 | | | #2 | 7.1153 | .00218 | .19142 | 646.67 | .01998 | 3.1207 | 00260 | | | #3 | 7.3733 | 00349 | .19154 | 633.13 | .01911 | 3.1434 | 00315 | | | Check ?
High Limit
Low Limit | Chk Pass | Chk Pass | Chk Pass | Chk Fail
270.00
50000 | Chk Pass | Chk Pass | Chk Pass | | | Sample Name: L1605012103 Acquired: 5/13/2016 19:33:48 Method: ICP-THERMO3_6010_200.7WATER_3YLINES(v872) User: JYH Custom ID1: Custom ID2: Custom Comment: | | | Type: Unk
Mode: CONO
ID3: | C Corr. F | Factor: 1.00000(| | | |---|---|--|---|--|---|--|--| | Elem
Units
Avg
Stddev
%RSD | Sb2068
ppm
00012
.00280
2339.5 | Se1960
ppm
00473
.00729
154.08 | Si2124
ppm
1.7863
.0048
.26975 | Sn1899
ppm
00044
.00023
53.520 | Sr4077
ppm
. 13530
.00010
.07507 | Ti3372
ppm
00432
.00436
101.07 | TI1908
ppm
00118
.00382
323.69 | | #1
#2
#3 | 00324
.00070
.00217 | 00129
01310
.00020 | 1.7810
1.7905
1.7873 | 00063
00051
00018 | .13533
.13519
.13539 | 00010
00881
00403 | 00553
.00042
.00158 | | Check ?
High Limit
Low Limit | Chk Pass | Elem
Units
Avg
Stddev
%RSD | V_2924
ppm
00112
.00053
47.402 | Zn2062
ppm
.00587
.00038
6.4237 | Zr3391
ppm
F 51098
.44357
86.807 | | | | | | #1
#2
#3 | 00122
00159
00054 | .00544
.00610
.00608 | 63571
01841
87883 | | | | | | Check ?
High Limit
Low Limit | Chk Pass | Chk Pass | Chk Fail
36.000
04000 | | | | | | Int. Std.
Units
Avg
Stddev
%RSD | Y_2243
Cts/S
11609.
33.
.28686 | Y_3600
Cts/S
81252.
324.
.39855 | Y_3774
Cts/S
3862.0
31.0
.80280 | | | | | | #1
#2
#3 | 11572.
11637.
11617. | 80936.
81237.
81583. | 3828.3
3868.4
3889.3 | | | | | | Sample Name: CCV Acquired: 5/13/2016 19:37:58 Type: QC Method: ICP-THERMO3_6010_200.7WATER_3YLINES(v872) Mode: CONC Corr. Factor: 1.000000 User: JYH Custom ID1: Custom ID2: Custom ID3: Comment: | | | | | | | | | |--|----------------|----------------|----------------|----------------|----------------|----------------|----------------|--| | Elem | Ag3280 | Al3082 | As1890 | B_2496 | Ba4554 | Be3131 | Ca4226 | | | Units | ppm | | Avg | . 38666 | 9.7483 | . 38921 | . 49038 | . 98521 | . 04909 | 9.8742 | | | Stddev | .00316 | .0144 | .00278 | .00273 | .00290 | .00045 | .0203 | | | %RSD | .81623 | .14808 | .71343 | .55572 | .29473 | .91683 | .20510 | | | #1 | .38900 | 9.7508 | .38647 | .48743 | .98191 | .04877 | 9.8515 | | | #2 | .38790 | 9.7328 | .38914 | .49280 | .98633 | .04961 | 9.8805 | | | #3 | .38307 | 9.7614 | .39202 | .49092 | .98739 | .04891 | 9.8905 | | | Check ?
Value
Range | Chk Pass | | Elem | Cd2288 | Co2286 | Cr2677 | Cu2247 | Fe2611 | K_7664 | Li6707 | | | Units | ppm | | Avg | . 04886 | .19671 | .49001 | . 49083 | 3.9515 | 49.678 | . 97879 | | | Stddev | .00007 | .00045 | .00478 | .00149 | .0379 | .188 | .00335 | | | %RSD | .13766 | .22721 | .97502 | .30395 | .96017 | .37780 | .34201 | | | #2 | .04891 | .19649 | .49463 | .49119 | 3.9913 | 49.756 | .98260 | | | #3 | .04887 | | .48509
| .48919 | 3.9474 | 49.814 | .97750 | | | Check ?
Value
Range | Chk Pass | | Elem | Mg2790 | Mn2576 | Mo2020 | Na5895 | Ni2316 | P_2149 | Pb2203 | | | Units | ppm | | Avg | 9.9393 | . 49364 | . 97209 | 49.515 | . 49381 | 9.7168 | . 49800 | | | Stddev | .1456 | .00302 | .00535 | .062 | .00101 | .0314 | .00524 | | | %RSD | 1.4646 | .61115 | .55031 | .12604 | .20486 | .32302 | 1.0514 | | | #1 | 9.9115 | .49489 | .97694 | 49.449 | .49412 | 9.7511 | .49394 | | | #2 | 10.097 | .49020 | .97297 | 49.573 | .49268 | 9.7098 | .50391 | | | #3 | 9.8096 | .49583 | .96635 | 49.524 | .49463 | 9.6895 | .49614 | | | Check ?
Value
Range | Chk Pass | | Sample Name
Method: ICP-1
User: JYH
Comment: | |)10_200.7W <i>A</i> | 2016 19:37:5
ATER_3YLIN
stom ID2: | • • | Mode: CON | C Corr. F | Factor: 1.000000 | |---|---|---|---|---|---|---|---| | Elem
Units
Avg
Stddev
%RSD | Sb2068
ppm
1.1623
.0078
.66887 | Se1960
ppm
.39042
.00361
.92364 | Si2124
ppm
4.9582
.0065
.13123 | Sn1899
ppm
. 98616
.00322
.32629 | Sr4077
ppm
. 98063
.00309
.31462 | Ti3372
ppm
. 99361
.01124
1.1308 | TI1908
ppm
. 49299
.00099
.20135 | | #1
#2
#3 | 1.1689
1.1643
1.1537 | .39448
.38921
.38758 | 4.9624
4.9614
4.9507 | .98961
.98564
.98323 | .97837
.98415
.97939 | .98467
.98995
1.0062 | .49414
.49248
.49236 | | Check ?
Value
Range | Chk Pass | Elem
Units
Avg
Stddev
%RSD | V_2924
ppm
. 97516
.00597
.61256 | Zn2062
ppm
. 99371
.00187
.18808 | Zr3391
ppm
F56934
.12018
21.108 | | | | | | #1
#2
#3 | .97503
.98121
.96926 | .99570
.99343
.99200 | 64733
43094
62974 | | | | | | Check ?
Value
Range | Chk Pass | Chk Pass | Chk Fail
1.0000
-10.000% | | | | | | Int. Std.
Units
Avg
Stddev
%RSD | Y_2243
Cts/S
12175.
22.
.18455 | Y_3600
Cts/S
86298.
163.
.18874 | Y_3774
Cts/S
3901.5
8.9
.22723 | | | | | | #1
#2
#3 | 12195.
12151.
12180. | 86327.
86445.
86123. | 3894.2
3911.4
3899.0 | | | | | | Sample Name: CCB Acquired: 5/13/2016 19:41:39 Type: Blank Method: ICP-THERMO3_6010_200.7WATER_3YLINES(v872) Mode: CONC Corr. Factor: 1.000000 User: JYH Custom ID1: Custom ID2: Custom ID3: Comment: | | | | | | | | | | |--|----------|----------------|----------------|----------------|----------------|----------------|----------|--|--| | Elem | Ag3280 | Al3082 | As1890 | B_2496 | Ba4554 | Be3131 | Ca4226 | | | | Units | ppm | | | Avg | 00298 | . 00747 | . 00130 | .00231 | . 00155 | .00014 | 01363 | | | | Stddev | .00094 | .00429 | .00073 | .00065 | .00026 | .00007 | .03268 | | | | %RSD | 31.612 | 57.458 | 56.489 | 28.236 | 16.668 | 46.513 | 239.86 | | | | #1 | 00399 | .00991 | .00083 | .00301 | .00164 | .00007 | .02350 | | | | #2 | 00280 | .00251 | .00092 | .00172 | .00176 | .00018 | 02630 | | | | #3 | 00214 | .00999 | .00215 | .00221 | .00126 | .00019 | 03808 | | | | Check ?
High Limit
Low Limit | Chk Pass | | | Elem | Cd2288 | Co2286 | Cr2677 | Cu2247 | Fe2611 | K_7664 | Li6707 | | | | Units | ppm | | | Avg | 00026 | .00022 | . 00129 | 00029 | 00815 | . 16080 | 00242 | | | | Stddev | .00030 | .00022 | .00199 | .00119 | .01413 | .06513 | .00078 | | | | %RSD | 115.64 | 97.989 | 154.16 | 416.79 | 173.31 | 40.505 | 32.053 | | | | #1 | 00051 | .00038 | .00214 | 00026 | 01475 | .09625 | 00326 | | | | #2 | 00033 | .00030 | .00271 | 00149 | 01777 | .22650 | 00174 | | | | #3 | .00007 | 00003 | 00098 | .00089 | .00807 | .15965 | 00226 | | | | Check ?
High Limit
Low Limit | Chk Pass | | | Elem | Mg2790 | Mn2576 | Mo2020 | Na5895 | Ni2316 | P_2149 | Pb2203 | | | | Units | ppm | | | Avg | 19745 | 00321 | . 00446 | . 04180 | . 00118 | 00028 | 00185 | | | | Stddev | .04029 | .00382 | .00051 | .01467 | .00124 | .00192 | .00056 | | | | %RSD | 20.407 | 119.10 | 11.463 | 35.094 | 105.48 | 688.55 | 29.970 | | | | #1 | 20519 | 00158 | .00395 | .05598 | .00260 | 00058 | 00122 | | | | #2 | 23331 | 00758 | .00447 | .02668 | .00030 | .00177 | 00227 | | | | #3 | 15384 | 00048 | .00497 | .04274 | .00063 | 00203 | 00206 | | | | Check ?
High Limit
Low Limit | Chk Pass | | | Sample Name: CCB Acquired: 5/13/2016 19:41:39 Type: Blank Method: ICP-THERMO3_6010_200.7WATER_3YLINES(v872) Mode: CONC Corr. Factor: 1.00000 User: JYH Custom ID1: Custom ID2: Custom ID3: Comment: | | | | | | | | | | |---|---|---|---|---|--|--|---|--|--| | Elem
Units
Avg
Stddev
%RSD | Sb2068
ppm
. 00678
.00418
61.611 | Se1960
ppm
. 00483
.00319
66.109 | Si2124
ppm
. 00471
.00236
49.998 | Sn1899
ppm
. 00047
.00063
133.31 | Sr4077
ppm
00006
.00022
340.00 | Ti3372
ppm
00129
.00310
241.21 | TI1908
ppm
. 00149
.00256
172.24 | | | | #1
#2
#3 | .00320
.00577
.01137 | .00290
.00307
.00851 | .00243
.00714
.00458 | 00025
.00075
.00091 | 00024
00014
.00018 | .00110
00016
00479 | .00303
.00289
00147 | | | | Check ?
High Limit
Low Limit | Chk Pass | | | Elem
Units
Avg
Stddev
%RSD | V_2924
ppm
. 00110
.00082
74.521 | Zn2062
ppm
.00019
.00009
47.759 | Zr3391
ppm
F23160
.60083
259.43 | | | | | | | | #1
#2
#3 | .00205
.00055
.00072 | .00024
.00025
.00009 | .40172
30294
79358 | | | | | | | | Check ?
High Limit
Low Limit | Chk Pass | Chk Pass | Chk Fail
.04000
04000 | | | | | | | | Int. Std.
Units
Avg
Stddev
%RSD | Y_2243
Cts/S
12245.
10.
.07925 | Y_3600
Cts/S
88152.
590.
.66975 | Y_3774
Cts/S
3844.9
48.3
1.2549 | | | | | | | | #1
#2
#3 | 12243.
12255.
12236. | 87477.
88570.
88410. | 3791.7
3857.3
3885.8 | | | | | | | | Sample Name
Method: ICP-T
User: JYH
Comment: | |)10_200.7W | red: 5/13/2010
ATER_3YLINI
stom ID2: | | Type: Unk Mode: CONC Corr. Factor: 1.00 ID3: | | | |---|----------------|---------------|--|-----------------------------|--|----------------|----------------| | Elem | Ag3280 | Al3082 | As1890 | B_2496 | Ba4554 | Be3131 | Ca4226 | | Units | ppm | Avg | . 12679 | 74.566 | 00095 | 26.676 | . 00341 | .00093 | . 54982 | | Stddev | .00117 | .022 | .00250 | .024 | .00057 | .00006 | .01332 | | %RSD | .92494 | .02949 | 261.55 | .09119 | 16.699 | 6.5802 | 2.4229 | | #1 | .12564 | 74.579 | 00365 | 26.652 | .00371 | .00096 | .54880 | | #2 | .12674 | 74.541 | 00048 | 26.676 | .00275 | .00086 | .53704 | | #3 | .12799 | 74.579 | .00127 | 26.700 | .00377 | .00096 | .56362 | | Check ?
High Limit
Low Limit | Chk Pass | Elem | Cd2288 | Co2286 | Cr2677 | Cu2247 | Fe2611 | K_7664 | Li6707 | | Units | ppm | Avg | 00013 | .00141 | . 00662 | .00582 | . 07577 | 36.227 | 00092 | | Stddev | .00032 | .00019 | .00218 | .00164 | .02445 | .250 | .00355 | | %RSD | 246.51 | 13.804 | 32.976 | 28.119 | 32.270 | .69024 | 384.36 | | #1 | 00023 | .00135 | .00612 | .00403 | .07501 | 36.163 | 00493 | | #2 | .00023 | .00125 | .00473 | .00724 | .05170 | 36.503 | .00030 | | #3 | 00039 | .00163 | .00901 | .00617 | .10059 | 36.015 | .00185 | | Check ?
High Limit
Low Limit | Chk Pass | Elem | Mg2790 | Mn2576 | Mo2020 | Na5895 | Ni2316 | P_2149 | Pb2203 | | Units | ppm | Avg | . 00953 | 00047 | . 00145 | F 338.31 | . 00627 | . 04748 | 00197 | | Stddev | .07148 | .00330 | .00021 | 1.42 | .00083 | .00352 | .00208 | | %RSD | 749.96 | 699.29 | 14.743 | .41845 | 13.268 | 7.4060 | 105.33 | | #1 | .05227 | .00003 | .00124 | 339.52 | .00618 | .05046 | 00398 | | #2 | .04931 | .00255 | .00146 | 338.66 | .00548 | .04838 | .00017 | | #3 | 07299 | 00400 | .00166 | 336.76 | .00714 | .04360 | 00210 | | Check ?
High Limit
Low Limit | Chk Pass | Chk Pass | Chk Pass | Chk Fail
270.00
50000 | Chk Pass | Chk Pass | Chk Pass | | Sample Name
Method: ICP-1
User: JYH
Comment: | red: 5/13/2010
ATER_3YLIN
stom ID2: | | Type: Unk
Mode: CONO
ID3: | C Corr. F | Factor: 1.00000(| | | |---|---|---|--|--
---|---|---| | Elem
Units
Avg
Stddev
%RSD | Sb2068
ppm
. 00164
.00682
414.58 | Se1960
ppm
00153
.00133
87.244 | Si2124
ppm
.29718
.00424
1.4280 | Sn1899
ppm
00153
.00143
93.391 | Sr4077
ppm
. 00346
.00041
11.776 | Ti3372
ppm
. 00407
.00780
191.53 | TI1908
ppm
. 00096
.00251
261.40 | | #1
#2
#3 | 00611
.00437
.00668 | 00307
00079
00073 | .29656
.30170
.29328 | 00014
00145
00300 | .00311
.00391
.00338 | .00481
00407
.01148 | 00187
.00292
.00184 | | Check ?
High Limit
Low Limit | Chk Pass | Elem
Units
Avg
Stddev
%RSD | V_2924
ppm
.00036
.00082
230.92 | Zn2062
ppm
. 02535
.00027
1.0781 | Zr3391
ppm
F37745
.39914
105.75 | | | | | | #1
#2
#3 | 00037
.00020
.00124 | .02564
.02530
.02510 | 81384
03086
28764 | | | | | | Check ?
High Limit
Low Limit | Chk Pass | Chk Pass | Chk Fail
36.000
04000 | | | | | | Int. Std.
Units
Avg
Stddev
%RSD | Y_2243
Cts/S
12082.
63.
.52524 | Y_3600
Cts/S
84505.
520.
.61556 | Y_3774
Cts/S
3928.2
42.4
1.0797 | | | | | | #1
#2
#3 | 12028.
12067.
12152. | 84519.
85018.
83978. | 3910.1
3897.9
3976.7 | | | | | | Sample Name: +0.5 PPM AG Acquired: 5/13/2016 19:49:46 Type: Unk Method: ICP-THERMO3_6010_200.7WATER_3YLINES(v872) Mode: CONC Corr. Factor: 1.000000 User: JYH Custom ID1: 2 Custom ID2: Custom ID3: Comment: | | | | | | | | | | | |---|----------------|----------------|----------------|-----------------------------|----------------|----------------|----------------|--|--|--| | Elem | Ag3280 | Al3082 | As1890 | B_2496 | Ba4554 | Be3131 | Ca4226 | | | | | Units | ppm | | | | Avg | . 61614 | 75.115 | .00275 | 26.926 | . 00196 | .00084 | . 53308 | | | | | Stddev | .00482 | .077 | .00171 | .040 | .00173 | .00002 | .01748 | | | | | %RSD | .78286 | .10288 | 62.239 | .14776 | 88.631 | 2.3116 | 3.2785 | | | | | #1 | .61407 | 75.027 | .00413 | 26.882 | .00176 | .00084 | .51616 | | | | | #2 | .62165 | 75.142 | .00084 | 26.958 | .00378 | .00081 | .55107 | | | | | #3 | .61269 | 75.174 | .00329 | 26.939 | .00033 | .00085 | .53200 | | | | | Check ?
High Limit
Low Limit | Chk Pass | | | | Elem | Cd2288 | Co2286 | Cr2677 | Cu2247 | Fe2611 | K_7664 | Li6707 | | | | | Units | ppm | | | | Avg | 00009 | .00120 | .00723 | .00635 | .07209 | 36.194 | . 00268 | | | | | Stddev | .00023 | .00018 | .00143 | .00058 | .03965 | .235 | .00224 | | | | | %RSD | 267.49 | 15.113 | 19.840 | 9.0630 | 55.004 | .65044 | 83.532 | | | | | #1 | 00015 | .00101 | .00818 | .00574 | .11101 | 35.961 | .00494 | | | | | #2 | 00028 | .00137 | .00558 | .00689 | .07351 | 36.432 | .00046 | | | | | #3 | .00017 | .00122 | .00793 | .00642 | .03175 | 36.189 | .00265 | | | | | Check ?
High Limit
Low Limit | Chk Pass | | | | Elem | Mg2790 | Mn2576 | Mo2020 | Na5895 | Ni2316 | P_2149 | Pb2203 | | | | | Units | ppm | | | | Avg | . 10076 | . 00226 | . 00092 | F 337.00 | . 00630 | . 04208 | 00136 | | | | | Stddev | .10984 | .00376 | .00065 | 1.51 | .00161 | .00189 | .00332 | | | | | %RSD | 109.01 | 166.00 | 71.130 | .44801 | 25.508 | 4.5019 | 244.17 | | | | | #1 | .06234 | .00402 | .00019 | 335.87 | .00673 | .04402 | 00502 | | | | | #2 | .22465 | 00205 | .00145 | 338.71 | .00452 | .04198 | .00145 | | | | | #3 | .01530 | .00482 | .00111 | 336.41 | .00765 | .04023 | 00051 | | | | | Check ?
High Limit
Low Limit | Chk Pass | Chk Pass | Chk Pass | Chk Fail
270.00
50000 | Chk Pass | Chk Pass | Chk Pass | | | | | Sample Nam
Method: ICP-
User: JYH
Comment: | THERMO3_ | 6010_200.7 | juired: 5/13/2
WATER_3YI
Custom ID2: | LINES(v872) | | | Corr. Factor: 1.00000(| |---|---|---|---|--|---|---|---| | Elem
Units
Avg
Stddev
%RSD | Sb2068
ppm
00222
.00306
138.34 | Se1960
ppm
.00070
.00043
61.821 | Si2124
ppm
.29683
.00223
.75263 | Sn1899
ppm
00026
.00124
478.67 | Sr4077
ppm
. 00363
.00023
6.2919 | Ti3372
ppm
. 01040
.00355
34.129 | TI1908
ppm
. 00096
.00210
217.43 | | #1
#2
#3 | 00157
00555
.00047 | .00075
.00024
.00110 | .29520
.29938
.29592 | 00115
00078
.00116 | .00368
.00382
.00337 | .00764
.00915
.01440 | .00289
.00127
00127 | | Check ?
High Limit
Low Limit | Chk Pass | Elem
Units
Avg
Stddev
%RSD | V_2924
ppm
.00083
.00060
73.122 | Zn2062
ppm
. 02529
.00026
1.0412 | Zr3391
ppm
. 14990
.89984
600.29 | | | | | | #1
#2
#3 | .00113
.00013
.00122 | .02518
.02559
.02511 | 85500
.42356
.88115 | | | | | | Check ?
High Limit
Low Limit | Chk Pass | Chk Pass | Chk Pass | | | | | | Int. Std.
Units
Avg
Stddev
%RSD | Y_2243
Cts/S
11954.
23.
.19424 | Y_3600
Cts/S
84405 .
718.
.85059 | Y_3774
Cts/S
3911.6
51.2
1.3086 | | | | | | #1
#2
#3 | 11973.
11928.
11962. | 85201.
83806.
84207. | 3967.8
3867.7
3899.4 | | | | | | Sample Name: +1 PPM AG Acquired: 5/13/2016 19:53:47 Type: Unk Method: ICP-THERMO3_6010_200.7WATER_3YLINES(v872) Mode: CONC User: JYH Custom ID1: Custom ID2: Custom ID3: Comment: | | | | | | | Factor: 1.00000(| |---|----------------|----------------|----------------|-----------------------------|----------------|----------------|------------------| | Elem | Ag3280 | Al3082 | As1890 | B_2496 | Ba4554 | Be3131 | Ca4226 | | Units | ppm | Avg | . 82889 | 75.059 | .00353 | 26.920 | . 00240 | .00086 | . 54631 | | Stddev | .00503 | .023 | .00245 | .049 | .00013 | .00001 | .00405 | | %RSD | .60649 | .03062 | 69.300 | .18307 | 5.5745 | 1.7395 | .74213 | | #1 | .83065 | 75.035 | .00499 | 26.942 | .00225 | .00086 | .54693 | | #2 | .82321 | 75.060 | .00071 | 26.863 | .00245 | .00085 | .55002 | | #3 | .83279 | 75.081 | .00491 | 26.953 | .00251 | .00087 | .54199 | | Check ?
High Limit
Low Limit | Chk Pass | Elem | Cd2288 | Co2286 | Cr2677 | Cu2247 | Fe2611 | K_7664 | Li6707 | | Units | ppm | Avg | 00015 | .00151 | . 00710 | . 00602 | . 07342 | 36.241 | . 00412 | | Stddev | .00043 | .00050 | .00111 | .00100 | .00778 | .130 | .00078 | | %RSD | 292.51 | 32.890 | 15.637 | 16.656 | 10.600 | .35850 | 18.931 | | #1 | 00043 | .00178 | .00701 | .00593 | .07043 | 36.379 | .00371 | | #2 | .00035 | .00182 | .00604 | .00507 | .06758 | 36.223 | .00502 | | #3 | 00036 | .00094 | .00825 | .00707 | .08225 | 36.121 | .00364 | | Check ?
High Limit
Low Limit | Chk Pass | Elem | Mg2790 | Mn2576 | Mo2020 | Na5895 | Ni2316 | P_2149 | Pb2203 | | Units | ppm | Avg | . 07062 | . 00380 | . 00041 | F 337.24 | . 00551 | . 04656 | 00157 | | Stddev | .10162 | .00184 | .00046 | .92 | .00056 | .00535 | .00404 | | %RSD | 143.90 | 48.391 | 113.07 | .27392 | 10.109 | 11.483 | 258.03 | | #1 | .13532 | .00461 | .00046 | 338.28 | .00568 | .05029 | .00104 | | #2 | 04651 | .00170 | 0008 | 336.51 | .00596 | .04043 | 00622 | | #3 | .12304 | .00511 | .00084 | 336.94 | .00488 | .04895 | .00048 | | Check ?
High Limit
Low Limit | Chk Pass | Chk Pass | Chk Pass | Chk Fail
270.00
50000 | Chk Pass | Chk Pass | Chk Pass | | Sample Name: +1 PPM AG Acquired: 5/13/2016 19:53:47 Method: ICP-THERMO3_6010_200.7WATER_3YLINES(v872) User: JYH Custom ID12 Custom ID2: Custom Comment: | | | | | Type: Unk
Mode: CON0
ID3: | C Corr. F | Factor: 1.00000(| |---|---|---|---|--|---|---|--| | Elem
Units
Avg
Stddev
%RSD | Sb2068
ppm
. 00097
.00422
435.67 | Se1960
ppm
00481
.00335
69.754 | Si2124
ppm
. 29649
.00222
.75024 | Sn1899
ppm
00000
.00069
14238. | Sr4077
ppm
. 00385
.00040
10.445 | Ti3372
ppm
. 00396
.00482
121.60 | TI1908
ppm
00077
.00297
384.41 | | #1
#2
#3 | 00385
.00276
.00400 | 00818
00147
00477 | .29615
.29445
.29886 | .00065
.00005
00072 | .00388
.00424
.00344 | 00060
.00900
.00348 | .00156
00412
.00024 | | Check ?
High Limit
Low Limit | Chk Pass | Elem
Units
Avg
Stddev
%RSD |
V_2924
ppm
.00075
.00099
132.39 | Zn2062
ppm
. 02564
.00031
1.1977 | Zr3391
ppm
F24066
.67211
279.28 | | | | | | #1
#2
#3 | .00161
00033
.00097 | .02572
.02590
.02530 | 46586
.51513
77125 | | | | | | Check ?
High Limit
Low Limit | Chk Pass | Chk Pass | Chk Fail
36.000
04000 | | | | | | Int. Std.
Units
Avg
Stddev
%RSD | Y_2243
Cts/S
11945.
28.
.23697 | Y_3600
Cts/S
84097.
657.
.78079 | Y_3774
Cts/S
3951.7
35.8
.90606 | | | | | | #1
#2
#3 | 11954.
11913.
11968. | 84852.
83779.
83660. | 3912.8
3959.2
3983.2 | | | | | | Sample Name: +1.5 PPM AG Acquired: 5/13/2016 19:57:48 Type: Unk Method: ICP-THERMO3_6010_200.7WATER_3YLINES(v872) Mode: CONC Corr. Factor: 1. User: JYH Custom ID1: 2 Custom ID2: Custom ID3: Comment: | | | | | | | Factor: 1.00000(| |---|----------------|---------------|----------------|-----------------------------|----------------|----------------|------------------| | Elem | Ag3280 | Al3082 | As1890 | B_2496 | Ba4554 | Be3131 | Ca4226 | | Units | ppm | Avg | 1.0420 | 75.471 | .00366 | 27.265 | . 00194 | .00086 | . 54849 | | Stddev | .0133 | .117 | .00188 | .041 | .00030 | .00008 | .02933 | | %RSD | 1.2724 | .15487 | 51.254 | .15212 | 15.214 | 9.1711 | 5.3476 | | #1 | 1.0295 | 75.518 | .00184 | 27.220 | .00210 | .00081 | .51826 | | #2 | 1.0559 | 75.558 | .00560 | 27.303 | .00213 | .00095 | .57684 | | #3 | 1.0407 | 75.338 | .00355 | 27.271 | .00160 | .00081 | .55036 | | Check ?
High Limit
Low Limit | Chk Pass | Elem | Cd2288 | Co2286 | Cr2677 | Cu2247 | Fe2611 | K_7664 | Li6707 | | Units | ppm | Avg | 00023 | .00127 | . 00707 | .00575 | . 06671 | 36.441 | . 00267 | | Stddev | .00039 | .00013 | .00077 | .00180 | .01984 | .155 | .00393 | | %RSD | 168.73 | 10.023 | 10.883 | 31.289 | 29.744 | .42637 | 147.23 | | #1 | 00011 | .00138 | .00644 | .00514 | .04380 | 36.556 | .00675 | | #2 | .00008 | .00129 | .00793 | .00434 | .07775 | 36.504 | .00234 | | #3 | 00067 | .00113 | .00685 | .00778 | .07858 | 36.265 | 00108 | | Check ?
High Limit
Low Limit | Chk Pass | Elem | Mg2790 | Mn2576 | Mo2020 | Na5895 | Ni2316 | P_2149 | Pb2203 | | Units | ppm | Avg | . 08836 | .00004 | . 00091 | F 339.40 | . 00566 | . 05226 | 00237 | | Stddev | .05434 | .00310 | .00015 | 1.60 | .00100 | .00662 | .00027 | | %RSD | 61.499 | 8110.0 | 16.259 | .47178 | 17.654 | 12.663 | 11.572 | | #1 | .03891 | 00074 | .00075 | 341.14 | .00677 | .04971 | 00213 | | #2 | .07962 | 00260 | .00095 | 339.05 | .00538 | .04730 | 00267 | | #3 | .14653 | .00346 | .00104 | 338.00 | .00483 | .05977 | 00230 | | Check ?
High Limit
Low Limit | Chk Pass | Chk Pass | Chk Pass | Chk Fail
270.00
50000 | Chk Pass | Chk Pass | Chk Pass | | Sample Name: +1.5 PPM AG Acquired: 5/13/2016 19:57:48 Method: ICP-THERMO3_6010_200.7WATER_3YLINES(v872) User: JYH Custom ID1: 2 Custom ID2: Custom I Comment: | | | | | Type: Unk
Mode: CONO
ID3: | C Corr. F | Factor: 1.00000(| |--|---|---|---|---|---|---|--| | Elem
Units
Avg
Stddev
%RSD | Sb2068
ppm
. 00109
.00391
357.72 | Se1960
ppm
00150
.01376
918.50 | Si2124
ppm
. 30066
.00267
.88702 | Sn1899
ppm
. 00008
.00065
791.08 | Sr4077
ppm
.00384
.00014
3.5391 | Ti3372
ppm
. 00315
.00352
111.72 | TI1908
ppm
00020
.00043
215.73 | | #1
#2
#3 | 00172
00056
.00556 | .01035
01660
.00176 | .30374
.29923
.29902 | .00056
.00033
00065 | .00368
.00391
.00392 | 00034
.00670
.00309 | .00011
00002
00069 | | Check ?
High Limit
Low Limit | Chk Pass | Elem
Units
Avg
Stddev
%RSD | V_2924
ppm
. 00027
.00005
17.027 | Zn2062
ppm
. 02640
.00013
.50885 | Zr3391
ppm
F04139
.57919
1399.4 | | | | | | #1
#2
#3 | .00032
.00024
.00024 | .02628
.02638
.02654 | 41307
.62596
33706 | | | | | | Check ?
High Limit
Low Limit | Chk Pass | Chk Pass | Chk Fail
36.000
04000 | | | | | | Int. Std.
Units
Avg
Stddev
%RSD | Y_2243
Cts/S
11975.
137.
1.1428 | Y_3600
Cts/S
84005.
735.
.87543 | Y_3774
Cts/S
3905.9
51.4
1.3152 | | | | | | #1
#2
#3 | 12115.
11968.
11841. | 83445.
83731.
84838. | 3872.2
3880.4
3965.0 | | | | | | Sample Name: L1605012104 Acquired: 5/13/2016 20:01:49 Type: Unk Method: ICP-THERMO3_6010_200.7WATER_3YLINES(v872) Mode: CONC Corr. Factor: 1.000000 User: JYH Custom ID1: Custom ID2: Custom ID3: Comment: | | | | | | | | | | | |---|----------------|----------------|----------------|-----------------------------|----------------|----------------|----------------|--|--|--| | Elem | Ag3280 | Al3082 | As1890 | B_2496 | Ba4554 | Be3131 | Ca4226 | | | | | Units | ppm | | | | Avg | . 04475 | . 10144 | .00483 | . 23716 | . 00851 | . 00009 | 25.913 | | | | | Stddev | .00261 | .00618 | .00098 | .00941 | .00099 | .00011 | .086 | | | | | %RSD | 5.8325 | 6.0922 | 20.345 | 3.9686 | 11.680 | 127.35 | .33125 | | | | | #1 | .04178 | .09672 | .00377 | .24696 | .00926 | .00020 | 25.898 | | | | | #2 | .04579 | .10843 | .00500 | .23634 | .00738 | .00009 | 26.006 | | | | | #3 | .04668 | .09916 | .00571 | .22819 | .00889 | 00003 | 25.836 | | | | | Check ?
High Limit
Low Limit | Chk Pass | | | | Elem | Cd2288 | Co2286 | Cr2677 | Cu2247 | Fe2611 | K_7664 | Li6707 | | | | | Units | ppm | | | | Avg | . 00004 | . 02800 | .00131 | .00180 | .01741 | 2.9931 | 3.6581 | | | | | Stddev | .00017 | .00037 | .00079 | .00094 | .01455 | .0779 | .0115 | | | | | %RSD | 414.47 | 1.3335 | 60.740 | 51.877 | 83.553 | 2.6025 | .31547 | | | | | #1 | 00011 | .02813 | .00138 | .00073 | .01993 | 3.0240 | 3.6610 | | | | | #2 | .00001 | .02758 | .00206 | .00240 | .03054 | 3.0508 | 3.6679 | | | | | #3 | .00022 | .02828 | .00048 | .00228 | .00177 | 2.9045 | 3.6454 | | | | | Check ?
High Limit
Low Limit | Chk Pass | | | | Elem | Mg2790 | Mn2576 | Mo2020 | Na5895 | Ni2316 | P_2149 | Pb2203 | | | | | Units | ppm | | | | Avg | 6.8345 | 00214 | . 19827 | F 504.92 | . 04176 | 2.9825 | . 00014 | | | | | Stddev | .0746 | .00085 | .00087 | 12.57 | .00072 | .0171 | .00283 | | | | | %RSD | 1.0921 | 39.702 | .43831 | 2.4896 | 1.7245 | .57405 | 2040.1 | | | | | #1 | 6.7748 | 00137 | .19868 | 510.97 | .04259 | 3.0012 | .00068 | | | | | #2 | 6.8106 | 00305 | .19886 | 513.31 | .04142 | 2.9676 | .00266 | | | | | #3 | 6.9182 | 00199 | .19727 | 490.46 | .04128 | 2.9786 | 00292 | | | | | Check ?
High Limit
Low Limit | Chk Pass | Chk Pass | Chk Pass | Chk Fail
270.00
50000 | Chk Pass | Chk Pass | Chk Pass | | | | | Sample Nam
Method: ICP-
User: JYH
Comment: | | 6010_200.7 | juired: 5/13/2
WATER_3Y
Custom ID2: | LINES(v872) | | | Corr. Factor: 1.00000(| | |---|---|--|---|--|---|--|--|--| | Elem
Units
Avg
Stddev
%RSD | Sb2068
ppm
. 00112
.00289
257.73 | Se1960
ppm
00201
.00561
278.92 | Si2124
ppm
1.7408
.0048
.27508 | Sn1899
ppm
00010
.00079
797.27 | Sr4077
ppm
. 12517
.00066
.52866 | Ti3372
ppm
00431
.00391
90.606 | TI1908
ppm
00129
.00059
46.017 | | | #1
#2
#3 | 00048
00062
.00446 | 00713
00290
.00399 | 1.7374
1.7463
1.7388 | 00091
.00068
00007 | .12522
.12581
.12449 | 00670
.00020
00643 | 00065
00139
00182 | | | Check ?
High Limit
Low Limit | Chk Pass | | Elem
Units
Avg
Stddev
%RSD | V_2924
ppm
00024
.00052
219.52 | Zn2062
ppm
.00881
.00020
2.2766 | Zr3391
ppm
. 26919
.34986
129.97 | | | | | | | #1
#2
#3 | .00032
00033
00071 | .00865
.00903
.00873 | 00529
.66313
.14972 | | | | | | | Check ?
High Limit
Low Limit | Chk Pass | Chk Pass | Chk Pass | | | | | | | Int. Std.
Units
Avg
Stddev
%RSD | Y_2243
Cts/S
11569.
71.
.61733 | Y_3600
Cts/S
81307.
308.
.37868 | Y_3774
Cts/S
3892.2
57.4
1.4755 | | | | | | | #1
#2
#3 | 11492.
11580.
11633. | 80955.
81529.
81436. | 3885.2
3838.6
3952.8 | | | | | | Sample Name: L1605012104PS Acquired: 5/13/2016 20:05:54 Type: Unk Method: ICP-THERMO3_6010_200.7WATER_3YLINES(v872) Mode: CONC Corr. Factor: 1.000000 User:
JYH Custom ID1: Custom ID2: Custom ID3: Comment: WG568231-01 | | | | | | | - 0.00 | | | |------------------------------------|--------------------------|--------------------------|--------------------------|-----------------------------|--------------------------|------------------------|------------------------|--| | Elem
Units | Ag3280
ppm | Al3082
ppm | As1890
ppm | B_2496
ppm | Ba4554
ppm | Be3131
ppm | Ca4226
ppm | | | Avg | .19726 | 4.9664 | .19835 | 1.1315 | .49554 | .02482 | 27.940 | | | Stddev | .00305 | .0125 | .00330 | .0069 | .00190 | .00008 | .202 | | | %RSD | 1.5477 | .25084 | 1.6625 | .60943 | .38339 | .33594 | .72423 | | | #1 | .20036 | 4.9785 | .19849 | 1.1358 | .49445 | .02492 | 27.922 | | | #2 | .19425 | 4.9671 | .20158 | 1.1352 | .49443 | .02478 | 27.748 | | | #3 | .19716 | 4.9536 | .19499 | 1.1235 | .49773 | .02476 | 28.151 | | | Check ?
High Limit | Chk Pass | | Low Limit | | | | | | | | | | Elem | Cd2288 | Co2286 | Cr2677 | Cu2247 | Fe2611 | K 7664 | Li6707 | | | Units | ppm | ppm | ppm | ppm | ppm | _ ppm | ppm | | | Avg
Stddev | . 02434
.00020 | . 12204
.00034 | . 24503
.00120 | . 24341
.00075 | 1.9576
.0267 | 28.029
.071 | 3.7843
.0193 | | | %RSD | .83128 | .27725 | .49078 | .30884 | 1.3663 | .25350 | .50932 | | | 701.02 | | | | | | | | | | #1
#2 | .02442 | .12225 | .24373 | .24379 | 1.9401 | 28.061 | 3.7732 | | | #2
#3 | .02411
.02450 | .12222
.12165 | .24526
.24610 | .24391
.24255 | 1.9884
1.9443 | 27.948
28.079 | 3.7732
3.8066 | | | | .02.100 | | .21010 | .21200 | 1.0110 | 20.070 | 0.0000 | | | Check ?
High Limit
Low Limit | Chk Pass | | Elem | Mg2790 | Mn2576 | Mo2020 | Na5895 | Ni2316 | P_2149 | Pb2203 | | | Units | ppm | ppm | ppm | ppm | ppm | _ ppm | ppm | | | Avg | 11.186 | .24165 | . 67861 | F 480.54 | . 28051
.00015 | 7.6539
.0166 | .23891 | | | Stddev
%RSD | .179
1.6047 | .00611
2.5298 | .00095
.14017 | 1.04
.21684 | .05360 | .21711 | .00263
1.1027 | | | 701.102 | | | | | | | 1.1027 | | | #1 | 11.129 | .24690 | .67761 | 480.75 | .28052 | 7.6360 | .23782 | | | #2
#3 | 11.041
11.387 | .24311
.23494 | .67950
.67872 | 479.41
481.47 | .28035
.28065 | 7.6688
7.6569 | .23699
.24191 | | | #0 | 11.007 | .20404 | .07072 | 401.47 | .20000 | 7.0003 | .24101 | | | Check ?
High Limit
Low Limit | Chk Pass | Chk Pass | Chk Pass | Chk Fail
270.00
50000 | Chk Pass | Chk Pass | Chk Pass | | Sample Name: L1605012104PS Acquired: 5/13/2016 20:05:54 Type: Unk Method: ICP-THERMO3_6010_200.7WATER_3YLINES(v872) Mode: CONC Corr. Factor: 1.000000 User: JYH Custom ID1: Custom ID2: Custom ID3: Comment: WG568231-01 Sb2068 Se1960 Si2124 Sn1899 Sr4077 Ti3372 TI1908 Elem Units ppm ppm ppm ppm ppm ppm ppm .19014 .49371 .49591 .22833 Avg .59284 4.1013 .60361 Stddev .00339 .01010 .0062 .00123 .00226 .00498 .00439 %RSD .57129 5.3097 .15178 .24970 .37431 1.0042 1.9209 #1 .58907 .19798 4.0947 .49268 .60126 .49065 .23002 #2 .59381 .19371 4.1023 .49508 .60382 .50055 .22335 #3 .59563 .17875 4.1070 .49337 .60576 .49653 .23162 **Chk Pass** Check? Chk Pass Chk Pass Chk Pass Chk Pass Chk Pass **Chk Pass** High Limit Low Limit Elem V_2924 Zn2062 Zr3391 Units ppm ppm ppm .49687 .50797 .69628 Avg .00142 .00048 .98653 Stddev %RSD .28531 .09419 141.69 #1 .49535 .50788 -.05162 #2 .49709 .50848 .32610 #3 1.8144 .49816 .50754 Check? Chk Pass Chk Pass Chk Pass High Limit Low Limit Int. Std. Y_2243 Y_3600 Y_3774 Units Cts/S Cts/S Cts/S 11546. 81287. 3853.9 Avg Stddev 315. 44.0 13. .38695 %RSD .10836 1.1414 #1 11553. 80985. 3893.3 3861.8 #2 11531. 81263. 3806.4 Approved: May 16, 2016 #3 11553. 81613. Sample Name: L1605012104SDL Acquired: 5/13/2016 20:09:40 Type: Unk Method: ICP-THERMO3_6010_200.7WATER_3YLINES(v872) Mode: CONC Corr. Factor: 1.000000 User: JYH Custom ID1: 5 Custom ID2: Custom ID3: Comment: WG568231-02 Al3082 As1890 B_2496 Ba4554 Be3131 Ca4226 Elem Ag3280 Units ppm ppm ppm ppm ppm ppm ppm .02679 .00323 Avg -.00148 .00138 .06205 .00011 4.7775 Stddev .00078 .00602 .00313 .00350 .00055 .00014 .0188 %RSD 52.656 22.485 227.56 5.6422 16.997 124.06 .39396 .03154 #1 -.00128 .00067 .06344 -.00001 .00271 4.7797 #2 -.00233 .02883 -.00134 .06464 .00380 .00026 4.7576 #3 -.00082 .02002 .00480 .05806 .00317 .00008 4.7950 **Chk Pass** Check? Chk Pass **Chk Pass** Chk Pass **Chk Pass Chk Pass Chk Pass High Limit** Low Limit Elem Cd2288 Co2286 Cr2677 Cu2247 Fe2611 K_7664 Li6707 Units ppm ppm ppm ppm ppm ppm ppm -.00020 .00575 .00077 -.00109 F -.03301 Avg .66511 .69669 .00031 .00011 .00059 Stddev .00041 .03127 .11032 .00171 %RSD 154.71 1.8736 52.895 53.674 94.743 16.587 .24582 #1 -.00046 .00579 .00108 -.00045 -.05802 .78200 .69479 #2 .00014 .00584 .00091 -.00124 .00205 .56282 .69717 .00563 .00031 #3 -.00028 -.00159 -.04305 .65050 .69812 Check? **Chk Pass** Chk Pass **Chk Pass Chk Pass** Chk Fail **Chk Pass Chk Pass** High Limit 720.00 Low Limit -.02000 Mo2020 Elem Mg2790 Mn2576 Na5895 Ni2316 P_2149 Pb2203 Units ppm ppm ppm ppm ppm ppm ppm 1.2838 -.00107 .03636 95.625 .00760 .54656 -.00141 Avg .00235 .00036 .00016 .00109 .00351 Stddev .1218 .086 %RSD 2.1360 9.4841 220.90 .99348 .09001 .19889 248.61 #1 1.1995 .00122 .03624 95.665 .00766 .54534 .00264 1.4234 -.00094 .00741 .54743 #2 .03677 95.526 -.00331 #3 1.2284 -.00348 .03607 95.684 .00772 .54692 -.00357 Check? **Chk Pass Chk Pass Chk Pass Chk Pass Chk Pass Chk Pass Chk Pass** High Limit Approved: May 16, 2016 Low Limit | Method: ICP-
User: JYH | Sample Name: L1605012104SDL Acquired: 5/13/2016 20:09:40 Type: Unk Method: ICP-THERMO3_6010_200.7WATER_3YLINES(v872) Mode: CONC Corr. Factor: 1.000000 User: JYH Custom ID1: 5 Custom ID2: Custom ID3: Comment: WG568231-02 | | | | | | | | | |---|--|---|---|--|---|--|---|--|--| | Elem
Units
Avg
Stddev
%RSD | Sb2068
ppm
. 00318
.00258
81.273 | Se1960
ppm
.00066
.00715
1075.5 | Si2124
ppm
. 29437
.00303
1.0291 | Sn1899
ppm
00041
.00047
115.75 | Sr4077
ppm
. 02291
.00022
.95004 | Ti3372
ppm
00314
.01097
348.73 | TI1908
ppm
. 00015
.00245
1616.3 | | | | #1
#2
#3 | .00044
.00557
.00353 | .00850
00552
00099 | .29773
.29353
.29185 | 00060
00076
.00013 | .02313
.02269
.02291 | 00923
00972
.00952 | 00199
.00283
00039 | | | | Check ?
High Limit
Low Limit | Chk Pass | | | Elem
Units
Avg
Stddev
%RSD | V_2924
ppm
. 00020
.00084
419.78 | Zn2062
ppm
. 00230
.00017
7.4974 | Zr3391
ppm
F13032
.48053
368.72 | | | | | | | | #1
#2
#3 | 00072
.00040
.00093 | .00250
.00221
.00219 | 15096
60020
.36019 | | | | | | | | Check ?
High Limit
Low Limit | Chk Pass | Chk Pass | Chk Fail
36.000
04000 | | | | | | | | Int. Std.
Units
Avg
Stddev
%RSD | Y_2243
Cts/S
11810.
37.
.31303 | Y_3600
Cts/S
84536.
733.
.86702 | Y_3774
Cts/S
3772.2
34.8
.92293 | | | | | | | | #1
#2
#3 | 11851.
11801.
11779. | 85200.
84659.
83749. | 3812.1
3748.1
3756.3 | | | | | | | | • | | | | | | | | | | | |---------------------------|----------------|----------------|----------------|----------------|----------------|----------------|----------------|--|--|--| | Elem | Ag3280 | Al3082 | As1890 | B_2496 | Ba4554 | Be3131 | Ca4226 | | | | | Units | ppm | | | | Avg | . 39465 | 9.8911 | .39114 | . 52544 | . 98502 | . 04901 | 9.8993 | | | | | Stddev | .00096 | .0118 | .00113 | .00360 | .00245 | .00034 | .1018 | | | | | %RSD | .24354 | .11926 | .28998 | .68484 | .24881 | .69543 | 1.0281 | | | | | #1 | .39560 | 9.9041 | .39053 | .52296 | .98680 | .04881 | 9.9939 | | | | | #2 | .39368 | 9.8812 | .39044 | .52957 | .98605 | .04940 | 9.9124 | | | | | #3 | .39468 | 9.8878 | .39245 | .52380 | .98223 | .04880 | 9.7916 | | | | | Check ?
Value
Range | Chk Pass | | | | Elem | Cd2288 | Co2286 | Cr2677 | Cu2247 | Fe2611 | K_7664 | Li6707 | | | | | Units | ppm | | | | Avg | . 04974 | .20021 | . 49718 | . 49916 | 3.9863 | 49.626 | . 99649 | | | | | Stddev | .00032 | .00090 | .00304 | .00176 | .0554 | .210 | .00517 | | | | | %RSD | .64874 | .45114 | .61177 | .35162 | 1.3892 | .42295 | .51910 | | | | | #1 | .04939 | .19923 | .49476 | .50111 | 3.9224 | 49.630 | .99081 | | | | | #2 | .04981 | .20039 | .50059 | .49866 | 4.0193 | 49.833 | 1.0009 | | | | | #3 | .05002 | .20101 | .49617 | .49771 | 4.0173 | 49.414 | .99772 | | | | | Check ?
Value
Range | Chk Pass | | | | Elem | Mg2790 | Mn2576 | Mo2020 | Na5895 | Ni2316 | P_2149 | Pb2203 | | | | | Units | ppm | | | | Avg | 10.035 | . 49499 | . 99334 | 49.788 | . 50180 | 9.7965 | . 50802 | | | | | Stddev | .096 | .00052 | .00018 | .185 | .00091 | .0452 | .00400 | | | | | %RSD | .95323 | .10519 | .01790 | .37237 | .18194 | .46139 | .78752 | | | | | #1 | 10.082 | .49465 | .99338 | 49.875 | .50078 | 9.7446 | .50603 | | | | | #2 | 10.098 | .49559 | .99314 | 49.913 | .50210 | 9.8180 | .50542 | | | | | #3 | 9.9247 | .49472 | .99349 | 49.575 | .50253 | 9.8270 | .51263 | | | | | Check ?
Value
Range | Chk Pass | | | | • | | |
 | | | | | | | |---|---|---|---|---|---|---|---|--|--|--| | Elem
Units
Avg
Stddev
%RSD | Sb2068
ppm
1.1728
.0055
.46851 | Se1960
ppm
.39144
.01004
2.5647 | Si2124
ppm
5.0203
.0191
.38032 | Sn1899
ppm
1.0022
.0027
.27130 | Sr4077
ppm
. 98171
.00257
.26180 | Ti3372
ppm
. 98731
.00634
.64251 | TI1908
ppm
. 50180
.00364
.72614 | | | | | #1
#2
#3 | 1.1665
1.1752
1.1767 | .39163
.38130
.40138 | 4.9993
5.0247
5.0367 | .99907
1.0040
1.0035 | .98236
.98390
.97888 | .99371
.98718
.98103 | .49843
.50131
.50567 | | | | | Check ?
Value
Range | Chk Pass | | | | Elem
Units
Avg
Stddev
%RSD | V_2924
ppm
. 99011
.00473
.47771 | Zn2062
ppm
1.0061
.0038
.38085 | Zr3391
ppm
F 24627
.57524
233.58 | | | | | | | | | #1
#2
#3 | .98950
.99512
.98572 | 1.0019
1.0072
1.0093 | .06915
91022
.10227 | | | | | | | | | Check ?
Value
Range | Chk Pass | Chk Pass | Chk Fail
1.0000
-10.000% | | | | | | | | | Int. Std.
Units
Avg
Stddev
%RSD | Y_2243
Cts/S
11649.
33.
.28191 | Y_3600
Cts/S
82773.
75.
.09076 | Y_3774
Cts/S
3730.7
47.0
1.2588 | | | | | | | | | #1
#2
#3 | 11612.
11674.
11663. | 82858.
82713.
82749. | 3684.8
3778.6
3728.7 | | | | | | | | | • | | | | | | | | | | | | |------------------------------------|----------|----------------|----------------|----------------|----------------|----------------|----------|--|--|--|--| | Elem | Ag3280 | Al3082 | As1890 | B_2496 | Ba4554 | Be3131 | Ca4226 | | | | | | Units | ppm | | | | | Avg | 00227 | . 00651 | . 00129 | . 04185 | . 00210 | .00007 | 02355 | | | | | | Stddev | .00168 | .00587 | .00275 | .00079 | .00073 | .00004 | .00915 | | | | | | %RSD | 73.982 | 90.128 | 213.66 | 1.8912 | 34.493 | 57.539 | 38.868 | | | | | | #1 | 00369 | .01180 | .00390 | .04237 | .00294 | .00011 | 01783 | | | | | | #2 | 00042 | .00754 | .00155 | .04225 | .00178 | .00006 | 01870 | | | | | | #3 | 00270 | .00020 | 00159 | .04094 | .00160 | .00003 | 03410 | | | | | | Check ?
High Limit
Low Limit | Chk Pass | | | | | Elem | Cd2288 | Co2286 | Cr2677 | Cu2247 | Fe2611 | K_7664 | Li6707 | | | | | | Units | ppm | | | | | Avg | 00020 | .00030 | .00093 | 00093 | 02427 | .06077 | 00035 | | | | | | Stddev | .00008 | .00015 | .00124 | .00070 | .02844 | .07262 | .00396 | | | | | | %RSD | 40.406 | 49.819 | 133.17 | 75.680 | 117.18 | 119.49 | 1131.2 | | | | | | #1 | 00029 | .00044 | .00236 | 00074 | 00605 | 01982 | 00441 | | | | | | #2 | 00014 | .00032 | .00031 | 00170 | 00972 | .08101 | .00349 | | | | | | #3 | 00016 | .00014 | .00012 | 00033 | 05705 | .12112 | 00013 | | | | | | Check ?
High Limit
Low Limit | Chk Pass | | | | | Elem | Mg2790 | Mn2576 | Mo2020 | Na5895 | Ni2316 | P_2149 | Pb2203 | | | | | | Units | ppm | | | | | Avg | 07918 | 00294 | . 00420 | . 01652 | .00005 | . 00092 | 00301 | | | | | | Stddev | .12724 | .00183 | .00043 | .02098 | .00038 | .00315 | .00059 | | | | | | %RSD | 160.69 | 62.298 | 10.246 | 127.00 | 696.54 | 340.77 | 19.620 | | | | | | #1 | 03174 | 00161 | .00372 | .03314 | 00037 | .00447 | 00246 | | | | | | #2 | 22333 | 00504 | .00436 | 00705 | .00036 | 00155 | 00295 | | | | | | #3 | .01752 | 00218 | .00454 | .02347 | .00017 | 00014 | 00364 | | | | | | Check ?
High Limit
Low Limit | Chk Pass | | | | | Sample Name:
Method: ICP-T
User: JYH
Comment: | factor: 1.00000(| | | | | | | |--|---|---|--|---|---|---|--| | Elem
Units
Avg
Stddev
%RSD | Sb2068
ppm
. 01107
.00380
34.345 | Se1960
ppm
.00207
.00433
209.61 | Si2124
ppm
.00529
.00030
5.5825 | Sn1899
ppm
. 00016
.00059
370.86 | Sr4077
ppm
. 00009
.00035
373.17 | Ti3372
ppm
. 00141
.00226
160.38 | TI1908
ppm
00278
.00141
50.846 | | #1
#2
#3 | .00704
.01459
.01158 | .00305
.00582
00267 | .00560
.00501
.00525 | .00060
00051
.00039 | .00043
.00011
00026 | .00229
.00309
00116 | 00206
00441
00187 | | Check ?
High Limit
Low Limit | Chk Pass | Elem
Units
Avg
Stddev
%RSD | V_2924
ppm
00024
.00084
356.09 | Zn2062
ppm
. 00012
.00014
116.27 | Zr3391
ppm
F29142
.20170
69.212 | | | | | | #1
#2
#3 | 00030
.00063
00104 | .00020
00004
.00020 | 06374
44772
36279 | | | | | | Check ?
High Limit
Low Limit | Chk Pass | Chk Pass | Chk Fail
.04000
04000 | | | | | | Int. Std.
Units
Avg
Stddev
%RSD | Y_2243
Cts/S
11882 .
68.
.57540 | Y_3600
Cts/S
85086.
941.
1.1058 | Y_3774
Cts/S
3766.5
20.5
.54487 | | | | | | #1
#2
#3 | 11890.
11810.
11946. | 84537.
86173.
84549. | 3748.6
3788.9
3761.8 | | | | | | Sample Name: TRITON Acquired: 5/13/2016 20:21:33 Type: Unk Method: ICP-THERMO3_6010_200.7WATER_3YLINES(v872) Mode: CONC User: JYH Custom ID1: Custom ID2: Custom ID3: Comment: | | | | | | Corr. Fa | actor: 1.00000(| | |--|----------------|----------------|----------|----------------|----------|----------------|-----------------|-------------------------------| | Elem | Ag3280 | Al3082 | As1890 | B_2496 | Ba4554 | Be3131 | Ca4226 | Cd2288 ppm00002 .00014 858.03 | | Units | ppm | | Avg | 00109 | 00634 | .00070 | . 02258 | 00044 | .00001 | 03125 | | | Stddev | .00125 | .00345 | .00063 | .00016 | .00042 | .00001 | .04323 | | | %RSD | 113.87 | 54.363 | 90.119 | .71184 | 95.893 | 69.157 | 138.32 | | | #1 | 00023 | 00621 | .00141 | .02251 | 00027 | .00003 | .01854 | .00011 | | #2 | 00053 | 00986 | .00024 | .02277 | 00092 | .00001 | 05306 | .00002 | | #3 | 00252 | 00296 | .00044 | .02247 | 00013 | .00001 | 05923 | 00017 | | Check ?
High Limit
Low Limit | Chk Pass | Elem | Co2286 | Cr2677 | Cu2247 | Fe2611 | K_7664 | Li6707 | Mg2790 | Mn2576 | | Units | ppm | Avg | .00035 | 00038 | 00052 | 01001 | 00314 | 00197 | 09891 | 00125 | | Stddev | .00013 | .00013 | .00044 | .01837 | .04868 | .00317 | .09360 | .00240 | | %RSD | 35.444 | 33.209 | 84.609 | 183.43 | 1552.6 | 160.76 | 94.630 | 191.38 | | #1 | .00028 | 00052 | 00002 | 00191 | .01455 | .00143 | 00757 | 00154 | | #2 | .00050 | 00034 | 00072 | .00291 | 05819 | 00484 | 09455 | 00349 | | #3 | .00028 | 00028 | 00083 | 03103 | .03423 | 00250 | 19460 | .00128 | | Check ?
High Limit
Low Limit | Chk Pass | Elem | Mo2020 | Na5895 | Ni2316 | P_2149 | Pb2203 | Sb2068 | Se1960 | Si2124 | | Units | ppm | Avg | . 00139 | . 22011 | .00151 | . 01118 | .00184 | . 00179 | .00568 | 01876 | | Stddev | .00051 | .00831 | .00039 | .00518 | .00158 | .00096 | .00149 | .00148 | | %RSD | 36.502 | 3.7751 | 25.894 | 46.381 | 85.758 | 53.617 | 26.249 | 7.8891 | | #1 | .00091 | .21089 | .00135 | .00712 | .00347 | .00272 | .00429 | 02038 | | #2 | .00134 | .22241 | .00195 | .01702 | .00175 | .00186 | .00725 | 01748 | | #3 | .00192 | .22702 | .00122 | .00939 | .00031 | .00080 | .00550 | 01842 | | Check ?
High Limit
Low Limit | Chk Pass | Sample Nar
Method: ICF
User: JYH
Comment: | | 3_6010_200 | ed: 5/13/201
.7WATER_
Custom II | 3YLINES(v8 | | de: CONC | Corr. Fac | ctor: 1.00000(| |--|---|---|--|--|--|---|---|----------------| | Elem
Units
Avg
Stddev
%RSD | Sn1899
ppm
. 00019
.00017
87.882 | Sr4077
ppm
. 00009
.00010
121.08 | Ti3372
ppm
.00537
.00166
30.911 | TI1908
ppm
00115
.00281
245.44 | V_2924
ppm
00040
.00056
139.33 | Zn2062
ppm
.00021
.00007
33.162 | Zr3391
ppm
. 98656
.38216
38.737 | | | #1
#2
#3 | .00001
.00023
.00034 | 00001
.00019
.00008 | .00646
.00346
.00619 | 00313
.00207
00238 | 00061
.00023
00083 | .00028
.00020
.00014 | 1.0302
1.3450
.58445 | | | Check ?
High Limit
Low Limit | Chk Pass | | Int. Std.
Units
Avg
Stddev
%RSD | Y_2243
Cts/S
13570.
42.
.31023 | Y_3600
Cts/S
99139.
215.
.21736 | Y_3774
Cts/S
4558.9
36.1
.79096 | | | | | | | #1
#2
#3 | 13603.
13523.
13585. | 99386.
98987.
99045. | 4558.8
4595.0
4522.9 | | | | | | | - | | | | | | | | | |------------------------------------|----------------|----------------
----------------|----------------|----------------|----------------|----------------|----------| | Elem | Ag3280 | Al3082 | As1890 | B_2496 | Ba4554 | Be3131 | Ca4226 | Cd2288 | | Units | ppm | Avg | 00165 | 00177 | 00277 | . 01789 | 00026 | .00001 | 01693 | 00005 | | Stddev | .00057 | .00226 | .00205 | .00035 | .00009 | .00002 | .00850 | .00003 | | %RSD | 34.706 | 127.53 | 73.731 | 1.9713 | 35.204 | 267.39 | 50.206 | 61.042 | | #1 | 00231 | 00359 | 00060 | .01759 | 00032 | .00002 | 00894 | 00008 | | #2 | 00128 | 00248 | 00466 | .01779 | 00016 | 00002 | 02585 | 00002 | | #3 | 00136 | .00076 | 00307 | .01828 | 00030 | .00002 | 01599 | 00004 | | Check ?
High Limit
Low Limit | Chk Pass | Elem | Co2286 | Cr2677 | Cu2247 | Fe2611 | K_7664 | Li6707 | Mg2790 | Mn2576 | | Units | ppm | Avg | .00029 | . 00029 | . 00160 | 00239 | . 01814 | 00384 | . 03366 | 00030 | | Stddev | .00017 | .00040 | .00109 | .03600 | .05065 | .00228 | .06247 | .00346 | | %RSD | 58.972 | 136.36 | 68.173 | 1503.6 | 279.17 | 59.223 | 185.57 | 1142.6 | | #1 | .00018 | .00049 | .00066 | .01470 | .05268 | 00630 | 01622 | 00054 | | #2 | .00049 | .00056 | .00280 | 04376 | 04000 | 00342 | .01348 | .00327 | | #3 | .00020 | 00017 | .00134 | .02188 | .04176 | 00181 | .10373 | 00364 | | Check ?
High Limit
Low Limit | Chk Pass | Elem | Mo2020 | Na5895 | Ni2316 | P_2149 | Pb2203 | Sb2068 | Se1960 | Si2124 | | Units | ppm | Avg | . 00039 | . 17594 | .00218 | . 00070 | 00123 | . 00024 | . 00257 | 01728 | | Stddev | .00011 | .03530 | .00042 | .00664 | .00213 | .00427 | .00902 | .00173 | | %RSD | 28.746 | 20.066 | 19.189 | 949.63 | 173.58 | 1785.1 | 350.46 | 9.9854 | | #1 | .00052 | .20952 | .00198 | 00114 | 00154 | 00374 | 00634 | 01545 | | #2 | .00034 | .13913 | .00190 | .00806 | 00318 | .00474 | .01169 | 01753 | | #3 | .00031 | .17917 | .00266 | 00483 | .00104 | 00028 | .00237 | 01887 | | Check ?
High Limit
Low Limit | Chk Pass | | | | | | | Corr. Fa | ctor: 1.00000(| | |---|---|--|--|--|---|---|---|--| | User: JYH
Comment: | Custom | ID1: | Custom IE | D2: (| Custom ID3 | : | | | | Elem
Units
Avg
Stddev
%RSD | Sn1899
ppm
. 00047
.00049
103.51 | Sr4077
ppm
.00005
.00045
952.66 | Ti3372
ppm
.00912
.00258
28.262 | TI1908
ppm
00122
.00223
183.36 | V_2924
ppm
. 00011
.00076
714.87 | Zn2062
ppm
.00022
.00010
43.943 | Zr3391
ppm
. 45914
.48052
104.66 | | | #1
#2
#3 | 00009
.00075
.00075 | 00003
.00053
00036 | .00980
.00627
.01129 | 00064
00368
.00067 | .00088
00064
.00007 | .00027
.00027
.00011 | .53968
05655
.89431 | | | Check ?
High Limit
Low Limit | Chk Pass | | Int. Std.
Units
Avg
Stddev
%RSD | Y_2243
Cts/S
13551.
56.
.41498 | Y_3600
Cts/S
97680.
411.
.42125 | Y_3774
Cts/S
4398.7
44.1
1.0027 | | | | | | | #1
#2
#3 | 13489.
13599.
13564. | 97247.
97727.
98066. | 4350.8
4407.8
4437.6 | | | | | | | Element,
Wavelength and
Order | Date of Fit | Date of Cal. | Type
of Fit | Weighting | A0 | A1 | A2 | n (Exponent) | |-------------------------------------|--------------------|-------------------------------|----------------|-----------|-----------|----------|----------|--------------| |
Ag 328.068 {103} | 5/16/2016 10:02:58 | 5/16/2016 10:02:58 | Linear | 1/Conc | -0.000070 | 0.026608 | 0.000000 | 1.000000 | |
Al 308.215 {109} | 5/16/2016 10:02:58 | 5/16/2016 10:02:58 | Linear | 1/Conc | 0.000354 | 0.004244 | 0.000000 | 1.000000 | |
As 189.042 {478} | 5/16/2016 10:02:58 | 5/16/2016 10:02:58 | Linear | 1/Conc | -0.000019 | 0.012197 | 0.000000 | 1.000000 | | B 249.678 {135} | 5/16/2016 10:02:58 | 5/16/2016 10:02:58 | Linear | 1/Conc | 0.000088 | 0.011302 | 0.000000 | 1.000000 | | Ba 455.403 { 74} | 5/16/2016 10:02:58 | 5/16/2016 10:02:58 | Linear | 1/Conc | 0.008611 | 1.384462 | 0.000000 | 1.000000 | | Be 313.107 {108} | 5/16/2016 10:02:58 | 5/16/2016 10:02:58 | Linear | 1/Conc | 0.000147 | 0.500268 | 0.000000 | 1.000000 | | Ca 422.673 { 80} | 5/16/2016 10:02:58 | 5/16/2016 10:02:58 | Linear | 1/Conc | 0.000052 | 0.029807 | 0.000000 | 1.000000 | | Cd 228.802 {447} | 5/16/2016 10:02:58 | 5/16/2016 10:02:58 | Linear | 1/Conc | 0.000060 | 0.251187 | 0.000000 | 1.000000 | | Co 228.616 {447} | 5/16/2016 10:02:58 | 5/16/2016 10:02:58 | Linear | 1/Conc | -0.000033 | 0.199737 | 0.000000 | 1.000000 | |
Cr 267.716 {126} | 5/16/2016 10:02:58 | 5/16/2016 10:02:58 | Linear | 1/Conc | 0.000135 | 0.027169 | 0.000000 | 1.000000 | |
Cu 224.700 {450} | 5/16/2016 10:02:58 | 5/16/2016 10:02:58 | Linear | 1/Conc | -0.000097 | 0.067304 | 0.000000 | 1.000000 | | Fe 261.187 {129} | 5/16/2016 10:02:58 | 5/16/2016 10:02:58 | Linear | 1/Conc | -0.000241 | 0.012217 | 0.000000 | 1.000000 | |
K 766.490 { 44} | 5/16/2016 10:02:58 | 5/16/2016 10:02:58 | Linear | 1/Conc | 0.003822 | 0.036983 | 0.000000 | 1.000000 | |
Li 670.784 { 50} | 5/16/2016 10:02:58 | 5/16/2016 10:02:58 | Linear | 1/Conc | 0.003498 | 0.764693 | 0.000000 | 1.000000 | |
Mg 279.079 {121} | 5/16/2016 10:02:58 | 5/16/2016 10:02:58 | Linear | 1/Conc | -0.000494 | 0.003076 | 0.000000 | 1.000000 | | Mn 257.610 {131} | 5/16/2016 10:02:58 | 5/16/2016 10:02:58 | Linear | 1/Conc | 0.000276 | 0.158505 | 0.000000 | 1.000000 | |
Mo 202.030 {467} | 5/16/2016 10:02:58 | 5/16/2016 10:02:58 | Linear | 1/Conc | 0.000003 | 0.098157 | 0.000000 | 1.000000 | |
Na 589.592 { 57} | 5/16/2016 10:02:58 | 5/16/2016 10:02:58 | Linear | 1/Conc | -0.016077 | 0.105062 | 0.000000 | 1.000000 | |
Ni 231.604 {446} | 5/16/2016 10:02:58 | 5/16/2016 10:02:58 | Linear | 1/Conc | -0.000266 | 0.073355 | 0.000000 | 1.000000 | |
P 214.914 {457} | 5/16/2016 10:02:58 | 5/16/2016 10:02:58 | Linear | 1/Conc | -0.000135 | 0.006671 | 0.000000 | 1.000000 | |
Pb 220.353 {453} | 5/16/2016 10:02:58 | 5/16/2016 10:02:58 | Linear | 1/Conc | -0.000248 | 0.033099 | 0.000000 | 1.000000 | |
Sb 206.833 {463} | 5/16/2016 10:02:58 | 5/16/2016 10:02:58 | Linear | 1/Conc | 0.000040 | 0.017038 | 0.000000 | 1.000000 | |
Se 196.090 (472) | 5/16/2016 10:02:58 | 5/16/2016 10:02:58 | Linear | 1/Conc | -0.000167 | 0.007654 | 0.000000 | 1.000000 | |
Si 212.412 {459} | 5/16/2016 10:02:58 | 5/16/2016 10:02:58 | Linear | 1/Conc | 0.000863 | 0.022158 | 0.000000 | 1.000000 | |
Sn 189.989 {477} | 5/16/2016 10:02:58 | 5/16/2016 10:02:58 | Linear | 1/Conc | 0.000029 | 0.035412 | 0.000000 | 1.000000 | |
Sr 407.771 { 83} | 5/16/2016 10:02:58 | 5/16/2016 10:02:58 | Linear | 1/Conc | 0.000734 | 2.358557 | 0.000000 | 1.000000 | |
Ti 337.280 {100} | 5/16/2016 10:02:58 | 5/16/2016 10:02:58 | Linear | 1/Conc | -0.000981 | 0.075402 | 0.000000 | 1.000000 | |
TI 190.856 (477) | 5/16/2016 10:02:58 | 5/16/2016 10:02:58 | Linear | 1/Conc | -0.000161 | 0.014511 | 0.000000 | 1.000000 | |
V 292.402 (115) | 5/16/2016 10:02:58 | 5/16/2016 10:02:58 | Linear | 1/Conc | 0.000034 | 0.025576 | 0.000000 | 1.000000 | |
Y 224.306 {450}* | <not fit=""></not> | <never calibrated=""></never> | Linear | 1/Conc | 0.000000 | 0.000000 | 0.000000 | 1.000000 | |
Y 360.073 { 94}* | <not fit=""></not> | <never calibrated=""></never> | Linear | 1/Conc | 0.000000 | 0.000000 | 0.000000 | 1.000000 | |
Y 377.433 { 89}* | <not fit=""></not> | <never calibrated=""></never> | Linear | 1/Conc | 0.000000 | 0.000000 | 0.000000 | 1.000000 | |
Zn 206.200 {463} | 5/16/2016 10:02:58 | 5/16/2016 10:02:58 | Linear | 1/Conc | 0.000052 | 0.201668 | 0.000000 | 1.000000 | | Zr 339.198 { 99} | 5/16/2016 10:02:58 | 5/16/2016 10:02:58 | Linear | 1/Conc | -0.003141 | 0.002217 | 0.000000 | 1.000000 | | Element, | | Std Error of | Duadiated | Predicted | | Res | lope | QC | Norm | |-------------------------|-------------|---------------------|-----------|-----------|--------|----------|----------|-----------------|--------| | Wavelength and
Order | Correlation | Sta Error or
Est | MDL | MQL | Status | Slope | Y-int | Slope
factor | Offset | |
Ag 328.068 {103} | 0.998986 | 0.000003 | 0.002088 | 0.006961 | OK. | 1.000000 | 0.000000 | 1 | 0 | |
Al 308.215 {109} | 0.999995 | 0.000001 | 0.008979 | 0.029931 | OK. | 1.000000 | 0.000000 | 1 | 0 | |
As 189.042 {478} | 0.999894 | 0.000001 | 0.003689 | 0.012295 | OK. | 1.000000 | 0.000000 | 1 | 0 | |
B 249.678 {135} | 0.999965 | 0.000000 | 0.002841 | 0.009471 | OK. | 1.000000 | 0.000000 | 1 | 0 | |
Ba 455.403 { 74} | 0.999993 | 0.000033 | 0.000921 | 0.003069 | OK. | 1.000000 | 0.000000 | 1 | 0 | |
Be 313.107 {108} | 0.999977 | 0.000001 | 0.000076 | 0.000253 | OK. | 1.000000 | 0.000000 | 1 | 0 | |
Ca 422.673 { 80} | 0.999980 | 0.000012 | 0.032294 | 0.107645 | OK. | 1.000000 | 0.000000 | 1 | 0 | |
Cd 228.802 {447} | 0.999734 | 0.000002 | 0.000302 | 0.001008 | OK. | 1.000000 | 0.000000 | 1 | 0 | |
Co 228.616 {447} | 0.999970 | 0.000002 | 0.000435 | 0.001451 | OK. | 1.000000 | 0.000000 | 1 | Ī O | |
Cr 267.716 {126} | 0.999928 | 0.000001 | 0.001239 | 0.004131 | OK. | 1.000000 | 0.000000 | 1 | 0 | |
Cu 224.700 {450} | 0.999973 | 0.000002 | 0.001484 | 0.004948 | OK. | 1.000000 | 0.000000 | 1 | 0 | |
Fe 261.187 {129} | 0.999893 | 0.000005 | 0.025557 | 0.085189 | OK. | 1.000000 | 0.000000 | 1 | 0 | |
K 766.490 { 44} | 0.999919 | 0.000149 | 0.097216 | 0.324055 | OK. | 1.000000 | 0.000000 | 1 | 0 | |
Li 670.784 { 50} | 0.999824 | 0.000141 | 0.004583 |
0.015275 | OK. | 1.000000 | 0.000000 | 1 | 0 | |
Mg 279.079 {121} | 0.999791 | 0.000006 | 0.110589 | 0.368629 | OK. | 1.000000 | 0.000000 | 1 | 0 | |
Mn 257.610 {131} | 0.999835 | 0.000009 | 0.002758 | 0.009195 | OK. | 1.000000 | 0.000000 | 1 | 0 | |
Mo 202.030 {467} | 0.999999 | 0.000001 | 0.000463 | 0.001542 | OK. | 1.000000 | 0.000000 | 1 | 0 | |
Na 589.592 { 57} | 0.999998 | 0.000069 | 0.030548 | 0.101827 | OK. | 1.000000 | 0.000000 | 1 | 0 | |
Ni 231.604 {446} | 0.999936 | 0.000003 | 0.001261 | 0.004203 | OK. | 1.000000 | 0.000000 | 1 | 0 | |
P 214.914 {457} | 0.999969 | 0.000003 | 0.008549 | 0.028497 | OK. | 1.000000 | 0.000000 | 1 | 0 | |
Pb 220.353 {453} | 0.999556 | 0.000003 | 0.003999 | 0.013330 | OK. | 1.000000 | 0.000000 | 1 | 0 | |
Sb 206.833 {463} | 0.999319 | 0.000005 | 0.004611 | 0.015372 | OK. | 1.000000 | 0.000000 | 1 | 0 | |
Se 196.090 {472} | 0.997398 | 0.000002 | 0.008307 | 0.027690 | OK. | 1.000000 | 0.000000 | 1 | 0 | |
Si 212.412 {459} | 0.999992 | 0.000003 | 0.002443 | 0.008144 | OK. | 1.000000 | 0.000000 | 1 | 0 | | Sn 189.989 {477} | 0.999959 | 0.000002 | 0.001041 | 0.003470 | OK. | 1.000000 | 0.000000 | 1 | 0 | |
Sr 407.771 { 83} | 0.999993 | 0.000054 | 0.000407 | 0.001358 | OK. | 1.000000 | 0.000000 | 1 | 0 | |
Ti 337.280 {100} | 0.999912 | 0.000006 | 0.006951 | 0.023169 | OK. | 1.000000 | 0.000000 | 1 | 0 | |
TI 190.856 (477) | 0.999918 | 0.000001 | 0.003609 | 0.012031 | OK. | 1.000000 | 0.000000 | 1 | 0 | |
V 292.402 {115} | 0.999979 | 0.000001 | 0.001208 | 0.004027 | OK. | 1.000000 | 0.000000 | 1 | 0 | | Y 224.306 {450}* | 0.000000 | 0.000000 | -1.000000 | -1.000000 | Warnin | 1.000000 | 0.000000 | 1 | 0 | |
Y 360.073 { 94}* | 0.000000 | 0.000000 | -1.000000 | -1.000000 | Warnin | 1.000000 | 0.000000 | 1 | 0 | | Y 377.433 { 89}* | 0.000000 | 0.000000 | -1.000000 | -1.000000 | Warnin | 1.000000 | 0.000000 | 1 | 0 | |
Zn 206.200 {463} | 0.999981 | 0.000008 | 0.000245 | 0.000816 | OK. | 1.000000 | 0.000000 | 1 | 0 | | Zr 339.198 { 99} | 0.393956 | 0.000033 | 0.400035 | 1.333451 | OK. | 1.000000 | 0.000000 | 1 | 0 | Sample Name: S0 Acquired: 5/16/2016 9:43:41 Type: Cal Method: ICP-THERMO3_6010_200.7WATER_3YLINES(v873) Mode: IR Corr. Factor: 1.000000 User: JYH Custom ID1: Custom ID2: Custom ID3: Comment: | Elem | Ag3280 | Al3082 | As1890 | B_2496 | Ba4554 | Be3131 | Ca4226 | | |--------|--------|----------------|----------------|----------------|----------------|----------------|----------------|--| | Units | Cts/S | | Avg | 00007 | .00035 | 00002 | .00009 | .00861 | .00015 | .00005 | | | Stddev | .00002 | .00003 | .00002 | .00001 | .00055 | .00002 | .00063 | | | %RSD | 33.102 | 8.3477 | 99.470 | 9.6194 | 6.3652 | 15.487 | 1210.4 | | | #1 | 00010 | .00034 | 00003 | .00010 | .00832 | .00016 | .00077 | | | #2 | 00006 | .00039 | .00000 | .00008 | .00828 | .00016 | 00044 | | | #3 | 00005 | .00034 | 00003 | .00009 | .00924 | .00012 | 00017 | | | Elem | Cd2288 | Co2286 | Cr2677 | Cu2247 | Fe2611 | K_7664 | Li6707 | | | Units | Cts/S | | Avg | .00006 | 00003 | . 00013 | 00010 | 00024 | . 00382 | . 00349 | | | Stddev | .00003 | .00005 | .00002 | .00008 | .00024 | .00213 | .00271 | | | %RSD | 44.228 | 146.87 | 16.428 | 83.465 | 100.39 | 55.890 | 77.517 | | | #1 | .00008 | .00001 | .00015 | 00000 | 00028 | .00628 | .00515 | | | #2 | .00007 | 00008 | .00015 | 00015 | 00046 | .00246 | .00037 | | | #3 | .00003 | 00002 | .00011 | 00013 | .00002 | .00272 | .00497 | | | Elem | Mg2790 | Mn2576 | Mo2020 | Na5895 | Ni2316 | P_2149 | Pb2203 | | | Units | Cts/S | | Avg | 00049 | . 00028 | . 00000 | 01608 | 00027 | 00013 | 00025 | | | Stddev | .00002 | .00065 | .00001 | .00321 | .00004 | .00002 | .00009 | | | %RSD | 3.7659 | 234.90 | 551.33 | 19.948 | 16.329 | 15.575 | 35.108 | | | #1 | 00048 | .00078 | .00001 | 01559 | 00028 | 00016 | 00034 | | | #2 | 00052 | 00045 | 00001 | 01315 | 00022 | 00012 | 00016 | | | #3 | 00049 | .00050 | .00001 | 01950 | 00030 | 00012 | 00024 | | | Elem | Sb2068 | Se1960 | Si2124 | Sn1899 | Sr4077 | Ti3372 | TI1908 | | | Units | Cts/S | | Avg | .00004 | 00017 | .00086 | . 00003 | . 00073 | 00098 | 00016 | | | Stddev | .00003 | .00003 | .00001 | .00002 | .00065 | .00043 | .00001 | | | %RSD | 80.596 | 15.390 | .72800 | 75.770 | 88.817 | 44.351 | 6.1409 | | | #1 | .00001 | 00018 | .00087 | .00001 | .00114 | 00052 | 00017 | | | #2 | .00007 | 00014 | .00087 | .00005 | .00108 | 00104 | 00017 | | | #3 | .00004 | 00018 | .00086 | .00002 | 00002 | 00138 | 00015 | | Approved: May 17, 2016 J'ye 1hu Sample Name: S0 Acquired: 5/16/2016 9:43:41 Type: Cal Method: ICP-THERMO3_6010_200.7WATER_3YLINES(v873) Mode: IR Corr. Factor: 1.000000 User: JYH Custom ID1: Custom ID2: Custom ID3: Comment: Elem V_2924 Zn2062 Zr3391 Units Cts/S Cts/S Cts/S Avg .00003 .00005 -.00314 Stddev .00004 .00002 .00070 %RSD 102.66 38.434 22.221 #1 .00003 80000. -.00385 #2 .00007 .00004 -.00245 #3 .00000 .00004 -.00312 Y_2243 Y_3600 Y_3774 Int. Std. Cts/S Cts/S Cts/S Units 14150. 101660. 4611.0 Avg Stddev 13. 176. 28.6 %RSD .09539 .17294 .62074 #1 4580.2 14159. 101510. 4616.1 4636.8 Approved: May 17, 2016 #2 #3 14135. 14157. 101620. 101860. Sample Name: S1 Acquired: 5/16/2016 9:47:42 Type: Cal Method: ICP-THERMO3_6010_200.7WATER_3YLINES(v873) Mode: IR Corr. Factor: 1.000000 User: JYH Custom ID1: Custom ID2: Custom ID3: Comment: | Elem | Ag3280 | Al3082 | Ba4554 | Be3131 | Ca4226 | Cd2288 | Co2286 | | |--|--|---|---|--|----------------|----------------|----------------|--| | Units | Cts/S | | Avg | 00005 | .00071 | .01906 | .00034 | . 00237 | .00019 | .00025 | | | Stddev | .00002 | .00002 | .00146 | .00003 | .00112 | .00003 | .00005 | | | %RSD | 37.701 | 2.6327 | 7.6592 | 8.3064 | 47.181 | 13.377 | 19.873 | | | #1 | 00007 | .00071 | .02055 | .00037 | .00302 | .00017 | .00022 | | | #2 | 00006 | .00072 | .01901 | .00033 | .00108 | .00022 | .00023 | | | #3 | 00003 | .00069 | .01763 | .00032 | .00301 | .00018 | .00031 | | | Elem | Cr2677 | Cu2247 | Fe2611 | K_7664 | Mn2576 | Mo2020 | Na5895 | | | Units | Cts/S | | Avg | . 00022 | .00019 | .00026 | .02183 | .00075 | . 00076 | . 02702 | | | Stddev | .00001 | .00003 | .00027 | .00276 | .00027 | .00004 | .00376 | | | %RSD | 4.6989 | 17.661 | 104.40 | 12.644 | 35.602 | 4.6169 | 13.911 | | | #1 | .00022 | .00015 | 00003 | .02502 | .00091 | .00080 | .02394 | | | #2 | .00024 | .00021 | .00051 | .02026 | .00044 | .00076 | .02592 | | | #3 | .00022 | .00020 | .00029 | .02022 | .00089 | .00073 | .03121 | | | Elem | Ni2316 | P_2149 | Pb2203 | Sb2068 | Si2124 | Sn1899 | Sr4077 | | | Units | Cts/S | | Avg | 00001 | .00033 | 00006 | . 00009 | . 00172 | . 00027 | . 02033 | | | Stddev | .00005 | .00001 | .00005 | .00004 | .00004 | .00001 | .00088 | | | %RSD | 922.59 | 3.5887 | 98.744 | 47.045 | 2.5939 | 2.4964 | 4.3413 | | | #1 | 00004 | .00032 | 00011 | .00010 | .00173 | .00027 | .01949 | | | #2 | 00003 | .00033 | .00000 | .00013 | .00175 | .00027 | .02125 | | | #3 | .00005 | .00034 | 00006 | .00004 | .00167 | .00026 | .02026 | | | Elem
Units
Avg
Stddev
%RSD | Ti3372
Cts/S
00051
.00074
144.63 | V_2924
Cts/S
.00026
.00001
5.5459 | Zn2062
Cts/S
.00167
.00006
3.8484 | Zr3391
Cts/S
00235
.00090
38.475 | | | | | | #1
#2
#3 | 00064
.00028
00119 | .00027
.00026
.00024 | .00174
.00161
.00164 | 00131
00287
00287 | | | | | Approved: May 17, 2016 J'ye 1hu Sample Name: S1 Acquired: 5/16/2016 9:47:42 Type: Cal Method: ICP-THERMO3_6010_200.7WATER_3YLINES(v873) Mode: IR User: JYH Custom ID1: Custom ID2: Custom ID3: Corr. Factor: 1.000000 Comment: | Int. Std. | Y_2243 | Y_3600 | Y_3774 | |-----------|---------------|----------------|---------------| | Units | Cts/S | Cts/S | Cts/S | | Avg | 14188. | 102640. | 4622.9 | | Stddev | 20. | 255. | 6.1 | | %RSD | .13870 | .24836 | .13138 | | #1 | 14167. | 102930. | 4618.7 | | #2 | 14190. | 102550. | 4629.8 | | #3 | 14207. | 102440. | 4620.0 | Sample Name: S2 Acquired: 5/16/2016 9:51:42 Type: Cal Method: ICP-THERMO3_6010_200.7WATER_3YLINES(v873) Mode: IR Corr. Factor: 1.000000 User: JYH Custom ID1: Custom ID2: Custom ID3: Comment: | Elem | Ag3280 | Al3082 | As1890 | B_2496 | Ba4554 | Be3131 | Ca4226 | | |--------|--------|----------------|----------------|----------------|--------|----------------|----------------|--| | Units | Cts/S | | Avg | .00006 | .00101 | .00005 | .00018 | .03028 | .00054 | .00445 | | | Stddev | .00004 | .00002 | .00003 | .00002 | .00118 | .00002 | .00045 | | | %RSD | 63.723 | 1.9555 | 72.661 | 8.7569 | 3.9064 | 3.3289 | 10.039 | | | #1 | .00003 | .00100 | .00001 | .00018 | .03147 | .00055 | .00394 | | | #2 | .00004 | .00104 | .00005 | .00016 | .02911 | .00052 | .00467 | | | #3 | .00010 | .00100 | .00008 | .00019 | .03027 | .00055 | .00475 | | | Elem | Cd2288 | Co2286 | Cr2677 | Cu2247 | Fe2611 | K_7664 | Li6707 | | | Units | Cts/S | | Avg | .00022 | .00057 | .00034 | .00048 | .00052 | . 03501 | . 01871 | | | Stddev | .00003 | .00003 | .00001 | .00004 | .00031 | .00235 | .00303 | | | %RSD | 11.762 | 4.6927 | 2.7034 | 8.7387 | 60.010 | 6.7134 | 16.184 | | | #1 | .00025 | .00061 | .00035 | .00046 | .00021 | .03667 | .01838 | | | #2 | .00021 | .00056 | .00033 | .00045 | .00083 | .03232 | .02190 | | | #3 | .00020 | .00056 | .00035 | .00053 | .00051 | .03603 | .01587 | | | Elem | Mg2790 | Mn2576 | Mo2020 | Na5895 | Ni2316 | P_2149 | Pb2203 | | | Units | Cts/S | | Avg | .00012 | . 00175 | . 00157 | . 06828 | .00026 | .00091 | .00008 | | | Stddev | .00039 | .00039 | .00003 | .00061 | .00006 | .00003 | .00000 | | | %RSD |
317.83 | 22.372 | 1.7151 | .88693 | 24.448 | 3.7047 | 3.3889 | | | #1 | .00009 | .00154 | .00156 | .06893 | .00031 | .00091 | .00009 | | | #2 | .00053 | .00220 | .00155 | .06819 | .00028 | .00088 | .00008 | | | #3 | 00025 | .00151 | .00160 | .06773 | .00019 | .00095 | .00008 | | | Elem | Sb2068 | Se1960 | Si2124 | Sn1899 | Sr4077 | Ti3372 | TI1908 | | | Units | Cts/S | | Avg | .00033 | 00007 | . 00263 | .00057 | .03748 | . 00015 | 00005 | | | Stddev | .00008 | .00002 | .00002 | .00000 | .00053 | .00062 | .00003 | | | %RSD | 23.022 | 29.608 | .57180 | .56146 | 1.4086 | 412.27 | 62.422 | | | #1 | .00041 | 00009 | .00265 | .00058 | .03732 | .00076 | 00005 | | | #2 | .00032 | 00006 | .00262 | .00057 | .03704 | .00015 | 00007 | | | #3 | .00026 | 00006 | .00262 | .00058 | .03806 | 00047 | 00001 | | Approved: May 17, 2016 J'ye 1hu Sample Name: S2 Acquired: 5/16/2016 9:51:42 Type: Cal Method: ICP-THERMO3_6010_200.7WATER_3YLINES(v873) Mode: IR Corr. Factor: 1.000000 User: JYH Custom ID1: Custom ID2: Custom ID3: Comment: | Elem | V_2924 | Zn2062 | Zr3391 | |-----------|---------------|----------------|---------------| | Units | Cts/S | Cts/S | Cts/S | | Avg | .00046 | .00323 | 00281 | | Stddev | .00002 | .00001 | .00007 | | %RSD | 3.6000 | .43130 | 2.5711 | | #1 | .00045 | .00321 | 00275 | | #2 | .00045 | .00323 | 00280 | | #3 | .00048 | .00324 | 00289 | | Int. Std. | Y_2243 | Y_3600 | Y_3774 | | Units | Cts/S | Cts/S | Cts/S | | Avg | 14155. | 102090. | 4659.4 | | Stddev | 26. | 305. | 6.3 | | %RSD | .18228 | .29866 | .13486 | | #1 | 14125. | 102130. | 4664.1 | | #2 | 14174. | 101760. | 4652.3 | | #3 | 14165. | 102360. | 4661.9 | Sample Name: S3 Acquired: 5/16/2016 9:55:41 Type: Cal Method: ICP-THERMO3_6010_200.7WATER_3YLINES(v873) Mode: IR Corr. Factor: 1.000000 User: JYH Custom ID1: Custom ID2: Custom ID3: Comment: | Elem | Ag3280 | Al3082 | As1890 | B_2496 | Ba4554 | Be3131 | Ca4226 | | |--------|----------------|----------------|----------------|---------------|---------------|----------------|----------------|--| | Units | Cts/S | | Avg | .01052 | . 04321 | . 00477 | .00566 | 1.3901 | . 02546 | . 29725 | | | Stddev | .00007 | .00024 | .00005 | .00003 | .0054 | .00009 | .00273 | | | %RSD | .63563 | .55300 | 1.0105 | .61085 | .38713 | .36459 | .91833 | | | #1 | .01060 | .04302 | .00476 | .00567 | 1.3845 | .02555 | .29411 | | | #2 | .01050 | .04348 | .00473 | .00568 | 1.3953 | .02545 | .29904 | | | #3 | .01047 | .04312 | .00483 | .00562 | 1.3904 | .02537 | .29862 | | | Elem | Cd2288 | Co2286 | Cr2677 | Cu2247 | Fe2611 | K_7664 | Li6707 | | | Units | Cts/S | | Avg | .01381 | . 04007 | .01388 | .03392 | .04857 | 1.8397 | . 77355 | | | Stddev | .00006 | .00013 | .00009 | .00011 | .00010 | .0031 | .00496 | | | %RSD | .40668 | .31347 | .68112 | .33802 | .19919 | .16742 | .64098 | | | #1 | .01386 | .04021 | .01391 | .03405 | .04863 | 1.8362 | .77235 | | | #2 | .01375 | .04005 | .01396 | .03388 | .04846 | 1.8419 | .77899 | | | #3 | .01381 | .03996 | .01377 | .03383 | .04862 | 1.8409 | .76930 | | | Elem | Mg2790 | Mn2576 | Mo2020 | Na5895 | Ni2316 | P_2149 | Pb2203 | | | Units | Cts/S | | Avg | . 03047 | . 07910 | . 09805 | 5.2249 | .03677 | . 06509 | . 01646 | | | Stddev | .00031 | .00051 | .00051 | .0208 | .00013 | .00006 | .00005 | | | %RSD | 1.0154 | .64702 | .52214 | .39837 | .35790 | .09694 | .29747 | | | #1 | .03082 | .07873 | .09863 | 5.2009 | .03687 | .06516 | .01648 | | | #2 | .03034 | .07968 | .09789 | 5.2363 | .03662 | .06509 | .01641 | | | #3 | .03024 | .07888 | .09765 | 5.2376 | .03684 | .06503 | .01650 | | | Elem | Sb2068 | Se1960 | Si2124 | Sn1899 | Sr4077 | Ti3372 | TI1908 | | | Units | Cts/S | | Avg | .01998 | .00288 | .11264 | .03558 | 2.3517 | . 07389 | . 00659 | | | Stddev | .00007 | .00004 | .00005 | .00005 | .0062 | .00055 | .00002 | | | %RSD | .37518 | 1.5393 | .04628 | .15035 | .26355 | .74913 | .23167 | | | #1 | .02004 | .00286 | .11266 | .03557 | 2.3452 | .07326 | .00661 | | | #2 | .01989 | .00293 | .11258 | .03553 | 2.3575 | .07432 | .00658 | | | #3 | .02000 | .00285 | .11267 | .03564 | 2.3523 | .07407 | .00658 | | Approved: May 17, 2016 J'ye 1hu Acquired: 5/16/2016 9:55:41 Sample Name: S3 Type: Cal Method: ICP-THERMO3_6010_200.7WATER_3YLINES(v873) Mode: IR Corr. Factor: 1.000000 User: JYH Custom ID1: Custom ID2: Custom ID3: Comment: Elem V_2924 Zn2062 Zr3391 Units Cts/S Cts/S Cts/S Avg .02562 .20330 -.00097 .00004 Stddev .00028 .00034 %RSD .17212 .13958 35.507 #1 .02567 .20357 -.00076 #2 .02562 .20301 -.00078 #3 .02558 .20332 -.00136 Y_2243 Y_3600 Y_3774 Int. Std. Cts/S Cts/S Cts/S Units 4634.5 14007. 99850. Avg Stddev 42. 485. 32.4 %RSD .30265 .48577 .69852 4648.3 4597.6 4657.7 Approved: May 17, 2016 #1 #2 #3 13996. 14053. 13971. 100220. 100030. 99301. Sample Name: S4 Acquired: 5/16/2016 9:59:20 Type: Cal Method: ICP-THERMO3_6010_200.7WATER_3YLINES(v873) Mode: IR Corr. Factor: 1.000000 User: JYH Custom ID1: Custom ID2: Custom ID3: Comment: | Elem | Ag3280 | Al3082 | As1890 | B_2496 | Ba4554 | Be3131 | Ca4226 | Cd2288 | |--------|----------------|----------------|----------------|----------------|----------------|----------------|----------------|----------------| | Units | Cts/S | Avg | . 02128 | .08597 | .00975 | .01143 | 2.7816 | . 05138 | . 59750 | .02751 | | Stddev | .00012 | .00020 | .00003 | .00002 | .0177 | .00004 | .00451 | .00009 | | %RSD | .54461 | .23277 | .35018 | .17554 | .63818 | .08650 | .75462 | .32798 | | #1 | .02123 | .08606 | .00974 | .01144 | 2.7655 | .05142 | .59274 | .02742 | | #2 | .02141 | .08612 | .00978 | .01141 | 2.7788 | .05138 | .59805 | .02753 | | #3 | .02120 | .08575 | .00972 | .01143 | 2.8007 | .05133 | .60171 | .02759 | | Elem | Co2286 | Cr2677 | Cu2247 | Fe2611 | K_7664 | Li6707 | Mg2790 | Mn2576 | | Units | Cts/S | Avg | . 07957 | . 02721 | . 06724 | .09745 | 3.7106 | 1.5245 | . 06045 | . 15921 | | Stddev | .00008 | .00004 | .00007 | .00048 | .0220 | .0095 | .00023 | .00106 | | %RSD | .10329 | .13827 | .10672 | .48888 | .59273 | .62450 | .38054 | .66707 | | #1 | .07966 | .02721 | .06724 | .09739 | 3.6896 | 1.5144 | .06060 | .15821 | | #2 | .07957 | .02724 | .06732 | .09796 | 3.7087 | 1.5260 | .06056 | .15909 | | #3 | .07949 | .02717 | .06717 | .09701 | 3.7334 | 1.5333 | .06018 | .16033 | | Elem | Mo2020 | Na5895 | Ni2316 | P_2149 | Pb2203 | Sb2068 | Se1960 | Si2124 | | Units | Cts/S | Avg | . 19641 | 10.501 | .07282 | . 13175 | . 03280 | . 04048 | . 00593 | . 22276 | | Stddev | .00033 | .058 | .00009 | .00018 | .00008 | .00004 | .00006 | .00006 | | %RSD | .16646 | .55450 | .11773 | .13395 | .25475 | .09690 | 1.0469 | .02651 | | #1 | .19675 | 10.442 | .07278 | .13195 | .03276 | .04045 | .00595 | .22282 | | #2 | .19639 | 10.503 | .07276 | .13167 | .03290 | .04052 | .00598 | .22274 | | #3 | .19610 | 10.558 | .07291 | .13162 | .03275 | .04048 | .00586 | .22271 | | Elem | Sn1899 | Sr4077 | Ti3372 | TI1908 | V_2924 | Zn2062 | Zr3391 | | | Units | Cts/S | | Avg | . 07058 | 4.7261 | . 15017 | .01302 | . 05095 | . 40129 | .00027 | | | Stddev | .00003 | .0281 | .00091 | .00007 | .00017 | .00044 | .00082 | | | %RSD | .04266 | .59437 | .60399 | .52297 | .33145 | .11086 | 309.23 | | | #1 | .07055 | 4.7011 | .14950 | .01309 | .05093 | .40179 | 00064 | | | #2 | .07061 | 4.7206 | .14981 | .01300 | .05113 | .40114 | .00048 | | | #3 | .07058 | 4.7565 | .15121 | .01296 | .05080 | .40095 | .00096 | | Approved: May 17, 2016 J'ye 1hu Sample Name: S4 Acquired: 5/16/2016 9:59:20 Type: Cal Method: ICP-THERMO3_6010_200.7WATER_3YLINES(v873) Mode: IR Corr. Factor: 1.000000 User: JYH Custom ID1: Custom ID2: Custom ID3: Comment: | Int. Std. | Y_2243 | Y_3600 | Y_3774 | |-----------|----------------|---------------|---------------| | Units | Cts/S | Cts/S | Cts/S | | Avg | 13791 . | 98209. | 4580.2 | | Stddev | 8. | 362. | 25.1 | | %RSD | .05611 | .36876 | .54753 | | #1 | 13797. | 98413. | 4574.3 | | #2 | 13783. | 97791. | 4558.7 | | #3 | 13795. | 98423. | 4607.8 | Sample Name: ICV Acquired: 5/16/2016 10:02:59 Type: QC Mode: CONC Method: ICP-THERMO3 6010 200.7WATER 3YLINES(v873) Corr. Factor: 1.000000 User: JYH Custom ID1: Custom ID2: Custom ID3: Comment: Ag3280 Al3082 B_2496 Ba4554 Ca4226 Cd2288 Elem As1890 Be3131 Units ppm ppm ppm ppm ppm ppm ppm ppm .39840 .49045 Avg 9.9336 .39479 .99777 .04916 9.9174 .04983 Stddev .00162 .0174 .00380 .00134 .00388 .00015 .0245 .00020 .24751 %RSD .40607 .17514 .96329 .27416 .38875 .31282 .39623 #1 .39655 .39611 .48961 9.9078 9.9141 .99473 .04922 .04967 #2 .39953 9.9474 .39776 .48974 1.0021 .04928 9.9453 .05005 #3 .39913 9.9394 .39050 .49200 .99644 .04899 9.8990 .04977 Check? Chk Pass Value Range Elem Co2286 Cr2677 Cu2247 Fe2611 K_7664 Li6707 Mg2790 Mn2576 Units ppm ppm ppm ppm ppm ppm ppm ppm .49728 .20016 .49567 .49941 49.825 1.0056 9.9890 Avg 3.9597 .00062 .00093 .00040 .0388 .049 .0010 .0380 .00205 Stddev %RSD .31024 .18820 .08079 .97982 .09903 .10332 .38074 .41191 #1 .20080 .49501 .49985 3.9561 49.768 1.0052 9.9460 .49776 #2 .20013 .49526 .49931 3.9229 49.855 1.0048 10.002 .49905 .19956 .49907 49.851 1.0068 #3 .49673 4.0002 10.018 .49504 Check? Chk Pass Value Range Elem Mo2020 Na5895 Ni2316 P_2149 Pb2203 Sb2068 Se1960 Si2124 Units ppm ppm ppm ppm ppm ppm ppm ppm .98625 49.861 .50258 9.8603 .49989 1.1980 .39804 5.0530 Avg Stddev .00443 .0015 .00263 .0028 .00836 .0059 .079 .00034 %RSD 2.0991 .44892 .15809 .06844 .01530 .52525 .23659 .11627 #1 49.856 9.8620 .50033 .99129 .50231 1.1986 .40766 5.0593 9.8592 .98299 49.942 .50246 1.1949 .39388 5.0477 #2 .49707 #3 .98446 49.785 .50297 9.8598 .50226 1.2005 .39258 5.0520 Check? Chk Pass Value Approved: May 17, 2016 Range | • | | • | : 5/16/2016
:00.7WATE
Custor | R_3YLINE | Type:
(
S(v873)
Custom | Mode: C | ONC C | Corr. Factor: 1.000000 | |---|--|--|---|---|---|---|---------------------------------|------------------------| | Elem
Units
Avg
Stddev
%RSD | Sn1899
ppm
1.0093
.0027
.27179 | Sr4077
ppm
. 99098
.00216
.21815 | Ti3372
ppm
. 99711
.01044
1.0473 | TI1908
ppm
. 50433
.00165
.32763 | V_2924
ppm
. 98542
.00386
.39143 | Zn2062
ppm
. 99722
.00098
.09832 | ppm
. 96990
.32651 | | | #1
#2
#3 | 1.0123
1.0068
1.0088 | .98903
.99331
.99059 | .98651
.99744
1.0074 | .50476
.50250
.50571 | .98341
.98986
.98298 | .99770
.99609
.99786 | .59288
1.1567
1.1601 | | | Check ?
Value
Range | Chk Pass | | Int. Std.
Units
Avg
Stddev
%RSD | Y_2243
Cts/S
14012 .
15.
.10957 | Y_3600
Cts/S
100530 .
213.
.21139 | Y_3774
Cts/S
4603.9
31.7
.68782 | | | | | | | #1
#2
#3 | 14006.
14029.
14000. | 100450.
100360.
100770. | 4580.4
4639.9
4591.5 | | | | | | | Sample Name: ICB Acquired: 5/16/2016 10:06:26 Type: Blank Method: ICP-THERMO3_6010_200.7WATER_3YLINES(v873) Mode: CONC Corr. Factor: 1.000000 User: JYH Custom ID1: Custom ID2: Custom ID3: Comment: | | | | | | | | | | | |--|----------------|----------------|----------|----------------|----------|----------------|----------------|----------------|--|--| | Elem | Ag3280 | Al3082 | As1890 | B_2496 | Ba4554 | Be3131 | Ca4226 | Cd2288 | | | | Units | ppm | | | Avg | 00169 | 00772 | 00026 | . 00298 | 00015 | .00001 | .00829 | . 00013 | | | | Stddev | .00022 | .00678 | .00093 | .00170 | .00042 | .00004 | .00533 | .00012 | | | | %RSD | 12.796 | 87.813 | 362.14 | 57.012 | 273.22 | 423.85 | 64.374 | 91.911 | | | | #1 | 00184 | 01522 | .00077 | .00494 | 00038 | .00001 | .00745 | .00026 | | | | #2 | 00144 | 00591 | 00105 | .00195 | .00033 | 00003 | .00342 | .00007 | | | | #3 | 00179 | 00203 | 00049 | .00204 | 00042 | .00005 | .01399 | .00005 | | | | Check ?
High Limit
Low Limit | Chk Pass | | | Elem | Co2286 | Cr2677 | Cu2247 | Fe2611 | K_7664 | Li6707 | Mg2790 | Mn2576 | | | | Units | ppm | | | Avg | 00030 | . 00010 | 00096 | . 00571 | .11679 | . 00343 | . 05069 | 00090 | | | | Stddev | .00013 | .00020 | .00157 | .02937 | .04356 | .00286 | .12054 | .00433 | | | | %RSD | 44.486 | 192.12 | 163.11 | 514.45 | 37.300 | 83.585 | 237.81 | 481.43 | | | | #1 | 00038 | .00015 | 00276 | .03698 | .15244 | .00018 | .10819 | .00353 | | | | #2 | 00038 | 00011 | .00010 | 02130 | .06823 | .00453 | .13171 | 00512 | | | | #3 | 00015 | .00028 | 00022 | .00145 | .12970 | .00558 | 08784 | 00110 | | | | Check ?
High Limit
Low Limit | Chk Pass | | | Elem | Mo2020 | Na5895 | Ni2316 | P_2149 | Pb2203 | Sb2068 | Se1960 | Si2124 | | | | Units | ppm | | | Avg | . 00392 | . 00948 | .00001 | 00046 | .00060 | 00020 | 00097 | . 00388 | | | | Stddev | .00032 | .01387 | .00072 | .00592 | .00169 | .00126 | .00364 | .00125 | | | | %RSD | 8.2865 | 146.39 | 12812. | 1298.7 | 281.31 | 643.33 | 375.56 | 32.232 | | | | #1 | .00357 | .00131 | 00029 | .00636 | .00250 | .00068 | .00084 | .00270 | | | | #2 | .00422 | .00163 | 00052 | 00339 | .00000 | .00038 | .00141 | .00519 | | | | #3 | .00395 | .02550 | .00083 | 00434 | 00071 | 00164 | 00515 | .00376 | | | | Check ?
High Limit
Low Limit | Chk Pass | | | Sample Nar
Method: ICF
User: JYH
Comment: | | | | 3YLINES(v8 | Type: Blank
373) Mc
Custom ID3 | de: CONC | Corr. Fa | ctor: 1.00000(| |--|---|---|--|--|---|---|---|----------------| | Elem
Units
Avg
Stddev
%RSD | Sn1899
ppm
00038
.00025
67.429 | Sr4077
ppm
.00038
.00013
33.148 | Ti3372
ppm
00094
.00383
407.40 | TI1908
ppm
00125
.00372
297.89 | V_2924
ppm
.00110
.00116
105.80 | Zn2062
ppm
.00082
.00007
9.0451 | Zr3391
ppm
. 03454
.14179
410.54 | | | #1
#2
#3 | 00016
00065
00031 | .00051
.00036
.00026 | .00290
00095
00476 | .00268
00470
00173 | .00101
00002
.00230 | .00077
.00090
.00078 | .19745
06107
03276 | | | Check ?
High Limit
Low Limit | Chk Pass | | Int. Std.
Units
Avg
Stddev
%RSD | Y_2243
Cts/S
14080.
45.
.31634 | Y_3600
Cts/S
101500.
408.
.40194 | Y_3774
Cts/S
4605.2
13.6
.29510 | | | | | | | #1
#2
#3 | 14119.
14032.
14090. | 101280.
101240.
101970. | 4593.4
4602.0
4620.0 | | | | | | | • | | • | | | ,, | e: Unk
Mode: C
1 ID3: | ONC C | Corr. Factor | : 1.00000(| |--|---|---------------------------------|---------------------------------|---------------------------------|---|---|---------------------------------|---|------------| | Elem
Units
Avg
Stddev
%RSD | Ag3280
ppm
. 00776
.00145
18.644 | ppm
. 15484
.00217 | ppm
. 00805
.00048 | ppm
. 08137
.00310 | Ba4554
ppm
. 00793
.00063
7.9277 | Be3131
ppm
. 00159
.00004
2.6499 | . 38047
.02044 | .00100
.00021 | | | #1
#2
#3 | .00925
.00636
.00767 | .15694
.15497
.15261 | | | .00819
.00839
.00722 | .00163
.00156
.00156 | | .00124
.00095
.00083 | | | Check ?
High Limit
Low Limit | Chk Pass | | Elem
Units
Avg
Stddev
%RSD | Co2286
ppm
.00387
.00022
5.8020 | | ppm
. 00408 | ppm
. 08841
.01026 | K_7664
ppm
. 90024
.07148
7.9400 | Li6707
ppm
. 08996
.00098
1.0855 | ppm
. 46668 | Mn2576
ppm
.00640
.00271
42.301 | | | #1
#2
#3 | .00361
.00397
.00403 | | .00275 | .08514 | .81924
.95446
.92702 | .08884
.09063
.09040 | | .00432
.00542
.00947 | | | Check ?
High Limit
Low Limit | Chk Pass | | Elem
Units
Avg
Stddev
%RSD | Mo2020
ppm
. 00858
.00017
1.9878 | .40363 | ppm
. 01651
.00005 | ppm
. 78613
.00458 | Pb2203
ppm
. 01013
.00343
33.800 | Sb2068
ppm
. 08301
.00499
6.0142 | ppm
. 01569
.00609 | Si2124
ppm
. 84964
.00168
.19764 | | | #1
#2
#3 | .00839
.00864
.00871 | .41845
.39063
.40181 | | .78871 | .01402
.00754
.00884 | .08871
.07943
.08088 | .01037
.02233
.01436 | .84959
.85134
.84798 | | | Check ?
High Limit
Low Limit | Chk Pass | | • | nme: LLICV
:P-THERMC
Custo | • | | R_3YLINE | | e: Unk
Mode: C
n ID3: | ONC C | Corr. Factor: 1.000000 | |---|---|---|---|---|----------------------------|-----------------------------|----------------------------|------------------------| | Elem
Units
Avg
Stddev
%RSD | Sn1899
ppm
. 40707
.00221
.54337 | Sr4077
ppm
. 04084
.00023
.55228 | Ti3372
ppm
. 02218
.00111
5.0081 | TI1908
ppm
. 15658
.00326
2.0845 | | ppm
. 01658 | ppm
35.461 | | | #1
#2
#3 | .40766
.40893
.40462 | .04072
.04070
.04110 | | .15337
.15990
.15648 | .00908
.00845
.00828 | | 35.802
35.395
35.187 | | | Check ?
High Limit
Low Limit | Chk Pass | | Int. Std.
Units
Avg
Stddev
%RSD | Y_2243
Cts/S
14131.
27.
.18812 | Y_3600
Cts/S
101750.
642.
.63061 | Y_3774
Cts/S
4613.6
2.7
.05824 | | | | | | | #1
#2
#3 | 14104.
14131.
14157. | 101020.
102190.
102060. | 4612.8
4611.4
4616.6 | | | | | | | Sample Name: LLICV Acquired: 5/16/2016 10:14:23 Type: Unk Method: ICP-THERMO3_6010_200.7WATER_3YLINES(v873) Mode: CONC Corr. Factor: 1.000000 User: JYH Custom ID1: Custom ID2: Custom ID3: Comment: | | | | | | | | | | |---|----------------|----------------|----------------|----------------|----------------|----------------|----------------|--|--| | Elem | Ag3280 | Al3082 | As1890 | B_2496 | Ba4554 | Be3131 | Ca4226 | | | | Units | ppm | | | Avg | . 00678 | . 20524 | .01137 | . 09969 | .01000 | .00202 | . 47096 | | | | Stddev | .00114 | .00302 |
.00286 | .00181 | .00063 | .00004 | .00797 | | | | %RSD | 16.826 | 1.4715 | 25.173 | 1.8143 | 6.3148 | 1.8186 | 1.6925 | | | | #1 | .00557 | .20356 | .01157 | .09769 | .00993 | .00198 | .46593 | | | | #2 | .00695 | .20344 | .01413 | .10120 | .01067 | .00205 | .48015 | | | | #3 | .00783 | .20873 | .00841 | .10019 | .00941 | .00202 | .46679 | | | | Check ?
High Limit
Low Limit | Chk Pass | | | Elem | Cd2288 | Co2286 | Cr2677 | Cu2247 | Fe2611 | K_7664 | Li6707 | | | | Units | ppm | | | Avg | . 00114 | .00507 | . 00472 | . 00511 | .09896 | 1.0526 | . 10318 | | | | Stddev | .00014 | .00015 | .00093 | .00062 | .01635 | .0241 | .00257 | | | | %RSD | 12.086 | 2.9763 | 19.731 | 12.090 | 16.520 | 2.2932 | 2.4954 | | | | #1 | .00104 | .00522 | .00458 | .00578 | .08105 | 1.0652 | .10123 | | | | #2 | .00130 | .00506 | .00387 | .00501 | .10275 | 1.0679 | .10610 | | | | #3 | .00110 | .00492 | .00571 | .00455 | .11307 | 1.0248 | .10221 | | | | Check ?
High Limit
Low Limit | Chk Pass | | | Elem | Mg2790 | Mn2576 | Mo2020 | Na5895 | Ni2316 | P_2149 | Pb2203 | | | | Units | ppm | | | Avg | . 60583 | .00991 | .01004 | . 48914 | . 02065 | . 97481 | . 01116 | | | | Stddev | .07456 | .00025 | .00032 | .02409 | .00016 | .01037 | .00367 | | | | %RSD | 12.307 | 2.5420 | 3.2283 | 4.9246 | .76121 | 1.0639 | 32.881 | | | | #1 | .68892 | .01003 | .01036 | .49034 | .02083 | .98653 | .00858 | | | | #2 | .58380 | .00962 | .00971 | .51261 | .02053 | .97106 | .00954 | | | | #3 | .54476 | .01008 | .01005 | .46448 | .02059 | .96682 | .01536 | | | | Check ?
High Limit
Low Limit | Chk Pass | | | Sample Nam
Method: ICP
User: JYH
Comment: | ne: LLICV
-THERMO3_
Custom I | 6010_200.7 | 5/16/2016 10
WATER_3Y
Custom ID2: | LINES(v873 | ype: Unk
) Mode:
tom ID3: | CONC (| Corr. Factor: | 1.000000 | |--|---|---|--|---|---|---|---|----------| | Elem
Units
Avg
Stddev
%RSD | Sb2068
ppm
. 10079
.00251
2.4864 | Se1960
ppm
.01822
.00753
41.320 | Si2124
ppm
1.0572
.0050
.47013 | Sn1899
ppm
. 50616
.00084
.16586 | Sr4077
ppm
. 05082
.00023
.46161 | Ti3372
ppm
. 02952
.00573
19.392 | TI1908
ppm
. 19495
.00098
.50439 | | | #1
#2
#3 | .10223
.09790
.10225 | .02638
.01155
.01673 | 1.0626
1.0530
1.0558 | .50712
.50580
.50555 | .05060
.05107
.05078 | .02451
.03576
.02830 | .19388
.19518
.19580 | | | Check ?
High Limit
Low Limit | Chk Pass | | Elem
Units
Avg
Stddev
%RSD | V_2924
ppm
.00960
.00059
6.1825 | Zn2062
ppm
.02049
.00029
1.4283 | Zr3391
ppm
F 46.403
.557
1.2008 | | | | | | | #1
#2
#3 | .00906
.00951
.01024 | .02065
.02066
.02015 | 45.799
46.515
46.896 | | | | | | | Check ?
High Limit
Low Limit | Chk Pass | Chk Pass | Chk Fail
36.000
04000 | | | | | | | Int. Std.
Units
Avg
Stddev
%RSD | Y_2243
Cts/S
14124.
26.
.18519 | Y_3600
Cts/S
102080.
221.
.21625 | Y_3774
Cts/S
4614.9
55.7
1.2080 | | | | | | | #1
#2
#3 | 14115.
14104.
14154. | 101830.
102190.
102230. | 4663.4
4627.4
4554.0 | | | | | | | Sample Name: ICSA Acquired: 5/16/2016 10:18:22 Type: QC Method: ICP-THERMO3_6010_200.7WATER_3YLINES(v873) Mode: CONC Corr. Factor: 1.000000 User: JYH Custom ID1: Custom ID2: Custom ID3: Comment: | | | | | | | | | |---|----------------|---------------|----------|----------------|---------------|----------------|----------------|--| | Elem | Ag3280 | Al3082 | As1890 | B_2496 | Ba4554 | Be3131 | Ca4226 | | | Units | ppm | | Avg | . 00165 | 268.23 | 00077 | . 02259 | 00058 | 00005 | 245.50 | | | Stddev | .00101 | .41 | .00336 | .00111 | .00013 | .00004 | 1.12 | | | %RSD | 61.344 | .15155 | 439.64 | 4.9216 | 23.217 | 66.459 | .45512 | | | #1 | .00235 | 268.06 | 00344 | .02171 | 00043 | 00009 | 244.22 | | | #2 | .00049 | 268.69 | 00187 | .02384 | 00061 | 00005 | 246.30 | | | #3 | .00211 | 267.93 | .00301 | .02221 | 00070 | 00002 | 245.97 | | | Check ?
High Limit
Low Limit | Chk Pass | | Elem | Cd2288 | Co2286 | Cr2677 | Cu2247 | Fe2611 | K_7664 | Li6707 | | | Units | ppm | | Avg | . 00073 | 00145 | 00105 | 00332 | 97.859 | .11549 | . 01861 | | | Stddev | .00016 | .00064 | .00069 | .00091 | .658 | .04460 | .00184 | | | %RSD | 22.154 | 44.406 | 66.067 | 27.413 | .67210 | 38.620 | 9.8936 | | | #1 | .00078 | 00219 | 00162 | 00360 | 97.103 | .16673 | .01656 | | | #2 | .00054 | 00103 | 00028 | 00231 | 98.301 | .08532 | .02012 | | | #3 | .00085 | 00113 | 00125 | 00407 | 98.172 | .09443 | .01915 | | | Check ?
High Limit
Low Limit | Chk Pass | | Elem | Mg2790 | Mn2576 | Mo2020 | Na5895 | Ni2316 | P_2149 | Pb2203 | | | Units | ppm | | Avg | 249.80 | .00010 | 00045 | . 01946 | 00224 | . 05581 | 00049 | | | Stddev | 1.66 | .00070 | .00043 | .03468 | .00115 | .00154 | .00133 | | | %RSD | .66400 | 669.78 | 96.038 | 178.24 | 51.482 | 2.7585 | 270.98 | | | #1 | 247.89 | .00056 | 00064 | 01980 | 00356 | .05670 | 00168 | | | #2 | 250.61 | .00045 | 00076 | .03224 | 00143 | .05403 | .00095 | | | #3 | 250.90 | 00070 | .00004 | .04593 | 00173 | .05670 | 00075 | | | Check ?
High Limit
Low Limit | Chk Pass | | Sample Name
Method: ICP-T
User: JYH
Comment: | | 010_200.7W | /2016 10:18:2
ATER_3YLIN
stom ID2: | | Mode: CON | C Corr. F | Factor: 1.00000(| |---|---|---|--|--|---|---|--| | Elem
Units
Avg
Stddev
%RSD | Sb2068
ppm
01098
.00397
36.120 | Se1960
ppm
00535
.00919
171.61 | Si2124
ppm
.21854
.00066
.30034 | Sn1899
ppm
00018
.00040
221.76 | Sr4077
ppm
. 00016
.00026
160.65 | Ti3372
ppm
. 00595
.00575
96.655 | TI1908
ppm
00240
.00395
164.31 | | #1
#2
#3 | 01526
01024
00743 | .00523
01132
00997 | .21822
.21929
.21810 | 00040
.00028
00044 | 00005
.00045
.00008 | .01031
00057
.00809 | 00155
.00105
00671 | | Check ?
High Limit
Low Limit | Chk Pass | Elem
Units
Avg
Stddev
%RSD | V_2924
ppm
. 00073
.00057
77.232 | Zn2062
ppm
. 00487
.00021
4.3556 | Zr3391
ppm
F -2.6844
.1750
6.5184 | | | | | | #1
#2
#3 | .00091
.00118
.00010 | .00465
.00507
.00488 | -2.7073
-2.4991
-2.8468 | | | | | | Check ?
High Limit
Low Limit | Chk Pass | Chk Pass | Chk Fail
.02000
02000 | | | | | | Int. Std.
Units
Avg
Stddev
%RSD | Y_2243
Cts/S
13244.
16.
.11922 | Y_3600
Cts/S
94674.
37.
.03893 | Y_3774
Cts/S
4528.2
43.2
.95506 | | | | | | #1
#2
#3 | 13255.
13226.
13252. | 94716.
94660.
94646. | 4575.8
4517.7
4491.2 | | | | | | Sample Name: ICSAB Acquired: 5/16/2016 10:22:17 Type: QC Method: ICP-THERMO3_6010_200.7WATER_3YLINES(v873) Mode: CONC Corr. Factor: 1.000000 User: JYH Custom ID1: Custom ID2: Custom ID3: Comment: | | | | | | | | | |--|----------------|----------------|----------------|----------------|----------------|----------------|----------------|--| | Elem | Ag3280 | Al3082 | As1890 | B_2496 | Ba4554 | Be3131 | Ca4226 | | | Units | ppm | | Avg | . 53051 | 268.56 | . 24912 | 00003 | . 25003 | .25387 | 242.68 | | | Stddev | .00180 | .19 | .00532 | .00322 | .00128 | .00033 | .46 | | | %RSD | .34022 | .06898 | 2.1342 | 12839. | .51042 | .12947 | .18915 | | | #1 | .53216 | 268.77 | .25397 | 00363 | .25148 | .25425 | 243.18 | | | #2 | .53080 | 268.43 | .24997 | .00099 | .24907 | .25369 | 242.28 | | | #3 | .52858 | 268.48 | .24343 | .00257 | .24953 | .25367 | 242.59 | | | Check ?
High Limit
Low Limit | Chk Pass | | Elem | Cd2288 | Co2286 | Cr2677 | Cu2247 | Fe2611 | K_7664 | Li6707 | | | Units | ppm | | Avg | . 51325 | . 23955 | . 24760 | . 24831 | 96.453 | 5.2995 | . 01420 | | | Stddev | .00107 | .00061 | .00159 | .00055 | .237 | .1183 | .00336 | | | %RSD | .20793 | .25589 | .64032 | .22307 | .24552 | 2.2331 | 23.687 | | | #1 | .51393 | .23989 | .24890 | .24817 | 96.624 | 5.3622 | .01540 | | | #2 | .51381 | .23992 | .24806 | .24892 | 96.182 | 5.1630 | .01040 | | | #3 | .51202 | .23884 | .24583 | .24784 | 96.551 | 5.3732 | .01680 | | | Check ?
High Limit
Low Limit | Chk Pass | | Elem | Mg2790 | Mn2576 | Mo2020 | Na5895 | Ni2316 | P_2149 | Pb2203 | | | Units | ppm | | Avg | 246.38 | . 24793 | 00084 | 5.2291 | . 47979 | .
04733 | . 49534 | | | Stddev | .80 | .00347 | .00070 | .0171 | .00141 | .00709 | .00146 | | | %RSD | .32646 | 1.3979 | 83.476 | .32664 | .29451 | 14.972 | .29559 | | | #1 | 246.99 | .24540 | 00141 | 5.2244 | .47985 | .04445 | .49515 | | | #2 | 245.47 | .24650 | 00105 | 5.2150 | .48117 | .04214 | .49689 | | | #3 | 246.69 | .25188 | 00006 | 5.2481 | .47835 | .05541 | .49398 | | | Check ?
High Limit
Low Limit | Chk Pass | | Sample Name
Method: ICP-T
User: JYH
Comment: | |)10_200.7W <i>A</i> | 6/2016 10:22
ATER_3YLINI
stom ID2: | | Mode: CON | C Corr. F | Factor: 1.000000 | |---|---|---|--|--|---|---|---| | Elem
Units
Avg
Stddev
%RSD | Sb2068
ppm
. 49530
.00471
.95178 | Se1960
ppm
. 24351
.00443
1.8189 | Si2124
ppm
02075
.00250
12.052 | Sn1899
ppm
00054
.00061
112.58 | Sr4077
ppm
. 00051
.00013
25.451 | Ti3372
ppm
. 00210
.00149
70.697 | TI1908
ppm
. 45756
.00372
.81307 | | #1
#2
#3 | .50075
.49268
.49249 | .24468
.24723
.23861 | 02112
01809
02305 | 00046
00119
.00002 | .00063
.00053
.00037 | .00375
.00085
.00170 | .45906
.46030
.45333 | | Check ?
High Limit
Low Limit | Chk Pass | Elem
Units
Avg
Stddev
%RSD | V_2924
ppm
. 25677
.00128
.49896 | Zn2062
ppm
. 48794
.00116
.23778 | Zr3391
ppm
F -3.0469
.3892
12.775 | | | | | | #1
#2
#3 | .25679
.25548
.25804 | .48774
.48919
.48690 | -3.3196
-3.2201
-2.6011 | | | | | | Check ?
High Limit
Low Limit | Chk Pass | Chk Pass | Chk Fail
.02500
02500 | | | | | | Int. Std.
Units
Avg
Stddev
%RSD | Y_2243
Cts/S
13171.
12.
.09008 | Y_3600
Cts/S
93862.
342.
.36435 | Y_3774
Cts/S
4564.6
30.9
.67710 | | | | | | #1
#2
#3 | 13172.
13159.
13183. | 93479.
94137.
93969. | 4535.3
4561.6
4596.9 | | | | | | Sample Name: CCV Acquired: 5/16/2016 10:26:03 Type: QC Method: ICP-THERMO3_6010_200.7WATER_3YLINES(v873) Mode: CONC Corr. Factor: 1.000000 User: JYH Custom ID1: Custom ID2: Custom ID3: Comment: | | | | | | | | | | |--|----------------|----------------|----------------|----------------|----------------|----------------|----------------|--|--| | Elem | Ag3280 | Al3082 | As1890 | B_2496 | Ba4554 | Be3131 | Ca4226 | | | | Units | ppm | | | Avg | . 39917 | 10.005 | . 40022 | . 49694 | 1.0040 | . 05005 | 10.083 | | | | Stddev | .00174 | .020 | .00278 | .00243 | .0035 | .00030 | .012 | | | | %RSD | .43713 | .20454 | .69447 | .48838 | .34480 | .59544 | .12042 | | | | #1 | .40097 | 10.023 | .39792 | .49416 | 1.0071 | .05000 | 10.073 | | | | #2 | .39906 | 10.010 | .40331 | .49800 | 1.0003 | .05037 | 10.079 | | | | #3 | .39748 | 9.9831 | .39942 | .49865 | 1.0046 | .04978 | 10.096 | | | | Check ?
Value
Range | Chk Pass | | | Elem | Cd2288 | Co2286 | Cr2677 | Cu2247 | Fe2611 | K_7664 | Li6707 | | | | Units | ppm | | | Avg | . 05023 | . 20200 | . 50110 | . 50580 | 4.0440 | 50.302 | 1.0070 | | | | Stddev | .00024 | .00077 | .00220 | .00213 | .0121 | .090 | .0032 | | | | %RSD | .48284 | .38185 | .43963 | .42106 | .29821 | .17976 | .31375 | | | | #1 | .04995 | .20254 | .49871 | .50391 | 4.0537 | 50.397 | 1.0100 | | | | #2 | .05035 | .20112 | .50305 | .50539 | 4.0478 | 50.217 | 1.0037 | | | | #3 | .05038 | .20235 | .50154 | .50811 | 4.0305 | 50.292 | 1.0074 | | | | Check ?
Value
Range | Chk Pass | | | Elem | Mg2790 | Mn2576 | Mo2020 | Na5895 | Ni2316 | P_2149 | Pb2203 | | | | Units | ppm | | | Avg | 10.198 | . 50392 | 1.0002 | 50.558 | . 50668 | 9.9743 | . 50880 | | | | Stddev | .069 | .00374 | .0021 | .091 | .00148 | .0275 | .00638 | | | | %RSD | .67587 | .74179 | .20568 | .18011 | .29172 | .27579 | 1.2539 | | | | #1 | 10.122 | .50012 | 1.0022 | 50.652 | .50519 | 9.9536 | .50500 | | | | #2 | 10.216 | .50759 | .99811 | 50.470 | .50670 | 9.9638 | .50523 | | | | #3 | 10.256 | .50405 | 1.0002 | 50.551 | .50815 | 10.006 | .51617 | | | | Check ?
Value
Range | Chk Pass | | | Sample Nam
Method: ICP
User: JYH
Comment: | | _ | | LINES(v873 | pe: QC
) Mode:
stom ID3: | CONC (| Corr. Factor: 1. | .000000 | |--|---|---|---|---|---|---|---|---------| | Elem
Units
Avg
Stddev
%RSD | Sb2068
ppm
1.1950
.0055
.46255 | Se1960
ppm
. 40108
.00458
1.1422 | Si2124
ppm
5.0470
.0100
.19898 | Sn1899
ppm
1.0128
.0023
.22319 | Sr4077
ppm
1.0066
.0014
.13982 | Ti3372
ppm
1.0090
.0058
.57076 | TI1908
ppm
. 50844
.00245
.48250 | | | #1
#2
#3 | 1.1899
1.2009
1.1944 | .40507
.39608
.40210 | 5.0410
5.0413
5.0586 | 1.0135
1.0102
1.0145 | 1.0077
1.0071
1.0050 | 1.0037
1.0082
1.0152 | .50891
.51063
.50579 | | | Check ?
Value
Range | Chk Pass | | Elem
Units
Avg
Stddev
%RSD | V_2924
ppm
. 99408
.00203
.20378 | Zn2062
ppm
1.0125
.0015
.14474 | Zr3391
ppm
F 2.0790
.3002
14.437 | | | | | | | #1
#2
#3 | .99276
.99641
.99307 | 1.0122
1.0112
1.0141 | 2.4246
1.9292
1.8833 | | | | | | | Check ?
Value
Range | Chk Pass | Chk Pass | Chk Fail
1.0000
10.000% | | | | | | | Int. Std.
Units
Avg
Stddev
%RSD | Y_2243
Cts/S
13878.
12.
.08578 | Y_3600
Cts/S
99317.
338.
.34067 | Y_3774
Cts/S
4552.5
6.4
.14088 | | | | | | | #1
#2
#3 | 13892.
13871.
13871. | 99595.
98941.
99416. | 4545.5
4553.9
4558.1 | | | | | | | Sample Name: CCB Acquired: 5/16/2016 10:29:41 Type: Blank Method: ICP-THERMO3_6010_200.7WATER_3YLINES(v873) Mode: CONC Corr. Factor: 1.000000 User: JYH Custom ID1: Custom ID2: Custom ID3: Comment: | | | | | | | | | |--|----------------|----------------|----------------|----------------|----------------|----------------|----------------|----------------| | Elem | Ag3280 | Al3082 | As1890 | B_2496 | Ba4554 | Be3131 | Ca4226 | Cd2288 | | Units | ppm | Avg | 00170 | . 00100 | . 00284 | . 00061 | 00046 | .00002 | 00292 | . 00005 | | Stddev | .00177 | .00627 | .00077 | .00388 | .00028 | .00003 | .01119 | .00017 | | %RSD | 103.54 | 628.60 | 27.258 | 635.37 | 60.323 | 125.53 | 383.52 | 361.28 | | #1 | 00097 | .00165 | .00340 | .00506 | 00023 | .00001 | 01517 | 00001 | | #2 | 00043 | .00691 | .00317 | 00117 | 00039 | .00000 | 00031 | 00008 | | #3 | 00372 | 00557 | .00196 | 00206 | 00077 | .00006 | .00674 | .00024 | | Check ?
High Limit
Low Limit | Chk Pass | Elem | Co2286 | Cr2677 | Cu2247 | Fe2611 | K_7664 | Li6707 | Mg2790 | Mn2576 | | Units | ppm | Avg | 00022 | 00018 | .00006 | . 00640 | . 13314 | . 00243 | 00140 | 00281 | | Stddev | .00027 | .00076 | .00111 | .00929 | .02356 | .00286 | .05362 | .00171 | | %RSD | 124.01 | 425.08 | 1961.7 | 145.12 | 17.698 | 117.51 | 3843.4 | 60.710 | | #1 | .00004 | .00068 | .00107 | 00431 | .10880 | .00436 | 00818 | 00360 | | #2 | 00020 | 00049 | 00113 | .01233 | .13477 | .00379 | 05130 | 00085 | | #3 | 00050 | 00073 | .00022 | .01118 | .15584 | 00085 | .05530 | 00397 | | Check ?
High Limit
Low Limit | Chk Pass | Elem | Mo2020 | Na5895 | Ni2316 | P_2149 | Pb2203 | Sb2068 | Se1960 | Si2124 | | Units | ppm | Avg | . 00348 | 02307 | 00002 | . 00638 | . 00136 | . 00253 | . 00208 | . 00188 | | Stddev | .00046 | .03493 | .00084 | .00222 | .00396 | .00206 | .00399 | .00077 | | %RSD | 13.291 | 151.41 | 3879.4 | 34.798 | 290.55 | 81.465 | 192.31 | 41.039 | | #1 | .00342 | 01871 | 00025 | .00612 | 00262 | .00338 | .00617 | .00104 | | #2 | .00397 | 05999 | 00073 | .00430 | .00141 | .00402 | 00181 | .00203 | | #3 | .00305 | .00947 | .00091 | .00872 | .00530 | .00018 | .00186 | .00256 | | Check ?
High Limit
Low Limit | Chk Pass | Sample Name: CCB Acquired: 5/16/2016 10:29:41 Type: Blank Method: ICP-THERMO3_6010_200.7WATER_3YLINES(v873) Mode: CONC Corr. Factor: 1.000 User: JYH Custom ID1: Custom ID2: Custom ID3: Comment: | | | | | | |)00000 | | |---|---|---|--
---|---|---|--|--| | Elem
Units
Avg
Stddev
%RSD | Sn1899
ppm
00023
.00039
164.51 | Sr4077
ppm
00011
.00043
400.04 | Ti3372
ppm
00168
.00018
10.845 | TI1908
ppm
. 00058
.00575
992.60 | V_2924
ppm
. 00109
.00082
75.119 | Zn2062
ppm
.00015
.00006
36.748 | Zr3391
ppm
02230
.31041
1391.7 | | | #1
#2
#3 | .00003
00006
00068 | 00057
00002
.00027 | 00153
00161
00188 | .00199
.00549
00574 | .00131
.00178
.00018 | .00021
.00013
.00011 | .30404
05710
31385 | | | Check ?
High Limit
Low Limit | Chk Pass | | Int. Std.
Units
Avg
Stddev
%RSD | Y_2243
Cts/S
13993.
45.
.32060 | Y_3600
Cts/S
100980.
185.
.18350 | Y_3774
Cts/S
4579.4
66.5
1.4517 | | | | | | | #1
#2
#3 | 13941.
14023.
14015. | 101190.
100840.
100910. | 4620.6
4502.7
4614.9 | | | | | | Sample Name: PBW 13 Acquired: 5/16/2016 10:33:42 Type: Unk Method: ICP-THERMO3 6010 200.7WATER 3YLINES(v873) Mode: CONC Corr. Factor: 1.000000 User: JYH Custom ID1: Custom ID2: Custom ID3: Comment: WG568333-02 Al3082 As1890 B 2496 Ba4554 Be3131 Ca4226 Cd2288 Elem Ag3280 Units ppm ppm ppm ppm ppm ppm ppm ppm -.00009 -.01094 Avg -.00203 -.00754-.00013 -.00015 -.00009 .00002 Stddev .00083 .00424 .00492 .00349 .00020 .00003 .02529 .00047 56.278 2256.1 %RSD 41.025 3835.7 226.92 115.36 231.11 500.25 #1 -.00282 -.00277 -.00307 .00248 .00014 .00000 -.00002 -.01553 #2 -.00116 -.01089 .00556 .00117 -.00024 .00001 .01633 -.00059 #3 -.00210 -.00897 -.00287 -.00411 -.00016 .00005 -.03362 .00034 Check? Chk Pass **High Limit** Low Limit Elem Co2286 Cr2677 Cu2247 Fe2611 K_7664 Li6707 Mg2790 Mn2576 Units ppm ppm ppm ppm ppm ppm ppm ppm -.00038 .00025 -.00014 .01665 .00461 .01730 .00271 Avg .11401 .00008 .00051 .00075 .03536 .00079 Stddev .01701 .04798 .00049 %RSD 22.199 202.06 550.34 212.31 14.924 17.249 277.29 17.961 #1 -.00048 -.00033 .00073 -.02166 .10820 .00445 .05684 .00281 #2 -.00033 .00055 -.00056 .04803 .10066 .00547 .03113 .00314 .00053 -.00058 .00390 -.03607 #3 -.00033 .02358 .13317 .00218 Check? Chk Pass High Limit Low Limit Elem Mo2020 Na5895 Ni2316 P_2149 Pb2203 Sb2068 Se1960 Si2124 Units ppm ppm ppm ppm ppm ppm ppm ppm .00096 .00402 -.00058 -.00822 -.00035 -.00147 .00100 -.01247 Avg Stddev .00016 .00528 .00154 .00781 .00246 .00401 .00637 .00099 636.03 7.9638 %RSD 16.901 131.41 265.31 94.927 700.93 273.55 #1 -.01536 -.00231 .00107 .00395 -.00010 -.00381 .00824 -.01243 Approved: May 17, 2016 .00317 -.00376 Chk Pass -.00147 -.00376 Chk Pass -.01149 -.01348 **Chk Pass** .00078 .00104 #2 #3 Check? High Limit Low Limit .00934 -.00123 -.00230 .00066 Chk Pass Chk Pass Chk Pass Chk Pass .00011 -.00942 .00242 -.00116 Sample Name: PBW 13 Acquired: 5/16/2016 10:33:42 Type: Unk Method: ICP-THERMO3_6010_200.7WATER_3YLINES(v873) Mode: CONC Corr. Factor: 1.000000 User: JYH Custom ID1: Custom ID2: Custom ID3: Comment: WG568333-02 Elem Sn1899 Sr4077 Ti3372 TI1908 V_2924 Zn2062 Zr3391 Units ppm ppm ppm ppm ppm ppm ppm -.00107 .00046 -.00338 -.00306 .00077 .00093 -.03417 Avg Stddev .00028 .00041 .00477 .00028 .00057 .00011 .11027 141.03 9.1707 322.66 %RSD 26.116 87.471 74.893 11.761 #1 -.00086 .00000 .00037 -.00282 .00109 .00099 .06949 #2 -.00096 .00076 -.00875 -.00298 .00111 .00080 -.02198 #3 -.00139 .00063 -.00177 -.00337 .00010 .00100 -.15003 Check? Chk Pass Chk Pass Chk Pass Chk Pass Chk Pass Chk Pass High Limit Low Limit Y_3774 Int. Std. Y_2243 Y_3600 Units Cts/S Cts/S Cts/S 13808. 100490. 4474.1 Avg Stddev 6. 444. 16.8 Approved: May 17, 2016 %RSD #1 #2 #3 .04704 13811. 13813. 13801. .44164 100250. 101000. 100210. .37454 4480.2 4486.9 4455.1 Sample Name: LCSW 13 Acquired: 5/16/2016 10:37:43 Type: Unk Method: ICP-THERMO3_6010_200.7WATER_3YLINES(v873) Mode: CONC Corr. Factor: 1.000000 User: JYH Custom ID1: Custom ID2: Custom ID3: Comment: WG568333-03 | Elem | Ag3280 | Al3082 | As1890 | B_2496 | Ba4554 | Be3131 | Ca4226 | Cd2288 | |--------|--------|--------|--------|--------|--------|--------|--------|--------| | Units | ppm | Avg | .20395 | 5.0541 | .19942 | .98997 | .51715 | .02504 | 5.1435 | .02547 | | Stddev | .00304 | .0201 | .00251 | .00180 | .00132 | .00015 | .0522 | .00027 | | %RSD | 1.4884 | .39759 | 1.2583 | .18213 | .25594 | .59161 | 1.0158 | 1.0481 | | #1 | .20732 | 5.0675 | .19703 | .98938 | .51868 | .02518 | 5.1446 | .02548 | | #2 | .20143 | 5.0638 | .19920 | .98853 | .51635 | .02505 | 5.1952 | .02574 | | #3 | .20309 | 5.0310 | .20203 | .99199 | .51642 | .02488 | 5.0908 | .02520 | Check? Chk Pass P | Elem | Co2286 | Cr2677 | Cu2247 | Fe2611 | K_7664 | Li6707 | Mg2790 | Mn2576 | |--------|--------|----------------|----------------|---------------|---------------|----------------|---------------|----------------| | Units | ppm | Avg | .10341 | . 25700 | . 25843 | 2.0829 | 26.031 | . 52337 | 5.1544 | . 25831 | | Stddev | .00058 | .00149 | .00053 | .0198 | .086 | .00451 | .1021 | .00151 | | %RSD | .56395 | .57856 | .20490 | .95213 | .32898 | .86201 | 1.9811 | .58633 | | #1 | .10409 | .25856 | .25881 | 2.0709 | 26.092 | .52722 | 5.1334 | .26002 | | #2 | .10305 | .25686 | .25783 | 2.1058 | 26.067 | .51840 | 5.0645 | .25712 | | #3 | .10311 | .25559 | .25866 | 2.0719 | 25.933 | .52448 | 5.2654 | .25780 | Check? Chk Pass P | Elem
Units
Avg
Stddev
%RSD | Mo2020
ppm
. 52034
.00219
.42031 | Na5895
ppm
26.048
.036
.13875 | Ni2316
ppm
. 26223
.00027
.10394 | P_2149
ppm
4.9780
.0094
.18900 | Pb2203
ppm
. 26179
.00263
1.0032 | Sb2068
ppm
. 61310
.00482
.78667 | Se1960
ppm
.19562
.00504
2.5741 | Si2124
ppm
2.6374
.0105
.39677 | |--|---|--|---|---|---|---|---|---| | #1 | .52193 | 26.029 | .26224 | 4.9886 | .26015 | .61797 | .19762 | 2.6448 | | #2 | .51784 | 26.089 | .26249 | 4.9745 | .26482 | .60833 | .19935 | 2.6254 | | #3 | .52124 | 26.024 | .26195 | 4.9708 | .26041 | .61299 | .18989 | 2.6420 | Check? Chk Pass P Sample Name: LCSW 13 Acquired: 5/16/2016 10:37:43 Type: Unk Method: ICP-THERMO3_6010_200.7WATER_3YLINES(v873) Mode: CONC Corr. Factor: 1.000000 User: JYH Custom ID1: Custom ID2: Custom ID3: Comment: WG568333-03 | Elem | Sn1899 | Sr4077 | Ti3372 | TI1908 | V_2924 | Zn2062 | Zr3391 | |--------|--------|--------|--------|--------|--------|--------|--------| | Units | ppm | Avg | .51772 | .51887 | .51725 | .25824 | .51396 | .51163 | .56045 | | Stddev | .00128 | .00097 | .00968 | .00180 | .00085 | .00067 | .16050 | | %RSD | .24740 | .18720 | 1.8705 | .69877 | .16632 | .13146 | 28.637 | | #1 | .51919 | .51999 | .50898 | .25810 | .51441 | .51224 | .72779 | | #2 | .51710 | .51837 | .52789 | .26011 | .51450 | .51091 | .40780 | | | | | | | | | | | #3 | .51686 | .51825 | .51488 | .25651 | .51298 | .51176 | .54576 | Check? Chk Pass P Low Limit | Int. Std. | Y_2243 | Y_3600 | Y_3774 | |-----------|---------------|----------------|---------------| | Units | Cts/S | Cts/S | Cts/S | | Avg | 13798. | 99072 . | 4568.5 | | Stddev | 67. | 350. | 17.2 | | %RSD | .48247 | .35372 | .37650 | | #1 | 13739. | 99151. | 4556.6 | | #2 | 13870. | 98689. | 4560.7 | | #3 | 13783. | 99376. | 4588.2 | Sample Name: F BLANK Acquired: 5/16/2016 10:46:17 Type: Unk Method: ICP-THERMO3 6010 200.7WATER 3YLINES(v873) Mode: CONC Corr. Factor: 1.000000 User: JYH Custom ID1: Custom ID2: Custom ID3: Comment: WG568186-01 Al3082 As1890 B 2496 Ba4554 Ca4226 Cd2288 Elem Ag3280 Be3131 Units ppm ppm ppm ppm ppm ppm ppm ppm Avg -.00204 .00248 .00100 .00180 .00011 .00006 -.00576 .00029 Stddev .00097 .00487 .00279 .00009 .00075 .00001 .04116 .00022 280.47 %RSD 47.592 196.39 4.9044 679.71 9.8625 714.84 76.296 #1 -.00310 -.00307 .00095 .00178 -.00002 .00005 -.03776 .00041 #2 -.00182 .00605 -.00177 .00190 .00091 .00006 .04067 .00042 -.00120 #3 .00445 .00381 .00172 -.00056 .00006 -.02019 .00003 Check? Chk Pass **High Limit** Low Limit Elem Co2286 Cr2677 Cu2247 Fe2611 K_7664 Li6707 Mg2790 Mn2576 Units ppm ppm ppm ppm ppm ppm ppm ppm -.00013 .00017 .00380 -.00008 Avg .00126 .00875 .18724 .15340 .00032 .00117 .00190 .04732 .00074 Stddev .00038 .00823 .06481 %RSD 279.23 25.535 677.65 94.041 34.615 49.916 30.849 929.52 #1 .00011 .00105 .00095 -.00044 .20128 .00527 .09888 -.00076 #2 -.00057.00164 -.00118 .01543 .11656 .00448 .17742 -.00018.00075 .00166 #3 .00005 .00111 .01125 .24389 .18389 .00070 Check? Chk Pass High Limit Low Limit Elem Mo2020 Na5895 Ni2316 P_2149 Pb2203 Sb2068 Se1960 Si2124 Units ppm ppm ppm ppm ppm ppm ppm ppm .00044 130.09 -.00016 -.00957 -.00037 -.00207 .00221 -.01027 Avg Stddev .00040 .00027 .00626 .00170 .00156 .00358 .32 .00193 92.452 %RSD .24450 170.40 65.369 460.74 75.118 162.32 18.815 #1 .00087 130.14 .00013 -.01054 .00118 -.00032 -.00085 -.01240 .00038 130.38 -.00041 -.01529 -.00220 -.00262 .00133 -.00864 #2 #3 .00006 129.75 -.00020 -.00289 -.00009 -.00329 .00614 -.00976 Check? Chk Pass Chk Pass Chk Pass Chk Pass Chk Pass Chk Pass **Chk Pass** High Limit Approved: May 17, 2016 Low Limit Sample Name: F BLANK Acquired: 5/16/2016 10:46:17 Type: Unk Method: ICP-THERMO3_6010_200.7WATER_3YLINES(v873) Mode: CONC Corr. Factor: 1.000000 User: JYH Custom ID1: Custom
ID2: Custom ID3: Comment: WG568186-01 Elem Sn1899 Sr4077 Ti3372 TI1908 V_2924 Zn2062 Zr3391 Units ppm ppm ppm ppm ppm ppm ppm -.00046 .00018 .00135 -.00136 .00058 .00335 -.00009 Avg Stddev .00082 .00020 .00429 .00048 .00015 .00020 .23823 316.70 35.734 5.9730 %RSD 179.20 107.48 25.952 260370. #1 -.00078 .00028 -.00062 -.00191 .00071 .00322 -.13513 #2 .00047 .00031 .00627 -.00113 .00042 .00326 -.14013 #3 -.00107 -.00004 -.00159 -.00103 .00062 .00359 .27498 Check? Chk Pass Chk Pass Chk Pass Chk Pass Chk Pass Chk Pass High Limit Low Limit Y_3774 Int. Std. Y_2243 Y_3600 Units Cts/S Cts/S Cts/S 13797. 99107. 4570.5 Avg Stddev 30. 181. 58.1 %RSD .21947 .18244 1.2703 Approved: May 17, 2016 #1 #2 #3 13763. 13820. 13808. 99065. 98950. 99305. 4521.0 4556.1 4634.4 Sample Name: F BLANK Acquired: 5/16/2016 10:50:16 Type: Unk Method: ICP-THERMO3 6010 200.7WATER 3YLINES(v873) Mode: CONC Corr. Factor: 1.000000 User: JYH Custom ID1: Custom ID2: Custom ID3: Comment: WG568186-02 Al3082 As1890 B 2496 Ba4554 Ca4226 Cd2288 Elem Ag3280 Be3131 Units ppm ppm ppm ppm ppm ppm ppm ppm .00425 .40990 Avg -.00319 -.00465 -.00171 .09279 -.00003.00020 Stddev .00186 .00774 .00173 .00186 .00105 .00002 .00966 .00010 %RSD 58.439 166.46 100.98 43.787 1.1316 73.854 2.3557 50.367 #1 -.00510 -.00277 -.00183 .00639 .40912 .00031 .09196 -.00001 #2 -.00138 -.01315 -.00337 .00307 .09397 -.00002 .40067 .00012 #3 -.00309 .00198 .00008 .00328 .09244 -.00005 .41993 .00017 Check? Chk Pass High Limit Low Limit Elem Co2286 Cr2677 Cu2247 Fe2611 K_7664 Li6707 Mg2790 Mn2576 Units ppm ppm ppm ppm ppm ppm ppm ppm -.00043 .00003 .01054 .00688 -.00201 Avg .00019 .13305 .16709 .00030 .00026 .00083 .00230 Stddev .02562 .07264 .07657 .00376 %RSD 70.092 135.37 2373.7 242.97 54.601 33.415 45.826 187.40 #1 -.00054 .00013 .00079 -.01875 .18234 .00601 .13036 -.00616 #2 -.00065.00048 .00016 .02873 .04962 .00949 .25510 .00116 -.00003 -.00085 .00515 #3 -.00009 .02165 .16718 .11581 -.00102 Check? Chk Pass High Limit Low Limit Elem Mo2020 Na5895 Ni2316 P_2149 Pb2203 Sb2068 Se1960 Si2124 Units ppm ppm ppm ppm ppm ppm ppm ppm .00002 1.7821 .00048 -.01121 -.00218 -.00220 .00297 -.00706 Avg Stddev .00048 .00007 .00244 .00200 .00571 .0030 .00175 .00111 .17051 14.255 %RSD 2127.7 21.753 80.396 91.190 192.39 15.680 #1 -.01254 .00031 1.7810 .00041 -.00021 -.00427 -.00283 -.00600 -.00053 1.7798 .00054 -.00840 -.00358 -.00204 .00859 #2 -.00821 1.7855 #3 .00029 .00051 -.01269 -.00275 -.00028 .00315 -.00697 Check? Chk Pass Chk Pass Chk Pass Chk Pass Chk Pass Chk Pass **Chk Pass** High Limit Approved: May 17, 2016 Low Limit | Sample Name: F BLANK Acquired: 5/16/2016 10:50:16 Type: Unk Method: ICP-THERMO3_6010_200.7WATER_3YLINES(v873) Mode: CONC Corr. Factor: 1.000000 | | | | | | | | | |--|-----------------------|-----------------------|---------------------|-----------------------|-----------------------|-----------------------|------------------------|--| | | | | _ | • | • | de: CONC | Corr. Factor: 1.000000 | | | User: JYH | Custom | | Custom II |)2: (| Custom ID3 | | | | | Comment: \ | /VG568186-U |)2 | | | | | | | | Elem | Sn1899 | Sr4077 | Ti3372 | TI1908 | V_2924 | Zn2062 | Zr3391 | | | Units
Avg | ppm
00092 | ppm
. 08372 | ppm
00019 | ppm
. 00004 | ppm
. 00099 | ppm
. 00324 | ppm
. 23621 | | | Stddev | .00064 | .00100 | .00043 | .00314 | .00040 | .00324 | .31679 | | | %RSD | 69.668 | 1.1986 | 230.43 | 8626.7 | 40.713 | 3.0224 | 134.11 | | | | | | | | | | | | | #1 | 00145 | .08256 | .00000 | 00012 | .00059 | .00324 | .36467 | | | #2 | 00111 | .08423 | .00012 | 00302 | .00098 | .00334 | | | | #3 | 00021 | .08436 | 00068 | .00325 | .00140 | .00315 | 12464 | | | Check ?
High Limit
Low Limit | Chk Pass | | Int. Std.
Units | Y_2243
Cts/S | Y_3600
Cts/S | Y_3774
Cts/S | | | | | | | Avg
Stddev | 14208 .
31. | 103600.
223. | 4683.1 26.5 | | | | | | | %RSD | .21851 | .21528 | .56596 | | | | | | | | | | | | | | | | | #1 | 14236. | 103430. | 4658.5 | | | | | | | #2 | 14175. | 103510. | 4711.1 | | | | | | | #3 | 14215. | 103850. | 4679.6 | | | | | | Sample Name: L1605043405 Acquired: 5/16/2016 10:54:15 Type: Unk Method: ICP-THERMO3_6010_200.7WATER_3YLINES(v873) Mode: CONC Corr. Factor: 1.000000 User: JYH Custom ID1: Custom ID2: Custom ID3: Comment: WG568333-01 | Elem | Ag3280 | Al3082 | As1890 | B_2496 | Ba4554 | Be3131 | Ca4226 | |------------------------------------|----------------|----------------|----------------|-----------------------------|----------------|----------------|----------------| | Units | ppm | Avg | 00269 | .01249 | .00164 | . 26535 | .03096 | .00002 | 4.2344 | | Stddev | .00096 | .00616 | .00357 | .00142 | .00046 | .00002 | .0219 | | %RSD | 35.761 | 49.286 | 217.44 | .53339 | 1.5005 | 83.568 | .51650 | | #1 | 00165 | .00952 | .00154 | .26420 | .03078 | .00000 | 4.2538 | | #2 | 00355 | .01956 | 00187 | .26693 | .03149 | .00004 | 4.2107 | | #3 | 00286 | .00838 | .00526 | .26492 | .03062 | .00002 | 4.2388 | | Check ?
High Limit
Low Limit | Chk Pass | Elem | Cd2288 | Co2286 | Cr2677 | Cu2247 | Fe2611 | K_7664 | Li6707 | | Units | ppm | Avg | . 00008 | .00119 | .00085 | . 00177 | . 10523 | 2.0745 | . 02357 | | Stddev | .00017 | .00032 | .00116 | .00038 | .02658 | .0416 | .00284 | | %RSD | 219.13 | 26.536 | 136.73 | 21.652 | 25.263 | 2.0058 | 12.030 | | #1 | .00008 | .00085 | .00165 | .00205 | .10711 | 2.1004 | .02044 | | #2 | 00009 | .00126 | .00138 | .00193 | .07775 | 2.0966 | .02431 | | #3 | .00025 | .00148 | 00048 | .00133 | .13082 | 2.0265 | .02596 | | Check ?
High Limit
Low Limit | Chk Pass | Elem | Mg2790 | Mn2576 | Mo2020 | Na5895 | Ni2316 | P_2149 | Pb2203 | | Units | ppm | Avg | 1.1016 | . 02268 | . 04080 | F 462.14 | .08284 | . 00556 | . 00161 | | Stddev | .0590 | .00185 | .00022 | 1.92 | .00039 | .00251 | .00248 | | %RSD | 5.3564 | 8.1607 | .54775 | .41623 | .47236 | 45.166 | 154.13 | | #1 | 1.1386 | .02258 | .04104 | 462.87 | .08312 | .00266 | .00271 | | #2 | 1.0335 | .02088 | .04076 | 463.60 | .08239 | .00712 | 00123 | | #3 | 1.1326 | .02457 | .04060 | 459.96 | .08301 | .00690 | .00335 | | Check ?
High Limit
Low Limit | Chk Pass | Chk Pass | Chk Pass | Chk Fail
270.00
50000 | Chk Pass | Chk Pass | Chk Pass | Approved: May 17, 2016 J'ye 1hu Sample Name: L1605043405 Acquired: 5/16/2016 10:54:15 Type: Unk Method: ICP-THERMO3_6010_200.7WATER_3YLINES(v873) Mode: CONC Corr. Factor: 1.000000 User: JYH Custom ID1: Custom ID2: Custom ID3: Comment: WG568333-01 Elem Sb2068 Se1960 Si2124 Sn1899 Sr4077 Ti3372 TI1908 Units ppm ppm ppm ppm ppm ppm ppm .27647 -.00168 1.9785 -.00076 -.00259 -.00179 Avg -.00219 Stddev .00205 .00576 .0021 .00100 .00100 .00391 .00265 150.63 %RSD 93.839 341.87 .10377 130.81 .36339 147.46 #1 .00018 -.00219 1.9808 -.00180 .27531 -.00707 -.00399 #2 -.00347 -.00717 1.9769 -.00068 .27702 -.00082 -.00254 #3 -.00327 .00431 1.9778 .00019 .27708 .00011 .00114 **Chk Pass** Check? Chk Pass Chk Pass Chk Pass Chk Pass Chk Pass **Chk Pass** High Limit Low Limit Elem V_2924 Zn2062 Zr3391 ppm Units ppm ppm .00033 .00212 .46790 Avg .00095 .00009 .26482 Stddev %RSD 289.99 4.0925 56.598 #1 .00077 .00206 .76564 #2 -.00076 .00222 .25865 #3 .00209 .37942 .00097 Check? Chk Pass Chk Pass **Chk Pass** High Limit Low Limit Int. Std. Y_2243 Y_3600 Y_3774 Units Cts/S Cts/S Cts/S 13410. 94619. 4527.2 Avg Stddev 28. 231. 24.7 .20899 .24455 .54502 %RSD #1 13381. 94361. 4513.4 94688. 13437. 4512.6 #2 4555.7 Approved: May 17, 2016 #3 13413. 94808. Sample Name: L1605043407S Acquired: 5/16/2016 10:58:13 Type: Unk Method: ICP-THERMO3_6010_200.7WATER_3YLINES(v873) Mode: CONC Corr. Factor: 1.000000 User: JYH Custom ID1: Custom ID2: Custom ID3: Comment: WG568333-04 | Elem | Ag3280 | Al3082 | As1890 | B_2496 | Ba4554 | Be3131 | Ca4226 | |------------------------------------|----------------|----------------|----------------|-----------------------------|----------------|----------------|----------------| | Units | ppm | Avg | . 20246 | 5.0047 | .20325 | 1.2622 | . 53403 | . 02517 | 9.2008 | | Stddev | .00343 | .0111 | .00488 | .0022 | .00198 | .00002 | .0263 | | %RSD | 1.6920 | .22143 | 2.4016 | .17224 | .37071 | .08071 | .28599 | | #1 | .19920 | 4.9920 | .20879 | 1.2617 | .53175 | .02518 | 9.1858 | | #2 | .20603 | 5.0123 | .20138 | 1.2603 | .53524 | .02517 | 9.1854 | | #3 | .20215 | 5.0098 | .19958 | 1.2646 | .53511 | .02515 | 9.2312 | | Check ?
High Limit
Low Limit | Chk Pass | Elem | Cd2288 | Co2286 | Cr2677 | Cu2247 | Fe2611 | K_7664 | Li6707 | | Units | ppm | Avg | . 02490 | .10050 | . 24938 | . 24827 | 2.1040 | 27.625 | . 52470 | | Stddev | .00026 | .00007 | .00032 | .00068 | .0453 | .079 | .00141 | | %RSD | 1.0475 | .06848 | .12799 | .27192 | 2.1548 | .28525 | .26842 | | #1 | .02464 | .10057 | .24928 | .24754 | 2.1464 | 27.561 | .52342 | | #2 | .02516 | .10043 | .24912 | .24839 | 2.1094 | 27.713 | .52621 | | #3 | .02491 | .10050 | .24974 | .24888 | 2.0562 | 27.602 | .52448 | | Check ?
High Limit
Low Limit | Chk Pass | Elem | Mg2790 | Mn2576 | Mo2020 | Na5895 | Ni2316 | P_2149 | Pb2203 | | Units | ppm | Avg | 5.9081 | . 27155 | . 54963 | F 484.22 | . 33067 | 5.0390 | . 24535 | | Stddev | .0233 | .00260 | .00126 | .76 | .00037 | .0149 | .00213 | | %RSD | .39431 | .95612 | .22972 | .15764 | .11304 | .29567 | .86773 | | #1 | 5.9188 | .27234 | .55050 | 484.47 | .33103 | 5.0435 | .24757 | | #2 | 5.8814 | .26865 | .54818 | 483.36 | .33070 | 5.0224 | .24514 | | #3 | 5.9241 | .27366 | .55020 | 484.82 | .33028 | 5.0511 | .24333 | | Check ?
High Limit
Low Limit | Chk Pass | Chk Pass | Chk
Pass | Chk Fail
270.00
50000 | Chk Pass | Chk Pass | Chk Pass | Approved: May 17, 2016 J'ye 1hu Sample Name: L1605043407S Acquired: 5/16/2016 10:58:13 Type: Unk Method: ICP-THERMO3_6010_200.7WATER_3YLINES(v873) Mode: CONC Corr. Factor: 1.000000 User: JYH Custom ID1: Custom ID2: Custom ID3: Comment: WG568333-04 Sb2068 Se1960 Si2124 Sn1899 Sr4077 Ti3372 TI1908 Elem Units ppm ppm ppm ppm ppm ppm ppm .60707 .19571 4.6101 .50064 .23786 Avg .77567 .51105 Stddev .00250 .01322 .0035 .00108 .00184 .00468 .00361 %RSD .41143 6.7550 .07610 .21571 .23740 .91502 1.5193 #1 .60904 4.6083 .50106 .77389 .50570 .24059 .19175 #2 .60426 .21046 4.6141 .49942 .77555 .51438 .23376 #3 .60792 .18492 4.6078 .50145 .77756 .51306 .23924 **Chk Pass** Check? Chk Pass Chk Pass Chk Pass Chk Pass Chk Pass **Chk Pass** High Limit Low Limit Elem V_2924 Zn2062 Zr3391 ppm Units ppm ppm .50642 .50653 .82055 Avg .00101 .00031 Stddev .22673 %RSD .19958 .06188 27.631 #1 .50693 .50688 1.0080 #2 .50525 .50629 .88507 #3 .50643 .50707 .56856 Check? Chk Pass Chk Pass **Chk Pass** High Limit Low Limit Int. Std. Y_2243 Y_3600 Y_3774 Units Cts/S Cts/S Cts/S 13327. 94401. 4520.6 Avg Stddev 193. 38.2 10. .07603 .20483 .84416 %RSD #1 94621. 13319. 4559.6 13323. 94257. 4519.0 #2 4483.3 94327. Approved: May 17, 2016 #3 13338. Sample Name: L1605043409SD Acquired: 5/16/2016 11:01:55 Type: Unk Method: ICP-THERMO3_6010_200.7WATER_3YLINES(v873) Mode: CONC Corr. Factor: 1.000000 User: JYH Custom ID1: Custom ID2: Custom ID3: Comment: WG568333-05 | Elem | Ag3280 | Al3082 | As1890 | B_2496 | Ba4554 | Be3131 | Ca4226 | |------------------------------------|----------------|----------------|----------------|-----------------------------|----------------|---------------|----------------| | Units | ppm | Avg | . 20083 | 4.9526 | .20145 | 1.2680 | . 52707 | .02482 | 9.3036 | | Stddev | .00037 | .0088 | .00363 | .0019 | .00256 | .00013 | .0224 | | %RSD | .18262 | .17796 | 1.8017 | .14655 | .48664 | .51556 | .24121 | | #1 | .20105 | 4.9605 | .20362 | 1.2682 | .52757 | .02492 | 9.2786 | | #2 | .20041 | 4.9431 | .19726 | 1.2660 | .52936 | .02488 | 9.3101 | | #3 | .20104 | 4.9542 | .20347 | 1.2697 | .52430 | .02468 | 9.3220 | | Check ?
High Limit
Low Limit | Chk Pass | Elem | Cd2288 | Co2286 | Cr2677 | Cu2247 | Fe2611 | K_7664 | Li6707 | | Units | ppm | Avg | . 02492 | .09983 | . 24822 | . 24866 | 2.1112 | 27.422 | . 52339 | | Stddev | .00006 | .00044 | .00035 | .00092 | .0213 | .159 | .00102 | | %RSD | .24039 | .43717 | .14259 | .36839 | 1.0069 | .57841 | .19418 | | #1 | .02485 | .09934 | .24863 | .24761 | 2.0866 | 27.333 | .52431 | | #2 | .02496 | .09995 | .24800 | .24911 | 2.1237 | 27.606 | .52355 | | #3 | .02495 | .10019 | .24802 | .24927 | 2.1231 | 27.328 | .52230 | | Check ?
High Limit
Low Limit | Chk Pass | Elem | Mg2790 | Mn2576 | Mo2020 | Na5895 | Ni2316 | P_2149 | Pb2203 | | Units | ppm | Avg | 5.8343 | . 26836 | . 54781 | F 495.11 | . 33263 | 4.9841 | . 24237 | | Stddev | .1169 | .00108 | .00005 | 6.27 | .00143 | .0152 | .00174 | | %RSD | 2.0043 | .40285 | .00986 | 1.2660 | .42964 | .30425 | .71588 | | #1 | 5.9384 | .26772 | .54775 | 501.15 | .33134 | 4.9694 | .24185 | | #2 | 5.7077 | .26775 | .54783 | 495.56 | .33240 | 4.9997 | .24096 | | #3 | 5.8567 | .26960 | .54785 | 488.64 | .33417 | 4.9833 | .24431 | | Check ?
High Limit
Low Limit | Chk Pass | Chk Pass | Chk Pass | Chk Fail
270.00
50000 | Chk Pass | Chk Pass | Chk Pass | Sample Name: L1605043409SD Acquired: 5/16/2016 11:01:55 Type: Unk Method: ICP-THERMO3_6010_200.7WATER_3YLINES(v873) Mode: CONC Corr. Factor: 1.000000 User: JYH Custom ID1: Custom ID2: Custom ID3: Comment: WG568333-05 Sb2068 Se1960 Si2124 Sn1899 Sr4077 Ti3372 TI1908 Elem Units ppm ppm ppm ppm ppm ppm ppm .59998 .19949 4.6707 .49598 .23696 Avg .78046 .49505 Stddev .00021 .00769 .0069 .00243 .00597 .00576 .00166 %RSD .03503 3.8523 .14662 .48896 .76470 1.1632 .70225 #1 .59981 .19649 .49333 .49510 .23592 4.6673 .78620 #2 .60021 .20822 4.6786 .49654 .78088 .50079 .23888 #3 .59991 .19376 4.6662 .49808 .77429 .48927 .23609 **Chk Pass** Check? Chk Pass Chk Pass Chk Pass Chk Pass Chk Pass **Chk Pass** High Limit Low Limit Elem V_2924 Zn2062 Zr3391 Units ppm ppm ppm .50397 .50375 Avg .77770 Stddev .00127 .00114 .09770 %RSD .25183 .22692 12.562 #1 .50321 .50251 .66579 #2 .50544 .50397 .82132 #3 .84598 .50327 .50476 Check? Chk Pass Chk Pass **Chk Pass** High Limit Low Limit Int. Std. Y_2243 Y_3600 Y_3774 Approved: May 17, 2016 Units %RSD Avg Stddev #1 #2 #3 Cts/S 18. 13301. .13502 13321. 13295. 13287. Cts/S 286. 94464. .30322 94194. 94435. 94764. Cts/S 4574.5 .92282 4546.8 4553.5 4623.0 42.2 | Sample Nan
Method: ICF
User: JYH
Comment: | | _6010_200 | cquired: 5/1
.7WATER_:
Custom IE | 3YLINES(v8 | | ype: Unk
de: CONC
: | Corr. Fa | actor: 1.00000(| |--|---|--|---|---|---|--|---|---| | Elem | Ag3280 | Al3082 | As1890 | B_2496 | Ba4554 | Be3131 | Ca4226 | Cd2288 | | Units | ppm | Avg | 00161 | . 01892 | .00143 | . 03374 | .00131 | .00008 | . 19457 | . 00039 | | Stddev | .00147 | .01059 | .00496 | .00274 | .00084 | .00008 | .02901 | .00016 | | %RSD | 91.352 | 55.975 | 346.93 | 8.1356 | 64.178 | 95.952 | 14.911 | 40.024 | | #1 | 00047 | .01982 | 00275 | .03598 | .00055 | .00016 | .20354 | .00032 | | #2 | 00109 | .00791 | .00692 | .03456 | .00222 | 00000 | .16213 | .00028 | | #3 | 00328 | .02902 | .00013 | .03068 | .00116 | .00009 | .21803 | .00057 | | Check ?
High Limit
Low Limit | Chk Pass | Elem
Units
Avg
Stddev
%RSD
#1
#2 | Co2286 ppm00002 .00012 492.960001400004 | Cr2677
ppm
00035
.00015
42.396
00037
00019 | Cu2247
ppm
.09353
.00109
1.1631
.09407
.09228 | Fe2611
ppm
.17020
.00717
4.2154
.17833
.16750 | K_7664
ppm
. 25514
.02877
11.275
.28642
.24920 | Li6707
ppm
.00300
.00451
150.12
.00693
00192 | Mg2790
ppm
.09409
.04954
52.655
.06834
.15121 | Mn2576
ppm
. 00681
.00183
26.785
.00517 | | #3 Check? High Limit Low Limit | .00010 | 00049 | .09425 | .16477 | .22981 | .00401 | .06273 | .00649 | | | Chk Pass | Elem | Mo2020 | Na5895 | Ni2316 | P_2149 | Pb2203 | Sb2068 | Se1960 | Si2124 | | Units | ppm | Avg | . 00094 | 115.21 | 00017 | . 02764 | . 00648 | 00114 | . 00258 | 5.7830 | | Stddev | .00035 | .24 | .00067 | .00909 | .00038 | .00374 | .00197 | .0127 | | %RSD | 37.332 | .20518 | 399.08 | 32.897 | 5.8895 | 327.74 | 76.413 | .21887 | | #1 | .00109 | 114.94 | 00042 | .02488 | .00691 | 00218 | .00033 | 5.7858 | | #2 | .00054 | 115.36 | .00059 | .03779 | .00633 | 00426 | .00400 | 5.7939 | | #3 | .00119 | 115.34 | 00068 | .02024 | .00619 | .00301 | .00342 | 5.7691 | | Check ?
High Limit
Low Limit | Chk Pass L1605056503 | Sample Nar | ne: L 150605 | 6503 A | cquired: 5/1 | 6/2016 11:0 | 05:44 T | ype: Unk | | | |-------------|-------------------------|------------------|------------------|-------------|------------|------------------|-----------|----------------| | Method: ICF | P-THERMO3 | 3_6010_200 | .7WATER_ | 3YLINES(v8 | 373) Mc | de: CONC | Corr. Fac | ctor: 1.000000 | | User: JYH | Custom | ID1: | Custom ID |)2: (| Custom ID3 | : | | | | Comment: | Elem | Sn1899 | Sr4077 | Ti3372 | TI1908 | V 2924 | Zn2062 | Zr3391 | | | Units | ppm | | Avg | 00030 | .00127 | .00194 | 00029 | .00036 | .41058 | 1.3001 | | | Stddev | .00059 | .00044 | .00373 | .00113 | .00059 | .00091 | .1368 | | | %RSD | 195.72 | 34.537 | 191.69 | 386.87 | 160.95 | .22167 | 10.522 | | | #1 | .00017 | .00140 | 00232 | 00063 | 00003 | 41100 | 1.4570 | | | #1
#2 | 00017 | .00140 | .00232 | 00063 | .00093 | .41122
.41098 | 1.4370 | | | #2
#3 | 00011 | .0078 | .00355 | .00097 | 00040 | .40954 | 1.2058 | | | 0 | | | | | | | | | | Check? | Chk Pass | | High Limit | | | | | | | | | | Low Limit | | | | | | | | | | Int. Std. | Y 2243 | Y 3600 | Y_3774 | | | | | | | Units | Cts/S | Cts/S | Cts/S | | | | | | | Avg | 13842. | 99155. | 4583.9 | | | | | | | Stddev | 6. | 287. | 47.8 | | | | | | | %RSD | .04578 | .28926 | 1.0428 | | | | | | | | 10010 | 0000= | 4500 1 | | | | | | | #1
#2 | 13840. | 98825. | 4580.1 | | | | | | | #2
#3 | 13849.
13837. | 99336.
99305. | 4538.1
4633.5 | | | | | | | πJ | 13037. | 33303. | 4000.0 | | | | | | Sample Name: L1506056503PS Acquired: 5/16/2016 11:09:42 Type: Unk Method: ICP-THERMO3_6010_200.7WATER_3YLINES(v873) Mode: CONC Corr. Factor: 1.000000 User: JYH Custom ID1: Custom ID2: Custom ID3: Comment: WG568672-03 | Elem | Ag3280 | Al3082 | As1890 | B_2496 | Ba4554 | Be3131 | Ca4226 | Cd2288 | |--------|--------|--------|--------|--------|--------|--------|--------|--------| | Units | ppm | Avg | .19658 | 4.9476 | .20016 | 1.0152 | .50895 | .02507 | 5.2298 | .02497 | | Stddev | .00064 | .0216 | .00264 | .0012 | .00200 | .00005 | .0210 | .00027 | | %RSD | .32604 | .43734 | 1.3185 | .12236 | .39375 | .19879 | .40094 | 1.0873 | | #1 | .19716 | 4.9306 | .20261 | 1.0145 | .50672 | .02508 | 5.2087 | .02472 | | #2 | .19589 | 4.9720 | .20050 | 1.0144 | .50950 | .02510 | 5.2506 | .02526 | | #3 | .19669 | 4.9403 | .19737 | 1.0166 | .51061 | .02501 | 5.2302 | .02494 | Check? Chk Pass P | Elem |
Co2286 | Cr2677 | Cu2247 | Fe2611 | K_7664 | Li6707 | Mg2790 | Mn2576 | |--------|--------|----------------|----------------|---------------|---------------|----------------|---------------|----------------| | Units | ppm | Avg | .10061 | . 24998 | . 33681 | 2.1661 | 25.844 | . 50671 | 5.0934 | . 26119 | | Stddev | .00046 | .00022 | .00202 | .0124 | .188 | .00073 | .0681 | .00337 | | %RSD | .45460 | .08763 | .60012 | .57041 | .72558 | .14505 | 1.3370 | 1.2895 | | #1 | .10077 | .24984 | .33573 | 2.1531 | 25.628 | .50587 | 5.0254 | .25957 | | #2 | .10098 | .24987 | .33914 | 2.1673 | 25.955 | .50719 | 5.0932 | .26507 | | #3 | .10010 | .25023 | .33556 | 2.1777 | 25.950 | .50708 | 5.1616 | .25894 | Check? Chk Pass P | Elem | Mo2020 | Na5895 | Ni2316 | P_2149 | Pb2203 | Sb2068 | Se1960 | Si2124 | |--------|----------------|--------|----------------|---------------|----------------|----------------|--------|---------------| | Units | ppm | Avg | . 50628 | 131.10 | . 25383 | 4.9713 | . 25705 | . 60828 | .19217 | 7.8705 | | Stddev | .00162 | .46 | .00071 | .0136 | .00457 | .00188 | .00621 | .0147 | | %RSD | .31931 | .34747 | .28098 | .27389 | 1.7772 | .30855 | 3.2321 | .18733 | | #1 | .50620 | 130.62 | .25460 | 4.9623 | .25712 | .60613 | .18984 | 7.8687 | | #2 | .50794 | 131.53 | .25369 | 4.9648 | .26159 | .60917 | .18746 | 7.8860 | | #3 | .50471 | 131.14 | .25319 | 4.9870 | .25246 | .60955 | .19921 | 7.8567 | Check? Chk Pass P Sample Name: L1506056503PS Acquired: 5/16/2016 11:09:42 Type: Unk Method: ICP-THERMO3_6010_200.7WATER_3YLINES(v873) Mode: CONC Corr. Factor: 1.000000 User: JYH Custom ID1: Custom ID2: Custom ID3: Comment: WG568672-03 | Elem | Sn1899 | Sr4077 | Ti3372 | TI1908 | V_2924 | Zn2062 | Zr3391 | |--------|--------|--------|--------|--------|--------|--------|--------| | Units | ppm | Avg | .50573 | .51036 | .51417 | .24755 | .49830 | .87521 | 1.6730 | | Stddev | .00089 | .00246 | .00783 | .00261 | .00193 | .00079 | .3521 | | %RSD | .17685 | .48224 | 1.5236 | 1.0557 | .38826 | .09029 | 21.048 | | #1 | .50542 | .50754 | .51539 | .25026 | 49819 | .87586 | 2.0690 | | #2 | .50674 | .51149 | .52132 | .24504 | .50028 | .87544 | 1.3952 | | #3 | .50504 | .51206 | .50580 | .24734 | .49642 | .87433 | 1.5548 | Check? Chk Pass P Low Limit | Int. Std. | Y_2243 | Y_3600 | Y_3774 | |-----------|---------------|----------------|---------------| | Units | Cts/S | Cts/S | Cts/S | | Avg | 13753. | 98240 . | 4576.1 | | Stddev | 28. | 247. | 47.5 | | %RSD | .20508 | .25109 | 1.0376 | | #1 | 13741. | 97960. | 4599.2 | | #2 | 13785. | 98423. | 4521.5 | | #3 | 13733. | 98339. | 4607.6 | L1605056503SDL Sample Name: L1506056503SDL Acquired: 5/16/2016 11:13:25 Type: Unk Method: ICP-THERMO3 6010 200.7WATER 3YLINES(v873) Mode: CONC Corr. Factor: 1.000000 User: JYH Custom ID1: 5 Custom ID2: Custom ID3: Comment: WG568672-04 Al3082 As1890 B 2496 Ba4554 Be3131 Ca4226 Cd2288 Elem Ag3280 Units ppm ppm ppm ppm ppm ppm ppm ppm .00887 Avg -.00234 -.00552 .00032 -.00023 .00004 .01688 .00038 Stddev .00074 .00680 .00339 .00155 .00008 .00001 .02477 .00016 1049.9 %RSD 31.530 123.17 17.491 35.972 35.288 146.79 40.926 -.00842 .00775 #1 -.00175 -.00316 -.00033 .00002 .00038 .03658 #2 -.00317 .00225 .00051 .00822 -.00020 .00005 .02498 .00054 #3 -.00210 -.01039 .00362 .01064 -.00017 .00004 -.01093 .00022 Check? Chk Pass **High Limit** Low Limit Elem Co2286 Cr2677 Cu2247 Fe2611 K_7664 Li6707 Mg2790 Mn2576 Units ppm ppm ppm ppm ppm ppm ppm ppm -.00000 .08857 .00062 .01918 .00602 .00125 Avg .05545 .20165 .00094 .00118 .00310 Stddev .00066 .01336 .09820 .12766 .00287 %RSD 29394. 150.64 6.1348 24.101 48.695 51.540 144.13 229.70 #1 -.00028 .00066 .01959 .04427 .11882 .00248 -.04041 .00428 #2 -.00047-.00034.02010 .05184 .31012 .00732 .09126 .00088 .00826 .21486 #3 .00075 .00154 .01786 .07025 .17601 -.00142Check? Chk Pass High Limit Low Limit Elem Mo2020 Na5895 Ni2316 P_2149 Pb2203 Sb2068 Se1960 Si2124 Units ppm ppm ppm ppm ppm ppm ppm ppm .00054 23.123 -.00091 .01017 .00184 -.00297 .00168 1.1378 Avg .00010 .00061 .00502 .00158 .00204 .00328 .0080 Stddev .052 85.758 %RSD 18.358 .22590 67.325 49.388 68.771 195.59 .70783 #1 -.00040 .01240 .00059 23.066 .00133 -.00503 .00537 1.1290 .00059 -.00158 .01368 .00058 -.00295 -.00090 1.1395 #2 23.169 1.1448 #3 .00042 23.134 -.00074 .00442 .00362 -.00094 .00056 Check? Chk Pass High Limit Approved: May 17, 2016 Low Limit Sample Name: <u>L1506056503SDL</u> Acquired: 5/16/2016 11:13:25 Type: Unk Method: ICP-THERMO3_6010_200.7WATER_3YLINES(v873) Mode: CONC Corr. Factor: 1.000000 User: JYH Custom ID1: 5 Custom ID2: Custom ID3: Comment: WG568672-04 | Elem
Units
Avg
Stddev
%RSD | Sn1899
ppm
00125
.00123
98.256 | Sr4077
ppm
. 00057
.00053
91.636 | Ti3372
ppm
00455
.00296
65.088 | TI1908
ppm
. 00027
.00165
606.57 | V_2924
ppm
00010
.00136
1350.7 | Zn2062
ppm
.08356
.00075
.89989 | Zr3391
ppm
. 32691
.13464
41.188 | |---|---|---|--|---|--|---|---| | #1
#2
#3 | 00115
00253
00008 | .00117
.00040
.00016 | 00604
00114
00645 | .00172
00153
.00063 | .00019
00158
.00109 | .08286
.08345
.08436 | .17459
.37604
.43009 | | Check ?
High Limit
Low Limit | Chk Pass | Int. Std.
Units
Avg
Stddev
%RSD | Y_2243
Cts/S
14224.
28.
.19513 | Y_3600
Cts/S
102260.
86.
.08370 | Y_3774
Cts/S
4587.1
41.6
.90787 | | | | | | #1
#2
#3 | 14252.
14196.
14225. | 102340.
102290.
102170. | 4633.6
4553.1
4574.6 | | | | | | • | | • | | | | Mode: C | ONC C | Corr. Factor | : 1.00000(| |--|---|---|---|----------------------------------|---------------------------------|---|---------------------------------|---|------------| | Elem
Units
Avg
Stddev
%RSD | Ag3280
ppm
. 39282
.00187
.47573 | Al3082
ppm
9.8621
.0345
.34995 | ppm
. 39222
.00438 | _ppm
. 49133
.00201 | ppm
. 98473
.00204 | Be3131
ppm
. 04870
.00007
.13563 | ppm
9.7520
.0208 | ppm
. 04930
.00025 | | | #1
#2
#3 | .39460
.39088
.39300 | 9.8608
9.8283
9.8972 | .39725
.39005
.38935 | | .98306
.98701
.98412 | .04863
.04872
.04876 | | .04921
.04912
.04959 | | | Check ?
Value
Range | Chk Pass | | Elem
Units
Avg
Stddev
%RSD | Co2286
ppm
. 19961
.00029
.14488 | Cr2677
ppm
. 50030
.00070
.14069 | Cu2247
ppm
. 50095
.00117
.23424 | ppm
3.9690
.0407 | 49.341
.086 | Li6707
ppm
. 99890
.00764
.76468 | ppm
9.9878
.0570 | .49477 .00465 | | | #1
#2
#3 | .19930
.19965
.19988 | .49991
.49988
.50112 | .50033
.50022
.50231 | | 49.252
49.425
49.346 | .99081
1.0060
.99989 | 10.024
9.9221
10.017 | | | | Check ?
Value
Range | Chk Pass | | Elem
Units
Avg
Stddev
%RSD | Mo2020
ppm
. 98252
.00477
.48525 | Na5895
ppm
49.824
.151
.30388 | Ni2316
ppm
. 50299
.00160
.31836 | ppm
9.8050
.0068 | ppm
. 50123
.00851 | Sb2068
ppm
1.1734
.0044
.37637 | ppm
. 38050
.00525 | Si2124
ppm
4.9795
.0018
.03688 | | | #1
#2
#3 | .98663
.98364
.97729 | 49.650
49.931
49.889 | .50300
.50139
.50459 | 9.8031 | .50059 | 1.1785
1.1714
1.1704 | .37445 | | | | Check ?
Value
Range | Chk Pass | | Sample Name: CCV Acquired: 5/16/2016 11:17:24 Type: QC Method: ICP-THERMO3_6010_200.7WATER_3YLINES(v873) Mode: CONC Corr. Factor: 1.000000 | | | | | | | | | |---|---|---|---|---|---|---|---|--| | User: JYH
Comment: | | m ID1: | Custor | n ID2: | Custon | ı ID3: | | | | Elem
Units
Avg
Stddev
%RSD | Sn1899
ppm
. 99502
.00141
.14130 | Sr4077
ppm
. 98670
.00245
.24833 | Ti3372
ppm
. 98648
.00946
.95910 | TI1908
ppm
. 50194
.00276
.55006 | V_2924
ppm
. 98649
.00107
.10831 | Zn2062
ppm
1.0003
.0012
.11874 | Zr3391
ppm
. 92448
.37589
40.659 | | | #1
#2
#3 | .99543
.99618
.99346 | .98392
.98762
.98856 | .97556
.99201
.99188 | .50048
.50512
.50022 | .98687
.98529
.98732 | 1.0006
1.0013
.99899 | 1.1797
.49283
1.1009 | | | Check ?
Value
Range | Chk Pass | | Int. Std.
Units
Avg
Stddev
%RSD | Y_2243
Cts/S
13984
.
18.
.12786 | Y_3600
Cts/S
99939 .
287.
.28696 | Y_3774
Cts/S
4587.2
60.2
1.3132 | | | | | | | #1
#2
#3 | 13978.
13970.
14004. | 99871.
99693.
100250. | 4639.4
4521.3
4600.8 | | | | | | | Sample Nam
Method: ICP
User: JYH
Comment: | | - | | LINES(v873 | pe: Blank
) Mode:
tom ID3: | CONC (| Corr. Factor: | 1.00000(| |--|----------|----------------|----------------|----------------|----------------------------------|----------------|----------------|----------| | Elem | Ag3280 | Al3082 | As1890 | B_2496 | Ba4554 | Be3131 | Ca4226 | | | Units | ppm | | Avg | 00148 | 01131 | . 00218 | . 00401 | .00014 | .00007 | 02541 | | | Stddev | .00097 | .01151 | .00152 | .00064 | .00074 | .00001 | .01703 | | | %RSD | 65.472 | 101.72 | 69.605 | 15.926 | 539.83 | 14.040 | 67.022 | | | #1 | 00057 | 01785 | .00065 | .00462 | 00064 | .00007 | 04311 | | | #2 | 00250 | .00197 | .00221 | .00334 | .00084 | .00009 | 00915 | | | #3 | 00136 | 01806 | .00368 | .00408 | .00021 | .00006 | 02395 | | | Check ?
High Limit
Low Limit | Chk Pass | | Elem | Cd2288 | Co2286 | Cr2677 | Cu2247 | Fe2611 | K_7664 | Li6707 | | | Units | ppm | | Avg | .00000 | 00001 | 00039 | 00073 | .01717 | . 10970 | . 00442 | | | Stddev | .00027 | .00033 | .00096 | .00017 | .00702 | .08546 | .00348 | | | %RSD | 6382.2 | 3337.9 | 249.50 | 23.001 | 40.878 | 77.906 | 78.676 | | | #1 | .00031 | .00021 | .00048 | 00059 | .00917 | .20410 | .00099 | | | #2 | 00009 | .00015 | 00142 | 00091 | .02229 | .03760 | .00795 | | | #3 | 00021 | 00038 | 00021 | 00068 | .02005 | .08739 | .00433 | | | Check ?
High Limit
Low Limit | Chk Pass | | Elem | Mg2790 | Mn2576 | Mo2020 | Na5895 | Ni2316 | P_2149 | Pb2203 | | | Units | ppm | | Avg | 02342 | . 00117 | . 00362 | . 01965 | .00003 | . 00516 | 00382 | | | Stddev | .12141 | .00233 | .00053 | .01021 | .00094 | .00495 | .00215 | | | %RSD | 518.46 | 199.07 | 14.641 | 51.991 | 3052.0 | 95.997 | 56.224 | | | #1 | 12188 | 00059 | .00344 | .03118 | .00059 | .00452 | 00576 | | | #2 | 06060 | .00029 | .00422 | .01173 | .00056 | .01040 | 00151 | | | #3 | .11223 | .00381 | .00321 | .01604 | 00106 | .00056 | 00420 | | | Check ?
High Limit
Low Limit | Chk Pass | | Sample Nam
Method: ICP
User: JYH
Comment: | ne: CCB /
-THERMO3_
Custom I | _ | | LINES(v873 | pe: Blank
) Mode:
stom ID3: | CONC (| Corr. Factor: 1. | 000000 | |--|---|---|--|--|---|---|--|--------| | Elem
Units
Avg
Stddev
%RSD | Sb2068
ppm
. 00129
.00478
371.31 | Se1960
ppm
.00063
.01037
1645.8 | Si2124
ppm
.00095
.00059
61.720 | Sn1899
ppm
00010
.00028
285.44 | Sr4077
ppm
. 00029
.00017
59.554 | Ti3372
ppm
. 00308
.00608
197.38 | TI1908
ppm
00118
.00210
178.47 | | | #1
#2
#3 | .00089
00328
.00625 | 00858
.01186
00139 | .00029
.00142
.00114 | .00009
00042
.00004 | .00037
.00041
.00009 | .00610
.00706
00392 | 00352
00056
.00055 | | | Check ?
High Limit
Low Limit | Chk Pass | | Elem
Units
Avg
Stddev
%RSD | V_2924
ppm
00014
.00004
28.962 | Zn2062
ppm
00008
.00008
107.44 | Zr3391
ppm
F .36785
.12082
32.843 | | | | | | | #1
#2
#3 | 00016
00010
00017 | 00018
00004
00002 | .50626
.31380
.28350 | | | | | | | Check ?
High Limit
Low Limit | Chk Pass | Chk Pass | Chk Fail
.04000
04000 | | | | | | | Int. Std.
Units
Avg
Stddev
%RSD | Y_2243
Cts/S
14090.
20.
.14128 | Y_3600
Cts/S
101880.
199.
.19579 | Y_3774
Cts/S
4586.8
28.5
.62228 | | | | | | | #1
#2
#3 | 14069.
14091.
14109. | 101660.
102020.
101970. | 4574.9
4566.1
4619.4 | | | | | | | Sample Name
Method: ICP-
User: JYH
Comment: | C Corr. F | Factor: 1.00000(| | | | | | |--|---|---|---|---|---|---|---| | Elem
Units
Avg
Stddev
%RSD | Ag3280
ppm
00329
.00079
24.116 | Al3082
ppm
. 02509
.00463
18.463 | As1890
ppm
. 00101
.00117
115.59 | B_2496
ppm
. 01192
.00122
10.238 | Ba4554
ppm
.00131
.00087
66.161 | Be3131
ppm
00008
.00006
75.001 | Ca4226
ppm
. 25520
.04261
16.697 | | #1
#2
#3 | 00291
00420
00275 | .01998
.02901
.02628 | .00124
.00204
00026 | .01252
.01051
.01272 | .00031
.00173
.00189 | 00005
00004
00014 | .30354
.22310
.23896 | | Check ?
High Limit
Low Limit | Chk Pass | Elem
Units
Avg
Stddev
%RSD | Cd2288
ppm
F00091
.00021
22.797 | Co2286
ppm
.00052
.00033
63.919 | Cr2677
ppm
. 01797
.00111
6.1657 | Cu2247
ppm
F 232.39
1.39
.59866 | Fe2611
ppm
3.2215
.0309
.95812 | K_7664
ppm
. 39632
.11453
28.899 | Li6707
ppm
00028
.00325
1161.7 | | #1
#2
#3 | 00080
00078
00115 | .00083
.00017
.00055 | .01837
.01672
.01882 | 230.84
232.80
233.54 | 3.1880
3.2489
3.2276 | .27141
.49641
.42115 | 00251
.00345
00178 | | Check ?
High Limit
Low Limit | Chk Fail
4.5000
00050 | Chk Pass | Chk Pass | Chk Fail
180.00
00500 | Chk Pass | Chk Pass | Chk Pass | | Elem
Units
Avg
Stddev
%RSD | Mg2790
ppm
.0 8679
.06986
80.500 | Mn2576
ppm
. 03311
.00299
9.0321 | Mo2020
ppm
. 00137
.00001
.38224 | Na5895
ppm
1.7019
.0112
.65827 | Ni2316
ppm
. 01611
.00124
7.6774 | P_2149
ppm
^ *****
 | Pb2203
ppm
. 05542
.00793
14.310 | | #1
#2
#3 | .08530
.01768
.15739 | .03581
.03361
.02990 | .00137
.00138
.00137 | 1.6916
1.7139
1.7002 | .01482
.01623
.01728 | ^
^ | .06456
.05135
.05036 | | Check ?
High Limit
Low Limit | Chk Pass | Sample Name
Method: ICP-T
User: JYH
Comment: | |)10_200.7W <i>A</i> | red: 5/16/2010
ATER_3YLINI
Istom ID2: | | Type: Unk
Mode: CONO
ID3: | C Corr. F | Corr. Factor: 1.00000(| | | |---|---|---|---|--|---|---|---|--|--| | Elem
Units
Avg
Stddev
%RSD | Sb2068
ppm
. 00022
.00310
1406.9 | Se1960
ppm
00625
.00550
88.044 | Si2124
ppm
. 14991
.00272
1.8170 | Sn1899
ppm
00003
.00027
943.95 | Sr4077
ppm
. 00140
.00024
16.803 | Ti3372
ppm
.00755
.00534
70.673 | TI1908
ppm
. 00198
.00431
217.26 | | | | #1
#2
#3 | 00173
.00380
00140 | 00715
00036
01126 | .15304
.14813
.14855 | .00028
00023
00013 | .00165
.00119
.00136 | .01008
.01116
.00142 | 00294
.00386
.00503 | | | | Check ?
High Limit
Low Limit | Chk Pass | | | Elem
Units
Avg
Stddev
%RSD | V_2924
ppm
. 00010
.00160
1559.5 | Zn2062
ppm
. 03030
.00030
.98955 | Zr3391
ppm
. 64004
.28875
45.114 | | | | | | | | #1
#2
#3 | .00191
00046
00114 | .03023
.03004
.03063 | .35810
.62687
.93514 | | | | | | | | Check ?
High Limit
Low Limit | Chk Pass | Chk Pass | Chk Pass | | | | | | | | Int. Std.
Units
Avg
Stddev
%RSD | Y_2243
Cts/S
14003.
32.
.22617 | Y_3600
Cts/S
101790.
169.
.16564 | Y_3774
Cts/S
4524.9
40.4
.89356 | | | | | | | | #1
#2
#3 | 14032.
14009.
13969. | 101620.
101960.
101780. | 4569.7
4491.3
4513.6 | | | | | | | | Sample Name: L1605042701 Acquired: 5/16/2016 11:29:09 Type: Unk Method: ICP-THERMO3_6010_200.7WATER_3YLINES(v873) Mode: CONC Corr. Factor: 1.000000 User: JYH Custom ID1: Custom ID2: Custom ID3: Comment: | | | | | | | | | | |---|----------------|----------------|----------|----------------|----------|----------|----------------|----------------|--| | Elem | Ag3280 | Al3082 | As1890 | B_2496 | Ba4554 | Be3131 | Ca4226 | Cd2288 | | | Units | ppm | | Avg | 00190 | . 10065 | .00036 | . 06333 | .06586 | .00019 | . 94651 | . 00077 | | | Stddev | .00143 | .00915 | .00329 | .00099 | .00060 | .00008 | .01630 | .00022 | | | %RSD | 74.889 | 9.0951 | 909.59 | 1.5644 | .91642 | 43.177 | 1.7223 | 28.036 | | | #1 | 00036 | .09048 | .00345 |
.06409 | .06655 | .00010 | .92770 | .00074 | | | #2 | 00217 | .10822 | 00310 | .06369 | .06561 | .00024 | .95528 | .00058 | | | #3 | 00318 | .10326 | .00073 | .06221 | .06542 | .00024 | .95656 | .00101 | | | Check ?
High Limit
Low Limit | Chk Pass | | Elem | Co2286 | Cr2677 | Cu2247 | Fe2611 | K_7664 | Li6707 | Mg2790 | Mn2576 | | | Units | ppm | | Avg | .00070 | .00135 | .02111 | .04785 | .25187 | .01136 | . 19765 | . 03612 | | | Stddev | .00035 | .00056 | .00445 | .01304 | .05389 | .00334 | .12531 | .00287 | | | %RSD | 50.687 | 41.909 | 21.089 | 27.244 | 21.395 | 29.409 | 63.400 | 7.9364 | | | #1 | .00095 | .00196 | .02569 | .03509 | .28219 | .00947 | .25483 | .03916 | | | #2 | .00029 | .00123 | .01680 | .04730 | .28378 | .01522 | .05395 | .03347 | | | #3 | .00086 | .00085 | .02084 | .06115 | .18966 | .00940 | .28418 | .03571 | | | Check ?
High Limit
Low Limit | Chk Pass | | Elem | Mo2020 | Na5895 | Ni2316 | P_2149 | Pb2203 | Sb2068 | Se1960 | Si2124 | | | Units | ppm | | Avg | . 00041 | 134.31 | .00100 | 00349 | 00035 | 00261 | . 00298 | . 14698 | | | Stddev | .00007 | .41 | .00016 | .00497 | .00154 | .00570 | .00278 | .00366 | | | %RSD | 18.225 | .30641 | 16.185 | 142.43 | 446.45 | 218.68 | 93.485 | 2.4884 | | | #1 | .00049 | 133.83 | .00117 | 00363 | .00064 | .00214 | .00032 | .14754 | | | #2 | .00035 | 134.55 | .00100 | .00155 | 00212 | 00892 | .00274 | .15032 | | | #3 | .00039 | 134.54 | .00084 | 00839 | .00045 | 00104 | .00587 | .14307 | | | Check ?
High Limit
Low Limit | Chk Pass | | Sample Nar
Method: ICF
User: JYH
Comment: | | 3_6010_200 | .cquired: 5/1
.7WATER_
Custom II | 3YLINES(v8 | | ype: Unk
ode: CONC
: | Corr. Fa | ctor: 1.00000(| |--|---|---|--|--|---|---|---|----------------| | Elem
Units
Avg
Stddev
%RSD | Sn1899
ppm
00015
.00019
124.19 | Sr4077
ppm
. 12330
.00053
.43166 | Ti3372
ppm
00140
.00119
85.388 | TI1908
ppm
00153
.00197
129.10 | V_2924
ppm
. 00085
.00036
42.248 | Zn2062
ppm
. 09527
.00120
1.2549 | Zr3391
ppm
1.7966
.5924
32.971 | | | #1
#2
#3 | 00018
.00005
00033 | .12279
.12385
.12325 | 00056
00087
00276 | .00015
00370
00104 | .00048
.00120
.00088 | .09632
.09552
.09397 | 1.9409
2.3034
1.1454 | | | Check ?
High Limit
Low Limit | Chk Pass | | Int. Std.
Units
Avg
Stddev
%RSD | Y_2243
Cts/S
13792.
13.
.09587 | Y_3600
Cts/S
98690.
257.
.26083 | Y_3774
Cts/S
4568.3
17.4
.38152 | | | | | | | #1
#2
#3 | 13801.
13798.
13777. | 98491.
98981.
98597. | 4576.6
4580.0
4548.2 | | | | | | | Sample Name: L1605042702 Acquired: 5/16/2016 11:33:07 Type: Unk Method: ICP-THERMO3_6010_200.7WATER_3YLINES(v873) Mode: CONC Corr. Factor: 1.000000 User: JYH Custom ID1: Custom ID2: Custom ID3: Comment: | | | | | | | | | |---|----------------|----------|----------|-----------------------------|----------|----------------|----------------|--| | Elem | Ag3280 | Al3082 | As1890 | B_2496 | Ba4554 | Be3131 | Ca4226 | | | Units | ppm | | Avg | 00117 | .02893 | 00170 | .08910 | .00949 | .00002 | . 62040 | | | Stddev | .00058 | .01322 | .00473 | .00102 | .00081 | .00006 | .02985 | | | %RSD | 49.756 | 45.705 | 278.82 | 1.1493 | 8.5286 | 326.98 | 4.8122 | | | #1 | 00146 | .03953 | .00350 | .09024 | .00909 | .00008 | .65464 | | | #2 | 00050 | .03315 | 00285 | .08825 | .01042 | 00003 | .59979 | | | #3 | 00154 | .01411 | 00574 | .08880 | .00895 | 00000 | .60678 | | | Check ?
High Limit
Low Limit | Chk Pass | | Elem | Cd2288 | Co2286 | Cr2677 | Cu2247 | Fe2611 | K_7664 | Li6707 | | | Units | ppm | | Avg | . 00038 | .00208 | .03003 | . 01524 | .03376 | 9.0390 | . 00130 | | | Stddev | .00005 | .00045 | .00059 | .00050 | .01237 | .0458 | .00483 | | | %RSD | 14.386 | 21.690 | 1.9509 | 3.2897 | 36.635 | .50668 | 370.92 | | | #1 | .00043 | .00181 | .02954 | .01466 | .02169 | 9.0854 | 00295 | | | #2 | .00032 | .00261 | .02988 | .01557 | .04640 | 8.9938 | .00654 | | | #3 | .00039 | .00184 | .03068 | .01547 | .03318 | 9.0378 | .00031 | | | Check ?
High Limit
Low Limit | Chk Pass | | Elem | Mg2790 | Mn2576 | Mo2020 | Na5895 | Ni2316 | P_2149 | Pb2203 | | | Units | ppm | | Avg | . 04509 | .00823 | .00589 | F 2339.0 | 00311 | . 86868 | . 00253 | | | Stddev | .04456 | .00183 | .00033 | 92.6 | .00095 | .00527 | .00412 | | | %RSD | 98.832 | 22.266 | 5.5786 | 3.9600 | 30.536 | .60724 | 162.83 | | | #1 | .02259 | .00761 | .00566 | 2445.4 | 00303 | .87075 | 00124 | | | #2 | .01627 | .00678 | .00574 | 2295.0 | 00220 | .87262 | .00190 | | | #3 | .09642 | .01029 | .00626 | 2276.5 | 00409 | .86269 | .00692 | | | Check ?
High Limit
Low Limit | Chk Pass | Chk Pass | Chk Pass | Chk Fail
270.00
50000 | Chk Pass | Chk Pass | Chk Pass | | | Sample Nam
Method: ICP
User: JYH
Comment: | ne: L1605042
-THERMO3_
Custom I | 6010_200.7 | | , , | • • | | Corr. Factor: 1.000000 | |--|---|--|---|---|---|---|-------------------------------| | Elem
Units
Avg
Stddev
%RSD | Sb2068
ppm
00015
.00419
2760.7 | Se1960
ppm
.00399
.00920
230.63 | Si2124
ppm
F 67.351
1.181
1.7540 | Sn1899
ppm
. 01772
.00034
1.9088 | Sr4077
ppm
.00087
.00017
19.503 | Ti3372
ppm
. 61602
.00216
.35063 | ppm
00304
.00158 | | #1
#2
#3 | .00402
00436
00012 | .01431
.00099
00334 | 68.160
67.897
65.995 | .01802
.01735
.01778 | .00085
.00071
.00105 | .61667
.61361
.61778 | 00124
00372
00417 | | Check ?
High Limit
Low Limit | Chk Pass | Chk Pass | Chk Fail
36.000
-1.0000 | Chk Pass | Chk Pass | Chk Pass | Chk Pass | | Elem
Units
Avg
Stddev
%RSD | V_2924
ppm
. 10786
.00086
.79621 | Zn2062
ppm
.00709
.00017
2.3329 | Zr3391
ppm
1.0561
.0492
4.6559 | | | | | | #1
#2
#3 | .10695
.10865
.10799 | .00728
.00699
.00699 | 1.0905
.99976
1.0780 | | | | | | Check ?
High Limit
Low Limit | Chk Pass | Chk Pass | Chk Pass | | | | | | Int. Std.
Units
Avg
Stddev
%RSD | Y_2243
Cts/S
12723.
13.
.10161 | Y_3600
Cts/S
88177.
111.
.12606 | Y_3774
Cts/S
4668.6
15.9
.34034 | | | | | | #1
#2
#3 | 12737.
12711.
12722. | 88050.
88227.
88254. | 4655.5
4664.0
4686.2 | | | | | | Sample Name
Method: ICP-
User: JYH
Comment: | | 010_200.7W | red: 5/16/201
ATER_3YLIN
stom ID2: | | Type: Unk
Mode: CONO
ID3: | C Corr. F | Factor: 1.00000(| |--|----------------|----------------|--|----------------|---------------------------------|----------------|------------------| | Elem | Ag3280 | Al3082 | As1890 | B_2496 | Ba4554 | Be3131 | Ca4226 | | Units | ppm | Avg | 00160 | . 02093 | 00106 | . 08455 | . 03086 | .00004 | 2.1296 | | Stddev | .00137 | .00473 | .00243 | .00229 | .00027 | .00006 | .0486 | | %RSD | 85.298 | 22.577 | 230.15 | 2.7042 | .88598 | 159.16 | 2.2836 | | #1 | 00286 | .02433 | .00083 | .08640 | .03063 | .00004 | 2.1854 | | #2 | 00181 | .01554 | 00380 | .08525 | .03116 | .00010 | 2.0964 | | #3 | 00014 | .02293 | 00020 | .08199 | .03080 | 00002 | 2.1069 | | Check ?
High Limit
Low Limit | Chk Pass | Elem | Cd2288 | Co2286 | Cr2677 | Cu2247 | Fe2611 | K_7664 | Li6707 | | Units | ppm | Avg | .00018 | .00035 | . 01270 | . 17369 | 2.8167 | . 39542 | . 00576 | | Stddev | .00003 | .00062 | .00069 | .00117 | .0413 | .07572 | .00170 | | %RSD | 19.052 | 175.48 | 5.4226 | .67442 | 1.4670 | 19.148 | 29.501 | | #1 | .00020 | .00050 | .01325 | .17242 | 2.7722 | .41914 | .00489 | | #2 | .00014 | 00032 | .01294 | .17474 | 2.8539 | .31069 | .00468 | | #3 | .00020 | .00088 | .01193 | .17392 | 2.8242 | .45644 | .00772 | | Check ?
High Limit
Low Limit | Chk Pass | Elem | Mg2790 | Mn2576 | Mo2020 | Na5895 | Ni2316 | P_2149 | Pb2203 | | Units | ppm | Avg | . 30741 | . 04138 | 00027 | 131.45 | . 02502 | 01306 | . 00317 | | Stddev | .02690 | .00242 | .00025 | .16 | .00120 | .00256 | .00159 | | %RSD | 8.7488 | 5.8524 | 92.217 | .12277 | 4.7815 | 19.579 | 50.000 | | #1 | .27695 | .04310 | 00000 | 131.32 | .02638 | 01238 | .00470 | | #2 | .31742 | .04242 | 00050 | 131.40 | .02450 | 01091 | .00329 | | #3 | .32787 | .03861 | 00031 | 131.63 | .02417 | 01589 | .00153 | | Check ?
High Limit
Low Limit | Chk Pass | Sample Name
Method: ICP-T
User: JYH
Comment: | |)10_200.7W <i>A</i> | red: 5/16/2016
ATER_3YLINI
stom ID2: | | Type: Unk
Mode: CONO
ID3: | C Corr. F | Factor: 1.000000 |
---|---|---|---|--|---|---|--| | Elem
Units
Avg
Stddev
%RSD | Sb2068
ppm
. 00119
.00320
268.15 | Se1960
ppm
00328
.00448
136.35 | Si2124
ppm
. 21790
.00525
2.4088 | Sn1899
ppm
00127
.00099
77.882 | Sr4077
ppm
. 00521
.00046
8.9006 | Ti3372
ppm
.00388
.00260
66.972 | TI1908
ppm
00149
.00231
154.66 | | #1
#2
#3 | 00026
00102
.00486 | 00754
.00138
00368 | .21235
.21858
.22278 | 00067
00241
00073 | .00480
.00571
.00512 | .00607
.00454
.00101 | 00013
00416
00019 | | Check ?
High Limit
Low Limit | Chk Pass | Elem
Units
Avg
Stddev
%RSD | V_2924
ppm
. 00067
.00169
251.79 | Zn2062
ppm
. 13907
.00059
.42566 | Zr3391
ppm
F05337
.47004
880.79 | | | | | | #1
#2
#3 | 00067
.00257
.00012 | .13910
.13965
.13847 | .48500
38225
26284 | | | | | | Check ?
High Limit
Low Limit | Chk Pass | Chk Pass | Chk Fail
36.000
04000 | | | | | | Int. Std.
Units
Avg
Stddev
%RSD | Y_2243
Cts/S
13729.
3.
.02327 | Y_3600
Cts/S
98661.
482.
.48858 | Y_3774
Cts/S
4548.0
40.3
.88713 | | | | | | #1
#2
#3 | 13732.
13726.
13731. | 98323.
99213.
98447. | 4507.1
4549.1
4587.8 | | | | | | Sample Name: L1605042704 Acquired: 5/16/2016 11:41:11 Type: Unk Method: ICP-THERMO3_6010_200.7WATER_3YLINES(v873) Mode: CONC Corr. Factor: 1.000000 User: JYH Custom ID1: Custom ID2: Custom ID3: Comment: | | | | | | | | | | |---|----------------|----------------|----------------|----------------|----------------|----------------|----------------|----------------|--| | Elem | Ag3280 | Al3082 | As1890 | B_2496 | Ba4554 | Be3131 | Ca4226 | Cd2288 | | | Units | ppm | | Avg | 00078 | . 00008 | . 00243 | . 00568 | . 01246 | 00009 | . 22042 | . 00565 | | | Stddev | .00094 | .00251 | .00172 | .00100 | .00015 | .00005 | .01323 | .00012 | | | %RSD | 119.89 | 2975.6 | 70.809 | 17.592 | 1.1866 | 56.403 | 6.0017 | 2.0746 | | | #1 | 00165 | 00018 | .00407 | .00495 | .01260 | 00009 | .21160 | .00577 | | | #2 | .00021 | .00272 | .00258 | .00527 | .01230 | 00013 | .21404 | .00554 | | | #3 | 00091 | 00229 | .00064 | .00682 | .01248 | 00004 | .23563 | .00565 | | | Check ?
High Limit
Low Limit | Chk Pass | | Elem | Co2286 | Cr2677 | Cu2247 | Fe2611 | K_7664 | Li6707 | Mg2790 | Mn2576 | | | Units | ppm | | Avg | 00019 | . 00228 | .01516 | . 04563 | . 10605 | 00053 | . 07985 | 00120 | | | Stddev | .00005 | .00067 | .00052 | .00387 | .06827 | .00087 | .03763 | .00134 | | | %RSD | 26.790 | 29.474 | 3.4465 | 8.4889 | 64.378 | 162.92 | 47.123 | 111.41 | | | #1 | 00019 | .00167 | .01507 | .04387 | .04058 | 00123 | .03775 | 00185 | | | #2 | 00013 | .00216 | .01572 | .04295 | .17682 | .00044 | .09158 | 00210 | | | #3 | 00023 | .00300 | .01468 | .05007 | .10076 | 00080 | .11021 | .00034 | | | Check ?
High Limit
Low Limit | Chk Pass | | Elem | Mo2020 | Na5895 | Ni2316 | P_2149 | Pb2203 | Sb2068 | Se1960 | Si2124 | | | Units | ppm | | Avg | . 00053 | 9.1488 | .00271 | 21.511 | . 38954 | . 02096 | . 01642 | 6.4978 | | | Stddev | .00026 | .0147 | .00066 | .095 | .00262 | .00222 | .00331 | .0247 | | | %RSD | 49.297 | .16066 | 24.553 | .44074 | .67192 | 10.575 | 20.133 | .38072 | | | #1 | .00075 | 9.1547 | .00194 | 21.555 | .39255 | .01877 | .02020 | 6.5121 | | | #2 | .00060 | 9.1321 | .00300 | 21.577 | .38826 | .02321 | .01408 | 6.5120 | | | #3 | .00024 | 9.1597 | .00317 | 21.403 | .38781 | .02090 | .01499 | 6.4692 | | | Check ?
High Limit
Low Limit | Chk Pass | | Sample Nar
Method: ICF
User: JYH
Comment: | | 3_6010_200 | .cquired: 5/1
.7WATER_:
Custom IE | 3YLINES(v8 | | ype: Unk
ode: CONC
: | Corr. Factor: 1.00000 | (| |--|---|---|--|--|--|---|---|---| | Elem
Units
Avg
Stddev
%RSD | Sn1899
ppm
2.0717
.0127
.61179 | Sr4077
ppm
.00058
.00022
37.565 | Ti3372
ppm
.00510
.00463
90.696 | TI1908
ppm
00473
.00124
26.321 | V_2924
ppm
00034
.00036
106.47 | Zn2062
ppm
.06151
.00023
.37446 | Zr3391
ppm
1.4122
.0929
6.5793 | | | #1
#2
#3 | 2.0809
2.0771
2.0573 | .00036
.00058
.00079 | .00679
00013
.00865 | 00579
00336
00503 | 00075
00019
00008 | .06148
.06176
.06130 | 1.3175
1.4159
1.5032 | | | Check ?
High Limit
Low Limit | Chk Pass | | Int. Std.
Units
Avg
Stddev
%RSD | Y_2243
Cts/S
16396.
30.
.18404 | Y_3600
Cts/S
121830.
130.
.10656 | Y_3774
Cts/S
5864.6
12.4
.21125 | | | | | | | #1
#2
#3 | 16429.
16390.
16370. | 121690.
121840.
121950. | 5878.1
5853.8
5861.9 | | | | | | | Sample Nam
Method: ICP
User: JYH
Comment: | | _ | | LINES(v873 | pe: QC
) Mode:
tom ID3: | CONC (| Corr. Factor: | 1.00000(| |--|----------------|----------------|----------------|----------------|-------------------------------|---------------|----------------|----------| | Elem | Ag3280 | Al3082 | As1890 | B_2496 | Ba4554 | Be3131 | Ca4226 | | | Units | ppm | | Avg | . 39479 | 9.8075 | . 39675 | . 49334 | . 98761 | .04885 | 9.7591 | | | Stddev | .00061 | .0042 | .00445 | .00284 | .00222 | .00008 | .0183 | | | %RSD | .15538 | .04308 | 1.1207 | .57576 | .22432 | .16264 | .18708 | | | #1 | .39534 | 9.8037 | .39167 | .49383 | .99010 | .04894 | 9.7383 | | | #2 | .39413 | 9.8067 | .39869 | .49029 | .98687 | .04884 | 9.7665 | | | #3 | .39491 | 9.8121 | .39990 | .49591 | .98586 | .04878 | 9.7724 | | | Check ?
Value
Range | Chk Pass | | Elem | Cd2288 | Co2286 | Cr2677 | Cu2247 | Fe2611 | K_7664 | Li6707 | | | Units | ppm | | Avg | . 04912 | . 20075 | . 49708 | . 51231 | 3.9885 | 49.393 | . 98846 | | | Stddev | .00005 | .00037 | .00117 | .00179 | .0398 | .047 | .00243 | | | %RSD | .10304 | .18429 | .23487 | .34880 | .99913 | .09580 | .24617 | | | #1 | .04917 | .20101 | .49843 | .51420 | 4.0320 | 49.447 | .98674 | | | #2 | .04907 | .20033 | .49641 | .51210 | 3.9795 | 49.364 | .98739 | | | #3 | .04911 | .20092 | .49640 | .51064 | 3.9538 | 49.367 | .99124 | | | Check ?
Value
Range | Chk Pass | | Elem | Mg2790 | Mn2576 | Mo2020 | Na5895 | Ni2316 | P_2149 | Pb2203 | | | Units | ppm | | Avg | 9.8153 | . 49435 | . 98363 | 49.874 | . 50768 | 9.9674 | . 50537 | | | Stddev | .0485 | .00493 | .00489 | .034 | .00070 | .0168 | .00267 | | | %RSD | .49357 | .99724 | .49677 | .06831 | .13738 | .16885 | .52787 | | | #1 | 9.8697 | .48898 | .98889 | 49.905 | .50846 | 9.9780 | .50684 | | | #2 | 9.7768 | .49867 | .98276 | 49.837 | .50745 | 9.9763 | .50697 | | | #3 | 9.7995 | .49539 | .97923 | 49.880 | .50712 | 9.9480 | .50229 | | | Check ?
Value
Range | Chk Pass | | Sample Nam
Method: ICP-
User: JYH
Comment: | | 6010_200.7 | 16/2016 11:4
WATER_3YI
Custom ID2: | LINES(v873) | pe: QC
) Mode:
tom ID3: | CONC (| Corr. Factor: 1 | 1.000000 | |---|---|--|---|---|---|---|---|----------| | Elem
Units
Avg
Stddev
%RSD | Sb2068
ppm
1.1933
.0041
.34593 | Se1960
ppm
.39149
.00464
1.1856 | Si2124
ppm
5.0578
.0060
.11952 | Sn1899
ppm
. 99770
.00070
.07006 | Sr4077
ppm
. 99102
.00177
.17884 | Ti3372
ppm
. 99063
.00594
.59945 | TI1908
ppm
. 50125
.00317
.63221 | | | #1
#2
#3 | 1.1887
1.1968
1.1943 | .38754
.39032
.39660 | 5.0619
5.0508
5.0606 | .99768
.99701
.99840 | .99267
.98914
.99124 | .98709
.98732
.99749 | .50477
.50037
.49862 | | | Check ?
Value
Range | Chk Pass | | Elem
Units
Avg
Stddev
%RSD | V_2924
ppm
. 98197
.00095
.09654 | Zn2062
ppm
1.0001
.0008
.08431 | Zr3391
ppm
F 1.1151
.3160
28.337 | | | | | | | #1
#2
#3 | .98283
.98212
.98095 | .99914
1.0008
1.0003 | 1.3895
1.1863
.76961 | | | | | | | Check ?
Value
Range | Chk Pass | Chk Pass | Chk Fail
1.0000
10.000% | | | | | | | Int. Std.
Units
Avg
Stddev
%RSD | Y_2243
Cts/S
15012.
31.
.20727 |
Y_3600
Cts/S
107860.
54.
.05019 | Y_3774
Cts/S
5074.1
7.4
.14518 | | | | | | | #1
#2
#3 | 15041.
15016.
14979. | 107830.
107920.
107830. | 5082.0
5072.8
5067.5 | | | | | | | Sample Name: CCB Acquired: 5/16/2016 11:48:45 Type: Blank Method: ICP-THERMO3_6010_200.7WATER_3YLINES(v873) Mode: CONC Corr. Factor: 1.000000 User: JYH Custom ID1: Custom ID2: Custom ID3: Comment: | | | | | | | | | | |--|----------------|----------|----------------|----------------|----------|-----------------------------|----------------|--|--| | Elem | Ag3280 | Al3082 | As1890 | B_2496 | Ba4554 | Be3131 | Ca4226 | | | | Units | ppm | | | Avg | 00377 | 00695 | .00046 | . 00064 | 00038 | . 00009 | 02261 | | | | Stddev | .00128 | .00060 | .00209 | .00071 | .00029 | .00001 | .02166 | | | | %RSD | 34.047 | 8.7077 | 450.28 | 111.14 | 77.363 | 11.737 | 95.789 | | | | #1 | 00462 | 00722 | .00215 | .00058 | 00043 | .00010 | .00229 | | | | #2 | 00230 | 00625 | 00187 | .00137 | 00007 | .00008 | 03305 | | | | #3 | 00440 | 00737 | .00111 | 00004 | 00065 | .00010 | 03707 | | | | Check ?
High Limit
Low Limit | Chk Pass | | | Elem | Cd2288 | Co2286 | Cr2677 | Cu2247 | Fe2611 | K_7664 | Li6707 | | | | Units | ppm | | | Avg | 00004 | 00026 | 00037 | . 00226 | .01346 | . 08768 | . 00066 | | | | Stddev | .00016 | .00006 | .00045 | .00024 | .01047 | .10651 | .00076 | | | | %RSD | 432.76 | 21.107 | 121.20 | 10.534 | 77.782 | 121.48 | 115.19 | | | | #1 | .00014 | 00032 | .00004 | .00208 | .01101 | .20019 | .00121 | | | | #2 | 00008 | 00024 | 00086 | .00216 | .02494 | 01160 | 00021 | | | | #3 | 00017 | 00022 | 00031 | .00253 | .00443 | .07446 | .00098 | | | | Check ?
High Limit
Low Limit | Chk Pass | | | Elem | Mg2790 | Mn2576 | Mo2020 | Na5895 | Ni2316 | P_2149 | Pb2203 | | | | Units | ppm | | | Avg | . 05397 | 00067 | . 00351 | . 15460 | 00055 | F .01164 | . 00020 | | | | Stddev | .08861 | .00206 | .00020 | .01518 | .00019 | .01529 | .00109 | | | | %RSD | 164.19 | 305.74 | 5.7529 | 9.8187 | 35.171 | 131.35 | 541.62 | | | | #1 | .06999 | 00292 | .00328 | .16281 | 00072 | .01166 | 00010 | | | | #2 | 04156 | .00112 | .00363 | .16390 | 00059 | .02692 | 00071 | | | | #3 | .13347 | 00022 | .00363 | .13708 | 00034 | 00366 | .00141 | | | | Check ?
High Limit
Low Limit | Chk Pass | Chk Pass | Chk Pass | Chk Pass | Chk Pass | Chk Fail
.01000
01000 | Chk Pass | | | | • | | | | | | | | | | |---|---|---|--|---|---|---|---|--|--| | Elem
Units
Avg
Stddev
%RSD | Sb2068
ppm
. 00274
.00263
96.107 | Se1960
ppm
. 00296
.00429
144.87 | Si2124
ppm
.00375
.00029
7.6781 | Sn1899
ppm
. 00012
.00052
448.03 | Sr4077
ppm
. 00051
.00030
59.189 | Ti3372
ppm
0009
.00399
4401.5 | TI1908
ppm
. 00077
.00216
282.04 | | | | #1
#2
#3 | 00030
.00424
.00427 | .00769
00069
.00189 | .00355
.00362
.00408 | .00010
00040
.00065 | .00050
.00021
.00081 | .00389
00008
00408 | .00030
00112
.00312 | | | | Check ?
High Limit
Low Limit | Chk Pass | | | Elem
Units
Avg
Stddev
%RSD | V_2924
ppm
. 00069
.00041
59.782 | Zn2062
ppm
.00033
.00001
2.8505 | Zr3391
ppm
F23252
.40761
175.30 | | | | | | | | #1
#2
#3 | .00052
.00038
.00115 | .00034
.00032
.00034 | .07047
07211
69593 | | | | | | | | Check ?
High Limit
Low Limit | Chk Pass | Chk Pass | Chk Fail
.04000
04000 | | | | | | | | Int. Std.
Units
Avg
Stddev
%RSD | Y_2243
Cts/S
15018.
55.
.36474 | Y_3600
Cts/S
109540.
155.
.14186 | Y_3774
Cts/S
4988.9
13.9
.27822 | | | | | | | | #1
#2
#3 | 15080.
15002.
14974. | 109430.
109720.
109470. | 4991.7
5001.2
4973.8 | | | | | | | | • | | | | | | | | | | | | |--|---|---------------------------------|---------------------------------|---------------------------------|---|---|---|---|--|--|--| | Elem
Units
Avg
Stddev
%RSD | Ag3280
ppm
. 00686
.00162
23.636 | ppm
. 14485
.00392 | ppm
. 00846
.00209 | ppm
. 07786
.00047 | Ba4554
ppm
. 00786
.00068
8.6621 | Be3131
ppm
. 00161
.00009
5.3940 | Ca4226
ppm
. 37232
.01390
3.7335 | Cd2288
ppm
. 00114
.00009
8.0998 | | | | | #1
#2
#3 | .00552
.00866
.00638 | .14930
.14334
.14191 | | .07736 | .00722
.00777
.00858 | .00160
.00170
.00153 | .36232
.38820
.36646 | .00108
.00110
.00125 | | | | | Check ?
High Limit
Low Limit | Chk Pass | | | | Elem
Units
Avg
Stddev
%RSD | Co2286
ppm
.00393
.00042
10.604 | . 00405
.00040 | ppm
. 00477
.00105 | ppm
. 10908 | K_7664
ppm
. 93626
.01839
1.9640 | Li6707
ppm
. 08149
.00297
3.6451 | .51954 | .00786 | | | | | #1
#2
#3 | .00346
.00427
.00405 | | .00437 | .11627 | .93899
.91666
.95313 | .07919
.08044
.08485 | .50051
.57239
.48571 | .00826
.00843
.00689 | | | | | Check ?
High Limit
Low Limit | Chk Pass | | | | Elem
Units
Avg
Stddev
%RSD | Mo2020
ppm
. 00853
.00020
2.3619 | . 45048
.01860 | ppm
. 01555
.00018 | ppm
. 78529
.00037 | Pb2203
ppm
. 00621
.00097
15.562 | Sb2068
ppm
. 08630
.00044
.50565 | Se1960
ppm
.01955
.00704
36.016 | Si2124
ppm
. 84089
.00049
.05854 | | | | | #1
#2
#3 | .00833
.00874
.00852 | .43647 | .01534 | .78500 | .00731
.00550
.00581 | .08596
.08614
.08679 | .01467
.02762
.01635 | .84033
.84106
.84127 | | | | | Check ?
High Limit
Low Limit | Chk Pass | | | | Method: IC | Sample Name: LLCCV Acquired: 5/16/2016 11:52:46 Type: Unk Method: ICP-THERMO3_6010_200.7WATER_3YLINES(v873) Mode: CONC Corr. Factor: 1.000000 | | | | | | | | | | | |---|--|---|---|---|---|---|--|--|--|--|--| | User: JYH
Comment: | Custo | m ID1: | Custor | n ID2: | Custon | ı ID3: | | | | | | | Elem
Units
Avg
Stddev
%RSD | Sn1899
ppm
. 40310
.00129
.31909 | Sr4077
ppm
. 03956
.00053
1.3500 | Ti3372
ppm
. 02434
.00031
1.2891 | TI1908
ppm
. 15494
.00412
2.6601 | V_2924
ppm
. 00766
.00089
11.619 | Zn2062
ppm
. 01671
.00007
.41379 | Zr3391
ppm
35.012
.179
.51262 | | | | | | #1
#2
#3 | .40303
.40442
.40185 | .03894
.03985
.03988 | .02449
.02455
.02398 | .15788
.15023
.15672 | .00843
.00787
.00669 | .01668
.01679
.01667 | 35.207
34.974
34.854 | | | | | | Check ?
High Limit
Low Limit | Chk Pass | | | | | Int. Std.
Units
Avg
Stddev
%RSD | Y_2243
Cts/S
14387.
49.
.34170 | Y_3600
Cts/S
105060.
232.
.22100 | Y_3774
Cts/S
4791.6
12.1
.25332 | | | | | | | | | | #1
#2
#3 | 14443.
14358.
14359. | 105320.
104890.
104960. | 4795.8
4777.9
4801.1 | | | | | | | | | | Sample Name: LLCCV Acquired: 5/16/2016 11:56:44 Type: Unk Method: ICP-THERMO3_6010_200.7WATER_3YLINES(v873) Mode: CONC Corr. Factor: 1.000000 User: JYH Custom ID1: Custom ID2: Custom ID3: Comment: | | | | | | | | | |---|----------------|----------------|----------|----------------|----------------|----------------|----------------|--| | Elem | Ag3280 | Al3082 | As1890 | B_2496 | Ba4554 | Be3131 | Ca4226 | | | Units | ppm | | Avg | . 00751 | . 19516 | .01103 | . 09909 | .01058 | .00203 | . 48547 | | | Stddev | .00103 | .00186 | .00216 | .00136 | .00069 | .00003 | .00814 | | | %RSD | 13.659 | .95196 | 19.604 | 1.3772 | 6.5453 | 1.3550 | 1.6769 | | | #1 | .00677 | .19318 | .01335 | .09822 | .01130 | .00203 | .47977 | | | #2 | .00707 | .19545 | .01065 | .09838 | .00992 | .00205 | .48184 | | | #3 | .00868 | .19686 | .00908 | .10066 | .01052 | .00200 | .49479 | | | Check ?
High Limit
Low Limit | Chk Pass | | Elem | Cd2288 | Co2286 | Cr2677 | Cu2247 | Fe2611 | K_7664 | Li6707 | | |
Units | ppm | | Avg | . 00114 | .00514 | .00530 | .00514 | . 10672 | 1.1169 | . 10926 | | | Stddev | .00028 | .00028 | .00115 | .00125 | .01885 | .0657 | .00270 | | | %RSD | 24.689 | 5.4387 | 21.668 | 24.343 | 17.658 | 5.8864 | 2.4718 | | | #1 | .00132 | .00509 | .00589 | .00410 | .11514 | 1.1492 | .10940 | | | #2 | .00082 | .00543 | .00604 | .00480 | .11990 | 1.1602 | .10649 | | | #3 | .00130 | .00488 | .00398 | .00653 | .08514 | 1.0412 | .11188 | | | Check ?
High Limit
Low Limit | Chk Pass | | Elem | Mg2790 | Mn2576 | Mo2020 | Na5895 | Ni2316 | P_2149 | Pb2203 | | | Units | ppm | | Avg | . 59805 | .00988 | .00970 | . 52164 | . 02125 | . 98402 | . 01204 | | | Stddev | .07529 | .00202 | .00035 | .02170 | .00076 | .00341 | .00188 | | | %RSD | 12.589 | 20.489 | 3.6000 | 4.1596 | 3.5875 | .34668 | 15.605 | | | #1 | .51894 | .01085 | .00955 | .53074 | .02048 | .98016 | .01085 | | | #2 | .66882 | .01123 | .01010 | .49687 | .02126 | .98528 | .01421 | | | #3 | .60641 | .00755 | .00945 | .53730 | .02201 | .98662 | .01107 | | | Check ?
High Limit
Low Limit | Chk Pass | | Sample Nam
Method: ICP-
User: JYH
Comment: | | 6010_200.7 | 5/16/2016 1
WATER_3YI
Custom ID2: | LINES(v873) | Type: Unk
) Mode:
tom ID3: | CONC (| Corr. Factor: 1.00000(| |---|---|---|--|---|---|---|---| | Elem
Units
Avg
Stddev
%RSD | Sb2068
ppm
. 10599
.00229
2.1634 | Se1960
ppm
.02024
.00681
33.651 | Si2124
ppm
1.0603
.0019
.17653 | Sn1899
ppm
. 50759
.00042
.08301 | Sr4077
ppm
. 05002
.00037
.73849 | Ti3372
ppm
.03005
.00491
16.341 | TI1908
ppm
. 19505
.00017
.08640 | | #1
#2
#3 | .10833
.10375
.10589 | .02652
.01300
.02119 | 1.0625
1.0592
1.0592 | .50747
.50807
.50725 | .04991
.04973
.05044 | .02530
.02974
.03510 | .19486
.19516
.19513 | | Check ?
High Limit
Low Limit | Chk Pass | Elem
Units
Avg
Stddev
%RSD | V_2924
ppm
. 00980
.00145
14.829 | Zn2062
ppm
.02115
.00021
.96938 | Zr3391
ppm
F 46.799
.302
.64531 | | | | | | #1
#2
#3 | .00852
.00949
.01138 | .02098
.02138
.02109 | 46.514
46.767
47.115 | | | | | | Check ?
High Limit
Low Limit | Chk Pass | Chk Pass | Chk Fail
36.000
04000 | | | | | | Int. Std.
Units
Avg
Stddev
%RSD | Y_2243
Cts/S
14056.
45.
.32176 | Y_3600
Cts/S
102320.
129.
.12623 | Y_3774
Cts/S
4565.5
14.7
.32306 | | | | | | #1
#2
#3 | 14106.
14046.
14018. | 102450.
102190.
102320. | 4577.0
4570.7
4548.9 | | | | | Sample Name: PBW XT Acquired: 5/16/2016 12:00:42 Type: Unk Method: ICP-THERMO3_6010_200.7WATER_3YLINES(v873) Mode: CONC Corr. Factor: 1.000000 User: JYH Custom ID1: Custom ID2: Custom ID3: Comment: WG567310-02 AI3082 As1890 B_2496 Ba4554 Be3131 Ca4226 Elem Ag3280 Units ppm ppm ppm ppm ppm ppm ppm -.01895 -.00382 -.01553 -.00127 .00002 Avg .00008 .00007 Stddev .00116 .00180 .00126 .00133 .00098 .00008 .01814 99.207 %RSD 30.257 11.564 6164.3 1267.8 108.77 95.735 #1 -.00250 -.00044 .00036 .00035 -.00002 -.03391 -.01346 #2 -.00465 -.01663 -.00065 -.00145 -.00101 .00011 .00123 #3 -.00431 -.01651 -.00271 .00116 .00090 .00013 -.02419 Check? Chk Pass Chk Pass **Chk Pass Chk Pass Chk Pass Chk Pass Chk Pass** High Limit Low Limit Elem Cd2288 Co2286 Cr2677 Cu2247 Fe2611 K_7664 Li6707 Units ppm ppm ppm ppm ppm ppm ppm -.00006 -.00144 .00732 .00018 .00068 .01622 Avg .16426 .00029 .00029 .00060 .00077 .01795 .00200 Stddev .05668 %RSD 159.40 458.26 87.764 53.087 110.69 34.507 27.359 #1 .00004 -.00007 .00035 -.00057 .00760 .20297 .00963 #2 -.00001 -.00035 .00137 -.00198 .03685 .09920 .00635 #3 .00051 .00023 .00032 -.00179 .00420 .19062 .00599 Check? **Chk Pass** Chk Pass **Chk Pass Chk Pass Chk Pass Chk Pass Chk Pass** High Limit Low Limit Elem Mg2790 Mn2576 Mo2020 Na5895 Ni2316 P_2149 Pb2203 Units ppm ppm ppm ppm ppm ppm ppm .06555 -.00010 .00034 -.01887 -.00048 -.00765 -.00075 Avg Stddev .00181 .00013 .01589 .00114 .00657 .00066 .16043 1837.5 37.046 84.216 %RSD 244.75 236.90 85.879 87.702 #1 .00764 .00196 .00022 -.03331 -.00140 -.01295 -.00151 .24690 -.00146 .00033 -.02143 .00079 -.00972 -.00029 #2 #3 -.05789 -.00080 .00048 -.00185 -.00082 -.00030 -.00046 Approved: May 17, 2016 **Chk Pass** Check? High Limit Low Limit **Chk Pass** Chk Pass **Chk Pass** **Chk Pass** **Chk Pass** **Chk Pass** | Method: ICP-
User: JYH | Sample Name: PBW XT Acquired: 5/16/2016 12:00:42 Type: Unk Method: ICP-THERMO3_6010_200.7WATER_3YLINES(v873) Mode: CONC Corr. Factor: 1.000000 User: JYH Custom ID1: Custom ID2: Custom ID3: Comment: WG567310-02 | | | | | | | | | | |---|---|--|--|---|---|--|--|--|--|--| | Elem
Units
Avg
Stddev
%RSD | Sb2068
ppm
00358
.00068
19.065 | Se1960
ppm
.00046
.01050
2276.5 | Si2124
ppm
02017
.00139
6.9051 | Sn1899
ppm
. 00007
.00070
957.16 | Sr4077
ppm
. 00019
.00027
138.12 | Ti3372
ppm
00304
.00686
225.98 | TI1908
ppm
00062
.00288
464.54 | | | | | #1
#2
#3 | 00412
00281
00381 | .01127
00969
00020 | 02177
01945
01928 | .00082
00003
00057 | 00005
.00014
.00048 | 01072
.00249
00088 | .00014
00381
.00181 | | | | | Check ?
High Limit
Low Limit | Chk Pass | | | | Elem
Units
Avg
Stddev
%RSD | V_2924
ppm
.00005
.00161
3405.6 | Zn2062
ppm
.00100
.00031
31.307 | Zr3391
ppm
F04916
.13930
283.35 | | | | | | | | | #1
#2
#3 | .00011
.00162
00159 | .00136
.00080
.00083 | .03934
.02291
20973 | | | | | | | | | Check ?
High Limit
Low Limit | Chk Pass | Chk Pass | Chk Fail
36.000
04000 | | | | | | | | | Int. Std.
Units
Avg
Stddev
%RSD | Y_2243
Cts/S
13689.
40.
.29240 | Y_3600
Cts/S
99706.
363.
.36406 | Y_3774
Cts/S
4471.7
38.6
.86384 | | | | | | | | | #1
#2
#3 | 13660.
13735.
13673. | 99470.
100120.
99524. | 4432.9
4510.2
4472.1 | | | | | | | | Sample Name: CSW XT Acquired: 5/16/2016 12:04:43 Type: Unk Method: ICP-THERMO3_6010_200.7WATER_3YLINES(v873) Mode: CONC Corr. Factor: 1.000000 User: JYH Custom ID1: Custom ID2: Custom ID3: Comment: WG567310-03 | Elem | Ag3280 | Al3082 | As1890 | B_2496 | Ba4554 | Be3131 | Ca4226 | Cd2288 | |--------|--------|--------|--------|--------|--------|--------|--------|--------| | Units | ppm | Avg | .19110 | 4.7918 | .18947 | .94453 | .48850 | .02357 | 4.8253 | .02405 | | Stddev | .00206 | .0071 | .00409 | .00421 | .00235 | .00001 | .0305 | .00013 | | %RSD | 1.0762 | .14854 | 2.1592 | .44608 | .48100 | .03598 | .63275 | .52145 | | #1 | .19240 | 4.7905 | .19417 | .94694 | .49094 | .02358 | 4.8582 | .02408 | | #2 | .19218 | 4.7995 | .18750 | .94698 | .48625 | .02356 | 4.7978 | .02416 | | #3 | .18873 | 4.7854 | .18673 | .93966 | .48833 | .02357 | 4.8199 | .02391 | Check? Chk Pass P | Elem | Co2286 | Cr2677 | Cu2247 | Fe2611 | K_7664 | Li6707 | Mg2790 | Mn2576 | |--------|--------|----------------|----------------|---------------|---------------|----------------|---------------|----------------| | Units | ppm | Avg | .09913 | . 24694 | . 24894 | 1.9747 | 24.814 | . 49846 | 4.9362 | . 24645 | | Stddev | .00014 | .00205 | .00066 | .0046 | .136 | .00251 | .0620 | .00386 | | %RSD | .14009 | .83124 | .26578 | .23344 | .54969 | .50368 | 1.2551 | 1.5674 | | #1 | .09900 | .24532 | .24970 | 1.9697 | 24.954 | .50129 | 5.0062 | .24414 | | #2 | .09928 | .24925 | .24866 | 1.9788 | 24.681 | .49650 | 4.9139 | .24431 | | #3 | .09912 | .24626 | .24847 | 1.9756 | 24.808 | .49760 | 4.8885 | .25091 | Check? Chk Pass P | Elem | Mo2020 | Na5895 | Ni2316 | P_2149 | Pb2203 | Sb2068 | Se1960 | Si2124 | |--------|----------------|---------------|----------------|---------------|----------------|----------------|--------|---------------| | Units | ppm | Avg | . 49389 | 24.849 | . 25393 | 4.7613 | . 25161 | . 58531 | .18629 | 2.4646 | | Stddev | .00123 | .083 | .00161 | .0107 | .00231 | .00204 | .00086 | .0033 | | %RSD | .24933 | .33448 | .63413 | .22447 | .91680 | .34837 | .46100 | .13299 | | #1 | .49395 | 24.930 | .25578 | 4.7711 | .25118 | .58750 | .18612 | 2.4610 | | #2 | .49509 | 24.763 | .25311 | 4.7499 | .25410 | .58496 | .18723 | 2.4657 | | #3 | .49263 | 24.854 | .25289 | 4.7629 | .24955 | .58347 | .18554 | 2.4673 | Check? Chk Pass P Sample Name: CSW XT Acquired: 5/16/2016 12:04:43 Type: Unk Method: ICP-THERMO3_6010_200.7WATER_3YLINES(v873) Mode: CONC Corr. Factor: 1.000000 User: JYH Custom ID1: Custom ID2: Custom ID3: Comment: WG567310-03 | Elem | Sn1899 | Sr4077 | Ti3372 | TI1908 | V_2924 | Zn2062 | Zr3391 | |--------|--------|--------
--------|---------|--------|--------|--------| | Units | ppm | Avg | .49527 | .49017 | .48662 | .24573 | .48929 | .49168 | 1.8491 | | Stddev | .00152 | .00056 | .00430 | .00120 | .00090 | .00083 | .4053 | | %RSD | .30597 | .11426 | .88441 | .48768 | .18443 | .16850 | 21.916 | | | 10000 | | | 0.400.4 | | | | | #1 | .49600 | .48966 | .49142 | .24694 | .48909 | .49088 | 1.7479 | | #2 | .49353 | .49009 | .48535 | .24454 | .49027 | .49162 | 1.5041 | | #3 | .49629 | .49077 | .48310 | .24571 | .48850 | .49253 | 2.2954 | Check? Chk Pass P Low Limit | Int. Std. | Y_2243 | Y_3600 | Y_3774 | |-----------|---------------|---------------|---------------| | Units | Cts/S | Cts/S | Cts/S | | Avg | 13603. | 98161. | 4439.8 | | Stddev | 14. | 186. | 37.2 | | %RSD | .10061 | .18961 | .83830 | | #1 | 13616. | 98249. | 4398.7 | | #2 | 13588. | 98287. | 4471.2 | | #3 | 13604. | 97947. | 4449.5 | | Sample Name: L1605001301 Acquired: 5/16/2016 12:08:26 Type: Unk Method: ICP-THERMO3_6010_200.7WATER_3YLINES(v873) Mode: CONC Corr. Factor: 1.000000 User: JYH Custom ID1: 10 Custom ID2: Custom ID3: Comment: WG567310-01 | | | | | | | | | | |--|----------|----------------|----------|----------------|----------------|----------------|---------------|-------------------------------|--| | Elem | Ag3280 | Al3082 | As1890 | B_2496 | Ba4554 | Be3131 | Ca4226 | Cd2288 ppm00012 .00008 63.086 | | | Units | ppm | | | Avg | 00138 | . 00225 | 00016 | . 00268 | . 00296 | .00005 | 3.0685 | | | | Stddev | .00270 | .00178 | .00177 | .00221 | .00110 | .00005 | .0421 | | | | %RSD | 195.33 | 79.017 | 1126.5 | 82.451 | 37.110 | 98.260 | 1.3721 | | | | #1 | .00110 | .00031 | 00199 | .00465 | .00201 | .00008 | 3.0359 | 00006 | | | #2 | 00100 | .00266 | 00001 | .00310 | .00271 | 00001 | 3.0535 | 00021 | | | #3 | 00426 | .00380 | .00153 | .00029 | .00416 | .00008 | 3.1160 | 00010 | | | Check ?
High Limit
Low Limit | Chk Pass | | Elem | Co2286 | Cr2677 | Cu2247 | Fe2611 | K_7664 | Li6707 | Mg2790 | Mn2576 | | | Units | ppm | | Avg | .00003 | . 00007 | .00026 | .03961 | . 15999 | . 01305 | 2.5007 | . 02495 | | | Stddev | .00026 | .00077 | .00200 | .00627 | .13960 | .00108 | .1520 | .00173 | | | %RSD | 892.66 | 1166.3 | 761.42 | 15.829 | 87.254 | 8.2399 | 6.0793 | 6.9502 | | | #1 | .00018 | .00051 | 00107 | .03239 | .16793 | .01427 | 2.4118 | .02691 | | | #2 | 00027 | .00050 | 00071 | .04369 | .29546 | .01261 | 2.4141 | .02361 | | | #3 | .00017 | 00082 | .00256 | .04275 | .01659 | .01226 | 2.6763 | .02433 | | | Check ?
High Limit
Low Limit | Chk Pass | | Elem | Mo2020 | Na5895 | Ni2316 | P_2149 | Pb2203 | Sb2068 | Se1960 | Si2124 | | | Units | ppm | | Avg | .00058 | 15.918 | 00154 | . 01757 | 00050 | 00177 | 00228 | 2.7739 | | | Stddev | .00027 | .246 | .00036 | .01090 | .00449 | .00225 | .00438 | .0754 | | | %RSD | 47.314 | 1.5450 | 23.668 | 62.027 | 906.41 | 127.04 | 192.53 | 2.7185 | | | #1 | .00065 | 15.641 | 00113 | .00873 | .00361 | 00420 | 00527 | 2.6983 | | | #2 | .00028 | 16.003 | 00182 | .02975 | 00529 | .00024 | 00431 | 2.7741 | | | #3 | .00081 | 16.109 | 00168 | .01424 | .00020 | 00135 | .00275 | 2.8491 | | | Check ?
High Limit
Low Limit | Chk Pass | | Sample Nar
Method: ICF
User: JYH
Comment: V | Corr. Fa | ctor: 1.00000(| | | | | | | |--|---|---|--|---|---|---|---|--| | Elem
Units
Avg
Stddev
%RSD | Sn1899
ppm
00118
.00135
114.28 | Sr4077
ppm
. 07635
.00177
2.3175 | Ti3372
ppm
00149
.00610
409.83 | TI1908
ppm
. 00043
.00066
153.22 | V_2924
ppm
. 00137
.00047
34.725 | Zn2062
ppm
. 00142
.00007
5.2371 | Zr3391
ppm
. 24659
.62410
253.09 | | | #1
#2
#3 | .00008
00102
00261 | .07446
.07664
.07796 | 00056
00800
.00410 | .00098
00030
.00061 | .00191
.00117
.00102 | .00136
.00150
.00139 | .92216
30845
.12605 | | | Check ?
High Limit
Low Limit | Chk Pass | | Int. Std.
Units
Avg
Stddev
%RSD | Y_2243
Cts/S
13834.
14.
.10118 | Y_3600
Cts/S
98880.
148.
.14987 | Y_3774
Cts/S
4403.6
16.8
.38078 | | | | | | | #1
#2
#3 | 13842.
13843.
13818. | 98951.
98979.
98709. | 4421.4
4388.0
4401.4 | | | | | | | Sample Name: L1605001302 Acquired: 5/16/2016 12:12:25 Type: Unk Method: ICP-THERMO3_6010_200.7WATER_3YLINES(v873) Mode: CONC Corr. Factor: 1.000000 User: JYH Custom ID1: 10 Custom ID2: Custom ID3: Comment: | | | | | | | | | | |---|---------------|----------------|----------|----------------|----------|----------------|----------------|--|--| | Elem | Ag3280 | Al3082 | As1890 | B_2496 | Ba4554 | Be3131 | Ca4226 | | | | Units | ppm | | | Avg | 00318 | 00318 | .00306 | . 00207 | .00331 | .00006 | 3.3211 | | | | Stddev | .00068 | .00143 | .00482 | .00260 | .00026 | .00003 | .0463 | | | | %RSD | 21.516 | 44.781 | 157.46 | 125.56 | 7.8937 | 56.224 | 1.3937 | | | | #1 | 00394 | 00312 | .00314 | .00321 | .00306 | .00005 | 3.2717 | | | | #2 | 00261 | 00464 | 00180 | 00090 | .00329 | .00009 | 3.3279 | | | | #3 | 00299 | 00179 | .00783 | .00392 | .00358 | .00003 | 3.3635 | | | | Check ?
High Limit
Low Limit | Chk Pass | | | Elem | Cd2288 | Co2286 | Cr2677 | Cu2247 | Fe2611 | K_7664 | Li6707 | | | | Units | ppm | | | Avg | .00004 | .00029 | .00019 | 00004 | .01899 | . 13871 | . 01399 | | | | Stddev | .00009 | .00033 | .00054 | .00037 | .00582 | .07075 | .00222 | | | | %RSD | 250.38 | 114.15 | 282.14 | 880.00 | 30.647 | 51.008 | 15.899 | | | | #1 | .00010 | 00009 | 00039 | .00034 | .01296 | .05712 | .01183 | | | | #2 | 00007 | .00048 | .00028 | 00039 | .01945 | .17578 | .01627 | | | | #3 | .00008 | .00046 | .00068 | 00007 | .02457 | .18323 | .01388 | | | | Check ?
High Limit
Low Limit | Chk Pass | | | Elem | Mg2790 | Mn2576 | Mo2020 | Na5895 | Ni2316 | P_2149 | Pb2203 | | | | Units | ppm | | | Avg | 2.7050 | . 02457 | 00002 | 17.212 | 00032 | . 01350 | .00053 | | | | Stddev | .0311 | .00364 | .00013 | .120 | .00052 | .00174 | .00281 | | | | %RSD | 1.1503 | 14.824 | 827.04 | .69560 | 164.46 | 12.851 | 535.77 | | | | #1 | 2.6705 | .02669 | 00003 | 17.098 | 00088 | .01505 | .00232 | | | | #2 | 2.7136 | .02037 | 00013 | 17.200 | .00014 | .01162 | 00272 | | | | #3 | 2.7310 | .02666 | .00012 | 17.337 | 00021 | .01384 | .00198 | | | | Check ?
High Limit
Low Limit | Chk Pass | | | Sample Name
Method: ICP-1
User: JYH
Comment: | C Corr. F | Factor: 1.00000(| | | | | | |---|---|--|--|--|---|--|--| | Elem
Units
Avg
Stddev
%RSD | Sb2068
ppm
00238
.00190
79.916 | Se1960
ppm
.00237
.00130
54.650 | Si2124
ppm
2.7201
.0228
.83757 | Sn1899
ppm
00109
.00060
54.726 | Sr4077
ppm
.08256
.00026
.30997 | Ti3372
ppm
00456
.00194
42.562 | TI1908
ppm
00036
.00077
213.98 | | #1
#2
#3 | 00152
00106
00456 | .00354
.00259
.00098 | 2.6966
2.7215
2.7421 | 00146
00141
00040 | .08244
.08239
.08286 | 00493
00246
00629 | .00045
00045
00109 | | Check ?
High Limit
Low Limit | Chk Pass | Elem
Units
Avg
Stddev
%RSD | V_2924
ppm
. 00029
.00073
252.82 | Zn2062
ppm
.00225
.00007
3.0953 | Zr3391
ppm
F13882
.24254
174.72 | | | | | | #1
#2
#3 | 00021
.00112
00005 | .00231
.00217
.00226 | 03686
.03610
41569 | | | | | | Check ?
High Limit
Low Limit | Chk Pass | Chk Pass | Chk Fail
36.000
04000 | | | | | | Int. Std.
Units
Avg
Stddev
%RSD | Y_2243
Cts/S
13807.
54.
.38956 | Y_3600
Cts/S
98322.
432.
.43947 | Y_3774
Cts/S
4402.6
21.0
.47777 | | | | | | #1
#2
#3 | 13831.
13745.
13844. | 98155.
98812.
97998. | 4401.8
4424.1
4382.0 | | | | | Sample Name: L1605001303S Acquired: 5/16/2016 12:16:23 Type: Unk Mode: CONC Method: ICP-THERMO3 6010 200.7WATER 3YLINES(v873) Corr. Factor: 1.000000 User: JYH Custom ID1: 10 Custom ID2: Custom ID3: Comment: WG567310-04 Ag3280 Al3082 B_2496 Ba4554 Ca4226 Cd2288 Elem As1890 Be3131 Units ppm ppm ppm ppm ppm ppm ppm ppm Avg .01776 .54162 .02352 .10329 .05356 .00263 3.7704 .00279 Stddev .00135 .00998 .00143 .00055 .00032 .00012 .0326 .00020 %RSD 7.6051 1.8424 6.0639 .53722 .59662 4.4106 .86425 7.0059 #1 .10390 3.7550 .00296 .01925 .53386 .02340 .05352 .00268 #2 .01662 .55288 .02500 .10282 .05390 .00250 3.7484 .00258 #3 .01740 .53813 .02216 .10315 .05327.00271 3.8078 .00284 Check? Chk Pass **High Limit** Low Limit Elem
Co2286 Cr2677 Cu2247 Fe2611 K_7664 Mg2790 Mn2576 Li6707 Units ppm ppm ppm ppm ppm ppm ppm ppm .01120 .02541 2.8016 .04812 Avg .02720 .22646 .06715 3.1651 .00029 .00076 Stddev .00038 .02182 .0725 .00310 .0887 .00344 %RSD 3.4314 1.1295 2.7850 9.6360 2.5885 2.8039 7.1401 4.6194 #1 .01082 .02547 .02769 .21569 2.8590 .06811 3.1101 .04482 #2 .01159 .02510 .02759 .21212 2.8256 .06368 3.2674 .05168 .02566 #3 .01121 .02633 .25158 2.7201 .06966 3.1176 .04786 Check? Chk Pass High Limit Low Limit Elem Mo2020 Na5895 Ni2316 P_2149 Pb2203 Sb2068 Se1960 Si2124 Units ppm ppm ppm ppm ppm ppm ppm ppm Avg .04982 19.531 .02752 .54691 .02647 .06312 2.9962 .02577 .00036 .00159 .00296 Stddev .105 .00063 .00275 .00320 .0436 .29033 %RSD .72531 .53593 2.2829 10.391 5.0760 11.472 1.4541 #1 19.430 .02841 2.9546 .04941 .02716 .54551 .02769 .05944 .05001 19.526 .54864 .02841 .06466 .02257 #2 .02716 2.9925 #3 .05006 19.639 .02825 .54657 .02333 .06527 .02632 3.0414 Check? Chk Pass High Limit Approved: May 17, 2016 Low Limit Corr. Factor: 1.000000 Sample Name: L1605001303S Acquired: 5/16/2016 12:16:23 Type: Unk Method: ICP-THERMO3_6010_200.7WATER_3YLINES(v873) Mode: CONC User: JYH Custom ID1: 10 Custom ID2: Custom ID3: Comment: WG567310-04 Elem Sn1899 Sr4077 Ti3372 TI1908 V_2924 Zn2062 Zr3391 Units ppm ppm ppm ppm ppm ppm ppm .05150 .13114 .04782 .02583 .05184 .05713 .04980 Avg Stddev .00110 .00106 .00722 .00100 .00112 .00066 .33263 %RSD 15.107 3.8659 2.1665 667.87 2.1381 .81177 1.1624 #1 .05136 .12997 .04510 .02505 .05218 .05673 .01077 #2 .05047 .13138 .04236 .02549 .05058 .05675 .40023 #3 .05266 .13206 .05601 .02695 .05274 .05789 -.26158 Check? Chk Pass P | Int. Std. | Y_2243 | Y_3600 | Y_3774 | |-----------|--------|---------------|---------------| | Units | Cts/S | Cts/S | Cts/S | | Avg | 13807. | 98662. | 4402.2 | | Stddev | 46. | 378. | 18.4 | | %RSD | .33036 | .38335 | .41870 | | #1 | 13757. | 98496. | 4420.9 | | #2 | 13846. | 99095. | 4401.8 | | #3 | 13817. | 98395. | 4384.0 | | Sample Name: L1605001304SD Acquired: 5/16/2016 12:20:20 Type: Unk Method: ICP-THERMO3_6010_200.7WATER_3YLINES(v873) Mode: CONC Corr. Factor: 1.00 User: JYH Custom ID1: 10 Custom ID2: Custom ID3: Comment: WG567310-05 | | | | | | | | actor: 1.00000(| |---|---|---|---|---|---|---|---|---| | Elem
Units
Avg
Stddev
%RSD | Ag3280
ppm
. 01767
.00107
6.0412 | Al3082
ppm
. 53835
.00189
.35062 | As1890
ppm
. 02223
.00139
6.2492 | B_2496
ppm
. 10620
.00131
1.2292 | Ba4554
ppm
. 05289
.00070
1.3161 | Be3131
ppm
. 00268
.00007
2.6136 | Ca4226
ppm
3.6734
.0386
1.0521 | Cd2288
ppm
. 00279
.00018
6.4226 | | #1
#2
#3 | .01683
.01887
.01732 | .53753
.53702
.54051 | .02356
.02234
.02079 | .10477
.10650
.10733 | .05211
.05309
.05346 | .00261
.00271
.00274 | 3.6301
3.7045
3.6855 | .00272
.00265
.00299 | | Check ?
High Limit
Low Limit | Chk Pass | Elem
Units
Avg
Stddev
%RSD | Co2286
ppm
.01143
.00025
2.1986 | Cr2677
ppm
.02707
.00083
3.0834 | Cu2247
ppm
.02859
.00183
6.4082 | Fe2611
ppm
.23964
.01996
8.3309 | K_7664
ppm
2.6910
.0250
.93033 | Li6707
ppm
.06356
.00479
7.5374 | Mg2790
ppm
3.1252
.0524
1.6765
3.0966 | Mn2576
ppm
. 05051
.00124
2.4470 | | #2
#3 | .01162
.01154 | .02695 | .02664 | .21671 | 2.7095
2.7010 | .06626 | 3.0933
3.1856 | .05025
.04942 | | Check ?
High Limit
Low Limit | Chk Pass | Elem
Units
Avg
Stddev
%RSD | Mo2020
ppm
. 05236
.00097
1.8511 | Na5895
ppm
18.937
.212
1.1185 | Ni2316
ppm
.02833
.00059
2.0865 | P_2149
ppm
. 56881
.01069
1.8790 | Pb2203
ppm
. 02516
.00229
9.1057 | Sb2068
ppm
. 06600
.00529
8.0114 | Se1960
ppm
. 01840
.00337
18.304 | Si2124
ppm
3.0413
.0686
2.2563 | | #1
#2
#3 | .05135
.05244
.05329 | 18.716
19.138
18.956 | .02765
.02863
.02871 | .55691
.57195
.57758 | .02289
.02748
.02511 | .06105
.07157
.06539 | .02164
.01492
.01865 | 2.9712
3.0446
3.1083 | | Check ?
High Limit
Low Limit | Chk Pass | • | me: L160500
P-THERMO3 | | - | 5/16/2016 ·
3YLINES(v8 | | Type: Unk
ode: CONC | Corr. Factor: 1.00000 | (| |------------------------------------|---|-----------------------|-----------------------|---------------------------|-----------------------|------------------------|-----------------------|---| | User: JYH | ser: JYH Custom ID1: 10 Custom ID2: Custom ID3: | | | | | | | | | Comment: \ | NG567310-0 |)5 | | | | | | | | Elem | Sn1899 | Sr4077 | Ti3372 | TI1908 | V_2924 | Zn2062 | Zr3391 | | | Units
Avg | ppm
. 05396 | ppm
. 12738 | ppm
. 04515 | ppm
. 02786 | ppm
. 05370 | ppm
. 05900 | ppm
02539 | | | Stddev | .00167 | .00200 | .00749 | .00322 | | .00107 | .27004 | | | %RSD | 3.0941 | 1.5663 | 16.591 | 11.572 | 3.1299 | 1.8144 | 1063.4 | | | #1 | .05384 | .12514 | .03751 | .02697 | .05176 | .05790 | 21719 | | | #2 | .05235 | .12897 | .04544 | .03143 | .05470 | .05907 | .28342 | | | #3 | .05568 | .12802 | .05248 | .02517 | .05465 | .06004 | 14241 | | | Check ?
High Limit
Low Limit | Chk Pass | | Int. Std. | Y_2243 | Y_3600 | Y_3774 | | | | | | | Units | Cts/S | Cts/S | Cts/S | | | | | | | Avg
Stddev | 13802 . 30. | 98491 . 548. | 4400.7 30.9 | | | | | | | %RSD | .21535 | .55639 | .70155 | | | | | | | #1 | 13804. | 99011. | 4417.3 | | | | | | | #2 | 13830. | 98543. | 4365.1 | | | | | | | #3 | 13771. | 97919. | 4419.8 | | | | | | | Sample Name: L1605001305 Acquired: 5/16/2016 12:24:18 Type: Unk Method: ICP-THERMO3_6010_200.7WATER_3YLINES(v873) Mode: CONC Corr. Factor: 1.000000 User: JYH Custom ID1: Custom ID2: Custom ID3: Comment: | | | | | | | | | | | |---|----------|----------------|----------------|----------|----------|----------------|----------|----------------|--|--| | Elem | Ag3280 | Al3082 | As1890 | B_2496 | Ba4554 | Be3131 | Ca4226 | Cd2288 | | | | Units | ppm | | | Avg | 00385 | 01142 | . 00067 | .00010 | .00084 | .00014 | 03258 | . 00033 | | | | Stddev | .00031 | .01009 | .00361 | .00128 | .00059 | .00006 | .03342 | .00022 | | | | %RSD | 8.0692 | 88.334 | 539.59 | 1238.3 | 70.049 | 46.579 | 102.59 | 67.379 | | | | #1 | 00421 | 01924 | 00309 | .00158 | .00016 | .00014 | 06949 | .00055 | | | | #2 | 00372 | 00004 | .00098 | 00064 | .00120 | .00007 | 02387 | .00010 | | | | #3 | 00363 | 01498 | .00411 | 00063 | .00117 | .00020 | 00437 | .00034 | | | | Check ?
High Limit
Low Limit | Chk Pass | | | Elem | Co2286 | Cr2677 | Cu2247 | Fe2611 | K_7664 | Li6707 | Mg2790 | Mn2576 | | | | Units | ppm | | | Avg | 00010 | . 00018 | 00020 | 01680 | .11065 | . 00124 | 01252 | . 00030 | | | | Stddev | .00032 | .00104 | .00023 | .00884 | .05200 | .00402 | .02465 | .00038 | | | | %RSD | 312.52 | 588.67 | 111.44 | 52.659 | 46.993 | 322.93 | 196.99 | 128.86 | | | | #1 | 00047 | .00135 | 00040 | 00895 | .14268 | 00339 | 02031 | .00065 | | | | #2 | .00004 | 00064 | 00025 | 01506 | .05065 | .00347 | 03233 | .00035 | | | | #3 | .00012 | 00018 | .00004 | 02638 | .13861 | .00366 | .01509 | 00011 | | | | Check ?
High Limit
Low Limit | Chk Pass | | | Elem | Mo2020 | Na5895 | Ni2316 | P_2149 | Pb2203 | Sb2068 | Se1960 | Si2124 | | | | Units | ppm | | | Avg | .00038 | 00033 | 00224 | .00163 | .00043 | 00232 | 00041 | 02514 | | | | Stddev | .00050 | .03654 | .00063 | .00383 | .00103 | .00271 | .00557 | .00088 | | | | %RSD | 130.66 | 11048. | 28.256 | 235.16 | 237.79 | 116.79 | 1363.3 | 3.4927 | | | | #1 | 00019 | .04186 | 00294 | .00049 | 00048 | 00318 | .00587 | 02413 | | | | #2 | .00062 | 02144 | 00169 | 00150 | .00024 | .00071 | 00234 | 02556 | | | | #3 | .00072 | 02141 | 00210 | .00590 | .00154 | 00451 | 00476 | 02572 | | | | Check ?
High Limit
Low Limit | Chk Pass | | | Sample Nar
Method: ICF | | | cquired: 5/1 | | | ype: Unk
ode: CONC | Corr. Factor: 1.00000(| |---|--|---|--|--|---|---|---| | User: JYH | Custom | | Custom IE | • | Custom ID3 | | COIT. Factor. 1.000000 | | Comment: | Custom | וטו. | Customil | 72. | Sustoili iDS | • | | | Comment. | | | | | | | | | Elem
Units
Avg
Stddev
%RSD | Sn1899
ppm
00039
.00050
127.08 | Sr4077
ppm
. 00048
.00036
74.605 | Ti3372
ppm
00327
.00248
75.906 |
TI1908
ppm
00341
.00127
37.145 | V_2924
ppm
.00038
.00145
384.39 | Zn2062
ppm
.00093
.00020
21.236 | Zr3391
ppm
. 07203
.05212
72.351 | | #1
#2
#3 | 00049
00083
.00015 | .00037
.00019
.00088 | 00254
00123
00603 | 00478
00229
00315 | .00187
.00028
00102 | .00078
.00086
.00115 | .07269
.01959
.12382 | | Check ?
High Limit
Low Limit | Chk Pass | Int. Std.
Units
Avg
Stddev
%RSD | Y_2243
Cts/S
13072 .
67.
.51457 | Y_3600
Cts/S
94567.
663.
.70159 | Y_3774
Cts/S
4239.8
15.8
.37155 | | | | | | #1
#2
#3 | 13082.
13134.
13000. | 93917.
94541.
95243. | 4229.7
4231.8
4258.0 | | | | | Sample Name: L1605001305PS Acquired: 5/16/2016 12:28:17 Type: Unk Method: ICP-THERMO3_6010_200.7WATER_3YLINES(v873) Mode: CONC Corr. Factor: 1.000000 User: JYH Custom ID1: Custom ID2: Custom ID3: Comment: WG567345-03 | Elem | Ag3280 | Al3082 | As1890 | B_2496 | Ba4554 | Be3131 | Ca4226 | Cd2288 | |--------|----------------|---------------|----------------|----------------|----------------|----------------|---------------|----------------| | Units | ppm | Avg | . 19991 | 4.9862 | . 19723 | . 98483 | . 50435 | . 02446 | 5.0423 | . 02477 | | Stddev | .00317 | .0093 | .00282 | .00382 | .00265 | .00012 | .0159 | .00038 | | %RSD | 1.5859 | .18577 | 1.4315 | .38740 | .52508 | .48251 | .31432 | 1.5426 | | #1 | .20355 | 4.9960 | .20000 | .98688 | .50533 | .02458 | 5.0567 | .02494 | | #2 | .19840 | 4.9776 | .19436 | .98719 | .50636 | .02434 | 5.0449 | .02504 | | #3 | .19777 | 4.9851 | .19734 | .98043 | .50135 | .02447 | 5.0253 | .02434 | Check? Chk Pass P | Elem | Co2286 | Cr2677 | Cu2247 | Fe2611 | K_7664 | Li6707 | Mg2790 | Mn2576 | |--------|--------|----------------|----------------|---------------|---------------|----------------|---------------|----------------| | Units | ppm | Avg | .10297 | . 25873 | . 25906 | 2.0462 | 25.523 | . 51216 | 4.9992 | . 24978 | | Stddev | .00035 | .00173 | .00159 | .0228 | .056 | .00770 | .0691 | .00070 | | %RSD | .34387 | .66783 | .61330 | 1.1140 | .22070 | 1.5028 | 1.3829 | .27994 | | #1 | .10322 | .25888 | .25938 | 2.0315 | 25.484 | .50723 | 5.0744 | .25012 | | #2 | .10313 | .26038 | .26046 | 2.0724 | 25.588 | .52103 | 4.9847 | .25024 | | #3 | .10257 | .25693 | .25733 | 2.0346 | 25.497 | .50822 | 4.9384 | .24898 | Check? Chk Pass P | Elem | Mo2020 | Na5895 | Ni2316 | P_2149 | Pb2203 | Sb2068 | Se1960 | Si2124 | |--------|----------------|---------------|----------------|---------------|----------------|----------------|----------------|---------------| | Units | ppm | Avg | . 51045 | 25.696 | . 26247 | 4.9544 | . 26401 | . 61173 | . 19150 | 2.5398 | | Stddev | .00098 | .092 | .00121 | .0085 | .00305 | .00086 | .00162 | .0072 | | %RSD | .19116 | .35714 | .45944 | .17107 | 1.1565 | .14070 | .84344 | .28449 | | #1 | .51102 | 25.665 | .26368 | 4.9454 | .26059 | .61244 | .18971 | 2.5373 | | #2 | .51101 | 25.800 | .26247 | 4.9558 | .26646 | .61077 | .19285 | 2.5480 | | #3 | .50932 | 25.624 | .26126 | 4.9622 | .26498 | .61199 | .19194 | 2.5342 | Check? Chk Pass P Sample Name: L1605001305PS Acquired: 5/16/2016 12:28:17 Type: Unk Method: ICP-THERMO3_6010_200.7WATER_3YLINES(v873) Mode: CONC Corr. Factor: 1.000000 User: JYH Custom ID1: Custom ID2: Custom ID3: Comment: WG567345-03 | Elem | Sn1899 | Sr4077 | Ti3372 | TI1908 | V_2924 | Zn2062 | Zr3391 | |--------|--------|--------|--------|--------|--------|--------|--------| | Units | ppm | Avg | .51599 | .50497 | .50133 | .25832 | .50983 | .51547 | .67385 | | Stddev | .00055 | .00268 | .00792 | .00201 | .00057 | .00080 | .15690 | | %RSD | .10658 | .52991 | 1.5797 | .77625 | .11184 | .15541 | 23.284 | | #1 | .51574 | .50269 | .49223 | .25892 | .51042 | .51584 | .54586 | | #2 | .51561 | .50792 | .50667 | .25996 | .50928 | .51601 | .62680 | | #3 | .51662 | .50430 | .50509 | .25609 | .50980 | .51455 | .84889 | Check? Chk Pass P | Int. Std. | Y_2243 | Y_3600 | Y_3774 | |-----------|----------------|---------------|---------------| | Units | Cts/S | Cts/S | Cts/S | | Avg | 13489 . | 96987. | 4421.9 | | Stddev | 38. | 373. | 7.3 | | %RSD | .28451 | .38454 | .16538 | | #1 | 13450. | 96565. | 4423.7 | | #2 | 13488. | 97124. | 4413.8 | | #3 | 13527. | 97273. | 4428.1 | Sample Name: L1605001305SDL Acquired: 5/16/2016 12:31:59 Type: Unk Method: ICP-THERMO3 6010 200.7WATER 3YLINES(v873) Mode: CONC Corr. Factor: 1.000000 User: JYH Custom ID1: 5 Custom ID2: Custom ID3: Comment: WG567345-04 Al3082 As1890 B 2496 Ba4554 Be3131 Ca4226 Cd2288 Elem Ag3280 Units ppm ppm ppm ppm ppm ppm ppm ppm -.01982 -.00006 .00325 Avg -.00234 .00133 .00008 -.02641 .00007 Stddev .00123 .00393 .00289 .00224 .00070 .00004 .01945 .00017 %RSD 52.464 19.825 4459.2 68.994 52.549 49.921 73.631 245.82 #1 -.00376 -.02010 .00128 .00314 .00183 -.03284 .00001 .00013 #2 -.00170 -.01575 .00191 .00107 .00164 .00005 -.04184 -.00006 -.00156 #3 -.02360 -.00338 .00554 .00053 .00007 -.00457 .00026 Check? Chk Pass **High Limit** Low Limit Elem Co2286 Cr2677 Cu2247 Fe2611 K_7664 Li6707 Mg2790 Mn2576 Units ppm ppm ppm ppm ppm ppm ppm ppm -.00007 .00026 .00006 .00384 .20910 .00554 .00094 Avg .03957 .00005 .00033 .00029 Stddev .00177 .01946 .01317 .11194 .00181 %RSD 64.724 124.30 2756.8 506.27 6.2981 5.1945 282.89 193.91 #1 -.00008 .00018 -.00153 .02240 .19450 .00528 .02012 .00234 #2 -.00011 -.00002 .00197 .00553 .21271 .00549 .15996 .00157 .00063 -.00024 .22009 .00585 #3 -.00002 -.01641 -.06137 -.00111 Check? Chk Pass High Limit Low Limit Elem Mo2020 Na5895 Ni2316 P_2149 Pb2203 Sb2068 Se1960 Si2124 Units ppm ppm ppm ppm ppm ppm ppm ppm .00067 -.04234 -.00101 -.00035 -.00379 -.00010 .00215 -.02762 Avg .00031 .02827 .00039 .00641 .00149 .00295 .00285 Stddev .00108 %RSD 39.311 46.480 66.765 39.049 1848.2 3023.8 132.42 3.9065 #1 -.00236 .00052 -.06818 -.00055 -.00690 -.00098 .00518 -.02766 .00047 -.00122 -.00007 -.00533 -.00251 -.02867 #2 -.01214 .00175 #3 .00103 -.04671 -.00126 .00592 -.00368 .00320 -.00047 -.02651 Check? Chk Pass **Chk Pass** High Limit Low Limit | Sample Name: L1605001305SDL Acq
Method: ICP-THERMO3_6010_200.7WAT | | | | l: 5/16/2016
3YLINES(v8 | | Type: Un
ode: CONC | Type: Unk
e: CONC Corr. Factor: 1.000000 | | | |--|-----------------------------------|-----------------------------------|----------------------------------|----------------------------|------------|-----------------------|---|--|--| | User: JYH | Custom | | Custom I | • | Custom ID3 | | 001111 0010 | | | | | VG567345-0 | | | · | | • | | | | | | | | | | | | | | | | Elem | Sn1899 | Sr4077 | Ti3372 | TI1908 | V 2924 | Zn2062 | Zr3391 | | | | Units | ppm | ppm | ppm | ppm | _ ppm | ppm | ppm | | | | Avg | 00054 | .00019 | .00111 | 00118 | .00134 | .00095 | .23123 | | | | Stddev | .00015 | .00018 | .00246 | .00217 | .00143 | .00021 | .18534 | | | | %RSD | 28.207 | 97.649 | 221.56 | 183.96 | 106.11 | 21.677 | 80.153 | | | | #1 | 00052 | .00014 | .00383 | 00360 | .00285 | .00097 | .25314 | | | | #2 | 00039 | .00003 | 00097 | 00049 | .00001 | .00115 | .03591 | | | | #3 | 00069 | .00039 | .00047 | .00057 | .00118 | .00074 | .40465 | | | | Check ?
High Limit
Low Limit | Chk Pass | | | Int. Std.
Units
Avg | Y_2243
Cts/S
13662 . | Y_3600
Cts/S
98460 . | Y_3774
Cts/S
4350.8 | | | | | | | | Stddev | 33. | 794. | 31.8 | | | | | | | | %RSD | .24517 | .80658 | .73145 | | | | | | | | #1
#2 | 13698.
13631. | 99346.
97812. | 4379.0
4316.3 | | | | | | | | #3 | 13657. | 98223. | 4357.2 | | | | | | | | Sample Nam
Method: ICP
User: JYH
Comment: | | _ | | LINES(v873) | pe: QC
) Mode:
tom ID3: | CONC (| Corr. Factor: | 1.00000(| |--|----------------|----------------|----------------|----------------|-------------------------------|----------------|----------------|----------| | Elem | Ag3280 | Al3082 | As1890 | B_2496 | Ba4554 | Be3131 | Ca4226 | | | Units | ppm | | Avg | . 42188 | 10.644 | . 42295 | . 53169 | 1.0479 | . 05238 | 10.320 | | | Stddev | .00209 | .040 | .00191 | .00318 | .0074 | .00007 | .067 | | | %RSD | .49485 | .37569 | .45154 | .59723 | .70508 | .13808 | .64582 | | | #1 | .41950 | 10.598 | .42310 | .53257 | 1.0394 | .05231 | 10.243 | | | #2 | .42339 | 10.674 | .42477 | .53433 | 1.0529 | .05245 | 10.365 | | | #3 | .42275 | 10.658 | .42096 | .52817 | 1.0513 | .05239 | 10.351 | | | Check ?
Value
Range | Chk Pass | | Elem | Cd2288 | Co2286 | Cr2677 | Cu2247 | Fe2611 | K_7664 | Li6707 | | | Units | ppm | | Avg | . 05195 | . 21458 | . 54327 | . 53696 | 4.3035 | 52.430 | 1.0479 | | | Stddev | .00038 | .00050 | .00280 | .00221 | .0603 | .402 | .0080 | | | %RSD | .72502 | .23420 | .51485 | .41181 | 1.4016 | .76702 | .75843 | | | #1 | .05206 | .21415 | .54079 | .53903 | 4.2372 | 52.039 | 1.0397 | | | #2 | .05153 | .21513 | .54273 | .53463 | 4.3551 | 52.843 | 1.0556 | | | #3 | .05226 | .21445 | .54630 | .53722 | 4.3183 | 52.408 | 1.0482 | | | Check ?
Value
Range | Chk Pass | | Elem | Mg2790 | Mn2576 | Mo2020 | Na5895 | Ni2316 | P_2149 | Pb2203 | | | Units | ppm | | Avg | 10.678 | . 52582 | 1.0407 | 53.107 | . 54313 | 10.651 | . 54503 | | | Stddev | .063 | .00200 | .0041 | .365 | .00162 | .009 | .00252 | | | %RSD | .58865 | .38064 | .39185 | .68646 | .29800 | .08105 | .46145 | | | #1 | 10.711 | .52447 | 1.0454 | 52.707 | .54277 | 10.661 | .54610 | | | #2 | 10.717 | .52812 | 1.0383 | 53.421 |
.54171 | 10.645 | .54216 | | | #3 | 10.605 | .52487 | 1.0385 | 53.194 | .54489 | 10.648 | .54683 | | | Check ?
Value
Range | Chk Pass | | Sample Nam
Method: ICP
User: JYH
Comment: | | 6010_200.7 | 16/2016 12:3
WATER_3Y
Custom ID2: | LINES(v873 | pe: QC
) Mode:
tom ID3: | CONC (| Corr. Factor: 1 | 1.000000 | |--|---|---|---|---|---|---|---|----------| | Elem
Units
Avg
Stddev
%RSD | Sb2068
ppm
1.2657
.0030
.23450 | Se1960
ppm
. 40604
.00523
1.2872 | Si2124
ppm
5.3211
.0103
.19296 | Sn1899
ppm
1.0742
.0047
.43810 | Sr4077
ppm
1.0442
.0097
.92783 | Ti3372
ppm
1.0524
.0113
1.0733 | TI1908
ppm
. 53148
.00079
.14874 | | | #1
#2
#3 | 1.2653
1.2630
1.2689 | .40202
.41195
.40416 | 5.3236
5.3098
5.3299 | 1.0794
1.0701
1.0733 | 1.0350
1.0543
1.0433 | 1.0419
1.0644
1.0511 | .53200
.53057
.53187 | | | Check ?
Value
Range | Chk Pass | | Elem
Units
Avg
Stddev
%RSD | V_2924
ppm
1.0671
.0011
.10223 | Zn2062
ppm
1.0887
.0015
.14233 | Zr3391
ppm
F . 82347
.16375
19.886 | | | | | | | #1
#2
#3 | 1.0679
1.0674
1.0658 | 1.0899
1.0870
1.0894 | 1.0118
.74424
.71440 | | | | | | | Check ?
Value
Range | Chk Pass | Chk Pass | Chk Fail
1.0000
-10.000% | | | | | | | Int. Std.
Units
Avg
Stddev
%RSD | Y_2243
Cts/S
13130.
48.
.36937 | Y_3600
Cts/S
92596.
59.
.06327 | Y_3774
Cts/S
4235.8
4.9
.11619 | | | | | | | #1
#2
#3 | 13074.
13164.
13151. | 92660.
92583.
92545. | 4233.9
4232.0
4241.3 | | | | | | | Sample Nam
Method: ICP
User: JYH
Comment: | | _ | | LINES(v873 | pe: Blank
) Mode:
tom ID3: | CONC (| Corr. Factor: | 1.00000(| |--|----------------|----------------|----------------|----------------|----------------------------------|----------------|----------------|----------| | Elem | Ag3280 | Al3082 | As1890 | B_2496 | Ba4554 | Be3131 | Ca4226 | | | Units | ppm | | Avg | 00230 | 00533 | 00125 | . 00060 | .00144 | . 00011 | 03499 | | | Stddev | .00179 | .00482 | .00172 | .00167 | .00058 | .00005 | .00843 | | | %RSD | 77.943 | 90.458 | 136.95 | 279.05 | 40.468 | 45.359 | 24.103 | | | #1 | 00390 | 00215 | 00315 | .00014 | .00132 | .00010 | 04403 | | | #2 | 00036 | 01087 | .00020 | .00246 | .00093 | .00007 | 03361 | | | #3 | 00264 | 00296 | 00081 | 00080 | .00207 | .00017 | 02733 | | | Check ?
High Limit
Low Limit | Chk Pass | | Elem | Cd2288 | Co2286 | Cr2677 | Cu2247 | Fe2611 | K_7664 | Li6707 | | | Units | ppm | | Avg | . 00012 | 00013 | . 00014 | 00213 | .01007 | . 06917 | . 00309 | | | Stddev | .00024 | .00006 | .00087 | .00124 | .00356 | .15562 | .00114 | | | %RSD | 205.36 | 47.431 | 618.78 | 58.126 | 35.402 | 224.98 | 37.004 | | | #1 | .00038 | 00014 | 00001 | 00329 | .01394 | 04712 | .00347 | | | #2 | .00009 | 00018 | .00108 | 00083 | .00693 | .24596 | .00400 | | | #3 | 00011 | 00006 | 00065 | 00227 | .00932 | .00867 | .00181 | | | Check ?
High Limit
Low Limit | Chk Pass | | Elem | Mg2790 | Mn2576 | Mo2020 | Na5895 | Ni2316 | P_2149 | Pb2203 | | | Units | ppm | | Avg | . 09198 | . 00098 | . 00378 | . 01596 | 00034 | . 00016 | . 00474 | | | Stddev | .10457 | .00158 | .00066 | .00497 | .00081 | .00603 | .00460 | | | %RSD | 113.68 | 161.03 | 17.401 | 31.122 | 242.22 | 3796.9 | 96.942 | | | #1 | .04591 | 00084 | .00350 | .02006 | .00023 | 00675 | .00581 | | | #2 | .21168 | .00181 | .00331 | .01738 | .00003 | .00434 | .00871 | | | #3 | .01836 | .00198 | .00453 | .01044 | 00127 | .00289 | 00029 | | | Check ?
High Limit
Low Limit | Chk Pass | | Sample Nam
Method: ICP
User: JYH
Comment: | ne: CCB /
-THERMO3_
Custom I | 6010_200.7 | 16/2016 12:3
WATER_3Y
Custom ID2: | LINES(v873 | pe: Blank
) Mode:
tom ID3: | CONC (| Corr. Factor: | 1.00000(| |--|---|--|---|--|---|--|--|----------| | Elem
Units
Avg
Stddev
%RSD | Sb2068
ppm
. 00626
.00303
48.356 | Se1960
ppm
.00055
.00590
1073.5 | Si2124
ppm
. 00551
.00151
27.333 | Sn1899
ppm
00039
.00080
206.72 | Sr4077
ppm
. 00062
.00004
6.3044 | Ti3372
ppm
00484
.00205
42.331 | TI1908
ppm
00208
.00432
207.88 | | | #1
#2
#3 | .00600
.00337
.00941 | 00404
.00721
00152 | .00401
.00551
.00702 | .00018
00003
00130 | .00058
.00062
.00066 | 00271
00503
00680 | 00261
00612
.00248 | | | Check ?
High Limit
Low Limit | Chk Pass | | Elem
Units
Avg
Stddev
%RSD | V_2924
ppm
. 00107
.00120
112.88 | Zn2062
ppm
.00019
.00004
19.555 | Zr3391
ppm
F .08905
.23886
268.23 | | | | | | | #1
#2
#3 | .00227
.00107
00014 | .00022
.00015
.00018 | .32823
14949
.08842 | | | | | | | Check ?
High Limit
Low Limit | Chk Pass | Chk Pass | Chk Fail
.04000
04000 | | | | | | | Int. Std.
Units
Avg
Stddev
%RSD | Y_2243
Cts/S
13110.
46.
.35294 | Y_3600
Cts/S
94423.
122.
.12972 | Y_3774
Cts/S
4203.7
20.2
.48049 | | | | | | | #1
#2
#3 | 13113.
13155.
13063. | 94329.
94379.
94561. | 4224.6
4202.2
4184.3 | | | | | | | Sample Nam
Method: ICP
User: JYH
Comment: | | 6010_200.7 | 5/16/2016 1
WATER_3Y
Custom ID2: | LINES(v873 | Type: Unk
) Mode:
tom ID3: | CONC (| Corr. Factor: | 1.000000 | |--|----------------|----------------|--|----------------|----------------------------------|----------------|----------------|----------| | Elem | Ag3280 | Al3082 | As1890 | B_2496 | Ba4554 | Be3131 | Ca4226 | | | Units | ppm | | Avg | . 00569 | . 15660 | .00929 | .08218 | .00981 | .00176 | . 38147 | | | Stddev | .00111 | .00690 | .00217 | .00149 | .00029 | .00003 | .01924 | | | %RSD | 19.461 | 4.4084 | 23.299 | 1.8151 | 2.9215 | 1.8342 | 5.0424 | | | #1 | .00661 | .16424 | .00792 | .08093 | .01009 | .00177 | .36687 | | | #2 | .00446 | .15474 | .01179 | .08383 | .00981 | .00173 | .37428 | | | #3 | .00600 | .15081 | .00817 | .08178 | .00952 | .00179 | .40327 | | | Check ?
High Limit
Low Limit | Chk Pass | | Elem | Cd2288 | Co2286 | Cr2677 | Cu2247 | Fe2611 | K_7664 | Li6707 | | | Units | ppm | | Avg | . 00075 | .00391 | .00530 | .00269 | .09960 | . 97475 | . 09077 | | | Stddev | .00027 | .00017 | .00107 | .00137 | .01498 | .12472 | .00299 | | | %RSD | 35.865 | 4.3592 | 20.190 | 50.913 | 15.038 | 12.796 | 3.2894 | | | #1 | .00062 | .00390 | .00647 | .00200 | .09250 | .99940 | .09418 | | | #2 | .00057 | .00408 | .00437 | .00426 | .08948 | .83955 | .08859 | | | #3 | .00106 | .00374 | .00507 | .00180 | .11680 | 1.0853 | .08956 | | | Check ?
High Limit
Low Limit | Chk Pass | | Elem | Mg2790 | Mn2576 | Mo2020 | Na5895 | Ni2316 | P_2149 | Pb2203 | | | Units | ppm | | Avg | . 54180 | .00758 | .00858 | . 39319 | .01684 | . 82123 | . 00671 | | | Stddev | .03394 | .00179 | .00046 | .02876 | .00047 | .00201 | .00448 | | | %RSD | 6.2635 | 23.655 | 5.4112 | 7.3147 | 2.7736 | .24426 | 66.767 | | | #1 | .50442 | .00637 | .00815 | .37230 | .01632 | .82182 | .00428 | | | #2 | .55030 | .00672 | .00907 | .42599 | .01696 | .81899 | .00397 | | | #3 | .57068 | .00964 | .00851 | .38128 | .01723 | .82287 | .01189 | | | Check ?
High Limit
Low Limit | Chk Pass | | Sample Nam
Method: ICP
User: JYH
Comment: | ne: LLCCV
-THERMO3_
Custom I | 6010_200.7 | 5/16/2016 1:
WATER_3Y
Custom ID2: | LINES(v873 | Type: Unk
) Mode:
tom ID3: | CONC (| Corr. Factor: | 1.000000 | |--|---|---|---|---|---|---|---|----------| | Elem
Units
Avg
Stddev
%RSD | Sb2068
ppm
. 08496
.00346
4.0779 | Se1960
ppm
.02075
.00500
24.101 | Si2124
ppm
. 88679
.00169
.19081 | Sn1899
ppm
. 42920
.00139
.32375 | Sr4077
ppm
. 04242
.00054
1.2621 | Ti3372
ppm
. 02230
.00299
13.419 | TI1908
ppm
. 16271
.00383
2.3534 | | | #1
#2
#3 | .08785
.08590
.08112 | .01624
.02613
.01988 | .88488
.88811
.88739 | .42939
.43049
.42773 | .04212
.04210
.04304 | .02184
.02549
.01956 | .16391
.15843
.16580 | | | Check ?
High Limit
Low Limit |
Chk Pass | | Elem
Units
Avg
Stddev
%RSD | V_2924
ppm
. 00905
.00107
11.809 | Zn2062
ppm
.01812
.00026
1.4298 | Zr3391
ppm
F 37.851
.520
1.3749 | | | | | | | #1
#2
#3 | .00973
.00961
.00782 | .01783
.01834
.01817 | 38.379
37.834
37.339 | | | | | | | Check ?
High Limit
Low Limit | Chk Pass | Chk Pass | Chk Fail
36.000
04000 | | | | | | | Int. Std.
Units
Avg
Stddev
%RSD | Y_2243
Cts/S
13178.
54.
.41288 | Y_3600
Cts/S
94531 .
710.
.75158 | Y_3774
Cts/S
4198.5
26.6
.63462 | | | | | | | #1
#2
#3 | 13176.
13233.
13124. | 94341.
93935.
95317. | 4173.0
4226.1
4196.3 | | | | | | Sample Name: PBW 50 Acquired: 5/16/2016 12:47:36 Type: Unk Method: ICP-THERMO3 6010 200.7WATER 3YLINES(v873) Mode: CONC Corr. Factor: 1.000000 User: JYH Custom ID1: Custom ID2: Custom ID3: Comment: WG568531-02 Al3082 As1890 B 2496 Ba4554 Be3131 Ca4226 Cd2288 Elem Ag3280 Units ppm ppm ppm ppm ppm ppm ppm ppm -.01425 -.00002 -.01076 Avg -.00216 -.00145 .00069 .00008 .00026 Stddev .00164 .01232 .00090 .00306 .00051 .00002 .03379 .00008 %RSD 75.990 86.475 61.789 18846. 74.655 19.937 314.01 29.056 #1 -.00350 -.00605 -.00059 -.00272 .00088 .00007 -.02946 .00034 #2 -.00033 -.00828 -.00238 .00330 .00107 .00007 -.03106 .00025 -.00266 #3 -.02842 -.00138 -.00062 .00011 .00010 .02824 .00019 Check? Chk Pass High Limit Low Limit Elem Co2286 Cr2677 Cu2247 Fe2611 K_7664 Li6707 Mg2790 Mn2576 Units ppm ppm ppm ppm ppm ppm ppm ppm -.00051 -.00002 -.00027 -.00830 .00650 .11430 -.00068 Avg .10163 .00034 .00047 .00093 .06449 Stddev .02053 .11101 .00312 .00140 %RSD 1714.1 174.61 182.36 247.22 109.23 48.027 56.422 204.79 #1 -.00040 .00015 .00015 -.01531 .14201 .00526 .18213 .00090 #2 .00008 -.00018 -.00158 .01481 -.02392 .01005 .05377 -.00174-.00010 -.02442.00419 #3 .00026 -.00078 .18679 .10699 -.00121 Check? Chk Pass High Limit Low Limit Elem Mo2020 Na5895 Ni2316 P_2149 Pb2203 Sb2068 Se1960 Si2124 Units ppm ppm ppm ppm ppm ppm ppm ppm .00035 -.02322 -.00003 -.00061 -.00241 .00033 .00084 -.02285 Avg .00044 .03091 .00026 .00461 .00097 .00211 .00543 .00274 Stddev 127.18 762.34 40.230 646.29 %RSD 133.13 758.31 640.01 11.988 #1 -.00001 -.00015 -.04210 .00120 -.00322 .00174 .00541 -.02179 .00049 .00021 -.00585 -.00210 .00228 -.02080 #2 .01246 -.00134 #3 .00070 -.04002 -.00030 .00283 -.00266 .00135 -.00517 -.02597 Check? Chk Pass Chk Pass Chk Pass Chk Pass Chk Pass Chk Pass **Chk Pass** High Limit Approved: May 17, 2016 Low Limit | Sample Name: PBW 50 Acquired: 5/16/2016 12:47:36 Type: Unk Method: ICP-THERMO3_6010_200.7WATER_3YLINES(v873) Mode: CONC Corr. Factor: 1.000000 | | | | | | | | | | |--|-------------------------|-------------------------|------------------------|---------------------|-----------------------|-----------------------|-----------------------|---------------|--| | User: JYH Custom ID1: | | | Custom ID2: | | Custom ID3 | | COII. Fa | C.O. 1.000000 | | | Comment: WG568531-02 | Elem | Sn1899 | Sr4077 | Ti3372 | TI1908 | V_2924 | Zn2062 | Zr3391 | | | | Units
Avg | ppm
00066 | ppm
. 00031 | ppm
. 00176 | ppm
00235 | ppm
. 00070 | ppm
. 00213 | ppm
. 31435 | | | | Stddev | .00075 | .00031 | .00506 | .00233 | .00165 | .00215 | .42082 | | | | %RSD | 113.85 | 89.442 | 287.18 | 116.69 | 235.73 | 7.2160 | 133.87 | | | | #1 | 00054 | .00060 | .00245 | 00543 | .00257 | .00198 | .65960 | | | | #2 | 00145 | .00028 | 00361 | 00142 | 00055 | .00229 | 15440 | | | | #3 | .00003 | .00005 | .00644 | 00020 | .00008 | .00213 | .43787 | | | | Check? | Chk Pass | | | High Limit
Low Limit | | | | | | | | | | | LOW LITTIL | | | | | | | | | | | Int. Std. | Y_2243 | Y_3600 | Y_3774 | | | | | | | | Units
Avg | Cts/S
13561 . | Cts/S
98606 . | Cts/S
4397.6 | | | | | | | | Stddev | 17. | 157. | 19.0 | | | | | | | | %RSD | .12317 | .15887 | .43242 | | | | | | | | #1 | 13554. | 98599. | 4377.2 | | | | | | | | #2 | 13581. | 98453. | 4414.9 | | | | | | | | #3 | 13550. | 98766. | 4400.6 | | | | | | | Sample Name: LCSW 50 Acquired: 5/16/2016 12:51:36 Type: Unk Method: ICP-THERMO3_6010_200.7WATER_3YLINES(v873) Mode: CONC Corr. Factor: 1.000000 User: JYH Custom ID1: Custom ID2: Custom ID3: Comment: WG568531-03 | Elem | Ag3280 | Al3082 | As1890 | B_2496 | Ba4554 | Be3131 | Ca4226 | Cd2288 | |--------|--------|--------|--------|--------|--------|--------|--------|--------| | Units | ppm | Avg | .20371 | 5.0704 | .19916 | .99991 | .51153 | .02481 | 5.0574 | .02534 | | Stddev | .00088 | .0064 | .00204 | .00205 | .00096 | .00003 | .0446 | .00006 | | %RSD | .43020 | .12701 | 1.0226 | .20547 | .18815 | .10311 | .88250 | .25429 | | #1 | .20276 | 5.0721 | .19700 | 1.0004 | .51062 | .02481 | 5.0913 | .02528 | | #2 | .20387 | 5.0633 | .20104 | .99766 | .51143 | .02484 | 5.0068 | .02532 | | #3 | .20449 | 5.0758 | .19945 | 1.0017 | .51254 | .02478 | 5.0740 | .02541 | Check? Chk Pass P | Elem | Co2286 | Cr2677 | Cu2247 | Fe2611 | K_7664 | Li6707 | Mg2790 | Mn2576 | |--------|--------|----------------|----------------|---------------|---------------|----------------|---------------|----------------| | Units | ppm | Avg | .10544 | . 26333 | . 26590 | 2.1046 | 25.988 | . 52196 | 5.1275 | . 25621 | | Stddev | .00056 | .00205 | .00071 | .0184 | .079 | .00241 | .1299 | .00055 | | %RSD | .53323 | .77789 | .26722 | .87488 | .30408 | .46159 | 2.5337 | .21540 | | #1 | .10481 | .26100 | .26509 | 2.1178 | 25.931 | .51925 | 4.9876 | .25675 | | #2 | .10588 | .26418 | .26617 | 2.0835 | 25.956 | .52280 | 5.1506 | .25565 | | #3 | .10564 | .26482 | .26643 | 2.1124 | 26.078 | .52385 | 5.2444 | .25624 | Check? Chk Pass P | Elem | Mo2020 | Na5895 | Ni2316 | P_2149 | Pb2203 | Sb2068 | Se1960 | Si2124 | |--------|----------------|---------------|----------------|---------------|----------------|----------------|--------|---------------| | Units | ppm | Avg | . 52164 | 26.078 | . 26929 | 5.0758 | . 26382 | . 62082 | .19486 | 2.6116 | | Stddev | .00228 | .057 | .00190 | .0095 | .00232 | .00291 | .00219 | .0193 | | %RSD | .43760 | .21909 | .70545 | .18792 | .87757 | .46925 | 1.1225 | .73786 | | #1 | .51905 | 26.116 | .26711 | 5.0705 | .26463 | .62414 | .19717 | 2.5895 | | #2 | .52335 | 26.012 | .27063 | 5.0868 | .26563 | .61871 | .19459 | 2.6246 | | #3 | .52253 | 26.106 | .27012 | 5.0701 | .26121 | .61961 | .19282 | 2.6207 | Check? Chk Pass P Sample Name: LCSW 50 Acquired: 5/16/2016 12:51:36 Type: Unk Method: ICP-THERMO3_6010_200.7WATER_3YLINES(v873) Mode: CONC Corr. Factor: 1.000000 User: JYH Custom ID1: Custom ID2: Custom ID3: Comment: WG568531-03 | Elem | Sn1899 | Sr4077 | Ti3372 | TI1908 | V_2924 | Zn2062 | Zr3391 | |--------|--------|--------|--------|--------|--------|--------|--------| | Units | ppm | Avg | .52761 | .51369 | .51247 | .25997 | .51824 | .52714 | 1.6793 | | Stddev | .00128 | .00069 | .00530 | .00211 | .00155 | .00223 | .5847 | | %RSD | .24213 | .13443 | 1.0334 | .81197 | .29872 | .42305 | 34.822 | | #1 | .52623 | .51376 | .50700 | .25939 | .51810 | .52457 | 1.1677 | | #2 | .52875 | .51297 | .51284 | .25822 | .51677 | .52856 | 1.5534 | | #3 | .52785 | .51435 | .51757 | .26232 | .51986 | .52828 | 2.3167 | Check? Chk Pass P Low Limit | Int. Std. | Y_2243 | Y_3600 | Y_3774 | |-----------|----------------|---------------|---------------| | Units | Cts/S | Cts/S | Cts/S | | Avg | 13473 . | 97261. | 4426.2 | | Stddev | 60. | 113. | 32.3 | | %RSD | .44627 | .11640 | .72916 | | #1 | 13533. | 97159. | 4461.9 | | #2 | 13473. | 97382. | 4417.5 | | #3 | 13413. | 97241. | 4399.1 | F BLANK Sample Name: LCSW 50 Acquired: 5/16/2016 12:55:21 Type: Unk Method: ICP-THERMO3_6010_200.7WATER_3YLINES(v873) Mode: CONC Corr. Factor: 1.000000 User: JYH Custom ID1: Custom ID2: Custom ID3: Comment: WG568371-01 | Elem | Ag3280 | Al3082 | As1890 | B_2496 | Ba4554 | Be3131 | Ca4226 | Cd2288 | |------------------------------------|----------------|---------------|----------|----------------|----------------|----------------|----------------|----------------| | Units | ppm | Avg | 00225 | 00916 | .00019 | . 00210 | .00148 | .00010 | 00825 | . 00045 | | Stddev | .00058 | .00329 | .00427 | .00270 | .00078 | .00008 | .02151 | .00011 | | %RSD | 25.845 | 35.953 | 2307.9 | 128.96 | 52.901 | 84.127 | 260.72 | 23.499 | | #1 | 00224 | 01291 | .00388 | 00045 | .00058 | .00001 | 03225 | .00034 | | #2 | 00283 | 00672 | 00449 | .00493 | .00188 | .00011 | .00930 | .00045 | | #3 | 00167 | 00787 | .00117 | .00181 | .00198 | .00017 | 00181 | .00055 | | Check ?
High Limit
Low Limit | Chk Pass | Elem | Co2286 | Cr2677 | Cu2247 | Fe2611 | K_7664 | Li6707 | Mg2790 | Mn2576 | | Units | ppm | Avg | .00006 | .00001 | 00007 | 00992 | . 24030 | . 00574 | . 02300 | . 00023 | | Stddev | .00015 | .00032 | .00207 | .01049 | .06565 | .00259 | .05089 | .00103 | | %RSD | 258.43 | 2312.7 | 2802.9 | 105.74 | 27.320 | 45.053 | 221.29 | 448.45 | | #1 | .00023 | .00039 | .00213 | 02019 | .28200 | .00871 | .02051 | 00054 | | #2 | 00001 | 00019 | 00039 | 01036 | .27426 | .00401 | 02660 | 00018 | | #3 | 00005 | 00016 | 00197 | .00078 | .16462 | .00449 | .07509 | .00140 | | Check ?
High Limit
Low Limit | Chk Pass | Elem | Mo2020 | Na5895 | Ni2316 | P_2149 | Pb2203 | Sb2068 | Se1960 | Si2124 | | Units | ppm | Avg | . 00098 | 133.95 | 00065 | 00195 | 00477 | 00151 | .00305 | 01984 | | Stddev | .00040 | 2.18 | .00065 | .00442 | .00289 | .00380 | .00314 | .00238 | | %RSD | 40.838 | 1.6273 | 100.54 | 226.80 | 60.577 | 251.04 |
102.97 | 11.993 | | #1 | .00086 | 134.41 | 00086 | 00268 | 00152 | 00584 | .00630 | 01844 | | #2 | .00066 | 135.86 | 00116 | 00595 | 00706 | .00126 | .00004 | 01850 | | #3 | .00143 | 131.58 | .00008 | .00279 | 00572 | .00004 | .00280 | 02259 | | Check ?
High Limit
Low Limit | Chk Pass Sample Name: LCSW 50 Acquired: 5/16/2016 12:55:21 Type: Unk Method: ICP-THERMO3_6010_200.7WATER_3YLINES(v873) Mode: CONC Corr. Factor: 1.000000 User: JYH Custom ID1: Custom ID2: Custom ID3: Comment: WG568371-01 | Elem
Units
Avg
Stddev
%RSD | Sn1899
ppm
00052
.00049
95.463 | Sr4077
ppm
. 00012
.00034
290.38 | Ti3372
ppm
00171
.00590
344.37 | TI1908
ppm
00143
.00069
48.354 | V_2924
ppm
00016
.00064
398.46 | Zn2062
ppm
.00331
.00016
4.7870 | Zr3391
ppm
01489
.05910
396.91 | |---|---|---|--|--|--|---|--| | #1
#2
#3 | 00086
.00005
00073 | .00019
00026
.00041 | 00282
00697
.00466 | 00064
00195
00169 | 00023
00077
.00051 | .00321
.00323
.00350 | 01088
07589
.04210 | | Check ?
High Limit
Low Limit | Chk Pass | Int. Std.
Units
Avg
Stddev
%RSD | Y_2243
Cts/S
13257.
52.
.39383 | Y_3600
Cts/S
94748.
33.
.03493 | Y_3774
Cts/S
4358.3
50.7
1.1632 | | | | | | #1
#2
#3 | 13202.
13305.
13264. | 94776.
94712.
94756. | 4367.3
4303.7
4403.9 | | | | | Sample Name: L1605057901 Acquired: 5/16/2016 12:59:20 Type: Unk Method: ICP-THERMO3_6010_200.7WATER_3YLINES(v873) Mode: CONC Corr. Factor: 1.000000 User: JYH Custom ID1: Custom ID2: Custom ID3: Comment: WG568531-01 Al3082 As1890 B_2496 Ba4554 Be3131 Ca4226 Elem Ag3280 Units ppm ppm ppm ppm ppm ppm ppm -.00370 .00403 .00035 .07006 Avg .02408 .00011 67.910 Stddev .00186 .00226 .00130 .00059 .00077 .00006 .499 %RSD 50.170 56.089 374.27 2.4474 1.1013 52.129 .73506 #1 -.00179 .00164 -.00105 .02341 .07065 .00011 67.988 #2 -.00382 .00614 .00151 .02431 .06919 .00017 67.377 #3 -.00550 .00431 .00059 .02451 .07035 .00005 68.366 **Chk Pass** Check? Chk Pass **Chk Pass** Chk Pass **Chk Pass Chk Pass Chk Pass High Limit** Low Limit Elem Cd2288 Co2286 Cr2677 Cu2247 Fe2611 K_7664 Li6707 Units ppm ppm ppm ppm ppm ppm ppm .00246 .00032 .00160 .07317 .01000 Avg -.01243 1.9600 .00010 .00026 .00079 .00090 .01362 Stddev .0249 .00175 %RSD 4.1528 81.988 49.460 1.2283 109.60 1.2687 17.542 #1 .00235 .00040 .00210 .07418 -.00192 1.9326 .01169 #2 .00255 .00054 .00069 .07288 -.007551.9663 .00819 .00003 #3 .00248 .00202 .07246 -.02783 1.9811 .01011 Check? **Chk Pass Chk Pass Chk Pass Chk Pass Chk Pass Chk Pass Chk Pass** High Limit Low Limit Elem Mg2790 Mn2576 Mo2020 Na5895 Ni2316 P_2149 Pb2203 Units ppm ppm ppm ppm ppm ppm ppm 1.5951 .02445 .00044 131.69 -.00095 .03077 .00116 Avg .00332 .00036 .00082 .00935 .00093 Stddev .1331 .41 %RSD 8.3459 .31283 86.401 13.564 81.344 30.403 79.965 #1 .00055 .02387 1.7451 .02170 131.25 -.00076 .00038 1.4909 .02351 .00004 131.75 -.00184 .04141 #2 .00091 1.5492 #3 .02813 .00073 132.07 -.00024 .02702 .00219 Check? **Chk Pass** Chk Pass **Chk Pass Chk Pass Chk Pass Chk Pass Chk Pass** High Limit Approved: May 17, 2016 Low Limit | Sample Name: L1605057901 Acquired: 5/16/2016 12: Method: ICP-THERMO3_6010_200.7WATER_3YLINES(v. User: JYH Custom ID1: Custom ID2: Comment: WG568531-01 | | | | | | | | |--|---|---|---|--|---|--|--| | Elem
Units
Avg
Stddev
%RSD | Sb2068
ppm
00168
.00197
117.17 | Se1960
ppm
.00215
.00589
273.59 | Si2124
ppm
. 58653
.00207
.35215 | Sn1899
ppm
00037
.00085
226.04 | Sr4077
ppm
.26820
.00082
.30478 | Ti3372
ppm
00647
.00417
64.509 | TI1908
ppm
00214
.00160
74.494 | | #1
#2
#3 | 00088
00024
00393 | 00362
.00815
.00193 | .58886
.58581
.58492 | .00054
00113
00054 | .26815
.26740
.26904 | 01078
00618
00245 | 00386
00187
00070 | | Check ?
High Limit
Low Limit | Chk Pass | Elem
Units
Avg
Stddev
%RSD | V_2924
ppm
. 00177
.00112
63.333 | Zn2062
ppm
. 01527
.00014
.93350 | Zr3391
ppm
F25115
.57881
230.46 | | | | | | #1
#2
#3 | .00263
.00050
.00219 | .01510
.01533
.01536 | .39363
72589
42120 | | | | | | Check ?
High Limit
Low Limit | Chk Pass | Chk Pass | Chk Fail
36.000
04000 | | | | | | Int. Std.
Units
Avg
Stddev
%RSD | Y_2243
Cts/S
13246.
19.
.14608 | Y_3600
Cts/S
94314.
111.
.11732 | Y_3774
Cts/S
4362.8
26.0
.59607 | | | | | | #1
#2
#3 | 13227.
13265.
13247. | 94438.
94282.
94224. | 4391.5
4356.0
4340.9 | | | | | Sample Name: L1605057901S Acquired: 5/16/2016 13:03:18 Type: Unk Mode: CONC Method: ICP-THERMO3 6010 200.7WATER 3YLINES(v873) Corr. Factor: 1.000000 User: JYH Custom ID1: Custom ID2: Custom ID3: Comment: WG568531-04 Al3082 B_2496 Ba4554 Ca4226 Cd2288 Elem Ag3280 As1890 Be3131 Units ppm ppm ppm ppm ppm ppm ppm ppm Avg .20493 5.1126 .20624 1.0428 .58261 .02559 73.076 .02734 Stddev .00202 .0136 .00410 .0004 .00184 .00003 .403 .00027 %RSD .98662 .26663 1.9857 .03954 .31602 .12070 .55170 .97382 #1 .21069 1.0425 .02559 .20661 5.1001 .58431 73.324 .02711 #2 .20549 5.1272 .20541 1.0427 .58066 .02562 72.611 .02728 #3 .20269 5.1106 .20262 1.0433 .58286 .02556 73.294 .02763 Check? Chk Pass **High Limit** Low Limit Elem Co2286 Cr2677 Cu2247 Fe2611 K_7664 Mg2790 Mn2576 Li6707 Units ppm ppm ppm ppm ppm ppm ppm ppm .26225 .33179 2.0852 28.029 .28029 Avg .10349 .51841 6.6295 .00052 .00019 .0094 .0508 Stddev .00041 .039 .00474 .00102 %RSD .39227 .19932 .05869 .44833 .14053 .91408 .76591 .36327 #1 .10394 .26285 .33191 2.0747 28.041 .52208 6.6490 .28125 #2 .10337 .26203 .33189 2.0881 27.985 .52009 6.5719 .27922 #3 .10315 .26188 .33156 2.0927 28.061 .51306 6.6677 .28040 Check? Chk Pass High Limit Low Limit P_2149 Elem Mo2020 Na5895 Ni2316 Pb2203 Sb2068 Se1960 Si2124 Units ppm ppm ppm ppm ppm ppm ppm ppm Avg .52326 158.82 .26202 5.2826 .26269 .62632 .20264 3.2869 .00167 .0087 .00292 .00398 .00566 Stddev .00017 .62 .0062 .39050 %RSD .03334 .63564 .16484 1.1115 .63507 2.7954 .18881 #1 .52338 5.2748 3.2806 159.36 .26328 .26584 .62349 .20687 .52334 158.14 5.2809 .62460 #2 .26263 .26217 .19620 3.2870 #3 .52306 158.95 .26013 5.2920 .26007 .63087 .20485 3.2930 Chk Pass Approved: May 17, 2016 Check? High Limit Low Limit Sample Name: L1605057901S Acquired: 5/16/2016 13:03:18 Type: Unk Method: ICP-THERMO3_6010_200.7WATER_3YLINES(v873) Mode: CONC Corr. Factor: 1.000000 User: JYH Custom ID1: Custom ID2: Custom ID3: Comment: WG568531-04 | Elem | Sn1899 | Sr4077 | Ti3372 | TI1908 | V_2924 | Zn2062 | Zr3391 | |--------|--------|--------|--------|--------|--------|--------|--------| | Units | ppm | Avg | .52200 | .78763 | .50592 | .24821 | .52347 | .53855 | .56137 | | Stddev | .00129 | .00219 | .00530 | .00089 | .00223 | .00058 | .03601 | | %RSD | .24757 | .27766 | 1.0467 | .35832 | .42683 | .10753 | 6.4152 | | | | | | | | | | | #1 | .52347 | .78799 | .50105 | .24910 | .52124 | .53790 | .57306 | | #2 | .52152 | .78528 | .50516 | .24732 | .52570 | .53902 | .59009 | | #3 | .52102 | .78961 | .51156 | .24821 | .52348 | .53872 | .52097 | Check? Chk Pass P Low Limit | Int. Std. | Y_2243 | Y_3600 | Y_3774 | |-----------|--------|---------------|---------------| | Units | Cts/S | Cts/S | Cts/S | | Avg | 13094. | 93479. | 4343.4 | | Stddev | 24. | 203. | 9.6 | | %RSD | .18459 | .21739 | .22138 | | #1 | 13068. | 93252. | 4332.5 | | #2 | 13098. | 93541. | 4350.5 | | #3 | 13116. | 93644. | 4347.3 | Sample Name: L1605057901SD Acquired: 5/16/2016 13:07:01 Type: Unk Method: ICP-THERMO3_6010_200.7WATER_3YLINES(v873) Mode: CONC Corr. Factor: 1.000000 User: JYH Custom ID1: Custom ID2: Custom ID3: Comment: WG568531-05 Elem Ag3280 Al3082 As1890 B_2496 Ba4554 Be3131 Ca4226 Cd2288 Units ppm ppm ppm ppm ppm ppm ppm ppm .20306 5.1275 .20730 1.0426 .57914 .02544 73.584 .02714 Avg Stddev .00137 .0078 .00339 .0018 .00055 .00004 .330 .00065 1.6354 .17277 .09520 .14639 .44809 2.3932 %RSD .67658 .15303 #1 .20160 5.1319 .20575 1.0419 .57974 .02546 73.920 .02704 #2 .20433 5.1322 .20496 1.0447 .57865 .02546 73.261 .02784 1.0413 #3 .20324 5.1185 .21119 .57905 .02539 73.570 .02655 Check? Chk Pass P | Elem | Co2286 | Cr2677 | Cu2247 | Fe2611 | K_7664 | Li6707 | Mg2790 | Mn2576 | |--------|--------|--------|----------------|---------------|---------------|----------------|---------------|----------------| | Units | ppm | Avg | .10316 | .26366 | . 33283 | 2.0710 | 27.835 | . 51489 | 6.6356 | . 27538 | | Stddev | .00010 | .00344 | .00038 | .0168 | .075 | .00267 | .0876 | .00182 | | %RSD | .09591 | 1.3036 | .11496 | .81149 | .26887 | .51795 | 1.3205 | .65975 | | #1 | .10308 | .26443 | .33301 | 2.0521 | 27.905 | .51303 | 6.6726 | .27428 | | #2 | .10313 | .26665 | .33310 | 2.0843 | 27.844 | .51370 | 6.6987 | .27748 | | #3 | .10327 | .25991 | .33240 | 2.0767 | 27.756 | .51795 | 6.5356 | .27439 |
Check? Chk Pass P | Elem | Mo2020 | Na5895 | Ni2316 | P_2149 | Pb2203 | Sb2068 | Se1960 | Si2124 | |--------|----------------|---------------|----------------|---------------|----------------|----------------|--------|---------------| | Units | ppm | Avg | . 52274 | 159.76 | . 26155 | 5.2586 | . 26239 | . 62807 | .19808 | 3.2921 | | Stddev | .00131 | .42 | .00117 | .0097 | .00177 | .00366 | .00499 | .0015 | | %RSD | .25029 | .26153 | .44587 | .18449 | .67271 | .58279 | 2.5192 | .04561 | | #1 | .52420 | 160.22 | .26035 | 5.2560 | .26426 | .63114 | .19935 | 3.2934 | | #2 | .52235 | 159.40 | .26164 | 5.2694 | .26215 | .62402 | .19258 | 3.2924 | | #3 | .52168 | 159.67 | .26267 | 5.2505 | .26076 | .62904 | .20231 | 3.2904 | Check? Chk Pass P Method: ICP-THERMO3_6010_200.7WATER_3YLINES(v873) Mode: CONC Corr. Factor: 1.000000 User: JYH Custom ID1: Custom ID2: Custom ID3: Comment: WG568531-05 | Elem | Sn1899 | Sr4077 | Ti3372 | TI1908 | V_2924 | Zn2062 | Zr3391 | |--------|--------|--------|--------|--------|--------|--------|--------| | Units | ppm | Avg | .52094 | .78333 | .50599 | .25038 | .52580 | .53695 | 1.0983 | | Stddev | .00169 | .00402 | .00731 | .00386 | .00156 | .00045 | .1354 | | %RSD | .32536 | .51344 | 1.4437 | 1.5408 | .29718 | .08444 | 12.324 | | #1 | .52263 | .78629 | .51419 | 25424 | .52420 | .53748 | .96975 | | #2 | .51924 | .78497 | .50019 | .25035 | .52733 | .53671 | 1.2396 | | #3 | .52094 | .77875 | .50359 | .24653 | .52587 | .53667 | 1.0856 | Check? Chk Pass P Low Limit | Int. Std. | Y_2243 | Y_3600 | Y_3774 | |-----------|---------------|----------------|---------------| | Units | Cts/S | Cts/S | Cts/S | | Avg | 13122. | 93370 . | 4366.9 | | Stddev | 18. | 513. | 46.1 | | %RSD | .13639 | .54906 | 1.0553 | | #1 | 13107. | 92861. | 4313.9 | | #2 | 13142. | 93364. | 4397.4 | | #3 | 13118. | 93886. | 4389.3 | Method: ICP-THERMO3_6010_200.7WATER_3YLINES(v873) Mode: CONC Corr. Factor: 1.000000 User: JYH Custom ID1: Custom ID2: Custom ID3: Comment: WG568830-01 | Elem | Ag3280 | Al3082 | As1890 | B_2496 | Ba4554 | Be3131 | Ca4226 | Cd2288 | |--------|--------|--------|--------|--------|--------|--------|--------|--------| | Units | ppm | Avg | .20596 | 5.1928 | .20993 | 1.0617 | .57890 | .02570 | 65.707 | .02744 | | Stddev | .00109 | .0109 | .00079 | .0049 | .00179 | .00006 | .213 | .00030 | | %RSD | .52750 | .21064 | .37794 | .46558 | .30896 | .23653 | .32344 | 1.0997 | | #1 | .20693 | 5.1808 | .20929 | 1.0570 | .57824 | .02570 | 65.732 | .02750 | | #2 | .20616 | 5.2021 | .21082 | 1.0669 | .57755 | .02576 | 65.483 | .02711 | | #3 | .20478 | 5.1955 | .20968 | 1.0612 | .58093 | .02564 | 65.906 | .02770 | Check? Chk Pass P | Elem | Co2286 | Cr2677 | Cu2247 | Fe2611 | K_7664 | Li6707 | Mg2790 | Mn2576 | |--------|--------|----------------|----------------|---------------|---------------|----------------|---------------|--------| | Units | ppm | Avg | .10462 | . 26692 | . 32883 | 2.0990 | 27.840 | . 52218 | 6.4844 | .27714 | | Stddev | .00020 | .00081 | .00175 | .0525 | .055 | .00520 | .0262 | .00360 | | %RSD | .19530 | .30242 | .53360 | 2.5015 | .19896 | .99643 | .40446 | 1.2987 | | #1 | .10439 | .26702 | .33054 | 2.1200 | 27.829 | .52319 | 6.5050 | .27391 | | #2 | .10468 | .26768 | .32891 | 2.0392 | 27.791 | .51654 | 6.4549 | .27651 | | #3 | .10479 | .26607 | .32703 | 2.1377 | 27.900 | .52680 | 6.4934 | .28102 | Check? Chk Pass P | Elem | Mo2020 | Na5895 | Ni2316 | P_2149 | Pb2203 | Sb2068 | Se1960 | Si2124 | |--------|----------------|--------|----------------|---------------|----------------|----------------|--------|---------------| | Units | ppm | Avg | . 52958 | 144.10 | . 26498 | 5.3489 | . 26749 | . 63452 | .19565 | 3.2245 | | Stddev | .00064 | .51 | .00190 | .0073 | .00221 | .00214 | .00857 | .0031 | | %RSD | .12130 | .35235 | .71633 | .13653 | .82637 | .33795 | 4.3810 | .09662 | | #1 | .53023 | 144.35 | .26606 | 5.3564 | .26921 | .63219 | .18629 | 3.2214 | | #2 | .52958 | 143.52 | .26279 | 5.3486 | .26828 | .63640 | .19755 | 3.2243 | | #3 | .52894 | 144.44 | .26609 | 5.3418 | .26500 | .63499 | .20311 | 3.2277 | Check? Chk Pass P Sample Name: L1605057901PS Acquired: 5/16/2016 13:10:44 Type: Unk Method: ICP-THERMO3_6010_200.7WATER_3YLINES(v873) Mode: CONC Corr. Factor: 1.000000 User: JYH Custom ID1: Custom ID2: Custom ID3: Comment: WG568830-01 | Elem | Sn1899 | Sr4077 | Ti3372 | TI1908 | V_2924 | Zn2062 | Zr3391 | |--------|--------|--------|--------|--------|--------|--------|--------| | Units | ppm | Avg | .52809 | .75604 | .51202 | .25576 | .53367 | .54354 | .27302 | | Stddev | .00072 | .00643 | .00403 | .00475 | .00168 | .00079 | .29875 | | %RSD | .13666 | .85046 | .78745 | 1.8556 | .31499 | .14536 | 109.42 | | #1 | .52792 | .76111 | .50770 | .25314 | .53404 | .54386 | 06872 | | #2 | .52746 | .75820 | .51267 | .25289 | .53513 | .54412 | .48466 | | #3 | .52888 | .74881 | .51568 | .26123 | .53183 | .54264 | .40312 | Check? Chk Pass P Low Limit | Int. Std. | Y_2243 | Y_3600 | Y_3774 | |-----------|---------------|---------------|---------------| | Units | Cts/S | Cts/S | Cts/S | | Avg | 13121. | 93724. | 4374.9 | | Stddev | 24. | 138. | 11.5 | | %RSD | .18084 | .14690 | .26398 | | #1 | 13128. | 93565. | 4386.0 | | #2 | 13094. | 93798. | 4375.9 | | #3 | 13140. | 93809. | 4363.0 | Sample Name: L1605057901SDL Acquired: 5/16/2016 13:14:26 Type: Unk Method: ICP-THERMO3 6010 200.7WATER 3YLINES(v873) Mode: CONC Corr. Factor: 1.000000 User: JYH Custom ID1: 5 Custom ID2: Custom ID3: Comment: WG568830-02 Al3082 As1890 B 2496 Ba4554 Be3131 Ca4226 Cd2288 Elem Ag3280 Units ppm ppm ppm ppm ppm ppm ppm ppm .00525 Avg -.00322 -.01157 -.00166 .01355 .00007 12.612 .00048 Stddev .00038 .00243 .00226 .00195 .00079 .00004 .091 .00025 %RSD 11.938 20.969 135.59 37.195 5.8541 53.899 .71865 52.720 #1 -.00351 -.00424 .00337 .00005 .00046 -.01379 .01280 12.539 #2 -.00336 -.00898 -.00073 .00512 .01347 .00012 12.584 .00024 12.714 #3 -.00278 -.01194 -.00003 .00727 .01438 .00005 .00074 Check? Chk Pass **High Limit** Low Limit Elem Co2286 Cr2677 Cu2247 Fe2611 K_7664 Li6707 Mg2790 Mn2576 Units ppm ppm ppm ppm ppm ppm ppm ppm -.00010 .01403 .01988 .00668 .00368 Avg -.00062 .50244 .35167 .00062 .00121 .00452 .00349 Stddev .00039 .07220 .09735 .00293 %RSD 379.46 98.750 8.6189 22.730 52.299 27.683 79.514 14.371 #1 -.00025 -.00073 .01322 .02507 .43731 .01071 .42415 .00054 #2 -.00040 -.00118 .01542 .01680 .58008 .00456 .38983 .00418 #3 .00034 .00004 .01345 .01778 .48993 .00477 .24101 .00633 Check? Chk Pass High Limit Low Limit Mo2020 Elem Na5895 Ni2316 P_2149 Pb2203 Sb2068 Se1960 Si2124 Units ppm ppm ppm ppm ppm ppm ppm ppm .00062 24.733 -.00103 .00134 -.00258 -.00201 .00233 .08681 Avg .00044 .00119 .00750 .00203 .00563 .00226 Stddev .186 .00178 %RSD 115.73 70.491 .75126 560.07 78.745 88.781 241.52 2.6061 #1 .00007 -.00255 .00023 24.705 -.00724 -.00023 -.00011 .08502 24.562 -.00229 .00461 -.00002 -.00167 #2 .00110 -.00374 .08935 .00053 -.00346 #3 24.931 -.00087 .00665 -.00377 .00877 .08605 Check? Chk Pass High Limit Approved: May 17, 2016 Low Limit | Sample Nar | Acquired | I: 5/16/2016 | 13:14:26 | Type: Un | k | | | | |---|---|---|--|---|---|---|---|---------------| | Method: ICF | P-THERMO3 | 3_6010_200 | .7WATER_ | 3YLINES(v8 | 373) Mc | de: CONC | Corr. Fac | tor: 1.00000(| | User: JYH | Custom | ID1: 5 | Custom I | D2: | Custom ID3 | 3: | | | | Comment: \ | WG568830-0 |)2 | | | | | | | | Elem
Units
Avg
Stddev
%RSD | Sn1899
ppm
00176
.00026
14.630 | Sr4077
ppm
. 04968
.00017
.33721 | Ti3372
ppm
00865
.00656
75.774 | TI1908
ppm
. 00135
.00125
92.635 | V_2924
ppm
.00102
.00058
56.927 | Zn2062
ppm
.00359
.00028
7.8816 | Zr3391
ppm
. 07247
.35211
485.88 | | | #1
#2
#3 | 00191
00146
00191 | .04981
.04974
.04949 | 01616
00576
00404 | .00280
.00064
.00061 | .00133
.00138
.00035 | .00350
.00390
.00336 | .03604
.44138
26001 | | | Check ?
High Limit
Low Limit | Chk Pass | | Int. Std.
Units
Avg
Stddev
%RSD | Y_2243
Cts/S
14175.
69.
.48549 | Y_3600
Cts/S
101950.
216.
.21147 | Y_3774
Cts/S
4570.7
76.4
1.6717 | | | | | | | #1
#2
#3 | 14252.
14153.
14120. | 102000.
102140.
101710. | 4615.8
4613.7
4482.4 | | | | | | | Sample Nam
Method: ICP
User: JYH
Comment: | | - | | LINES(v873 | pe: QC
) Mode:
tom ID3: | CONC (| Corr. Factor: | 1.00000(| |--|----------------|----------------|----------------|----------------|-------------------------------|----------------|----------------|----------| | Elem | Ag3280 | Al3082 | As1890 | B_2496 | Ba4554 | Be3131 | Ca4226 | | | Units | ppm | | Avg | .38940 | 9.7022 | .38919 | . 48878 | . 95264 | . 04758 | 9.3727 | | | Stddev | .00267 | .0166 | .00105 | .00353 | .00415 | .00025 | .0328 | | | %RSD | .68511 | .17112 | .27065 | .72129 | .43610 | .52300 | .35011 | | | #1 | .38663 | 9.6947 | .38892 | .49278 | .94893 | .04755 | 9.3932 | | | #2 | .38963 | 9.6907 | .39035 | .48615 | .95186 | .04784 | 9.3349 | | | #3 | .39195 | 9.7213 | .38830 | .48740 | .95713 | .04734 | 9.3900 | | | Check ?
Value
Range | Chk Pass | | Elem | Cd2288 | Co2286 | Cr2677 | Cu2247 | Fe2611 | K_7664 | Li6707 | | | Units |
ppm | | Avg | . 04822 | .19805 | . 50017 | . 49631 | 3.8812 | 47.922 | . 96972 | | | Stddev | .00017 | .00026 | .00169 | .00153 | .0613 | .361 | .00246 | | | %RSD | .34487 | .13259 | .33880 | .30894 | 1.5785 | .75420 | .25349 | | | #1 | .04804 | .19779 | .49948 | .49457 | 3.8163 | 47.848 | .97252 | | | #2 | .04837 | .19804 | .50210 | .49747 | 3.8892 | 47.603 | .96791 | | | #3 | .04824 | .19831 | .49893 | .49689 | 3.9380 | 48.314 | .96874 | | | Check ?
Value
Range | Chk Pass | | Elem | Mg2790 | Mn2576 | Mo2020 | Na5895 | Ni2316 | P_2149 | Pb2203 | | | Units | ppm | | Avg | 9.7079 | . 47795 | . 96263 | 48.464 | . 50553 | 9.7846 | . 50367 | | | Stddev | .0643 | .00758 | .00365 | .128 | .00044 | .0131 | .00307 | | | %RSD | .66198 | 1.5857 | .37935 | .26493 | .08643 | .13366 | .60862 | | | #1 | 9.6366 | .47787 | .96650 | 48.346 | .50506 | 9.7700 | .50092 | | | #2 | 9.7256 | .47040 | .96215 | 48.445 | .50593 | 9.7886 | .50312 | | | #3 | 9.7615 | .48556 | .95924 | 48.601 | .50560 | 9.7951 | .50698 | | | Check ?
Value
Range | Chk Pass | | Sample Nam
Method: ICP
User: JYH
Comment: | | 6010_200.7 | 16/2016 13:1
WATER_3Y
Custom ID2: | LINES(v873 | pe: QC
) Mode:
tom ID3: | CONC (| Corr. Factor: 1 | .000000 | |--|---|--|---|---|---|---|---|---------| | Elem
Units
Avg
Stddev
%RSD | Sb2068
ppm
1.1739
.0015
.12784 | Se1960
ppm
.36995
.00768
2.0762 | Si2124
ppm
4.9218
.0078
.15925 | Sn1899
ppm
. 98713
.00332
.33610 | Sr4077
ppm
. 95025
.00505
.53147 | Ti3372
ppm
. 94485
.01007
1.0658 | TI1908
ppm
. 49281
.00401
.81311 | | | #1
#2
#3 | 1.1739
1.1754
1.1724 | .36177
.37701
.37107 | 4.9140
4.9217
4.9296 | .98369
.98740
.99031 | .94601
.94891
.95584 | .93584
.94299
.95572 | .49566
.48823
.49455 | | | Check ?
Value
Range | Chk Pass | | Elem
Units
Avg
Stddev
%RSD | V_2924
ppm
. 98226
.00253
.25793 | Zn2062
ppm
1.0032
.0021
.20524 | Zr3391
ppm
F . 43713
.51427
117.65 | | | | | | | #1
#2
#3 | .98002
.98501
.98175 | 1.0014
1.0027
1.0055 | .25786
.03649
1.0171 | | | | | | | Check ?
Value
Range | Chk Pass | Chk Pass | Chk Fail
1.0000
-10.000% | | | | | | | Int. Std.
Units
Avg
Stddev
%RSD | Y_2243
Cts/S
13866.
43.
.31101 | Y_3600
Cts/S
98928.
244.
.24627 | Y_3774
Cts/S
4539.1
30.2
.66437 | | | | | | | #1
#2
#3 | 13905.
13873.
13820. | 99027.
98651.
99107. | 4545.1
4565.8
4506.4 | | | | | | | Sample Name: CCB Acquired: 5/16/2016 13:22:05 Type: Blank Method: ICP-THERMO3_6010_200.7WATER_3YLINES(v873) Mode: CONC Corr. Factor: 1.000000 User: JYH Custom ID1: Custom ID2: Custom ID3: Comment: | | | | | | | | | |--|----------------|----------------|----------|----------------|----------------|----------------|----------------|----------------| | Elem | Ag3280 | Al3082 | As1890 | B_2496 | Ba4554 | Be3131 | Ca4226 | Cd2288 | | Units | ppm | Avg | 00266 | 00668 | .00126 | . 00277 | .00128 | .00008 | 00576 | . 00027 | | Stddev | .00139 | .00725 | .00096 | .00185 | .00038 | .00002 | .01378 | .00006 | | %RSD | 52.273 | 108.66 | 76.774 | 66.648 | 29.832 | 27.615 | 239.34 | 22.096 | | #1 | 00427 | 01045 | .00018 | .00334 | .00085 | .00006 | .00208 | .00034 | | #2 | 00181 | .00169 | .00155 | .00071 | .00143 | .00008 | 02167 | .00023 | | #3 | 00191 | 01126 | .00204 | .00428 | .00157 | .00011 | .00231 | .00024 | | Check ?
High Limit
Low Limit | Chk Pass | Elem | Co2286 | Cr2677 | Cu2247 | Fe2611 | K_7664 | Li6707 | Mg2790 | Mn2576 | | Units | ppm | Avg | 00021 | .00029 | 00025 | .01817 | . 19016 | . 00553 | . 08722 | . 00116 | | Stddev | .00014 | .00126 | .00164 | .00995 | .05094 | .00113 | .04343 | .00146 | | %RSD | 65.379 | 439.30 | 656.74 | 54.729 | 26.786 | 20.421 | 49.794 | 125.31 | | #1 | 00023 | 00069 | .00053 | .01425 | .14434 | .00513 | .12234 | 00042 | | #2 | 00034 | .00171 | .00086 | .02948 | .24501 | .00681 | .10067 | .00245 | | #3 | 00006 | 00016 | 00214 | .01079 | .18114 | .00466 | .03866 | .00145 | | Check ?
High Limit
Low Limit | Chk Pass | Elem | Mo2020 | Na5895 | Ni2316 | P_2149 | Pb2203 | Sb2068 | Se1960 | Si2124 | | Units | ppm | Avg | . 00377 | . 00432 | 00112 | . 00309 | . 00051 | . 00353 | . 00301 | 02545 | | Stddev | .00012 | .03438 | .00049 | .00293 | .00349 | .00195 | .00275 | .00046 | | %RSD | 3.2645 | 796.53 | 43.873 | 94.681 | 678.42 | 55.378 | 91.434 | 1.8089 | | #1 | .00372 | .01107 | 00169 | .00150 | .00321 | .00143 | .00064 | 02572 | | #2 | .00368 | .03482 | 00081 | .00130 | .00176 | .00529 | .00602 | 02571 | | #3 | .00391 | 03294 | 00087 | .00647 | 00343 | .00387 | .00235 | 02492 | | Check ?
High Limit
Low Limit | Chk Pass | Sample Nar
Method: ICF
User: JYH
Comment: | | 3_6010_200 | 5/16/2016 1
.7WATER_
Custom IE | 3YLINES(v8 | Type: Blan
373) Mc
Custom ID3 | de: CONC | Corr. Fa | ctor: 1.00000(| |--|---|--|--|--|---|---|---|----------------| | Elem
Units
Avg
Stddev
%RSD | Sn1899
ppm
00013
.00078
607.22 | Sr4077
ppm
.00080
.00055
69.038 | Ti3372
ppm
.00380
.00394
103.75 | TI1908
ppm
00163
.00257
157.87 | V_2924
ppm
.00058
.00081
139.26 | Zn2062
ppm
.00029
.00015
53.010 | Zr3391
ppm
. 00864
.24689
2858.9 | | | #1
#2
#3 | 00103
.00024
.00040 | .00072
.00139
.00029 | .00550
00071
.00660 | .00124
00241
00373 | .00003
.00150
.00020 | .00041
.00012
.00033 | 24250
.01735
.25105 | | | Check ?
High Limit
Low Limit | Chk Pass | | Int. Std.
Units
Avg
Stddev
%RSD | Y_2243
Cts/S
13760.
25.
.18271 | Y_3600
Cts/S
98263.
389.
.39572 | Y_3774
Cts/S
4429.7
24.7
.55653 | | | | | | | #1
#2
#3 | 13764.
13783.
13733. | 97930.
98170.
98690. | 4457.9
4419.3
4412.0 | | | | | | | Sample Name
Method: ICP-
User: JYH
Comment: | | 010_200.7W | Acquired: 5/16/2016 13:26:06
0_200.7WATER_3YLINES(v873)
Custom ID2: Custom I | | | Type: Unk Mode: CONC Corr. Factor: 1.0000 ID3: | | | |--|----------------|----------------|--|----------------|----------------|---|----------------|--| | Elem | Ag3280 | Al3082 | As1890 | B_2496 | Ba4554 | Be3131 | Ca4226 | | | Units | ppm | | Avg | 00269 | 1.7329 | 00145 | . 01633 | .00320 | .00017 | . 37433 | | | Stddev | .00134 | .0089 | .00369 | .00120 | .00043 | .00007 | .03992 | | | %RSD | 49.838 | .51173 | 255.31 | 7.3566 | 13.421 | 41.502 | 10.664 | | | #1 | 00201 | 1.7314 | .00081 | .01548 | .00270 | .00022 | .38253 | | | #2 | 00423 | 1.7425 | 00571 | .01580 | .00343 | .00009 | .40952 | | | #3 | 00182 | 1.7249 | .00056 | .01770 | .00345 | .00019 | .33095 | | | Check ?
High Limit
Low Limit | Chk Pass | | Elem | Cd2288 | Co2286 | Cr2677 | Cu2247 | Fe2611 | K_7664 | Li6707 | | | Units | ppm | | Avg | . 00052 | 00006 | .00069 | . 00029 | . 24035 | . 19707 | . 00369 | | | Stddev | .00007 | .00021 | .00064 | .00096 | .02026 | .04270 | .00511 | | | %RSD | 13.456 | 387.37 | 92.802 | 331.13 | 8.4299 | 21.666 | 138.62 | | | #1 | .00060 | 00023 | .00057 | 00075 | .25946 | .24103 | .00484 | | | #2 | .00051 | .00018 | .00139 | .00048 | .24249 | .15576 | .00812 | | | #3 | .00046 | 00011 | .00012 | .00115 | .21911 | .19441 | 00190 | | | Check ?
High Limit
Low Limit | Chk Pass | | Elem | Mg2790 | Mn2576 | Mo2020 | Na5895 | Ni2316 | P_2149 | Pb2203 | | | Units | ppm | | Avg | . 18823 | . 02481 | .00055 | 126.01 | 00099 | 00200 | 00416 | | | Stddev | .09616 | .00137 | .00023 | .47 | .00139 | .00500 | .00165 | | | %RSD | 51.089 | 5.5062 | 42.240 | .37474 | 140.78 | 249.63 | 39.568 | | | #1 | .13159 | .02334 | .00077 | 125.66 | 00256 | .00194 | 00242 | | | #2 | .13383 | .02603 | .00031 | 125.83 | .00007 | 00032 | 00436 | | | #3 | .29926 | .02507 | .00057 | 126.55 | 00047 | 00763 | 00570 | | | Check ?
High Limit
Low Limit | Chk Pass | | Sample Name: L1605051201 Acquired: 5/16/201 Method: ICP-THERMO3_6010_200.7WATER_3YLIN User: JYH Custom ID1: Custom ID2: Comment: | | | | Type: Unk
Mode: CONO
ID3: | C Corr. F | Factor: 1.00000(| | |--|---
--|--|--|---|---|---| | Elem
Units
Avg
Stddev
%RSD | Sb2068
ppm
00541
.00091
16.909 | Se1960
ppm
.00130
.00446
344.18 | Si2124
ppm
.13561
.00148
1.0900 | Sn1899
ppm
00096
.00085
87.895 | Sr4077
ppm
. 00159
.00012
7.4660 | Ti3372
ppm
. 00329
.00274
83.144 | TI1908
ppm
. 00085
.00040
46.989 | | #1
#2
#3 | 00467
00643
00512 | 00338
.00176
.00550 | .13703
.13408
.13572 | 00028
00070
00191 | .00173
.00151
.00153 | .00033
.00573
.00381 | .00090
.00123
.00043 | | Check ?
High Limit
Low Limit | Chk Pass | Elem
Units
Avg
Stddev
%RSD | V_2924
ppm
.00105
.00088
84.289 | Zn2062
ppm
.00531
.00025
4.6707 | Zr3391
ppm
F09119
.61760
677.27 | | | | | | #1
#2
#3 | .00204
.00076
.00034 | .00518
.00560
.00515 | 21705
.57965
63617 | | | | | | Check ?
High Limit
Low Limit | Chk Pass | Chk Pass | Chk Fail
36.000
04000 | | | | | | Int. Std.
Units
Avg
Stddev
%RSD | Y_2243
Cts/S
13242.
28.
.21094 | Y_3600
Cts/S
94621.
358.
.37850 | Y_3774
Cts/S
4404.0
65.7
1.4927 | | | | | | #1
#2
#3 | 13261.
13210.
13255. | 94798.
94209.
94857. | 4440.0
4443.8
4328.1 | | | | | | Sample Name: L1605056401 Acquired: 5/16/2016 13:30:05 Type: Unk Method: ICP-THERMO3_6010_200.7WATER_3YLINES(v873) Mode: CONC Corr. Factor: 1.000000 User: JYH Custom ID1: Custom ID2: Custom ID3: Comment: | | | | | | | | | | |---|----------------|----------------|----------------|----------------|----------------|----------------|---------------|----------------|--| | Elem | Ag3280 | Al3082 | As1890 | B_2496 | Ba4554 | Be3131 | Ca4226 | Cd2288 | | | Units | ppm | | Avg | 00281 | . 13741 | . 00140 | .08181 | . 37768 | .00009 | 57.517 | . 00017 | | | Stddev | .00046 | .00741 | .00427 | .00237 | .00155 | .00011 | .217 | .00001 | | | %RSD | 16.340 | 5.3908 | 305.14 | 2.8919 | .41140 | 124.18 | .37733 | 3.8161 | | | #1 | 00286 | .14158 | .00266 | .08296 | .37711 | .00011 | 57.610 | .00018 | | | #2 | 00324 | .14179 | .00490 | .08337 | .37944 | 00003 | 57.672 | .00017 | | | #3 | 00233 | .12886 | 00336 | .07909 | .37649 | .00018 | 57.269 | .00017 | | | Check ?
High Limit
Low Limit | Chk Pass | | Elem | Co2286 | Cr2677 | Cu2247 | Fe2611 | K_7664 | Li6707 | Mg2790 | Mn2576 | | | Units | ppm | | Avg | . 00299 | . 00159 | . 00927 | 1.1417 | 2.2376 | . 01941 | 10.067 | . 23644 | | | Stddev | .00019 | .00154 | .00054 | .0256 | .0384 | .00168 | .226 | .00069 | | | %RSD | 6.3363 | 97.068 | 5.7749 | 2.2430 | 1.7163 | 8.6719 | 2.2471 | .29379 | | | #1 | .00297 | .00059 | .00950 | 1.1225 | 2.1956 | .01881 | 10.116 | .23596 | | | #2 | .00318 | .00337 | .00865 | 1.1708 | 2.2709 | .02132 | 10.265 | .23724 | | | #3 | .00281 | .00081 | .00965 | 1.1318 | 2.2464 | .01812 | 9.8204 | .23613 | | | Check ?
High Limit
Low Limit | Chk Pass | | Elem | Mo2020 | Na5895 | Ni2316 | P_2149 | Pb2203 | Sb2068 | Se1960 | Si2124 | | | Units | ppm | | Avg | . 00124 | 31.944 | . 00549 | . 03043 | 00218 | . 00075 | 00444 | 6.2169 | | | Stddev | .00021 | .108 | .00078 | .00346 | .00392 | .00181 | .00831 | .0060 | | | %RSD | 16.889 | .33762 | 14.265 | 11.382 | 180.03 | 239.87 | 187.20 | .09602 | | | #1 | .00115 | 31.996 | .00520 | .02651 | 00584 | .00259 | .00073 | 6.2234 | | | #2 | .00148 | 32.016 | .00638 | .03171 | 00265 | 00103 | 01402 | 6.2116 | | | #3 | .00109 | 31.820 | .00489 | .03307 | .00196 | .00070 | 00002 | 6.2158 | | | Check ?
High Limit
Low Limit | Chk Pass | | Sample Nar
Method: ICF
User: JYH
Comment: | | 3_6010_200 | • | • | • | ype: Unk
ode: CONC
: | Corr. Fa | ctor: 1.00000(| |--|---|---|--|--|---|---|---|----------------| | Elem
Units
Avg
Stddev
%RSD | Sn1899
ppm
00029
.00156
548.14 | Sr4077
ppm
1.4251
.0046
.31917 | Ti3372
ppm
00819
.00211
25.821 | TI1908
ppm
00490
.00229
46.781 | V_2924
ppm
. 00089
.00104
117.57 | Zn2062
ppm
. 01961
.00017
.87443 | Zr3391
ppm
. 12948
.46121
356.19 | | | #1
#2
#3 | 00198
.00111
.00002 | 1.4289
1.4262
1.4201 | 00913
00577
00967 | 00226
00638
00607 | 00029
.00127
.00169 | .01946
.01980
.01957 | .52668
37634
.23811 | | | Check ?
High Limit
Low Limit | Chk Pass | | Int. Std.
Units
Avg
Stddev
%RSD | Y_2243
Cts/S
13274.
64.
.48367 | Y_3600
Cts/S
94828.
90.
.09452 | Y_3774
Cts/S
4344.2
25.2
.57946 | | | | | | | #1
#2
#3 | 13321.
13300.
13200. | 94774.
94778.
94931. | 4320.5
4341.5
4370.7 | | | | | | | Sample Name: L1605056701 Acquired: 5/16/2016 13:34:03 Type: Unk Method: ICP-THERMO3_6010_200.7WATER_3YLINES(v873) Mode: CONC Corr. Factor: 1.000000 User: JYH Custom ID1: Custom ID2: Custom ID3: Comment: | | | | | | | | | |---|----------------|----------------|----------|----------------|---------------|----------------|---------------|----------------| | Elem | Ag3280 | Al3082 | As1890 | B_2496 | Ba4554 | Be3131 | Ca4226 | Cd2288 | | Units | ppm | Avg | 00249 | 00707 | 00343 | . 02641 | .02845 | .00003 | 56.023 | . 00042 | | Stddev | .00044 | .00101 | .00191 | .00305 | .00116 | .00006 | .194 | .00009 | | %RSD | 17.593 | 14.237 | 55.548 | 11.541 | 4.0674 | 209.59 | .34669 | 22.355 | | #1 | 00298 | 00775 | 00562 | .02960 | .02978 | 00003 | 56.001 | .00039 | | #2 | 00215 | 00754 | 00212 | .02354 | .02766 | .00003 | 56.227 | .00035 | | #3 | 00233 | 00591 | 00255 | .02608 | .02792 | .00009 | 55.840 | .00053 | | Check ?
High Limit
Low Limit | Chk Pass | Elem | Co2286 | Cr2677 | Cu2247 | Fe2611 | K_7664 | Li6707 | Mg2790 | Mn2576 | | Units | ppm | Avg | 00037 | . 00180 | .01088 | . 02539 | 12.559 | . 01719 | 10.787 | . 00148 | | Stddev | .00042 | .00076 | .00084 | .02608 | .013 | .00684 | .151 | .00202 | | %RSD | 113.07 | 42.063 | 7.7107 | 102.74 | .10682 | 39.798 | 1.3964 | 137.05 | | #1 | 00081 | .00202 | .01174 | .00321 | 12.544 | .01115 | 10.643 | .00021 | | #2 | .00003 | .00242 | .01006 | .01882 | 12.560 | .01580 | 10.944 | .00381 | | #3 | 00033 | .00096 | .01084 | .05412 | 12.571 | .02461 | 10.775 | .00041 | | Check ?
High Limit
Low Limit | Chk Pass | Elem | Mo2020 | Na5895 | Ni2316 | P_2149 | Pb2203 | Sb2068 | Se1960 | Si2124 | | Units | ppm | Avg | . 00268 | 16.560 | 00045 | . 00659 | 00235 | 00209 | 00067 | 5.2419 | | Stddev | .00013 | .073 | .00050 | .00435 | .00109 | .00416 | .00249 | .0058 | | %RSD | 4.7158 | .44071 | 111.54 | 66.041 | 46.314 | 199.06 | 371.49 | .11011 | | #1 | .00260 | 16.543 | 00045 | .00717 | 00312 | 00664 | 00175 | 5.2365 | | #2 | .00283 | 16.640 | .00005 | .00198 | 00282 | 00115 | .00217 | 5.2410 | | #3 | .00261 | 16.498 | 00096 | .01062 | 00111 | .00152 | 00244 | 5.2480 | | Check ?
High Limit
Low Limit | Chk Pass | Sample Nar
Method: ICF
User: JYH
Comment: | | 3_6010_200 | .cquired: 5/1
.7WATER_
Custom II | 3YLINES(v8 | | ype: Unk
ode: CONC
: | Corr. Fa | ctor: 1.00000(| |--|---|---|--|--|---|---|---|----------------| | Elem
Units
Avg
Stddev
%RSD | Sn1899
ppm
. 00016
.00106
676.79 | Sr4077
ppm
. 34869
.00173
.49525 | Ti3372
ppm
01269
.00323
25.488 | TI1908
ppm
00077
.00394
513.21 | V_2924
ppm
.00161
.00068
42.234 | Zn2062
ppm
. 10241
.00025
.24745 | Zr3391
ppm
. 09985
.15320
153.42 | | | #1
#2
#3 | .00132
00011
00075 | .34774
.35068
.34765 | 01524
00905
01377 | 00339
.00376
00267 | .00104
.00237
.00144 | .10247
.10213
.10263 | .26648
.06799
03490 | | | Check ?
High Limit
Low Limit | Chk Pass | | Int. Std.
Units
Avg
Stddev
%RSD | Y_2243
Cts/S
13298.
24.
.18136 | Y_3600
Cts/S
95560.
583.
.60991 | Y_3774
Cts/S
4361.2
10.9
.24908 | | | | | | | #1
#2
#3 | 13286.
13281.
13325. | 94933.
96085.
95663. | 4355.2
4373.8
4354.6 | | | | | | | Sample Name:
L1605056702 Acquired: 5/16/2016 13:37:58 Type: Unk Method: ICP-THERMO3_6010_200.7WATER_3YLINES(v873) Mode: CONC Corr. Factor: 1.000000 User: JYH Custom ID1: Custom ID2: Custom ID3: Comment: | | | | | | | | | |---|----------------|----------------|----------------|----------------|----------|---------------|----------------|--| | Elem | Ag3280 | Al3082 | As1890 | B_2496 | Ba4554 | Be3131 | Ca4226 | | | Units | ppm | | Avg | 00156 | 00723 | 00085 | . 02415 | .03606 | .00006 | 54.428 | | | Stddev | .00044 | .00456 | .00051 | .00202 | .00142 | .00004 | .048 | | | %RSD | 28.303 | 63.117 | 60.356 | 8.3489 | 3.9330 | 66.366 | .08780 | | | #1 | 00173 | 01101 | 00095 | .02580 | .03618 | .00003 | 54.389 | | | #2 | 00106 | 00216 | 00029 | .02475 | .03741 | .00004 | 54.481 | | | #3 | 00189 | 00851 | 00130 | .02190 | .03459 | .00010 | 54.414 | | | Check ?
High Limit
Low Limit | Chk Pass | | Elem | Cd2288 | Co2286 | Cr2677 | Cu2247 | Fe2611 | K_7664 | Li6707 | | | Units | ppm | | Avg | . 00063 | 00016 | .00158 | .01291 | .01004 | 12.119 | . 01415 | | | Stddev | .00029 | .00023 | .00124 | .00040 | .00925 | .055 | .00169 | | | %RSD | 45.506 | 143.62 | 78.852 | 3.1305 | 92.161 | .45087 | 11.916 | | | #1 | .00095 | .00010 | .00302 | .01336 | .00213 | 12.175 | .01365 | | | #2 | .00051 | 00035 | .00086 | .01278 | .00777 | 12.116 | .01602 | | | #3 | .00042 | 00024 | .00086 | .01258 | .02022 | 12.066 | .01276 | | | Check ?
High Limit
Low Limit | Chk Pass | | Elem | Mg2790 | Mn2576 | Mo2020 | Na5895 | Ni2316 | P_2149 | Pb2203 | | | Units | ppm | | Avg | 10.417 | . 00395 | . 00197 | 16.087 | .00087 | 00169 | . 00166 | | | Stddev | .119 | .00135 | .00066 | .081 | .00022 | .00843 | .00232 | | | %RSD | 1.1390 | 34.158 | 33.504 | .50138 | 24.916 | 498.02 | 140.00 | | | #1 | 10.283 | .00547 | .00156 | 16.151 | .00068 | 00692 | .00007 | | | #2 | 10.456 | .00347 | .00162 | 16.112 | .00111 | 00619 | .00058 | | | #3 | 10.511 | .00290 | .00274 | 15.996 | .00083 | .00804 | .00431 | | | Check ?
High Limit
Low Limit | Chk Pass | | Sample Name:
Method: ICP-T
User: JYH
Comment: | • | 6 13:37:58
ES(v873)
Custom | Type: Unk
Mode: CON0
ID3: | C Corr. F | Factor: 1.000000 | | | |--|---|---|--|--|---|--|--| | Elem
Units
Avg
Stddev
%RSD | Sb2068
ppm
00384
.00138
35.980 | Se1960
ppm
. 00527
.00838
158.93 | Si2124
ppm
5.1058
.0039
.07572 | Sn1899
ppm
00049
.00073
147.96 | Sr4077
ppm
. 33960
.00037
.10885 | Ti3372
ppm
00648
.00297
45.798 | TI1908
ppm
00149
.00292
196.32 | | #1
#2
#3 | 00526
00251
00374 | .00931
00436
.01087 | 5.1100
5.1052
5.1023 | 00121
.00024
00050 | .34000
.33953
.33928 | 00810
00305
00828 | 00418
.00161
00189 | | Check ?
High Limit
Low Limit | Chk Pass | Elem
Units
Avg
Stddev
%RSD | V_2924
ppm
. 00114
.00035
30.654 | Zn2062
ppm
.09992
.00017
.17509 | Zr3391
ppm
F32664
.33114
101.38 | | | | | | #1
#2
#3 | .00074
.00129
.00138 | .09972
.10005
.09998 | 36408
.02164
63746 | | | | | | Check ?
High Limit
Low Limit | Chk Pass | Chk Pass | Chk Fail
36.000
04000 | | | | | | Int. Std.
Units
Avg
Stddev
%RSD | Y_2243
Cts/S
13323.
45.
.33548 | Y_3600
Cts/S
95532.
391.
.40886 | Y_3774
Cts/S
4369.0
48.8
1.1171 | | | | | | #1
#2
#3 | 13277.
13367.
13326. | 95969.
95217.
95409. | 4319.9
4369.5
4417.5 | | | | | | Sample Name: L1605058601 Acquired: 5/16/2016 13:41:53 Type: Unk Method: ICP-THERMO3_6010_200.7WATER_3YLINES(v873) Mode: CONC Corr. Factor: 1.000000 User: JYH Custom ID1: Custom ID2: Custom ID3: Comment: | | | | | | | | | |---|----------------|---------------|----------------|----------------|----------------|----------------|---------------|----------------| | Elem | Ag3280 | Al3082 | As1890 | B_2496 | Ba4554 | Be3131 | Ca4226 | Cd2288 | | Units | ppm | Avg | 00162 | 1.5028 | 00023 | . 02059 | . 02009 | .00013 | 16.252 | . 00040 | | Stddev | .00230 | .0078 | .00026 | .00098 | .00015 | .00001 | .124 | .00028 | | %RSD | 142.21 | .52211 | 112.26 | 4.7655 | .73971 | 6.2089 | .76450 | 69.436 | | #1 | .00071 | 1.5050 | 00019 | .02113 | .01994 | .00014 | 16.316 | .00072 | | #2 | 00166 | 1.4941 | 00050 | .01946 | .02024 | .00014 | 16.331 | .00018 | | #3 | 00389 | 1.5093 | .00001 | .02119 | .02011 | .00012 | 16.109 | .00031 | | Check ?
High Limit
Low Limit | Chk Pass | Elem | Co2286 | Cr2677 | Cu2247 | Fe2611 | K_7664 | Li6707 | Mg2790 | Mn2576 | | Units | ppm | Avg | .00059 | .00184 | . 00426 | 1.8086 | 2.2362 | . 00610 | 6.7966 | . 01439 | | Stddev | .00029 | .00064 | .00051 | .0309 | .0654 | .00487 | .0714 | .00187 | | %RSD | 48.788 | 34.712 | 12.076 | 1.7061 | 2.9239 | 79.837 | 1.0502 | 13.019 | | #1 | .00090 | .00226 | .00467 | 1.7915 | 2.1628 | .01066 | 6.8790 | .01654 | | #2 | .00053 | .00215 | .00369 | 1.8442 | 2.2881 | .00097 | 6.7590 | .01342 | | #3 | .00033 | .00111 | .00443 | 1.7901 | 2.2578 | .00668 | 6.7520 | .01319 | | Check ?
High Limit
Low Limit | Chk Pass | Elem | Mo2020 | Na5895 | Ni2316 | P_2149 | Pb2203 | Sb2068 | Se1960 | Si2124 | | Units | ppm | Avg | . 00154 | 2.7473 | .00122 | . 11524 | . 00155 | 00438 | .00254 | 5.4351 | | Stddev | .00036 | .0373 | .00101 | .00952 | .00150 | .00081 | .00436 | .0121 | | %RSD | 23.547 | 1.3571 | 82.401 | 8.2611 | 96.394 | 18.490 | 171.72 | .22264 | | #1 | .00112 | 2.7748 | .00105 | .10586 | .00072 | 00526 | .00757 | 5.4359 | | #2 | .00176 | 2.7623 | .00031 | .12489 | .00066 | 00367 | .00026 | 5.4468 | | #3 | .00173 | 2.7049 | .00231 | .11497 | .00328 | 00421 | 00021 | 5.4226 | | Check ?
High Limit
Low Limit | Chk Pass | Sample Nar
Method: ICF
User: JYH
Comment: | | 3_6010_200 | cquired: 5/1
.7WATER_:
Custom IE | 3YLINES(v8 | | ype: Unk
ode: CONC
: | Corr. Fa | ctor: 1.00000(| |--|---|---|--|---|---|---|---|----------------| | Elem
Units
Avg
Stddev
%RSD | Sn1899
ppm
. 00050
.00120
239.14 | Sr4077
ppm
. 02647
.00014
.53199 | Ti3372
ppm
.02502
.00616
24.618 | TI1908
ppm
.00004
.00184
4477.4 | V_2924
ppm
. 00411
.00070
16.894 | Zn2062
ppm
. 00978
.00011
1.1200 | Zr3391
ppm
1.0357
.2198
21.224 | | | #1
#2
#3 | 00013
00025
.00189 | .02637
.02664
.02641 | .02099
.02195
.03210 | 00175
00005
.00192 | .00477
.00418
.00339 | .00984
.00965
.00984 | 1.2094
1.1092
.78855 | | | Check ?
High Limit
Low Limit | Chk Pass | | Int. Std.
Units
Avg
Stddev
%RSD | Y_2243
Cts/S
13532.
24.
.17410 | Y_3600
Cts/S
97550.
319.
.32670 | Y_3774
Cts/S
4411.1
28.5
.64653 | | | | | | | #1
#2
#3 | 13520.
13516.
13559. | 97615.
97203.
97830. | 4379.3
4434.4
4419.6 | | | | | | | Sample Name: L1605058602 Acquired: 5/16/2016 13:45:49 Type: Unk Method: ICP-THERMO3_6010_200.7WATER_3YLINES(v873) Mode: CONC Corr. Factor: 1.000000 User: JYH Custom ID1: Custom ID2: Custom ID3: Comment: | | | | | | | | | |---|-----------------------------|----------------|----------------|----------------|----------------|----------------|----------------|--| | Elem | Ag3280 | Al3082 | As1890 | B_2496 | Ba4554 | Be3131 | Ca4226 | | | Units | ppm | | Avg | F00409 | 1.7623 | 00012 | . 02199 | . 02159 | .00013 | 19.513 | | | Stddev | .00175 | .0075 | .00394 | .00165 | .00017 | .00008 | .059 | | | %RSD | 42.786 | .42347 | 3236.7 | 7.4819 | .77380 | 61.775 | .30351 | | | #1 | 00241 | 1.7537 | .00380 | .02206 | .02155 | .00016 | 19.579 | | | #2 | 00395 | 1.7671 | 00008 | .02031 | .02178 | .00018 | 19.494 | | | #3 | 00590 | 1.7661 | 00409 | .02359 | .02145 | .00004 | 19.465 | | | Check ?
High Limit
Low Limit | Chk Fail
9.0000
00400 | Chk Pass | Chk Pass | Chk Pass | Chk Pass | Chk Pass | Chk Pass | | | Elem | Cd2288 | Co2286 | Cr2677 | Cu2247 | Fe2611 | K_7664 | Li6707 | | | Units | ppm | | Avg | . 00050 | .00039 | . 00196 | . 00347 | 1.7538 | 2.5754 | . 00891 | | | Stddev | .00027 | .00037 | .00140 | .00073 | .0088 | .0142 | .00100 | | | %RSD | 54.558 |
94.910 | 71.409 | 21.099 | .50104 | .55175 | 11.179 | | | #1 | .00044 | .00072 | .00153 | .00412 | 1.7588 | 2.5697 | .00990 | | | #2 | .00026 | 00001 | .00083 | .00360 | 1.7588 | 2.5916 | .00791 | | | #3 | .00080 | .00047 | .00352 | .00268 | 1.7436 | 2.5650 | .00891 | | | Check ?
High Limit
Low Limit | Chk Pass | | Elem | Mg2790 | Mn2576 | Mo2020 | Na5895 | Ni2316 | P_2149 | Pb2203 | | | Units | ppm | | Avg | 6.5828 | . 02558 | . 00146 | 3.2205 | . 00207 | . 16161 | 00115 | | | Stddev | .0711 | .00145 | .00013 | .0096 | .00035 | .00873 | .00165 | | | %RSD | 1.0806 | 5.6795 | 8.9478 | .29925 | 17.151 | 5.4048 | 143.82 | | | #1 | 6.6413 | .02407 | .00131 | 3.2155 | .00242 | .17116 | .00004 | | | #2 | 6.6035 | .02571 | .00155 | 3.2144 | .00171 | .15404 | 00304 | | | #3 | 6.5036 | .02697 | .00152 | 3.2316 | .00207 | .15962 | 00045 | | | Check ?
High Limit
Low Limit | Chk Pass | | Sample Name
Method: ICP-T
User: JYH
Comment: | |)10_200.7W <i>A</i> | ed: 5/16/2010
ATER_3YLINI
stom ID2: | | Type: Unk
Mode: CONO
ID3: | C Corr. F | Factor: 1.000000 | |---|---|---|---|--|---|---|--| | Elem
Units
Avg
Stddev
%RSD | Sb2068
ppm
00160
.00191
119.55 | Se1960
ppm
.00362
.00170
47.006 | Si2124
ppm
5.9653
.0095
.15851 | Sn1899
ppm
00036
.00066
183.49 | Sr4077
ppm
. 03023
.00011
.34867 | Ti3372
ppm
. 02572
.00198
7.6882 | TI1908
ppm
00221
.00253
114.46 | | #1
#2
#3 | 00094
00010
00375 | .00173
.00412
.00502 | 5.9762
5.9599
5.9598 | .00020
00109
00019 | .03012
.03033
.03024 | .02409
.02792
.02515 | 00285
.00058
00436 | | Check ?
High Limit
Low Limit | Chk Pass | Elem
Units
Avg
Stddev
%RSD | V_2924
ppm
. 00484
.00005
1.0534 | Zn2062
ppm
. 01010
.00017
1.7185 | Zr3391
ppm
. 84063
.19325
22.988 | | | | | | #1
#2
#3 | .00488
.00478
.00486 | .01023
.01016
.00990 | .89665
.99967
.62556 | | | | | | Check ?
High Limit
Low Limit | Chk Pass | Chk Pass | Chk Pass | | | | | | Int. Std.
Units
Avg
Stddev
%RSD | Y_2243
Cts/S
13514.
12.
.09089 | Y_3600
Cts/S
97272.
371.
.38110 | Y_3774
Cts/S
4412.0
42.8
.96944 | | | | | | #1
#2
#3 | 13528.
13510.
13505. | 97531.
97438.
96847. | 4365.0
4448.6
4422.5 | | | | | | Sample Name: L1605058902 Acquired: 5/16/2016 13:49:46 Type: Unk Method: ICP-THERMO3_6010_200.7WATER_3YLINES(v873) Mode: CONC Corr. Factor: 1.000000 User: JYH Custom ID1: Custom ID2: Custom ID3: Comment: | | | | | | | | | |---|----------|---------------|----------------|----------------|---------------|----------------|----------------|----------------| | Elem | Ag3280 | Al3082 | As1890 | B_2496 | Ba4554 | Be3131 | Ca4226 | Cd2288 | | Units | ppm | Avg | 00324 | 00850 | 00027 | . 00623 | .00092 | .00009 | 2.1453 | . 00042 | | Stddev | .00064 | .00515 | .00191 | .00125 | .00092 | .00004 | .0141 | .00006 | | %RSD | 19.737 | 60.583 | 718.02 | 20.123 | 99.863 | 41.429 | .65849 | 14.276 | | #1 | 00383 | 00389 | 00144 | .00510 | .00143 | .00005 | 2.1595 | .00047 | | #2 | 00334 | 01406 | .00194 | .00758 | 00014 | .00013 | 2.1312 | .00035 | | #3 | 00256 | 00755 | 00130 | .00602 | .00146 | .00010 | 2.1451 | .00044 | | Check ?
High Limit
Low Limit | Chk Pass | Elem | Co2286 | Cr2677 | Cu2247 | Fe2611 | K_7664 | Li6707 | Mg2790 | Mn2576 | | Units | ppm | Avg | .00003 | 00002 | .00330 | . 04548 | 15.283 | . 00470 | . 54603 | . 01362 | | Stddev | .00016 | .00037 | .00160 | .02752 | .099 | .00376 | .09818 | .00082 | | %RSD | 501.91 | 1500.9 | 48.373 | 60.513 | .64554 | 79.993 | 17.980 | 5.9923 | | #1 | .00016 | 00045 | .00320 | .01744 | 15.245 | .00544 | .65937 | .01443 | | #2 | .00008 | .00016 | .00495 | .04655 | 15.395 | .00063 | .48745 | .01280 | | #3 | 00015 | .00021 | .00176 | .07246 | 15.208 | .00804 | .49125 | .01361 | | Check ?
High Limit
Low Limit | Chk Pass | Elem | Mo2020 | Na5895 | Ni2316 | P_2149 | Pb2203 | Sb2068 | Se1960 | Si2124 | | Units | ppm | Avg | .00092 | 41.706 | . 00193 | 2.2232 | .00070 | 00189 | 00667 | . 18583 | | Stddev | .00030 | .037 | .00170 | .0050 | .00251 | .00176 | .00248 | .00152 | | %RSD | 32.320 | .08856 | 87.866 | .22294 | 358.13 | 93.437 | 37.118 | .81664 | | #1 | .00080 | 41.678 | .00055 | 2.2210 | 00219 | 00230 | 00570 | .18616 | | #2 | .00070 | 41.747 | .00142 | 2.2289 | .00199 | .00005 | 00483 | .18715 | | #3 | .00126 | 41.691 | .00383 | 2.2197 | .00230 | 00340 | 00948 | .18417 | | Check ?
High Limit
Low Limit | Chk Pass | Sample Nar
Method: ICF
User: JYH
Comment: | | 3_6010_200 | .cquired: 5/1
.7WATER_:
Custom IE | 3YLINES(v8 | • | ype: Unk
ode: CONC
: | Corr. Fac | etor: 1.00000(| |--|---|---|--|--|---|---|---|----------------| | Elem
Units
Avg
Stddev
%RSD | Sn1899
ppm
00115
.00052
45.225 | Sr4077
ppm
. 00229
.00037
16.142 | Ti3372
ppm
00516
.00776
150.32 | TI1908
ppm
00178
.00198
111.34 | V_2924
ppm
.00050
.00039
76.760 | Zn2062
ppm
. 02002
.00015
.74615 | Zr3391
ppm
. 15407
.13716
89.025 | | | #1
#2
#3 | 00167
00114
00063 | .00271
.00214
.00202 | 01011
00915
.00378 | .00050
00276
00309 | .00094
.00037
.00020 | .01991
.02019
.01996 | .29095
.15462
.01663 | | | Check ?
High Limit
Low Limit | Chk Pass | | Int. Std.
Units
Avg
Stddev
%RSD | Y_2243
Cts/S
13580.
16.
.11710 | Y_3600
Cts/S
97244.
170.
.17481 | Y_3774
Cts/S
4432.3
23.4
.52735 | | | | | | | #1
#2
#3 | 13591.
13562.
13587. | 97048.
97350.
97334. | 4406.0
4450.8
4439.9 | | | | | | | Sample Name: L1605058904 Acquired: 5/16/2016 13:53:45 Type: Unk Method: ICP-THERMO3_6010_200.7WATER_3YLINES(v873) Mode: CONC Corr. Factor: 1.000000 User: JYH Custom ID1: Custom ID2: Custom ID3: Comment: | | | | | | | | | |---|----------------|----------------|----------------|----------------|---------------|----------|---------------|----------------| | Elem | Ag3280 | Al3082 | As1890 | B_2496 | Ba4554 | Be3131 | Ca4226 | Cd2288 | | Units | ppm | Avg | 00263 | . 07857 | 00096 | . 00823 | .01512 | .00004 | 76.570 | . 00035 | | Stddev | .00061 | .00178 | .00121 | .00094 | .00084 | .00007 | .870 | .00008 | | %RSD | 23.056 | 2.2698 | 126.29 | 11.407 | 5.5633 | 165.80 | 1.1359 | 22.862 | | #1 | 00321 | .07660 | 00044 | .00716 | .01443 | .00012 | 77.574 | .00037 | | #2 | 00268 | .08007 | 00234 | .00859 | .01606 | .00002 | 76.095 | .00026 | | #3 | 00200 | .07905 | 00009 | .00893 | .01486 | 00001 | 76.042 | .00042 | | Check ?
High Limit
Low Limit | Chk Pass | Elem | Co2286 | Cr2677 | Cu2247 | Fe2611 | K_7664 | Li6707 | Mg2790 | Mn2576 | | Units | ppm | Avg | 00000 | .00338 | .01567 | . 34997 | 15.222 | .00511 | 3.9300 | . 15830 | | Stddev | .00027 | .00010 | .00056 | .02547 | .104 | .00136 | .0865 | .00288 | | %RSD | 17209. | 3.0174 | 3.5811 | 7.2783 | .68176 | 26.566 | 2.2021 | 1.8184 | | #1 | .00029 | .00333 | .01611 | .34942 | 15.332 | .00370 | 4.0061 | .16084 | | #2 | 00005 | .00349 | .01586 | .37571 | 15.208 | .00641 | 3.8359 | .15517 | | #3 | 00024 | .00330 | .01504 | .32477 | 15.126 | .00522 | 3.9479 | .15888 | | Check ?
High Limit
Low Limit | Chk Pass | Elem | Mo2020 | Na5895 | Ni2316 | P_2149 | Pb2203 | Sb2068 | Se1960 | Si2124 | | Units | ppm | Avg | . 00218 | 41.772 | . 00274 | 46.026 | .00158 | 00136 | .00242 | . 27191 | | Stddev | .00032 | .483 | .00011 | .079 | .00059 | .00256 | .00936 | .00156 | | %RSD | 14.867 | 1.1556 | 4.1327 | .17251 | 37.482 | 188.32 | 386.59 | .57478 | | #1 | .00252 | 42.320 | .00286 | 46.115 | .00208 | 00429 | .00542 | .27132 | | #2 | .00216 | 41.585 | .00263 | 45.965 | .00093 | .00042 | 00807 | .27368 | | #3 | .00187 | 41.411 | .00273 | 45.996 | .00172 | 00020 | .00992 | .27072 | | Check ?
High Limit
Low Limit | Chk Pass | Sample Name: L1605058904 Acquired: 5/16/2016 13:53:45 Type: Unk Method: ICP-THERMO3_6010_200.7WATER_3YLINES(v873) Mode: CONC Corr. Factor: 1.000000 User: JYH Custom ID1: Custom ID2: Custom ID3: Comment: | | | | | | | | | |--
---|---|--|--|---|---|---|--| | Elem
Units
Avg
Stddev
%RSD | Sn1899
ppm
00110
.00031
27.838 | Sr4077
ppm
. 05329
.00112
2.0941 | Ti3372
ppm
01021
.00417
40.897 | TI1908
ppm
00124
.00096
77.653 | V_2924
ppm
. 00221
.00081
36.478 | Zn2062
ppm
.13835
.00065
.46674 | Zr3391
ppm
. 07649
.17753
232.11 | | | #1
#2
#3 | 00108
00081
00142 | .05443
.05322
.05220 | 00546
01330
01187 | 00230
00043
00098 | .00294
.00135
.00234 | .13908
.13785
.13811 | 11116
.09884
.24178 | | | Check ?
High Limit
Low Limit | Chk Pass | | Int. Std.
Units
Avg
Stddev
%RSD | Y_2243
Cts/S
14376.
20.
.13942 | Y_3600
Cts/S
103350.
102.
.09890 | Y_3774
Cts/S
4825.3
47.6
.98561 | | | | | | | #1
#2
#3 | 14358.
14398.
14372. | 103390.
103230.
103420. | 4771.6
4842.3
4862.1 | | | | | | | Sample Name
Method: ICP-1
User: JYH
Comment: | | 010_200.7W | 6 13:57:41
ES(v873)
Custom | Type: Unk Mode: CONC Corr. Factor: 1.000000 | | | | |---|----------------|------------|----------------------------------|---|----------|----------------|----------------| | Elem | Ag3280 | Al3082 | As1890 | B_2496 | Ba4554 | Be3131 | Ca4226 | | Units | ppm | Avg | 00268 | 01037 | 00012 | .00085 | .00209 | .00011 | 5.9281 | | Stddev | .00122 | .00922 | .00370 | .00168 | .00058 | .00004 | .0341 | | %RSD | 45.674 | 88.908 | 3011.1 | 198.03 | 27.853 | 34.719 | .57517 | | #1 | 00130 | 00990 | 00201 | .00046 | .00261 | .00015 | 5.9637 | | #2 | 00365 | 01981 | .00414 | 00060 | .00220 | .00008 | 5.9250 | | #3 | 00309 | 00139 | 00250 | .00269 | .00146 | .00009 | 5.8957 | | Check ?
High Limit
Low Limit | Chk Pass | Elem | Cd2288 | Co2286 | Cr2677 | Cu2247 | Fe2611 | K_7664 | Li6707 | | Units | ppm | Avg | . 00010 | 00001 | 00029 | 00032 | .01024 | 2.0012 | . 00215 | | Stddev | .00015 | .00029 | .00088 | .00091 | .01251 | .0682 | .00080 | | %RSD | 146.82 | 2205.2 | 301.86 | 284.34 | 122.13 | 3.4096 | 37.092 | | #1 | .00027 | .00026 | 00112 | 00107 | 00341 | 2.0629 | .00144 | | #2 | 00003 | .00002 | .00064 | .00069 | .02115 | 1.9279 | .00201 | | #3 | .00007 | 00032 | 00040 | 00057 | .01299 | 2.0126 | .00301 | | Check ?
High Limit
Low Limit | Chk Pass | Elem | Mg2790 | Mn2576 | Mo2020 | Na5895 | Ni2316 | P_2149 | Pb2203 | | Units | ppm | Avg | . 35898 | .03195 | . 00023 | . 73524 | 00047 | . 13581 | 00220 | | Stddev | .06921 | .00100 | .00021 | .02953 | .00065 | .00628 | .00197 | | %RSD | 19.281 | 3.1301 | 90.721 | 4.0168 | 138.50 | 4.6244 | 89.204 | | #1 | .38704 | .03095 | .00016 | .72121 | .00006 | .13349 | 00076 | | #2 | .40975 | .03197 | .00007 | .71534 | 00027 | .14292 | 00141 | | #3 | .28014 | .03295 | .00047 | .76917 | 00119 | .13102 | 00444 | | Check ?
High Limit
Low Limit | Chk Pass | • | | | | | | Type: Unk Mode: CONC Corr. Factor: 1.000000 ID3: | | | | |---|---|---|--|--|---|--|--|--|--| | Elem
Units
Avg
Stddev
%RSD | Sb2068
ppm
00173
.00342
197.51 | Se1960
ppm
00163
.00599
367.95 | Si2124
ppm
.06668
.00013
.19930 | Sn1899
ppm
00036
.00042
114.80 | Sr4077
ppm
. 01040
.00039
3.7443 | Ti3372
ppm
00240
.00263
109.74 | TI1908
ppm
00261
.00382
146.50 | | | | #1
#2
#3 | 00506
00189
.00177 | .00413
00120
00782 | .06655
.06682
.06668 | .00012
00055
00065 | .01060
.01065
.00995 | 00541
00119
00058 | 00685
00155
.00057 | | | | Check ?
High Limit
Low Limit | Chk Pass | | | Elem
Units
Avg
Stddev
%RSD | V_2924
ppm
. 00114
.00107
93.822 | Zn2062
ppm
. 00446
.00004
.81973 | Zr3391
ppm
F16195
.42074
259.80 | | | | | | | | #1
#2
#3 | .00021
.00091
.00230 | .00443
.00450
.00445 | 64322
.02119
.13619 | | | | | | | | Check ?
High Limit
Low Limit | Chk Pass | Chk Pass | Chk Fail
36.000
04000 | | | | | | | | Int. Std.
Units
Avg
Stddev
%RSD | Y_2243
Cts/S
13656.
20.
.14879 | Y_3600
Cts/S
99063.
115.
.11597 | Y_3774
Cts/S
4433.6
14.8
.33406 | | | | | | | | #1
#2
#3 | 13678.
13638.
13650. | 99164.
98938.
99088. | 4445.7
4417.1
4437.9 | | | | | | | | Sample Name: L1605061103 Acquired: 5/16/2016 14:01:41 Type: Unk Method: ICP-THERMO3_6010_200.7WATER_3YLINES(v873) Mode: CONC Corr. Factor: 1.000000 User: JYH Custom ID1: Custom ID2: Custom ID3: Comment: | | | | | | | | | | |---|----------------|---------------|----------------|----------------|----------------|----------------|---------------|----------------|--| | Elem | Ag3280 | Al3082 | As1890 | B_2496 | Ba4554 | Be3131 | Ca4226 | Cd2288 | | | Units | ppm | | Avg | 00185 | 00957 | . 00143 | . 04286 | .03893 | .00001 | 114.56 | . 00052 | | | Stddev | .00119 | .00347 | .00265 | .00179 | .00064 | .00001 | .33 | .00017 | | | %RSD | 64.411 | 36.302 | 185.15 | 4.1780 | 1.6534 | 186.89 | .28842 | 32.302 | | | #1 | 00113 | 01357 | 00058 | .04272 | .03857 | .00000 | 114.74 | .00072 | | | #2 | 00322 | 00778 | .00443 | .04115 | .03967 | 00000 | 114.75 | .00045 | | | #3 | 00119 | 00735 | .00044 | .04472 | .03854 | .00002 | 114.18 | .00040 | | | Check ?
High Limit
Low Limit | Chk Pass | | Elem | Co2286 | Cr2677 | Cu2247 | Fe2611 | K_7664 | Li6707 | Mg2790 | Mn2576 | | | Units | ppm | | Avg | . 00079 | .00100 | . 00334 | .25303 | . 83526 | . 02007 | 33.641 | . 53600 | | | Stddev | .00026 | .00034 | .00065 | .00262 | .06550 | .00747 | .135 | .00101 | | | %RSD | 33.252 | 33.567 | 19.603 | 1.0349 | 7.8420 | 37.219 | .40043 | .18757 | | | #1 | .00095 | .00071 | .00393 | .25115 | .80879 | .01220 | 33.681 | .53526 | | | #2 | .00049 | .00094 | .00345 | .25191 | .78713 | .02706 | 33.490 | .53560 | | | #3 | .00094 | .00137 | .00264 | .25602 | .90985 | .02097 | 33.751 | .53714 | | | Check ?
High Limit
Low Limit | Chk Pass | | Elem | Mo2020 | Na5895 | Ni2316 | P_2149 | Pb2203 | Sb2068 | Se1960 | Si2124 | | | Units | ppm | | Avg | . 00066 | 69.616 | .00119 | . 01278 | 00356 | 00027 | .00018 | 5.4538 | | | Stddev | .00018 | .200 | .00070 | .00272 | .00351 | .00251 | .00452 | .0224 | | | %RSD | 27.198 | .28674 | 59.169 | 21.277 | 98.486 | 932.32 | 2476.5 | .41152 | | | #1 | .00048 | 69.823 | .00070 | .01104 | .00048 | .00248 | .00273 | 5.4691 | | | #2 | .00066 | 69.600 | .00087 | .01591 | 00584 | 00242 | 00504 | 5.4643 | | | #3 | .00084 | 69.425 | .00199 | .01138 | 00533 | 00086 | .00285 | 5.4281 | | | Check ?
High Limit
Low Limit | Chk Pass | | Sample Nar
Method: ICF
User: JYH
Comment: | | 3_6010_200 | .cquired: 5/1
.7WATER_
Custom II | 3YLINES(v8 | | ype: Unk
ode: CONC
: | Corr. Fa | ctor: 1.00000(| |--|---|---|--|--|---|---|---|----------------| | Elem
Units
Avg
Stddev
%RSD | Sn1899
ppm
00040
.00037
94.334 | Sr4077
ppm
. 24527
.00068
.27552 | Ti3372
ppm
02039
.00373
18.298 | TI1908
ppm
00276
.00119
42.999 | V_2924
ppm
.00032
.00122
378.08 | Zn2062
ppm
. 05149
.00032
.61567 | Zr3391
ppm
. 17630
.16895
95.830 | | | #1
#2
#3 | 00047
.00001
00073 | .24574
.24558
.24450 | 01618
02168
02330 | 00381
00148
00298 | .00115
00108
.00089 | .05178
.05154
.05115 | .28260
01852
.26483 | | | Check ?
High Limit
Low Limit | Chk Pass | | Int. Std.
Units
Avg
Stddev
%RSD | Y_2243
Cts/S
13052.
51.
.39319 | Y_3600
Cts/S
93249.
236.
.25302 | Y_3774
Cts/S
4329.4
42.5
.98142 | | | | | | | #1
#2
#3 | 13005.
13043.
13107. | 92980.
93347.
93421. | 4281.0
4346.6
4360.5 | | | | | | | Method: IC
User: JYH | Sample Name: CCV Acquired: 5/16/2016 14:05:39 Type: QC Method: ICP-THERMO3_6010_200.7WATER_3YLINES(v873) Mode: CONC Corr. Factor: 1.000000 User: JYH Custom ID1: Custom ID2: Custom ID3: Comment: | | | | | | | | | | |--|--
---|---|----------------------------------|---------------------------------|---|---------------------------------|---|--|--| | Elem
Units
Avg
Stddev
%RSD | Ag3280
ppm
. 38613
.00052
.13573 | 9.6207 .0170 | As1890
ppm
. 38649
.00430
1.1138 | _ppm
. 48284
.00453 | .95429 | Be3131
ppm
. 04711
.00012
.25068 | 9.3555
.0316 | Cd2288
ppm
. 04723
.00009
.19637 | | | | #1
#2
#3 | .38624
.38659
.38556 | 9.6019
9.6252
9.6351 | .39012
.38762
.38173 | | .95396
.95148
.95744 | .04723
.04699
.04712 | | .04726
.04729
.04712 | | | | Check ?
Value
Range | Chk Pass | | | Elem
Units
Avg
Stddev
%RSD | Co2286
ppm
. 19664
.00038
.19149 | Cr2677
ppm
. 49436
.00212
.42965 | Cu2247
ppm
. 49355
.00124
.25086 | ppm
3.8995
.0197 | .236 | Li6707
ppm
. 96392
.00374
.38827 | ppm
9.7300
.0438 | . 48050 .00123 | | | | #1
#2
#3 | .19668
.19624
.19700 | .49326
.49301
.49680 | .49446
.49214
.49404 | | 48.223
48.124
48.573 | .96096
.96268
.96813 | | .47921
.48062
.48167 | | | | Check ?
Value
Range | Chk Pass | | | Elem
Units
Avg
Stddev
%RSD | Mo2020
ppm
. 94896
.00320
.33755 | Na5895
ppm
48.730
.106
.21710 | Ni2316
ppm
. 50084
.00106
.21245 | _ ppm | ppm
. 49964
.00287 | Sb2068
ppm
1.1593
.0026
.22039 | ppm
. 36910
.00776 | | | | | #1
#2
#3 | .95251
.94811
.94628 | 48.741
48.619
48.830 | .50179
.49969
.50103 | 9.7005 | .50207
.49647
.50037 | 1.1622
1.1582
1.1575 | .37783 | | | | | Check ?
Value
Range | Chk Pass | | | • | ame: CCV
CP-THERMO | • | d: 5/16/201
00.7WATE
Custor | R_3YLINE | , , | Mode: C | ONC C | orr. Factor: 1.000000 | |---|---|---|---|---|---|---|----------------------------|-----------------------| | Comment: | | וו טוו. | Gustoi | 11 102. | Ouston | 1100. | | | | Elem
Units
Avg
Stddev
%RSD | Sn1899
ppm
. 97709
.00082
.08373 | Sr4077
ppm
. 95108
.00254
.26730 | Ti3372
ppm
. 94890
.00571
.60172 | TI1908
ppm
. 48636
.00213
.43892 | V_2924
ppm
. 97043
.00135
.13910 | Zn2062
ppm
. 99511
.00080
.08047 | ppm
1.0892 | | | #1
#2
#3 | .97694
.97797
.97636 | .95152
.94834
.95337 | .95355
.94253
.95062 | .48864
.48604
.48441 | .97199
.96957
.96973 | .99556
.99418
.99558 | .73146
1.2941
1.2420 | | | Check ?
Value
Range | Chk Pass | | Int. Std.
Units
Avg
Stddev
%RSD | Y_2243
Cts/S
13937 .
17.
.12233 | Y_3600
Cts/S
99903.
269. | Y_3774
Cts/S
4510.9
8.6
.18973 | | | | | | | #1
#2
#3 | 13945.
13918.
13949. | 100160.
99925.
99623. | 4516.1
4501.1
4515.7 | | | | | | | • | | | | | | | | | | | |------------------------------------|----------------|----------------|----------------|----------------|----------------|----------------|----------------|--|--|--| | Elem | Ag3280 | Al3082 | As1890 | B_2496 | Ba4554 | Be3131 | Ca4226 | | | | | Units | ppm | | | | Avg | 00256 | 01476 | 00253 | . 00077 | .00158 | .00015 | 03926 | | | | | Stddev | .00016 | .00435 | .00217 | .00074 | .00053 | .00007 | .02926 | | | | | %RSD | 6.2047 | 29.508 | 85.977 | 96.216 | 33.493 | 49.683 | 74.540 | | | | | #1 | 00273 | 01096 | 00447 | .00140 | .00117 | .00016 | 00641 | | | | | #2 | 00241 | 01380 | 00293 | .00097 | .00218 | .00007 | 04882 | | | | | #3 | 00255 | 01951 | 00018 | 00005 | .00138 | .00022 | 06254 | | | | | Check ?
High Limit
Low Limit | Chk Pass | | | | Elem | Cd2288 | Co2286 | Cr2677 | Cu2247 | Fe2611 | K_7664 | Li6707 | | | | | Units | ppm | | | | Avg | . 00030 | 00027 | .00050 | . 00011 | . 01190 | . 17651 | . 00480 | | | | | Stddev | .00034 | .00006 | .00017 | .00047 | .01256 | .12861 | .00152 | | | | | %RSD | 114.15 | 23.872 | 33.382 | 422.60 | 105.54 | 72.864 | 31.769 | | | | | #1 | .00043 | 00020 | .00067 | .00012 | .00129 | .27759 | .00656 | | | | | #2 | .00056 | 00031 | .00034 | 00036 | .00864 | .22020 | .00393 | | | | | #3 | 00009 | 00030 | .00048 | .00058 | .02577 | .03175 | .00390 | | | | | Check ?
High Limit
Low Limit | Chk Pass | | | | Elem | Mg2790 | Mn2576 | Mo2020 | Na5895 | Ni2316 | P_2149 | Pb2203 | | | | | Units | ppm | | | | Avg | . 09003 | . 00039 | . 00387 | . 01539 | 00025 | . 00219 | 00101 | | | | | Stddev | .07545 | .00219 | .00038 | .01293 | .00090 | .00576 | .00279 | | | | | %RSD | 83.807 | 567.16 | 9.8864 | 83.989 | 368.26 | 262.78 | 275.96 | | | | | #1 | .00317 | 00183 | .00426 | .03024 | .00028 | 00379 | .00041 | | | | | #2 | .13936 | .00254 | .00350 | .00934 | .00027 | .00771 | .00078 | | | | | #3 | .12757 | .00045 | .00385 | .00661 | 00129 | .00265 | 00423 | | | | | Check ?
High Limit
Low Limit | Chk Pass | | | | Sample Nam
Method: ICP
User: JYH
Comment: | ne: CCB /
-THERMO3_
Custom I | | | LINES(v873 | pe: Blank
) Mode:
tom ID3: | CONC (| Corr. Factor: | 1.000000 | |--|---|--|---|--|---|--|--|----------| | Elem
Units
Avg
Stddev
%RSD | Sb2068
ppm
. 00179
.00161
89.989 | Se1960
ppm
.00070
.00434
622.70 | Si2124
ppm
02827
.00132
4.6550 | Sn1899
ppm
00049
.00125
254.65 | Sr4077
ppm
. 00091
.00047
51.835 | Ti3372
ppm
00169
.00226
134.31 | TI1908
ppm
00205
.00190
93.003 | | | #1
#2
#3 | .00084
.00088
.00365 | .00108
.00483
00382 | 02692
02834
02955 | .00003
00191
.00042 | .00128
.00108
.00038 | 00409
00137
.00040 | .00013
00341
00286 | | | Check ?
High Limit
Low Limit | Chk Pass | | Elem
Units
Avg
Stddev
%RSD | V_2924
ppm
.00088
.00015
17.112 | Zn2062
ppm
.00013
.00016
116.31 | Zr3391
ppm
F .17901
.24341
135.98 | | | | | | | #1
#2
#3 | .00088
.00104
.00074 | .00004
.00032
.00004 | .45758
.00737
.07207 | | | | | | | Check ?
High Limit
Low Limit | Chk Pass | Chk Pass | Chk Fail
.04000
04000 | | | | | | | Int. Std.
Units
Avg
Stddev
%RSD | Y_2243
Cts/S
13804.
14.
.09998 | Y_3600
Cts/S
99441.
505.
.50743 | Y_3774
Cts/S
4425.0
7.4
.16638 | | | | | | | #1
#2
#3 | 13807.
13816.
13789. | 99961.
98953.
99408. | 4432.9
4418.3
4423.8 | | | | | | | Sample Name: L1605061105 Acquired: 5/16/2016 14:13:16 Type: Unk Method: ICP-THERMO3_6010_200.7WATER_3YLINES(v873) Mode: CONC Corr. Factor: 1.000000 User: JYH Custom ID1: Custom ID2: Custom ID3: Comment: | | | | | | | | | |---|----------------|----------------|----------------|----------------|----------------|----------------|---------------|----------------| | Elem | Ag3280 | Al3082 | As1890 | B_2496 | Ba4554 | Be3131 | Ca4226 | Cd2288 | | Units | ppm | Avg | 00263 | 00404 | . 00078 | . 04814 | . 05508 | .00005 | 131.64 | . 00035 | | Stddev | .00194 | .00967 | .00379 | .00146 | .00025 | .00002 | .21 | .00037 | | %RSD | 73.765 | 239.61 | 485.87 | 3.0348 | .46258 | 39.251 | .15906 | 105.40 | | #1 | 00228 | .00262 | 00322 | .04833 | .05523 | .00003 | 131.61 | .00042 | | #2 | 00472 | 01513 | .00123 | .04660 | .05524 | .00007 | 131.86 | .00067 | | #3 | 00089 | .00040 | .00433 | .04950 | .05479 | .00005 | 131.45 | 00005 | | Check ?
High Limit
Low Limit | Chk Pass | Elem | Co2286 | Cr2677 | Cu2247 | Fe2611 | K_7664 | Li6707 | Mg2790 | Mn2576 | | Units | ppm | Avg | . 00297 | . 00234 | .00040 | . 12234 | . 99675 | . 01710 | 54.944 | 1.1242 | | Stddev | .00040 | .00131 | .00170 | .01305 | .08571 | .00121 | .119 | .0051 | | %RSD | 13.367 | 56.045 | 429.83 | 10.666 | 8.5993 | 7.1020 | .21712 | .45573 | | #1 | .00258 | .00199 | 00156 | .13710 | .93078 | .01755 | 54.887 | 1.1185 | | #2 | .00337 | .00123 | .00152 | .11232 | .96584 | .01803 | 54.863 | 1.1283 | | #3 | .00296 | .00378 | .00123 | .11760 | 1.0936 | .01573 | 55.081 | 1.1259 | | Check ?
High Limit
Low Limit | Chk Pass | Elem | Mo2020 | Na5895 | Ni2316 | P_2149 | Pb2203 | Sb2068 | Se1960 | Si2124 | | Units | ppm | Avg | . 00130 | 128.93 | .00389 | . 01612 | 00267 | 00124 | .00273 | 4.6853 | | Stddev | .00010 | .18 | .00035 | .00553 | .00443 | .00621 | .00660 | .0319 | | %RSD | 7.8354 | .13722 | 9.0169 | 34.326 | 165.90 | 500.66 |
241.63 | .68158 | | #1 | .00127 | 129.06 | .00383 | .01669 | 00693 | .00195 | 00469 | 4.7036 | | #2 | .00122 | 129.00 | .00357 | .02135 | 00300 | .00272 | .00795 | 4.7039 | | #3 | .00141 | 128.73 | .00426 | .01033 | .00191 | 00839 | .00494 | 4.6485 | | Check ?
High Limit
Low Limit | Chk Pass | Sample Nar
Method: ICF
User: JYH
Comment: | | 3_6010_200 | cquired: 5/1
.7WATER_:
Custom IE | 3YLINES(v8 | • | ype: Unk
ode: CONC
: | Corr. Fac | tor: 1.00000(| |--|---|---|--|--|---|---|---|---------------| | Elem
Units
Avg
Stddev
%RSD | Sn1899
ppm
00026
.00072
274.95 | Sr4077
ppm
. 20060
.00029
.14519 | Ti3372
ppm
02466
.00475
19.276 | TI1908
ppm
00430
.00087
20.184 | V_2924
ppm
.00035
.00133
380.59 | Zn2062
ppm
. 00483
.00008
1.6369 | Zr3391
ppm
. 18961
.05527
29.146 | | | #1
#2
#3 | .00057
00062
00073 | .20028
.20085
.20067 | 01977
02497
02926 | 00330
00482
00478 | .00120
.00103
00118 | .00480
.00478
.00492 | .14604
.25178
.17103 | | | Check ?
High Limit
Low Limit | Chk Pass | | Int. Std.
Units
Avg
Stddev
%RSD | Y_2243
Cts/S
12887.
36.
.28119 | Y_3600
Cts/S
92119.
622.
.67557 | Y_3774
Cts/S
4310.9
23.8
.55147 | | | | | | | #1
#2
#3 | 12867.
12865.
12929. | 91646.
92824.
91887. | 4314.0
4285.7
4332.9 | | | | | | | Sample Name
Method: ICP-T
User: JYH
Comment: | |)10_200.7W <i>A</i> | Acquired: 5/16/2016 14:17:13
0_200.7WATER_3YLINES(v873)
Custom ID2: Custom | | | Type: Unk Mode: CONC Corr. Factor: 1.000 ID3: | | | |---|---------------|---------------------|--|-----------------------------|----------------|--|-----------------------------|--| | Elem | Ag3280 | Al3082 | As1890 | B_2496 | Ba4554 | Be3131 | Ca4226 | | | Units | ppm | | Avg | 00207 | . 00343 | . 04245 | . 07265 | . 03180 | .00007 | F 309.18 | | | Stddev | .00347 | .00456 | .00213 | .00124 | .00040 | .00004 | 1.61 | | | %RSD | 167.40 | 133.09 | 5.0198 | 1.7075 | 1.2482 | 55.393 | .52225 | | | #1 | 00437 | .00864 | .04050 | .07124 | .03216 | .00006 | 311.02 | | | #2 | 00378 | .00150 | .04473 | .07312 | .03137 | .00004 | 308.51 | | | #3 | .00192 | .00015 | .04214 | .07358 | .03186 | .00012 | 308.01 | | | Check ?
High Limit
Low Limit | Chk Pass | Chk Pass | Chk Pass | Chk Pass | Chk Pass | Chk Pass | Chk Fail
270.00
10000 | | | Elem | Cd2288 | Co2286 | Cr2677 | Cu2247 | Fe2611 | K_7664 | Li6707 | | | Units | ppm | | Avg | .00080 | .00187 | .00194 | . 00245 | 11.597 | 3.2678 | . 04684 | | | Stddev | .00024 | .00033 | .00094 | .00120 | .079 | .0958 | .00179 | | | %RSD | 29.993 | 17.553 | 48.318 | 48.996 | .68460 | 2.9314 | 3.8164 | | | #1 | .00085 | .00188 | .00096 | .00160 | 11.642 | 3.1613 | .04878 | | | #2 | .00102 | .00220 | .00282 | .00382 | 11.506 | 3.2949 | .04648 | | | #3 | .00054 | .00154 | .00203 | .00193 | 11.645 | 3.3471 | .04526 | | | Check ?
High Limit
Low Limit | Chk Pass | | Elem | Mg2790 | Mn2576 | Mo2020 | Na5895 | Ni2316 | P_2149 | Pb2203 | | | Units | ppm | | Avg | 84.241 | 1.4144 | . 00145 | F 325.88 | . 01128 | . 18449 | 00037 | | | Stddev | .160 | .0058 | .00026 | 2.44 | .00103 | .00541 | .00343 | | | %RSD | .18971 | .41196 | 17.706 | .74833 | 9.1693 | 2.9315 | 920.73 | | | #1 | 84.421 | 1.4167 | .00122 | 328.62 | .01202 | .18621 | 00432 | | | #2 | 84.115 | 1.4188 | .00142 | 325.08 | .01173 | .18883 | .00187 | | | #3 | 84.186 | 1.4078 | .00173 | 323.94 | .01010 | .17843 | .00133 | | | Check ?
High Limit
Low Limit | Chk Pass | Chk Pass | Chk Pass | Chk Fail
270.00
50000 | Chk Pass | Chk Pass | Chk Pass | | | Sample Name: L1605061106 Acquired: 5/16/2016 14:17:13 Type: Unk Method: ICP-THERMO3_6010_200.7WATER_3YLINES(v873) Mode: CONC User: JYH Custom ID1: Custom ID2: Custom ID3: Comment: | | | | | | | Factor: 1.00000(| |---|---|---|---|--|---|---|--| | Elem
Units
Avg
Stddev
%RSD | Sb2068
ppm
00041
.00243
597.59 | Se1960
ppm
00026
.00554
2109.5 | Si2124
ppm
7.0733
.0103
.14514 | Sn1899
ppm
00178
.00107
59.926 | Sr4077
ppm
3.3343
.0170
.50874 | Ti3372
ppm
F03945
.00337
8.5332 | TI1908
ppm
00247
.00308
125.13 | | #1
#2
#3 | .00226
00099
00249 | .00609
00275
00412 | 7.0657
7.0850
7.0692 | 00296
00151
00087 | 3.3539
3.3256
3.3236 | 04165
04113
03558 | 00469
00376
.00106 | | Check ?
High Limit
Low Limit | Chk Pass | Chk Pass | Chk Pass | Chk Pass | Chk Pass | Chk Fail
36.000
03000 | Chk Pass | | Elem
Units
Avg
Stddev
%RSD | V_2924
ppm
. 00179
.00069
38.327 | Zn2062
ppm
. 00210
.00014
6.5722 | Zr3391
ppm
. 08531
.59762
700.55 | | | | | | #1
#2
#3 | .00235
.00102
.00200 | .00212
.00223
.00195 | .14774
54108
.64927 | | | | | | Check ?
High Limit
Low Limit | Chk Pass | Chk Pass | Chk Pass | | | | | | Int. Std.
Units
Avg
Stddev
%RSD | Y_2243
Cts/S
12486.
29.
.22934 | Y_3600
Cts/S
88966.
170.
.19061 | Y_3774
Cts/S
4232.6
34.3
.81112 | | | | | | #1
#2
#3 | 12518.
12462.
12478. | 89104.
88777.
89017. | 4193.0
4251.7
4253.1 | | | | | | Sample Name
Method: ICP-T
User: JYH
Comment: | | Type: Unk
Mode: CONO
ID3: | C Corr. F | Factor: 1.00000(| | | | |---|----------------|---------------------------------|----------------|-----------------------------|----------------|----------------|-----------------------------| | Elem | Ag3280 | Al3082 | As1890 | B_2496 | Ba4554 | Be3131 | Ca4226 | | Units | ppm | Avg | 00137 | 00164 | . 04157 | . 07266 | . 03105 | .00009 | F 296.24 | | Stddev | .00137 | .00626 | .00275 | .00257 | .00059 | .00007 | 1.45 | | %RSD | 99.931 | 380.64 | 6.6220 | 3.5378 | 1.8927 | 78.475 | .48984 | | #1 | 00025 | 00599 | .04181 | .06969 | .03052 | .00006 | 296.94 | | #2 | 00097 | .00553 | .03870 | .07405 | .03096 | .00017 | 297.22 | | #3 | 00291 | 00447 | .04419 | .07423 | .03169 | .00004 | 294.58 | | Check ?
High Limit
Low Limit | Chk Pass | Chk Pass | Chk Pass | Chk Pass | Chk Pass | Chk Pass | Chk Fail
270.00
10000 | | Elem | Cd2288 | Co2286 | Cr2677 | Cu2247 | Fe2611 | K_7664 | Li6707 | | Units | ppm | Avg | . 00067 | . 00177 | . 00216 | . 00322 | 11.151 | 3.1074 | . 04161 | | Stddev | .00012 | .00020 | .00058 | .00096 | .104 | .0285 | .00239 | | %RSD | 18.430 | 11.381 | 26.764 | 29.891 | .93195 | .91888 | 5.7519 | | #1 | .00054 | .00161 | .00201 | .00213 | 11.149 | 3.1174 | .04124 | | #2 | .00078 | .00171 | .00280 | .00393 | 11.257 | 3.0752 | .03942 | | #3 | .00070 | .00200 | .00168 | .00360 | 11.049 | 3.1297 | .04417 | | Check ?
High Limit
Low Limit | Chk Pass | Elem | Mg2790 | Mn2576 | Mo2020 | Na5895 | Ni2316 | P_2149 | Pb2203 | | Units | ppm | Avg | 81.066 | 1.3557 | . 00160 | F 311.46 | .01103 | . 18672 | . 00110 | | Stddev | .321 | .0093 | .00024 | 2.12 | .00030 | .00289 | .00130 | | %RSD | .39603 | .68801 | 15.336 | .68044 | 2.7384 | 1.5486 | 117.90 | | #1 | 80.933 | 1.3581 | .00170 | 312.44 | .01078 | .18456 | .00234 | | #2 | 81.433 | 1.3636 | .00132 | 312.91 | .01095 | .18559 | .00122 | | #3 | 80.834 | 1.3454 | .00177 | 309.03 | .01137 | .19000 | 00025 | | Check ?
High Limit
Low Limit | Chk Pass | Chk Pass | Chk Pass | Chk Fail
270.00
50000 | Chk Pass | Chk Pass | Chk Pass | | Sample Name
Method: ICP-1
User: JYH
Comment: | | 010_200.7WA | red: 5/16/2010
ATER_3YLIN
stom ID2: | | Type: Unk
Mode: CON
ID3: | C Corr. F | Factor: 1.00000(| |---|---|---|---|--|---|---|--| | Elem
Units
Avg
Stddev
%RSD | Sb2068
ppm
. 00263
.00349
132.53 | Se1960
ppm
00324
.00541
167.23 | Si2124
ppm
6.7906
.0104
.15250 | Sn1899
ppm
00150
.00047
31.597 | Sr4077
ppm
3.1935
.0210
.65617 | Ti3372
ppm
F03274
.00705
21.540 | TI1908
ppm
00241
.00088
36.566 | | #1
#2
#3 | .00263
.00612
00086 |
.00282
00492
00760 | 6.7898
6.8014
6.7807 | 00165
00189
00097 | 3.1987
3.2113
3.1704 | 04044
03117
02660 | 00232
00158
00333 | | Check ?
High Limit
Low Limit | Chk Pass | Chk Pass | Chk Pass | Chk Pass | Chk Pass | Chk Fail
36.000
03000 | Chk Pass | | Elem
Units
Avg
Stddev
%RSD | V_2924
ppm
.00088
.00112
126.91 | Zn2062
ppm
. 00211
.00016
7.6419 | Zr3391
ppm
. 15884
.50655
318.91 | | | | | | #1
#2
#3 | .00040
.00009
.00217 | .00209
.00196
.00228 | .69702
.08817
30867 | | | | | | Check ?
High Limit
Low Limit | Chk Pass | Chk Pass | Chk Pass | | | | | | Int. Std.
Units
Avg
Stddev
%RSD | Y_2243
Cts/S
12555.
17.
.13405 | Y_3600
Cts/S
88817.
283.
.31862 | Y_3774
Cts/S
4275 .1
23.5
.54939 | | | | | | #1
#2
#3 | 12537.
12557.
12571. | 88861.
88515.
89076. | 4249.5
4280.3
4295.6 | | | | | | Sample Name: L1605061109 Acquired: 5/16/2016 14:26:46 Type: Unk Method: ICP-THERMO3_6010_200.7WATER_3YLINES(v873) Mode: CONC Corr. Factor: 1.000000 User: JYH Custom ID1: Custom ID2: Custom ID3: Comment: | | | | | | | | | |---|----------|---------------|----------|----------------|----------------|----------------|---------------|----------------| | Elem | Ag3280 | Al3082 | As1890 | B_2496 | Ba4554 | Be3131 | Ca4226 | Cd2288 | | Units | ppm | Avg | 00300 | 00526 | 00186 | . 10041 | . 02986 | .00006 | 95.220 | . 00039 | | Stddev | .00058 | .00283 | .00238 | .00341 | .00081 | .00005 | .065 | .00028 | | %RSD | 19.225 | 53.679 | 128.34 | 3.4006 | 2.7197 | 84.065 | .06829 | 70.931 | | #1 | 00265 | 00678 | 00119 | .10432 | .02922 | .00001 | 95.283 | .00008 | | #2 | 00366 | 00700 | 00450 | .09894 | .03077 | .00006 | 95.224 | .00050 | | #3 | 00269 | 00200 | .00012 | .09798 | .02958 | .00011 | 95.153 | .00060 | | Check ?
High Limit
Low Limit | Chk Pass | Elem | Co2286 | Cr2677 | Cu2247 | Fe2611 | K_7664 | Li6707 | Mg2790 | Mn2576 | | Units | ppm | Avg | .00034 | .00113 | .00143 | .24160 | 1.1115 | . 01284 | 29.570 | 1.0804 | | Stddev | .00024 | .00087 | .00087 | .01917 | .0250 | .00543 | .245 | .0053 | | %RSD | 68.296 | 76.583 | 60.906 | 7.9328 | 2.2497 | 42.314 | .82793 | .49435 | | #1 | .00041 | .00087 | .00237 | .24184 | 1.1351 | .00737 | 29.792 | 1.0752 | | #2 | .00054 | .00210 | .00125 | .22232 | 1.0853 | .01292 | 29.610 | 1.0859 | | #3 | .00008 | .00043 | .00066 | .26064 | 1.1142 | .01823 | 29.307 | 1.0801 | | Check ?
High Limit
Low Limit | Chk Pass | Elem | Mo2020 | Na5895 | Ni2316 | P_2149 | Pb2203 | Sb2068 | Se1960 | Si2124 | | Units | ppm | Avg | .00003 | 50.173 | .00042 | . 00644 | 00118 | 00388 | .00212 | 2.7755 | | Stddev | .00016 | .102 | .00067 | .00328 | .00083 | .00243 | .00116 | .0032 | | %RSD | 559.33 | .20383 | 160.22 | 50.869 | 70.241 | 62.722 | 54.502 | .11395 | | #1 | .00016 | 50.290 | .00118 | .00323 | 00148 | 00581 | .00101 | 2.7773 | | #2 | 00015 | 50.128 | .00015 | .00631 | 00024 | 00468 | .00204 | 2.7718 | | #3 | .00007 | 50.101 | 00008 | .00978 | 00182 | 00115 | .00332 | 2.7773 | | Check ?
High Limit
Low Limit | Chk Pass | Sample Nar
Method: ICF
User: JYH
Comment: | | _6010_200 | • | - | • | ype: Unk
ode: CONC
: | Corr. Fa | ctor: 1.00000(| |--|---|---|--|---|---|---|---|----------------| | Elem
Units
Avg
Stddev
%RSD | Sn1899
ppm
00078
.00042
54.027 | Sr4077
ppm
. 47047
.00124
.26448 | Ti3372
ppm
01262
.00156
12.384 | TI1908
ppm
.00053
.00115
217.43 | V_2924
ppm
.00071
.00165
232.47 | Zn2062
ppm
.00276
.00009
3.1888 | Zr3391
ppm
. 00793
.41154
5188.5 | | | #1
#2
#3 | 00098
00106
00029 | .47086
.47148
.46908 | 01240
01118
01428 | .00113
.00125
00080 | .00078
00097
.00233 | .00266
.00283
.00279 | .48236
25271
20586 | | | Check ?
High Limit
Low Limit | Chk Pass | | Int. Std.
Units
Avg
Stddev
%RSD | Y_2243
Cts/S
13140.
23.
.17843 | Y_3600
Cts/S
93839.
191.
.20334 | Y_3774
Cts/S
4350.9
37.0
.85029 | | | | | | | #1
#2
#3 | 13113.
13157.
13151. | 93628.
94000.
93889. | 4309.0
4379.1
4364.5 | | | | | | | Sample Name: L1605061111 Acquired: 5/16/2016 14:30:47 Type: Unk Method: ICP-THERMO3_6010_200.7WATER_3YLINES(v873) Mode: CONC Corr. Factor: 1.000000 User: JYH Custom ID1: Custom ID2: Custom ID3: Comment: | | | | | | | | | | |---|----------------|---------------|----------------|----------------|----------------|----------------|---------------|----------------|--| | Elem | Ag3280 | Al3082 | As1890 | B_2496 | Ba4554 | Be3131 | Ca4226 | Cd2288 | | | Units | ppm | | Avg | 00330 | 00140 | .00390 | . 10362 | . 10452 | .00015 | 159.58 | . 00052 | | | Stddev | .00116 | .00181 | .00099 | .00094 | .00062 | .00002 | .68 | .00028 | | | %RSD | 35.321 | 129.54 | 25.482 | .90398 | .59638 | 11.907 | .42816 | 53.201 | | | #1 | 00307 | .00007 | .00423 | .10469 | .10508 | .00013 | 159.21 | .00063 | | | #2 | 00226 | 00084 | .00278 | .10319 | .10462 | .00016 | 160.37 | .00020 | | | #3 | 00456 | 00342 | .00468 | .10297 | .10385 | .00015 | 159.16 | .00072 | | | Check ?
High Limit
Low Limit | Chk Pass | | Elem | Co2286 | Cr2677 | Cu2247 | Fe2611 | K_7664 | Li6707 | Mg2790 | Mn2576 | | | Units | ppm | | Avg | .00009 | .00179 | .00058 | 1.0255 | 3.0948 | . 04639 | 44.214 | . 36374 | | | Stddev | .00018 | .00016 | .00073 | .0116 | .0537 | .00108 | .137 | .00315 | | | %RSD | 200.33 | 9.0289 | 125.30 | 1.1350 | 1.7362 | 2.3263 | .30946 | .86480 | | | #1 | .00005 | .00187 | .00140 | 1.0146 | 3.0355 | .04754 | 44.194 | .36363 | | | #2 | 00007 | .00160 | 00000 | 1.0242 | 3.1403 | .04624 | 44.360 | .36695 | | | #3 | .00029 | .00189 | .00035 | 1.0377 | 3.1086 | .04540 | 44.088 | .36066 | | | Check ?
High Limit
Low Limit | Chk Pass | | Elem | Mo2020 | Na5895 | Ni2316 | P_2149 | Pb2203 | Sb2068 | Se1960 | Si2124 | | | Units | ppm | | Avg | . 00069 | 203.30 | . 00243 | . 01444 | 00135 | 00419 | 00344 | 3.8993 | | | Stddev | .00031 | .50 | .00117 | .00101 | .00292 | .00408 | .00161 | .0183 | | | %RSD | 44.969 | .24576 | 48.071 | 7.0120 | 216.53 | 97.555 | 46.658 | .46944 | | | #1 | .00080 | 203.18 | .00284 | .01433 | 00339 | 00525 | 00432 | 3.9155 | | | #2 | .00034 | 203.85 | .00334 | .01348 | 00266 | .00032 | 00442 | 3.9030 | | | #3 | .00094 | 202.88 | .00111 | .01550 | .00200 | 00763 | 00159 | 3.8795 | | | Check ?
High Limit
Low Limit | Chk Pass | | Sample Nar
Method: ICF
User: JYH
Comment: | | 3_6010_200 | .cquired: 5/1
.7WATER_
Custom IE | 3YLINES(v8 | | ype: Unk
ode: CONC
: | Corr. Fa | ctor: 1.00000(| |--|---|--|--|--|---|---|---|----------------| | Elem
Units
Avg
Stddev
%RSD | Sn1899
ppm
00107
.00076
70.421 | Sr4077
ppm
4.2027
.0119
.28417 | Ti3372
ppm
02396
.00676
28.222 | TI1908
ppm
00428
.00135
31.530 | V_2924
ppm
. 00113
.00057
50.507 | Zn2062
ppm
. 00438
.00007
1.6805 | Zr3391
ppm
. 21302
.21933
102.96 | | | #1
#2
#3 | 00073
00194
00055 | 4.1957
4.2165
4.1959 | 02689
02876
01623 | 00402
00575
00308 | .00104
.00173
.00060 | .00429
.00440
.00444 | .05607
.11937
.46363 | | | Check ?
High Limit
Low Limit | Chk Pass | | Int. Std.
Units
Avg
Stddev
%RSD | Y_2243
Cts/S
12870.
52.
.40588 | Y_3600
Cts/S
91160.
424.
.46493 | Y_3774
Cts/S
4295.0
33.3
.77588 | | | | | | | #1
#2
#3 | 12888.
12910.
12811. | 90672.
91366.
91441. | 4285.3
4267.6
4332.1 | | | | | | | Sample Name
Method: ICP-T
User: JYH
Comment: | |)10_200.7W <i>A</i> | ed: 5/16/2010
ATER_3YLINI
stom ID2: | | Type: Unk
Mode: CONO
ID3: | C Corr. F | Factor: 1.00000(| |---|----------------|---------------------|---|----------------|---------------------------------|----------------|------------------| | Elem | Ag3280 | Al3082 | As1890 | B_2496 | Ba4554 | Be3131 | Ca4226 | | Units | ppm | Avg | 00196 | .00305 | .00097 | . 06195 | . 06939 | .00006 | 106.90 | | Stddev | .00083 | .00705 | .00063 | .00353 | .00134 | .00004 | .44 | | %RSD | 42.423 | 231.18 | 64.528 | 5.6924 | 1.9250 | 65.675 | .41229 | | #1 | 00232 | .00914 |
.00055 | .06380 | .06959 | .00002 | 106.59 | | #2 | 00255 | .00469 | .00170 | .05788 | .07062 | .00006 | 107.40 | | #3 | 00101 | 00468 | .00068 | .06416 | .06797 | .00010 | 106.69 | | Check ?
High Limit
Low Limit | Chk Pass | Elem | Cd2288 | Co2286 | Cr2677 | Cu2247 | Fe2611 | K_7664 | Li6707 | | Units | ppm | Avg | . 00080 | .00215 | .00189 | . 00119 | 3.4384 | 1.1266 | . 01293 | | Stddev | .00024 | .00045 | .00066 | .00174 | .0244 | .0723 | .00132 | | %RSD | 30.351 | 21.056 | 34.694 | 146.80 | .70839 | 6.4137 | 10.181 | | #1 | .00107 | .00226 | .00129 | .00282 | 3.4646 | 1.1224 | .01429 | | #2 | .00069 | .00255 | .00259 | 00065 | 3.4165 | 1.0565 | .01284 | | #3 | .00062 | .00166 | .00179 | .00139 | 3.4342 | 1.2009 | .01166 | | Check ?
High Limit
Low Limit | Chk Pass | Elem | Mg2790 | Mn2576 | Mo2020 | Na5895 | Ni2316 | P_2149 | Pb2203 | | Units | ppm | Avg | 34.703 | 4.1422 | .00013 | 22.419 | . 00660 | . 03916 | . 00200 | | Stddev | .147 | .0097 | .00018 | .031 | .00062 | .00785 | .00189 | | %RSD | .42496 | .23522 | 140.56 | .13976 | 9.4665 | 20.049 | 94.068 | | #1 | 34.559 | 4.1533 | .00024 | 22.401 | .00611 | .03010 | .00020 | | #2 | 34.695 | 4.1355 | 00008 | 22.400 | .00730 | .04394 | .00396 | | #3 | 34.854 | 4.1376 | .00023 | 22.455 | .00639 | .04344 | .00185 | | Check ?
High Limit
Low Limit | Chk Pass | Sample Name: L1605061113 Acquired: 5/16/2016 14:34:32 Method: ICP-THERMO3_6010_200.7WATER_3YLINES(v873) User: JYH Custom ID1: Custom ID2: Custo Comment: | | | | | Type: Unk
Mode: CONO
ID3: | C Corr. F | Factor: 1.00000(| |--|---|---|---|--|---|--|---| | Elem
Units
Avg
Stddev
%RSD | Sb2068
ppm
. 00076
.00184
242.06 | Se1960
ppm
.00159
.00536
337.97 | Si2124
ppm
3.7361
.0026
.06843 | Sn1899
ppm
00057
.00081
141.00 | Sr4077
ppm
. 23848
.00104
.43656 | Ti3372
ppm
01897
.00320
16.839 | TI1908
ppm
. 00037
.00216
579.88 | | #1
#2
#3 | .00108
00122
.00242 | .00773
00211
00086 | 3.7389
3.7354
3.7339 | 00084
00121
.00033 | .23732
.23881
.23932 | 01874
02228
01590 | .00073
00195
.00233 | | Check ?
High Limit
Low Limit | Chk Pass | Elem
Units
Avg
Stddev
%RSD | V_2924
ppm
. 00149
.00157
105.41 | Zn2062
ppm
. 00252
.00015
5.8281 | Zr3391
ppm
F09249
.49574
535.99 | | | | | | #1
#2
#3 | .00030
.00327
.00089 | .00254
.00265
.00236 | .35801
01189
62359 | | | | | | Check ?
High Limit
Low Limit | Chk Pass | Chk Pass | Chk Fail
36.000
04000 | | | | | | Int. Std.
Units
Avg
Stddev
%RSD | Y_2243
Cts/S
13171 .
8.
.06225 | Y_3600
Cts/S
94353.
346.
.36690 | Y_3774
Cts/S
4332. 1
14.9
.34386 | | | | | | #1
#2
#3 | 13168.
13180.
13165. | 94322.
94713.
94023. | 4318.2
4330.3
4347.8 | | | | | | • | :: L1605061115
THERMO3_601
Custom ID1: | 0_200.7WAT | d: 5/16/2016
ER_3YLINE:
om ID2: | | Гуре: Unk
ode: CONC
3: | Corr. Factor: 1.000000 | |------------------------------------|--|-----------------------------|---------------------------------------|-----------------------------|------------------------------|------------------------| | Elem | Ag3280 | Al3082 | As1890 | B_2496 | Ba4554 | Be3131 | | Units | ppm | ppm | ppm | ppm | ppm | ppm | | Avg | sF00436 | s01625 | s00554 | s .00073 | F -1.4054 | s .00028 | | Stddev | .00596 | .05387 | .00773 | .00554 | 2.5089 | .00034 | | %RSD | 136.53 | 331.44 | 139.55 | 756.33 | 178.52 | 124.01 | | #1 | s00393 | s03060 | s .00034 | s.00025 | -4.3021 | s .00029 | | #2 | s .00136 | s06150 | s01429 | s00455 | .08102 | s00007 | | #3 | s01053 | s .04334 | s00266 | s.00649 | .00493 | s .00061 | | Check ?
High Limit
Low Limit | Chk Fail
9.0000
00400 | Chk Pass | Chk Pass | Chk Pass | Chk Fail
45.000
00500 | Chk Pass | | Elem | Ca4226 | Cd2288 | Co2286 | Cr2677 | Cu2247 | Fe2611 | | Units | ppm | ppm | ppm | ppm | ppm | ppm | | Avg | F87216 | s .00016 | s00016 | s .00213 | s00155 | k 1.4594 | | Stddev | .89569 | .00014 | .00035 | .00554 | .00163 | 2.6389 | | %RSD | 102.70 | 86.102 | 214.97 | 259.59 | 104.67 | 180.82 | | #1 | -1.8401 | s.00002 | s .00011 | s.00124 | s00093 | k 4.5050 | | #2 | 70368 | s.00016 | s00056 | s00290 | s00033 | k14636 | | #3 | 07267 | s.00029 | s00004 | s.00806 | s00340 | k .01953 | | Check ?
High Limit
Low Limit | Chk Fail
270.00
10000 | Chk Pass | Chk Pass | Chk Pass | Chk Pass | Chk Pass | | Elem | K_7664 | Li6707 | Mg2790 | Mn2576 | Mo2020 | Na5895 | | Units | ppm | ppm | ppm | ppm | ppm | ppm | | Avg | F -41.100 | F -2.1476 | k 7.4325 | kF70136 | s .00018 | 36.357 | | Stddev | 72.997 | 3.7465 | 13.603 | 1.2318 | .00041 | 64.848 | | %RSD | 177.61 | 174.45 | 183.02 | 175.63 | 229.39 | 178.37 | | #1 | -125.38 | -6.4736 | k 23.129 | k -2.1237 | s.00003 | 111.23 | | #2 | 1.971 | .03127 | k93229 | k .01780 | s00014 | -2.0201 | | #3 | .111 | 00050 | k .10094 | k .00180 | s.00064 | 1393 | | Check ?
High Limit
Low Limit | Chk Fail
450.00
50000 | Chk Fail
36.000
10000 | Chk Pass | Chk Fail
36.000
00300 | Chk Pass | Chk Pass | | Sample Name:
Method: ICP-T
User: JYH
Comment: | | 0_200.7WAT | d: 5/16/2016 1
ER_3YLINES
om ID2: | | Type: Unk
Mode: CONC
13: | Corr. Factor: 1.00000(| |--|---|---|--|---|---|---| | Elem
Units
Avg
Stddev
%RSD | Ni2316
ppm
s00142
.00186
131.26 | P_2149
ppm
s01558
.02264
145.37 | Pb2203
ppm
s00249
.00282
113.30 | Sb2068
ppm
s00451
.00432
95.889 | Se1960
ppm
sF01226
.00804
65.590 | Si2124
ppm
s00051
.00664
1315.2 | | #1
#2
#3 | s .00019
s00346
s00098 | s .00433
s04021
s01085 | s .00052
s00291
s00508 | s00509
s .00008
s00851 | s00861
s00669
s02148 | s00767
s .00544
s .00072 | | Check ?
High Limit
Low Limit | Chk Pass | Chk Pass | Chk Pass | Chk Pass | Chk Fail
90.000
01000 | Chk Pass | | Elem
Units
Avg
Stddev
%RSD | Sn1899
ppm
s .00066
.00049
74.044 | Sr4077
ppm
.00883
.00968
109.56 | Ti3372
ppm
k 2.3586
4.2634
180.75 | TI1908
ppm
s 00591
.00640
108.35 | V_2924
ppm
s .00098
.00098
99.361 | Zn2062
ppm
s .00022
.00027
125.38 | | #1
#2
#3 | s .00041
s .00035
s .00123 | .01973
.00553
.00124 | k 7.2803
k20010
k00422 | s00088
s01311
s00373 | s.00177
s00011
s.00129 | s00006
s .00023
s .00049 | | Check ?
High Limit
Low Limit | Chk Pass | Chk Pass | Chk Pass | Chk Pass | Chk Pass | Chk Pass | | Elem
Units
Avg
Stddev
%RSD | Zr3391
ppm
kF 222.86
399.22
179.13 | | | | | | | #1
#2
#3 | k 683.79
k -13.432
k -1.7750 | | | | | | | Check ?
High Limit
Low Limit | Chk Fail
36.000
04000 | | | | | | | • | e: L1605061115
THERMO3_6010 | • | : 5/16/2016 1
ER_3YLINES | | Type: Unk
Mode: CONC | Corr. Factor: 1.00000(| |-----------|--------------------------------|--------|-----------------------------|--------|-------------------------|------------------------| | User: JYH | Custom ID1: | Custo | m ID2: | Custom | n ID3: | | | Comment: | | | | | | | | | | | | | | | | Int. Std. | Y_2243 | Y_3600 | Y_3774 | | | | | Units | Cts/S | Cts/S | Cts/S | | | | | Avg | ^ **** | ^ **** | 1138.9 | | | | | Stddev | | | 1648.0 | | | | | %RSD | | | 144.70 | | | | | | | | | | | | | #1 | ^ | ^ | -8.820 | | | | | #2 | ^ | ^ | 398.29 | | | | | #3 | ^ | ^ | 3027.2 | | | | | Sample Name
Method: ICP-
User: JYH
Comment: | |)10_200.7W <i>F</i> | red: 5/16/201
ATER_3YLIN
stom ID2: | | Type: Unk
Mode: CONO
ID3: | C Corr. F | Factor: 1.00000(| |--|-----------------------------|---------------------|--|----------------|---------------------------------|----------------|------------------| | Elem | Ag3280 | Al3082 | As1890 | B_2496 | Ba4554 | Be3131 | Ca4226 | | Units | ppm | Avg | F00457 | 00608 | 00077 | . 01489 | . 12528 | .00008 | 109.33 | | Stddev | .00199 | .00279 | .00266 | .00166 | .00100 | .00003 | .15 | | %RSD | 43.548 | 45.967 | 347.19 | 11.159 | .79736 | 32.466 | .14133 | | #1 | 00480 | 00649 | 00247 | .01300 | .12414 | .00009 | 109.19 | | #2 | 00643 | 00310 | 00213 | .01555 | .12601 | .00005 | 109.29 | | #3 | 00247 | 00865 | .00230 | .01611 | .12569 | .00011 | 109.50 | | Check ?
High Limit
Low Limit | Chk Fail
9.0000
00400 | Chk Pass | Chk Pass | Chk Pass | Chk Pass | Chk Pass | Chk Pass | | Elem | Cd2288 | Co2286 | Cr2677 | Cu2247 | Fe2611 | K_7664 | Li6707 | | Units | ppm | Avg | . 00062 | .00016 | .00083 | . 00102 | 1.8333 | . 88165 | . 01553 | | Stddev |
.00023 | .00053 | .00116 | .00086 | .0186 | .02862 | .00377 | | %RSD | 36.580 | 333.59 | 140.29 | 84.618 | 1.0154 | 3.2456 | 24.308 | | #1 | .00078 | .00076 | .00149 | .00053 | 1.8541 | .85135 | .01118 | | #2 | .00072 | 00023 | .00151 | .00052 | 1.8277 | .90821 | .01799 | | #3 | .00036 | 00005 | 00051 | .00201 | 1.8182 | .88540 | .01742 | | Check ?
High Limit
Low Limit | Chk Pass | Elem | Mg2790 | Mn2576 | Mo2020 | Na5895 | Ni2316 | P_2149 | Pb2203 | | Units | ppm | Avg | 34.201 | 1.0161 | .00048 | 26.767 | .00009 | . 00548 | . 00086 | | Stddev | .111 | .0052 | .00058 | .061 | .00080 | .00385 | .00347 | | %RSD | .32574 | .50991 | 121.09 | .22764 | 922.19 | 70.177 | 402.65 | | #1 | 34.157 | 1.0121 | .00014 | 26.836 | .00101 | .00370 | .00486 | | #2 | 34.118 | 1.0220 | .00115 | 26.721 | 00041 | .00285 | 00138 | | #3 | 34.327 | 1.0143 | .00015 | 26.744 | 00033 | .00990 | 00089 | | Check ?
High Limit
Low Limit | Chk Pass | Sample Name: L1605061115 Acquired: 5/16/2016 14:46:2 Method: ICP-THERMO3_6010_200.7WATER_3YLINES(v873) User: JYH Custom ID1: Custom ID2: Custom ID2: Custom ID2: Custom ID2: Custom ID3: Custom ID3: Custom ID3: Custom ID3: Custom ID4: C | | | | | Type: Unk
Mode: CONO
ID3: | C Corr. F | Factor: 1.00000(| |--|---|---|---|---|---|--|---| | Elem
Units
Avg
Stddev
%RSD | Sb2068
ppm
00191
.00276
144.20 | Se1960
ppm
00266
.00186
69.895 | Si2124
ppm
3.7245
.0072
.19434 | Sn1899
ppm
. 00009
.00047
536.71 | Sr4077
ppm
. 43206
.00072
.16745 | Ti3372
ppm
01931
.00586
30.363 | TI1908
ppm
. 00082
.00139
170.19 | | #1
#2
#3 | .00118
00412
00279 | 00479
00139
00180 | 3.7207
3.7199
3.7328 | 00045
.00027
.00044 | .43126
.43225
.43267 | 02486
01990
01317 | .00181
.00143
00078 | | Check ?
High Limit
Low Limit | Chk Pass | Elem
Units
Avg
Stddev
%RSD | V_2924
ppm
. 00126
.00119
94.425 | Zn2062
ppm
. 00202
.00018
8.8724 | Zr3391
ppm
F11638
.08764
75.306 | | | | | | #1
#2
#3 | .00230
.00151
00004 | .00205
.00218
.00183 | 01965
13897
19051 | | | | | | Check ?
High Limit
Low Limit | Chk Pass | Chk Pass | Chk Fail
36.000
04000 | | | | | | Int. Std.
Units
Avg
Stddev
%RSD | Y_2243
Cts/S
13137.
60.
.45390 | Y_3600
Cts/S
94296.
664.
.70380 | Y_3774
Cts/S
4345 .1
22.4
.51568 | | | | | | #1
#2
#3 | 13173.
13068.
13171. | 93813.
94022.
95053. | 4346.8
4321.9
4366.6 | | | | | | Sample Name: L1605061117 Acquired: 5/16/2016 14:50:21 Type: Unk Method: ICP-THERMO3_6010_200.7WATER_3YLINES(v873) Mode: CONC Corr. Factor: 1.0 User: JYH Custom ID1: Custom ID2: Custom ID3: Comment: | | | | | | | Factor: 1.00000(| |--|-----------------------------|----------------|----------------|-----------------------------|----------------|----------------|------------------| | Elem | Ag3280 | Al3082 | As1890 | B_2496 | Ba4554 | Be3131 | Ca4226 | | Units | ppm | Avg | F00503 | . 00790 | .00037 | . 06114 | . 49589 | .00009 | 163.82 | | Stddev | .00168 | .00421 | .00028 | .00150 | .00076 | .00001 | .38 | | %RSD | 33.307 | 53.316 | 75.463 | 2.4509 | .15357 | 14.667 | .23277 | | #1 | 00319 | .00611 | .00014 | .06191 | .49502 | .00009 | 163.59 | | #2 | 00647 | .00488 | .00029 | .06209 | .49622 | .00009 | 164.26 | | #3 | 00543 | .01271 | .00067 | .05941 | .49643 | .00007 | 163.60 | | Check ?
High Limit
Low Limit | Chk Fail
9.0000
00400 | Chk Pass | Chk Pass | Chk Pass | Chk Pass | Chk Pass | Chk Pass | | Elem | Cd2288 | Co2286 | Cr2677 | Cu2247 | Fe2611 | K_7664 | Li6707 | | Units | ppm | Avg | .00038 | .00078 | . 00323 | . 00160 | .00305 | 7.0190 | . 05829 | | Stddev | .00019 | .00017 | .00088 | .00124 | .02999 | .1166 | .00091 | | %RSD | 48.598 | 21.377 | 27.211 | 77.781 | 982.09 | 1.6616 | 1.5623 | | #1 | .00019 | .00061 | .00289 | .00263 | 02469 | 6.9058 | .05779 | | #2 | .00041 | .00094 | .00423 | .00195 | .03487 | 7.0124 | .05934 | | #3 | .00055 | .00080 | .00258 | .00022 | 00102 | 7.1388 | .05773 | | Check ?
High Limit
Low Limit | Chk Pass | Elem | Mg2790 | Mn2576 | Mo2020 | Na5895 | Ni2316 | P_2149 | Pb2203 | | Units | ppm | Avg | . 12845 | . 00052 | . 01836 | F 406.53 | 00063 | . 00297 | . 00029 | | Stddev | .06737 | .00044 | .00030 | .65 | .00130 | .00839 | .00298 | | %RSD | 52.447 | 85.213 | 1.6591 | .15945 | 205.25 | 282.13 | 1044.1 | | #1 | .16942 | .00046 | .01818 | 407.17 | .00074 | .00743 | .00365 | | #2 | .16522 | .00098 | .01871 | 406.56 | 00078 | 00670 | 00077 | | #3 | .05070 | .00010 | .01819 | 405.87 | 00185 | .00819 | 00202 | | Check ?
High Limit
Low Limit | Chk Pass | Chk Pass | Chk Pass | Chk Fail
270.00
50000 | Chk Pass | Chk Pass | Chk Pass | | Sample Name: L1605061117 Acquired: 5/16/2016 14 Method: ICP-THERMO3_6010_200.7WATER_3YLINES(User: JYH Custom ID1: Custom ID2: Comment: | | | | | Type: Unk
Mode: CONO
ID3: | C Corr. F | Factor: 1.00000(| |---|---|--|---|--|---|--|--| | Elem
Units
Avg
Stddev
%RSD | Sb2068
ppm
00151
.00167
110.23 | Se1960
ppm
.00007
.00446
5966.2 | Si2124
ppm
1.2893
.0026
.19775 | Sn1899
ppm
00059
.00026
43.640 | Sr4077
ppm
. 81041
.00302
.37326 | Ti3372
ppm
01814
.00494
27.243 | TI1908
ppm
00374
.00108
28.931 | | #1
#2
#3 | 00343
00073
00038 | 00300
.00519
00197 | 1.2902
1.2912
1.2864 | 00071
00029
00077 | .80713
.81101
.81309 | 01298
01862
02282 | 00394
00258
00471 | | Check ?
High Limit
Low Limit | Chk Pass | Elem
Units
Avg
Stddev
%RSD | V_2924
ppm
. 00112
.00031
27.270 | Zn2062
ppm
.00159
.00013
8.1163 | Zr3391
ppm
. 15946
.43309
271.60 | | | | | | #1
#2
#3 | .00081
.00112
.00142 | .00158
.00172
.00146 | .60547
25944
.13234 | | | | | | Check ?
High Limit
Low Limit | Chk Pass | Chk Pass | Chk Pass | | | | | | Int. Std.
Units
Avg
Stddev
%RSD | Y_2243
Cts/S
12772.
15.
.11422 | Y_3600
Cts/S
89877.
380.
.42305 | Y_3774
Cts/S
4316.2
20.8
.48251 | | | | | | #1
#2
#3 | 12789.
12769.
12760. | 89849.
89511.
90270. | 4292.6
4323.8
4332.1 | | | | | | Sample Nam
Method: ICP
User: JYH
Comment: | | | | LINES(v873 | pe: QC
) Mode:
tom ID3: | CONC (| Corr. Factor: | 1.000000 | |--|----------------|----------------|----------------|----------------|-------------------------------
----------------|----------------|----------| | Elem | Ag3280 | Al3082 | As1890 | B_2496 | Ba4554 | Be3131 | Ca4226 | | | Units | ppm | | Avg | . 40758 | 10.270 | . 41083 | . 51242 | 1.0115 | . 05032 | 9.9021 | | | Stddev | .00232 | .016 | .00282 | .00496 | .0032 | .00033 | .0379 | | | %RSD | .56847 | .15900 | .68598 | .96820 | .31781 | .64831 | .38288 | | | #1 | .40942 | 10.266 | .41389 | .51648 | 1.0129 | .05009 | 9.9274 | | | #2 | .40497 | 10.287 | .40834 | .51390 | 1.0138 | .05069 | 9.9203 | | | #3 | .40834 | 10.255 | .41026 | .50689 | 1.0078 | .05017 | 9.8585 | | | Check ?
Value
Range | Chk Pass | | Elem | Cd2288 | Co2286 | Cr2677 | Cu2247 | Fe2611 | K_7664 | Li6707 | | | Units | ppm | | Avg | . 05020 | .20882 | . 52928 | . 52607 | 4.1615 | 50.725 | 1.0170 | | | Stddev | .00005 | .00010 | .00095 | .00103 | .0153 | .234 | .0072 | | | %RSD | .10771 | .04788 | .17960 | .19623 | .36870 | .46047 | .70552 | | | #1 | .05024 | .20873 | .52924 | .52525 | 4.1584 | 50.847 | 1.0093 | | | #2 | .05014 | .20893 | .53026 | .52574 | 4.1479 | 50.873 | 1.0184 | | | #3 | .05023 | .20881 | .52836 | .52723 | 4.1782 | 50.456 | 1.0234 | | | Check ?
Value
Range | Chk Pass | | Elem | Mg2790 | Mn2576 | Mo2020 | Na5895 | Ni2316 | P_2149 | Pb2203 | | | Units | ppm | | Avg | 10.235 | . 50756 | 1.0080 | 51.270 | . 53204 | 10.276 | . 53275 | | | Stddev | .057 | .00353 | .0065 | .115 | .00213 | .007 | .00325 | | | %RSD | .55629 | .69624 | .64486 | .22440 | .40014 | .06902 | .61043 | | | #1 | 10.172 | .50351 | 1.0146 | 51.349 | .52992 | 10.279 | .53372 | | | #2 | 10.282 | .50915 | 1.0078 | 51.323 | .53417 | 10.281 | .53541 | | | #3 | 10.252 | .51002 | 1.0016 | 51.138 | .53202 | 10.268 | .52912 | | | Check ?
Value
Range | Chk Pass | | Sample Nam
Method: ICP
User: JYH
Comment: | | _ | | LINES(v873) | pe: QC
) Mode:
tom ID3: | CONC (| Corr. Factor: | 1.000000 | |--|---|--|---|---|---|---|---|----------| | Elem
Units
Avg
Stddev
%RSD | Sb2068
ppm
1.2329
.0065
.53074 | Se1960
ppm
.38486
.00187
.48579 | Si2124
ppm
5.1540
.0054
.10504 | Sn1899
ppm
1.0400
.0034
.32239 | Sr4077
ppm
1.0034
.0039
.39214 | Ti3372
ppm
1.0047
.0133
1.3213 | TI1908
ppm
. 51964
.00123
.23723 | | | #1
#2
#3 | 1.2377
1.2355
1.2255 | .38385
.38702
.38371 | 5.1584
5.1557
5.1480 | 1.0424
1.0414
1.0362 | 1.0068
1.0043
.99912 | .98947
1.0140
1.0105 | .51901
.51885
.52106 | | | Check ?
Value
Range | Chk Pass | | Elem
Units
Avg
Stddev
%RSD | V_2924
ppm
1.0358
.0046
.44683 | Zn2062
ppm
1.0576
.0009
.08745 | Zr3391
ppm
F . 71205
.30345
42.616 | | | | | | | #1
#2
#3 | 1.0408
1.0316
1.0351 | 1.0571
1.0586
1.0570 | 1.0545
.47659
.60506 | | | | | | | Check ?
Value
Range | Chk Pass | Chk Pass | Chk Fail
1.0000
-10.000% | | | | | | | Int. Std.
Units
Avg
Stddev
%RSD | Y_2243
Cts/S
13196.
4.
.03333 | Y_3600
Cts/S
93667.
582.
.62118 | Y_3774
Cts/S
4266.8
29.7
.69515 | | | | | | | #1
#2
#3 | 13194.
13192.
13201. | 93460.
93218.
94325. | 4233.4
4276.9
4290.1 | | | | | | | Sample Name: CCB Acquired: 5/16/2016 14:57:56 Type: Blank Method: ICP-THERMO3_6010_200.7WATER_3YLINES(v873) Mode: CONC Corr. Factor: 1.000000 User: JYH Custom ID1: Custom ID2: Custom ID3: Comment: | | | | | | | | | | | |--|----------------|----------|----------------|----------|----------------|----------------|----------------|--|--|--| | Elem | Ag3280 | Al3082 | As1890 | B_2496 | Ba4554 | Be3131 | Ca4226 | | | | | Units | ppm | | | | Avg | 00176 | 01199 | .00058 | .00056 | . 00094 | . 00010 | 02120 | | | | | Stddev | .00059 | .01029 | .00170 | .00124 | .00056 | .00006 | .01306 | | | | | %RSD | 33.376 | 85.863 | 291.66 | 221.45 | 59.867 | 62.744 | 61.626 | | | | | #1 | 00243 | 02248 | .00230 | 00037 | .00034 | .00017 | 03116 | | | | | #2 | 00133 | 00191 | 00111 | .00197 | .00103 | .00005 | 00641 | | | | | #3 | 00151 | 01158 | .00057 | .00009 | .00144 | .00007 | 02602 | | | | | Check ?
High Limit
Low Limit | Chk Pass | | | | Elem | Cd2288 | Co2286 | Cr2677 | Cu2247 | Fe2611 | K_7664 | Li6707 | | | | | Units | ppm | | | | Avg | . 00010 | 00019 | . 00020 | 00025 | 00578 | . 16534 | . 00535 | | | | | Stddev | .00005 | .00022 | .00094 | .00057 | .01815 | .04346 | .00311 | | | | | %RSD | 46.318 | 116.51 | 474.34 | 228.04 | 314.14 | 26.288 | 58.086 | | | | | #1 | .00009 | 00006 | .00064 | 00050 | .01485 | .11596 | .00387 | | | | | #2 | .00015 | 00007 | .00084 | 00067 | 01927 | .18227 | .00325 | | | | | #3 | .00006 | 00044 | 00088 | .00040 | 01290 | .19780 | .00892 | | | | | Check ?
High Limit
Low Limit | Chk Pass | | | | Elem | Mg2790 | Mn2576 | Mo2020 | Na5895 | Ni2316 | P_2149 | Pb2203 | | | | | Units | ppm | | | | Avg | . 04364 | 00029 | . 00386 | 02483 | . 00023 | 00588 | 00046 | | | | | Stddev | .04115 | .00325 | .00030 | .00891 | .00045 | .00260 | .00223 | | | | | %RSD | 94.281 | 1130.4 | 7.6541 | 35.904 | 197.45 | 44.306 | 484.69 | | | | | #1 | .08953 | .00023 | .00394 | 01612 | .00007 | 00364 | .00029 | | | | | #2 | .01003 | .00267 | .00411 | 03394 | .00074 | 00874 | 00296 | | | | | #3 | .03136 | 00376 | .00353 | 02443 | 00013 | 00526 | .00130 | | | | | Check ?
High Limit
Low Limit | Chk Pass | | | | Sample Name: CCB Acquired: 5/16/2016 14:57:56 Type: Blank Method: ICP-THERMO3_6010_200.7WATER_3YLINES(v873) Mode: CONC Corr. Factor: 1.000000 User: JYH Custom ID1: Custom ID2: Custom ID3: Comment: | | | | | | | | | | |---|---|--|--|---|---|--|--|--|--| | Elem
Units
Avg
Stddev
%RSD | Sb2068
ppm
. 00404
.00227
56.128 | Se1960
ppm
00595
.00497
83.623 | Si2124
ppm
02596
.00058
2.2289 | Sn1899
ppm
. 00022
.00074
343.40 | Sr4077
ppm
. 00041
.00039
94.218 | Ti3372
ppm
00835
.00496
59.401 | TI1908
ppm
00356
.00097
27.279 | | | | #1
#2
#3 | .00214
.00656
.00343 | 00610
01085
00090 | 02540
02593
02656 | 00064
.00075
.00054 | .00086
.00017
.00021 | 00285
00971
01249 | 00346
00457
00264 | | | | Check ?
High Limit
Low Limit | Chk Pass | | | Elem
Units
Avg
Stddev
%RSD | V_2924
ppm
. 00109
.00044
40.641 | Zn2062
ppm
.00007
.00024
323.87 | Zr3391
ppm
F05109
.40577
794.22 | | | | | | | | #1
#2
#3 | .00092
.00160
.00077 | 00002
.00035
00011 | 08671
.37132
43788 | | | | | | | | Check ?
High Limit
Low Limit | Chk Pass | Chk Pass | Chk Fail
.04000
04000 | | | | | | | | Int. Std.
Units
Avg
Stddev
%RSD | Y_2243
Cts/S
13233 .
39.
.29197 | Y_3600
Cts/S
94838.
443.
.46664 | Y_3774
Cts/S
4208.8
46.3
1.0989 | | | | | | | | #1
#2
#3 | 13188.
13258.
13253. | 95047.
95138.
94330. | 4171.7
4194.1
4260.6 | | | | | | | Sample Name: PBW ZB Acquired: 5/16/2016 15:01:55 Type: Unk Method: ICP-THERMO3_6010_200.7WATER_3YLINES(v873) Mode: CONC Corr. Factor: 1.000000 User: JYH Custom ID1: Custom ID2: Custom ID3: Comment: WG568346-02 AI3082 As1890 B 2496 Ba4554 Be3131 Ca4226 Elem Ag3280 Units ppm ppm ppm ppm ppm ppm ppm -.01362 -.02938 Avg -.00343 .00076 -.00018 .00114 .00010 Stddev .00008 .00212 .00105 .00199 .00095 .00006 .03217 109.48 %RSD 2.3804 15.557 139.31 1104.3 82.879 61.988 #1 -.00351 -.00001 -.00213 .00168 .00010 .00652 -.01136 #2 -.00342 -.01394 .00196 -.00026 .00170 .00015 -.03909 #3 -.00335 -.01557 .00031 .00185 .00005 .00003 -.05558 **Chk Pass** Check? Chk Pass **Chk Pass Chk Pass Chk Pass Chk Pass Chk Pass** High Limit Low Limit Elem Cd2288 Co2286 Cr2677 Cu2247 Fe2611 K_7664 Li6707 Units ppm ppm ppm ppm ppm ppm ppm -.00028 .00852 .00046 .00113 .00063 .01333 .20902 Avg .00020 .00041 .00065 .00097 .01026 .00234 Stddev .16916 %RSD 43.264 145.61 57.606 154.78 76.926 80.931 27.463 .00187 .00067 .00084 **Chk Pass** Mo2020 ppm .00056 .00035 63.462 .00015 .00072 .00080 **Chk Pass** .00174 .00023 -.00008 **Chk Pass** Na5895 -.02430 .00926 38.117 -.01803 -.03494 -.01994 **Chk Pass** ppm .01606 .02194 .00199 Ni2316 -.00057 .00071 125.17 -.00138 -.00014 -.00018 **Chk Pass** ppm **Chk Pass** .17634 .39213 .05858 **Chk Pass** P_2149 -.00502 .00766 152.42 -.01000 -.00886 .00379 **Chk Pass** ppm .01005 .00583 .00969 **Chk Pass** Pb2203 -.00209 .00100 47.616 -.00147 -.00157 -.00324 **Chk
Pass** ppm Approved: May 17, 2016 #1 #2 #3 Check? Elem Units %RSD Check? High Limit Low Limit Avg Stddev #1 #2 #3 High Limit Low Limit .00065 .00025 .00047 **Chk Pass** Mg2790 ppm .10276 .05483 53.358 .15602 .04649 .10576 **Chk Pass** -.00072 -.00023 .00010 Chk Pass Mn2576 ppm .00264 .00231 87.329 .00353 .00438 .00002 Chk Pass Sample Name: PBW ZB Acquired: 5/16/2016 15:01:55 Type: Unk Method: ICP-THERMO3_6010_200.7WATER_3YLINES(v873) Mode: CONC Corr. Factor: 1.000000 User: JYH Custom ID1: Custom ID2: Custom ID3: Comment: WG568346-02 Elem Sb2068 Se1960 Si2124 Sn1899 Sr4077 Ti3372 TI1908 Units ppm ppm ppm ppm ppm ppm ppm -.00037 -.00089 -.00133 -.02207 .00005 -.00640 -.00258 Avg Stddev .00323 .00281 .00210 .00025 .00011 .00450 .00236 70.342 %RSD 363.43 210.68 9.5333 67.054 206.38 91.202 #1 -.00461 -.00457 -.02025 -.00010 -.00006 -.00711 -.00009 #2 .00065 .00051 -.02159 -.00059 .00006 -.01051 -.00477 #3 .00129 .00005 -.02437 -.00044 .00016 -.00159 -.00290 **Chk Pass Chk Pass Chk Pass** Check? **Chk Pass Chk Pass Chk Pass Chk Pass** High Limit Low Limit Elem V_2924 Zn2062 Zr3391 ppm Units ppm ppm -.00053 .00169 F-.09132 Avg .00050 .00021 Stddev .18627 %RSD 93.765 12.573 203.98 #1 -.00001 .00148 .03959 #2 -.00058 .00168 -.00898 #3 .00190 -.00101 -.30457 Check? Chk Pass Chk Pass Chk Fail 36.000 High Limit Low Limit -.04000 Int. Std. Y_2243 Y_3600 Y_3774 Units Cts/S Cts/S Cts/S 13641. 98425. 4403.3 Avg Stddev 38. 346. 34.9 .27592 .35197 %RSD .79248 #1 4431.2 13597. 98587. 98660. #2 13660. 4364.2 4414.4 Approved: May 17, 2016 #3 13665. 98027. Sample Name: LCSW ZB Acquired: 5/16/2016 15:05:55 Type: Unk Method: ICP-THERMO3_6010_200.7WATER_3YLINES(v873) Mode: CONC Corr. Factor: 1.000000 User: JYH Custom ID1: Custom ID2: Custom ID3: Comment: WG568346-03 | Elem
Units
Avg
Stddev
%RSD | Ag3280
ppm
. 19418
.00304
1.5675 | Al3082
ppm
4.8420
.0137
.28385 | As1890
ppm
.19488
.00233
1.1951 | B_2496
ppm
. 96385
.00096
.09917 | ppm
. 48698
.00249
.51031 | Be3131
ppm
. 02359
.00007
.30220 | Ca4226
ppm
4.7744
.0101
.21175 | Cd2288
ppm
. 02415
.00035
1.4608 | |--|---|---|---|---|---|---|---|---| | #1 | .19071 | 4.8269 | .19535 | .96301 | .48826 | .02351 | 4.7816 | .02403 | | #2 | .19639 | 4.8538 | .19694 | .96364 | .48856 | .02363 | 4.7786 | .02387 | | #3 | .19544 | 4.8452 | .19236 | .96489 | .48411 | .02363 | 4.7628 | .02455 | Check? Chk Pass P | Elem | Co2286 | Cr2677 | Cu2247 | Fe2611 | K_7664 | Li6707 | Mg2790 | Mn2576 | |--------|--------|----------------|----------------|--------|---------------|----------------|---------------|----------------| | Units | ppm | Avg | .10059 | . 25253 | . 25242 | 1.9803 | 24.890 | . 49243 | 4.8678 | . 24345 | | Stddev | .00044 | .00148 | .00129 | .0224 | .077 | .00217 | .0823 | .00130 | | %RSD | .43414 | .58506 | .51298 | 1.1328 | .30975 | .44073 | 1.6909 | .53582 | | #1 | .10019 | .25280 | .25126 | 1.9774 | 24.866 | .49012 | 4.9113 | .24454 | | #2 | .10053 | .25385 | .25382 | 1.9594 | 24.976 | .49273 | 4.9192 | .24379 | | #3 | .10106 | .25093 | .25219 | 2.0040 | 24.828 | .49443 | 4.7728 | .24200 | Check? Chk Pass P | Elem | Mo2020 | Na5895 | Ni2316 | P_2149 | Pb2203 | Sb2068 | Se1960 | Si2124 | |--------|----------------|---------------|----------------|---------------|----------------|----------------|----------------|---------------| | Units | ppm | Avg | . 49413 | 24.867 | . 25584 | 4.8133 | . 25859 | . 59137 | . 17938 | 2.5066 | | Stddev | .00068 | .034 | .00035 | .0110 | .00274 | .00152 | .01023 | .0062 | | %RSD | .13789 | .13549 | .13634 | .22871 | 1.0593 | .25731 | 5.7045 | .24796 | | #1 | .49335 | 24.880 | .25602 | 4.8070 | .25744 | .59074 | .17055 | 2.5069 | | #2 | .49440 | 24.893 | .25606 | 4.8260 | .26171 | .59027 | .17700 | 2.5003 | | #3 | .49463 | 24.829 | .25544 | 4.8069 | .25660 | .59311 | .19059 | 2.5127 | Check? Chk Pass P Sample Name: LCSW ZB Acquired: 5/16/2016 15:05:55 Type: Unk Method: ICP-THERMO3_6010_200.7WATER_3YLINES(v873) Mode: CONC Corr. Factor: 1.000000 User: JYH Custom ID1: Custom ID2: Custom ID3: Comment: WG568346-03 | Elem | Sn1899 | Sr4077 | Ti3372 | TI1908 | V_2924 | Zn2062 | Zr3391 | |--------|--------|--------|--------|--------|--------|--------|--------| | Units | ppm | Avg | .50225 | .48745 | .48231 | .24824 | .49597 | .50314 | .31224 | | Stddev | .00068 | .00139 | .00507 | .00439 | .00283 | .00021 | .05703 | | %RSD | .13444 | .28486 | 1.0514 | 1.7683 | .57143 | .04126 | 18.263 | | | | | | | | | | | #1 | .50156 | .48612 | .47677 | .25278 | .49400 | .50292 | .27594 | | #2 | .50229 | .48889 | .48673 | .24402 | .49922 | .50334 | .37797 | | #3 | .50291 | .48736 | .48341 | .24791 | .49469 | .50316 | .28282 | Check? Chk Pass P Low Limit | Int. Std. | Y_2243 | Y_3600 | Y_3774 | |-----------|---------------|---------------|---------------| | Units | Cts/S | Cts/S | Cts/S | | Avg | 13471. | 97215. | 4414.8 | | Stddev | 2. | 324. | 24.5 | | %RSD | .01776 | .33292 | .55507 | | #1 | 13473. | 97235. | 4394.9 | | #2 | 13468. | 97529. | 4407.3 | | #3 | 13472. | 96883. | 4442.2 | | Sample Name: L1605050713 Acquired: 5/16/2016 15:09:39 Type: Unk Method: ICP-THERMO3_6010_200.7WATER_3YLINES(v873) Mode: CONC Corr. Factor: 1.00000 User: JYH Custom ID1: Custom ID2: Custom ID3: Comment: WG568346-01 | | | | | | | | |---|---|---|---|--|---|---|---| | Elem | Ag3280 | Al3082 | As1890 | B_2496 | Ba4554 | Be3131 | Ca4226 | | Units | ppm | Avg | 00290 | 00958 | . 00716 | . 03401 | . 47166 | .00004 | 113.59 | | Stddev | .00329 | .00665 | .00329 | .00079 | .00123 | .00005 | .32 | | %RSD | 113.54 | 69.395 | 46.035 | 2.3370 | .26144 | 106.16 | .28283 | | #1 | .00088 | 00782 | .00643 | .03341 | .47300 | .00007 | 113.63 | | #2 | 00515 | 00399 | .01075 | .03491 | .47141 | .00008 | 113.89 | | #3 | 00441 | 01693 | .00429 | .03371 | .47057 | 00001 | 113.25 | | Check ?
High Limit
Low Limit | Chk Pass | Elem
Units
Avg
Stddev
%RSD
#1
#2 | Cd2288
ppm
.00038
.00015
40.686 | Co2286 ppm00012 .00021 178.670003600003 | Cr2677
ppm
.00164
.00004
2.3491
.00163
.00169 | Cu2247
ppm
00024
.00096
407.87
00105
00049 | Fe2611
ppm
6.7153
.0374
.55736
6.7513
6.6766 | K_7664
ppm
. 97573
.02741
2.8090
.94408
.99170 | Li6707
ppm
. 01386
.00234
16.849
.01585 | | #3 Check? High Limit Low Limit | .00056 | .00004 | .00161 | .00083 | 6.7181 | .99142 | .01129 | | | Chk Pass | Elem | Mg2790 | Mn2576 | Mo2020 | Na5895 | Ni2316 | P_2149 | Pb2203 | | Units | ppm | Avg | 39.836 | . 35968 | . 00114 | 52.141 | 00145 | . 27102 | 00189 | | Stddev | .272 | .00283 | .00035 | .126 | .00077 | .00737 | .00181 | | %RSD | .68378 | .78622 | 30.386 | .24231 | 53.196 | 2.7210 | 95.900 | | #1 | 39.588 | .35762 | .00095 | 52.197 | 00234 | .27953 | 00207 | | #2 | 40.127 | .35852 | .00154 | 52.230 | 00107 | .26663 | .00000 | | #3 | 39.793 | .36290 | .00093 | 51.996 | 00094 | .26689 | 00361 | | Check ?
High Limit
Low Limit | Chk Pass | Sample Name
Method: ICP-
User: JYH
Comment: WO | THERMO3_60
Custom ID |)10_200.7W <i>A</i> | red: 5/16/2010
ATER_3YLIN
stom ID2: | | Type: Unk
Mode: CONO
ID3: | C Corr. F | Factor: 1.00000(| |---|---|--|--|--|---|--|--| | Elem
Units
Avg
Stddev
%RSD | Sb2068
ppm
00065
.00323
497.89 | Se1960
ppm
.00226
.00656
290.30 | Si2124
ppm
5.8298
.0114
.19542 | Sn1899
ppm
00003
.00124
3662.8 | Sr4077
ppm
. 49946
.00161
.32329 | Ti3372
ppm
01518
.00293
19.324 | TI1908
ppm
00018
.00240
1319.4 | | #1
#2
#3 | 00416
.00220
.00001 | .00140
00382
.00921 | 5.8392
5.8329
5.8171 | 00058
00091
.00139 | .49764
.50071
.50003 | 01301
01852
01402 | .00209
.00006
00269 | | Check ?
High Limit
Low Limit | Chk Pass | Elem
Units
Avg
Stddev
%RSD | V_2924
ppm
. 00020
.00110
540.23 | Zn2062
ppm
.00987
.00025
2.4954 | Zr3391
ppm
F06223
.26081
419.10 | | | | | | #1
#2
#3 | 00093
.00028
.00126 | .01000
.01003
.00959 | .16731
34584
00817 | | | | | | Check ?
High Limit
Low Limit | Chk Pass | Chk Pass | Chk Fail
36.000
04000 | | | |
| | Int. Std.
Units
Avg
Stddev
%RSD | Y_2243
Cts/S
13186.
11.
.08207 | Y_3600
Cts/S
94471.
186.
.19716 | Y_3774
Cts/S
4401.8
30.0
.68245 | | | | | | #1
#2
#3 | 13185.
13196.
13175. | 94310.
94427.
94675. | 4384.6
4384.4
4436.5 | | | | | Sample Name: L1605050713S Acquired: 5/16/2016 15:13:34 Type: Unk Method: ICP-THERMO3 6010 200.7WATER 3YLINES(v873) Mode: CONC Corr. Factor: 1.000000 User: JYH Custom ID1: Custom ID2: Custom ID3: Comment: WG568346-04 Al3082 B_2496 Ba4554 Ca4226 Cd2288 Elem Ag3280 As1890 Be3131 Units ppm ppm ppm ppm ppm ppm ppm ppm Avg .20093 5.0377 .21430 1.0428 .95767 .02445 115.05 .02506 Stddev .00074 .0077 .00080 .0007 .00523 .00014 .57 .00025 .49507 %RSD .36761 .15367 .37375 .06583 .54639 .57996 1.0153 .02534 #1 .21449 1.0435 .20178 5.0442 .95187 .02429 114.44 #2 .20047 5.0398 .21499 1.0427 .96203 .02454 115.57 .02496 #3 .20054 5.0292 .21342 1.0422 .95912 .02452 115.13 .02486 Check? Chk Pass **High Limit** Low Limit Elem Co2286 Cr2677 Cu2247 Fe2611 K_7664 Mg2790 Mn2576 Li6707 Units ppm ppm ppm ppm ppm ppm ppm ppm 43.633 .25912 .25517 26.430 .59130 Avg .10006 8.5383 .51611 .00053 .00040 .00093 Stddev .0595 .078 .00703 .326 .00317 %RSD .53427 .15262 .36389 .69661 .29374 .74810 .53660 1.3624 #1 .09956 .25866 .25619 8.4844 26.350 .51660 43.269 .58929 #2 .10063 .25934 .25496 8.6021 26.505 .52289 43.901 .58964 .25935 .25437 8.5284 26.436 43.729 #3 .10000 .50885 .59495 Check? Chk Pass High Limit Low Limit P_2149 Elem Mo2020 Na5895 Ni2316 Pb2203 Sb2068 Se1960 Si2124 Units ppm ppm ppm ppm ppm ppm ppm ppm .51069 75.846 .25385 5.4019 .25691 .61969 .18798 8.2099 Avg .235 .00081 .0094 .00196 .00525 .00567 .0048 Stddev .00184 %RSD .36070 .31031 .31880 .17322 .76213 .84679 3.0166 .05813 #1 75.627 5.3979 .51280 .25311 .25770 .61758 .19395 8.2044 5.4126 76.095 .25836 .18267 #2 .50986 .25372 .61583 8.2130 #3 .50940 75.817 .25471 5.3952 .25469 .62567 .18732 8.2123 Chk Pass Approved: May 17, 2016 Check? High Limit Low Limit Sample Name: L1605050713S Acquired: 5/16/2016 15:13:34 Type: Unk Method: ICP-THERMO3_6010_200.7WATER_3YLINES(v873) Mode: CONC Corr. Factor: 1.000000 User: JYH Custom ID1: Custom ID2: Custom ID3: Comment: WG568346-04 | Elem | Sn1899 | Sr4077 | Ti3372 | TI1908 | V_2924 | Zn2062 | Zr3391 | |--------|--------|--------|--------|--------|--------|--------|--------| | Units | ppm | Avg | .51194 | .97198 | .48513 | .24816 | .51339 | .51250 | .16631 | | Stddev | .00048 | .00747 | .00431 | .00390 | .00034 | .00051 | .16753 | | %RSD | .09449 | .76847 | .88825 | 1.5718 | .06580 | .09884 | 100.73 | | #1 | .51217 | .96489 | .48038 | .24608 | .51377 | .51292 | .01149 | | #2 | .51138 | .97978 | .48621 | .25266 | .51329 | .51264 | .14326 | | #3 | .51226 | .97128 | .48879 | .24574 | .51312 | .51194 | .34416 | Check? Chk Pass P | Int. Std. | Y_2243 | Y_3600 | Y_3774 | |-----------|----------------|---------------|---------------| | Units | Cts/S | Cts/S | Cts/S | | Avg | 13115 . | 93516. | 4354.6 | | Stddev | 10. | 483. | 16.1 | | %RSD | .07328 | .51643 | .37028 | | #1 | 13106. | 93154. | 4366.7 | | #2 | 13125. | 94064. | 4360.9 | | #3 | 13113. | 93329. | 4336.3 | Sample Name: L1605050713SD Acquired: 5/16/2016 15:17:18 Type: Unk Method: ICP-THERMO3_6010_200.7WATER_3YLINES(v873) Mode: CONC Corr. Factor: 1.000000 User: JYH Custom ID1: Custom ID2: Custom ID3: Comment: WG568346-05 Ag3280 Al3082 B_2496 Ba4554 Ca4226 Cd2288 Elem As1890 Be3131 Units ppm ppm ppm ppm ppm ppm ppm ppm 4.9859 1.0287 Avg .19710 .21140 .95972 .02420 117.30 .02456 Stddev .00275 .0266 .00327 .0022 .00272 .00004 .31 .00012 %RSD 1.3965 .53392 1.5455 .21043 .28341 .15592 .26551 .48600 #1 .19586 4.9906 .20918 1.0309 .96232 .02470 .02423 117.51 #2 .19518 5.0098 .21515 1.0265 .95689 .02421 116.94 .02449 #3 .20025 4.9572 .20987 1.0288 .95995 .02415 117.45 .02449 Chk Pass Check? High Limit Low Limit Mg2790 Elem Co2286 Cr2677 Cu2247 Fe2611 K_7664 Li6707 Mn2576 Units ppm ppm ppm ppm ppm ppm ppm ppm .09852 .25742 .24992 8.6699 26.164 .60197 Avg .50491 44.113 .00206 .00203 .0146 .00609 Stddev .00045 .037 .00185 .261 .45737 %RSD .80120 .81201 .16810 .14254 .36688 .59155 1.0109 .24951 #1 .09892 .25555 8.6649 26.202 .50367 43.993 .60449 #2 .09803 .25708 .24813 8.6864 26.128 .50704 43.934 .59503 .09862 8.6586 #3 .25963 .25213 26.163 .50402 44.413 .60639 Check? Chk Pass High Limit Low Limit | Elem | Mo2020 | Na5895 | Ni2316 | P_2149 | Pb2203 | Sb2068 | Se1960 | Si2124 | |--------|----------------|---------------|----------------|---------------|----------------|----------------|--------|---------------| | Units | ppm | Avg | . 50337 | 76.614 | . 25019 | 5.3350 | . 25634 | . 61173 | .18510 | 8.2723 | | Stddev | .00033 | .198 | .00176 | .0181 | .00111 | .00239 | .00698 | .0125 | | %RSD | .06627 | .25836 | .70471 | .33843 | .43430 | .38993 | 3.7721 | .15068 | | #1 | .50311 | 76.830 | .25137 | 5.3510 | .25575 | .60984 | .18879 | 8.2850 | | #2 | .50326 | 76.441 | .24817 | 5.3154 | .25763 | .61094 | .18946 | 8.2719 | | #3 | .50374 | 76.571 | .25105 | 5.3385 | .25565 | .61441 | .17704 | 8.2601 | Check? Chk Pass High Limit Low Limit Sample Name: L1605050713SD Acquired: 5/16/2016 15:17:18 Type: Unk Method: ICP-THERMO3_6010_200.7WATER_3YLINES(v873) Mode: CONC Corr. Factor: 1.000000 User: JYH Custom ID1: Custom ID2: Custom ID3: Comment: WG568346-05 | Elem | Sn1899 | Sr4077 | Ti3372 | TI1908 | V_2924 | Zn2062 | Zr3391 | |--------|--------|--------|--------|--------|--------|--------|--------| | Units | ppm | Avg | .50518 | .97387 | .47906 | .24334 | .50748 | .50489 | .41058 | | Stddev | .00274 | .00201 | .00611 | .00217 | .00212 | .00104 | .16529 | | %RSD | .54174 | .20647 | 1.2762 | .88992 | .41808 | .20643 | 40.258 | | | | | | | | | | | #1 | .50680 | .97619 | .47229 | .24551 | .50732 | .50609 | .22128 | | #2 | .50202 | .97264 | .48073 | .24118 | .50544 | .50442 | .48415 | | #3 | .50672 | .97277 | .48417 | .24332 | .50967 | .50417 | .52633 | Check? Chk Pass P Low Limit | Int. Std. | Y_2243 | Y_3600 | Y_3774 | |-----------|---------------|---------------|---------------| | Units | Cts/S | Cts/S | Cts/S | | Avg | 13104. | 94018. | 4350.8 | | Stddev | 56. | 367. | 46.6 | | %RSD | .42911 | .38982 | 1.0715 | | #1 | 13075. | 94012. | 4297.1 | | #2 | 13169. | 93654. | 4374.2 | | #3 | 13069. | 94387. | 4381.1 | | Sample Name: L1605044601 Acquired: 5/16/2016 15:21:00 Type: Unk Method: ICP-THERMO3_6010_200.7WATER_3YLINES(v873) Mode: CONC Corr. Factor: 1.000000 User: JYH Custom ID1: Custom ID2: Custom ID3: Comment: | | | | | | | | | | |---|----------|----------------|----------------|----------------|----------------|----------------|---------------|----------------|--| | Elem | Ag3280 | Al3082 | As1890 | B_2496 | Ba4554 | Be3131 | Ca4226 | Cd2288 | | | Units | ppm | | Avg | 00257 | . 03600 | . 00111 | . 01318 | . 07608 | . 00007 | 50.552 | . 00043 | | | Stddev | .00155 | .00583 | .00080 | .00090 | .00102 | .00005 | .482 | .00026 | | | %RSD | 60.150 | 16.202 | 72.700 | 6.8496 | 1.3347 | 71.742 | .95398 | 60.806 | | | #1 | 00309 | .03004 | .00132 | .01398 | .07694 | .00010 | 50.592 | .00014 | | | #2 | 00083 | .04170 | .00178 | .01220 | .07633 | .00001 | 51.013 | .00064 | | | #3 | 00379 | .03626 | .00022 | .01335 | .07496 | .00010 | 50.051 | .00052 | | | Check ?
High Limit
Low Limit | Chk Pass | | Elem | Co2286 | Cr2677 | Cu2247 | Fe2611 | K_7664 | Li6707 | Mg2790 | Mn2576 | | | Units | ppm | | Avg | 00045 | .00135 | .00025 | . 06564 | . 88790 | . 01421 | 5.9078 | . 00306 | | | Stddev | .00036 | .00059 | .00107 | .02179 | .11722 | .00175 | .0966 | .00076 | | | %RSD | 80.828 | 43.789 | 436.98 | 33.199 | 13.201 | 12.326 | 1.6359 | 24.734 | | | #1 | 00054 | .00139 | 00089 | .07940 | .89847 | .01589 | 5.9934 | .00234 | | | #2 | 00005 | .00074 | .00125 | .07701 | .99948 | .01240 | 5.8030 | .00385 | | | #3 | 00076 | .00191 | .00038 | .04052 | .76576 | .01434 | 5.9270 | .00298 | | | Check ?
High Limit
Low Limit | Chk Pass | | Elem | Mo2020 | Na5895 | Ni2316 | P_2149 | Pb2203 | Sb2068 | Se1960 | Si2124 | | | Units | ppm | | Avg | .00068 | 2.6491 | 00095 | . 00201 | 00188 | 00258 | 00361 | 3.8875 | | | Stddev | .00052 | .0362 | .00095 | .00483 | .00216 | .00358 | .00641 | .0056 | | | %RSD | 75.563 | 1.3662 | 99.726 | 239.90 | 115.11 | 138.44 | 177.78 | .14484 | | | #1 | .00019 | 2.6879 | 00201 | .00272 | 00233 | 00069 | 00992 | 3.8817 | | | #2 | .00064 | 2.6430 | 00067 | .00645 | .00047 | 00035 | .00290 | 3.8930 | | | #3 | .00122 | 2.6163 | 00017 | 00313 | 00378 | 00671 | 00380 | 3.8879 | | | Check ?
High Limit
Low Limit | Chk Pass | | Sample Nar
Method: ICF
User: JYH
Comment: | | 3_6010_200 | .cquired: 5/1
.7WATER_
Custom IE | 3YLINES(v8 | | ype: Unk
ode: CONC
: | Corr. Fa | ctor: 1.00000(| |--|---|---|--|--|---|---|---|----------------| | Elem
Units
Avg
Stddev
%RSD | Sn1899
ppm
. 00013
.00029
219.99 | Sr4077
ppm
. 14187
.00021
.14616 | Ti3372
ppm
01249
.01133
90.706 | TI1908
ppm
00220
.00113
51.234 | V_2924
ppm
. 00119
.00130
109.49 | Zn2062
ppm
. 00591
.00018
2.9683 |
Zr3391
ppm
. 28450
.21151
74.344 | | | #1
#2
#3 | .00044
.00010
00014 | .14209
.14184
.14168 | 01340
00074
02335 | 00170
00141
00350 | .00020
.00267
.00071 | .00588
.00575
.00610 | .33406
.46684
.05262 | | | Check ?
High Limit
Low Limit | Chk Pass | | Int. Std.
Units
Avg
Stddev
%RSD | Y_2243
Cts/S
13502.
17.
.12562 | Y_3600
Cts/S
97162.
331.
.34019 | Y_3774
Cts/S
4389.2
18.3
.41580 | | | | | | | #1
#2
#3 | 13492.
13521.
13492. | 96788.
97414.
97286. | 4368.5
4396.2
4402.9 | | | | | | | Sample Name: L1605044602 Acquired: 5/16/2016 15:24:57 Type: Unk Method: ICP-THERMO3_6010_200.7WATER_3YLINES(v873) Mode: CONC Corr. Factor: 1.000000 User: JYH Custom ID1: Custom ID2: Custom ID3: Comment: | | | | | | | | | | |---|----------------|----------------|----------|----------------|----------------|----------------|---------------|----------------|--| | Elem | Ag3280 | Al3082 | As1890 | B_2496 | Ba4554 | Be3131 | Ca4226 | Cd2288 | | | Units | ppm | | Avg | 00194 | . 59626 | 00017 | .00876 | .07870 | .00010 | 37.190 | . 00023 | | | Stddev | .00087 | .01204 | .00465 | .00419 | .00054 | .00007 | .338 | .00017 | | | %RSD | 44.828 | 2.0200 | 2766.2 | 47.775 | .68686 | 62.600 | .90874 | 71.664 | | | #1 | 00220 | .60265 | .00428 | .00396 | .07931 | .00012 | 37.579 | .00012 | | | #2 | 00097 | .60376 | 00499 | .01166 | .07853 | .00016 | 37.019 | .00043 | | | #3 | 00265 | .58236 | .00020 | .01065 | .07827 | .00003 | 36.972 | .00016 | | | Check ?
High Limit
Low Limit | Chk Pass | | Elem | Co2286 | Cr2677 | Cu2247 | Fe2611 | K_7664 | Li6707 | Mg2790 | Mn2576 | | | Units | ppm | | Avg | .00026 | . 00072 | .00032 | . 80468 | 1.0827 | . 00997 | 2.6457 | . 05551 | | | Stddev | .00058 | .00070 | .00064 | .03110 | .0273 | .00393 | .0866 | .00395 | | | %RSD | 221.25 | 97.311 | 203.48 | 3.8650 | 2.5262 | 39.449 | 3.2741 | 7.1144 | | | #1 | .00093 | .00093 | 00024 | .84048 | 1.1132 | .00714 | 2.7366 | .05912 | | | #2 | 00002 | .00128 | .00102 | .78916 | 1.0604 | .00831 | 2.5641 | .05129 | | | #3 | 00012 | 00006 | .00017 | .78438 | 1.0745 | .01446 | 2.6365 | .05612 | | | Check ?
High Limit
Low Limit | Chk Pass | | Elem | Mo2020 | Na5895 | Ni2316 | P_2149 | Pb2203 | Sb2068 | Se1960 | Si2124 | | | Units | ppm | | Avg | . 00041 | 2.0251 | .00038 | . 04457 | . 00449 | 00260 | .00307 | 4.5058 | | | Stddev | .00005 | .0188 | .00048 | .00435 | .00048 | .00203 | .00340 | .0098 | | | %RSD | 12.786 | .92684 | 127.51 | 9.7704 | 10.761 | 77.813 | 110.92 | .21744 | | | #1 | .00046 | 2.0280 | .00057 | .04674 | .00395 | 00478 | .00088 | 4.5100 | | | #2 | .00038 | 2.0050 | .00074 | .03955 | .00466 | 00225 | .00133 | 4.5128 | | | #3 | .00037 | 2.0422 | 00017 | .04741 | .00488 | 00078 | .00698 | 4.4946 | | | Check ?
High Limit
Low Limit | Chk Pass | | Sample Nar
Method: ICF
User: JYH
Comment: | | 3_6010_200 | .cquired: 5/1
.7WATER_
Custom II | 3YLINES(v8 | | ype: Unk
ode: CONC
: | Corr. Facto | or: 1.00000(| |--|---|---|--|--|---|---|--|--------------| | Elem
Units
Avg
Stddev
%RSD | Sn1899
ppm
. 00012
.00078
627.87 | Sr4077
ppm
. 08540
.00049
.56976 | Ti3372
ppm
.00760
.00260
34.227 | TI1908
ppm
00315
.00134
42.723 | V_2924
ppm
. 00256
.00092
35.852 | Zn2062
ppm
. 00419
.00006
1.4077 | Zr3391
ppm
00366
.34766
9495.2 | | | #1
#2
#3 | .00102
00022
00043 | .08590
.08493
.08535 | .00672
.00555
.01053 | 00331
00440
00173 | .00159
.00269
.00341 | .00413
.00424
.00421 | 10345
.38299
29052 | | | Check ?
High Limit
Low Limit | Chk Pass | | Int. Std.
Units
Avg
Stddev
%RSD | Y_2243
Cts/S
13631.
30.
.21674 | Y_3600
Cts/S
97998.
345.
.35243 | Y_3774
Cts/S
4418.4
26.4
.59812 | | | | | | | #1
#2
#3 | 13604.
13626.
13662. | 97617.
98292.
98085. | 4388.1
4437.0
4430.0 | | | | | | Sample Name: L1605044602PS Acquired: 5/16/2016 15:28:53 Type: Unk Method: ICP-THERMO3_6010_200.7WATER_3YLINES(v873) Mode: CONC Corr. Factor: 1.000000 User: JYH Custom ID1: Custom ID2: Custom ID3: Comment: WG568394-03 Ag3280 Al3082 B_2496 Ba4554 Ca4226 Cd2288 Elem As1890 Be3131 Units ppm ppm ppm ppm ppm ppm ppm ppm .02390 .98214 Avg .19511 5.4212 .19195 .55748 38.112 .02415 Stddev .00209 .0109 .00183 .00283 .00187 .00003 .178 .00021 %RSD 1.0726 .20054 .95548 .28862 .33495 .12709 .46688 .88727 #1 .19607 .19253 .98493 .02392 5.4164 .55730 .02393 38.168 #2 .19271 5.4136 .19342 .97927 55944 .02387 38.256 .02434 #3 .19655 5.4337 .18990 .98221 .55572 .02389 37.914 .02421 Chk Pass Check? **High Limit** Low Limit Mg2790 Elem Co2286 Cr2677 Cu2247 Fe2611 K_7664 Li6707 Mn2576 Units ppm ppm ppm ppm ppm ppm ppm ppm .09994 .25243 .25236 25.907 .29373 Avg 2.7289 .49768 7.2972 .00060 .00117 .00067 .206 .00044 Stddev .0061 .00209 .0485 %RSD .60143 .46384 .26718 .22228 .42095 .66458 .14956 .79523 #1 .10063 .25281 .25217 2.7230 25.703 .49993 7.2624 .29363 #2 .09952 .25337 .25181 2.7351 26.115 .49579 7.2765 .29421 .25311 .09968 .25112 2.7287 25.905 7.3526 #3 .49731 .29335 Check? Chk Pass P | Elem | Mo2020 | Na5895 | Ni2316 | P_2149 | Pb2203 | Sb2068 | Se1960 | Si2124 | |--------|----------------|---------------|----------------|---------------|----------------|----------------|--------|---------------| | Units | ppm | Avg | . 49366 | 26.786 | . 25515 | 4.9711 | . 25581 | . 60242 | .17609 | 6.6131 | | Stddev | .00180 | .133 | .00045 | .0012 | .00259 | .00204 | .00593 | .0074 | | %RSD | .36438 | .49486 | .17731 | .02456 | 1.0109 | .33782 | 3.3700 | .11236 | | #1 | .49567 | 26.706 | .25567 | 4.9698 | .25598 | .60026 | .17874 | 6.6206 | | #2 | .49312 | 26.939 | .25488 | 4.9723 | .25314 | .60431 | .18024 | 6.6058 | | #3 | .49219 | 26.712 | .25490 | 4.9712 | .25831 | .60270 | .16929 | 6.6128 | Check? Chk Pass P Sample Name: L1605044602PS Acquired: 5/16/2016 15:28:53 Type: Unk Method: ICP-THERMO3_6010_200.7WATER_3YLINES(v873) Mode: CONC Corr. Factor: 1.000000 User: JYH Custom ID1: Custom ID2: Custom ID3: Comment: WG568394-03 | Elem | Sn1899 | Sr4077 | Ti3372 | TI1908 | V_2924 | Zn2062 | Zr3391 | |--------|--------|--------|--------|--------|--------|--------|--------| | Units | ppm | Avg | .50345 | .56692 | .49405 | .24812 | .49937 | .50538 | .71677 | | Stddev | .00162 | .00250 | .00470 | .00535 | .00071 | .00047 | .23354 | | %RSD | .32083 | .44049 | .95073 | 2.1543 | .14231 | .09363 | 32.582 | | | | | | | | | | | #1 | .50164 | .56453 | .48981 | .25125 | .49855 | .50591 | .74019 | | #2 | .50473 | .56951 | .49325 | .24195 | .49972 | .50502 | .93771 | | #3 | .50399 | .56672 | .49910 | .25116 | .49984 | .50521 | .47241 | Check? Chk Pass P Low Limit | Int. Std. | Y_2243 | Y_3600 | Y_3774 | |-----------|---------------|---------------|---------------| | Units | Cts/S | Cts/S | Cts/S | | Avg | 13500. | 96689. | 4389.6 | | Stddev | 12. | 184. | 33.0 | | %RSD | .08738 | .19007 | .75221 | | #1 | 13499. | 96504. | 4351.7 | | #2 | 13512. | 96693. | 4405.5 | | #3 | 13488. | 96871. | 4411.7 | Sample Name: L1605044602SDL Acquired: 5/16/2016 15:32:36 Type: Unk Method: ICP-THERMO3 6010 200.7WATER 3YLINES(v873) Mode: CONC Corr. Factor: 1.000000 User: JYH Custom ID1: 5 Custom ID2: Custom ID3: Comment: WG568394-04 Al3082 As1890 B 2496 Ba4554 Be3131 Ca4226 Cd2288 Elem Ag3280 Units ppm ppm ppm ppm ppm ppm ppm ppm .00522 Avg -.00365 .10541 .00060 .01784 .00009 7.6741 .00015 Stddev .00051 .00538 .00293 .00157 .00055 .00006 .0477 .00011 489.33 %RSD 13.911 5.1027 30.085 3.0620 67.783 .62188 71.248 #1 -.00321 .10110 -.00193 .00643 .00002 7.6202 .00028 .01733 #2 -.00421 .11144 -.00008 .00578 .01778 .00012 7.7109 .00010 #3 -.00354 .10369 .00381 .00344 .01841 .00012 7.6912 .00008 Check? Chk Pass **High Limit** Low Limit Elem Co2286 Cr2677 Cu2247 Fe2611 K_7664 Li6707 Mg2790 Mn2576 Units ppm ppm ppm ppm ppm ppm ppm ppm -.00029 .00129 -.00006 .18382 .00701 Avg .32968 .57845 .01154 .00074 .06485 Stddev .00015 .00077 .00363 .08629 .00222 .00110 %RSD 51.504 59.698 1166.2 1.9720 11.212 9.5066 26.173 31.717 #1 -.00017 .00073 -.00091 .18146 .23107 .00459 .64056 .01079 #2 -.00046 .00097 .00048 .18800 .39134 .00896 .58362 .01279 .00024 .00748 #3 -.00025 .00217 .18202 .36663 .51116 .01103 Check? Chk Pass High Limit Low Limit Elem Mo2020 Na5895 Ni2316 P_2149 Pb2203 Sb2068 Se1960 Si2124 Units ppm ppm ppm ppm ppm ppm ppm ppm .00077 .34576 -.00057 .00962 .00101 -.00127 .90188 Avg -.00157 .00018 .02805 .00097 .00672 .00459 .00292 .00946 Stddev .00182 %RSD 23.891 8.1136 171.04 69.858 454.39 186.44 745.18 .20138 #1 -.00001 .00059 .35476 .00519 .00630 .00180 .00411 .90305 .00096 .36821 -.00001 -.00302 -.01219 .90280 #2 .00632 -.00139 -.00348 #3 .00077 .31431 -.00169 .01736 -.00188 .00427 .89978 Check? Chk Pass High Limit Low Limit | • | Sample Name: L1605044602SDL | | | | | | | | | |------------------------------------|-----------------------------|--------------------------|--------------------------|------------------------|--------------------------
--------------------------|--------------------------|--|--| | User: JYH | Custom | ID1: 5 | Custom I | D2: | Custom ID3 | 3: | | | | | Comment: \ | NG568394-0 |)4 | | | | | | | | | Elem | Sn1899 | Sr4077 | Ti3372 | TI1908 | V_2924 | Zn2062 | Zr3391 | | | | Units | ppm | | | Avg
Stddev | 00120
.00043 | . 01738
.00038 | . 00085
.00680 | 00237
.00264 | . 00105
.00027 | . 00151
.00031 | . 10323
.45812 | | | | %RSD | 36.193 | 2.1634 | 803.35 | 111.36 | 25.358 | 20.564 | 443.81 | | | | 701102 | 00.100 | 2.1001 | 000.00 | 111.00 | 20.000 | 20.001 | 110.01 | | | | #1 | 00099 | .01697 | 00086 | 00043 | .00086 | .00187 | .60351 | | | | #2 | 00170 | .01770 | .00834 | 00131 | .00136 | .00135 | 29577 | | | | #3 | 00091 | .01748 | 00494 | 00538 | .00094 | .00131 | .00193 | | | | Check ?
High Limit
Low Limit | Chk Pass | | | Int. Std. | Y 2243 | Y 3600 | Y 3774 | | | | | | | | Units | _Cts/S | _Cts/S | _Cts/S | | | | | | | | Avg | 13399. | 96755. | 4231.3 | | | | | | | | Stddev
%RSD | 38.
.28442 | 186.
.19193 | 30.4
.71945 | | | | | | | | %K3D | .20442 | . 19 193 | .71945 | | | | | | | | #1 | 13411. | 96751. | 4247.8 | | | | | | | | #2 | 13430. | 96571. | 4196.2 | | | | | | | | #3 | 13356. | 96943. | 4250.0 | | | | | | | Sample Name: L1605044602SDL Acquired: 5/16/2016 15:36:35 Type: Unk Mode: CONC Method: ICP-THERMO3 6010 200.7WATER 3YLINES(v873) Corr. Factor: 1.000000 User: JYH Custom ID1: 25 Custom ID2: Custom ID3: Comment: WG568394-04 AI3082 As1890 B 2496 Ba4554 Be3131 Ca4226 Elem Ag3280 Units ppm ppm ppm ppm ppm ppm ppm -.00264 Avg -.00270 .00178 -.00186 .00422 .00012 1.4549 Stddev .00109 .00397 .00139 .00205 .00093 .00007 .0460 %RSD 40.327 150.66 77.823 109.87 22.065 55.734 3.1611 #1 -.00195 .00142 .00090 -.00377 .00425 .00015 1.4165 #2 -.00220 -.00282 .00107 .00030 .00327 .00017 1.5059 #3 -.00395 -.00651 .00338 -.00212 .00513 .00005 1.4423 **Chk Pass** Check? Chk Pass **Chk Pass Chk Pass Chk Pass Chk Pass Chk Pass High Limit** Low Limit Elem Cd2288 Co2286 Cr2677 Cu2247 Fe2611 K_7664 Li6707 Units ppm ppm ppm ppm ppm ppm ppm -.00018 .00033 .00057 .03620 .27975 Avg .00062 .00695 .00025 .00059 .03222 .00244 Stddev .00167 .00136 .12674 %RSD 141.94 180.80 295.59 220.00 88.983 45.305 35.089 #1 -.00011 .00035 -.00137 -.00009 .01833 .14007 .00975 #2 -.00045 -.00027 .00155 .00219 .01689 .38742 .00535 #3 .00003 .00090 .00151 -.00024.07339 .31175 .00573 Check? **Chk Pass** Chk Pass **Chk Pass Chk Pass Chk Pass Chk Pass Chk Pass** High Limit Low Limit Mo2020 Elem Mg2790 Mn2576 Na5895 Ni2316 P_2149 Pb2203 Units ppm ppm ppm ppm ppm ppm ppm .24442 .00144 -.00008 .01409 -.00129 .01096 .00025 Avg .00093 .00039 .04899 .00094 .00697 .00342 Stddev .01206 %RSD 478.86 4.9325 64.356 347.58 73.279 63.620 1355.5 #1 .24513 .00114 .00023 -.04195 -.00025 .01042 .00127 #2 .25610 .00249 .00005 .04876 -.00153 .00427 .00305 #3 .23202 .00071 -.00053 .03548 -.00208 .01818 -.00357 Check? **Chk Pass** Chk Pass **Chk Pass Chk Pass Chk Pass Chk Pass Chk Pass** High Limit Approved: May 17, 2016 Low Limit | Method: ICP-
User: JYH | Sample Name: L1605044602SDL Acquired: 5/16/2016 15:36:35 Type: Unk Method: ICP-THERMO3_6010_200.7WATER_3YLINES(v873) Mode: CONC Corr. Factor: 1.000000 User: JYH Custom ID1: 25 Custom ID2: Custom ID3: Comment: WG568394-04 | | | | | | | | | | |---|---|--|---|--|---|--|--|--|--|--| | Elem
Units
Avg
Stddev
%RSD | Sb2068
ppm
00641
.00533
83.217 | Se1960
ppm
00388
.01211
311.96 | Si2124
ppm
. 15035
.00093
.62089 | Sn1899
ppm
00024
.00041
170.11 | Sr4077
ppm
. 00361
.00015
4.1334 | Ti3372
ppm
00277
.00904
326.25 | TI1908
ppm
00020
.00179
874.79 | | | | | #1
#2
#3 | 00392
00277
01252 | 00204
.00720
01681 | .14976
.15143
.14986 | 00049
.00023
00047 | .00344
.00368
.00372 | 00374
.00671
01129 | .00110
.00052
00224 | | | | | Check ?
High Limit
Low Limit | Chk Pass | | | | Elem
Units
Avg
Stddev
%RSD | V_2924
ppm
. 00014
.00047
332.43 | Zn2062
ppm
.00091
.00015
16.553 | Zr3391
ppm
F16712
.10361
61.998 | | | | | | | | | #1
#2
#3 | 00011
.00069
00015 | .00077
.00089
.00107 | 28003
07640
14495 | | | | | | | | | Check ?
High Limit
Low Limit | Chk Pass | Chk Pass | Chk Fail
36.000
04000 | | | | | | | | | Int. Std.
Units
Avg
Stddev
%RSD | Y_2243
Cts/S
13694.
51.
.37217 | Y_3600
Cts/S
97340.
767.
.78808 | Y_3774
Cts/S
4296.8
17.8
.41464 | | | | | | | | | #1
#2
#3 | 13703.
13741.
13640. | 97446.
96525.
98048. | 4313.9
4278.3
4298.3 | | | | | | | | | Sample Nam
Method: ICP
User: JYH
Comment: | | | | LINES(v873 | pe: QC
) Mode:
tom ID3: | CONC (| Corr. Factor: | 1.000000 | |--|----------------|----------------|----------------|----------------|-------------------------------|----------------|----------------|----------| | Elem | Ag3280 | Al3082 | As1890 | B_2496 | Ba4554 | Be3131 | Ca4226 | | | Units | ppm | | Avg | . 40552 | 10.216 | . 40367 | . 51241 | 1.0099 | . 04999 | 9.8439 | | | Stddev | .00289 | .007 | .00024 | .00514 | .0022 | .00035 | .0366 | | | %RSD | .71163 | .06961 | .06064 | 1.0032 | .21309 | .69254 | .37220 | | | #1 | .40660 | 10.223 | .40363 | .51459 | 1.0119 | .04997 | 9.8828 | | | #2 | .40225 | 10.216 | .40393 | .51610 | 1.0076 | .05035 | 9.8389 | | | #3 | .40771 | 10.209 | .40345 | .50654 | 1.0102 | .04966 | 9.8100 | | | Check ?
Value
Range | Chk Pass | | Elem | Cd2288 | Co2286 | Cr2677 | Cu2247 | Fe2611 | K_7664 | Li6707 | | | Units | ppm | | Avg | . 04990 | . 20785 | . 52310 | . 52096 | 4.1341 | 50.726 | 1.0109 | | | Stddev | .00063 | .00054 | .00216 | .00060 | .0281 | .068 | .0062 | | | %RSD | 1.2591 | .25970 | .41213 | .11578 | .67982 | .13414 | .60819 | | | #1 | .05063 | .20837 | .52176 | .52129 | 4.1047 | 50.738 | 1.0114 | | | #2 | .04953 | .20730 | .52558 | .52132 | 4.1607 | 50.654 | 1.0045 | | | #3 | .04955 | .20789 | .52194 | .52026 | 4.1368 | 50.788 | 1.0168 | | | Check ?
Value
Range | Chk Pass | | Elem | Mg2790 | Mn2576 | Mo2020 | Na5895 | Ni2316 | P_2149 | Pb2203 | | | Units | ppm | | Avg | 10.193 | . 50705 | . 99828 | 51.459 | . 52940 | 10.263 | . 53077 | | | Stddev | .094 | .00055 | .00457 | .118 | .00150 | .006 | .00209 | | | %RSD | .92128 | .10779 | .45807 | .22981 | .28394 | .05771 | .39434 | | | #1 | 10.095 | .50722 | 1.0023 | 51.582 | .53111 | 10.267 | .52874 | | | #2 | 10.282 | .50749 | .99917 | 51.346 | .52882 | 10.266 | .53067 | | | #3 | 10.202 | .50644 | .99332 | 51.448 | .52829 | 10.257 | .53292 | | | Check ?
Value
Range | Chk Pass | | Sample Nam
Method: ICP
User: JYH
Comment: | ne: CCV /
-THERMO3_
Custom I | _ | | LINES(v873) | pe: QC
) Mode:
tom ID3: | CONC (| Corr. Factor: 1 | 1.000000 | |--|---|--|--|---|---|---|---|----------| | Elem
Units
Avg
Stddev
%RSD | Sb2068
ppm
1.2245
.0032
.25855 | Se1960
ppm
.38008
.00965
2.5384 | Si2124
ppm
5.1416
.0038
.07351 | Sn1899
ppm
1.0330
.0018
.17617 | Sr4077
ppm
1.0046
.0004
.04232 | Ti3372
ppm
1.0005
.0050
.50121 | TI1908
ppm
. 51329
.00065
.12717 | | | #1
#2
#3 | 1.2253
1.2211
1.2273 | .37588
.37324
.39111 | 5.1458
5.1402
5.1387 | 1.0351
1.0320
1.0320 | 1.0050
1.0047
1.0041 | .99495
1.0047
1.0018 | .51288
.51405
.51295 | | | Check ?
Value
Range | Chk Pass | | Elem
Units
Avg
Stddev
%RSD | V_2924
ppm
1.0255
.0038
.37019 | Zn2062
ppm
1.0534
.0018
.17013 | Zr3391
ppm
F .86714
.30648
35.343 | | | | | | | #1
#2
#3 | 1.0275
1.0211
1.0279 | 1.0545
1.0544
1.0514 | 1.1226
.52733
.95147 | | | | | | | Check ?
Value
Range | Chk Pass | Chk Pass | Chk Fail
1.0000
-10.000% | | | | | | | Int. Std.
Units
Avg
Stddev
%RSD | Y_2243
Cts/S
13160.
33.
.24943 | Y_3600
Cts/S
93252.
229.
.24608 | Y_3774
Cts/S
4261.4
19.0
.44499 | | | | | | | #1
#2
#3 | 13139.
13144.
13198. | 93107.
93516.
93132. | 4275.0
4269.5
4239.8 | | | | | | | Sample Name: CCB Acquired: 5/16/2016 15:44:13 Type: Blank Method: ICP-THERMO3_6010_200.7WATER_3YLINES(v873) Mode: CONC Corr. Factor: 1.000000 User: JYH Custom ID1: Custom ID2: Custom ID3: Comment: | | | | | | | | | |
--|----------------|----------|----------------|----------------|----------------|----------------|----------------|--|--| | Elem | Ag3280 | Al3082 | As1890 | B_2496 | Ba4554 | Be3131 | Ca4226 | | | | Units | ppm | | | Avg | 00298 | 01675 | . 00256 | 00030 | . 00109 | . 00012 | 02052 | | | | Stddev | .00079 | .00528 | .00320 | .00180 | .00064 | .00005 | .02422 | | | | %RSD | 26.502 | 31.498 | 125.01 | 605.12 | 59.134 | 36.750 | 118.04 | | | | #1 | 00283 | 01941 | .00083 | 00208 | .00154 | .00011 | 04276 | | | | #2 | 00384 | 02016 | .00625 | .00151 | .00035 | .00017 | 02409 | | | | #3 | 00229 | 01067 | .00060 | 00033 | .00138 | .00009 | .00529 | | | | Check ?
High Limit
Low Limit | Chk Pass | | | Elem | Cd2288 | Co2286 | Cr2677 | Cu2247 | Fe2611 | K_7664 | Li6707 | | | | Units | ppm | | | Avg | . 00026 | .00010 | . 00092 | . 00043 | 01521 | . 21808 | . 00506 | | | | Stddev | .00049 | .00014 | .00072 | .00159 | .02085 | .06012 | .00183 | | | | %RSD | 192.69 | 140.21 | 78.147 | 365.18 | 137.05 | 27.568 | 36.139 | | | | #1 | .00056 | 00006 | .00010 | .00226 | 02109 | .19222 | .00715 | | | | #2 | 00031 | .00021 | .00143 | 00053 | 03250 | .17521 | .00425 | | | | #3 | .00053 | .00016 | .00123 | 00043 | .00794 | .28680 | .00377 | | | | Check ?
High Limit
Low Limit | Chk Pass | | | Elem | Mg2790 | Mn2576 | Mo2020 | Na5895 | Ni2316 | P_2149 | Pb2203 | | | | Units | ppm | | | Avg | . 04336 | 00058 | . 00359 | 04738 | 00118 | . 00170 | 00254 | | | | Stddev | .09596 | .00396 | .00027 | .01548 | .00060 | .00415 | .00053 | | | | %RSD | 221.31 | 688.15 | 7.4050 | 32.673 | 51.038 | 244.28 | 20.749 | | | | #1 | .13593 | 00284 | .00389 | 04366 | 00186 | .00267 | 00313 | | | | #2 | 05566 | 00288 | .00349 | 06438 | 00095 | .00528 | 00212 | | | | #3 | .04980 | .00400 | .00339 | 03410 | 00072 | 00285 | 00236 | | | | Check ?
High Limit
Low Limit | Chk Pass | | | Sample Name: CCB Acquired: 5/16/2016 15:44:13 Type: Blank Method: ICP-THERMO3_6010_200.7WATER_3YLINES(v873) Mode: CONC Corr. Factor: 1.000000 User: JYH Custom ID1: Custom ID2: Custom ID3: Comment: | | | | | | | | | | |--|---|--|--|--|---|--|--|--|--| | Elem
Units
Avg
Stddev
%RSD | Sb2068
ppm
. 00452
.00283
62.522 | Se1960
ppm
.00543
.00185
34.084 | Si2124
ppm
02610
.00231
8.8514 | Sn1899
ppm
00030
.00078
261.38 | Sr4077
ppm
. 00027
.00015
56.810 | Ti3372
ppm
00122
.00593
487.26 | TI1908
ppm
00186
.00235
126.70 | | | | #1
#2
#3 | .00660
.00567
.00130 | .00470
.00753
.00405 | 02435
02872
02523 | 00046
.00055
00098 | .00010
.00040
.00032 | 00561
.00552
00356 | .00081
00276
00362 | | | | Check ?
High Limit
Low Limit | Chk Pass | | | Elem
Units
Avg
Stddev
%RSD | V_2924
ppm
. 00060
.00036
59.409 | Zn2062
ppm
.00032
.00018
55.420 | Zr3391
ppm
F20226
.14886
73.601 | | | | | | | | #1
#2
#3 | .00099
.00029
.00053 | .00027
.00053
.00018 | 32422
03638
24617 | | | | | | | | Check ?
High Limit
Low Limit | Chk Pass | Chk Pass | Chk Fail
.04000
04000 | | | | | | | | Int. Std.
Units
Avg
Stddev
%RSD | Y_2243
Cts/S
13179 .
15.
.11184 | Y_3600
Cts/S
94385.
250.
.26443 | Y_3774
Cts/S
4212.0
19.0
.45100 | | | | | | | | #1
#2
#3 | 13175.
13166.
13195. | 94294.
94193.
94667. | 4191.6
4229.2
4215.1 | | | | | | | | Sample Name: L1605045001 Acquired: 5/16/2016 15:48:12 Type: Unk Method: ICP-THERMO3_6010_200.7WATER_3YLINES(v873) Mode: CONC Corr. Factor: 1.000000 User: JYH Custom ID1: Custom ID2: Custom ID3: Comment: | | | | | | | | | | |---|----------|---------------|----------|----------------|----------------|----------------|---------------|----------------|--| | Elem | Ag3280 | Al3082 | As1890 | B_2496 | Ba4554 | Be3131 | Ca4226 | Cd2288 | | | Units | ppm | | Avg | 00353 | 01006 | 00107 | . 06016 | . 15887 | .00013 | 54.715 | . 00012 | | | Stddev | .00203 | .00510 | .00304 | .00107 | .00046 | .00006 | .113 | .00017 | | | %RSD | 57.604 | 50.674 | 282.76 | 1.7735 | .28824 | 41.541 | .20734 | 133.62 | | | #1 | 00389 | 00449 | 00198 | .05894 | .15864 | .00016 | 54.844 | .00015 | | | #2 | 00134 | 01449 | 00355 | .06059 | .15939 | .00017 | 54.666 | 00005 | | | #3 | 00535 | 01118 | .00231 | .06095 | .15857 | .00007 | 54.634 | .00027 | | | Check ?
High Limit
Low Limit | Chk Pass | | Elem | Co2286 | Cr2677 | Cu2247 | Fe2611 | K_7664 | Li6707 | Mg2790 | Mn2576 | | | Units | ppm | | Avg | 00039 | .00061 | .06035 | .01585 | 1.2102 | . 01259 | 13.122 | . 02031 | | | Stddev | .00040 | .00035 | .00104 | .00710 | .0800 | .00329 | .151 | .00196 | | | %RSD | 102.17 | 57.274 | 1.7166 | 44.798 | 6.6124 | 26.114 | 1.1514 | 9.6391 | | | #1 | 00028 | .00045 | .06146 | .02193 | 1.2091 | .01465 | 13.100 | .01834 | | | #2 | 00084 | .00101 | .05941 | .01758 | 1.1308 | .01433 | 12.983 | .02034 | | | #3 | 00006 | .00037 | .06018 | .00805 | 1.2908 | .00880 | 13.282 | .02226 | | | Check ?
High Limit
Low Limit | Chk Pass | | Elem | Mo2020 | Na5895 | Ni2316 | P_2149 | Pb2203 | Sb2068 | Se1960 | Si2124 | | | Units | ppm | | Avg | .00154 | 32.384 | 00064 | 00000 | . 00177 | 00030 | .00144 | 4.9248 | | | Stddev | .00002 | .040 | .00035 | .00788 | .00197 | .00183 | .00157 | .0049 | | | %RSD | 1.0432 | .12416 | 54.087 | 310540. | 110.99 | 601.56 | 109.21 | .09909 | | | #1 | .00152 | 32.378 | 00037 | .00277 | .00331 | .00172 | .00297 | 4.9293 | | | #2 | .00156 | 32.427 | 00103 | 00889 | 00044 | 00079 | 00017 | 4.9196 | | | #3 | .00155 | 32.347 | 00052 | .00612 | .00245 | 00184 | .00152 | 4.9254 | | | Check ?
High Limit
Low Limit | Chk Pass | | Sample Name: L1605045001 Acquired: 5/16/2016 15:48:12 Type: Unk Method: ICP-THERMO3_6010_200.7WATER_3YLINES(v873) Mode: CONC Corr. Factor: 1.000000 User: JYH Custom ID1: Custom ID2: Custom ID3: | | | | | | | | | |---|---|---|--|--|---|---|---|--| | Comment: | | | | | | | | | | Elem
Units
Avg
Stddev
%RSD | Sn1899
ppm
00029
.00018
62.569 | Sr4077
ppm
. 37430
.00074
.19713 | Ti3372
ppm
01252
.00312
24.886 | TI1908
ppm
00081
.00124
154.09 | V_2924
ppm
.00033
.00152
460.03 | Zn2062
ppm
. 01721
.00018
1.0416 | Zr3391
ppm
. 17337
.23038
132.88 | | | #1
#2
#3 | 00049
00027
00012 | .37515
.37397
.37379 | 01269
01555
00933 | .00012
00222
00032 | 00138
.00083
.00154 | .01707
.01715
.01741 | .43234
00881
.09659 | | | Check ?
High Limit
Low Limit | Chk Pass | | Int. Std.
Units
Avg
Stddev
%RSD | Y_2243
Cts/S
13359.
42.
.31453 | Y_3600
Cts/S
96046.
126.
.13112 | Y_3774
Cts/S
4375.9
14.7
.33541 | | | | | | | #1
#2
#3 | 13311.
13392.
13373. | 95944.
96007.
96187. | 4382.7
4386.0
4359.1 | | | | | | | Sample Name: L1605045002 Acquired: 5/16/2016 15:52:09 Type: Unk Method: ICP-THERMO3_6010_200.7WATER_3YLINES(v873) Mode: CONC Corr. Factor: 1.000000 User: JYH Custom ID1: Custom ID2: Custom ID3: Comment: | | | | | | | | | |---|----------------|----------------|----------------|----------------|----------------|---------------|----------------|--| | Elem | Ag3280 | Al3082 | As1890 | B_2496 | Ba4554 | Be3131 | Ca4226 | | | Units | ppm | | Avg | 00267 | 01868 | .00222 | . 05872 | . 16059 | .00003 | 54.760 | | | Stddev | .00095 | .00735 | .00129 | .00095 | .00137 | .00003 | .248 | | | %RSD | 35.677 | 39.367 | 58.018 | 1.6164 | .85200 | 84.633 | .45295 | | | #1 | 00350 | 01020 | .00262 | .05933 | .16143 | .00002 | 55.046 | | | #2 | 00288 | 02321 | .00077 | .05919 | .15901 | .00001 | 54.618 | | | #3 | 00163 | 02264 | .00325 | .05762 | .16132 | .00006 | 54.615 | | | Check ?
High Limit
Low Limit | Chk Pass | | Elem | Cd2288 | Co2286 | Cr2677 | Cu2247 | Fe2611 | K_7664 | Li6707 | | | Units | ppm | | Avg | . 00042 | 00010 | . 00070 | . 05830 | 00634 | 1.2093 | .
01512 | | | Stddev | .00015 | .00037 | .00050 | .00042 | .01257 | .0983 | .00209 | | | %RSD | 34.350 | 378.13 | 71.402 | .71700 | 198.29 | 8.1304 | 13.791 | | | #1 | .00056 | .00029 | .00022 | .05839 | 01635 | 1.2470 | .01355 | | | #2 | .00043 | 00043 | .00066 | .05866 | 01044 | 1.0977 | .01749 | | | #3 | .00027 | 00015 | .00122 | .05784 | .00777 | 1.2832 | .01434 | | | Check ?
High Limit
Low Limit | Chk Pass | | Elem | Mg2790 | Mn2576 | Mo2020 | Na5895 | Ni2316 | P_2149 | Pb2203 | | | Units | ppm | | Avg | 12.979 | . 02251 | . 00161 | 32.999 | 00047 | 00313 | . 00178 | | | Stddev | .130 | .00064 | .00015 | .103 | .00026 | .00137 | .00134 | | | %RSD | 1.0044 | 2.8398 | 9.3313 | .31202 | 55.524 | 43.698 | 75.422 | | | #1 | 12.987 | .02250 | .00178 | 33.105 | 00069 | 00469 | .00057 | | | #2 | 12.845 | .02316 | .00156 | 32.899 | 00018 | 00263 | .00155 | | | #3 | 13.105 | .02188 | .00149 | 32.993 | 00054 | 00209 | .00322 | | | Check ?
High Limit
Low Limit | Chk Pass | | Sample Name
Method: ICP-1
User: JYH
Comment: | |)10_200.7W <i>A</i> | 6 15:52:09
ES(v873)
Custom | Type: Unk
Mode: CON
ID3: | C Corr. F | Factor: 1.000000 | | |---|---|--|--|--|---|--|--| | Elem
Units
Avg
Stddev
%RSD | Sb2068
ppm
00394
.00065
16.386 | Se1960
ppm
00157
.00718
457.23 | Si2124
ppm
4.9256
.0146
.29663 | Sn1899
ppm
00042
.00080
188.82 | Sr4077
ppm
. 37584
.00155
.41292 | Ti3372
ppm
01179
.00053
4.4810 | TI1908
ppm
00130
.00221
169.90 | | #1
#2
#3 | 00443
00419
00321 | 00981
.00178
.00332 | 4.9372
4.9092
4.9305 | .00029
00128
00028 | .37751
.37445
.37556 | 01138
01239
01161 | 00385
00018
.00012 | | Check ?
High Limit
Low Limit | Chk Pass | Elem
Units
Avg
Stddev
%RSD | V_2924
ppm
00060
.00110
184.92 | Zn2062
ppm
.01869
.00028
1.4877 | Zr3391
ppm
F21991
.09414
42.807 | | | | | | #1
#2
#3 | 00122
.00068
00124 | .01897
.01842
.01867 | 17551
15617
32803 | | | | | | Check ?
High Limit
Low Limit | Chk Pass | Chk Pass | Chk Fail
36.000
04000 | | | | | | Int. Std.
Units
Avg
Stddev
%RSD | Y_2243
Cts/S
13499.
11.
.08317 | Y_3600
Cts/S
96443.
292.
.30297 | Y_3774
Cts/S
4405.3
13.3
.30108 | | | | | | #1
#2
#3 | 13508.
13502.
13486. | 96200.
96767.
96361. | 4398.5
4396.9
4420.6 | | | | | | Sample Name: L1605045003 Acquired: 5/16/2016 15:56:05 Type: Unk Method: ICP-THERMO3_6010_200.7WATER_3YLINES(v873) Mode: CONC Corr. Factor: 1.00000 User: JYH Custom ID1: Custom ID2: Custom ID3: Comment: | | | | | | | | |--|----------------|----------------|----------|----------------|----------------|----------------|----------------| | Elem | Ag3280 | Al3082 | As1890 | B_2496 | Ba4554 | Be3131 | Ca4226 | | Units | ppm | Avg | 00315 | 02007 | 00026 | . 04677 | . 00192 | .00008 | . 05150 | | Stddev | .00066 | .00773 | .00239 | .00121 | .00057 | .00004 | .00287 | | %RSD | 20.876 | 38.533 | 903.88 | 2.5954 | 29.782 | 43.814 | 5.5745 | | #1 | 00391 | 02294 | 00047 | .04787 | .00229 | .00007 | .05482 | | #2 | 00281 | 01131 | .00222 | .04696 | .00126 | .00005 | .04981 | | #3 | 00273 | 02596 | 00254 | .04547 | .00222 | .00012 | .04988 | | Check ?
High Limit
Low Limit | Chk Pass | Elem | Cd2288 | Co2286 | Cr2677 | Cu2247 | Fe2611 | K_7664 | Li6707 | | Units | ppm | Avg | . 00044 | .00005 | .00084 | . 00424 | . 00494 | . 22614 | . 00517 | | Stddev | .00021 | .00037 | .00021 | .00122 | .03482 | .01797 | .00081 | | %RSD | 46.934 | 793.39 | 24.821 | 28.727 | 704.55 | 7.9467 | 15.679 | | #1 | .00042 | 00033 | .00061 | .00288 | .01387 | .24683 | .00592 | | #2 | .00025 | .00006 | .00090 | .00461 | .03443 | .21443 | .00431 | | #3 | .00066 | .00042 | .00101 | .00523 | 03347 | .21716 | .00527 | | Check ?
High Limit
Low Limit | Chk Pass | Elem | Mg2790 | Mn2576 | Mo2020 | Na5895 | Ni2316 | P_2149 | Pb2203 | | Units | ppm | Avg | . 04328 | . 00238 | .00058 | 123.29 | 00093 | . 00235 | . 00026 | | Stddev | .06287 | .00078 | .00033 | .55 | .00063 | .00636 | .00054 | | %RSD | 145.28 | 32.971 | 56.937 | .44906 | 68.235 | 271.38 | 206.51 | | #1 | .09160 | .00327 | .00069 | 123.89 | 00146 | .00957 | 00023 | | #2 | 02781 | .00201 | .00021 | 123.21 | 00109 | 00009 | .00017 | | #3 | .06604 | .00184 | .00085 | 122.79 | 00023 | 00244 | .00084 | | Check ?
High Limit
Low Limit | Chk Pass | Sample Name
Method: ICP-1
User: JYH
Comment: | |)10_200.7W <i>A</i> | 6 15:56:05
ES(v873)
Custom | Type: Unk
Mode: CON
ID3: | C Corr. F | Factor: 1.000000 | | |---|---|--|--|---|---|--|--| | Elem
Units
Avg
Stddev
%RSD | Sb2068
ppm
00237
.00290
122.32 | Se1960
ppm
.00781
.00329
42.178 | Si2124
ppm
5.2159
.0113
.21569 | Sn1899
ppm
. 00011
.00121
1075.5 | Sr4077
ppm
. 00071
.00004
5.3436 | Ti3372
ppm
00378
.00582
153.82 | TI1908
ppm
00273
.00149
54.528 | | #1
#2
#3 | 00208
.00037
00540 | .01132
.00732
.00479 | 5.2266
5.2041
5.2171 | .00150
00077
00038 | .00074
.00067
.00073 | 01040
00152
.00056 | 00325
00389
00105 | | Check ?
High Limit
Low Limit | Chk Pass | Elem
Units
Avg
Stddev
%RSD | V_2924
ppm
.00001
.00081
10483. | Zn2062
ppm
.00333
.00014
4.3345 | Zr3391
ppm
F13564
.18755
138.27 | | | | | | #1
#2
#3 | .00090
00021
00067 | .00346
.00335
.00318 | .07477
19645
28525 | | | | | | Check ?
High Limit
Low Limit | Chk Pass | Chk Pass | Chk Fail
36.000
04000 | | | | | | Int. Std.
Units
Avg
Stddev
%RSD | Y_2243
Cts/S
13454.
10.
.07693 | Y_3600
Cts/S
95458.
304.
.31843 | Y_3774
Cts/S
4381.3
16.5
.37670 | | | | | | #1
#2
#3 | 13460.
13442.
13460. | 95809.
95281.
95284. | 4390.9
4362.2
4390.7 | | | | | | Sample Name: L1605045004 Acquired: 5/16/2016 16:00:04 Type: Unk Method: ICP-THERMO3_6010_200.7WATER_3YLINES(v873) Mode: CONC Corr. Factor: 1.000000 User: JYH Custom ID1: Custom ID2: Custom ID3: Comment: | | | | | | | | | | | |---|----------|---------------|----------|----------------|----------------|----------------|----------------|----------------|--|--| | Elem | Ag3280 | Al3082 | As1890 | B_2496 | Ba4554 | Be3131 | Ca4226 | Cd2288 | | | | Units | ppm | | | Avg | 00328 | 00770 | 00100 | . 04582 | .00267 | .00015 | . 13687 | . 00020 | | | | Stddev | .00067 | .00771 | .00210 | .00030 | .00076 | .00005 | .02732 | .00023 | | | | %RSD | 20.500 | 100.18 | 209.96 | .65263 | 28.480 | 30.817 | 19.962 | 116.89 | | | | #1 | 00259 | 01060 | 00250 | .04617 | .00194 | .00010 | .10590 | .00040 | | | | #2 | 00393 | 01353 | .00140 | .04567 | .00346 | .00015 | .15756 | 00005 | | | | #3 | 00331 | .00104 | 00189 | .04563 | .00261 | .00020 | .14714 | .00024 | | | | Check ?
High Limit
Low Limit | Chk Pass | | | Elem | Co2286 | Cr2677 | Cu2247 | Fe2611 | K_7664 | Li6707 | Mg2790 | Mn2576 | | | | Units | ppm | | | Avg | .00010 | .00035 | .00306 | .00711 | . 14155 | . 00922 | . 16058 | . 00132 | | | | Stddev | .00045 | .00033 | .00058 | .02223 | .05249 | .00101 | .01595 | .00126 | | | | %RSD | 454.06 | 95.091 | 18.885 | 312.76 | 37.079 | 10.970 | 9.9326 | 95.399 | | | | #1 | 00033 | .00042 | .00355 | .03271 | .18543 | .01030 | .16030 | .00144 | | | | #2 | .00057 | 00001 | .00321 | 00399 | .08341 | .00904 | .17667 | .00001 | | | | #3 | .00006 | .00064 | .00242 | 00739 | .15582 | .00831 | .14478 | .00252 | | | | Check ?
High Limit
Low Limit | Chk Pass | | | Elem | Mo2020 | Na5895 | Ni2316 | P_2149 | Pb2203 | Sb2068 | Se1960 | Si2124 | | | | Units | ppm | | | Avg | .00098 | 124.19 | 00145 | 00590 | . 00144 | 00347 | . 00136 | 5.2836 | | | | Stddev | .00020 | .51 | .00099 | .00665 | .00213 | .00392 | .00405 | .0240 | | | | %RSD | 20.234 | .41187 | 68.443 | 112.78 | 148.32 | 113.03 | 298.22 | .45510 | | | | #1 | .00103 | 124.01 | 00041 | .00059 | 00092 | 00334 | 00209 | 5.2584 | | | | #2 | .00076 | 124.77 | 00155 | 01270 | .00200 | 00744 | .00035 | 5.3063 | | | | #3 | .00115 | 123.80 | 00239 | 00559 | .00324 | .00039 | .00581 | 5.2863 | | | | Check ?
High Limit
Low Limit | Chk Pass | | | Sample Nan
Method: ICF
User: JYH
Comment: | | 3_6010_200 | • | • | | ype: Unk
ode: CONC
: | Corr. Fa | ctor: 1.00000(|
--|---|---|--|--|---|---|---|----------------| | Elem
Units
Avg
Stddev
%RSD | Sn1899
ppm
00064
.00073
113.70 | Sr4077
ppm
. 00205
.00022
10.574 | Ti3372
ppm
00335
.00400
119.55 | TI1908
ppm
00337
.00150
44.370 | V_2924
ppm
. 00012
.00105
853.91 | Zn2062
ppm
. 00492
.00013
2.6427 | Zr3391
ppm
. 14883
.24691
165.90 | | | #1
#2
#3 | 00004
00043
00144 | .00228
.00199
.00186 | 00093
00797
00114 | 00483
00345
00184 | .00046
.00096
00105 | .00505
.00491
.00480 | .15540
10129
.39239 | | | Check?
High Limit
Low Limit | Chk Pass | | Int. Std.
Units
Avg
Stddev
%RSD | Y_2243
Cts/S
13356.
26.
.19371 | Y_3600
Cts/S
95430.
412.
.43143 | Y_3774
Cts/S
4358.5
35.7
.81798 | | | | | | | #1
#2
#3 | 13386.
13341.
13341. | 95408.
95029.
95852. | 4367.0
4319.3
4389.1 | | | | | | | Sample Name
Method: ICP-
User: JYH
Comment: | | 010_200.7W | red: 5/16/201
ATER_3YLIN
stom ID2: | | Type: Unk
Mode: CONO
ID3: | C Corr. F | Factor: 1.00000(| |--|----------------|----------------|--|----------------|---------------------------------|---------------|------------------| | Elem | Ag3280 | Al3082 | As1890 | B_2496 | Ba4554 | Be3131 | Ca4226 | | Units | ppm | Avg | 00288 | 01587 | 00020 | . 05855 | . 16603 | .00008 | 56.304 | | Stddev | .00026 | .00915 | .00400 | .00429 | .00063 | .00003 | .105 | | %RSD | 8.8933 | 57.663 | 1956.8 | 7.3192 | .38137 | 38.285 | .18579 | | #1 | 00259 | 02446 | 00239 | .05374 | .16535 | .00009 | 56.307 | | #2 | 00303 | 00624 | 00263 | .06197 | .16614 | .00005 | 56.406 | | #3 | 00303 | 01691 | .00441 | .05995 | .16660 | .00011 | 56.197 | | Check ?
High Limit
Low Limit | Chk Pass | Elem | Cd2288 | Co2286 | Cr2677 | Cu2247 | Fe2611 | K_7664 | Li6707 | | Units | ppm | Avg | . 00027 | 00024 | . 00137 | 00056 | . 04620 | 1.1900 | . 01430 | | Stddev | .00022 | .00021 | .00023 | .00064 | .00445 | .0588 | .00074 | | %RSD | 81.384 | 86.278 | 17.136 | 113.64 | 9.6325 | 4.9384 | 5.1549 | | #1 | .00035 | 00000 | .00151 | 00123 | .04331 | 1.2570 | .01359 | | #2 | .00002 | 00039 | .00110 | .00004 | .04397 | 1.1656 | .01506 | | #3 | .00045 | 00033 | .00151 | 00050 | .05133 | 1.1473 | .01424 | | Check ?
High Limit
Low Limit | Chk Pass | Elem | Mg2790 | Mn2576 | Mo2020 | Na5895 | Ni2316 | P_2149 | Pb2203 | | Units | ppm | Avg | 13.557 | . 05751 | . 00097 | 33.078 | 00123 | 00237 | 00237 | | Stddev | .080 | .00072 | .00010 | .054 | .00054 | .00692 | .00297 | | %RSD | .59124 | 1.2461 | 10.006 | .16316 | 44.164 | 291.61 | 125.28 | | #1 | 13.617 | .05802 | .00108 | 33.127 | 00080 | 00845 | 00364 | | #2 | 13.589 | .05669 | .00090 | 33.088 | 00104 | 00383 | .00102 | | #3 | 13.466 | .05783 | .00094 | 33.020 | 00184 | .00516 | 00450 | | Check ?
High Limit
Low Limit | Chk Pass | Sample Name
Method: ICP-1
User: JYH
Comment: | |)10_200.7W <i>A</i> | 6 16:04:02
ES(v873)
Custom | Type: Unk
Mode: CONO
ID3: | C Corr. F | Factor: 1.00000(| | |---|--|---|--|--|---|--|--| | Elem
Units
Avg
Stddev
%RSD | Sb2068
ppm
00421
.00408
96.859 | Se1960
ppm
00283
.00300
105.90 | Si2124
ppm
5.0071
.0182
.36353 | Sn1899
ppm
00061
.00075
122.02 | Sr4077
ppm
. 38385
.00165
.43018 | Ti3372
ppm
00677
.00426
62.950 | TI1908
ppm
00278
.00128
45.942 | | #1
#2
#3 | 00006
00435
00821 | 00629
00093
00127 | 5.0245
5.0086
4.9882 | 00147
00027
00010 | .38572
.38328
.38257 | 00285
01130
00615 | 00133
00375
00327 | | Check ?
High Limit
Low Limit | Chk Pass | Elem
Units
Avg
Stddev
%RSD | V_2924
ppm
00044
.00100
227.43 | Zn2062
ppm
. 00507
.00006
1.0883 | Zr3391
ppm
F18976
.53733
283.16 | | | | | | #1
#2
#3 | 00025
.00045
00152 | .00501
.00506
.00512 | .15133
.08854
80915 | | | | | | Check ?
High Limit
Low Limit | Chk Pass | Chk Pass | Chk Fail
36.000
04000 | | | | | | Int. Std.
Units
Avg
Stddev
%RSD | Y_2243
Cts/S
13350.
9.
.06851 | Y_3600
Cts/S
95729.
172.
.17997 | Y_3774
Cts/S
4356.8
44.6
1.0242 | | | | | | #1
#2
#3 | 13359.
13351.
13341. | 95533.
95858.
95795. | 4342.4
4321.2
4406.9 | | | | | | Sample Name: L1605045006 Acquired: 5/16/2016 16:07:58 Type: Unk Method: ICP-THERMO3_6010_200.7WATER_3YLINES(v873) Mode: CONC Corr. Factor: 1.000000 User: JYH Custom ID1: Custom ID2: Custom ID3: Comment: | | | | | | | | | |---|----------------|----------------|----------------|----------------|----------------|----------------|----------------|--| | Elem | Ag3280 | Al3082 | As1890 | B_2496 | Ba4554 | Be3131 | Ca4226 | | | Units | ppm | | Avg | 00396 | 00141 | .00202 | . 04610 | .22353 | .00011 | 51.283 | | | Stddev | .00038 | .00428 | .00263 | .00279 | .00014 | .00003 | .077 | | | %RSD | 9.5948 | 304.13 | 130.02 | 6.0597 | .06249 | 27.883 | .14984 | | | #1 | 00436 | 00367 | .00492 | .04288 | .22367 | .00014 | 51.367 | | | #2 | 00361 | .00353 | .00137 | .04745 | .22352 | .00009 | 51.216 | | | #3 | 00392 | 00409 | 00022 | .04796 | .22339 | .00009 | 51.266 | | | Check ?
High Limit
Low Limit | Chk Pass | | Elem | Cd2288 | Co2286 | Cr2677 | Cu2247 | Fe2611 | K_7664 | Li6707 | | | Units | ppm | | Avg | . 00014 | 00011 | . 00103 | . 00021 | . 70898 | 1.2620 | . 01366 | | | Stddev | .00007 | .00023 | .00043 | .00069 | .00386 | .0514 | .00175 | | | %RSD | 49.989 | 216.08 | 41.706 | 331.43 | .54452 | 4.0700 | 12.810 | | | #1 | .00021 | 00015 | .00122 | 00048 | .71122 | 1.2774 | .01339 | | | #2 | .00007 | 00032 | .00132 | .00090 | .71120 | 1.3039 | .01206 | | | #3 | .00013 | .00014 | .00054 | .00021 | .70452 | 1.2047 | .01552 | | | Check ?
High Limit
Low Limit | Chk Pass | | Elem | Mg2790 | Mn2576 | Mo2020 | Na5895 | Ni2316 | P_2149 | Pb2203 | | | Units | ppm | | Avg | 10.820 | . 17491 | .00038 | 34.680 | 00136 | . 00187 | . 00521 | | | Stddev | .021 | .00464 | .00056 | .031 | .00041 | .00554 | .00204 | | | %RSD | .19839 | 2.6520 | 149.12 | .08824 | 29.865 | 296.37 | 39.198 | | | #1 | 10.821 | .17197 | 00027 | 34.714 | 00101 | 00151 | .00330 | | | #2 | 10.841 | .17251 | .00076 | 34.655 | 00128 | 00115 | .00737 | | | #3 | 10.798 | .18026 | .00064 | 34.671 | 00181 | .00827 | .00496 | | | Check ?
High Limit
Low Limit | Chk Pass | | Sample Name
Method: ICP-1
User: JYH
Comment: | |)10_200.7W <i>A</i> | 6 16:07:58
ES(v873)
Custom | Type: Unk
Mode: CONO
ID3: | C Corr. F | Factor: 1.00000(| | |---|---|--|--|--|---|--|---| | Elem
Units
Avg
Stddev
%RSD | Sb2068
ppm
00116
.00386
334.03 | Se1960
ppm
.00238
.00230
96.258 | Si2124
ppm
5.1360
.0113
.22078 | Sn1899
ppm
00068
.00074
110.21 | Sr4077
ppm
. 66615
.00054
.08067 | Ti3372
ppm
00932
.00325
34.900 | TI1908
ppm
. 00005
.00173
3171.1 | | #1
#2
#3 | 00525
00062
.00241 | .00493
.00048
.00175 | 5.1392
5.1455
5.1235 | .00008
00141
00070 | .66610
.66671
.66564 | 00967
00591
01238 | .00157
00183
.00042 | | Check ?
High Limit
Low Limit | Chk Pass | Elem
Units
Avg
Stddev
%RSD | V_2924
ppm
. 00113
.00117
103.28 | Zn2062
ppm
.00997
.00041
4.1439 | Zr3391
ppm
F05747
.22632
393.82 | | | | | | #1
#2
#3 | .00007
.00238
.00095 | .01044
.00970
.00976 | .15440
03091
29589 | | | | | | Check ?
High Limit
Low Limit | Chk Pass | Chk Pass | Chk Fail
36.000
04000 | | | | | | Int. Std.
Units
Avg
Stddev
%RSD | Y_2243
Cts/S
13455.
25.
.18906 | Y_3600
Cts/S
96197.
232.
.24118 | Y_3774
Cts/S
4379.5
38.0
.86770 | | | | | | #1
#2
#3 | 13472.
13468.
13426. | 96037.
96463.
96091. | 4358.1
4423.4
4357.1 | | | | | | Sample Name: L1605045007 Acquired: 5/16/2016 16:11:55 Type: Unk Method: ICP-THERMO3_6010_200.7WATER_3YLINES(v873) Mode: CONC
Corr. Factor: 1.000000 User: JYH Custom ID1: Custom ID2: Custom ID3: Comment: | | | | | | | | | |---|-----------------------------|----------------|----------------|----------------|----------------|----------------|----------------|--| | Elem | Ag3280 | Al3082 | As1890 | B_2496 | Ba4554 | Be3131 | Ca4226 | | | Units | ppm | | Avg | F00481 | 00211 | 00055 | . 04685 | . 14457 | .00007 | 53.267 | | | Stddev | .00199 | .01034 | .00037 | .00043 | .00069 | .00003 | .077 | | | %RSD | 41.332 | 489.87 | 67.855 | .91313 | .47462 | 40.723 | .14385 | | | #1 | 00254 | .00318 | 00044 | .04704 | .14514 | .00004 | 53.347 | | | #2 | 00625 | .00451 | 00096 | .04636 | .14477 | .00010 | 53.261 | | | #3 | 00563 | 01403 | 00024 | .04714 | .14381 | .00008 | 53.194 | | | Check ?
High Limit
Low Limit | Chk Fail
9.0000
00400 | Chk Pass | Chk Pass | Chk Pass | Chk Pass | Chk Pass | Chk Pass | | | Elem | Cd2288 | Co2286 | Cr2677 | Cu2247 | Fe2611 | K_7664 | Li6707 | | | Units | ppm | | Avg | . 00023 | 00030 | . 00147 | . 00187 | 1.7712 | 1.2505 | . 01323 | | | Stddev | .00020 | .00032 | .00025 | .00090 | .0174 | .0725 | .00468 | | | %RSD | 85.379 | 106.93 | 16.801 | 48.365 | .98375 | 5.7947 | 35.376 | | | #1 | .00000 | 00029 | .00146 | .00092 | 1.7722 | 1.3204 | .00799 | | | #2 | .00032 | .00001 | .00172 | .00273 | 1.7880 | 1.2554 | .01470 | | | #3 | .00036 | 00062 | .00123 | .00196 | 1.7532 | 1.1757 | .01701 | | | Check ?
High Limit
Low Limit | Chk Pass | | Elem | Mg2790 | Mn2576 | Mo2020 | Na5895 | Ni2316 | P_2149 | Pb2203 | | | Units | ppm | | Avg | 11.366 | . 12390 | . 00116 | 35.050 | 00026 | . 00676 | . 00069 | | | Stddev | .049 | .00173 | .00008 | .141 | .00061 | .00959 | .00151 | | | %RSD | .42932 | 1.3947 | 7.0402 | .40331 | 233.01 | 141.95 | 221.03 | | | #1 | 11.331 | .12196 | .00107 | 35.211 | 00082 | .01732 | 00036 | | | #2 | 11.422 | .12527 | .00118 | 34.992 | 00035 | .00437 | 00001 | | | #3 | 11.345 | .12447 | .00123 | 34.947 | .00039 | 00141 | .00242 | | | Check ?
High Limit
Low Limit | Chk Pass | | Sample Name
Method: ICP-7
User: JYH
Comment: | |)10_200.7W | red: 5/16/2010
ATER_3YLIN
stom ID2: | | Type: Unk
Mode: CONO
ID3: | C Corr. F | Factor: 1.00000(| |---|---|--|---|--|---|--|---| | Elem
Units
Avg
Stddev
%RSD | Sb2068
ppm
00002
.00252
11495. | Se1960
ppm
00338
.00141
41.838 | Si2124
ppm
5.5406
.0022
.03966 | Sn1899
ppm
00108
.00052
48.354 | Sr4077
ppm
. 63364
.00149
.23573 | Ti3372
ppm
00782
.00298
38.105 | TI1908
ppm
. 00015
.00085
578.88 | | #1
#2
#3 | .00119
.00166
00292 | 00455
00181
00379 | 5.5429
5.5386
5.5404 | 00129
00048
00146 | .63535
.63303
.63256 | 00510
00735
01100 | .00092
.00029
00076 | | Check ?
High Limit
Low Limit | Chk Pass | Elem
Units
Avg
Stddev
%RSD | V_2924
ppm
. 00116
.00041
35.487 | Zn2062
ppm
.00173
.00018
10.560 | Zr3391
ppm
F 09343
.08962
95.914 | | | | | | #1
#2
#3 | .00100
.00085
.00162 | .00171
.00155
.00191 | 15430
13547
.00947 | | | | | | Check ?
High Limit
Low Limit | Chk Pass | Chk Pass | Chk Fail
36.000
04000 | | | | | | Int. Std.
Units
Avg
Stddev
%RSD | Y_2243
Cts/S
13506.
23.
.16695 | Y_3600
Cts/S
96318.
288.
.29947 | Y_3774
Cts/S
4385 .1
34.4
.78454 | | | | | | #1
#2
#3 | 13524.
13481.
13514. | 96063.
96260.
96631. | 4380.1
4353.5
4421.7 | | | | | | • | | | | | | | | | |------------------------------------|----------------|----------------|----------------|----------------|---------------|----------------|---------------|----------------| | Elem | Ag3280 | Al3082 | As1890 | B_2496 | Ba4554 | Be3131 | Ca4226 | Cd2288 | | Units | ppm | Avg | 00276 | . 00700 | . 00289 | . 06738 | .18113 | .00009 | 38.461 | . 00039 | | Stddev | .00037 | .01169 | .00144 | .00302 | .00091 | .00006 | .173 | .00015 | | %RSD | 13.441 | 167.06 | 49.696 | 4.4755 | .50414 | 63.343 | .44983 | 38.013 | | #1 | 00235 | .01669 | .00304 | .06913 | .18189 | .00003 | 38.499 | .00022 | | #2 | 00284 | .01027 | .00425 | .06911 | .18139 | .00015 | 38.612 | .00048 | | #3 | 00308 | 00598 | .00139 | .06390 | .18012 | .00008 | 38.272 | .00046 | | Check ?
High Limit
Low Limit | Chk Pass | Elem | Co2286 | Cr2677 | Cu2247 | Fe2611 | K_7664 | Li6707 | Mg2790 | Mn2576 | | Units | ppm | Avg | 00011 | .00088 | 00037 | .06231 | 1.1037 | . 01103 | 9.2222 | . 05295 | | Stddev | .00033 | .00064 | .00132 | .01675 | .0164 | .00489 | .1021 | .00116 | | %RSD | 297.66 | 73.216 | 353.84 | 26.877 | 1.4857 | 44.367 | 1.1071 | 2.1904 | | #1 | 00045 | .00108 | 00115 | .04347 | 1.0964 | .00618 | 9.3398 | .05313 | | #2 | 00008 | .00016 | 00112 | .06793 | 1.1225 | .01095 | 9.1559 | .05401 | | #3 | .00020 | .00140 | .00115 | .07552 | 1.0922 | .01597 | 9.1710 | .05171 | | Check ?
High Limit
Low Limit | Chk Pass | Elem | Mo2020 | Na5895 | Ni2316 | P_2149 | Pb2203 | Sb2068 | Se1960 | Si2124 | | Units | ppm | Avg | . 00140 | 61.403 | 00175 | . 00267 | 00294 | 00068 | 00367 | 3.9714 | | Stddev | .00042 | .250 | .00067 | .00106 | .00015 | .00178 | .00131 | .0098 | | %RSD | 30.289 | .40795 | 38.398 | 39.893 | 5.1479 | 259.53 | 35.773 | .24784 | | #1 | .00182 | 61.571 | 00248 | .00217 | 00288 | .00012 | 00492 | 3.9742 | | #2 | .00098 | 61.522 | 00117 | .00389 | 00282 | .00054 | 00378 | 3.9794 | | #3 | .00139 | 61.115 | 00160 | .00195 | 00311 | 00272 | 00230 | 3.9604 | | Check ?
High Limit
Low Limit | Chk Pass | Sample Nar
Method: ICF
User: JYH
Comment: | | _6010_200 | cquired: 5/1
.7WATER_
Custom IE | 3YLINES(v8 | • | ype: Unk
ode: CONC
: | Corr. Fa | ctor: 1.00000(| |--|---|---|--|--|--|---|---|----------------| | Elem
Units
Avg
Stddev
%RSD | Sn1899
ppm
00115
.00078
67.677 | Sr4077
ppm
. 29768
.00031
.10523 | Ti3372
ppm
00091
.00418
456.46 | TI1908
ppm
00090
.00274
306.18 | V_2924
ppm
00047
.00040
84.240 | Zn2062
ppm
. 00424
.00014
3.2340 | Zr3391
ppm
. 01548
.08044
519.46 | | | #1
#2
#3 | 00047
00200
00098 | .29793
.29778
.29733 | .00290
00026
00538 | 00346
.00200
00123 | 00073
00068
00001 | .00408
.00430
.00433 | 07666
.07165
.05147 | | | Check ?
High Limit
Low Limit | Chk Pass | | Int. Std.
Units
Avg
Stddev
%RSD | Y_2243
Cts/S
13560.
29.
.21049 | Y_3600
Cts/S
96968.
230.
.23732 | Y_3774
Cts/S
4435.2
14.5
.32747 | | | | | | | #1
#2
#3 | 13528.
13584.
13567. | 97140.
96707.
97059. | 4418.4
4444.4
4442.7 | | | | | | | • | | | | | | | | | |------------------------------------|----------------|----------------|----------------|----------------|---------------|----------------|---------------|----------------| | Elem | Ag3280 | Al3082 | As1890 | B_2496 | Ba4554 | Be3131 | Ca4226 | Cd2288 | | Units | ppm | Avg | 00284 | 00416 | . 00119 | . 03325 | .00997 | .00009 | 178.46 | . 00075 | | Stddev | .00032 | .00684 | .00220 | .00265 | .00067 | .00001 | .13 | .00008 | | %RSD | 11.304 | 164.38 | 184.27 | 7.9769 | 6.7111 | 7.3277 | .07132 | 10.178 | | #1 | 00277 | .00166 | .00046 | .03282 | .01042 | .00009 | 178.35 | .00069 | | #2 | 00256 | 01169 | 00054 | .03609 | .00920 | .00009 | 178.60 | .00083 | | #3 | 00319 | 00245 | .00367 | .03084 | .01029 | .00010 | 178.44 | .00072 | | Check ?
High Limit
Low Limit | Chk Pass | Elem | Co2286 | Cr2677 | Cu2247 | Fe2611 | K_7664 | Li6707 | Mg2790 | Mn2576 | | Units | ppm | Avg | 00023 | . 00405 | . 00173 | . 01496 | 3.4726 | . 03911 | 152.33 | . 02450 | | Stddev | .00053 | .00064 | .00112 | .02213 | .0546 | .00222 | .27 | .00188 | | %RSD | 235.19 | 15.906 | 64.542 | 147.86 | 1.5717 | 5.6832 | .17576 | 7.6579 | | #1 | .00017 | .00372 | .00285 | .03121 | 3.5237 | .04166 | 152.12 | .02667 | | #2 | 00002 | .00365 | .00062 | .02393 | 3.4151 | .03814 | 152.24 | .02332 | | #3 | 00083 | .00480 | .00171 | 01024 | 3.4791 | .03755 | 152.63 | .02352 | | Check ?
High Limit
Low Limit | Chk Pass | Elem | Mo2020 | Na5895 | Ni2316 | P_2149 | Pb2203 | Sb2068 | Se1960 | Si2124 | | Units | ppm | Avg | . 00035 | 164.49 | 00050 | . 00132 | 00078 | . 00240 | 00900 | 3.6003 | | Stddev | .00054 | .31 | .00134 | .00435 | .00289 | .00075 | .01131 | .0086 | | %RSD | 153.82 | .19031 | 265.21 | 330.29 | 370.63 | 31.417 | 125.72 | .23889 | | #1 | .00080 | 164.84 | .00007 | .00433 | 00060 |
.00192 | 01564 | 3.5976 | | #2 | .00049 | 164.23 | .00045 | 00367 | .00202 | .00201 | .00406 | 3.6099 | | #3 | 00025 | 164.41 | 00203 | .00328 | 00376 | .00327 | 01541 | 3.5933 | | Check ?
High Limit
Low Limit | Chk Pass | Sample Nar
Method: ICF
User: JYH
Comment: | | 3_6010_200 | .cquired: 5/1
.7WATER_
Custom II | 3YLINES(v8 | | ype: Unk
ode: CONC
: | Corr. Fa | ctor: 1.00000(| |--|---|---|--|--|--|---|---|----------------| | Elem
Units
Avg
Stddev
%RSD | Sn1899
ppm
00142
.00121
85.712 | Sr4077
ppm
. 46806
.00092
.19554 | Ti3372
ppm
02969
.00290
9.7687 | TI1908
ppm
00309
.00232
74.900 | V_2924
ppm
00035
.00150
433.67 | Zn2062
ppm
. 00264
.00011
4.0914 | Zr3391
ppm
. 14565
.17955
123.28 | | | #1
#2
#3 | 00106
00277
00042 | .46700
.46854
.46863 | 02753
02855
03298 | 00274
00097
00557 | .00138
00133
00108 | .00255
.00276
.00260 | .19640
05381
.29437 | | | Check ?
High Limit
Low Limit | Chk Pass | | Int. Std.
Units
Avg
Stddev
%RSD | Y_2243
Cts/S
12936.
11.
.08329 | Y_3600
Cts/S
92241.
362.
.39257 | Y_3774
Cts/S
4410.4
15.7
.35501 | | | | | | | #1
#2
#3 | 12924.
12942.
12943. | 92562.
91849.
92313. | 4394.0
4412.2
4425.2 | | | | | | | • | | | | | | | | | |------------------------------------|----------------|----------------|----------------|----------------|----------------|----------------|---------------|----------------| | Elem | Ag3280 | Al3082 | As1890 | B_2496 | Ba4554 | Be3131 | Ca4226 | Cd2288 | | Units | ppm | Avg | 00221 | . 03470 | . 00094 | . 06529 | .19828 | .00012 | 84.908 | . 00037 | | Stddev | .00186 | .00690 | .00346 | .00179 | .00051 | .00005 | .362 | .00004 | | %RSD | 84.255 | 19.876 | 366.88 | 2.7457 | .25497 | 39.364 | .42600 | 10.694 | | #1 | 00435 | .02854 | .00323 | .06731 | .19870 | .00017 | 85.000 | .00033 | | #2 | 00131 | .03342 | .00264 | .06387 | .19843 | .00009 | 85.214 | .00041 | | #3 | 00097 | .04215 | 00304 | .06469 | .19772 | .00010 | 84.509 | .00037 | | Check ?
High Limit
Low Limit | Chk Pass | Elem | Co2286 | Cr2677 | Cu2247 | Fe2611 | K_7664 | Li6707 | Mg2790 | Mn2576 | | Units | ppm | Avg | . 00074 | .00143 | .00082 | .46033 | 4.4448 | . 05186 | 34.518 | . 25694 | | Stddev | .00010 | .00027 | .00155 | .01443 | .0020 | .00331 | .115 | .00517 | | %RSD | 13.056 | 18.623 | 188.88 | 3.1339 | .04550 | 6.3813 | .33366 | 2.0123 | | #1 | .00063 | .00168 | 00006 | .47669 | 4.4470 | .05515 | 34.394 | .26290 | | #2 | .00075 | .00115 | .00262 | .45485 | 4.4444 | .05192 | 34.537 | .25372 | | #3 | .00083 | .00145 | 00008 | .44944 | 4.4430 | .04853 | 34.622 | .25419 | | Check ?
High Limit
Low Limit | Chk Pass | Elem | Mo2020 | Na5895 | Ni2316 | P_2149 | Pb2203 | Sb2068 | Se1960 | Si2124 | | Units | ppm | Avg | . 00105 | 52.687 | 00023 | 00168 | . 00157 | . 00057 | 00398 | 4.2464 | | Stddev | .00021 | .218 | .00065 | .00239 | .00038 | .00417 | .00473 | .0020 | | %RSD | 20.125 | .41458 | 286.57 | 142.57 | 24.378 | 738.46 | 118.74 | .04700 | | #1 | .00082 | 52.736 | 00077 | 00010 | .00199 | .00382 | .00118 | 4.2463 | | #2 | .00108 | 52.877 | .00050 | 00051 | .00124 | 00414 | 00502 | 4.2485 | | #3 | .00124 | 52.449 | 00042 | 00443 | .00149 | .00201 | 00811 | 4.2445 | | Check ?
High Limit
Low Limit | Chk Pass | Sample Nar
Method: ICF
User: JYH
Comment: | | 3_6010_200 | • | • | | ype: Unk
ode: CONC
: | Corr. Fac | ctor: 1.00000(| |--|---|--|---|--|--|---|---|----------------| | Elem
Units
Avg
Stddev
%RSD | Sn1899
ppm
00038
.00078
209.23 | Sr4077
ppm
2.3688
.0102
.43207 | Ti3372
ppm
01488
.00360
24.193 | TI1908
ppm
00484
.00299
61.868 | V_2924
ppm
00010
.00095
971.12 | Zn2062
ppm
.00356
.00014
4.0643 | Zr3391
ppm
. 28616
.43165
150.84 | | | #1
#2
#3 | 00096
.00052
00068 | 2.3745
2.3750
2.3570 | 01083
01772
01610 | 00741
00556
00155 | 00114
.00073
.00012 | .00342
.00354
.00371 | .10023
.77962
02136 | | | Check ?
High Limit
Low Limit | Chk Pass | | Int. Std.
Units
Avg
Stddev
%RSD | Y_2243
Cts/S
13421.
23.
.17267 | Y_3600
Cts/S
96021.
171.
.17786 | Y_3774
Cts/S
4384.2
6.2
.14183 | | | | | | | #1
#2
#3 | 13448.
13407.
13408. | 95957.
95891.
96214. | 4389.1
4377.2
4386.3 | | | | | | | Sample Name: CCV Acquired: 5/16/2016 16:27:40 Type: QC Method: ICP-THERMO3_6010_200.7WATER_3YLINES(v873) Mode: CONC Corr. Factor: 1.000000 User: JYH Custom ID1: Custom ID2: Custom ID3: Comment: | | | | | | | | | |--|----------------|----------------|----------------|----------------|----------------|----------------|----------------|--| | Elem | Ag3280 | Al3082 | As1890 | B_2496 | Ba4554 | Be3131 | Ca4226 | | | Units | ppm | | Avg | . 40185 | 10.161 | . 40427 | . 50191 | 1.0000 | . 04968 | 9.7702 | | | Stddev | .00073 | .019 | .00282 | .00229 | .0036 | .00003 | .0270 | | | %RSD | .18064 | .18737 | .69768 | .45575 | .36312 | .05253 | .27649 | | | #1 | .40210 | 10.155 | .40712 | .50013 | .99698 | .04965 | 9.7428 | | | #2 | .40103 | 10.146 | .40148 | .50449 | 1.0040 | .04970 | 9.7710 | | | #3 | .40242 | 10.182 | .40421 | .50111 | .99908 | .04969 | 9.7968 | | | Check ?
Value
Range | Chk Pass | | Elem | Cd2288 | Co2286 | Cr2677 | Cu2247 | Fe2611 | K_7664 | Li6707 | | | Units | ppm | | Avg | .04998 | . 20745 | . 52135 | . 51927 | 4.1038 | 50.185 | 1.0041 | | | Stddev | .00015 | .00082 | .00250 | .00059 | .0097 | .193 | .0051 | | | %RSD | .30247 | .39691 | .48014 | .11294 | .23703 | .38527 | .50437 | | | #1 | .05015 | .20710 | .51928 | .51882 | 4.0927 | 50.003 | .99832 | | | #2 | .04987 | .20686 | .52065 | .51906 | 4.1080 | 50.388 | 1.0078 | | | #3 | .04991 | .20839 | .52413 | .51993 | 4.1107 | 50.164 | 1.0061 | | | Check ?
Value
Range | Chk Pass | | Elem | Mg2790 | Mn2576 | Mo2020 | Na5895 | Ni2316 | P_2149 | Pb2203 | | | Units | ppm | | Avg | 10.186 | . 50267 | . 99950 | 50.963 | . 52722 | 10.219 | . 52662 | | | Stddev | .062 | .00542 | .00296 | .097 | .00130 | .026 | .00238 | | | %RSD | .60618 | 1.0791 | .29565 | .19102 | .24648 | .25115 | .45139 | | | #1 | 10.179 | .49687 | 1.0028 | 50.894 | .52808 | 10.224 | .52571 | | | #2 | 10.129 | .50352 | .99843 | 51.074 | .52572 | 10.191 | .52932 | | | #3 | 10.251 | .50762 | .99723 | 50.921 | .52785 | 10.242 | .52484 | | | Check ?
Value
Range | Chk Pass | | Sample Nam
Method: ICP-
User: JYH
Comment: | | 6010_200.7 | 16/2016 16:2
WATER_3YI
Custom ID2: | LINES(v873) | pe: QC
) Mode:
tom ID3: | CONC (| Corr. Factor: 1 | .000000 | |---|---|--|--|---|---|---|---|---------| | Elem
Units
Avg
Stddev
%RSD | Sb2068
ppm
1.2118
.0032
.26379 | Se1960
ppm
.38489
.00489
1.2696 | Si2124
ppm
5.1118
.0075
.14724 | Sn1899
ppm
1.0332
.0004
.03534 | Sr4077
ppm
. 99495
.00293
.29431 | Ti3372
ppm
. 99741
.00545
.54670 | TI1908
ppm
. 51012
.00256
.50184 | | | #1
#2
#3 | 1.2151
1.2115
1.2087 | .38131
.39046
.38291 | 5.1169
5.1031
5.1154 | 1.0329
1.0336
1.0330 | .99202
.99788
.99496 | .99584
.99291
1.0035 | .51089
.50727
.51221 | | | Check ?
Value
Range | Chk Pass | | Elem
Units
Avg
Stddev
%RSD | V_2924
ppm
1.0187
.0047
.45832 | Zn2062
ppm
1.0518
.0013
.11930 | Zr3391
ppm
F .68764
.39142
56.922 | | | | | | | #1
#2
#3 | 1.0138
1.0194
1.0230 | 1.0514
1.0509
1.0533 | .29954
.68109
1.0823 | | | | | | | Check ?
Value
Range | Chk Pass | Chk Pass | Chk Fail
1.0000
-10.000% | | | | | | | Int. Std.
Units
Avg
Stddev
%RSD | Y_2243
Cts/S
13278.
30.
.22278 | Y_3600
Cts/S
94606.
662.
.70002 | Y_3774
Cts/S
4307.4
40.5
.94118 | | | | | | | #1
#2
#3 | 13250.
13275.
13309. | 94973.
95002.
93841. | 4319.9
4340.3
4262.1 | | | | | | | • | | | | | | | | | |
------------------------------------|----------------|----------|----------------|----------|----------|----------------|----------------|--|--| | Elem | Ag3280 | Al3082 | As1890 | B_2496 | Ba4554 | Be3131 | Ca4226 | | | | Units | ppm | | | Avg | 00317 | 01543 | 00103 | .00088 | .00105 | .00007 | 02852 | | | | Stddev | .00229 | .00720 | .00131 | .00093 | .00068 | .00002 | .01419 | | | | %RSD | 72.019 | 46.643 | 127.33 | 105.47 | 64.369 | 34.236 | 49.756 | | | | #1 | 00313 | 01290 | 00080 | .00090 | .00061 | .00004 | 03249 | | | | #2 | 00548 | 00984 | 00244 | .00180 | .00071 | .00009 | 04031 | | | | #3 | 00091 | 02355 | .00015 | 00006 | .00183 | .00008 | 01277 | | | | Check ?
High Limit
Low Limit | Chk Pass | | | Elem | Cd2288 | Co2286 | Cr2677 | Cu2247 | Fe2611 | K_7664 | Li6707 | | | | Units | ppm | | | Avg | . 00012 | 00015 | .00102 | 00103 | .01231 | . 26432 | . 00626 | | | | Stddev | .00004 | .00039 | .00005 | .00084 | .00620 | .07959 | .00354 | | | | %RSD | 37.099 | 255.12 | 5.2786 | 81.731 | 50.389 | 30.112 | 56.440 | | | | #1 | .00016 | 00059 | .00102 | 00075 | .01751 | .29839 | .00382 | | | | #2 | .00012 | .00015 | .00097 | 00036 | .00544 | .17336 | .01032 | | | | #3 | .00008 | 00002 | .00108 | 00197 | .01399 | .32121 | .00465 | | | | Check ?
High Limit
Low Limit | Chk Pass | | | Elem | Mg2790 | Mn2576 | Mo2020 | Na5895 | Ni2316 | P_2149 | Pb2203 | | | | Units | ppm | | | Avg | . 03378 | .00011 | . 00435 | 01783 | 00125 | . 00261 | . 00075 | | | | Stddev | .04413 | .00242 | .00023 | .01234 | .00094 | .00554 | .00164 | | | | %RSD | 130.63 | 2305.7 | 5.2176 | 69.255 | 75.280 | 212.30 | 218.15 | | | | #1 | .04847 | 00119 | .00412 | 01693 | 00095 | 00331 | .00259 | | | | #2 | .06871 | 00139 | .00457 | 03059 | 00230 | .00766 | .00023 | | | | #3 | 01582 | .00290 | .00438 | 00595 | 00050 | .00347 | 00057 | | | | Check ?
High Limit
Low Limit | Chk Pass | | | Sample Nam
Method: ICP
User: JYH
Comment: | ne: CCB /
-THERMO3_
Custom I | | | LINES(v873 | pe: Blank
) Mode:
tom ID3: | CONC (| Corr. Factor: 1 | 1.000000 | |--|---|--|---|--|---|--|---|----------| | Elem
Units
Avg
Stddev
%RSD | Sb2068
ppm
. 00389
.00405
104.29 | Se1960
ppm
00336
.00386
114.73 | Si2124
ppm
02829
.00115
4.0821 | Sn1899
ppm
00029
.00037
128.97 | Sr4077
ppm
. 00064
.00031
48.745 | Ti3372
ppm
00722
.00633
87.772 | TI1908
ppm
. 00180
.00336
186.54 | | | #1
#2
#3 | .00138
.00171
.00856 | 00572
00546
.00109 | 02696
02887
02904 | 00048
.00014
00052 | .00057
.00037
.00098 | 01452
00385
00328 | .00566
00041
.00014 | | | Check ?
High Limit
Low Limit | Chk Pass | | Elem
Units
Avg
Stddev
%RSD | V_2924
ppm
. 00136
.00047
34.776 | Zn2062
ppm
.00016
.00023
146.51 | Zr3391
ppm
F .42641
.27511
64.519 | | | | | | | #1
#2
#3 | .00164
.00081
.00162 | .00036
00009
.00020 | .52708
.63701
.11514 | | | | | | | Check ?
High Limit
Low Limit | Chk Pass | Chk Pass | Chk Fail
.04000
04000 | | | | | | | Int. Std.
Units
Avg
Stddev
%RSD | Y_2243
Cts/S
13268.
12.
.09022 | Y_3600
Cts/S
95003.
456.
.47956 | Y_3774
Cts/S
4249.0
9.7
.22838 | | | | | | | #1
#2
#3 | 13280.
13256.
13269. | 94757.
94723.
95528. | 4246.1
4241.1
4259.9 | | | | | | | • | | | | | | | | | | | |------------------------------------|----------------|----------------|----------------|----------------|----------------|----------------|---------------|----------------|--|--| | Elem | Ag3280 | Al3082 | As1890 | B_2496 | Ba4554 | Be3131 | Ca4226 | Cd2288 | | | | Units | ppm | | | Avg | 00151 | . 02548 | .00156 | . 06781 | . 19943 | .00006 | 83.271 | . 00048 | | | | Stddev | .00087 | .00471 | .00070 | .00036 | .00127 | .00002 | .298 | .00005 | | | | %RSD | 57.730 | 18.505 | 45.295 | .53585 | .63471 | 30.398 | .35760 | 10.913 | | | | #1 | 00175 | .02010 | .00079 | .06745 | .19799 | .00005 | 83.013 | .00051 | | | | #2 | 00224 | .02888 | .00169 | .06818 | .20037 | .00008 | 83.203 | .00050 | | | | #3 | 00054 | .02746 | .00218 | .06781 | .19993 | .00005 | 83.597 | .00042 | | | | Check ?
High Limit
Low Limit | Chk Pass | | | Elem | Co2286 | Cr2677 | Cu2247 | Fe2611 | K_7664 | Li6707 | Mg2790 | Mn2576 | | | | Units | ppm | | | Avg | .00038 | . 00137 | . 00125 | . 41978 | 4.3750 | . 05518 | 33.603 | . 23007 | | | | Stddev | .00040 | .00080 | .00053 | .02714 | .0804 | .00279 | .299 | .00101 | | | | %RSD | 104.70 | 58.514 | 42.280 | 6.4648 | 1.8374 | 5.0540 | .89041 | .43820 | | | | #1 | .00006 | .00046 | .00068 | .40974 | 4.2983 | .05229 | 33.684 | .23046 | | | | #2 | .00083 | .00171 | .00135 | .45050 | 4.4586 | .05786 | 33.271 | .23083 | | | | #3 | .00026 | .00195 | .00173 | .39909 | 4.3680 | .05538 | 33.853 | .22893 | | | | Check ?
High Limit
Low Limit | Chk Pass | | | Elem | Mo2020 | Na5895 | Ni2316 | P_2149 | Pb2203 | Sb2068 | Se1960 | Si2124 | | | | Units | ppm | | | Avg | . 00184 | 54.876 | .00053 | . 02688 | . 00284 | 00296 | 00360 | 4.1988 | | | | Stddev | .00033 | .233 | .00055 | .00487 | .00273 | .00214 | .01014 | .0112 | | | | %RSD | 17.832 | .42406 | 104.22 | 18.121 | 95.957 | 72.249 | 281.26 | .26754 | | | | #1 | .00149 | 54.631 | .00002 | .02222 | .00436 | 00255 | .00758 | 4.2096 | | | | #2 | .00189 | 54.903 | .00045 | .02648 | .00448 | 00528 | 01219 | 4.1872 | | | | #3 | .00214 | 55.095 | .00111 | .03193 | 00031 | 00106 | 00620 | 4.1995 | | | | Check ?
High Limit
Low Limit | Chk Pass | | | Sample Name: L1605050704 Acquired: 5/16/2016 16:35:17 Type: Unk Method: ICP-THERMO3_6010_200.7WATER_3YLINES(v873) Mode: CONC Corr. Factor: 1.000000 User: JYH Custom ID1: Custom ID2: Custom ID3: Comment: | | | | | | | | | |---|---|--|--|--|---|---|---|--| | Elem
Units
Avg
Stddev
%RSD | Sn1899
ppm
00009
.00092
1032.9 | Sr4077
ppm
2.3442
.0102
.43561 | Ti3372
ppm
01311
.00182
13.857 | TI1908
ppm
00283
.00336
118.57 | V_2924
ppm
. 00091
.00036
39.284 | Zn2062
ppm
. 00539
.00019
3.6074 | Zr3391
ppm
. 20185
.36829
182.45 | | | #1
#2
#3 | .00013
.00070
00110 | 2.3339
2.3444
2.3543 | 01481
01120
01334 | 00494
00459
.00104 | .00118
.00103
.00050 | .00536
.00560
.00521 | .26137
.53676
19257 | | | Check ?
High Limit
Low Limit | Chk Pass | | Int. Std.
Units
Avg
Stddev
%RSD | Y_2243
Cts/S
13287.
40.
.30473 | Y_3600
Cts/S
95159.
327.
.34411 | Y_3774
Cts/S
4361.1
44.7
1.0246 | | | | | | | #1
#2
#3 | 13303.
13241.
13316. | 95474.
94820.
95185. | 4404.9
4362.8
4315.6 | | | | | | | • | | | | | | | | | | | |------------------------------------|----------------|----------------|----------------|----------------|----------------|----------------|----------------|----------------|--|--| | Elem | Ag3280 | Al3082 | As1890 | B_2496 | Ba4554 | Be3131 | Ca4226 | Cd2288 | | | | Units | ppm | | | Avg | 00268 | .10631 | .00089 | . 02272 | .03580 | .00006 | 56.649 | . 00057 | | | | Stddev | .00046 | .00609 | .00185 | .00199 | .00118 | .00002 | .089 | .00003 | | | | %RSD | 17.287 | 5.7250 | 208.25 | 8.7680 | 3.3036 | 33.936 | .15762 | 4.4793 | | | | #1 | 00242 | .11011 | 00124 | .02287 | .03543 | .00004 | 56.635 | .00054 | | | | #2 | 00241 | .09929 | .00177 | .02066 | .03712 | .00006 | 56.745 | .00058 | | | | #3 | 00322 | .10953 | .00214 | .02464 | .03484 | .00008 | 56.568 | .00059 | | | | Check ?
High Limit
Low Limit | Chk Pass | | | Elem | Co2286 | Cr2677 | Cu2247 | Fe2611 | K_7664 | Li6707 | Mg2790 | Mn2576 | | | | Units | ppm | | | Avg | .00087 | . 00460 | . 00262 | . 17264 | . 86025 | . 01249 | 23.653 | . 06864 | | | | Stddev | .00013 | .00076 | .00204 | .01910 | .07870 | .00460 | .181 | .00386 | | | | %RSD | 14.938 | 16.533 | 77.850 | 11.065 | 9.1489 | 36.831 | .76704 | 5.6227 | | | | #1 | .00072 | .00505 | .00178 | .19461 | .85478 | .01460 | 23.446 | .07259 | | | | #2 | .00093 | .00502 | .00495 | .15994 | .94155 | .01566 | 23.781 | .06487 | | | | #3 | .00096 | .00372 | .00113 | .16337 | .78443 | .00721 | 23.733 | .06848 | | | | Check ?
High Limit
Low Limit | Chk Pass | | | Elem | Mo2020 | Na5895 | Ni2316 | P_2149 | Pb2203 | Sb2068 | Se1960 | Si2124 | | | | Units | ppm | | | Avg | . 00127 | 146.85 | . 00117 | . 02130 | . 00045 | 00161 | . 00831 | 4.4775 | | | | Stddev | .00029 | .62 | .00118 | .00388 | .00559 | .00201 | .00839 | .0033 | | | | %RSD | 22.924 | .42204 |
101.32 | 18.236 | 1241.2 | 124.90 | 100.97 | .07291 | | | | #1 | .00114 | 146.77 | .00091 | .02493 | 00555 | 00393 | .00160 | 4.4776 | | | | #2 | .00107 | 147.51 | .00014 | .01721 | .00549 | 00047 | .01771 | 4.4742 | | | | #3 | .00161 | 146.28 | .00246 | .02175 | .00141 | 00042 | .00561 | 4.4807 | | | | Check ?
High Limit
Low Limit | Chk Pass | | | Sample Name: L1605050705 Acquired: 5/16/2016 16:39:13 Type: Unk Method: ICP-THERMO3_6010_200.7WATER_3YLINES(v873) Mode: CONC Corr. Factor: 1.000000 User: JYH Custom ID1: Custom ID2: Custom ID3: Comment: | | | | | | | | | |---|---|---|--|--|---|---|---|--| | Elem
Units
Avg
Stddev
%RSD | Sn1899
ppm
00039
.00029
74.005 | Sr4077
ppm
. 20880
.00070
.33384 | Ti3372
ppm
00749
.00087
11.667 | TI1908
ppm
00207
.00160
77.430 | V_2924
ppm
. 00195
.00028
14.474 | Zn2062
ppm
. 00386
.00022
5.7574 | Zr3391
ppm
. 20991
.42542
202.67 | | | #1
#2
#3 | 00007
00064
00047 | .20824
.20958
.20856 | 00840
00744
00665 | 00389
00085
00147 | .00163
.00204
.00218 | .00361
.00396
.00402 | .67977
.09910
14914 | | | Check ?
High Limit
Low Limit | Chk Pass | | Int. Std.
Units
Avg
Stddev
%RSD | Y_2243
Cts/S
13194.
40.
.30048 | Y_3600
Cts/S
94165.
553.
.58694 | Y_3774
Cts/S
4374.3
30.3
.69189 | | | | | | | #1
#2
#3 | 13226.
13206.
13149. | 94796.
93935.
93765. | 4353.1
4360.8
4408.9 | | | | | | | • | | | | | | | | | | | |------------------------------------|---------------|----------------|----------------|----------------|----------------|----------------|----------------|--|--|--| | Elem | Ag3280 | Al3082 | As1890 | B_2496 | Ba4554 | Be3131 | Ca4226 | | | | | Units | ppm | | | | Avg | 00336 | 00416 | .00952 | . 03917 | . 40224 | . 00009 | 107.53 | | | | | Stddev | .00015 | .00357 | .00156 | .00077 | .00150 | .00004 | .27 | | | | | %RSD | 4.4543 | 85.804 | 16.440 | 1.9618 | .37233 | 45.280 | .25465 | | | | | #1 | 00345 | 00011 | .00772 | .03830 | .40051 | .00005 | 107.22 | | | | | #2 | 00344 | 00552 | .01027 | .03976 | .40310 | .00014 | 107.66 | | | | | #3 | 00319 | 00684 | .01057 | .03944 | .40311 | .00010 | 107.72 | | | | | Check ?
High Limit
Low Limit | Chk Pass | | | | Elem | Cd2288 | Co2286 | Cr2677 | Cu2247 | Fe2611 | K_7664 | Li6707 | | | | | Units | ppm | | | | Avg | .00057 | 00015 | .00081 | . 00126 | 8.0391 | . 94378 | . 01164 | | | | | Stddev | .00031 | .00018 | .00117 | .00064 | .0100 | .02378 | .00114 | | | | | %RSD | 54.838 | 123.74 | 143.19 | 50.613 | .12379 | 2.5193 | 9.8232 | | | | | #1 | .00021 | 00000 | .00165 | .00196 | 8.0276 | .92194 | .01134 | | | | | #2 | .00076 | 00009 | 00052 | .00071 | 8.0444 | .96911 | .01290 | | | | | #3 | .00073 | 00036 | .00131 | .00112 | 8.0452 | .94028 | .01067 | | | | | Check ?
High Limit
Low Limit | Chk Pass | | | | Elem | Mg2790 | Mn2576 | Mo2020 | Na5895 | Ni2316 | P_2149 | Pb2203 | | | | | Units | ppm | | | | Avg | 46.686 | . 52841 | . 00104 | 35.412 | 00131 | . 75525 | 00046 | | | | | Stddev | .350 | .00666 | .00037 | .093 | .00095 | .00462 | .00221 | | | | | %RSD | .74915 | 1.2598 | 35.961 | .26302 | 72.667 | .61207 | 478.22 | | | | | #1 | 46.866 | .52253 | .00084 | 35.304 | 00241 | .75955 | 00079 | | | | | #2 | 46.282 | .52706 | .00080 | 35.461 | 00072 | .75582 | 00249 | | | | | #3 | 46.908 | .53564 | .00147 | 35.470 | 00080 | .75036 | .00189 | | | | | Check ?
High Limit
Low Limit | Chk Pass | | | | Sample Name
Method: ICP-1
User: JYH
Comment: | |)10_200.7W <i>A</i> | 6 16:43:10
ES(v873)
Custom | Type: Unk
Mode: CONO
ID3: | C Corr. F | Factor: 1.00000(| | |---|---|--|--|--|---|--|--| | Elem
Units
Avg
Stddev
%RSD | Sb2068
ppm
. 00038
.00128
339.77 | Se1960
ppm
00387
.00521
134.56 | Si2124
ppm
6.6514
.0072
.10798 | Sn1899
ppm
00027
.00167
608.46 | Sr4077
ppm
. 45688
.00222
.48628 | Ti3372
ppm
01678
.00860
51.278 | TI1908
ppm
00096
.00503
524.82 | | #1
#2
#3 | .00064
.00150
00101 | 00780
.00204
00585 | 6.6501
6.6592
6.6450 | .00076
.00062
00220 | .45483
.45657
.45924 | 01497
02614
00922 | 00660
.00066
.00307 | | Check ?
High Limit
Low Limit | Chk Pass | Elem
Units
Avg
Stddev
%RSD | V_2924
ppm
. 00019
.00078
418.98 | Zn2062
ppm
.00189
.00025
13.138 | Zr3391
ppm
F10390
.58270
560.84 | | | | | | #1
#2
#3 | .00064
.00064
00072 | .00199
.00208
.00161 | 76418
.11412
.33836 | | | | | | Check ?
High Limit
Low Limit | Chk Pass | Chk Pass | Chk Fail
36.000
04000 | | | | | | Int. Std.
Units
Avg
Stddev
%RSD | Y_2243
Cts/S
13287.
25.
.18476 | Y_3600
Cts/S
95106.
441.
.46351 | Y_3774
Cts/S
4398.9
29.6
.67266 | | | | | | #1
#2
#3 | 13310.
13261.
13291. | 94804.
94902.
95612. | 4365.2
4420.6
4410.9 | | | | | | • | | | | | | | | | | | |------------------------------------|----------|---------------|----------------|----------------|----------------|----------------|---------------|----------------|--|--| | Elem | Ag3280 | Al3082 | As1890 | B_2496 | Ba4554 | Be3131 | Ca4226 | Cd2288 | | | | Units | ppm | | | Avg | 00323 | 01456 | . 01432 | .03809 | . 50088 | .00005 | 118.87 | . 00064 | | | | Stddev | .00075 | .00528 | .00072 | .00179 | .00273 | .00001 | .36 | .00017 | | | | %RSD | 23.273 | 36.290 | 4.9996 | 4.6917 | .54481 | 19.176 | .30297 | 26.492 | | | | #1 | 00302 | 01153 | .01474 | .03654 | .50182 | .00004 | 119.27 | .00083 | | | | #2 | 00261 | 01149 | .01473 | .03768 | .50301 | .00006 | 118.78 | .00055 | | | | #3 | 00407 | 02066 | .01350 | .04004 | .49780 | .00006 | 118.57 | .00053 | | | | Check ?
High Limit
Low Limit | Chk Pass | | | Elem | Co2286 | Cr2677 | Cu2247 | Fe2611 | K_7664 | Li6707 | Mg2790 | Mn2576 | | | | Units | ppm | | | Avg | 00034 | .00195 | .00159 | 10.461 | . 90958 | . 01096 | 46.189 | . 22501 | | | | Stddev | .00023 | .00052 | .00148 | .042 | .11876 | .00182 | .120 | .00266 | | | | %RSD | 69.129 | 26.614 | 93.127 | .40197 | 13.056 | 16.632 | .26070 | 1.1814 | | | | #1 | 00060 | .00226 | .00092 | 10.444 | .88655 | .00907 | 46.267 | .22803 | | | | #2 | 00017 | .00135 | .00056 | 10.509 | .80402 | .01270 | 46.250 | .22304 | | | | #3 | 00024 | .00224 | .00328 | 10.430 | 1.0382 | .01111 | 46.050 | .22396 | | | | Check ?
High Limit
Low Limit | Chk Pass | | | Elem | Mo2020 | Na5895 | Ni2316 | P_2149 | Pb2203 | Sb2068 | Se1960 | Si2124 | | | | Units | ppm | | | Avg | .00058 | 37.110 | 00135 | . 61211 | . 00221 | 00206 | 00633 | 6.7308 | | | | Stddev | .00020 | .149 | .00099 | .00934 | .00104 | .00186 | .00801 | .0090 | | | | %RSD | 34.469 | .40081 | 73.226 | 1.5256 | 47.042 | 90.609 | 126.52 | .13412 | | | | #1 | .00079 | 37.244 | 00132 | .60141 | .00260 | 00337 | .00237 | 6.7302 | | | | #2 | .00054 | 37.137 | 00236 | .61631 | .00103 | 00288 | 00796 | 6.7221 | | | | #3 | .00040 | 36.950 | 00038 | .61862 | .00298 | .00008 | 01339 | 6.7401 | | | | Check ?
High Limit
Low Limit | Chk Pass | | | Sample Nar
Method: ICF
User: JYH
Comment: | | 3_6010_200 | • | • | | ype: Unk
ode: CONC
: | Corr. Fa | actor: 1.00000(| |--|---|---|--|--|---|---|--|-----------------| | Elem
Units
Avg
Stddev
%RSD | Sn1899
ppm
. 00024
.00108
455.19 | Sr4077
ppm
. 49067
.00056
.11390 | Ti3372
ppm
00983
.00513
52.150 | TI1908
ppm
00430
.00152
35.383 | V_2924
ppm
. 00064
.00159
248.96 | Zn2062
ppm
. 00236
.00006
2.5921 | Zr3391
ppm
02274
.11637
511.72 | | | #1
#2
#3 | .00023
00084
.00132 | .49005
.49082
.49113 | 01425
00421
01102 | 00601
00310
00378 | 00004
00050
.00246 | .00230
.00242
.00235 | .09153
01865
14110 | | | Check ?
High Limit
Low Limit | Chk Pass | | Int. Std.
Units
Avg
Stddev
%RSD | Y_2243
Cts/S
13300.
37.
.27582 | Y_3600
Cts/S
95354.
57.
.05963 | Y_3774
Cts/S
4424.8
17.3
.39001 | | | | | | | #1
#2
#3 | 13274.
13283.
13342. | 95369.
95291.
95402. |
4406.1
4428.0
4440.2 | | | | | | | • | | | | | | | | | | | |------------------------------------|----------------|----------------|----------------|----------------|----------------|----------------|----------------|----------------|--|--| | Elem | Ag3280 | Al3082 | As1890 | B_2496 | Ba4554 | Be3131 | Ca4226 | Cd2288 | | | | Units | ppm | | | Avg | 00263 | .00013 | 00115 | . 01169 | . 07142 | .00008 | 83.053 | . 00042 | | | | Stddev | .00083 | .00397 | .00152 | .00220 | .00032 | .00006 | .323 | .00027 | | | | %RSD | 31.560 | 3006.7 | 131.70 | 18.774 | .45132 | 79.573 | .38885 | 64.439 | | | | #1 | 00354 | .00433 | 00038 | .01379 | .07130 | .00001 | 83.206 | .00017 | | | | #2 | 00190 | 00037 | 00290 | .01188 | .07178 | .00014 | 83.271 | .00071 | | | | #3 | 00246 | 00356 | 00018 | .00941 | .07116 | .00008 | 82.682 | .00039 | | | | Check ?
High Limit
Low Limit | Chk Pass | | | Elem | Co2286 | Cr2677 | Cu2247 | Fe2611 | K_7664 | Li6707 | Mg2790 | Mn2576 | | | | Units | ppm | | | Avg | .00070 | . 00167 | .00469 | .04316 | . 31219 | . 01026 | 54.200 | . 21529 | | | | Stddev | .00040 | .00115 | .00077 | .01268 | .06297 | .00134 | .167 | .00312 | | | | %RSD | 56.487 | 68.833 | 16.481 | 29.385 | 20.171 | 13.072 | .30731 | 1.4500 | | | | #1 | .00053 | .00165 | .00405 | .03751 | .26692 | .00890 | 54.015 | .21889 | | | | #2 | .00116 | .00283 | .00555 | .05768 | .38410 | .01031 | 54.338 | .21334 | | | | #3 | .00042 | .00053 | .00448 | .03429 | .28555 | .01158 | 54.248 | .21365 | | | | Check ?
High Limit
Low Limit | Chk Pass | | | Elem | Mo2020 | Na5895 | Ni2316 | P_2149 | Pb2203 | Sb2068 | Se1960 | Si2124 | | | | Units | ppm | | | Avg | . 00094 | 58.334 | . 25503 | . 00897 | . 00063 | 00162 | . 00226 | 3.4991 | | | | Stddev | .00034 | .344 | .00033 | .00281 | .00232 | .00259 | .01001 | .0012 | | | | %RSD | 36.659 | .59048 | .12983 | 31.305 | 370.66 | 160.12 | 443.57 | .03448 | | | | #1 | .00124 | 58.306 | .25531 | .00792 | .00264 | 00258 | .00378 | 3.4994 | | | | #2 | .00101 | 58.691 | .25466 | .01215 | 00191 | .00132 | .01142 | 3.4978 | | | | #3 | .00056 | 58.004 | .25511 | .00684 | .00115 | 00358 | 00843 | 3.5002 | | | | Check ?
High Limit
Low Limit | Chk Pass | | | Sample Nar
Method: ICF
User: JYH
Comment: | | 3_6010_200 | .cquired: 5/1
.7WATER_
Custom IE | 3YLINES(v8 | | ype: Unk
ode: CONC
: | Corr. Fa | ctor: 1.00000(| |--|---|---|--|--|---|---|---|----------------| | Elem
Units
Avg
Stddev
%RSD | Sn1899
ppm
00049
.00011
21.510 | Sr4077
ppm
. 32034
.00148
.46191 | Ti3372
ppm
01323
.00365
27.544 | TI1908
ppm
00269
.00174
64.524 | V_2924
ppm
. 00032
.00037
115.68 | Zn2062
ppm
. 00460
.00017
3.7784 | Zr3391
ppm
1.8974
.4706
24.803 | | | #1
#2
#3 | 00061
00045
00041 | .31953
.32204
.31944 | 01638
01408
00924 | 00070
00347
00390 | .00075
.00007
.00015 | .00473
.00440
.00467 | 2.4376
1.6784
1.5763 | | | Check ?
High Limit
Low Limit | Chk Pass | | Int. Std.
Units
Avg
Stddev
%RSD | Y_2243
Cts/S
13216.
29.
.22044 | Y_3600
Cts/S
94758.
779.
.82179 | Y_3774
Cts/S
4389.2
25.5
.58023 | | | | | | | #1
#2
#3 | 13233.
13183.
13233. | 95522.
93965.
94787. | 4405.4
4359.9
4402.4 | | | | | | | Sample Name: CCV Acquired: 5/16/2016 16:54:59 Type: QC Method: ICP-THERMO3_6010_200.7WATER_3YLINES(v873) Mode: CONC Corr. Factor: 1.000000 User: JYH Custom ID1: Custom ID2: Custom ID3: Comment: | | | | | | | | | | |--|----------------|----------------|----------------|----------------|----------------|----------------|----------------|--|--| | Elem | Ag3280 | Al3082 | As1890 | B_2496 | Ba4554 | Be3131 | Ca4226 | | | | Units | ppm | | | Avg | . 40462 | 10.178 | . 40884 | . 50795 | 1.0054 | . 04996 | 9.7639 | | | | Stddev | .00062 | .025 | .00133 | .00341 | .0022 | .00015 | .0304 | | | | %RSD | .15270 | .24964 | .32533 | .67053 | .21838 | .30043 | .31155 | | | | #1 | .40529 | 10.203 | .40731 | .50814 | 1.0046 | .05012 | 9.7946 | | | | #2 | .40407 | 10.179 | .40945 | .51125 | 1.0037 | .04995 | 9.7633 | | | | #3 | .40450 | 10.152 | .40975 | .50445 | 1.0079 | .04982 | 9.7338 | | | | Check ?
Value
Range | Chk Pass | | | Elem | Cd2288 | Co2286 | Cr2677 | Cu2247 | Fe2611 | K_7664 | Li6707 | | | | Units | ppm | | | Avg | . 04967 | . 20667 | . 52119 | . 51813 | 4.1469 | 50.371 | . 99764 | | | | Stddev | .00028 | .00016 | .00174 | .00209 | .0059 | .288 | .00392 | | | | %RSD | .55561 | .07558 | .33305 | .40305 | .14100 | .57271 | .39265 | | | | #1 | .04943 | .20678 | .52049 | .52035 | 4.1502 | 50.116 | .99513 | | | | #2 | .04962 | .20649 | .52317 | .51785 | 4.1505 | 50.314 | .99563 | | | | #3 | .04997 | .20673 | .51992 | .51620 | 4.1402 | 50.684 | 1.0022 | | | | Check ?
Value
Range | Chk Pass | | | Elem | Mg2790 | Mn2576 | Mo2020 | Na5895 | Ni2316 | P_2149 | Pb2203 | | | | Units | ppm | | | Avg | 10.214 | . 50422 | . 99512 | 51.204 | . 52801 | 10.271 | . 52950 | | | | Stddev | .070 | .00268 | .00558 | .174 | .00174 | .008 | .00411 | | | | %RSD | .68525 | .53190 | .56114 | .34024 | .32981 | .07986 | .77560 | | | | #1 | 10.158 | .50389 | 1.0005 | 51.126 | .53002 | 10.279 | .53292 | | | | #2 | 10.292 | .50171 | .99558 | 51.082 | .52709 | 10.263 | .53063 | | | | #3 | 10.190 | .50705 | .98933 | 51.404 | .52692 | 10.270 | .52494 | | | | Check ?
Value
Range | Chk Pass | | | Sample Nam
Method: ICP
User: JYH
Comment: | | 6010_200.7 | 16/2016 16:5
WATER_3Y
Custom ID2: | LINES(v873 | pe: QC
) Mode:
tom ID3: | CONC (| Corr. Factor: 1 | .000000 | |--|---|---|---|---|---|---|---|---------| | Elem
Units
Avg
Stddev
%RSD | Sb2068
ppm
1.2212
.0042
.34074 | Se1960
ppm
. 37762
.00363
.96044 | Si2124
ppm
5.1154
.0061
.11859 | Sn1899
ppm
1.0333
.0033
.31975 | Sr4077
ppm
. 99699
.00440
.44176 | Ti3372
ppm
1.0092
.0085
.84073 | TI1908
ppm
. 51329
.00085
.16593 | | | #1
#2
#3 | 1.2237
1.2235
1.2164 | .37637
.37478
.38170 | 5.1210
5.1163
5.1089 | 1.0353
1.0295
1.0351 | .99444
.99445
1.0021 | .99946
1.0129
1.0151 | .51279
.51280
.51427 | | | Check ?
Value
Range | Chk Pass | | Elem
Units
Avg
Stddev
%RSD | V_2924
ppm
1.0223
.0046
.44832 | Zn2062
ppm
1.0553
.0023
.22009 | Zr3391
ppm
F . 89191
.39044
43.776 | | | | | | | #1
#2
#3 | 1.0270
1.0219
1.0179 | 1.0577
1.0552
1.0530 | .54699
1.3158
.81294 | | | | | | | Check ?
Value
Range | Chk Pass | Chk Pass | Chk Fail
1.0000
-10.000% | | | | | | | Int. Std.
Units
Avg
Stddev
%RSD | Y_2243
Cts/S
13392.
18.
.13734 | Y_3600
Cts/S
94785.
655.
.69107 | Y_3774
Cts/S
4283.0
48.9
1.1425 | | | | | | | #1
#2
#3 | 13413.
13381.
13381. | 94725.
94162.
95468. | 4316.6
4305.6
4226.9 | | | | | | | Sample Name: CCB Acquired: 5/16/2016 16:58:37 Type: Blank Method: ICP-THERMO3_6010_200.7WATER_3YLINES(v873) Mode: CONC Corr. Factor: 1.000000 User: JYH Custom ID1: Custom ID2: Custom ID3: Comment: | | | | | | | | | |--|----------------|----------|----------|----------------|----------------|----------------|----------------|----------------| | Elem | Ag3280 | Al3082 | As1890 | B_2496 | Ba4554 | Be3131 | Ca4226 | Cd2288 | | Units | ppm | Avg | 00371 | 02094 | .00059 | 00004 | .00186 | .00014 | 04634 | . 00030 | | Stddev | .00043 | .00565 | .00375 | .00324 | .00077 | .00012 | .01955 | .00009 | | %RSD | 11.571 | 26.988 | 630.69 | 7822.4 | 41.552 | 83.938 | 42.182 | 29.604 | | #1 | 00418 | 02711 | .00482 | .00340 | .00237 | .00020 | 05981 | .00021 | | #2 | 00363 | 01601 | 00236 | 00049 | .00097 | .00022 | 05528 | .00031 | | #3 | 00333 | 01969 | 00067 | 00303 | .00222 | .00000 | 02392 | .00039 | | Check ?
High Limit
Low Limit | Chk Pass | Elem | Co2286 | Cr2677 | Cu2247 | Fe2611 | K_7664 | Li6707 | Mg2790 | Mn2576 | | Units | ppm | Avg | 00030 | .00048 | 00139 | 00094 | . 11341 | . 00629 | . 01693 | 00016 | | Stddev | .00034 | .00062 | .00078 | .01326 | .03309 | .00438 | .08852 | .00206 | | %RSD | 112.49 | 127.46 | 56.287 | 1409.4 | 29.176 | 69.535 | 522.98 | 1298.4 | | #1 | 00051 | .00058 |
00053 | .00239 | .10480 | .00383 | .00188 | 00015 | | #2 | .00009 | 00018 | 00207 | 01555 | .08548 | .01135 | .11200 | 00223 | | #3 | 00048 | .00104 | 00157 | .01034 | .14996 | .00370 | 06310 | .00190 | | Check ?
High Limit
Low Limit | Chk Pass | Elem | Mo2020 | Na5895 | Ni2316 | P_2149 | Pb2203 | Sb2068 | Se1960 | Si2124 | | Units | ppm | Avg | . 00421 | 02867 | 00111 | . 00523 | 00045 | . 00484 | 00215 | 02620 | | Stddev | .00041 | .01008 | .00121 | .00861 | .00075 | .00607 | .00335 | .00169 | | %RSD | 9.7268 | 35.143 | 109.21 | 164.70 | 163.92 | 125.38 | 156.00 | 6.4365 | | #1 | .00374 | 03910 | 00233 | 00236 | .00013 | 00194 | 00129 | 02527 | | #2 | .00446 | 02792 | 00110 | .01458 | 00130 | .00977 | 00584 | 02814 | | #3 | .00444 | 01899 | .00010 | .00347 | 00019 | .00669 | .00069 | 02518 | | Check ?
High Limit
Low Limit | Chk Pass | Sample Nar
Method: ICF
User: JYH
Comment: | | 6010_200 | 5/16/2016 1
.7WATER_
Custom IE | 3YLINES(v8 | Type: Blan
373) Mc
Custom ID3 | de: CONC | Corr. Fa | ctor: 1.00000(| |--|---|---|--|--|---|---|---|----------------| | Elem
Units
Avg
Stddev
%RSD | Sn1899
ppm
. 00067
.00034
50.401 | Sr4077
ppm
. 00016
.00027
167.62 | Ti3372
ppm
00165
.00998
605.74 | TI1908
ppm
00350
.00109
31.244 | V_2924
ppm
.00083
.00033
39.251 | Zn2062
ppm
. 00026
.00015
57.586 | Zr3391
ppm
. 01352
.63091
4668.2 | | | #1
#2
#3 | .00095
.00029
.00075 | .00039
.00023
00014 | .00981
00844
00630 | 00357
00456
00237 | .00114
.00049
.00086 | .00023
.00013
.00042 | 58657
.67129
04418 | | | Check ?
High Limit
Low Limit | Chk Pass | | Int. Std.
Units
Avg
Stddev
%RSD | Y_2243
Cts/S
13372.
25.
.18821 | Y_3600
Cts/S
95808.
232.
.24163 | Y_3774
Cts/S
4274.5
33.2
.77685 | | | | | | | #1
#2
#3 | 13388.
13343.
13385. | 95591.
96052.
95780. | 4241.7
4308.1
4273.7 | | | | | | Sample Name: PBW B3 Acquired: 5/16/2016 17:02:37 Type: Unk Method: ICP-THERMO3_6010_200.7WATER_3YLINES(v873) Mode: CONC Corr. Factor: 1.000000 User: JYH Custom ID1: Custom ID2: Custom ID3: Comment: WG568687-02 | Elem | Ag3280 | Al3082 | As1890 | B_2496 | Ba4554 | Be3131 | Ca4226 | |------------------------------------|-----------------------------|----------|----------------|----------------|----------------|----------|----------------| | Units | ppm | Avg | F00425 | 01028 | .00001 | 00034 | . 00061 | .00015 | 02654 | | Stddev | .00219 | .00980 | .00212 | .00245 | .00071 | .00010 | .02377 | | %RSD | 51.575 | 95.322 | 41978. | 721.93 | 114.89 | 65.303 | 89.586 | | #1 | 00663 | 01552 | .00245 | 00218 | .00076 | .00007 | 00016 | | #2 | 00230 | .00102 | 00127 | .00244 | 00015 | .00026 | 03315 | | #3 | 00383 | 01635 | 00116 | 00127 | .00124 | .00012 | 04630 | | Check ?
High Limit
Low Limit | Chk Fail
9.0000
00400 | Chk Pass | Chk Pass | Chk Pass | Chk Pass | Chk Pass | Chk Pass | | Elem | Cd2288 | Co2286 | Cr2677 | Cu2247 | Fe2611 | K_7664 | Li6707 | | Units | ppm | Avg | . 00017 | 00014 | .00055 | . 00065 | . 01753 | .16081 | . 00270 | | Stddev | .00014 | .00029 | .00023 | .00084 | .02466 | .01119 | .00191 | | %RSD | 82.473 | 202.73 | 40.912 | 129.62 | 140.65 | 6.9612 | 70.635 | | #1 | .00017 | 00045 | .00080 | .00063 | .00613 | .14869 | .00061 | | #2 | .00030 | .00012 | .00035 | .00150 | .04582 | .17077 | .00436 | | #3 | .00003 | 00009 | .00051 | 00018 | .00064 | .16298 | .00313 | | Check ?
High Limit
Low Limit | Chk Pass | Elem | Mg2790 | Mn2576 | Mo2020 | Na5895 | Ni2316 | P_2149 | Pb2203 | | Units | ppm | Avg | . 14869 | 00147 | . 00082 | 05223 | 00057 | 00312 | . 00093 | | Stddev | .05788 | .00115 | .00053 | .04675 | .00071 | .00835 | .00400 | | %RSD | 38.928 | 78.375 | 64.312 | 89.500 | 125.96 | 267.93 | 427.41 | | #1 | .11313 | 00069 | .00023 | 01537 | 00129 | 00132 | .00551 | | #2 | .21548 | 00280 | .00124 | 10482 | .00013 | 01222 | 00086 | | #3 | .11746 | 00093 | .00100 | 03651 | 00054 | .00419 | 00185 | | Check ?
High Limit
Low Limit | Chk Pass | Method: ICP-
User: JYH | Sample Name: PBW B3 Acquired: 5/16/2016 17:02:37 Type: Unk Method: ICP-THERMO3_6010_200.7WATER_3YLINES(v873) Mode: CONC Corr. Factor: 1.000000 User: JYH Custom ID1: Custom ID2: Custom ID3: Comment: WG568687-02 | | | | | | | | | | |---|--|---|---|--|---|--|--|--|--|--| | Elem
Units
Avg
Stddev
%RSD | Sb2068
ppm
00068
.00255
376.67 | Se1960
ppm
00446
.00334
74.862 | Si2124
ppm
02499
.00051
2.0249 | Sn1899
ppm
00033
.00036
108.99 | Sr4077
ppm
. 00015
.00025
164.93 | Ti3372
ppm
00290
.00543
187.16 | TI1908
ppm
00082
.00210
257.55 | | | | | #1
#2
#3 | .00153
00347
00009 | 00062
00672
00605 | 02462
02478
02557 | .00007
00044
00062 | 00007
.00010
.00041 | .00278
00344
00805 | 00103
00280
.00138 | | | | | Check ?
High Limit
Low Limit | Chk Pass | | | | Elem
Units
Avg
Stddev
%RSD | V_2924
ppm
. 00059
.00056
95.218 | Zn2062
ppm
. 00140
.00014
10.222 | Zr3391
ppm
F 29995
.25354
84.528 | | | | | | | | | #1
#2
#3 | .00098
.00082
00005 | .00127
.00138
.00156 | 18037
59117
12831 | | | | | | | | | Check ?
High Limit
Low Limit | Chk Pass | Chk Pass | Chk Fail
36.000
04000 | | | | | | | | | Int. Std.
Units
Avg
Stddev
%RSD | Y_2243
Cts/S
13631.
52.
.38400 | Y_3600
Cts/S
98147.
272.
.27760 | Y_3774
Cts/S
4399.8
27.2
.61742 | | | | | | | | | #1
#2
#3 | 13585.
13688.
13621. | 98129.
98429.
97885. | 4405.9
4370.1
4423.4 | | | | | | | | Sample Name: LCSW B3 Acquired: 5/16/2016 17:06:37 Type: Unk Method: ICP-THERMO3_6010_200.7WATER_3YLINES(v873) Mode: CONC Corr. Factor: 1.000000 User: JYH Custom ID1: Custom ID2: Custom ID3: Comment: WG568687-03 | Elem | Ag3280 | Al3082 | As1890 | B_2496 | Ba4554 | Be3131 | Ca4226 | Cd2288 | |--------|--------|--------|--------|--------|--------|--------|--------|--------| | Units | ppm | Avg | .19690 | 4.9253 | .19515 | .98012 | .49506 | .02405 | 4.8678 | .02436 | | Stddev | .00099 | .0190 | .00475 | .00067 | .00066 | .00014 | .0276 | .00009 | | %RSD | .50468 | .38653 | 2.4315 | .06811 | .13396 | .56159 | .56765 | .35743 | | #1 | .19646 | 4.9432 | .18979 | .97963 | .49504 | .02415 | 4.8656 | .02445 | | #2 | .19620 | 4.9053 | .19882 | .97985 | .49574 | .02390 | 4.8965 | .02434 | | #3 | .19803 | 4.9274 | .19683 | .98088 | .49441 | .02410 | 4.8414 | .02428 | Check? Chk Pass P | Elem | Co2286 | Cr2677 | Cu2247 | Fe2611 | K_7664 | Li6707 | Mg2790 | Mn2576 | |--------|----------------|----------------|----------------|---------------|---------------|----------------|---------------|----------------| | Units | ppm | Avg | . 10217 | . 25552 | . 25806 | 2.0220 | 25.148 | . 50078 | 4.9503 | . 24854 | | Stddev | .00023 | .00185 | .00121 | .0227 | .086 | .00544 | .0776 | .00103 | | %RSD | .22897 | .72321 | .46973 | 1.1237 | .34031 | 1.0855 | 1.5677 | .41360 | | #1 | .10242 | .25418 | .25736 | 2.0263 | 25.226 | .50123 | 4.8639 | .24754 | | #2 | .10195 | .25763 | .25946 | 2.0422 | 25.163 | .50598 | 4.9728 | .24850 | | #3 | .10214 | .25474 | .25735 | 1.9974 | 25.056 | .49514 | 5.0142 | .24959 | Check? Chk Pass P | Elem
Units
Avg
Stddev
%RSD | Mo2020
ppm
. 50112
.00078
.15508 | Na5895
ppm
25.246
.074
.29315 | Ni2316
ppm
. 26217
.00161
.61383 | P_2149
ppm
4.9363
.0112
.22609 | Pb2203
ppm
. 26217
.00249
.94945 | Sb2068
ppm
. 60731
.00237
.39025 | Se1960
ppm
. 18622
.00257
1.3798 | Si2124
ppm
2.5334
.0057
.22425 | |--|---|--|---|---|---|---|---|---| | #1 | .50182 | 25.304 | .26036 | 4.9410 | .26351 | .60615 | .18419 | 2.5307 | | #2 | .50125 | 25.271 | .26343 | 4.9443 | .25930 | .61004 | .18537 | 2.5400 | | #3 | .50029 | 25.162 | .26274 | 4.9236 | .26370 | .60575 | .18911 | 2.5296 | Check? Chk Pass P Sample Name: LCSW B3 Acquired: 5/16/2016 17:06:37 Type: Unk Method: ICP-THERMO3_6010_200.7WATER_3YLINES(v873) Mode: CONC Corr. Factor: 1.000000 User: JYH Custom ID1: Custom ID2: Custom ID3: Comment:
WG568687-03 | Elem | Sn1899 | Sr4077 | Ti3372 | TI1908 | V_2924 | Zn2062 | Zr3391 | |--------|--------|--------|--------|--------|--------|--------|--------| | Units | ppm | Avg | .51088 | .49504 | .49086 | .25300 | .50474 | .51377 | .69474 | | Stddev | .00138 | .00088 | .00967 | .00288 | .00302 | .00119 | .27347 | | %RSD | .27063 | .17684 | 1.9697 | 1.1367 | .59827 | .23143 | 39.363 | | | | | | | | | | | #1 | .50928 | .49595 | .47976 | .24976 | .50457 | .51326 | .39429 | | #2 | .51174 | .49421 | .49544 | .25526 | .50181 | .51513 | .92914 | | #3 | .51162 | .49495 | .49739 | .25396 | .50784 | .51292 | .76079 | Check? Chk Pass P Low Limit | Int. Std. | Y_2243 | Y_3600 | Y_3774 | |-----------|----------------|---------------|---------------| | Units | Cts/S | Cts/S | Cts/S | | Avg | 13482 . | 96302. | 4401.0 | | Stddev | 24. | 155. | 12.3 | | %RSD | .18152 | .16095 | .28035 | | #1 | 13510. | 96126. | 4395.2 | | #2 | 13473. | 96418. | 4415.2 | | #3 | 13464. | 96362. | 4392.6 | Sample Name: F BLANK Acquired: 5/16/2016 17:10:08 Type: Unk Method: ICP-THERMO3 6010 200.7WATER 3YLINES(v873) Mode: CONC Corr. Factor: 1.000000 User: JYH Custom ID1: Custom ID2: Custom ID3: Comment: WG568558-01 Al3082 As1890 B 2496 Ba4554 Be3131 Ca4226 Cd2288 Elem Ag3280 Units ppm ppm ppm ppm ppm ppm ppm ppm -.00308 -.00020 .00374 .00034 Avg -.00484 .00078 .00011 .00022 Stddev .00140 .00918 .00422 .00151 .00010 .00005 .02291 .00026 %RSD 45.538 189.49 2142.1 40.467 12.748 46.443 6652.9 114.61 #1 -.00248 .00266 .00442 .00376 .00085 .00009 -.02566 .00013 #2 -.00469 -.01507 -.00384 .00222 .00067 .00017 .00910 .00051 #3 -.00208 -.00212 -.00116 .00524 .00083 .00007 .01759 .00003 Check? Chk Pass High Limit Low Limit Elem Co2286 Cr2677 Cu2247 Fe2611 K_7664 Li6707 Mg2790 Mn2576 Units ppm ppm ppm ppm ppm ppm ppm ppm -.00193 .00001 .00035 .02223 .00384 -.00006 Avg .16472 .07721 .00016 .00045 .01828 .00416 .00078 Stddev .00019 .04284 .02463 %RSD 1711.8 46.180 23.575 82.230 26.006 108.44 31.904 1256.1 #1 .00011 .00033 -.00143 .01305 .14606 -.00096 .10244 -.00066 #2 -.00021 .00052 -.00203 .04328 .13437 .00596 .05322 -.00036-.00232 .00651 .07597 #3 .00013 .00020 .01036 .21372 .00083 Check? Chk Pass High Limit Low Limit Elem Mo2020 Na5895 Ni2316 P_2149 Pb2203 Sb2068 Se1960 Si2124 Units ppm ppm ppm ppm ppm ppm ppm ppm .00097 124.68 -.00106 -.01050 .00069 -.00169 -.00037 -.02303 Avg Stddev .00014 .00074 .00823 .00109 .00292 .01078 .00167 .35 .27831 78.367 2895.1 %RSD 14.842 69.785 157.15 172.55 7.2358 #1 -.00093 -.02265 .00112 124.37 -.01794 .00173 -.00506 .00697 .00095 125.05 -.00039 -.00166 .00080 -.00008 .00466 #2 -.02485 #3 .00083 124.63 -.00185 -.01189 -.00045 .00006 -.01275 -.02158 Check? Chk Pass Chk Pass Chk Pass Chk Pass Chk Pass Chk Pass **Chk Pass** High Limit Approved: May 17, 2016 Low Limit Sample Name: F BLANK Acquired: 5/16/2016 17:10:08 Type: Unk Method: ICP-THERMO3_6010_200.7WATER_3YLINES(v873) Mode: CONC Corr. Factor: 1.000000 User: JYH Custom ID1: Custom ID2: Custom ID3: Comment: WG568558-01 Elem Sn1899 Sr4077 Ti3372 TI1908 V_2924 Zn2062 Zr3391 Units ppm ppm ppm ppm ppm ppm ppm -.00045 .00023 -.00153 .00048 -.00021 .00856 .15564 Avg Stddev .00086 .00041 .00999 .00299 .00036 .00003 .12577 193.14 180.62 653.00 620.98 171.94 .38172 %RSD 80.810 #1 -.00066 .00031 .00028 -.00065 -.00013 .00856 .29012 #2 -.00118 .00059 .00744 -.00177 -.00060 .00853 .13589 #3 .00050 -.00022 -.01231 .00387 .00010 .00860 .04091 Check? Chk Pass Chk Pass Chk Pass Chk Pass Chk Pass Chk Pass High Limit Low Limit Y_3774 Int. Std. Y_2243 Y_3600 Units Cts/S Cts/S Cts/S 13477. 95770. 4424.0 Avg Stddev 40. 292. 37.4 %RSD .29622 .30440 .84638 #1 13436. 95439. 4464.3 Approved: May 17, 2016 #2 #3 13516. 13481. 95989. 95881. 4390.3 4417.4 Sample Name: F BLANK Acquired: 5/16/2016 17:14:08 Type: Unk Method: ICP-THERMO3 6010 200.7WATER 3YLINES(v873) Mode: CONC Corr. Factor: 1.000000 User: JYH Custom ID1: Custom ID2: Custom ID3: Comment: WG568558-02 Al3082 As1890 B 2496 Ba4554 Be3131 Ca4226 Cd2288 Elem Ag3280 Units ppm ppm ppm ppm ppm ppm ppm ppm -.02220 -.00249 Avg -.00221 -.00106 .00029 .00007 .03173 .00029 Stddev .00115 .00713 .00306 .00266 .00033 .00002 .01151 .00009 288.39 %RSD 51.987 32.106 106.84 112.68 21.955 36.256 29.911 -.02633 #1 -.00240 .00197 -.00254 .00027 .00007 .02887 .00019 #2 -.00098 -.02630 -.00100 -.00513 .00063 .00006 .04440 .00035 #3 -.00326 -.01397 -.00416 .00019 -.00003 .00009 .02193 .00032 Check? Chk Pass **High Limit** Low Limit Elem Co2286 Cr2677 Cu2247 Fe2611 K_7664 Li6707 Mg2790 Mn2576 Units ppm ppm ppm ppm ppm ppm ppm ppm .00783 -.00060 .00024 .08098 .00642 -.00186 Avg .00041 .10968 .00037 .00035 .00082 .00466 Stddev .00322 .02467 .10178 .00283 %RSD 62.537 84.590 339.76 41.148 30.466 72.571 92.802 151.87 #1 -.00046 .00074 .00110 .01026 .07802 .01164 .03539 .00023 #2 -.00102 .00046 .00017 .00906 .05792 .00269 .06795 -.00073.22570 .00004 -.00054 .00492 #3 -.00032.00418 .10699 -.00509Check? Chk Pass High Limit Low Limit Elem Mo2020 Na5895 Ni2316 P_2149 Pb2203 Sb2068 Se1960 Si2124 Units ppm ppm ppm ppm ppm ppm ppm ppm .00007 .00671 -.00114 -.00113 -.00074 -.00084 .00607 -.02390 Avg .00278 Stddev .00010 .00130 .00477 .00239 .00154 .00471 .00140 146.95 %RSD 41.369 114.28 421.75 324.15 183.98 77.581 5.8692 #1 -.00225 .00001 .00982 .00120 .00143 .00061 .00538 -.02453 .00018 .00448 -.00146 .00203 -.00034 -.00247 #2 .00175 -.02488 .00583 #3 .00001 .00029 -.00662 -.00330 -.00066 .01109 -.02229 Check? Chk Pass Chk Pass Chk Pass Chk Pass Chk Pass Chk Pass **Chk Pass** High Limit Approved: May 17, 2016 Low Limit Sample Name: F BLANK Acquired: 5/16/2016 17:14:08 Type: Unk Method: ICP-THERMO3_6010_200.7WATER_3YLINES(v873) Mode: CONC Corr. Factor: 1.000000 User: JYH Custom ID1: Custom ID2: Custom ID3: Comment: WG568558-02 Elem Sn1899 Sr4077 Ti3372 TI1908 V_2924 Zn2062 Zr3391 Units ppm ppm ppm ppm ppm ppm ppm -.00024 .00129 -.00004 -.00187 .00048 .00296 .29862 Avg Stddev .00001 .00029 .00362 .00316 .00029 .00003 .16319 8276.0 168.55 60.244 1.0463 %RSD 4.1047 22.167 54.646 #1 -.00025 .00121 .00225 -.00377 .00018 .00300 .48489 #2 -.00024 .00105 -.00422 -.00362 .00076 .00295 .23013 #3 -.00023 .00160 .00184 .00177 .00050 .00294 .18085 Check? Chk Pass Chk Pass Chk Pass Chk Pass Chk Pass Chk Pass High Limit Low Limit Y_3774 Int. Std. Y_2243 Y_3600 Units Cts/S Cts/S Cts/S 13691. 98800. 4372.3 Avg Stddev 104. 651. 33.6 %RSD .75742 .65932 .76752 #1 13799. 99227. 4383.5 Approved: May 17, 2016 #2 #3 13683. 13592. 99123. 98050. 4398.9 4334.6 Sample Name: L1605067407 Acquired: 5/16/2016 17:18:08 Type: Unk Method: ICP-THERMO3_6010_200.7WATER_3YLINES(v873) Mode: CONC Corr. Factor: 1.000000 User: JYH Custom ID1: Custom ID2: Custom ID3: Comment: WG568687-01 AI3082 As1890 B_2496 Ba4554 Be3131 Ca4226 Elem Ag3280 Units ppm ppm ppm ppm ppm ppm ppm -.00030 Avg -.00166 .00015 .10651 42.985 -.00006 F 2260.5 Stddev .00213 .00902 .00068 .00208 1.008 .00006 15.6 .69086 %RSD 127.98 2960.1 447.30 1.9555 2.3457 101.31 #1 .00004 .00907 .00092 41.825 -.00013 .10481 2242.6 #2 -.00405 -.00105 -.00038 .10589 43.649 -.00001 2267.0 #3 -.00098 -.00893 -.00009 .10884 43.481 -.00005 2271.7 **Chk Pass** Chk Fail Check? Chk Pass **Chk Pass Chk Pass Chk Pass Chk Pass** 270.00 **High Limit** Low Limit -.10000 Elem Cd2288 Co2286 Cr2677 Cu2247 Fe2611 K 7664 Li6707 Units ppm ppm ppm ppm ppm ppm ppm 105.70 .00556 .00403 .00088 .01552 39.077 Avg 1.2187 .00034 .00052 .00099 Stddev .00137 .49 .0039 .272 %RSD 6.0470 12.831 112.97 8.8072 .69503 .32240 .46327 #1 .00523 .00443 .00196 .01635 38.765 105.16 1.2176 #2 .00553 .00421 .00067 .01627 39.264 106.10 1.2230 #3 .00001 39.202 105.86 .00590 .00344 .01394 1.2154 Check? **Chk Pass** Chk Pass **Chk Pass Chk Pass Chk Pass Chk Pass Chk Pass** High Limit Low Limit Elem Mg2790 Mn2576 Mo2020 Na5895 Ni2316 P_2149 Pb2203 Units ppm ppm ppm ppm ppm ppm ppm 185.42 17.010 -.00169 F 499.53 -.00839 .08698 .00439 Avg Stddev .00013 .00081 .02728 .00362 1.66 .062 1.69 7.7846 82.535 %RSD .89546 .36416 .33742 9.6416 31.361 #1 .00359 183.84 16.939 -.00169 498.37 -.00797 .11797 #2 187.15 -.00181 -.00788 .07637 .00834 17.055 501.47 #3 185.27 17.035 -.00155 498.77 -.00933 .06660 .00123 Check? **Chk Pass Chk Pass Chk Pass** Chk Fail **Chk Pass Chk Pass Chk Pass** High Limit 270.00 Approved: May 17, 2016 -.50000 Low Limit | Sample Name: L1605067407 Acquired: 5/16/2016 17:18:08 Type: Unk Method: ICP-THERMO3_6010_200.7WATER_3YLINES(v873) Mode: CONC Corr. Factor: 1.0 User: JYH Custom ID1: Custom ID2: Custom ID3: Comment: WG568687-01 | | | | | | | Factor: 1.00000(| |---|---|--|--|--|--|---|--| | Elem
Units
Avg
Stddev
%RSD | Sb2068
ppm
01596
.00298
18.665 | Se1960
ppm
F04942
.00240
4.8519 | Si2124
ppm
4.8698
.0916
1.8803 | Sn1899
ppm
00189
.00056
29.833 | Sr4077
ppm
F 49.258
.396
.80312 | Ti3372
ppm
F17943
.00720
4.0135 | TI1908
ppm
00599
.00892
149.00 | | #1
#2
#3 | 01416
01432
01940 | 04744
04874
05209 | 4.9244
4.9209
4.7641 | 00205
00126
00236 | 49.082
49.711
48.982 | 17437
17625
18768 | .00272
00557
01512 | | Check ?
High Limit
Low Limit | Chk Pass | Chk Fail
90.000
01000 | Chk Pass | Chk Pass | Chk Fail
9.0000
01000 | Chk Fail
36.000
03000 | Chk Pass | | Elem
Units
Avg
Stddev
%RSD | V_2924
ppm
. 00419
.00158
37.674 |
Zn2062
ppm
.00158
.00029
18.321 | Zr3391
ppm
F -1.3727
.2821
20.546 | | | | | | #1
#2
#3 | .00488
.00530
.00238 | .00136
.00191
.00148 | -1.6786
-1.1228
-1.3168 | | | | | | Check ?
High Limit
Low Limit | Chk Pass | Chk Pass | Chk Fail
36.000
04000 | | | | | | Int. Std.
Units
Avg
Stddev
%RSD | Y_2243
Cts/S
10815.
85.
.78428 | Y_3600
Cts/S
76607.
213.
.27771 | Y_3774
Cts/S
4022.8
19.4
.48343 | | | | | | #1
#2
#3 | 10748.
10786.
10910. | 76445.
76848.
76529. | 4035.9
4000.4
4031.9 | | | | | Sample Name: L1605067408S Acquired: 5/16/2016 17:22:30 Type: Unk Method: ICP-THERMO3_6010_200.7WATER_3YLINES(v873) Mode: CONC Corr. Factor: 1.000000 User: JYH Custom ID1: Custom ID2: Custom ID3: Comment: WG568687-04 AI3082 As1890 B 2496 Ba4554 Be3131 Ca4226 Elem Ag3280 Units ppm ppm ppm ppm ppm ppm ppm 5.5582 .22497 Avg .23376 1.2120 44.409 .02387 F 2235.2 Stddev .00174 .0214 .00486 .0017 1.724 .00014 58.5 %RSD .74542 .38522 2.1587 .13959 3.8829 .59916 2.6149 #1 .23462 .02390 5.5633 .21938 1.2106 43.125 2171.8 #2 .23490 5.5766 .22737 1.2139 43.734 .02399 2286.9 #3 .23175 5.5347 .22817 1.2115 46.369 .02371 2247.0 **Chk Pass** Chk Fail Check? Chk Pass **Chk Pass** Chk Pass **Chk Pass Chk Pass** 270.00 **High Limit** Low Limit -.10000 Elem Cd2288 Co2286 Cr2677 Cu2247 Fe2611 K 7664 Li6707 Units ppm ppm ppm ppm ppm ppm ppm .10015 .25646 .26506 Avg .03299 41.962 134.63 1.7721 .00041 Stddev .00067 .00181 .00351 .316 1.55 .0253 %RSD 2.0193 .40931 .70702 1.3226 .75247 1.4297 1.1514 #1 .03374 .10006 .25535 .26776 41.602 132.84 1.7431 #2 .03247 .10059 .25855 .26632 42.094 135.59 1.7832 #3 .03276 .09978 .25547 .26110 42.191 135.46 1.7900 Check? **Chk Pass** Chk Pass **Chk Pass Chk Pass Chk Pass Chk Pass Chk Pass** High Limit Low Limit P_2149 Elem Mg2790 Mn2576 Mo2020 Na5895 Ni2316 Pb2203 Units ppm ppm ppm ppm ppm ppm ppm 193.90 17.593 .50213 F 520.10 .23146 5.6660 .25135 Avg .207 .00388 .00305 .0308 Stddev 2.12 6.79 .00291 %RSD 1.1773 1.0916 .77238 1.3059 1.3164 .54328 1.1587 #1 .25401 191.46 17.354 .50369 512.27 .23345 5.6760 5.6906 195.05 17.714 .50498 524.38 .23298 .24824 #2 #3 195.19 17.712 .49771 523.66 .22795 5.6315 .25179 Check? **Chk Pass** Chk Pass **Chk Pass** Chk Fail **Chk Pass Chk Pass Chk Pass** High Limit 270.00 -.50000 Low Limit | Sample Name: L1605067408S Acquired: 5/16/2016 17:22:30 Type: Unk Method: ICP-THERMO3_6010_200.7WATER_3YLINES(v873) Mode: CONC Corr. Factor: 1.00 User: JYH Custom ID1: Custom ID2: Custom ID3: Comment: WG568687-04 | | | | | | | Factor: 1.00000(| |---|---|---|--|---|--|---|---| | Elem
Units
Avg
Stddev
%RSD | Sb2068
ppm
. 67538
.00631
.93368 | Se1960
ppm
.17257
.00261
1.5103 | Si2124
ppm
8.2147
.0342
.41671 | Sn1899
ppm
. 49243
.00559
1.1357 | Sr4077
ppm
F 50.546
.304
.60120 | Ti3372
ppm
. 33634
.00499
1.4833 | TI1908
ppm
. 21805
.00102
.47003 | | #1
#2
#3 | .67527
.68174
.66913 | .17188
.17037
.17545 | 8.2289
8.2396
8.1757 | .49458
.49663
.48608 | 50.888
50.307
50.443 | .33316
.34209
.33376 | .21768
.21920
.21726 | | Check ?
High Limit
Low Limit | Chk Pass | Chk Pass | Chk Pass | Chk Pass | Chk Fail
9.0000
01000 | Chk Pass | Chk Pass | | Elem
Units
Avg
Stddev
%RSD | V_2924
ppm
. 52747
.00376
.71194 | Zn2062
ppm
. 47903
.00344
.71889 | Zr3391
ppm
F -1.3305
.2877
21.621 | | | | | | #1
#2
#3 | .52881
.53037
.52323 | .48129
.48073
.47507 | -1.6445
-1.0798
-1.2671 | | | | | | Check ?
High Limit
Low Limit | Chk Pass | Chk Pass | Chk Fail
36.000
04000 | | | | | | Int. Std.
Units
Avg
Stddev
%RSD | Y_2243
Cts/S
10784.
28.
.25822 | Y_3600
Cts/S
76194.
828.
1.0867 | Y_3774
Cts/S
4079.6
50.6
1.2408 | | | | | | #1
#2
#3 | 10761.
10776.
10815. | 75561.
75889.
77131. | 4138.0
4048.5
4052.3 | | | | | Sample Name: L1605067409SD Acquired: 5/16/2016 17:26:43 Type: Unk Method: ICP-THERMO3_6010_200.7WATER_3YLINES(v873) Mode: CONC Corr. Factor: 1.000000 User: JYH Custom ID1: Custom ID2: Custom ID3: Comment: WG568687-05 | Elem | Ag3280 | Al3082 | As1890 | B_2496 | Ba4554 | Be3131 | Ca4226 | |------------------------------------|----------------|---------------|----------------|-----------------------------|-----------------------------|---------------|-----------------------------| | Units | ppm | Avg | . 23420 | 5.4761 | .22103 | 1.2008 | F 45.603 | .02358 | F 2234.0 | | Stddev | .00146 | .0208 | .00525 | .0051 | .933 | .00003 | 28.8 | | %RSD | .62235 | .38065 | 2.3734 | .42325 | 2.0465 | .12337 | 1.2893 | | #1 | .23372 | 5.4872 | .22227 | 1.1983 | 45.004 | .02359 | 2200.7 | | #2 | .23583 | 5.4890 | .21527 | 1.2066 | 46.678 | .02360 | 2249.1 | | #3 | .23304 | 5.4520 | .22554 | 1.1974 | 45.125 | .02355 | 2252.0 | | Check ?
High Limit
Low Limit | Chk Pass | Chk Pass | Chk Pass | Chk Pass | Chk Fail
45.000
00500 | Chk Pass | Chk Fail
270.00
10000 | | Elem | Cd2288 | Co2286 | Cr2677 | Cu2247 | Fe2611 | K_7664 | Li6707 | | Units | ppm | Avg | . 03216 | .09886 | . 25157 | . 25940 | 42.503 | 137.18 | 1.8080 | | Stddev | .00028 | .00065 | .00182 | .00184 | .346 | .82 | .0154 | | %RSD | .86013 | .65656 | .72187 | .71055 | .81454 | .60034 | .85314 | | #1 | .03186 | .09959 | .24948 | .26127 | 42.372 | 137.10 | 1.8009 | | #2 | .03241 | .09864 | .25244 | .25759 | 42.895 | 138.04 | 1.8257 | | #3 | .03220 | .09835 | .25278 | .25934 | 42.240 | 136.40 | 1.7973 | | Check ?
High Limit
Low Limit | Chk Pass | Elem | Mg2790 | Mn2576 | Mo2020 | Na5895 | Ni2316 | P_2149 | Pb2203 | | Units | ppm | Avg | 196.35 | 17.890 | . 49584 | F 540.38 | .22938 | 5.5692 | . 25168 | | Stddev | 1.05 | .114 | .00411 | 17.60 | .00028 | .0325 | .00689 | | %RSD | .53732 | .63708 | .82932 | 3.2576 | .12286 | .58277 | 2.7395 | | #1 | 196.88 | 17.888 | .49905 | 522.65 | .22931 | 5.5962 | .24680 | | #2 | 197.03 | 18.005 | .49727 | 557.86 | .22969 | 5.5781 | .25957 | | #3 | 195.13 | 17.777 | .49121 | 540.64 | .22914 | 5.5332 | .24866 | | Check ?
High Limit
Low Limit | Chk Pass | Chk Pass | Chk Pass | Chk Fail
270.00
50000 | Chk Pass | Chk Pass | Chk Pass | | Sample Name: L1605067409SD Acquired: 5/16/2016 17:26:43 Type: Unk Method: ICP-THERMO3_6010_200.7WATER_3YLINES(v873) Mode: CONC Corr. Factor: 1.000000 User: JYH Custom ID1: Custom ID2: Custom ID3: Comment: WG568687-05 | | | | | | | | |--|---|---|--|---|---|---|---| | Elem
Units
Avg
Stddev
%RSD | Sb2068
ppm
. 66731
.00286
.42912 | Se1960
ppm
.16908
.00157
.92845 | Si2124
ppm
8.2324
.0328
.39907 | Sn1899
ppm
. 48494
.00320
.66007 | Sr4077
ppm
F 51.479
1.085
2.1080 | Ti3372
ppm
. 32421
.01141
3.5181 | TI1908
ppm
. 21718
.00538
2.4753 | | #1
#2
#3 | .66526
.67058
.66610 | .16899
.17069
.16756 | 8.2601
8.2410
8.1961 | .48718
.48637
.48127 | 50.481
52.634
51.321 | .32027
.33706
.31529 | .21633
.21227
.22292 | | Check ?
High Limit
Low Limit | Chk Pass | Chk Pass | Chk Pass | Chk Pass | Chk Fail
9.0000
01000 | Chk Pass | Chk Pass | | Elem
Units
Avg
Stddev
%RSD | V_2924
ppm
. 51767
.00178
.34391 | Zn2062
ppm
. 47062
.00308
.65398 | Zr3391
ppm
F -1.3839
.1077
7.7830 | | | | | | #1
#2
#3 | .51957
.51740
.51604 | .47358
.47083
.46744 | -1.2681
-1.4812
-1.4023 | | | | | | Check ?
High Limit
Low Limit | Chk Pass | Chk Pass | Chk Fail
36.000
04000 | | | | | | Int. Std.
Units
Avg
Stddev
%RSD | Y_2243
Cts/S
10715.
44.
.40626 | Y_3600
Cts/S
76149.
63.
.08246 | Y_3774
Cts/S
4043.3
42.0
1.0397 | | | | | | #1
#2
#3 | 10679.
10763.
10703. | 76133.
76096.
76218. | 4071.1
3995.0
4063.9 | | | | | | Sample Name: L1605067410 Acquired: 5/16/2016 17:30:57 Type: Unk Method: ICP-THERMO3_6010_200.7WATER_3YLINES(v873) Mode: CONC Corr. Factor: 1.00000 User: JYH Custom ID1: Custom ID2: Custom ID3: Comment: | | | | | | | Factor: 1.00000(| |--|----------------|---------------|----------------
----------------|---------------|----------------|-----------------------------| | Elem | Ag3280 | Al3082 | As1890 | B_2496 | Ba4554 | Be3131 | Ca4226 | | Units | ppm | Avg | 00214 | 00652 | .01573 | . 10656 | 3.4940 | 00016 | F 1668.6 | | Stddev | .00194 | .00549 | .00077 | .00212 | .0293 | .00004 | 15.1 | | %RSD | 90.814 | 84.171 | 4.9006 | 1.9882 | .83861 | 26.762 | .90729 | | #1 | .00006 | 00033 | .01641 | .10756 | 3.4727 | 00016 | 1661.7 | | #2 | 00362 | 00846 | .01590 | .10412 | 3.4818 | 00012 | 1658.2 | | #3 | 00286 | 01079 | .01489 | .10798 | 3.5274 | 00020 | 1686.0 | | Check ?
High Limit
Low Limit | Chk Pass | Chk Pass | Chk Pass | Chk Pass | Chk Pass | Chk Pass | Chk Fail
270.00
10000 | | Elem | Cd2288 | Co2286 | Cr2677 | Cu2247 | Fe2611 | K_7664 | Li6707 | | Units | ppm | Avg | . 00264 | .00070 | . 00245 | . 00945 | 3.3490 | 274.62 | 1.5893 | | Stddev | .00024 | .00054 | .00049 | .00128 | .0558 | 2.08 | .0166 | | %RSD | 8.9022 | 77.004 | 20.043 | 13.551 | 1.6656 | .75596 | 1.0459 | | #1 | .00239 | .00131 | .00297 | .01020 | 3.2986 | 273.59 | 1.5760 | | #2 | .00285 | .00045 | .00240 | .00798 | 3.3394 | 273.26 | 1.5840 | | #3 | .00268 | .00032 | .00199 | .01019 | 3.4090 | 277.01 | 1.6079 | | Check ?
High Limit
Low Limit | Chk Pass | Elem | Mg2790 | Mn2576 | Mo2020 | Na5895 | Ni2316 | P_2149 | Pb2203 | | Units | ppm | Avg | 12.663 | 2.4254 | . 00489 | 74.175 | .07787 | . 06328 | . 00567 | | Stddev | .091 | .0281 | .00044 | .643 | .00125 | .01177 | .00196 | | %RSD | .72034 | 1.1569 | 9.0542 | .86739 | 1.6091 | 18.601 | 34.492 | | #1 | 12.580 | 2.3997 | .00445 | 73.763 | .07924 | .07685 | .00697 | | #2 | 12.761 | 2.4211 | .00490 | 73.845 | .07679 | .05590 | .00342 | | #3 | 12.649 | 2.4553 | .00534 | 74.916 | .07757 | .05709 | .00662 | | Check ?
High Limit
Low Limit | Chk Pass | Sample Name: L1605067410 Acquired: 5/16/2016 17:30:57 Method: ICP-THERMO3_6010_200.7WATER_3YLINES(v873) User: JYH Custom ID1: Custom ID2: Custom ICCOmment: | | | | | Type: Unk
Mode: CON
ID3: | C Corr. F | Factor: 1.00000(| |---|---|---|--|--|---|---|--| | Elem
Units
Avg
Stddev
%RSD | Sb2068
ppm
00687
.00378
55.005 | Se1960
ppm
F02975
.00827
27.785 | Si2124
ppm
3.0567
.0068
.22325 | Sn1899
ppm
00118
.00027
22.727 | Sr4077
ppm
6.8905
.0505
.73234 | Ti3372
ppm
F15379
.00837
5.4425 | TI1908
ppm
00531
.00547
102.98 | | #1
#2
#3 | 01110
00382
00569 | 03160
03694
02072 | 3.0626
3.0492
3.0581 | 00114
00093
00147 | 6.8563
6.8669
6.9485 | 16297
14658
15181 | 01006
00654
.00067 | | Check ?
High Limit
Low Limit | Chk Pass | Chk Fail
90.000
01000 | Chk Pass | Chk Pass | Chk Pass | Chk Fail
36.000
03000 | Chk Pass | | Elem
Units
Avg
Stddev
%RSD | V_2924
ppm
. 00137
.00059
42.841 | Zn2062
ppm
. 00280
.00028
9.8417 | Zr3391
ppm
F21365
.34005
159.16 | | | | | | #1
#2
#3 | .00076
.00142
.00193 | .00263
.00266
.00312 | .16136
30036
50196 | | | | | | Check ?
High Limit
Low Limit | Chk Pass | Chk Pass | Chk Fail
36.000
04000 | | | | | | Int. Std.
Units
Avg
Stddev
%RSD | Y_2243
Cts/S
12340.
34.
.27433 | Y_3600
Cts/S
87124.
373.
.42827 | Y_3774
Cts/S
4458.4
20.4
.45852 | | | | | | #1
#2
#3 | 12301.
12363.
12356. | 86899.
86918.
87554. | 4463.3
4476.0
4436.0 | | | | | Sample Name: L1605067410PS Acquired: 5/16/2016 17:34:53 Type: Unk Method: ICP-THERMO3_6010_200.7WATER_3YLINES(v873) Mode: CONC Corr. Factor: 1.000000 User: JYH Custom ID1: Custom ID2: Custom ID3: Comment: WG568955-01 | Elem | Ag3280 | Al3082 | As1890 | B_2496 | Ba4554 | Be3131 | Ca4226 | |------------------------------------|----------------|---------------|----------------|----------------|----------------|----------------|-----------------------------| | Units | ppm | Avg | . 22079 | 5.4017 | . 23192 | 1.1620 | 3.6211 | . 02407 | F 1567.1 | | Stddev | .00106 | .0295 | .00564 | .0048 | .0161 | .00011 | 6.6 | | %RSD | .48155 | .54650 | 2.4329 | .41581 | .44386 | .47677 | .42405 | | #1 | .22107 | 5.4208 | .22559 | 1.1658 | 3.6363 | .02420 | 1574.2 | | #2 | .22169 | 5.3677 | .23642 | 1.1566 | 3.6043 | .02400 | 1561.1 | | #3 | .21962 | 5.4165 | .23376 | 1.1636 | 3.6229 | .02399 | 1566.1 | | Check ?
High Limit
Low Limit | Chk Pass | Chk Pass | Chk Pass | Chk Pass | Chk Pass | Chk Pass | Chk Fail
270.00
10000 | | Elem | Cd2288 | Co2286 | Cr2677 | Cu2247 | Fe2611 | K_7664 | Li6707 | | Units | ppm | Avg | . 02850 | .09971 | . 25747 | . 26256 | 4.9625 | 268.83 | 1.9231 | | Stddev | .00042 | .00042 | .00252 | .00118 | .0512 | 1.63 | .0043 | | %RSD | 1.4665 | .42083 | .98069 | .44873 | 1.0316 | .60723 | .22589 | | #1 | .02817 | .09978 | .25892 | .26210 | 5.0095 | 270.60 | 1.9279 | | #2 | .02837 | .10008 | .25455 | .26390 | 4.9079 | 267.38 | 1.9195 | | #3 | .02897 | .09925 | .25894 | .26168 | 4.9701 | 268.51 | 1.9221 | | Check ?
High Limit
Low Limit | Chk Pass | Elem | Mg2790 | Mn2576 | Mo2020 | Na5895 | Ni2316 | P_2149 | Pb2203 | | Units | ppm | Avg | 16.120 | 2.4084 | . 51496 | 92.349 | . 32058 | 5.5291 | . 25254 | | Stddev | .277 | .0182 | .00151 | .593 | .00032 | .0253 | .00659 | | %RSD | 1.7183 | .75501 | .29340 | .64239 | .09884 | .45778 | 2.6084 | | #1 | 16.421 | 2.4294 | .51466 | 92.934 | .32077 | 5.5017 | .24615 | | #2 | 16.065 | 2.3977 | .51660 | 91.748 | .32021 | 5.5517 | .25931 | | #3 | 15.875 | 2.3982 | .51363 | 92.365 | .32075 | 5.5339 | .25215 | | Check ?
High Limit
Low Limit | Chk Pass Approved: May 17, 2016 J'ye 1hu Sample Name: L1605067410PS Acquired: 5/16/2016 17:34:53 Type: Unk Method: ICP-THERMO3_6010_200.7WATER_3YLINES(v873) Mode: CONC Corr. Factor: 1.000000 User: JYH Custom ID1: Custom ID2: Custom ID3: Comment: WG568955-01 Sb2068 Se1960 Si2124 Sn1899 Sr4077 Ti3372 TI1908 Elem Units ppm ppm ppm ppm ppm ppm ppm .66379 .18288 5.8429 .50234 .23094 Avg 6.6426 .36358 Stddev .00437 .01075 .0139 .00054 .0402 .00430 .00782 %RSD .65884 5.8784 .23775 .10711 .60482 1.1830 3.3874 #1 .66251 .19237 5.8272 .50192 6.6827 .36706 .23259 #2 .66020 .18506 5.8537 .50214 6.6024 .36491 .23780 #3 .66866 .17120 5.8477 .50294 6.6428 .35877 .22242 **Chk Pass** Check? Chk Pass Chk Pass Chk Pass Chk Pass Chk Pass **Chk Pass** High Limit Low Limit Elem V_2924 Zn2062 Zr3391 Units ppm ppm ppm .52210 .49426 .05982 Avg .00209 .00051 Stddev .27896 %RSD .40105 .10406 466.31 #1 .52447 .49413 -.22588 #2 .52049 .49383 .33150 #3 .49483 .07385 .52135 Check? Chk Pass Chk Pass **Chk Pass** High Limit Low Limit Int. Std. Y_2243 Y_3600 Y_3774 Cts/S Units Cts/S Cts/S 12337. 87716. 4426.1 Avg Stddev 470. 15.0 9. .07041 .53629 .33870 %RSD #1 4410.5 12347. 87175. 12332. 87940. 4427.6 #2 #3 12333. 4440.3 88033. Sample Name: L1605067410SDL Acquired: 5/16/2016 17:38:34 Type: Unk Method: ICP-THERMO3_6010_200.7WATER_3YLINES(v873) Mode: CONC Corr. Factor: 1.000000 User: JYH Custom ID1: 5 Custom ID2: Custom ID3: Comment: WG568955-02 Al3082 As1890 B_2496 Ba4554 Be3131 Ca4226 Elem Ag3280 Units ppm ppm ppm ppm ppm ppm ppm .00005 Avg -.00177 -.01243 .00475 .02209 .62655 F 418.43 Stddev .00114 .00470 .00191 .00214 .00592 .00004 4.08 .97440 %RSD 64.254 37.813 40.178 9.6814 .94517 77.865 #1 -.00303 -.00805 .00256 .02035 .00001 .63240 422.77 #2 -.00082 -.01739 .00559 .02448 .62670 .00008 417.84 .02145 #3 -.00146 -.01184.00609 .62056 .00005 414.69 Chk Fail Check? Chk Pass Chk Pass **Chk Pass Chk Pass Chk Pass Chk Pass** 270.00 **High Limit** Low Limit -.10000 Elem Cd2288 Co2286 Cr2677 Cu2247 Fe2611 K 7664 Li6707 Units ppm ppm ppm ppm ppm ppm ppm 49.308 .00067 -.00011 .00255 .62229 .28433 Avg .00241 .00042 .00027 .00025 .00097 Stddev .05723 .397 .00632 2.2234 %RSD 62.909 248.91 9.8415 40.396 9.1972 .80498 .29109 #1 .00095 .00010 .00229 .00285 .68714 49.688 #2 .00088 -.00041 .00256 .00130 .60088 49.339 .28335 -.00002 #3 .00019 .00280 .00309 .57885 48.896 .27856 Check? **Chk Pass** Chk Pass **Chk Pass Chk Pass Chk Pass Chk Pass Chk Pass** High Limit Low Limit Elem Mg2790 Mn2576 Mo2020 Na5895 Ni2316 P_2149 Pb2203 Units ppm ppm ppm ppm ppm ppm ppm 2.4710 .45043 .00116 13.310 .01453 .02842 .00218 Avg .00549 .00023 .00070 .00069 Stddev .0694 .155 .00401 %RSD 2.8071 1.2191 20.140 1.1629 4.8042 2.4292 183.86 #1 .02919 2.4990 .45620 .00133 13.460 .01477 .00670 2.3920 .44981 .00089 13.321 .01507 .02785 .00079 #2 #3 2.5220 .44527 .00124 13.151 .01374 .02822 -.00095 Approved: May 17, 2016 **Chk Pass** **Chk Pass** **Chk Pass** **Chk Pass** Check? High Limit Low Limit **Chk Pass** Chk Pass **Chk Pass** Sample Name: L1605067410SDL Acquired: 5/16/2016 17:38:34 Type: Unk Method: ICP-THERMO3_6010_200.7WATER_3YLINES(v873) Mode: CONC Corr. Factor: 1.000000 User: JYH Custom ID1: 5 Custom ID2: Custom ID3: Comment: WG568955-02 Elem Sb2068 Se1960 Si2124 Sn1899 Sr4077 Ti3372 TI1908 Units ppm ppm ppm ppm ppm ppm ppm -.00580 .53140 1.2412 F-.05541 -.00286 Avg -.00294 -.00135 Stddev .00252 .00238 .00670 .00043 .0123 .00255 .00393 %RSD 85.673 41.101 1.2602 31.796 .98673 4.6074 137.17 .00050 #1 -.00574 -.00572 .52417 -.00124 1.2541 -.05835 #2 -.00224
-.00821 .53263 -.00099 1.2399 -.05412 -.00718 #3 -.00085 -.00345 .53739 -.00183 1.2297 -.05376 -.00191 **Chk Pass Chk Pass** Chk Fail **Chk Pass** Check? **Chk Pass Chk Pass Chk Pass** 36.000 High Limit Low Limit -.03000 Elem V_2924 Zn2062 Zr3391 Units ppm ppm ppm .00065 .00137 F -. 17376 Avg .00071 .00007 Stddev .17478 %RSD 109.08 4.9193 100.58 #1 .00120 .00133 -.09795 #2 .00090 .00145 -.37365 #3 -.00015 -.04969 .00133 Check? Chk Pass Chk Pass Chk Fail High Limit 36.000 Low Limit -.04000 Int. Std. Y_2243 Y_3600 Y_3774 Units Cts/S Cts/S Cts/S 13605. 96745. 4568.3 Avg Stddev 361. 38.1 63. .46198 .37291 %RSD .83313 #1 4524.4 13669. 97132. 13601. 96418. 4591.6 #2 96684. 13544. 4589.0 Approved: May 17, 2016 #3 | Sample Nam
Method: ICP
User: JYH
Comment: | | | | LINES(v873 | pe: QC
) Mode:
tom ID3: | CONC (| Corr. Factor: | 1.000000 | |--|----------------|----------------|----------------|----------------|-------------------------------|----------------|----------------|----------| | Elem | Ag3280 | Al3082 | As1890 | B_2496 | Ba4554 | Be3131 | Ca4226 | | | Units | ppm | | Avg | . 38721 | 9.7772 | . 39070 | . 48800 | . 97398 | . 04769 | 9.5797 | | | Stddev | .00413 | .0397 | .00510 | .00385 | .01590 | .00008 | .2190 | | | %RSD | 1.0656 | .40631 | 1.3053 | .78953 | 1.6322 | .15868 | 2.2864 | | | #1 | .38289 | 9.7341 | .39641 | .48819 | .98797 | .04761 | 9.7859 | | | #2 | .39111 | 9.8122 | .38660 | .49175 | .97729 | .04770 | 9.6032 | | | #3 | .38763 | 9.7855 | .38908 | .48405 | .95669 | .04777 | 9.3498 | | | Check ?
Value
Range | Chk Pass | | Elem | Cd2288 | Co2286 | Cr2677 | Cu2247 | Fe2611 | K_7664 | Li6707 | | | Units | ppm | | Avg | . 04782 | .20018 | . 50352 | . 50193 | 4.0134 | 48.995 | . 98315 | | | Stddev | .00054 | .00222 | .00048 | .00536 | .0637 | .966 | .01433 | | | %RSD | 1.1226 | 1.1100 | .09476 | 1.0679 | 1.5873 | 1.9723 | 1.4580 | | | #1 | .04844 | .20267 | .50312 | .50764 | 4.0793 | 49.722 | .99621 | | | #2 | .04752 | .19838 | .50404 | .49701 | 4.0086 | 49.364 | .98543 | | | #3 | .04751 | .19950 | .50339 | .50114 | 3.9522 | 47.898 | .96781 | | | Check ?
Value
Range | Chk Pass | | Elem | Mg2790 | Mn2576 | Mo2020 | Na5895 | Ni2316 | P_2149 | Pb2203 | | | Units | ppm | | Avg | 9.9132 | . 48809 | . 96179 | 49.623 | . 51029 | 9.8349 | . 50829 | | | Stddev | .2214 | .00774 | .01165 | .890 | .00469 | .1010 | .00985 | | | %RSD | 2.2338 | 1.5849 | 1.2111 | 1.7928 | .91836 | 1.0271 | 1.9378 | | | #1 | 9.9669 | .49572 | .97497 | 50.342 | .51540 | 9.9358 | .51716 | | | #2 | 10.103 | .48829 | .95287 | 49.899 | .50619 | 9.7337 | .49769 | | | #3 | 9.6698 | .48025 | .95753 | 48.628 | .50928 | 9.8352 | .51002 | | | Check ?
Value
Range | Chk Pass | | Sample Nam
Method: ICP
User: JYH
Comment: | | 6010_200.7 | 16/2016 17:4
WATER_3Y
Custom ID2: | LINES(v873 | pe: QC
) Mode:
tom ID3: | CONC (| Corr. Factor: 1 | .000000 | |--|---|---|---|---|---|---|---|---------| | Elem
Units
Avg
Stddev
%RSD | Sb2068
ppm
1.1760
.0123
1.0456 | Se1960
ppm
. 36727
.00583
1.5883 | Si2124
ppm
4.9352
.0434
.87945 | Sn1899
ppm
. 99698
.00665
.66684 | Sr4077
ppm
. 96866
.01642
1.6951 | Ti3372
ppm
. 96409
.01149
1.1921 | TI1908
ppm
. 49703
.00415
.83442 | | | #1
#2
#3 | 1.1902
1.1678
1.1701 | .37053
.36053
.37074 | 4.9729
4.8877
4.9449 | 1.0034
.99012
.99744 | .98093
.97505
.95001 | .97684
.96092
.95452 | .50061
.49249
.49798 | | | Check ?
Value
Range | Chk Pass | | Elem
Units
Avg
Stddev
%RSD | V_2924
ppm
. 98590
.00787
.79809 | Zn2062
ppm
1.0110
.0111
1.0958 | Zr3391
ppm
F . 84677
.09297
10.979 | | | | | | | #1
#2
#3 | .97729
.99273
.98767 | 1.0220
.99980
1.0112 | .85734
.74896
.93400 | | | | | | | Check ?
Value
Range | Chk Pass | Chk Pass | Chk Fail
1.0000
-10.000% | | | | | | | Int. Std.
Units
Avg
Stddev
%RSD | Y_2243
Cts/S
13572.
98.
.72530 | Y_3600
Cts/S
96723 .
304.
.31404 | Y_3774
Cts/S
4374.3
65.3
1.4927 | | | | | | | #1
#2
#3 | 13481.
13677.
13559. | 96983.
96389.
96797. | 4311.8
4369.2
4442.0 | | | | | | | Sample Name
Method: ICP-T
User: JYH
Comment: | | 010_200.7W <i>A</i> | 2016 17:46:1
ATER_3YLIN
stom ID2: | • • | Mode: CON | C Corr. F | factor: 1.00000(| |---|----------|---------------------|---|----------------|----------------|----------------|------------------| | Elem | Ag3280 | Al3082 | As1890 | B_2496 | Ba4554 | Be3131 | Ca4226 | | Units | ppm | Avg | 00202 | 02526 | .00092 | . 00251 | . 00190 | .00015 | 04034 | | Stddev | .00175 | .00694 | .00248 | .00196 | .00011 | .00006 | .02650 | | %RSD | 86.740 | 27.473 | 269.63 | 78.119 | 5.7681 | 42.493 | 65.692 | | #1 | 00397 | 02604 | .00150 | .00180 | .00181 | .00011 | 06031 | | #2 | 00058 | 03178 | 00180 | .00100 | .00187 | .00012 | 05044 | | #3 | 00151 | 01796 | .00305 | .00473 | .00202 | .00023 | 01028 | | Check ?
High Limit
Low Limit | Chk Pass | Elem | Cd2288 | Co2286 | Cr2677 | Cu2247 | Fe2611 | K_7664 | Li6707 | | Units | ppm | Avg | .00009 | 00006 | .00070 | 00032 | .01163 | . 24241 | . 00193 | | Stddev | .00018 | .00017 | .00095 | .00156 | .01671 | .06947 | .00323 | | %RSD | 189.97 | 285.97 | 136.15 | 488.10 | 143.71 | 28.656 | 167.52 | | #1 | 00010 | 00017 | .00172 | 00192 | 00560 | .17193 | .00201 | | #2 | .00024 | 00014 | 00016 | .00119 | .02777 | .24450 | 00134 | | #3 | .00014 | .00013 | .00054 | 00023 | .01271 | .31081 | .00511 | | Check ?
High Limit
Low Limit | Chk Pass | Elem | Mg2790 | Mn2576 | Mo2020 | Na5895 | Ni2316 | P_2149 | Pb2203 | | Units | ppm | Avg | .11075 | . 00129 | . 00450 | 02670 | 00108 | . 00273 | . 00256 | | Stddev | .05153 | .00215 | .00019 | .00398 | .00195 | .00429 | .00279 | | %RSD | 46.530 | 166.93 | 4.2460 | 14.892 | 180.61 | 156.98 | 109.28 | | #1 | .10014 | .00367 | .00429 | 03098 | .00028 | .00713 | .00053 | | #2 | .16676 | 00053 | .00455 | 02311 | 00331 | 00144 | .00575 | | #3 | .06535 | .00073 | .00467 | 02602 | 00021 | .00250 | .00140 | | Check ?
High Limit
Low Limit | Chk Pass | Sample Name
Method: ICP-1
User: JYH
Comment: | | 010_200.7W <i>A</i> | 2016 17:46:1
ATER_3YLIN
stom ID2: | • • | Mode: CON | C Corr. F | Factor: 1.00000(| |---|---|--|--|--|---|--|--| | Elem
Units
Avg
Stddev
%RSD | Sb2068
ppm
. 00154
.00140
91.164 | Se1960
ppm
00680
.00295
43.304 | Si2124
ppm
.00089
.00220
245.57 | Sn1899
ppm
00038
.00039
101.70 | Sr4077
ppm
. 00028
.00053
186.51 | Ti3372
ppm
00577
.00489
84.746 | TI1908
ppm
00115
.00213
186.44 | | #1
#2
#3 | 00007
.00249
.00220 | 00819
00880
00342 | 00155
.00154
.00270 | 00067
.00006
00054 | 00029
.00076
.00039 | 01047
00613
00071 | 00360
00015
.00031 | | Check ?
High Limit
Low Limit | Chk Pass | Elem
Units
Avg
Stddev
%RSD | V_2924
ppm
. 00045
.00071
158.79 | Zn2062
ppm
.00009
.00023
257.51 | Zr3391
ppm
F12320
.45894
372.51 | | | | | | #1
#2
#3 | 00036
.00073
.00098 | .00035
.00001
00009 | 38903
.40674
38732 | | | | | | Check ?
High Limit
Low Limit | Chk Pass | Chk Pass | Chk Fail
.04000
04000 | | | | | | Int. Std.
Units
Avg
Stddev
%RSD | Y_2243
Cts/S
13411.
31.
.22965 | Y_3600
Cts/S
95741.
640.
.66838 | Y_3774
Cts/S
4319.2
52.8
1.2229 | | | | | | #1
#2
#3 | 13377.
13418.
13438. | 95703.
96399.
95121. | 4358.2
4340.3
4259.1 | | | | | | Sample Nam
Method: ICP
User: JYH
Comment: | | 6010_200.7 | | ` . | | | Corr. Factor: | 1.00000(| |--|---------------|----------------|----------|-----------------------------|----------------|----------------|----------------|----------| | Elem | Ag3280 | Al3082 | As1890 | B_2496 | Ba4554 | Be3131 | Ca4226 | | | Units | ppm | | Avg | 00396 | . 31302 | 00169 | . 27427 | . 43917 | .00014 | 10.328 | | | Stddev | .00155 | .00404 | .00089 | .00018 | .00421 | .00009 | .100 | | | %RSD | 39.134 | 1.2912 | 52.624 | .06388 | .95928 | 62.307 | .96740 | | | #1 | 00243 | .31704 | 00255 | .27447 | .44201 | .00022 | 10.393 | | | #2 | 00390 | .31306 | 00077 | .27414 | .44116 | .00015 | 10.378 | | | #3 | 00553 | .30895 | 00176 | .27421 | .43433 | .00005 | 10.213 | | | Check ?
High Limit
Low Limit | Chk Pass | | Elem | Cd2288 | Co2286 | Cr2677 | Cu2247 | Fe2611 | K_7664 |
Li6707 | | | Units | ppm | | Avg | .00026 | .00142 | .00090 | .00394 | .01499 | 295.98 | . 67072 | | | Stddev | .00023 | .00024 | .00063 | .00040 | .02157 | 2.99 | .00350 | | | %RSD | 87.175 | 16.795 | 69.424 | 10.202 | 143.90 | 1.0087 | .52195 | | | #1 | .00022 | .00145 | .00092 | .00349 | .02483 | 297.83 | .67476 | | | #2 | .00051 | .00117 | .00027 | .00407 | .02988 | 297.57 | .66884 | | | #3 | .00006 | .00165 | .00152 | .00427 | 00975 | 292.54 | .66857 | | | Check ?
High Limit
Low Limit | Chk Pass | | Elem | Mg2790 | Mn2576 | Mo2020 | Na5895 | Ni2316 | P_2149 | Pb2203 | | | Units | ppm | | Avg | 14.249 | . 00907 | .00118 | F 558.98 | .00164 | . 76236 | . 00195 | | | Stddev | .077 | .00115 | .00026 | 6.38 | .00034 | .01142 | .00147 | | | %RSD | .53850 | 12.702 | 22.385 | 1.1408 | 21.062 | 1.4981 | 75.214 | | | #1 | 14.167 | .00933 | .00099 | 557.37 | .00203 | .75276 | .00285 | | | #2 | 14.318 | .01008 | .00107 | 553.55 | .00148 | .75934 | .00275 | | | #3 | 14.263 | .00782 | .00148 | 566.00 | .00140 | .77499 | .00026 | | | Check ?
High Limit
Low Limit | Chk Pass | Chk Pass | Chk Pass | Chk Fail
270.00
50000 | Chk Pass | Chk Pass | Chk Pass | | | • | ne: L1605045
-THERMO3_
Custom I | 6010_200.7 | | , , | | | Corr. Factor: 1. | .000000 | |---|---|--|---|--|---|--|-------------------------------|---------| | Elem
Units
Avg
Stddev
%RSD | Sb2068
ppm
00102
.00449
439.15 | Se1960
ppm
.00235
.00307
130.59 | Si2124
ppm
1.9212
.0039
.20111 | Sn1899
ppm
00017
.00049
290.51 | Sr4077
ppm
. 11503
.00125
1.0837 | Ti3372
ppm
00828
.00781
94.282 | ppm
00266
.00041 | | | #1
#2
#3 | .00081
.00226
00614 | 00081
.00533
.00253 | 1.9250
1.9172
1.9213 | .00028
00069
00010 | .11537
.11608
.11365 | 00299
01724
00461 | 00239
00246
00314 | | | Check ?
High Limit
Low Limit | Chk Pass | | Elem
Units
Avg
Stddev
%RSD | V_2924
ppm
.00013
.00054
416.20 | Zn2062
ppm
.00310
.00017
5.5345 | Zr3391
ppm
. 12504
.18939
151.46 | | | | | | | #1
#2
#3 | .00042
.00045
00049 | .00305
.00296
.00329 | .06020
.33833
02341 | | | | | | | Check ?
High Limit
Low Limit | Chk Pass | Chk Pass | Chk Pass | | | | | | | Int. Std.
Units
Avg
Stddev
%RSD | Y_2243
Cts/S
12580.
19.
.15121 | Y_3600
Cts/S
87600.
270.
.30858 | Y_3774
Cts/S
4275.0
41.3
.96592 | | | | | | | #1
#2
#3 | 12559.
12589.
12594. | 87310.
87647.
87844. | 4287.3
4228.9
4308.7 | | | | | | | Sample Name
Method: ICP-
User: JYH
Comment: | | 010_200.7W | red: 5/16/201
ATER_3YLIN
stom ID2: | | Type: Unk
Mode: CON
ID3: | C Corr. F | Factor: 1.000000 | |--|----------------|------------|--|----------------|--------------------------------|----------------|-----------------------------| | Elem | Ag3280 | Al3082 | As1890 | B_2496 | Ba4554 | Be3131 | Ca4226 | | Units | ppm | Avg | 00382 | 00065 | .00053 | . 02025 | . 32355 | .00006 | F 465.46 | | Stddev | .00106 | .00636 | .00335 | .00084 | .00203 | .00003 | .55 | | %RSD | 27.847 | 975.92 | 636.86 | 4.1234 | .62700 | 46.407 | .11903 | | #1 | 00501 | 00268 | 00286 | .02112 | .32219 | .00005 | 465.68 | | #2 | 00351 | 00576 | .00060 | .02020 | .32258 | .00004 | 464.82 | | #3 | 00295 | .00648 | .00383 | .01945 | .32589 | .00009 | 465.86 | | Check ?
High Limit
Low Limit | Chk Pass | Chk Pass | Chk Pass | Chk Pass | Chk Pass | Chk Pass | Chk Fail
270.00
10000 | | Elem | Cd2288 | Co2286 | Cr2677 | Cu2247 | Fe2611 | K_7664 | Li6707 | | Units | ppm | Avg | . 00058 | .00078 | . 00182 | . 01292 | .01117 | 213.41 | . 48785 | | Stddev | .00010 | .00041 | .00212 | .00068 | .01381 | .35 | .00565 | | %RSD | 17.754 | 52.905 | 116.37 | 5.2931 | 123.67 | .16233 | 1.1581 | | #1 | .00065 | .00120 | .00311 | .01269 | .02007 | 213.50 | .49285 | | #2 | .00062 | .00075 | .00297 | .01369 | 00474 | 213.02 | .48172 | | #3 | .00046 | .00038 | 00062 | .01238 | .01818 | 213.70 | .48898 | | Check ?
High Limit
Low Limit | Chk Pass | Elem | Mg2790 | Mn2576 | Mo2020 | Na5895 | Ni2316 | P_2149 | Pb2203 | | Units | ppm | Avg | . 03530 | 00178 | . 00885 | 251.37 | 00225 | . 04319 | . 07527 | | Stddev | .08710 | .00135 | .00041 | .52 | .00157 | .00488 | .00175 | | %RSD | 246.76 | 76.026 | 4.6895 | .20613 | 69.704 | 11.299 | 2.3307 | | #1 | .13038 | 00145 | .00920 | 251.85 | 00406 | .04478 | .07426 | | #2 | 04061 | 00326 | .00839 | 250.82 | 00134 | .03771 | .07426 | | #3 | .01612 | 00062 | .00896 | 251.43 | 00135 | .04708 | .07730 | | Check ?
High Limit
Low Limit | Chk Pass | Sample Name
Method: ICP-1
User: JYH
Comment: | |)10_200.7W <i>A</i> | red: 5/16/2010
ATER_3YLIN
stom ID2: | | Type: Unk
Mode: CON
ID3: | C Corr. F | Factor: 1.00000(| |---|---|---|---|--|---|---|--| | Elem
Units
Avg
Stddev
%RSD | Sb2068
ppm
00190
.00335
176.88 | Se1960
ppm
. 00617
.00706
114.33 | Si2124
ppm
. 30441
.00567
1.8618 | Sn1899
ppm
00065
.00077
118.15 | Sr4077
ppm
. 50634
.00188
.37226 | Ti3372
ppm
F06408
.00486
7.5817 | TI1908
ppm
00339
.00404
119.20 | | #1
#2
#3 | 00189
00526
.00145 | .00978
.01070
00196 | .31015
.30425
.29882 | 00109
00110
.00024 | .50689
.50424
.50789 | 06220
06044
06959 | 00087
00804
00125 | | Check ?
High Limit
Low Limit | Chk Pass | Chk Pass | Chk Pass | Chk Pass | Chk Pass | Chk Fail
36.000
03000 | Chk Pass | | Elem
Units
Avg
Stddev
%RSD | V_2924
ppm
.00062
.00117
188.38 | Zn2062
ppm
. 57832
.00156
.27060 | Zr3391
ppm
. 18093
.65145
360.06 | | | | | | #1
#2
#3 | .00155
00069
.00100 | .57929
.57915
.57651 | 18218
.93301
20805 | | | | | | Check ?
High Limit
Low Limit | Chk Pass | Chk Pass | Chk Pass | | | | | | Int. Std.
Units
Avg
Stddev
%RSD | Y_2243
Cts/S
12520.
15.
.11944 | Y_3600
Cts/S
89026.
252.
.28315 | Y_3774
Cts/S
4304.5
18.4
.42833 | | | | | | #1
#2
#3 | 12536.
12507.
12516. | 88769.
89037.
89272. | 4302.4
4287.1
4323.8 | | | | | | Sample Name
Method: ICP-1
User: JYH
Comment: | |)10_200.7W | red: 5/16/201
ATER_3YLIN
stom ID2: | | Type: Unk
Mode: CONO
ID3: | C Corr. F | Factor: 1.00000(| |---|-----------------------------|----------------|--|-----------------------------|---------------------------------|----------------|------------------| | Elem | Ag3280 | Al3082 | As1890 | B_2496 | Ba4554 | Be3131 | Ca4226 | | Units | ppm | Avg | F00451 | 28.788 | .00260 | . 30205 | 1.5541 | .00056 | 48.346 | | Stddev | .00204 | .208 | .00148 | .00204 | .0123 | .00004 | .246 | | %RSD | 45.360 | .72092 | 56.788 | .67630 | .79084 | 6.9576 | .50976 | | #1 | 00611 | 28.636 | .00325 | .30184 | 1.5412 | .00060 | 48.127 | | #2 | 00520 | 28.704 | .00364 | .30011 | 1.5657 | .00052 | 48.613 | | #3 | 00221 | 29.025 | .00091 | .30418 | 1.5554 | .00055 | 48.298 | | Check ?
High Limit
Low Limit | Chk Fail
9.0000
00400 | Chk Pass | Chk Pass | Chk Pass | Chk Pass | Chk Pass | Chk Pass | | Elem | Cd2288 | Co2286 | Cr2677 | Cu2247 | Fe2611 | K_7664 | Li6707 | | Units | ppm | Avg | . 00059 | .02269 | . 01034 | .00198 | 4.2844 | 361.37 | . 04929 | | Stddev | .00029 | .00063 | .00054 | .00056 | .0609 | 1.86 | .00450 | | %RSD | 49.241 | 2.7833 | 5.2649 | 28.301 | 1.4203 | .51443 | 9.1206 | | #1 | .00036 | .02315 | .00972 | .00198 | 4.2197 | 360.46 | .05262 | | #2 | .00092 | .02296 | .01055 | .00254 | 4.2932 | 363.51 | .04418 | | #3 | .00050 | .02197 | .01075 | .00142 | 4.3405 | 360.15 | .05108 | | Check ?
High Limit
Low Limit | Chk Pass | Elem | Mg2790 | Mn2576 | Mo2020 | Na5895 | Ni2316 | P_2149 | Pb2203 | | Units | ppm | Avg | 91.403 | . 61601 | . 00043 | F 499.32 | . 07154 | . 08004 | . 19880 | | Stddev | .850 | .00995 | .00047 | 5.13 | .00114 | .00859 | .00102 | | %RSD | .92971 | 1.6154 | 107.77 | 1.0267 | 1.5922 | 10.730 | .51395 | | #1 | 90.438 | .60602 | .00048 | 501.98 | .07122 | .08995 | .19779 | | #2 | 92.036 | .62593 | .00088 | 493.41 | .07281 | .07491 | .19878 | | #3 | 91.736 | .61609 | 00006 | 502.57 | .07060 | .07525 | .19983 | | Check ?
High Limit
Low Limit | Chk Pass | Chk Pass | Chk Pass | Chk Fail
270.00
50000 | Chk Pass | Chk Pass | Chk Pass | | Sample Name
Method: ICP-T
User: JYH
Comment: | |)10_200.7W <i>A</i> | ed: 5/16/2016
ATER_3YLINI
stom ID2: | | Type: Unk
Mode: CON0
ID3: | C Corr. F | Factor: 1.000000 |
---|---|--|---|---|---|--|--| | Elem
Units
Avg
Stddev
%RSD | Sb2068
ppm
00310
.00297
95.833 | Se1960
ppm
.00136
.00463
339.95 | Si2124
ppm
4.6980
.0222
.47161 | Sn1899
ppm
.00392
.00128
32.720 | Sr4077
ppm
. 77098
.00629
.81535 | Ti3372
ppm
00638
.00144
22.571 | TI1908
ppm
00133
.00284
212.77 | | #1
#2
#3 | 00492
.00033
00471 | .00669
00164
00096 | 4.7162
4.7045
4.6734 | .00365
.00279
.00531 | .76389
.77587
.77318 | 00768
00662
00483 | 00153
00407
.00160 | | Check ?
High Limit
Low Limit | Chk Pass | Elem
Units
Avg
Stddev
%RSD | V_2924
ppm
. 00053
.00074
140.97 | Zn2062
ppm
1.4943
.0148
.99093 | Zr3391
ppm
. 41278
.38061
92.205 | | | | | | #1
#2
#3 | .00115
00029
.00072 | 1.5093
1.4939
1.4797 | .85071
.16181
.22582 | | | | | | Check ?
High Limit
Low Limit | Chk Pass | Chk Pass | Chk Pass | | | | | | Int. Std.
Units
Avg
Stddev
%RSD | Y_2243
Cts/S
12543.
79.
.62759 | Y_3600
Cts/S
88037.
489.
.55542 | Y_3774
Cts/S
4265.2
7.1
.16673 | | | | | | #1
#2
#3 | 12471.
12530.
12627. | 88555.
87972.
87583. | 4257.4
4271.4
4266.7 | | | | | | Sample Nam
Method: ICP
User: JYH
Comment: | | 6010_200.7 | • | , , | | | Corr. Factor: | 1.000000 | |--|----------------|----------------|----------------|-----------------------------|---------------|----------------|----------------|----------| | Elem | Ag3280 | Al3082 | As1890 | B_2496 | Ba4554 | Be3131 | Ca4226 | | | Units | ppm | | Avg | 00357 | 25.519 | .00032 | . 30917 | 1.7118 | . 00047 | 51.909 | | | Stddev | .00286 | .076 | .00190 | .00181 | .0114 | .00007 | .376 | | | %RSD | 80.120 | .29904 | 598.99 | .58462 | .66800 | 15.664 | .72430 | | | #1 | 00275 | 25.560 | .00220 | .30722 | 1.7019 | .00039 | 51.553 | | | #2 | 00675 | 25.566 | .00034 | .31079 | 1.7243 | .00050 | 52.303 | | | #3 | 00121 | 25.431 | 00159 | .30950 | 1.7091 | .00052 | 51.871 | | | Check ?
High Limit
Low Limit | Chk Pass | | Elem | Cd2288 | Co2286 | Cr2677 | Cu2247 | Fe2611 | K_7664 | Li6707 | | | Units | ppm | | Avg | . 00053 | .01711 | . 01206 | . 00527 | 7.0652 | 440.19 | . 27197 | | | Stddev | .00021 | .00048 | .00071 | .00045 | .0729 | 2.30 | .00470 | | | %RSD | 39.368 | 2.8136 | 5.8747 | 8.5389 | 1.0317 | .52193 | 1.7273 | | | #1 | .00034 | .01759 | .01281 | .00577 | 7.0032 | 437.97 | .26696 | | | #2 | .00050 | .01711 | .01141 | .00490 | 7.1455 | 442.56 | .27628 | | | #3 | .00076 | .01663 | .01197 | .00513 | 7.0470 | 440.04 | .27268 | | | Check ?
High Limit
Low Limit | Chk Pass | | Elem | Mg2790 | Mn2576 | Mo2020 | Na5895 | Ni2316 | P_2149 | Pb2203 | | | Units | ppm | | Avg | 95.757 | . 49225 | .00013 | F 472.82 | .03514 | . 13025 | . 09624 | | | Stddev | .339 | .00210 | .00053 | 2.73 | .00112 | .00351 | .00133 | | | %RSD | .35410 | .42651 | 399.52 | .57820 | 3.1876 | 2.6923 | 1.3780 | | | #1 | 95.441 | .49018 | 00013 | 470.01 | .03524 | .12857 | .09776 | | | #2 | 96.116 | .49438 | 00021 | 475.47 | .03398 | .13428 | .09557 | | | #3 | 95.715 | .49218 | .00074 | 472.98 | .03621 | .12790 | .09538 | | | Check ?
High Limit
Low Limit | Chk Pass | Chk Pass | Chk Pass | Chk Fail
270.00
50000 | Chk Pass | Chk Pass | Chk Pass | | | Sample Nam
Method: ICP-
User: JYH
Comment: | | 6010_200.7 | | , , | | | Corr. Factor: 1.00000(| |---|---|---|---|---|---|---|--| | Elem
Units
Avg
Stddev
%RSD | Sb2068
ppm
00017
.00435
2617.8 | Se1960
ppm
00036
.00635
1775.4 | Si2124
ppm
6.5078
.0130
.19959 | Sn1899
ppm
. 00661
.00063
9.4948 | Sr4077
ppm
. 58538
.00374
.63882 | Ti3372
ppm
. 00262
.00351
133.82 | TI1908
ppm
00439
.00191
43.424 | | #1
#2
#3 | 00228
.00484
00306 | .00494
.00139
00740 | 6.5183
6.5117
6.4933 | .00607
.00730
.00645 | .58493
.58933
.58189 | .00611
00091
.00267 | 00622
00242
00453 | | Check ?
High Limit
Low Limit | Chk Pass | Elem
Units
Avg
Stddev
%RSD | V_2924
ppm
. 00265
.00053
19.934 | Zn2062
ppm
. 09251
.00059
.63592 | Zr3391
ppm
. 01624
.23014
1417.6 | | | | | | #1
#2
#3 | .00204
.00301
.00290 | .09318
.09227
.09208 | 24950
.15130
.14691 | | | | | | Check ?
High Limit
Low Limit | Chk Pass | Chk Pass | Chk Pass | | | | | | Int. Std.
Units
Avg
Stddev
%RSD | Y_2243
Cts/S
12551.
27.
.21403 | Y_3600
Cts/S
87830.
184.
.20922 | Y_3774
Cts/S
4265.1
52.5
1.2318 | | | | | | #1
#2
#3 | 12521.
12563.
12571. | 87623.
87972.
87895. | 4323.3
4221.1
4251.0 | | | | | | Sample Name
Method: ICP-1
User: JYH
Comment: | |)10_200.7W <i>A</i> | ed: 5/16/2010
ATER_3YLIN
Stom ID2: | | Type: Unk
Mode: CONO
ID3: | C Corr. F | Factor: 1.000000 | |---|---------------|---------------------|--|-----------------------------|---------------------------------|----------------|------------------| | Elem | Ag3280 | Al3082 | As1890 | B_2496 | Ba4554 | Be3131 | Ca4226 | | Units | ppm | Avg | 00395 | .01803 | .00096 | .11141 | .03052 | .00008 | 209.14 | | Stddev | .00159 | .00403 | .00416 | .00221 | .00036 | .00003 | 1.32 | | %RSD | 40.187 | 22.373 | 435.16 | 1.9808 | 1.1807 | 31.073 | .63056 | | #1 | 00363 | .01935 | 00370 | .11124 | .03094 | .00008 | 208.09 | | #2 | 00568 | .01350 | .00226 | .11370 | .03027 | .00011 | 210.62 | | #3 | 00255 | .02124 | .00431 | .10930 | .03036 | .00006 | 208.71 | | Check ?
High Limit
Low Limit | Chk Pass | Elem | Cd2288 | Co2286 | Cr2677 | Cu2247 | Fe2611 | K_7664 | Li6707 | | Units | ppm | Avg | .00065 | .00074 | . 00291 | .00087 | .09770 | 3.3260 | . 09542 | | Stddev | .00034 | .00036 | .00080 | .00157 | .02052 | .0652 | .00449 | | %RSD | 52.360 | 48.532 | 27.384 | 181.88 | 21.006 | 1.9599 | 4.7003 | | #1 | .00104 | .00033 | .00346 | 00053 | .10088 | 3.3877 | .09842 | | #2 | .00046 | .00089 | .00200 | .00257 | .11645 | 3.2578 | .09758 | | #3 | .00044 | .00100 | .00328 | .00056 | .07578 | 3.3325 | .09027 | | Check ?
High Limit
Low Limit | Chk Pass | Elem | Mg2790 | Mn2576 | Mo2020 | Na5895 | Ni2316 | P_2149 | Pb2203 | | Units | ppm | Avg | 85.684 | .01983 | 00015 | F 380.88 | 00087 | . 06727 | 00074 | | Stddev | .875 | .00122 | .00078 | 1.88 | .00017 | .00168 | .00405 | | %RSD | 1.0214 | 6.1607 | 535.83 | .49369 | 19.339 | 2.5034 | 544.67 | | #1 | 84.749 | .02006 | 00003 | 379.63 | 00104 | .06555 | .00184 | | #2 | 86.484 | .01851 | 00098 | 383.05 | 00070 | .06891 | .00135 | | #3 | 85.821 | .02092 | .00057 | 379.97 | 00087 | .06734 | 00542 | | Check ?
High Limit
Low Limit | Chk Pass | Chk Pass | Chk Pass | Chk Fail
270.00
50000 | Chk Pass | Chk Pass | Chk Pass | | Sample Name: L1605057102 Acquired: 5/16/2016 18:06:0 Method: ICP-THERMO3_6010_200.7WATER_3YLINES(v873) User: JYH Custom ID1: Custom ID2: Custom ID2: Custom ID2: Custom ID2: Custom ID2: Custom ID2: Custom ID3: Custom ID3: Custom ID3: Custom ID4: C | | | | | Type: Unk
Mode: CONO
ID3: | C Corr. F | Factor: 1.00000(|
--|---|---|--|--|---|--|--| | Elem
Units
Avg
Stddev
%RSD | Sb2068
ppm
. 00080
.00377
471.57 | Se1960
ppm
.00637
.00578
90.865 | Si2124
ppm
16.070
.009
.05341 | Sn1899
ppm
00090
.00042
46.947 | Sr4077
ppm
2.4571
.0176
.71670 | Ti3372
ppm
02876
.00351
12.199 | TI1908
ppm
00362
.00468
129.32 | | #1
#2
#3 | 00235
.00497
00022 | .00234
.01299
.00376 | 16.071
16.061
16.078 | 00065
00067
00139 | 2.4440
2.4771
2.4502 | 02509
02909
03208 | 00227
00883
.00024 | | Check ?
High Limit
Low Limit | Chk Pass | Elem
Units
Avg
Stddev
%RSD | V_2924
ppm
. 00098
.00087
88.950 | Zn2062
ppm
. 00457
.00013
2.8590 | Zr3391
ppm
F09948
.22979
230.99 | | | | | | #1
#2
#3 | 00000
.00165
.00129 | .00458
.00444
.00470 | 03004
.08758
35598 | | | | | | Check ?
High Limit
Low Limit | Chk Pass | Chk Pass | Chk Fail
36.000
04000 | | | | | | Int. Std.
Units
Avg
Stddev
%RSD | Y_2243
Cts/S
12402.
36.
.29147 | Y_3600
Cts/S
87876.
233.
.26547 | Y_3774
Cts/S
4257.8
28.1
.65984 | | | | | | #1
#2
#3 | 12385.
12443.
12377. | 87975.
87610.
88044. | 4280.7
4226.5
4266.3 | | | | | | • | | | | | | | | | | | |------------------------------------|----------|----------------|----------|----------------|----------------|----------------|---------------|----------------|--|--| | Elem | Ag3280 | Al3082 | As1890 | B_2496 | Ba4554 | Be3131 | Ca4226 | Cd2288 | | | | Units | ppm | | | Avg | 00368 | . 00174 | 00124 | .03015 | . 02450 | .00018 | 71.420 | . 00095 | | | | Stddev | .00099 | .00433 | .00193 | .00124 | .00067 | .00005 | .340 | .00011 | | | | %RSD | 26.839 | 248.73 | 155.15 | 4.1227 | 2.7481 | 26.692 | .47659 | 11.331 | | | | #1 | 00481 | .00609 | .00046 | .03084 | .02428 | .00024 | 71.050 | .00088 | | | | #2 | 00296 | .00170 | 00085 | .02871 | .02526 | .00014 | 71.491 | .00089 | | | | #3 | 00328 | 00257 | 00334 | .03088 | .02397 | .00016 | 71.720 | .00107 | | | | Check ?
High Limit
Low Limit | Chk Pass | | | Elem | Co2286 | Cr2677 | Cu2247 | Fe2611 | K_7664 | Li6707 | Mg2790 | Mn2576 | | | | Units | ppm | | | Avg | .00138 | . 00099 | .00026 | . 04501 | 1.6577 | . 07133 | 35.293 | . 09303 | | | | Stddev | .00039 | .00058 | .00098 | .02231 | .1036 | .00046 | .047 | .00243 | | | | %RSD | 28.583 | 59.216 | 379.26 | 49.567 | 6.2491 | .64048 | .13328 | 2.6128 | | | | #1 | .00123 | .00080 | .00139 | .05673 | 1.5455 | .07138 | 35.308 | .09515 | | | | #2 | .00182 | .00164 | 00032 | .01928 | 1.6780 | .07084 | 35.330 | .09038 | | | | #3 | .00108 | .00052 | 00030 | .05901 | 1.7497 | .07175 | 35.240 | .09357 | | | | Check ?
High Limit
Low Limit | Chk Pass | | | Elem | Mo2020 | Na5895 | Ni2316 | P_2149 | Pb2203 | Sb2068 | Se1960 | Si2124 | | | | Units | ppm | | | Avg | .00019 | 201.44 | 00021 | . 05713 | . 00102 | 00245 | 00036 | 18.423 | | | | Stddev | .00037 | .74 | .00079 | .00209 | .00174 | .00065 | .00672 | .039 | | | | %RSD | 193.15 | .36518 | 382.75 | 3.6660 | 169.58 | 26.708 | 1891.2 | .21279 | | | | #1 | 00024 | 200.94 | 00107 | .05880 | .00183 | 00198 | .00521 | 18.444 | | | | #2 | .00042 | 201.10 | 00005 | .05478 | 00097 | 00320 | 00782 | 18.378 | | | | #3 | .00039 | 202.28 | .00050 | .05780 | .00221 | 00217 | .00155 | 18.448 | | | | Check ?
High Limit
Low Limit | Chk Pass | | | Sample Nar
Method: ICF
User: JYH
Comment: | | 3_6010_200 | .cquired: 5/1
.7WATER_
Custom ID | 3YLINES(v8 | | ype: Unk
ode: CONC
: | Corr. Fa | ctor: 1.00000(| |--|---|---|--|--|---|---|---|----------------| | Elem
Units
Avg
Stddev
%RSD | Sn1899
ppm
00151
.00050
33.253 | Sr4077
ppm
. 91753
.00240
.26127 | Ti3372
ppm
01087
.00797
73.319 | TI1908
ppm
00234
.00244
104.23 | V_2924
ppm
. 00113
.00097
85.835 | Zn2062
ppm
. 00405
.00021
5.1660 | Zr3391
ppm
. 13764
.30877
224.33 | | | #1
#2
#3 | 00175
00184
00093 | .91564
.91672
.92023 | 01068
00299
01892 | 00286
.00032
00447 | .00126
.00010
.00204 | .00385
.00427
.00403 | 00859
.49236
07085 | | | Check ?
High Limit
Low Limit | Chk Pass | | Int. Std.
Units
Avg
Stddev
%RSD | Y_2243
Cts/S
12854.
47.
.36731 | Y_3600
Cts/S
91394.
341.
.37335 | Y_3774
Cts/S
4276.6
44.9
1.0502 | | | | | | | #1
#2
#3 | 12802.
12894.
12866. | 91485.
91016.
91679. | 4309.5
4295.0
4225.5 | | | | | | | Sample Name: L1605057106 Acquired: 5/16/2016 18:13:54 Type: Unk Method: ICP-THERMO3_6010_200.7WATER_3YLINES(v873) Mode: CONC User: JYH Custom ID1: Custom ID2: Custom ID3: Comment: | | | | | | | | | |--|----------------|----------------|----------|----------------|----------------|----------------|---------------|----------------| | Elem | Ag3280 | Al3082 | As1890 | B_2496 | Ba4554 | Be3131 | Ca4226 | Cd2288 | | Units | ppm | Avg | 00254 | . 03463 | 00249 | . 02361 | . 16929 | .00007 | 133.59 | . 00084 | | Stddev | .00210 | .00601 | .00187 | .00149 | .00117 | .00004 | 1.16 | .00009 | | %RSD | 82.869 | 17.344 | 74.824 | 6.3078 | .68849 | 56.756 | .86641 | 10.378 | | #1 | 00051 | .02948 | 00465 | .02526 | .16884 | .00003 | 132.72 | .00084 | | #2 | 00471 | .04123 | 00146 | .02319 | .17061 | .00008 | 134.90 | .00074 | | #3 | 00240 | .03317 | 00138 | .02238 | .16841 | .00010 | 133.14 | .00092 | | Check ?
High Limit
Low Limit | Chk Pass | Elem | Co2286 | Cr2677 | Cu2247 | Fe2611 | K_7664 | Li6707 | Mg2790 | Mn2576 | | Units | ppm | Avg | .00034 | . 00420 | .00119 | .08783 | 2.0544 | . 04167 | 13.589 | . 04609 | | Stddev | .00024 | .00050 | .00098 | .02626 | .0627 | .00216 | .108 | .00160 | | %RSD | 70.690 | 11.906 | 82.870 | 29.897 | 3.0507 | 5.1866 | .79360 | 3.4683 | | #1 | .00045 | .00426 | .00026 | .09739 | 2.0206 | .03991 | 13.591 | .04784 | | #2 | .00051 | .00367 | .00222 | .05813 | 2.1267 | .04103 | 13.480 | .04570 | | #3 | .00007 | .00466 | .00108 | .10797 | 2.0159 | .04409 | 13.696 | .04472 | | Check ?
High Limit
Low Limit | Chk Pass | Elem | Mo2020 | Na5895 | Ni2316 | P_2149 | Pb2203 | Sb2068 | Se1960 | Si2124 | | Units | ppm | Avg | . 00456 | 102.33 | .00103 | . 02300 | 00061 | . 00023 | 00439 | 10.227 | | Stddev | .00080 | .66 | .00144 | .00654 | .00345 | .00391 | .00783 | .021 | | %RSD | 17.426 | .64011 | 139.03 | 28.446 | 569.87 | 1702.0 | 178.53 | .20753 | | #1 | .00546 | 102.04 | .00150 | .01882 | .00269 | 00347 | 00290 | 10.244 | | #2 | .00394 | 103.08 | 00058 | .01963 | 00032 | .00431 | .00259 | 10.234 | | #3 |
.00428 | 101.87 | .00218 | .03053 | 00419 | 00015 | 01285 | 10.203 | | Check ?
High Limit
Low Limit | Chk Pass | Sample Nar
Method: ICF
User: JYH
Comment: | | 3_6010_200 | cquired: 5/1
.7WATER_:
Custom IE | 3YLINES(v8 | | ype: Unk
ode: CONC
: | Corr. Fa | ctor: 1.00000(| |--|---|--|--|--|---|---|---|----------------| | Elem
Units
Avg
Stddev
%RSD | Sn1899
ppm
00144
.00063
43.838 | Sr4077
ppm
2.5319
.0171
.67440 | Ti3372
ppm
02398
.00182
7.5960 | TI1908
ppm
00354
.00545
154.05 | V_2924
ppm
. 00276
.00036
12.878 | Zn2062
ppm
. 00716
.00022
3.1085 | Zr3391
ppm
. 37325
.17842
47.802 | | | #1
#2
#3 | 00103
00113
00217 | 2.5217
2.5517
2.5224 | 02563
02430
02202 | .00272
00724
00610 | .00236
.00305
.00287 | .00742
.00706
.00701 | .42635
.51909
.17430 | | | Check ?
High Limit
Low Limit | Chk Pass | | Int. Std.
Units
Avg
Stddev
%RSD | Y_2243
Cts/S
12840.
13.
.09900 | Y_3600
Cts/S
91833.
424.
.46135 | Y_3774
Cts/S
4291.3
54.2
1.2639 | | | | | | | #1
#2
#3 | 12834.
12855.
12832. | 91706.
92306.
91488. | 4344.1
4235.7
4294.2 | | | | | | | Sample Name
Method: ICP-1
User: JYH
Comment: | |)10_200.7W | 6 18:17:51
ES(v873)
Custom | Type: Unk
Mode: CONO
ID3: | C Corr. F | Factor: 1.00000(| | |---|----------------|----------------|----------------------------------|---------------------------------|----------------|------------------|----------------| | Elem | Ag3280 | Al3082 | As1890 | B_2496 | Ba4554 | Be3131 | Ca4226 | | Units | ppm | Avg | 00325 | .00100 | 00251 | . 04747 | .02978 | .00009 | 263.14 | | Stddev | .00202 | .00427 | .00269 | .00195 | .00080 | .00002 | .29 | | %RSD | 62.220 | 426.35 | 107.02 | 4.1115 | 2.6796 | 25.929 | .11002 | | #1 | 00552 | 00081 | 00002 | .04720 | .02959 | .00009 | 263.46 | | #2 | 00261 | .00588 | 00536 | .04566 | .03065 | .00011 | 262.88 | | #3 | 00162 | 00206 | 00216 | .04954 | .02909 | .00006 | 263.09 | | Check ?
High Limit
Low Limit | Chk Pass | Elem | Cd2288 | Co2286 | Cr2677 | Cu2247 | Fe2611 | K_7664 | Li6707 | | Units | ppm | Avg | . 00162 | .00144 | . 00347 | .00028 | . 06304 | 2.5145 | . 09844 | | Stddev | .00009 | .00061 | .00021 | .00064 | .02854 | .0532 | .00329 | | %RSD | 5.5766 | 42.250 | 6.1782 | 231.32 | 45.276 | 2.1168 | 3.3404 | | #1 | .00163 | .00076 | .00322 | .00077 | .08697 | 2.5441 | .10047 | | #2 | .00152 | .00164 | .00354 | 00044 | .03145 | 2.4531 | .09465 | | #3 | .00170 | .00193 | .00363 | .00050 | .07069 | 2.5465 | .10020 | | Check ?
High Limit
Low Limit | Chk Pass | Elem | Mg2790 | Mn2576 | Mo2020 | Na5895 | Ni2316 | P_2149 | Pb2203 | | Units | ppm | Avg | 120.86 | . 06036 | 00019 | F 292.36 | . 00601 | . 05300 | .00002 | | Stddev | .10 | .00277 | .00017 | .64 | .00054 | .00146 | .00317 | | %RSD | .07924 | 4.5961 | 94.094 | .21909 | 8.9248 | 2.7612 | 17288. | | #1 | 120.78 | .06135 | 00001 | 292.85 | .00567 | .05321 | .00358 | | #2 | 120.96 | .06250 | 00036 | 291.64 | .00663 | .05144 | 00249 | | #3 | 120.83 | .05723 | 00019 | 292.61 | .00573 | .05434 | 00103 | | Check ?
High Limit
Low Limit | Chk Pass | Chk Pass | Chk Pass | Chk Fail
270.00
50000 | Chk Pass | Chk Pass | Chk Pass | | Sample Name: L1605057108 Acquired: 5/16/2016 18 Method: ICP-THERMO3_6010_200.7WATER_3YLINES(User: JYH Custom ID1: Custom ID2: Comment: | | | | | Type: Unk
Mode: CON
ID3: | C Corr. F | Factor: 1.00000(| |---|---|--|--|--|---|---|--| | Elem
Units
Avg
Stddev
%RSD | Sb2068
ppm
00120
.00297
246.77 | Se1960
ppm
00193
.01615
838.39 | Si2124
ppm
19.461
.028
.14357 | Sn1899
ppm
00069
.00052
75.422 | Sr4077
ppm
2.8103
.0049
.17447 | Ti3372
ppm
F04154
.00687
16.537 | TI1908
ppm
00297
.00340
114.57 | | #1
#2
#3 | .00081
.00019
00461 | 01347
.01653
00884 | 19.433
19.462
19.489 | 00121
00017
00069 | 2.8107
2.8053
2.8151 | 03587
04918
03957 | 00686
00153
00052 | | Check ?
High Limit
Low Limit | Chk Pass | Chk Pass | Chk Pass | Chk Pass | Chk Pass | Chk Fail
36.000
03000 | Chk Pass | | Elem
Units
Avg
Stddev
%RSD | V_2924
ppm
00042
.00018
42.109 | Zn2062
ppm
.00483
.00009
1.9553 | Zr3391
ppm
.08197
.21936
267.62 | | | | | | #1
#2
#3 | 00027
00038
00062 | .00475
.00481
.00494 | .30852
12942
.06680 | | | | | | Check ?
High Limit
Low Limit | Chk Pass | Chk Pass | Chk Pass | | | | | | Int. Std.
Units
Avg
Stddev
%RSD | Y_2243
Cts/S
12340.
37.
.30102 | Y_3600
Cts/S
87762.
384.
.43760 | Y_3774
Cts/S
4205.2
48.7
1.1590 | | | | | | #1
#2
#3 | 12377.
12342.
12303. | 88167.
87403.
87716. | 4163.3
4193.6
4258.7 | | | | | | Sample Name
Method: ICP-T
User: JYH
Comment: | |)10_200.7W <i>A</i> | red: 5/16/2010
ATER_3YLINI
stom ID2: | | Type: Unk
Mode: CONO
ID3: | C Corr. F | Factor: 1.00000(| |---|---------------|---------------------|--|----------------|---------------------------------|----------------|-----------------------------| | Elem | Ag3280 | Al3082 | As1890 | B_2496 | Ba4554 | Be3131 | Ca4226 | | Units | ppm | Avg | 00313 | 00147 | 00029 | . 01556 | . 04803 | .00010 | 70.561 | | Stddev | .00078 | .00291 | .00317 | .00098 | .00018 | .00003 | .621 | | %RSD | 25.022 | 197.58 | 1085.0 | 6.2699 | .37284 | 27.731 | .88033 | | #1 | 00403 | .00185 | 00158 | .01612 | .04820 | .00011 | 70.514 | | #2 | 00258 | 00354 | .00332 | .01443 | .04784 | .00007 | 71.204 | | #3 | 00279 | 00273 | 00261 | .01612 | .04805 | .00011 | 69.965 | | Check ?
High Limit
Low Limit | Chk Pass | Elem | Cd2288 | Co2286 | Cr2677 | Cu2247 | Fe2611 | K_7664 | Li6707 | | Units | ppm | Avg | .00065 | 00004 | .00313 | .00085 | . 02943 | 1.4632 | . 03594 | | Stddev | .00023 | .00004 | .00021 | .00118 | .02877 | .1204 | .00230 | | %RSD | 35.700 | 93.229 | 6.5668 | 139.61 | 97.739 | 8.2316 | 6.4085 | | #1 | .00038 | 00002 | .00317 | .00093 | .05340 | 1.5485 | .03390 | | #2 | .00078 | 00002 | .00291 | .00198 | 00247 | 1.5156 | .03547 | | #3 | .00079 | 00008 | .00332 | 00037 | .03736 | 1.3254 | .03844 | | Check ?
High Limit
Low Limit | Chk Pass | Elem | Mg2790 | Mn2576 | Mo2020 | Na5895 | Ni2316 | P_2149 | Pb2203 | | Units | ppm | Avg | 28.603 | . 00863 | . 00032 | 176.11 | 00037 | . 17570 | F00506 | | Stddev | .220 | .00134 | .00049 | 2.00 | .00081 | .00188 | .00307 | | %RSD | .76794 | 15.557 | 153.75 | 1.1339 | 216.18 | 1.0711 | 60.661 | | #1 | 28.357 | .00843 | .00011 | 176.95 | .00041 | .17398 | 00278 | | #2 | 28.779 | .01006 | 00003 | 177.56 | 00032 | .17771 | 00384 | | #3 | 28.674 | .00740 | .00089 | 173.83 | 00120 | .17542 | 00855 | | Check ?
High Limit
Low Limit | Chk Pass | Chk Pass | Chk Pass | Chk Pass | Chk Pass | Chk Pass | Chk Fail
225.00
00500 | | Sample Name: L1605057110 Acquired: 5/16/2016 18:2 Method: ICP-THERMO3_6010_200.7WATER_3YLINES(v8) User: JYH Custom ID1: Custom ID2: Comment: | | | | | Type: Unk
Mode: CONO
ID3: | C Corr. F | Factor: 1.00000(| |--|---|---|---|--|---|--|--| | Elem
Units
Avg
Stddev
%RSD | Sb2068
ppm
. 00043
.00208
480.56 | Se1960
ppm
00107
.00071
66.381 | Si2124
ppm
16.120
.022
.13461 | Sn1899
ppm
00164
.00103
63.178 | Sr4077
ppm
. 65554
.00551
.84036 | Ti3372
ppm
01225
.00148
12.052 | TI1908
ppm
00245
.00389
158.92 | | #1
#2
#3 | .00245
00171
.00057 | 00186
00082
00051 | 16.145
16.108
16.107 | 00155
00065
00271 | .65583
.66091
.64990 | 01269
01060
01345 | 00209
00650
.00125 | | Check ?
High Limit
Low Limit | Chk Pass | Elem
Units
Avg
Stddev
%RSD | V_2924
ppm
. 00053
.00023
44.045 | Zn2062
ppm
. 00260
.00023
8.7348 | Zr3391
ppm
. 02210
.50754
2296.9 | | | | | | #1
#2
#3 | .00077
.00052
.00030 | .00248
.00246
.00286 |
16105
.59579
36845 | | | | | | Check ?
High Limit
Low Limit | Chk Pass | Chk Pass | Chk Pass | | | | | | Int. Std.
Units
Avg
Stddev
%RSD | Y_2243
Cts/S
12768.
26.
.20564 | Y_3600
Cts/S
90786.
401.
.44184 | Y_3774
Cts/S
4224.2
63.3
1.4976 | | | | | | #1
#2
#3 | 12756.
12798.
12751. | 90336.
91106.
90917. | 4183.1
4192.5
4297.1 | | | | | | Sample Name
Method: ICP-T
User: JYH
Comment: | |)10_200.7W <i>A</i> | ed: 5/16/2010
ATER_3YLIN
stom ID2: | | Type: Unk
Mode: CONO
ID3: | C Corr. F | Factor: 1.00000(| |---|----------------|---------------------|--|-----------------------------|---------------------------------|----------------|-----------------------------| | Elem | Ag3280 | Al3082 | As1890 | B_2496 | Ba4554 | Be3131 | Ca4226 | | Units | ppm | Avg | 00261 | . 00611 | 00062 | . 01756 | . 29989 | .00013 | F 306.55 | | Stddev | .00108 | .00433 | .00289 | .00067 | .00211 | .00002 | 1.20 | | %RSD | 41.143 | 70.856 | 467.36 | 3.8185 | .70379 | 18.948 | .39061 | | #1 | 00261 | .00892 | 00304 | .01722 | .29794 | .00014 | 305.26 | | #2 | 00369 | .00830 | .00258 | .01833 | .29959 | .00010 | 306.79 | | #3 | 00154 | .00112 | 00140 | .01712 | .30213 | .00015 | 307.61 | | Check ?
High Limit
Low Limit | Chk Pass | Chk Pass | Chk Pass | Chk Pass | Chk Pass | Chk Pass | Chk Fail
270.00
10000 | | Elem | Cd2288 | Co2286 | Cr2677 | Cu2247 | Fe2611 | K_7664 | Li6707 | | Units | ppm | Avg | . 00135 | .00046 | . 00433 | .00259 | . 12555 | 4.2452 | . 11213 | | Stddev | .00026 | .00006 | .00087 | .00100 | .02128 | .0405 | .00317 | | %RSD | 19.122 | 12.202 | 20.047 | 38.545 | 16.947 | .95472 | 2.8282 | | #1 | .00125 | .00042 | .00527 | .00216 | .13651 | 4.2768 | .11535 | | #2 | .00116 | .00052 | .00356 | .00373 | .13911 | 4.2593 | .10902 | | #3 | .00164 | .00043 | .00417 | .00188 | .10103 | 4.1995 | .11201 | | Check ?
High Limit
Low Limit | Chk Pass | Elem | Mg2790 | Mn2576 | Mo2020 | Na5895 | Ni2316 | P_2149 | Pb2203 | | Units | ppm | Avg | 129.40 | .06825 | . 00009 | F 296.42 | . 00794 | . 06814 | 00021 | | Stddev | .48 | .00319 | .00009 | .66 | .00082 | .00208 | .00403 | | %RSD | .36710 | 4.6805 | 103.60 | .22198 | 10.272 | 3.0464 | 1949.0 | | #1 | 128.86 | .07059 | .00019 | 295.99 | .00741 | .07027 | 00002 | | #2 | 129.61 | .06461 | .00002 | 296.08 | .00754 | .06612 | .00373 | | #3 | 129.73 | .06955 | .00005 | 297.18 | .00888 | .06804 | 00433 | | Check ?
High Limit
Low Limit | Chk Pass | Chk Pass | Chk Pass | Chk Fail
270.00
50000 | Chk Pass | Chk Pass | Chk Pass | | Sample Name: L1605057112 Acquired: 5/16/2016 18:25:43 Method: ICP-THERMO3_6010_200.7WATER_3YLINES(v873) User: JYH Custom ID1: Custom ID2: Custom Comment: | | | | | Type: Unk
Mode: CON
ID3: | C Corr. F | Factor: 1.00000(| |---|---|--|---|--|---|---|--| | Elem
Units
Avg
Stddev
%RSD | Sb2068
ppm
00737
.00100
13.563 | Se1960
ppm
00570
.00384
67.423 | Si2124
ppm
19.032
.025
.13116 | Sn1899
ppm
00172
.00085
49.155 | Sr4077
ppm
3.3960
.0059
.17284 | Ti3372
ppm
F04752
.00314
6.6171 | TI1908
ppm
00442
.00266
60.254 | | #1
#2
#3 | 00817
00769
00625 | 00156
00639
00915 | 19.029
19.059
19.009 | 00118
00269
00128 | 3.3897
3.3970
3.4014 | 04503
05105
04649 | 00577
00614
00135 | | Check ?
High Limit
Low Limit | Chk Pass | Chk Pass | Chk Pass | Chk Pass | Chk Pass | Chk Fail
36.000
03000 | Chk Pass | | Elem
Units
Avg
Stddev
%RSD | V_2924
ppm
. 00156
.00156
99.491 | Zn2062
ppm
.00369
.00013
3.4893 | Zr3391
ppm
. 27367
.10919
39.899 | | | | | | #1
#2
#3 | .00165
00003
.00308 | .00372
.00380
.00355 | .17570
.25393
.39139 | | | | | | Check ?
High Limit
Low Limit | Chk Pass | Chk Pass | Chk Pass | | | | | | Int. Std.
Units
Avg
Stddev
%RSD | Y_2243
Cts/S
12166.
29.
.24049 | Y_3600
Cts/S
87063.
458.
.52627 | Y_3774
Cts/S
4158.4
47.5
1.1422 | | | | | | #1
#2
#3 | 12140.
12160.
12198. | 87570.
86678.
86942. | 4200.8
4167.4
4107.1 | | | | | | Sample Nam
Method: ICP
User: JYH
Comment: | | _ | | LINES(v873 | pe: QC
) Mode:
tom ID3: | CONC (| Corr. Factor: | 1.00000(| |--|----------------|----------------|----------------|----------------|-------------------------------|----------------|----------------|----------| | Elem | Ag3280 | Al3082 | As1890 | B_2496 | Ba4554 | Be3131 | Ca4226 | | | Units | ppm | | Avg | .38803 | 9.7592 | .38825 | . 48562 | . 95107 | . 04792 | 9.3698 | | | Stddev | .00102 | .0526 | .00219 | .00070 | .00946 | .00038 | .1090 | | | %RSD | .26327 | .53867 | .56478 | .14517 | .99465 | .79018 | 1.1631 | | | #1 | .38900 | 9.7075 | .38700 | .48642 | .94068 | .04749 | 9.2506 | | | #2 | .38696 | 9.7574 | .38696 | .48511 | .95335 | .04806 | 9.3946 | | | #3 | .38814 | 9.8126 | .39078 | .48531 | .95919 | .04820 | 9.4643 | | | Check ?
Value
Range | Chk Pass | | Elem | Cd2288 | Co2286 | Cr2677 | Cu2247 | Fe2611 | K_7664 | Li6707 | | | Units | ppm | | Avg | . 04767 | . 19923 | . 50644 | . 49902 | 3.8960 | 47.951 | . 96338 | | | Stddev | .00017 | .00060 | .00410 | .00177 | .0448 | .427 | .01117 | | | %RSD | .35943 | .29958 | .80905 | .35564 | 1.1490 | .89119 | 1.1595 | | | #1 | .04784 | .19970 | .50254 | .49758 | 3.8588 | 47.468 | .95048 | | | #2 | .04768 | .19856 | .50606 | .50101 | 3.8836 | 48.102 | .96969 | | | #3 | .04750 | .19943 | .51071 | .49848 | 3.9457 | 48.282 | .96996 | | | Check ?
Value
Range | Chk Pass | | Elem | Mg2790 | Mn2576 | Mo2020 | Na5895 | Ni2316 | P_2149 | Pb2203 | | | Units | ppm | | Avg | 9.7691 | . 48015 | . 96001 | 48.432 | . 50786 | 9.8213 | . 51132 | | | Stddev | .1399 | .00407 | .00496 | .462 | .00134 | .0120 | .00044 | | | %RSD | 1.4324 | .84829 | .51679 | .95467 | .26440 | .12170 | .08619 | | | #1 | 9.6098 | .47625 | .96560 | 47.947 | .50773 | 9.8235 | .51158 | | | #2 | 9.8250 | .47984 | .95830 | 48.482 | .50926 | 9.8085 | .51157 | | | #3 | 9.8724 | .48438 | .95613 | 48.867 | .50658 | 9.8321 | .51081 | | | Check ?
Value
Range | Chk Pass | | Sample Nam
Method: ICP
User: JYH
Comment: | | 6010_200.7 | 16/2016 18:2
WATER_3Y
Custom ID2: | LINES(v873 | pe: QC
) Mode:
tom ID3: | CONC (| Corr. Factor: [·] | 1.000000 | |--|---|---|---|---|---|---|---|----------| | Elem
Units
Avg
Stddev
%RSD | Sb2068
ppm
1.1744
.0014
.11826 | Se1960
ppm
. 36527
.00334
.91424 | Si2124
ppm
4.9109
.0085
.17314 | Sn1899
ppm
. 99290
.00177
.17845 | Sr4077
ppm
. 94734
.00954
1.0074 | Ti3372
ppm
. 95027
.00623
.65577 | TI1908
ppm
. 49416
.00196
.39702 | | | #1
#2
#3 | 1.1735
1.1737
1.1760 | .36645
.36785
.36150 | 4.9119
4.9019
4.9188 | .99297
.99109
.99463 | .93714
.94881
.95606 | .94317
.95483
.95282 | .49484
.49195
.49570 | | | Check ?
Value
Range | Chk Pass | | Elem
Units
Avg
Stddev
%RSD | V_2924
ppm
. 98843
.00599
.60640 | Zn2062
ppm
1.0103
.0018
.17864 | Zr3391
ppm
F . 75625
.46531
61.529 | | | | | | | #1
#2
#3 | .98359
.98657
.99514 | 1.0114
1.0082
1.0113 | 1.1831
.26024
.82538 | | | | | | | Check ?
Value
Range | Chk Pass | Chk Pass | Chk Fail
1.0000
-10.000% | | | | | | | Int. Std.
Units
Avg
Stddev
%RSD | Y_2243
Cts/S
13566.
48.
.35214 | Y_3600
Cts/S
96398.
1005.
1.0423 | Y_3774
Cts/S
4395.7
86.9
1.9765 | | | | | | | #1
#2
#3 | 13519.
13614.
13565. | 96908.
97046.
95241. | 4496.0
4344.0
4347.0 | | | | | | | Sample Name: CCB Acquired: 5/16/2016 18:33:17 Type: Blank Method: ICP-THERMO3_6010_200.7WATER_3YLINES(v873) Mode: CONC Corr. Factor: 1.000000 User: JYH Custom ID1: Custom ID2: Custom ID3: Comment: | | | | | | | | | | |--|----------------|----------|----------------|----------------|----------|----------------|----------------|--|--| | Elem | Ag3280 | Al3082 | As1890 | B_2496 | Ba4554 | Be3131 | Ca4226 | | | | Units | ppm | | | Avg | 00292 | 00934 | 00031 | 00022 | .00142 | . 00009 | 03137 | | | | Stddev |
.00182 | .00638 | .00159 | .00259 | .00106 | .00003 | .02053 | | | | %RSD | 62.431 | 68.344 | 517.48 | 1202.0 | 74.656 | 29.347 | 65.451 | | | | #1 | 00320 | 00237 | .00085 | .00277 | .00264 | .00008 | 02522 | | | | #2 | 00458 | 01074 | .00035 | 00152 | .00089 | .00007 | 01461 | | | | #3 | 00097 | 01490 | 00212 | 00190 | .00073 | .00012 | 05427 | | | | Check ?
High Limit
Low Limit | Chk Pass | | | Elem | Cd2288 | Co2286 | Cr2677 | Cu2247 | Fe2611 | K_7664 | Li6707 | | | | Units | ppm | | | Avg | . 00007 | 00014 | .00009 | .00048 | .01610 | . 23760 | . 00362 | | | | Stddev | .00031 | .00017 | .00104 | .00127 | .03331 | .07725 | .00106 | | | | %RSD | 427.71 | 114.09 | 1098.4 | 266.23 | 206.91 | 32.511 | 29.377 | | | | #1 | 00012 | 00034 | 00024 | 00085 | .00061 | .25536 | .00248 | | | | #2 | .00043 | 00006 | .00126 | .00169 | .05433 | .30441 | .00379 | | | | #3 | 00010 | 00004 | 00074 | .00060 | 00665 | .15302 | .00459 | | | | Check ?
High Limit
Low Limit | Chk Pass | | | Elem | Mg2790 | Mn2576 | Mo2020 | Na5895 | Ni2316 | P_2149 | Pb2203 | | | | Units | ppm | | | Avg | . 03514 | 00028 | . 00416 | . 00334 | 00075 | 00178 | 00261 | | | | Stddev | .04981 | .00206 | .00041 | .01054 | .00070 | .00787 | .00064 | | | | %RSD | 141.75 | 747.19 | 9.8045 | 315.75 | 93.728 | 441.51 | 24.529 | | | | #1 | .09260 | .00055 | .00371 | .01414 | 00155 | .00726 | 00267 | | | | #2 | .00864 | .00124 | .00452 | 00692 | 00030 | 00557 | 00195 | | | | #3 | .00418 | 00263 | .00423 | .00280 | 00039 | 00704 | 00322 | | | | Check ?
High Limit
Low Limit | Chk Pass | | | Sample Name: CCB Acquired: 5/16/2016 18:33:17 Type: Blank Method: ICP-THERMO3_6010_200.7WATER_3YLINES(v873) Mode: CONC Corr. Factor: 1.000000 User: JYH Custom ID1: Custom ID2: Custom ID3: Comment: | | | | | | | | | |--|---|--|--|--|---|--|--|--| | Elem
Units
Avg
Stddev
%RSD | Sb2068
ppm
. 00280
.00360
128.50 | Se1960
ppm
00239
.00390
162.94 | Si2124
ppm
00256
.00208
81.230 | Sn1899
ppm
00003
.00061
2083.1 | Sr4077
ppm
. 00020
.00030
149.07 | Ti3372
ppm
00129
.00464
359.19 | TI1908
ppm
00313
.00219
69.921 | | | #1
#2
#3 | .00654
00065
.00252 | 00686
.00026
00057 | 00137
00134
00495 | .00062
00013
00058 | .00022
.00049
00011 | .00383
00249
00522 | 00350
00511
00078 | | | Check ?
High Limit
Low Limit | Chk Pass | | Elem
Units
Avg
Stddev
%RSD | V_2924
ppm
. 00134
.00055
40.900 | Zn2062
ppm
.00022
.00017
78.318 | Zr3391
ppm
F21016
.10129
48.197 | | | | | | | #1
#2
#3 | .00131
.00191
.00081 | .00028
.00034
.00002 | 31665
19879
11503 | | | | | | | Check ?
High Limit
Low Limit | Chk Pass | Chk Pass | Chk Fail
.04000
04000 | | | | | | | Int. Std.
Units
Avg
Stddev
%RSD | Y_2243
Cts/S
13481.
69.
.51110 | Y_3600
Cts/S
96195.
317.
.32928 | Y_3774
Cts/S
4291.4
25.0
.58348 | | | | | | | #1
#2
#3 | 13532.
13403.
13509. | 96250.
95854.
96480. | 4310.6
4300.5
4263.1 | | | | | | | • | | | | | | | | | | | |------------------------------------|----------------|----------------|----------------|----------------|----------------|----------------|---------------|----------------|--|--| | Elem | Ag3280 | Al3082 | As1890 | B_2496 | Ba4554 | Be3131 | Ca4226 | Cd2288 | | | | Units | ppm | | | Avg | 00366 | 00365 | .00414 | . 04489 | . 49349 | .00013 | 37.233 | . 00018 | | | | Stddev | .00280 | .00937 | .00299 | .00070 | .00342 | .00004 | .217 | .00009 | | | | %RSD | 76.516 | 256.66 | 72.113 | 1.5626 | .69393 | 33.162 | .58162 | 51.000 | | | | #1 | 00044 | 00989 | .00672 | .04481 | .48955 | .00011 | 37.018 | .00008 | | | | #2 | 00504 | 00818 | .00483 | .04423 | .49513 | .00009 | 37.229 | .00026 | | | | #3 | 00550 | .00712 | .00087 | .04562 | .49578 | .00017 | 37.451 | .00019 | | | | Check ?
High Limit
Low Limit | Chk Pass | | | Elem | Co2286 | Cr2677 | Cu2247 | Fe2611 | K_7664 | Li6707 | Mg2790 | Mn2576 | | | | Units | ppm | | | Avg | 00003 | . 00236 | . 00060 | 1.9053 | 1.2107 | . 01563 | 8.7138 | . 55230 | | | | Stddev | .00027 | .00150 | .00116 | .0284 | .1003 | .00768 | .1238 | .00258 | | | | %RSD | 813.80 | 63.727 | 193.10 | 1.4928 | 8.2814 | 49.125 | 1.4210 | .46685 | | | | #1 | .00027 | .00376 | .00194 | 1.9351 | 1.1621 | .02348 | 8.8461 | .55054 | | | | #2 | 00026 | .00077 | 00007 | 1.9022 | 1.1440 | .00814 | 8.6946 | .55109 | | | | #3 | 00010 | .00256 | 00007 | 1.8785 | 1.3260 | .01527 | 8.6008 | .55525 | | | | Check ?
High Limit
Low Limit | Chk Pass | | | Elem | Mo2020 | Na5895 | Ni2316 | P_2149 | Pb2203 | Sb2068 | Se1960 | Si2124 | | | | Units | ppm | | | Avg | . 00165 | 19.802 | 00051 | . 15513 | 00197 | . 00185 | .00310 | 5.4537 | | | | Stddev | .00040 | .081 | .00064 | .00595 | .00042 | .00108 | .00992 | .0183 | | | | %RSD | 24.270 | .41126 | 125.63 | 3.8382 | 21.296 | 58.456 | 320.19 | .33487 | | | | #1 | .00174 | 19.722 | 00064 | .16192 | 00149 | .00268 | .00127 | 5.4658 | | | | #2 | .00121 | 19.798 | .00019 | .15076 | 00227 | .00225 | 00578 | 5.4626 | | | | #3 | .00199 | 19.885 | 00107 | .15273 | 00214 | .00063 | .01381 | 5.4327 | | | | Check ?
High Limit
Low Limit | Chk Pass | | | Sample Nar
Method: ICF
User: JYH
Comment: | | 3_6010_200 | .cquired: 5/1
.7WATER_
Custom IE | 3YLINES(v8 | | ype: Unk
ode: CONC
: | Corr. Fa | ctor: 1.00000(| |--|---|---|--|--|---|---|---|----------------| | Elem
Units
Avg
Stddev
%RSD | Sn1899
ppm
00059
.00071
119.54 | Sr4077
ppm
. 48997
.00127
.25922 | Ti3372
ppm
00606
.00601
99.168 | TI1908
ppm
00053
.00203
382.33 | V_2924
ppm
.00022
.00052
240.22 | Zn2062
ppm
. 00337
.00007
2.2246 | Zr3391
ppm
. 25302
.18231
72.054 | | | #1
#2
#3 | 00140
00030
00007 | .48957
.48895
.49139 | 01016
.00084
00887 | 00003
00276
.00120 | 00002
00015
.00081 | .00331
.00334
.00345 | .04515
.32817
.38575 | | | Check ?
High Limit
Low Limit | Chk Pass | | Int. Std.
Units
Avg
Stddev
%RSD | Y_2243
Cts/S
13057.
34.
.26344 | Y_3600
Cts/S
93615.
220.
.23487 | Y_3774
Cts/S
4260.7
34.4
.80711 | | | | | | | #1
#2
#3 | 13044.
13095.
13030. | 93449.
93865.
93533. | 4228.0
4296.6
4257.5 | | | | | | | • | | | | | | | | | | | |------------------------------------|----------------|---------------|----------|----------------|----------------|----------------|---------------|----------------|--|--| | Elem | Ag3280 | Al3082 | As1890 | B_2496 | Ba4554 | Be3131 | Ca4226 | Cd2288 | | | | Units | ppm | | | Avg | 00338 | 00691 | 00155 | . 05073 | . 80054 | .00011 | 53.096 | .00058 | | | | Stddev | .00215 | .00033 | .00033 | .00125 | .00184 | .00007 | .101 | .00008 | | | | %RSD | 63.442 | 4.7529 | 21.268 | 2.4575 | .23043 | 59.725 | .19023 | 13.508 | | | | #1 | 00124 | 00664 | 00119 | .04954 | .79932 | .00019 | 52.980 | .00063 | | | | #2 | 00338 | 00728 | 00163 | .05062 | .80266 | .00008 | 53.162 | .00049 | | | | #3 | 00553 | 00682 | 00183 | .05202 | .79965 | .00007 | 53.146 | .00061 | | | | Check ?
High Limit
Low Limit | Chk Pass | | | Elem | Co2286 | Cr2677 | Cu2247 | Fe2611 | K_7664 | Li6707 | Mg2790 | Mn2576 | | | | Units | ppm | | | Avg | 00007 | .00155 | 00015 | .01352 | 2.3252 | . 01388 | 9.8216 | . 30122 | | | | Stddev | .00027 | .00092 | .00122 | .00059 | .0853 | .00206 | .1165 | .00338 | | | | %RSD | 393.64 | 58.953 | 808.61 | 4.3686 | 3.6674 | 14.869 | 1.1858 | 1.1210 | | | | #1 | 00021 | .00261 | 00081 | .01418 | 2.3966 | .01365 | 9.8976 | .30383 | | | | #2 | 00024 | .00097 | 00090 | .01333 | 2.2308 | .01605 | 9.6875 | .29741 | | | | #3 | .00024 | .00108 | .00126 | .01305 | 2.3483 | .01195 | 9.8797 | .30241 | | | | Check ?
High Limit
Low Limit | Chk Pass | | | Elem | Mo2020 | Na5895 | Ni2316 | P_2149 | Pb2203 | Sb2068 | Se1960 | Si2124 | | | | Units | ppm | | | Avg | . 00083 | 107.51 | .00259 | 00656 | .00048 | . 00322 | .00284 | 4.1504 | | | | Stddev | .00029 | .14 | .00028 | .00628 | .00414 | .00238 | .00317 | .0092 | | | | %RSD | 34.691 | .12662 | 10.666 | 95.742 | 871.05 | 73.841 | 111.59 | .22142 | | | | #1 | .00099 | 107.66 | .00242 | 00083 | 00416 | .00436 | .00621 | 4.1598 | | | | #2 | .00050 | 107.47 | .00291 | 00557 | .00179 | .00481 | .00239 | 4.1500 | | | | #3 | .00102 | 107.40 | .00245 | 01326 | .00380 | .00049 | 00008 | 4.1414 | | | | Check ?
High Limit
Low Limit | Chk Pass | | | Sample Nar
Method: ICF
User: JYH
Comment: | | 3_6010_200 | • | • | | ype: Unk
ode: CONC
: | Corr.
Fa | ctor: 1.00000(| |--|---|---|--|--|---|---|---|----------------| | Elem
Units
Avg
Stddev
%RSD | Sn1899
ppm
00045
.00086
191.18 | Sr4077
ppm
. 53291
.00117
.22035 | Ti3372
ppm
00575
.00363
63.217 | TI1908
ppm
00018
.00124
685.74 | V_2924
ppm
. 00198
.00120
60.735 | Zn2062
ppm
. 00280
.00014
4.9726 | Zr3391
ppm
. 12045
.14661
121.72 | | | #1
#2
#3 | 00085
.00054
00103 | .53207
.53241
.53425 | 00498
00256
00971 | .00109
00140
00023 | .00059
.00263
.00270 | .00282
.00265
.00292 | .22897
.17871
04633 | | | Check ?
High Limit
Low Limit | Chk Pass | | Int. Std.
Units
Avg
Stddev
%RSD | Y_2243
Cts/S
12869.
12.
.09391 | Y_3600
Cts/S
91743 .
241.
.26288 | Y_3774
Cts/S
4257.3
21.9
.51532 | | | | | | | #1
#2
#3 | 12873.
12855.
12878. | 91575.
91635.
92019. | 4271.7
4232.0
4268.1 | | | | | | | • | | | | | | | | | | | |------------------------------------|----------------|----------------|----------------|----------------|----------|----------|----------------|--|--|--| | Elem | Ag3280 | Al3082 | As1890 | B_2496 | Ba4554 | Be3131 | Ca4226 | | | | | Units | ppm | | | | Avg | 00221 | 01551 | 00414 | . 00024 | .00116 | .00011 | . 00837 | | | | | Stddev | .00081 | .00561 | .00057 | .00134 | .00072 | .00003 | .02069 | | | | | %RSD | 36.739 | 36.190 | 13.755 | 565.80 | 62.014 | 29.240 | 247.36 | | | | | #1 | 00304 | 02198 | 00473 | 00027 | .00035 | .00013 | .01334 | | | | | #2 | 00141 | 01242 | 00411 | .00175 | .00141 | .00007 | .02612 | | | | | #3 | 00219 | 01211 | 00359 | 00077 | .00173 | .00012 | 01436 | | | | | Check ?
High Limit
Low Limit | Chk Pass | | | | Elem | Cd2288 | Co2286 | Cr2677 | Cu2247 | Fe2611 | K_7664 | Li6707 | | | | | Units | ppm | | | | Avg | . 00051 | 00026 | . 00028 | . 00008 | .02566 | .12798 | . 00509 | | | | | Stddev | .00021 | .00043 | .00012 | .00155 | .01025 | .04215 | .00242 | | | | | %RSD | 40.959 | 165.44 | 43.870 | 1930.2 | 39.930 | 32.930 | 47.445 | | | | | #1 | .00031 | 00075 | .00021 | .00183 | .02779 | .15364 | .00344 | | | | | #2 | .00072 | 00005 | .00021 | 00047 | .01451 | .07934 | .00397 | | | | | #3 | .00050 | .00002 | .00043 | 00112 | .03467 | .15096 | .00787 | | | | | Check ?
High Limit
Low Limit | Chk Pass | | | | Elem | Mg2790 | Mn2576 | Mo2020 | Na5895 | Ni2316 | P_2149 | Pb2203 | | | | | Units | ppm | | | | Avg | . 10252 | . 00005 | .00009 | . 01883 | 00028 | 00442 | . 00025 | | | | | Stddev | .14738 | .00195 | .00056 | .01599 | .00026 | .00917 | .00199 | | | | | %RSD | 143.76 | 4176.8 | 601.63 | 84.949 | 92.182 | 207.51 | 796.79 | | | | | #1 | .04721 | 00218 | 00055 | .01285 | .00000 | 00142 | .00225 | | | | | #2 | .26956 | .00144 | .00043 | .00669 | 00050 | .00287 | .00022 | | | | | #3 | 00920 | .00088 | .00040 | .03695 | 00033 | 01471 | 00173 | | | | | Check ?
High Limit
Low Limit | Chk Pass | | | | Sample Name: L1605067403 Acquired: 5/16/2016 18:45:10 Method: ICP-THERMO3_6010_200.7WATER_3YLINES(v873) User: JYH Custom ID1: Custom ID2: Custom Comment: | | | | | Type: Unk
Mode: CON0
ID3: | C Corr. F | Factor: 1.000000 | |---|--|---|--|--|---|---|--| | Elem
Units
Avg
Stddev
%RSD | Sb2068
ppm
00004
.00191
5056.1 | Se1960
ppm
00274
.00427
155.97 | Si2124
ppm
01989
.00047
2.3742 | Sn1899
ppm
00003
.00066
2421.9 | Sr4077
ppm
.00016
.00022
134.71 | Ti3372
ppm
.00021
.00749
3530.3 | TI1908
ppm
00284
.00032
11.342 | | #1
#2
#3 | 00174
.00203
00040 | .00211
00438
00595 | 02030
01938
02000 | .00022
00077
.00047 | .00004
.00003
.00041 | 00747
.00748
.00063 | 00269
00321
00263 | | Check ?
High Limit
Low Limit | Chk Pass | Elem
Units
Avg
Stddev
%RSD | V_2924
ppm
.00070
.00088
126.52 | Zn2062
ppm
. 00260
.00028
10.586 | Zr3391
ppm
F28347
.23243
81.993 | | | | | | #1
#2
#3 | .00164
.00057
00012 | .00261
.00232
.00287 | 27834
05366
51842 | | | | | | Check ?
High Limit
Low Limit | Chk Pass | Chk Pass | Chk Fail
36.000
04000 | | | | | | Int. Std.
Units
Avg
Stddev
%RSD | Y_2243
Cts/S
13123.
7.
.05606 | Y_3600
Cts/S
95228.
125.
.13097 | Y_3774
Cts/S
4264.0
27.2
.63787 | | | | | | #1
#2
#3 | 13115.
13129.
13125. | 95210.
95113.
95360. | 4243.9
4295.0
4253.2 | | | | | | • | | | | | | | | | | | |------------------------------------|----------------|----------------|----------------|----------------|---------------|----------------|---------------|----------------|--|--| | Elem | Ag3280 | Al3082 | As1890 | B_2496 | Ba4554 | Be3131 | Ca4226 | Cd2288 | | | | Units | ppm | | | Avg | 00377 | . 01186 | .00074 | .06071 | .16878 | . 00013 | 10.318 | . 00019 | | | | Stddev | .00164 | .00118 | .00264 | .00142 | .00088 | .00004 | .022 | .00014 | | | | %RSD | 43.402 | 9.9196 | 358.10 | 2.3392 | .52106 | 27.517 | .21221 | 72.636 | | | | #1 | 00556 | .01312 | .00274 | .05947 | .16808 | .00009 | 10.344 | .00014 | | | | #2 | 00235 | .01167 | 00225 | .06040 | .16977 | .00015 | 10.306 | .00035 | | | | #3 | 00340 | .01079 | .00172 | .06226 | .16850 | .00015 | 10.305 | .00008 | | | | Check ?
High Limit
Low Limit | Chk Pass | | | Elem | Co2286 | Cr2677 | Cu2247 | Fe2611 | K_7664 | Li6707 | Mg2790 | Mn2576 | | | | Units | ppm | | | Avg | 00008 | . 00092 | . 00138 | . 04196 | 1.6366 | . 00775 | 1.4062 | . 00372 | | | | Stddev | .00029 | .00089 | .00195 | .00729 | .0784 | .00389 | .0664 | .00188 | | | | %RSD | 354.21 | 97.421 | 141.10 | 17.371 | 4.7896 | 50.136 | 4.7234 | 50.682 | | | | #1 | .00016 | .00070 | .00068 | .04964 | 1.7234 | .00548 | 1.4376 | .00156 | | | | #2 | 00041 | .00015 | 00012 | .04111 | 1.5708 | .00553 | 1.4511 | .00504 | | | | #3 | 00000 | .00190 | .00359 | .03514 | 1.6158 | .01224 | 1.3299 | .00455 | | | | Check ?
High Limit
Low Limit | Chk Pass | | | Elem | Mo2020 | Na5895 | Ni2316 | P_2149 | Pb2203 | Sb2068 | Se1960 | Si2124 | | | | Units | ppm | | | Avg | . 00390 | 118.61 | .00015 | .00301 | 00045 | . 00242 | 00706 | 4.4219 | | | | Stddev | .00030 | .24 | .00184 | .00623 | .00280 | .00078 | .00922 | .0085 | | | | %RSD | 7.5854 | .20048 | 1249.8 | 206.85 | 626.93 | 32.094 | 130.56 | .19270 | | | | #1 | .00363 | 118.66 | 00140 | 00350 | 00015 | .00307 | .00355 | 4.4237 | | | | #2 | .00385 | 118.82 | 00034 | .00361 | .00219 | .00156 | 01163 | 4.4293 | | | | #3 | .00422 | 118.35 | .00218 | .00892 | 00338 | .00263 | 01311 | 4.4126 | | | | Check ?
High Limit
Low Limit | Chk Pass | | | Sample Nar
Method: ICF
User: JYH
Comment: | | 3_6010_200 | .cquired: 5/1
.7WATER_
Custom II | 3YLINES(v8 | | ype: Unk
ode: CONC
: | Corr. Fa | ctor: 1.00000(| |--|---|---|--|--|---|---|---|----------------| | Elem
Units
Avg
Stddev
%RSD | Sn1899
ppm
00150
.00085
56.508 | Sr4077
ppm
. 10398
.00010
.09159 | Ti3372
ppm
00328
.00288
87.732 | TI1908
ppm
00347
.00397
114.37 | V_2924
ppm
. 00314
.00119
37.916 | Zn2062
ppm
.00338
.00016
4.6724 | Zr3391
ppm
. 12105
.50767
419.39 | | | #1
#2
#3 | 00112
00248
00091 | .10397
.10408
.10389 | 00657
00203
00124 | 00241
00786
00014 | .00432
.00194
.00315 | .00356
.00325
.00333 | .59864
.17664
41213 | | | Check ?
High Limit
Low Limit | Chk Pass | | Int. Std.
Units
Avg
Stddev
%RSD | Y_2243
Cts/S
12966.
49.
.37707 | Y_3600
Cts/S
92377.
319.
.34576 | Y_3774
Cts/S
4287.3
37.9
.88483 | | | | | | | #1
#2
#3 | 12925.
12952.
13020. | 92022.
92466.
92642. | 4258.7
4272.9
4330.3 | | | | | | | Sample Name: L1605067405 Acquired: 5/16/2016 18:53:06 Type: Unk Method: ICP-THERMO3_6010_200.7WATER_3YLINES(v873) Mode: CONC Corr. Fact User: JYH Custom ID1: Custom ID2: Custom ID3: Comment: | | | | | | | Factor: 1.00000(| |--|----------------|----------------|----------|-----------------------------|-----------------------------
----------------|-----------------------------| | Elem | Ag3280 | Al3082 | As1890 | B_2496 | Ba4554 | Be3131 | Ca4226 | | Units | ppm | Avg | 00043 | . 00660 | .00031 | . 11436 | F 48.505 | 00001 | F 2223.7 | | Stddev | .00199 | .01235 | .00722 | .00073 | .134 | .00008 | 12.2 | | %RSD | 460.33 | 187.30 | 2312.7 | .63657 | .27694 | 1103.4 | .55036 | | #1 | 00263 | .01983 | 00572 | .11389 | 48.376 | .00008 | 2226.2 | | #2 | .00008 | .00460 | .00831 | .11520 | 48.496 | 00009 | 2210.4 | | #3 | .00125 | 00464 | 00165 | .11399 | 48.644 | 00001 | 2234.5 | | Check ?
High Limit
Low Limit | Chk Pass | Chk Pass | Chk Pass | Chk Pass | Chk Fail
45.000
00500 | Chk Pass | Chk Fail
270.00
10000 | | Elem | Cd2288 | Co2286 | Cr2677 | Cu2247 | Fe2611 | K_7664 | Li6707 | | Units | ppm | Avg | . 00592 | .00506 | .00356 | . 01210 | 35.663 | 86.778 | 1.1964 | | Stddev | .00039 | .00034 | .00047 | .00217 | .101 | .383 | .0032 | | %RSD | 6.6528 | 6.6548 | 13.285 | 17.912 | .28284 | .44088 | .26479 | | #1 | .00634 | .00469 | .00306 | .01154 | 35.771 | 87.065 | 1.1958 | | #2 | .00555 | .00535 | .00362 | .01449 | 35.645 | 86.926 | 1.1998 | | #3 | .00588 | .00513 | .00400 | .01027 | 35.571 | 86.344 | 1.1936 | | Check ?
High Limit
Low Limit | Chk Pass | Elem | Mg2790 | Mn2576 | Mo2020 | Na5895 | Ni2316 | P_2149 | Pb2203 | | Units | ppm | Avg | 206.87 | 16.627 | 00129 | F 524.87 | 00895 | . 09222 | . 00645 | | Stddev | .74 | .118 | .00055 | 3.06 | .00116 | .00854 | .00656 | | %RSD | .35845 | .70840 | 42.468 | .58362 | 13.014 | 9.2646 | 101.79 | | #1 | 207.68 | 16.708 | 00081 | 527.58 | 00774 | .08704 | .00254 | | #2 | 206.71 | 16.681 | 00188 | 525.48 | 01006 | .10208 | .00277 | | #3 | 206.22 | 16.492 | 00117 | 521.54 | 00904 | .08755 | .01402 | | Check ?
High Limit
Low Limit | Chk Pass | Chk Pass | Chk Pass | Chk Fail
270.00
50000 | Chk Pass | Chk Pass | Chk Pass | | Sample Name:
Method: ICP-T
User: JYH
Comment: | |)10_200.7W <i>A</i> | ed: 5/16/2016
ATER_3YLINI
stom ID2: | | Type: Unk
Mode: CON
ID3: | C Corr. F | Factor: 1.00000(| |--|---|--|--|--|--|---|--| | Elem
Units
Avg
Stddev
%RSD | Sb2068
ppm
01205
.00661
54.899 | Se1960
ppm
F04137
.00046
1.1132 | Si2124
ppm
4.9039
.0602
1.2284 | Sn1899
ppm
00219
.00053
24.170 | Sr4077
ppm
F 56.938
.700
1.2294 | Ti3372
ppm
F19518
.00402
2.0614 | TI1908
ppm
00438
.00224
51.138 | | #1
#2
#3 | 01677
00449
01488 | 04188
04099
04122 | 4.9282
4.9483
4.8353 | 00225
00164
00269 | 56.597
56.474
57.743 | 19066
19838
19649 | 00314
00304
00696 | | Check ?
High Limit
Low Limit | Chk Pass | Chk Fail
90.000
01000 | Chk Pass | Chk Pass | Chk Fail
9.0000
01000 | Chk Fail
36.000
03000 | Chk Pass | | Elem
Units
Avg
Stddev
%RSD | V_2924
ppm
. 00446
.00088
19.841 | Zn2062
ppm
.00365
.00015
4.2174 | Zr3391
ppm
F -1.2585
.4982
39.589 | | | | | | #1
#2
#3 | .00357
.00533
.00447 | .00348
.00375
.00373 | -1.3519
-1.7034
72018 | | | | | | Check ?
High Limit
Low Limit | Chk Pass | Chk Pass | Chk Fail
36.000
04000 | | | | | | Int. Std.
Units
Avg
Stddev
%RSD | Y_2243
Cts/S
10520.
31.
.29874 | Y_3600
Cts/S
74800.
167.
.22357 | Y_3774
Cts/S
3978.1
36.0
.90467 | | | | | | #1
#2
#3 | 10503.
10557.
10502. | 74697.
74993.
74710. | 3952.3
4019.2
3962.7 | | | | | | Sample Name
Method: ICP-
User: JYH
Comment: | | 010_200.7W | Acquired: 5/16/2016 18:57:25
0_200.7WATER_3YLINES(v873)
Custom ID2: Custom I | | | Type: Unk Mode: CONC Corr. Factor: 1.0000 ID3: | | | |--|-----------------------------|----------------|--|----------------|----------------|--|----------------|--| | Elem | Ag3280 | Al3082 | As1890 | B_2496 | Ba4554 | Be3131 | Ca4226 | | | Units | ppm | | Avg | F00410 | 00704 | . 00934 | . 11723 | . 05917 | .00013 | 1.5180 | | | Stddev | .00188 | .00155 | .00280 | .00199 | .00067 | .00004 | .0262 | | | %RSD | 45.783 | 22.047 | 30.016 | 1.6952 | 1.1380 | 30.157 | 1.7264 | | | #1 | 00627 | 00595 | .00835 | .11504 | .05892 | .00011 | 1.4966 | | | #2 | 00301 | 00882 | .01250 | .11891 | .05866 | .00011 | 1.5473 | | | #3 | 00302 | 00636 | .00716 | .11775 | .05993 | .00018 | 1.5102 | | | Check ?
High Limit
Low Limit | Chk Fail
9.0000
00400 | Chk Pass | Chk Pass | Chk Pass | Chk Pass | Chk Pass | Chk Pass | | | Elem | Cd2288 | Co2286 | Cr2677 | Cu2247 | Fe2611 | K_7664 | Li6707 | | | Units | ppm | | Avg | . 00022 | 00003 | . 00090 | 00038 | .02307 | 1.6824 | . 01461 | | | Stddev | .00041 | .00051 | .00144 | .00208 | .01243 | .0757 | .00320 | | | %RSD | 188.69 | 1609.8 | 159.90 | 546.56 | 53.890 | 4.4980 | 21.867 | | | #1 | .00026 | .00055 | .00149 | .00073 | .03721 | 1.6774 | .01811 | | | #2 | 00021 | 00026 | 00074 | .00091 | .01383 | 1.6093 | .01185 | | | #3 | .00061 | 00039 | .00196 | 00279 | .01817 | 1.7604 | .01387 | | | Check ?
High Limit
Low Limit | Chk Pass | | Elem | Mg2790 | Mn2576 | Mo2020 | Na5895 | Ni2316 | P_2149 | Pb2203 | | | Units | ppm | | Avg | . 36940 | . 00576 | . 00319 | 143.73 | . 00132 | . 05271 | 00175 | | | Stddev | .17566 | .00293 | .00052 | .41 | .00040 | .00859 | .00283 | | | %RSD | 47.553 | 50.835 | 16.401 | .28692 | 30.235 | 16.286 | 161.46 | | | #1 | .45457 | .00240 | .00301 | 143.66 | .00086 | .04903 | 00009 | | | #2 | .48625 | .00773 | .00278 | 143.36 | .00159 | .06253 | 00502 | | | #3 | .16739 | .00715 | .00378 | 144.17 | .00150 | .04659 | 00014 | | | Check ?
High Limit
Low Limit | Chk Pass | | Sample Name
Method: ICP-T
User: JYH
Comment: | |)10_200.7W <i>A</i> | 0_200.7WATER_3YLINES(v873) | | | Type: Unk Mode: CONC Corr. Factor: 1.000000 ID3: | | | |---|---|---|---|---|---|--|--|--| | Elem
Units
Avg
Stddev
%RSD | Sb2068
ppm
00016
.00347
2154.1 | Se1960
ppm
00302
.00276
91.324 | Si2124
ppm
2.7982
.0042
.14820 | Sn1899
ppm
. 13242
.00099
.75037 | Sr4077
ppm
. 07971
.00069
.86394 | Ti3372
ppm
00031
.00594
1887.9 | TI1908
ppm
00120
.00341
283.47 | | | #1
#2
#3 | .00069
.00280
00397 | 00617
00187
00103 | 2.7950
2.8029
2.7968 | .13130
.13319
.13277 | .07907
.07961
.08044 | .00179
00703
.00429 | .00244
00431
00174 | | | Check ?
High Limit
Low Limit | Chk Pass | | Elem
Units
Avg
Stddev
%RSD | V_2924
ppm
. 00140
.00066
47.346 | Zn2062
ppm
. 00250
.00018
7.3931 | Zr3391
ppm
. 00568
.34852
6132.8 | | | | | | | #1
#2
#3 | .00070
.00202
.00149 | .00234
.00246
.00270 | 38175
.29369
.10511 | | | | | | | Check ?
High Limit
Low Limit | Chk Pass | Chk Pass | Chk Pass | | | | | | | Int. Std.
Units
Avg
Stddev
%RSD | Y_2243
Cts/S
12959.
23.
.17614 | Y_3600
Cts/S
92583.
150.
.16228 | Y_3774
Cts/S
4256.5
39.5
.92733 | | | | | | | #1
#2
#3 | 12975.
12970.
12933. | 92411.
92689.
92650. | 4216.8
4257.0
4295.7 | | | | | | | Sample Nam
Method: ICP
User: JYH
Comment: | | - | | LINES(v873) | pe: QC
) Mode:
tom ID3: | CONC (| Corr. Factor: | 1.00000(| |--|----------------|----------------|----------------|----------------|-------------------------------|----------------|----------------|----------| | Elem | Ag3280 | Al3082 | As1890 | B_2496 | Ba4554 | Be3131 | Ca4226 | | | Units | ppm | | Avg | . 38922 | 9.7922 | .38956 | . 48768 | . 95351 | . 04780 | 9.3293 | | | Stddev | .00115 | .0421 | .00315 | .00123 | .00124 | .00014 | .0072 | | | %RSD | .29500 | .43011 | .80899 | .25299 | .13047 | .30075 | .07723 | | | #1 | .39014 | 9.7770 | .38945 | .48777 | .95244 | .04796 | 9.3230 | | | #2 | .38794 | 9.8398 | .38647 | .48641 | .95488 | .04772 | 9.3372 | | | #3 | .38959 | 9.7598 | .39277 | .48887 | .95321 | .04770 | 9.3277 | | | Check ?
Value
Range | Chk Pass | | Elem | Cd2288 | Co2286 | Cr2677 | Cu2247 | Fe2611 | K_7664 | Li6707 | | | Units | ppm | | Avg | . 04742 | .19810 | . 50317 | . 49786 | 3.9163 | 48.118 | . 96885 | | | Stddev | .00003 | .00091 | .00128 | .00100 | .0157 | .059 | .00242 | | | %RSD | .05976 | .45728 | .25407 | .20061 | .40077 | .12262 | .24950 | | | #1 | .04738 | .19758 | .50455 | .49807 | 3.9294 | 48.055 | .97164 | | | #2 | .04744 | .19758 | .50291 | .49678 | 3.9207 | 48.172 | .96727 | | | #3 | .04743 |
.19915 | .50204 | .49874 | 3.8989 | 48.126 | .96765 | | | Check ?
Value
Range | Chk Pass | | Elem | Mg2790 | Mn2576 | Mo2020 | Na5895 | Ni2316 | P_2149 | Pb2203 | | | Units | ppm | | Avg | 9.6369 | . 47897 | . 95538 | 48.668 | . 50480 | 9.7331 | . 50260 | | | Stddev | .0278 | .00058 | .00181 | .080 | .00236 | .0257 | .00265 | | | %RSD | .28814 | .12121 | .18940 | .16428 | .46770 | .26369 | .52719 | | | #1 | 9.6276 | .47830 | .95747 | 48.620 | .50331 | 9.7355 | .50495 | | | #2 | 9.6681 | .47922 | .95440 | 48.760 | .50357 | 9.7063 | .50312 | | | #3 | 9.6150 | .47937 | .95428 | 48.625 | .50752 | 9.7574 | .49973 | | | Check ?
Value
Range | Chk Pass | | Sample Nam
Method: ICP
User: JYH
Comment: | | 6010_200.7 | 16/2016 19:0
WATER_3YI
Custom ID2: | LINES(v873 | pe: QC
) Mode:
tom ID3: | CONC (| Corr. Factor: | 1.000000 | |--|---|--|---|---|---|---|---|----------| | Elem
Units
Avg
Stddev
%RSD | Sb2068
ppm
1.1669
.0069
.59050 | Se1960
ppm
.36742
.00560
1.5254 | Si2124
ppm
4.8791
.0053
.10906 | Sn1899
ppm
. 98852
.00248
.25099 | Sr4077
ppm
. 94932
.00033
.03430 | Ti3372
ppm
. 95985
.01105
1.1511 | TI1908
ppm
. 49045
.00336
.68538 | | | #1
#2
#3 | 1.1746
1.1646
1.1614 | .36808
.36151
.37266 | 4.8772
4.8749
4.8851 | .98991
.98565
.98999 | .94967
.94903
.94927 | .94768
.96924
.96264 | .48978
.48748
.49410 | | | Check ?
Value
Range | Chk Pass | | Elem
Units
Avg
Stddev
%RSD | V_2924
ppm
. 98488
.00281
.28564 | Zn2062
ppm
1.0017
.0022
.21816 | Zr3391
ppm
F . 85076
.37237
43.769 | | | | | | | #1
#2
#3 | .98768
.98493
.98205 | 1.0018
.99952
1.0039 | .51112
.79224
1.2489 | | | | | | | Check ?
Value
Range | Chk Pass | Chk Pass | Chk Fail
1.0000
-10.000% | | | | | | | Int. Std.
Units
Avg
Stddev
%RSD | Y_2243
Cts/S
13604.
81.
.59267 | Y_3600
Cts/S
96314.
322.
.33414 | Y_3774
Cts/S
4406.9
34.8
.78929 | | | | | | | #1
#2
#3 | 13664.
13635.
13512. | 95942.
96505.
96494. | 4423.4
4430.3
4366.9 | | | | | | | Sample Name
Method: ICP-T
User: JYH
Comment: | | 010_200.7W <i>A</i> | 2016 19:05:0
ATER_3YLIN
stom ID2: | | Mode: CONG | C Corr. F | factor: 1.00000(| |---|----------------|---------------------|---|----------|----------------|----------------|------------------| | Elem | Ag3280 | Al3082 | As1890 | B_2496 | Ba4554 | Be3131 | Ca4226 | | Units | ppm | Avg | 00273 | 00943 | .00316 | .00092 | . 00143 | .00012 | 02610 | | Stddev | .00150 | .00544 | .00134 | .00209 | .00008 | .00003 | .02000 | | %RSD | 54.963 | 57.662 | 42.258 | 226.23 | 5.8494 | 24.040 | 76.633 | | #1 | 00132 | 00491 | .00441 | .00303 | .00145 | .00009 | 02975 | | #2 | 00258 | 01546 | .00176 | .00089 | .00133 | .00014 | 00453 | | #3 | 00431 | 00791 | .00331 | 00115 | .00149 | .00013 | 04402 | | Check ?
High Limit
Low Limit | Chk Pass | Elem | Cd2288 | Co2286 | Cr2677 | Cu2247 | Fe2611 | K_7664 | Li6707 | | Units | ppm | Avg | .00026 | 00020 | .00108 | 00105 | 00831 | . 23191 | . 00924 | | Stddev | .00022 | .00025 | .00112 | .00147 | .00871 | .16071 | .00426 | | %RSD | 84.320 | 129.12 | 103.97 | 139.88 | 104.81 | 69.299 | 46.125 | | #1 | .00003 | 00047 | 00012 | 00270 | 00211 | .08986 | .00578 | | #2 | .00046 | .00003 | .00210 | .00009 | 00456 | .40635 | .01400 | | #3 | .00029 | 00014 | .00125 | 00054 | 01827 | .19952 | .00793 | | Check ?
High Limit
Low Limit | Chk Pass | Elem | Mg2790 | Mn2576 | Mo2020 | Na5895 | Ni2316 | P_2149 | Pb2203 | | Units | ppm | Avg | . 13406 | . 00025 | . 00465 | 02493 | 00089 | . 00221 | 00297 | | Stddev | .03849 | .00141 | .00027 | .02741 | .00027 | .00306 | .00300 | | %RSD | 28.710 | 557.60 | 5.9094 | 109.95 | 30.299 | 138.62 | 101.11 | | #1 | .17502 | .00034 | .00445 | 05638 | 00099 | 00080 | 00561 | | #2 | .12854 | .00162 | .00454 | 00612 | 00058 | .00531 | .00030 | | #3 | .09863 | 00120 | .00496 | 01229 | 00109 | .00211 | 00360 | | Check ?
High Limit
Low Limit | Chk Pass | Sample Name
Method: ICP-T
User: JYH
Comment: | |)10_200.7W <i>A</i> | 2016 19:05:0
ATER_3YLIN
stom ID2: | | Mode: CON | C Corr. F | Factor: 1.00000(| | |---|---|---|--|---|---|--|--|--| | Elem
Units
Avg
Stddev
%RSD | Sb2068
ppm
. 00517
.00217
41.900 | Se1960
ppm
00057
.00532
931.58 | Si2124
ppm
00458
.00368
80.468 | Sn1899
ppm
.00087
.00058
65.936 | Sr4077
ppm
.00032
.00013
42.768 | Ti3372
ppm
00287
.00425
148.18 | TI1908
ppm
00011
.00409
3706.3 | | | #1
#2
#3 | .00269
.00671
.00612 | .00498
00107
00562 | 00419
00844
00110 | .00106
.00133
.00023 | .00034
.00044
.00017 | 00265
.00127
00723 | .00431
00375
00089 | | | Check ?
High Limit
Low Limit | Chk Pass | | Elem
Units
Avg
Stddev
%RSD | V_2924
ppm
. 00072
.00091
125.33 | Zn2062
ppm
00001
.00018
2142.5 | Zr3391
ppm
F05039
.17523
347.71 | | | | | | | #1
#2
#3 | .00045
00001
.00174 | .00015
00021
.00003 | .09645
24437
00326 | | | | | | | Check ?
High Limit
Low Limit | Chk Pass | Chk Pass | Chk Fail
.04000
04000 | | | | | | | Int. Std.
Units
Avg
Stddev
%RSD | Y_2243
Cts/S
13523.
5.
.03478 | Y_3600
Cts/S
96698.
28.
.02878 | Y_3774
Cts/S
4289.4
40.8
.95120 | | | | | | | #1
#2
#3 | 13525.
13526.
13518. | 96680.
96730.
96684. | 4243.1
4320.2
4304.8 | | | | | | Sample Name: PBW 81 Acquired: 5/16/2016 19:09:01 Type: Unk Method: ICP-THERMO3_6010_200.7WATER_3YLINES(v873) Mode: CONC Corr. Factor: 1.000000 User: JYH Custom ID1: Custom ID2: Custom ID3: Comment: WG567819-02 | Elem | Ag3280 | Al3082 | As1890 | B_2496 | Ba4554 | Be3131 | Ca4226 | |------------------------------------|-----------------------------|----------|----------------|----------|----------|----------|----------------| | Units | ppm | Avg | F00403 | 01601 | .00203 | 00214 | .00079 | .00011 | 04587 | | Stddev | .00176 | .00510 | .00198 | .00103 | .00061 | .00002 | .02053 | | %RSD | 43.716 | 31.835 | 97.599 | 48.386 | 77.279 | 18.378 | 44.759 | | #1 | 00607 | 01102 | .00432 | 00112 | .00145 | .00009 | 06932 | | #2 | 00289 | 02121 | .00086 | 00319 | .00025 | .00012 | 03109 | | #3 | 00315 | 01580 | .00091 | 00209 | .00067 | .00012 | 03721 | | Check ?
High Limit
Low Limit | Chk Fail
9.0000
00400 | Chk Pass | Chk Pass | Chk Pass | Chk Pass | Chk Pass | Chk Pass | | Elem | Cd2288 | Co2286 | Cr2677 | Cu2247 | Fe2611 | K_7664 | Li6707 | | Units | ppm | Avg | . 00007 | 00004 | . 00099 | 00031 | 01915 | .08945 | . 00366 | | Stddev | .00011 | .00010 | .00114 | .00114 | .01545 | .07150 | .00469 | | %RSD | 170.39 | 296.69 | 114.59 | 369.14 | 80.694 | 79.935 | 128.05 | | #1 | .00017 | 00005 | .00036 | 00081 | 00560 | .17197 | 00028 | | #2 | 00005 | 00013 | .00230 | 00112 | 03598 | .04611 | .00242 | | #3 | .00008 | .00007 | .00031 | .00100 | 01588 | .05026 | .00885 | | Check ?
High Limit
Low Limit | Chk Pass | Elem | Mg2790 | Mn2576 | Mo2020 | Na5895 | Ni2316 | P_2149 | Pb2203 | | Units | ppm | Avg | . 03607 | .00113 | .00043 | 05808 | 00061 | 00098 | 00128 | | Stddev | .14633 | .00257 | .00022 | .01669 | .00089 | .00398 | .00174 | | %RSD | 405.66 | 228.06 | 50.227 | 28.738 | 145.78 | 406.95 | 136.28 | | #1 | .14489 | .00248 | .00048 | 03983 | 00162 | .00131 | 00289 | | #2 | .09361 | 00183 | .00062 | 07258 | 00028 | 00558 | 00150 | | #3 | 13028 | .00273 | .00019 | 06181 | .00006 | .00134 | .00057 | | Check ?
High Limit
Low Limit | Chk Pass | Method: ICP-7
User: JYH | Sample Name: PBW 81 Acquired: 5/16/2016 19:09:01 Type: Unk Method: ICP-THERMO3_6010_200.7WATER_3YLINES(v873) Mode: CONC Corr. Factor: 1.000000 User: JYH Custom ID1: Custom ID2: Custom ID3: Comment: WG567819-02 | | | | | | | | | |---|---|--|---|---|---|--|--|--|--| | Elem
Units
Avg
Stddev
%RSD | Sb2068
ppm
00118
.00318
269.67 | Se1960
ppm
00322
.00328
101.76 | Si2124
ppm
02574
.00186
7.2354 | Sn1899
ppm
. 00039
.00028
72.156 |
Sr4077
ppm
. 00013
.00025
196.13 | Ti3372
ppm
00304
.00390
128.07 | TI1908
ppm
00308
.00073
23.861 | | | | #1
#2
#3 | .00235
00384
00205 | 00331
.00010
00646 | 02472
02789
02462 | .00047
.00008
.00063 | .00015
.00037
00014 | 00753
00053
00107 | 00355
00223
00346 | | | | Check ?
High Limit
Low Limit | Chk Pass | | | Elem
Units
Avg
Stddev
%RSD | V_2924
ppm
0001
.00115
7993.0 | Zn2062
ppm
00008
.00017
210.19 | Zr3391
ppm
F 06543
.33136
506.43 | | | | | | | | #1
#2
#3 | 00112
00010
.00118 | 00009
00024
.00009 | .12030
44799
.13141 | | | | | | | | Check ?
High Limit
Low Limit | Chk Pass | Chk Pass | Chk Fail
36.000
04000 | | | | | | | | Int. Std.
Units
Avg
Stddev
%RSD | Y_2243
Cts/S
14051.
7.
.05274 | Y_3600
Cts/S
99439.
678.
.68211 | Y_3774
Cts/S
4430.3
8.9
.20047 | | | | | | | | #1
#2
#3 | 14043.
14056.
14055. | 99486.
100090.
98739. | 4439.3
4429.9
4421.6 | | | | | | | Sample Name: LCSW 81 Acquired: 5/16/2016 19:13:00 Type: Unk Method: ICP-THERMO3_6010_200.7WATER_3YLINES(v873) Mode: CONC Corr. Factor: 1.000000 User: JYH Custom ID1: Custom ID2: Custom ID3: Comment: WG567819-03 | Elem | Ag3280 | Al3082 | As1890 | B_2496 | Ba4554 | Be3131 | Ca4226 | Cd2288 | |--------|--------|--------|--------|--------|--------|--------|--------|--------| | Units | ppm | Avg | .19844 | 4.9990 | .19748 | .98976 | .50533 | .02461 | 4.9726 | .02508 | | Stddev | .00067 | .0132 | .00404 | .00639 | .00273 | .00012 | .0342 | .00011 | | %RSD | .33615 | .26373 | 2.0483 | .64511 | .53935 | .49772 | .68828 | .45170 | | #1 | .19919 | 5.0034 | .20016 | .98424 | .50662 | .02455 | 4.9953 | .02521 | | #2 | .19821 | 5.0094 | .19944 | .98830 | .50220 | .02453 | 4.9332 | .02505 | | #3 | .19792 | 4.9842 | .19282 | .99676 | .50718 | .02475 | 4.9891 | .02499 | Check? Chk Pass P | Elem | Co2286 | Cr2677 | Cu2247 | Fe2611 | K_7664 | Li6707 | Mg2790 | Mn2576 | |--------|--------|----------------|----------------|---------------|---------------|----------------|---------------|----------------| | Units | ppm | Avg | .10429 | . 25889 | . 26323 | 2.0952 | 25.928 | . 51222 | 5.0418 | . 25397 | | Stddev | .00026 | .00079 | .00119 | .0088 | .112 | .00101 | .0835 | .00266 | | %RSD | .25230 | .30413 | .45370 | .42004 | .43208 | .19725 | 1.6566 | 1.0475 | | #1 | .10407 | .25975 | .26196 | 2.0912 | 26.056 | .51250 | 4.9502 | .25383 | | #2 | .10458 | .25821 | .26340 | 2.0892 | 25.849 | .51110 | 5.1137 | .25138 | | #3 | .10423 | .25870 | .26433 | 2.1053 | 25.879 | .51306 | 5.0615 | .25669 | Check? Chk Pass P | Elem | Mo2020 | Na5895 | Ni2316 | P_2149 | Pb2203 | Sb2068 | Se1960 | Si2124 | |--------|----------------|---------------|----------------|---------------|----------------|----------------|--------|---------------| | Units | ppm | Avg | . 51124 | 25.828 | . 26660 | 5.0261 | . 26632 | . 61659 | .18937 | 2.5819 | | Stddev | .00077 | .135 | .00138 | .0110 | .00170 | .00411 | .00465 | .0046 | | %RSD | .15159 | .52119 | .51595 | .21819 | .63826 | .66717 | 2.4556 | .17763 | | #1 | .51115 | 25.971 | .26758 | 5.0386 | .26749 | .61530 | .19469 | 2.5838 | | #2 | .51206 | 25.704 | .26502 | 5.0217 | .26437 | .62119 | .18737 | 2.5852 | | #3 | .51052 | 25.808 | .26719 | 5.0179 | .26709 | .61327 | .18605 | 2.5767 | Check? Chk Pass P Sample Name: LCSW 81 Acquired: 5/16/2016 19:13:00 Type: Unk Method: ICP-THERMO3_6010_200.7WATER_3YLINES(v873) Mode: CONC Corr. Factor: 1.000000 User: JYH Custom ID1: Custom ID2: Custom ID3: Comment: WG567819-03 | Elem | Sn1899 | Sr4077 | Ti3372 | TI1908 | V_2924 | Zn2062 | Zr3391 | |--------|--------|--------|--------|--------|--------|--------|--------| | Units | ppm | Avg | .52128 | .50961 | .50357 | .25540 | .50998 | .52200 | .64186 | | Stddev | .00218 | .00207 | .01153 | .00204 | .00091 | .00138 | .56280 | | %RSD | .41857 | .40550 | 2.2890 | .80048 | .17753 | .26461 | 87.682 | | #1 | .52369 | .51190 | .51661 | .25729 | .50895 | .52295 | .05191 | | ** * | | | | | | | | | #2 | .52074 | .50788 | .49938 | .25569 | .51064 | .52263 | .70080 | | #3 | .51943 | .50906 | .49473 | .25323 | .51036 | .52042 | 1.1729 | Check? Chk Pass P Low Limit | Int. Std. | Y_2243 | Y_3600 | Y_3774 | |-----------|--------|---------------|---------------| | Units | Cts/S | Cts/S | Cts/S | | Avg | 13002. | 92774. | 4223.4 | | Stddev | 24. | 247. | 23.6 | | %RSD | .18161 | .26574 | .55991 | | #1 | 12998. | 92507. | 4242.6 | | #2 | 12981. | 92821. | 4230.7 | | #3 | 13027. | 92993. | 4197.0 | Sample Name: L1605015401 Acquired: 5/16/2016 19:16:44 Type: Unk Method: ICP-THERMO3 6010 200.7WATER 3YLINES(v873) Mode: CONC Corr. Factor: 1.000000 User: JYH Custom ID1: Custom ID2: Custom ID3: Comment: WG567819-01 Al3082 As1890 B 2496 Ba4554 Be3131 Ca4226 Cd2288 Elem Ag3280 Units ppm ppm ppm ppm ppm ppm ppm ppm .01696 .01373 Avg -.00290 -.00167 .02107 .00011 32.140 .00044 Stddev .00102 .00856 .00270 .00065 .00062 .00005 .107 .00017 %RSD 35.235 50.466 161.38 4.7687 2.9635 46.369 .33263 39.775 #1 -.00189 -.00478 .02054 .00009 .00057 .01918 .01393 32.081 #2 -.00288 .00751 .00009 .01299 .02092 80000. 32.263 .00024 -.00393 32.075 #3 .02419 -.00033 .01425 .02176 .00017 .00050 Chk Pass Chk Pass Chk Pass Chk Pass Check? Chk Pass Chk Pass Chk Pass **High Limit** Low Limit Elem Co2286 Cr2677 Cu2247 Fe2611 K_7664 Li6707 Mg2790 Mn2576 Units ppm ppm ppm ppm ppm ppm ppm ppm -.00025 .00029 .00102 2.4939 .00961 Avg .55911 4.6068 .10011 .00177 .00353 .1403 .00030 Stddev .00034 .00102 .01452 .0371 %RSD 135.12 352.47 174.69 2.5969 1.4883 36.710 3.0454 .29720 #1 -.00029 .00117 .00298 .57588 2.4723 .01250 4.4452 .09977 #2 .00011 -.00083 .00053 .55044 2.5367 .00568 4.6780 .10034 -.00058 -.00047 #3 .00052 .55102 2.4726 .01064 4.6972 .10021 Check? Chk Pass High Limit Low Limit Elem Mo2020 Na5895 Ni2316 P_2149 Pb2203 Sb2068 Se1960 Si2124 Units ppm ppm ppm ppm ppm ppm ppm ppm .00115 5.7473 -.00098 .00680 .00000 -.00009 2.1215 Avg -.00471 .00035 .00033 .00462 .00201 .00268 .00642 .0057 Stddev .0277 %RSD 6862.1 .26925 30.481 .48148 34.137 67.966 43096. 56.801 #1 .00075 5.7356 -.00119 .01065 -.00230 -.00276 .00130 2.1281 -.00059 .00168 -.00777 .00551 #2 .00131 5.7789 .00100 2.1181 5.7274 #3 .00140 -.00114 .00806 .00132 -.00362 -.00710 2.1183 Check? Chk Pass High Limit Approved: May 17, 2016 Low Limit | Method: ICF
User: JYH | me: L160501
P-THERMO3
Custom | 3_6010_200
ID1: | cquired: 5/1
.7WATER_
Custom ID | 3YLINES(v8 | • | ype: Unk
ode: CONC
: | Corr. Fa | ctor: 1.00000(| |---|---|---|--|--|---|---|---|----------------| | Comment: V | NG567819-0 |) | | | | | | | | Elem
Units
Avg
Stddev
%RSD | Sn1899
ppm
00003
.00098
3121.8 | Sr4077
ppm
. 12152
.00027
.22390 | Ti3372
ppm
00188
.00487
258.92 | TI1908
ppm
00159
.00279
175.39 | V_2924
ppm
. 00113
.00187
165.26 | Zn2062
ppm
.00535
.00013
2.4232 | Zr3391
ppm
. 14577
.21500
147.50 | | | #1
#2
#3 | .00105
00086
00029 | .12139
.12133
.12183 | 00097
.00247
00714 | 00052
.00051
00476 | .00316
.00075
00052 | .00548
.00535
.00522 | 10149
.25004
.28875 | | | Check ?
High Limit
Low Limit | Chk Pass | | Int. Std.
Units
Avg
Stddev
%RSD | Y_2243
Cts/S
13067.
18.
.13573 | Y_3600
Cts/S
94227.
229.
.24314 | Y_3774
Cts/S
4308.2
50.9
1.1825 | | | | | | | #1
#2
#3 | 13081.
13047.
13072. | 94002.
94460.
94220. | 4254.8
4313.5
4356.3 | | | | | | Sample Name: L1605015402S Acquired: 5/16/2016 19:20:42 Type: Unk Mode: CONC Method: ICP-THERMO3 6010 200.7WATER 3YLINES(v873) Corr. Factor: 1.000000 User: JYH Custom ID1: Custom ID2: Custom ID3: Comment: WG567819-04 Al3082 B_2496 Ba4554 Ca4226 Cd2288 Elem Ag3280 As1890 Be3131 Units ppm ppm ppm ppm ppm ppm ppm ppm Avg .20027 5.0859 .19867 1.0137 .52398 .02486 36.277 .02498 Stddev .00271 .0204 .00155 .0028 .00356 .00007 .044 .00024 %RSD 1.3546 .40089 .77929 .28005 .68033 .27233 .12226 .96908 #1 .20074 5.0804 1.0105 .20016 .52057 .02479 36.226 .02471 #2 .19736 5.1085 .19707 1.0149 .52768 .02490 36.294 .02517 #3 .20273 5.0688 .19877 1.0158 .52368 .02490 36.310 .02506 Check? Chk Pass **High Limit** Low Limit Elem Co2286 Cr2677 Cu2247 Fe2611 K_7664 Mg2790 Mn2576 Li6707 Units ppm ppm ppm ppm ppm ppm ppm ppm .26342 .26081 2.6241 28.231 9.6416 .34880 Avg .10331 .51792 .00254 .0459 .1750 Stddev .00019 .00190 .095 .00406 .00142 %RSD .18004 .96247 .72850 1.7474 .78348 1.8152 .40598 .33637 #1 .10320 .26537 .26102 2.6158 28.202 .51342 9.5932 .34717 #2 .10322 .26435 .26259 2.5830 28.153 .51902 9.8357 .34948 9.4958 #3 .10353 .26056 .25881 2.6735 28.337 .52131 .34975 Check? Chk Pass High Limit Low Limit P_2149 Elem Mo2020 Na5895 Ni2316 Pb2203 Sb2068 Se1960 Si2124 Units ppm ppm ppm ppm ppm ppm ppm ppm .51915 31.380 .26367 5.1247 .26382 .61996 .18632 4.7566 Avg .083 .00190 .0067 .00232 .00619 Stddev .00141 .00111 .0120 .27097 .71917 %RSD .26290 .13094 .42153 .37399 3.3211 .25206 #1 31.329 .26254 .52064 .26501 5.1293 .62024 .18177 4.7698 31.475 .18383 4.7536 #2 .51898 .26450 5.1170 .26451 .61752 31.336 #3 .51784 .26150 5.1277 .26442 .62213 .19337 4.7464 Check? Chk Pass Approved: May 17, 2016 High Limit Low Limit Sample Name:
L1605015402S Acquired: 5/16/2016 19:20:42 Type: Unk Method: ICP-THERMO3_6010_200.7WATER_3YLINES(v873) Mode: CONC Corr. Factor: 1.000000 User: JYH Custom ID1: Custom ID2: Custom ID3: Comment: WG567819-04 | Elem | Sn1899 | Sr4077 | Ti3372 | TI1908 | V_2924 | Zn2062 | Zr3391 | |--------|--------|--------|--------|--------|--------|--------|--------| | Units | ppm | Avg | .52480 | .62938 | .49786 | .25679 | .52182 | .52349 | .47589 | | Stddev | .00132 | .00065 | .00289 | .00107 | .00189 | .00017 | .39236 | | %RSD | .25166 | .10292 | .58042 | .41789 | .36262 | .03181 | 82.447 | | #1 | .52538 | .62968 | .50013 | .25719 | .51980 | .52330 | .84452 | | #2 | .52328 | .62864 | .49461 | .25558 | .52209 | .52360 | .51969 | | #3 | .52573 | .62982 | .49884 | .25762 | .52356 | .52356 | .06348 | Check? Chk Pass P Low Limit | Int. Std. | Y_2243 | Y_3600 | Y_3774 | |-----------|---------------|---------------|---------------| | Units | Cts/S | Cts/S | Cts/S | | Avg | 12868. | 92358. | 4259.2 | | Stddev | 10. | 266. | 37.3 | | %RSD | .08155 | .28777 | .87499 | | #1 | 12856. | 92053. | 4222.7 | | #2 | 12876. | 92488. | 4257.6 | | #3 | 12872. | 92535. | 4297.2 | Sample Name: L1605015403SD Acquired: 5/16/2016 19:24:25 Type: Unk Method: ICP-THERMO3 6010 200 7WATER 3VLINES(v873) Mode: CONC Method: ICP-THERMO3_6010_200.7WATER_3YLINES(v873) Mode: CONC Corr. Factor: 1.000000 User: JYH Custom ID1: Custom ID2: Custom ID3: Comment: WG567819-05 | Elem | Ag3280 | Al3082 | As1890 | B_2496 | Ba4554 | Be3131 | Ca4226 | Cd2288 | |--------|--------|--------|--------|--------|--------|--------|--------|--------| | Units | ppm | Avg | .20010 | 5.0583 | .20128 | 1.0151 | .52590 | .02499 | 36.184 | .02516 | | Stddev | .00134 | .0162 | .00240 | .0037 | .00322 | .00003 | .136 | .00004 | | %RSD | .66918 | .31924 | 1.1930 | .36239 | .61236 | .13295 | .37480 | .14486 | | #1 | .19868 | 5.0507 | .20269 | 1.0191 | .52316 | .02503 | 36.063 | .02520 | | #2 | .20028 | 5.0473 | .20265 | 1.0143 | .52509 | .02498 | 36.159 | .02515 | | #3 | .20135 | 5.0768 | .19851 | 1.0119 | .52945 | .02497 | 36.330 | .02513 | Check? Chk Pass P | Elem | Co2286 | Cr2677 | Cu2247 | Fe2611 | K_7664 | Li6707 | Mg2790 | Mn2576 | |--------|--------|----------------|----------------|---------------|---------------|----------------|---------------|----------------| | Units | ppm | Avg | .10354 | . 26143 | . 26111 | 2.6168 | 28.232 | . 51378 | 9.7704 | . 35299 | | Stddev | .00039 | .00037 | .00059 | .0219 | .026 | .00101 | .1463 | .00166 | | %RSD | .37422 | .14254 | .22652 | .83529 | .09114 | .19689 | 1.4975 | .46966 | | #1 | .10353 | .26145 | .26179 | 2.6034 | 28.259 | .51429 | 9.6015 | .35490 | | #2 | .10393 | .26179 | .26076 | 2.6050 | 28.227 | .51262 | 9.8491 | .35195 | | #3 | .10316 | .26105 | .26078 | 2.6420 | 28.208 | .51443 | 9.8604 | .35211 | Check? Chk Pass P | Elem | Mo2020 | Na5895 | Ni2316 | P_2149 | Pb2203 | Sb2068 | Se1960 | Si2124 | |--------|----------------|---------------|--------|---------------|----------------|----------------|--------|---------------| | Units | ppm | Avg | . 51537 | 31.311 | .26435 | 5.1496 | . 26216 | . 62326 | .19115 | 4.7396 | | Stddev | .00184 | .043 | .00127 | .0024 | .00239 | .00160 | .00331 | .0026 | | %RSD | .35645 | .13764 | .47935 | .04632 | .91349 | .25667 | 1.7341 | .05577 | | #1 | .51636 | 31.312 | .26559 | 5.1469 | .26001 | .62288 | .18790 | 4.7425 | | #2 | .51650 | 31.268 | .26439 | 5.1515 | .26474 | .62189 | .19101 | 4.7373 | | #3 | .51325 | 31.354 | .26306 | 5.1504 | .26173 | .62502 | .19453 | 4.7391 | Check? Chk Pass P Sample Name: L1605015403SD Acquired: 5/16/2016 19:24:25 Type: Unk Method: ICP-THERMO3_6010_200.7WATER_3YLINES(v873) Mode: CONC Corr. Factor: 1.000000 User: JYH Custom ID1: Custom ID2: Custom ID3: Comment: WG567819-05 | Elem | Sn1899 | Sr4077 | Ti3372 | TI1908 | V_2924 | Zn2062 | Zr3391 | |--------|--------|--------|--------|--------|--------|--------|--------| | Units | ppm | Avg | .52428 | .62867 | .49719 | .25215 | .51915 | .52569 | .44216 | | Stddev | .00216 | .00094 | .01016 | .00406 | .00006 | .00128 | .25141 | | %RSD | .41192 | .14947 | 2.0431 | 1.6089 | .01154 | .24332 | 56.859 | | #1 | .52670 | .62972 | .49018 | .25683 | .51914 | .52702 | .36546 | | #2 | .52355 | .62790 | .50884 | .24978 | .51910 | .52559 | .23803 | | #3 | .52257 | .62839 | .49254 | .24983 | .51922 | .52447 | .72298 | Check? Chk Pass P Low Limit | Int. Std. | Y_2243 | Y_3600 | Y_3774 | |-----------|----------------|---------------|---------------| | Units | Cts/S | Cts/S | Cts/S | | Avg | 13057 . | 93455. | 4282.0 | | Stddev | 50. | 240. | 35.1 | | %RSD | .38586 | .25634 | .81991 | | #1 | 13024. | 93183. | 4320.3 | | #2 | 13031. | 93549. | 4274.5 | | #3 | 13115. | 93633. | 4251.3 | | Sample Name: L1505022401 Acquired: 5/16/2016 19:28:07 Type: Unk Method: ICP-THERMO3_6010_200.7WATER_3YLINES(v873) Mode: CONC Corr. Factor: 1.000000 User: JYH Custom ID1: Custom ID2: Custom ID3: Comment: | | | | | | | | | |---|--------------------------------------|----------------|----------|----------------|----------------|----------------|----------------|----------------| | Elem | Ag3280 | Al3082 | As1890 | B_2496 | Ba4554 | Be3131 | Ca4226 | Cd2288 | | Units | ppm | Avg | 00357 | . 07111 | 00281 | .00353 | . 00257 | .00007 | . 23320 | . 00034 | | Stddev | .00233 | .01014 | .00151 | .00103 | .00040 | .00004 | .01920 | .00001 | | %RSD | 65.101 | 14.258 | 53.558 | 29.220 | 15.501 | 58.541 | 8.2317 | 2.2864 | | #1 | 00090 | .07410 | 00109 | .00374 | .00211 | .00002 | .21801 | .00034 | | #2 | 00515 | .05981 | 00346 | .00445 | .00285 | .00010 | .22681 | .00034 | | #3 | 00468 | .07942 | 00388 | .00241 | .00273 | .00009 | .25477 | .00035 | | Check ?
High Limit
Low Limit | Chk Pass | Elem | Co2286 ppm00016 .00033 211.78 .00008 | Cr2677 | Cu2247 | Fe2611 | K_7664 | Li6707 | Mg2790 | Mn2576 | | Units | | ppm | Avg | | .00052 | .01994 | .10549 | .25709 | . 00139 | .10810 | . 00149 | | Stddev | | .00090 | .00104 | .01142 | .03686 | .00478 | .08360 | .00210 | | %RSD | | 172.91 | 5.2022 | 10.826 | 14.336 | 344.73 | 77.337 | 141.52 | | #2
#3 | 00002
00054 | .00007 | .02008 | .11858 | .29714 | .00673 | .12677 | .00391 | | Check ?
High Limit
Low Limit | Chk Pass | Elem | Mo2020 | Na5895 | Ni2316 | P_2149 | Pb2203 | Sb2068 | Se1960 | Si2124 | | Units | ppm | Avg | . 00095 | .07392 | 00025 | . 00938 | 00059 | 00308 | .00549 | . 14619 | | Stddev | .00014 | .02218 | .00046 | .00515 | .00044 | .00114 | .00374 | .00103 | | %RSD | 14.387 | 30.003 | 181.17 | 54.948 | 74.043 | 37.092 | 68.103 | .70739 | | #1 | .00084 | .09696 | 00077 | .00809 | 00013 | 00193 | .00338 | .14629 | | #2 | .00091 | .07207 | 00008 | .00499 | 00065 | 00421 | .00328 | .14510 | | #3 | .00110 | .05272 | .00010 | .01505 | 00100 | 00310 | .00981 | .14716 | | Check?
High Limit
Low Limit | Chk Pass | Sample Nar
Method: ICF
User: JYH
Comment: | | _6010_200 | cquired: 5/1
.7WATER_:
Custom IE | 3YLINES(v8 | | ype: Unk
ode: CONC
: | Corr. Fa | ctor: 1.00000(| |--|---|---|--|---|---|---|---|----------------| | Elem
Units
Avg
Stddev
%RSD | Sn1899
ppm
00011
.00010
88.824 | Sr4077
ppm
. 00104
.00006
5.8605 | Ti3372
ppm
00431
.00375
87.035 | TI1908
ppm
. 00208
.00275
132.69 | V_2924
ppm
.00107
.00086
80.654 | Zn2062
ppm
. 00943
.00017
1.8192 | Zr3391
ppm
. 06964
.29775
427.58 | | | #1
#2
#3 | 00004
00008
00023 | .00097
.00109
.00105 | 00777
00033
00482 | .00069
.00029
.00525 | .00114
.00018
.00190 | .00943
.00926
.00960 | .40671
15758
04022 | | | Check ?
High Limit
Low Limit | Chk Pass | | Int. Std.
Units
Avg
Stddev
%RSD | Y_2243
Cts/S
13234.
40.
.30225 | Y_3600
Cts/S
95838.
238.
.24880 | Y_3774
Cts/S
4268.9
25.3
.59209 | | | | | | | #1
#2
#3 | 13280.
13205.
13217. | 95817.
96086.
95610. | 4295.1
4244.7
4267.0 | | | | | | ## L1605022401PS Sample Name: L1505022401PS Acquired: 5/16/2016 19:32:08 Type: Unk Method: ICP-THERMO3_6010_200.7WATER_3YLINES(v873) Mode: CONC Corr. Factor: 1.000000 User: JYH Custom ID1: Custom ID2: Custom ID3: Comment: WG568110-01 | Elem | Ag3280 | Al3082 | As1890 | B_2496 | Ba4554 | Be3131 | Ca4226 | Cd2288 | |--------|--------|--------|--------|--------|--------|--------|--------|--------| | Units | ppm | Avg | .20421 | 5.1704 | .20439 | 1.0096 | .51702 | .02511 | 5.3359 | .02524 | | Stddev | .00034 | .0089 | .00372 | .0011 | .00138 | .00003 | .0704 | .00017 | | %RSD | .16604 | .17308 | 1.8192 | .11099 | .26630 | .10190 | 1.3201 | .66108 | | #1 | .20456 | 5.1603 | .20010 | 1.0098 | .51823 | .02514 | 5.4108 | .02525 | | #2 | .20418 | 5.1735 | .20666 | 1.0084 | .51552 | .02509 | 5.3257 | .02540 | | #3 | .20388 | 5.1774 | .20641 | 1.0106 | .51731 | .02510 | 5.2711 | .02507 | Check? Chk Pass P | Elem | Co2286 | Cr2677 | Cu2247 | Fe2611 | K_7664 | Li6707 | Mg2790 | Mn2576 | |--------|--------|----------------|----------------|---------------|---------------|----------------|---------------|----------------| | Units | ppm
| Avg | .10641 | . 26420 | . 28583 | 2.2172 | 26.353 | . 52040 | 5.2729 | . 26133 | | Stddev | .00081 | .00116 | .00274 | .0083 | .113 | .00034 | .0665 | .00133 | | %RSD | .76127 | .43894 | .95863 | .37632 | .42950 | .06608 | 1.2618 | .50900 | | #1 | .10548 | .26543 | .28385 | 2.2166 | 26.460 | .52045 | 5.3436 | .26045 | | #2 | .10687 | .26313 | .28468 | 2.2258 | 26.363 | .52071 | 5.2114 | .26069 | | #3 | .10689 | .26403 | .28896 | 2.2091 | 26.234 | .52003 | 5.2638 | .26286 | Check? Chk Pass P | Elem | Mo2020 | Na5895 | Ni2316 | P_2149 | Pb2203 | Sb2068 | Se1960 | Si2124 | |--------|----------------|---------------|----------------|---------------|----------------|----------------|--------|---------------| | Units | ppm | Avg | . 52364 | 26.359 | . 27313 | 5.1221 | . 27388 | . 62954 | .19004 | 2.7549 | | Stddev | .00121 | .071 | .00107 | .0195 | .00418 | .00187 | .00459 | .0084 | | %RSD | .23029 | .26810 | .39147 | .38144 | 1.5256 | .29756 | 2.4152 | .30525 | | #1 | .52237 | 26.425 | .27201 | 5.1039 | .27496 | .63089 | .18562 | 2.7456 | | #2 | .52376 | 26.285 | .27326 | 5.1197 | .26926 | .63032 | .18973 | 2.7572 | | #3 | .52478 | 26.368 | .27413 | 5.1427 | .27740 | .62740 | .19478 | 2.7620 | Check? Chk Pass P Sample Name: L1505022401PS Acquired: 5/16/2016 19:32:08 Type: Unk Method: ICP-THERMO3_6010_200.7WATER_3YLINES(v873) Mode: CONC Corr. Factor: 1.000000 User: JYH Custom ID1: Custom ID2: Custom ID3: Comment: WG568110-01 | Elem | Sn1899 | Sr4077 | Ti3372 | TI1908 | V_2924 | Zn2062 | Zr3391 | |--------|--------|--------|--------|--------|--------|--------|--------| | Units | ppm | Avg | .53082 | .51775 | .51597 | .26262 | .52283 | .55008 | .91484 | | Stddev | .00199 | .00091 | .00301 | .00533 | .00097 | .00070 | .45044 | | %RSD | .37545 | .17512 | .58379 | 2.0305 | .18604 | .12738 | 49.237 | | | | | | | | | | | #1 | .52935 | .51879 | .51811 | .25748 | .52305 | .54927 | .72411 | | #2 | .53003 | .51730 | .51727 | .26813 | .52176 | .55044 | 1.4293 | | #3 | .53309 | .51715 | .51253 | .26226 | .52367 | .55052 | .59114 | Check? Chk Pass P Low Limit | Int. Std. | Y_2243 | Y_3600 | Y_3774 | |-----------|--------|----------------|---------------| | Units | Cts/S | Cts/S | Cts/S | | Avg | 13033. | 93959 . | 4234.3 | | Stddev | 18. | 300. | 63.0 | | %RSD | .13809 | .31888 | 1.4879 | | #1 | 13049. | 93955. | 4171.5 | | #2 | 13014. | 94260. | 4297.5 | | #3 | 13037. | 93661. | 4233.7 | Sample Name: L1505022401SDL Acquired: 5/16/2016 19:35:51 Type: Unk Corr. Factor: 1.000000 Method: ICP-THERMO3_6010_200.7WATER_3YLINES(v873) Mode: CONC User: JYH Custom ID1: 5 Custom ID2: Custom ID3: Comment: WG568110-02 Al3082 As1890 B 2496 Ba4554 Be3131 Ca4226 Cd2288 Elem Ag3280 Units ppm ppm ppm ppm ppm ppm ppm ppm .00054 .00284 .00084 Avg -.00273 .00142 .00013 .02210 .00002 Stddev .00077 .00820 .00267 .00025 .00012 .00007 .01847 .00033 %RSD 28.397 577.07 497.19 8.9681 14.429 55.586 83.573 1551.4 #1 -.00256 .00909 -.00224 .00271 .00081 .00015 -.00036 .01703 #2 -.00357 .00240 .00309 .00314 .00097 .00019 .04258 .00022 #3 -.00205 -.00722 .00076 .00269 .00073 .00005 .00670 .00020 Chk Pass Chk Pass Chk Pass Chk Pass Check? Chk Pass Chk Pass Chk Pass High Limit Low Limit Mg2790 Elem Co2286 Cr2677 Cu2247 Fe2611 K_7664 Li6707 Mn2576 Units ppm ppm ppm ppm ppm ppm ppm ppm -.00010 .03687 .00007 .00215 .03129 .00637 .00139 Avg .15456 .00056 .00025 .00090 .02404 .00258 .05083 Stddev .07926 .00126 %RSD 754.82 253.22 41.690 76.842 51.282 40.410 90.055 137.87 #1 .00046 .00016 .00115 .04481 .06482 .00559 -.00669 .00215 #2 -.00057-.00012 .00289 .04553 .18389 .00428 .09273 .00209 -.00034 .00925 .02458 #3 .00034 .00243 .00353 .21498 -.00006 Check? Chk Pass High Limit Low Limit | Elem | Mo2020 | Na5895 | Ni2316 | P_2149 | Pb2203 | Sb2068 | Se1960 | Si2124 | |--------|--------|--------|--------|--------|--------|--------|--------|----------------| | Units | ppm | Avg | .00083 | 00771 | 00124 | .00786 | 00144 | 00170 | 00115 | . 00102 | | Stddev | .00010 | .00887 | .00033 | .00390 | .00612 | .00032 | .00378 | .00254 | | %RSD | 12.451 | 115.05 | 26.807 | 49.608 | 425.45 | 18.980 | 329.33 | 249.27 | | #1 | .00094 | 00721 | 00161 | .01052 | 00428 | 00183 | 00500 | .00246 | | #2 | .00078 | .00090 | 00115 | .00968 | .00559 | 00133 | 00100 | .00252 | | #3 | .00075 | 01683 | 00096 | .00338 | 00562 | 00193 | .00255 | 00192 | Check? Chk Pass High Limit Low Limit Sample Name: L1505022401SDL Acquired: 5/16/2016 19:35:51 Type: Unk Method: ICP-THERMO3_6010_200.7WATER_3YLINES(v873) Mode: CONC Corr. Factor: 1.000000 User: JYH Custom ID1: 5 Custom ID2: Custom ID3: Comment: WG568110-02 #3 13985. 100790. | Elem
Units
Avg
Stddev
%RSD | Sn1899
ppm
00078
.00007
9.5925 | Sr4077
ppm
. 00046
.00009
19.874 | Ti3372
ppm
00454
.01051
231.42 | TI1908
ppm
00046
.00191
413.46 | V_2924
ppm
. 00097
.00027
27.483 | Zn2062
ppm
. 00254
.00004
1.3885 | Zr3391
ppm
. 78606
.15056
19.154 | |---|---|---|--|--|---|---|---| | #1
#2
#3 | 00074
00073
00087 | .00041
.00056
.00040 | 00580
.00654
01437 | 00048
.00145
00236 | .00090
.00127
.00075 | .00252
.00258
.00252 | .61614
.90285
.83919 | | Check?
High Limit
Low Limit | Chk Pass | Int. Std.
Units
Avg
Stddev
%RSD | Y_2243
Cts/S
14014.
27.
.19531 | Y_3600
Cts/S
100740.
264.
.26220 | Y_3774
Cts/S
4418.9
40.9
.92588 | | | | | | #1
#2 | 14017.
14040. | 100970.
100450. | 4438.2
4446.5 | | | | | 4371.9 | • | | • | | _ | | Mode: C | ONC C | Corr. Factor | : 1.00000(| |--|---|---|---|---------------------------------|---|---|---------------------------------|---|------------| | Elem
Units
Avg
Stddev
%RSD | Ag3280
ppm
. 38490
.00025
.06366 | Al3082
ppm
9.6747
.0187
.19339 | As1890
ppm
. 38607
.00476
1.2340 | ppm
. 48472
.00592 | ppm
. 94789 | Be3131
ppm
. 04738
.00026
.54218 | 9.2637
.0794 | .04705 | | | #1
#2
#3 | .38478
.38473
.38518 | 9.6909
9.6542
9.6791 | .39045
.38100
.38676 | .47885
.49068
.48462 | .94181
.95117
.95069 | .04717
.04767
.04730 | | .04688
.04692
.04735 | | | Check ?
Value
Range | Chk Pass | | Elem
Units
Avg
Stddev
%RSD | Co2286
ppm
. 19615
.00025
.12698 | Cr2677
ppm
. 49743
.00307
.61796 | .00069 | ppm
3.8814
.0407 | .196 | Li6707
ppm
. 95038
.00204
.21432 | ppm
9.6075
.3188 | .00473 | | | #1
#2
#3 | .19643
.19604
.19597 | .49827
.50000
.49403 | | 3.8687
3.8485
3.9269 | 47.480
47.836
47.799 | .95174
.95135
.94803 | | .47735 | | | Check ?
Value
Range | Chk Pass | | Elem
Units
Avg
Stddev
%RSD | Mo2020
ppm
. 94844
.00391
.41239 | Na5895
ppm
48.419
.202
.41728 | Ni2316
ppm
. 50105
.00045
.09070 | ppm
9.7341
.0086 | Pb2203
ppm
. 50057
.00490
.97856 | Sb2068
ppm
1.1591
.0080
.69072 | ppm
. 36788
.00407 | Si2124
ppm
4.8546
.0116
.23964 | | | #1
#2
#3 | .95259
.94790
.94483 | 48.187
48.510
48.559 | .50157
.50085
.50073 | 9.7245 | .50131
.50505
.49534 | 1.1503
1.1658
1.1613 | .37252 | | | | Check ?
Value
Range | Chk Pass | | Sample Na
Method: IC | ame: CCV
CP-THERMO | • | d: 5/16/201
200.7WATE | | | QC
Mode: C | ONC C | orr. Factor: 1.000000 | |---|---|---|---|---|---|---|----------------------------|-----------------------| | User: JYH
Comment: | | m ID1: | Custor | n ID2: | Custon | n ID3: | | | | Elem
Units
Avg
Stddev
%RSD | Sn1899
ppm
. 98065
.00157
.15979 | Sr4077
ppm
. 94160
.00320
.33970 | Ti3372
ppm
. 94674
.00995
1.0509 | TI1908
ppm
. 48754
.00641
1.3148 | V_2924
ppm
. 97302
.00259
.26654 | Zn2062
ppm
. 99891
.00188
.18842 | | | | #1
#2
#3 | .97903
.98076
.98216 | .93795
.94391
.94293 | .94199
.95817
.94004 | .48164
.48662
.49436 | .97348
.97536
.97023 | .99752
1.0011
.99816 | .82279
.93119
.99752 | | | Check ?
Value
Range | Chk Pass | | Int. Std.
Units
Avg
Stddev
%RSD | Y_2243
Cts/S
13762 .
35.
.25563 | Y_3600
Cts/S
96997.
281.
.28951 | Y_3774
Cts/S
4424.7
53.4
1.2068 | | | | | | | #1
#2
#3 | 13745.
13739.
13803. | 97247.
96693.
97051. |
4463.7
4363.9
4446.6 | | | | | | | Sample Name: CCB Acquired: 5/16/2016 19:43:29 Type: Blank Method: ICP-THERMO3_6010_200.7WATER_3YLINES(v873) Mode: CONC Corr. Factor: 1.000000 User: JYH Custom ID1: Custom ID2: Custom ID3: Comment: | | | | | | | | | |--|----------------|----------------|----------------|----------------|----------|----------------|----------------|--| | Elem | Ag3280 | Al3082 | As1890 | B_2496 | Ba4554 | Be3131 | Ca4226 | | | Units | ppm | | Avg | 00402 | 01492 | 00059 | . 00511 | .00126 | .00013 | 02850 | | | Stddev | .00041 | .00877 | .00390 | .00078 | .00040 | .00003 | .01947 | | | %RSD | 10.173 | 58.785 | 665.92 | 15.313 | 31.997 | 23.129 | 68.318 | | | #1 | 00369 | 01614 | 00456 | .00434 | .00125 | .00014 | 04796 | | | #2 | 00390 | 00560 | 00042 | .00508 | .00166 | .00016 | 00902 | | | #3 | 00448 | 02302 | .00323 | .00590 | .00086 | .00010 | 02852 | | | Check ?
High Limit
Low Limit | Chk Pass | | Elem | Cd2288 | Co2286 | Cr2677 | Cu2247 | Fe2611 | K_7664 | Li6707 | | | Units | ppm | | Avg | .00005 | 00022 | . 00029 | 00070 | .00162 | . 14563 | . 00219 | | | Stddev | .00020 | .00021 | .00079 | .00057 | .01823 | .10229 | .00317 | | | %RSD | 410.54 | 92.803 | 276.84 | 80.771 | 1123.8 | 70.239 | 144.56 | | | #1 | .00021 | 00014 | .00013 | 00006 | 00180 | .23736 | 00131 | | | #2 | 00018 | 00007 | 00042 | 00093 | 01465 | .03532 | .00485 | | | #3 | .00011 | 00046 | .00115 | 00112 | .02132 | .16422 | .00304 | | | Check ?
High Limit
Low Limit | Chk Pass | | Elem | Mg2790 | Mn2576 | Mo2020 | Na5895 | Ni2316 | P_2149 | Pb2203 | | | Units | ppm | | Avg | . 03306 | . 00072 | . 00480 | . 00177 | 00096 | . 00034 | . 00027 | | | Stddev | .12145 | .00116 | .00037 | .01015 | .00052 | .00322 | .00256 | | | %RSD | 367.40 | 160.64 | 7.6828 | 572.79 | 54.228 | 934.26 | 959.18 | | | #1 | .17207 | .00175 | .00464 | .01326 | 00142 | 00151 | 00218 | | | #2 | 05246 | 00054 | .00454 | 00601 | 00105 | .00406 | .00006 | | | #3 | 02044 | .00096 | .00522 | 00193 | 00040 | 00152 | .00292 | | | Check ?
High Limit
Low Limit | Chk Pass | | Sample Nam
Method: ICP
User: JYH
Comment: | ne: CCB /
-THERMO3_
Custom I | _ | | LINES(v873 | pe: Blank
) Mode:
tom ID3: | CONC (| Corr. Factor: | 1.000000 | |--|---|--|--|---|---|--|--|----------| | Elem
Units
Avg
Stddev
%RSD | Sb2068
ppm
. 00244
.00359
147.03 | Se1960
ppm
00074
.00604
813.32 | Si2124
ppm
00312
.00152
48.677 | Sn1899
ppm
.00053
.00015
27.400 | Sr4077
ppm
. 00050
.00027
53.544 | Ti3372
ppm
00445
.00401
90.015 | TI1908
ppm
00085
.00216
252.23 | | | #1
#2
#3 | 00046
.00132
.00645 | .00138
.00395
00756 | 00207
00487
00243 | .00055
.00038
.00066 | .00057
.00020
.00071 | .00009
00748
00597 | .00159
00167
00248 | | | Check ?
High Limit
Low Limit | Chk Pass | | Elem
Units
Avg
Stddev
%RSD | V_2924
ppm
. 00039
.00049
124.45 | Zn2062
ppm
.00005
.00009
168.59 | Zr3391
ppm
F .05433
.15707
289.10 | | | | | | | #1
#2
#3 | .00091
.00034
00007 | .00010
.00010
00005 | .21321
10087
.05065 | | | | | | | Check ?
High Limit
Low Limit | Chk Pass | Chk Pass | Chk Fail
.04000
04000 | | | | | | | Int. Std.
Units
Avg
Stddev
%RSD | Y_2243
Cts/S
13606.
10.
.07174 | Y_3600
Cts/S
97463.
889.
.91180 | Y_3774
Cts/S
4381.2
17.0
.38774 | | | | | | | #1
#2
#3 | 13598.
13602.
13617. | 98128.
97808.
96454. | 4398.2
4381.1
4364.2 | | | | | | | Sample Name: LLCCV Acquired: 5/16/2016 19:47:29 Type: Unk Method: ICP-THERMO3_6010_200.7WATER_3YLINES(v873) Mode: CONC Corr. Factor: 1.000000 User: JYH Custom ID1: Custom ID2: Custom ID3: Comment: | | | | | | | | | | |---|---|---|---------------------------------|---------------------------------|---|---|---------------------------------|---|--| | Elem
Units
Avg
Stddev
%RSD | Ag3280
ppm
. 00466
.00024
5.2523 | ppm
. 13843
.00585 | ppm
. 00526
.00126 | ppm
. 07423 | Ba4554
ppm
. 00877
.00028
3.1529 | Be3131
ppm
. 00156
.00005
3.3920 | . 34658
.01960 | Cd2288
ppm
.00086
.00031
36.305 | | | #1
#2
#3 | .00478
.00481
.00437 | .14127
.13170
.14231 | | | .00897
.00845
.00888 | .00159
.00159
.00150 | .32718
.36637
.34620 | .00122
.00063
.00074 | | | Check ?
High Limit
Low Limit | | Chk Pass | | Elem
Units
Avg
Stddev
%RSD | Co2286
ppm
.00377
.00042
11.104 | .00055 | ppm
. 00356 | ppm
. 09657
.01484 | K_7664
ppm
. 91479
.08443
9.2295 | Li6707
ppm
. 07939
.00061
.76385 | 3 | Mn2576
ppm
.00619
.00183
29.555 | | | #1
#2
#3 | .00350
.00425
.00356 | | .00296 | .11066 | .81777
.95495
.97163 | .07872
.07956
.07989 | | .00449
.00595
.00813 | | | Check ?
High Limit
Low Limit | Chk Pass | | Elem
Units
Avg
Stddev
%RSD | Mo2020
ppm
. 00776
.00004
.53481 | Na5895
ppm
. 37468
.01283
3.4241 | ppm
. 01470 | ppm
. 73118
.00407 | Pb2203
ppm
. 00600
.00327
54.576 | Sb2068
ppm
. 07822
.00159
2.0372 | ppm
. 01028
.00824 | . 78870 .00163 | | | #1
#2
#3 | .00777
.00772
.00780 | | .01345 | .73314 | .00573
.00939
.00286 | .07960
.07648
.07859 | .00080
.01562
.01443 | | | | Check ?
High Limit
Low Limit | Chk Pass | | Sample Name: LLCCV Acquired: 5/16/2016 19:47:29 Type: Unk Method: ICP-THERMO3_6010_200.7WATER_3YLINES(v873) Mode: CONC Corr. Factor: 1.000000 User: JYH Custom ID1: Custom ID2: Custom ID3: | | | | | | | | | |---|---|---|---|---|---|---|--|--| | Comment: | | | | | | | | | | Elem
Units
Avg
Stddev
%RSD | Sn1899
ppm
. 38150
.00168
.44066 | Sr4077
ppm
. 03734
.00025
.66451 | Ti3372
ppm
. 01794
.00539
30.028 | TI1908
ppm
. 14459
.00243
1.6800 | V_2924
ppm
. 00863
.00041
4.7730 | Zn2062
ppm
. 01654
.00004
.23723 | Zr3391
ppm
33.636
.585
1.7396 | | | #1
#2
#3 | .38260
.38234
.37957 | .03751
.03746
.03705 | .02378
.01686
.01317 | .14208
.14476
.14693 | .00840
.00838
.00910 | .01659
.01652
.01651 | 34.156
33.748
33.002 | | | Check ?
High Limit
Low Limit | Chk Pass | | Int. Std.
Units
Avg
Stddev
%RSD | Y_2243
Cts/S
13679.
48.
.35281 | Y_3600
Cts/S
97774.
469.
.47926 | Y_3774
Cts/S
4345.3
35.9
.82718 | | | | | | | #1
#2
#3 | 13691.
13625.
13719. | 97335.
97720.
98268. | 4386.7
4322.3
4326.9 | | | | | | | Sample Name: LLCCV Acquired: 5/16/2016 19:51:28 Type: Unk Method: ICP-THERMO3_6010_200.7WATER_3YLINES(v873) Mode: CONC Corr. Factor: 1.000000 User: JYH Custom ID1: Custom ID2: Custom ID3: Comment: | | | | | | | | | |---|----------------|----------------|----------------|----------------|----------|----------------|----------------|--| | Elem | Ag3280 | Al3082 | As1890 | B_2496 | Ba4554 | Be3131 | Ca4226 | | | Units | ppm | | Avg | . 00719 | . 17470 | .00827 | .09222 | .01044 | .00196 | . 45636 | | | Stddev | .00082 | .00308 | .00168 | .00116 | .00021 | .00003 | .00733 | | | %RSD | 11.340 | 1.7642 | 20.343 | 1.2572 | 2.0023 | 1.6824 | 1.6070 | | | #1 | .00651 | .17411 | .00729 | .09153 | .01029 | .00200 | .46480 | | | #2 | .00810 | .17804 | .01021 | .09355 | .01035 | .00195 | .45154 | | | #3 | .00697 | .17196 | .00730 | .09156 | .01068 | .00193 | .45275 | | | Check ?
High Limit
Low Limit | Chk Pass | | Elem | Cd2288 | Co2286 | Cr2677 | Cu2247 | Fe2611 | K_7664 | Li6707 | | | Units | ppm | | Avg | . 00134 | .00461 | . 00572 | . 00427 |
.09710 | 1.1151 | . 09866 | | | Stddev | .00021 | .00008 | .00062 | .00145 | .01754 | .1158 | .00056 | | | %RSD | 15.426 | 1.7168 | 10.881 | 33.860 | 18.061 | 10.382 | .56948 | | | #1 | .00138 | .00468 | .00544 | .00482 | .11717 | 1.0638 | .09804 | | | #2 | .00112 | .00463 | .00529 | .00263 | .08473 | 1.0338 | .09879 | | | #3 | .00152 | .00452 | .00644 | .00537 | .08940 | 1.2476 | .09914 | | | Check ?
High Limit
Low Limit | Chk Pass | | Elem | Mg2790 | Mn2576 | Mo2020 | Na5895 | Ni2316 | P_2149 | Pb2203 | | | Units | ppm | | Avg | . 60938 | . 01010 | .00911 | . 46118 | .02029 | . 91659 | . 01152 | | | Stddev | .06068 | .00028 | .00030 | .02202 | .00016 | .00193 | .00219 | | | %RSD | 9.9577 | 2.8077 | 3.3070 | 4.7742 | .79356 | .21057 | 19.003 | | | #1 | .55717 | .00977 | .00946 | .47714 | .02030 | .91767 | .01247 | | | #2 | .59502 | .01021 | .00891 | .43606 | .02012 | .91774 | .00901 | | | #3 | .67595 | .01030 | .00896 | .47035 | .02045 | .91436 | .01307 | | | Check ?
High Limit
Low Limit | Chk Pass | | Sample Nam
Method: ICP
User: JYH
Comment: | ne: LLCCV
-THERMO3_
Custom I | 6010_200.7 | 5/16/2016 19
WATER_3Y
Custom ID2: | LINES(v873) | Type: Unk
) Mode:
tom ID3: | CONC (| Corr. Factor: | 1.000000 | |--|---|---|--|---|---|---|---|----------| | Elem
Units
Avg
Stddev
%RSD | Sb2068
ppm
. 09365
.00159
1.6954 | Se1960
ppm
.01377
.00726
52.674 | Si2124
ppm
.98405
.00380
.38584 | Sn1899
ppm
. 47683
.00163
.34170 | Sr4077
ppm
. 04667
.00024
.51398 | Ti3372
ppm
. 02634
.00464
17.626 | TI1908
ppm
. 18156
.00177
.97485 | | | #1
#2
#3 | .09270
.09277
.09548 | .01356
.02114
.00663 | .98388
.98033
.98792 | .47735
.47501
.47814 | .04685
.04677
.04640 | .03149
.02248
.02506 | .17965
.18189
.18315 | | | Check ?
High Limit
Low Limit | Chk Pass | | Elem
Units
Avg
Stddev
%RSD | V_2924
ppm
. 01046
.00074
7.0319 | Zn2062
ppm
. 02106
.00025
1.1656 | Zr3391
ppm
F 44.044
1.109
2.5188 | | | | | | | #1
#2
#3 | .01103
.01073
.00963 | .02079
.02128
.02110 | 44.558
44.803
42.771 | | | | | | | Check ?
High Limit
Low Limit | Chk Pass | Chk Pass | Chk Fail
36.000
04000 | | | | | | | Int. Std.
Units
Avg
Stddev
%RSD | Y_2243
Cts/S
13669.
48.
.35144 | Y_3600
Cts/S
98514.
595.
.60375 | Y_3774
Cts/S
4352.1
62.6
1.4394 | | | | | | | #1
#2
#3 | 13714.
13674.
13619. | 98374.
99166.
98001. | 4292.4
4346.5
4417.3 | | | | | | Sample Name: PBW A1 Acquired: 5/16/2016 19:55:27 Type: Unk Method: ICP-THERMO3_6010_200.7WATER_3YLINES(v873) Mode: CONC Corr. Factor: 1.000000 User: JYH Custom ID1: Custom ID2: Custom ID3: Comment: WG568874-02 | Elem | Ag3280 | Al3082 | As1890 | B_2496 | Ba4554 | Be3131 | Ca4226 | |------------------------------------|-----------------------------|----------|----------------|----------------|----------|----------------|----------------| | Units | ppm | Avg | F00424 | 00362 | .00028 | . 00204 | .00052 | .00013 | 00076 | | Stddev | .00263 | .01043 | .00138 | .00433 | .00086 | .00004 | .02101 | | %RSD | 61.987 | 288.19 | 486.63 | 211.76 | 166.32 | 31.715 | 2763.7 | | #1 | 00644 | 01412 | 00060 | .00598 | .00036 | .00010 | 00576 | | #2 | 00133 | 00347 | 00043 | .00275 | .00144 | .00012 | .02229 | | #3 | 00496 | .00673 | .00188 | 00259 | 00026 | .00018 | 01881 | | Check ?
High Limit
Low Limit | Chk Fail
9.0000
00400 | Chk Pass | Chk Pass | Chk Pass | Chk Pass | Chk Pass | Chk Pass | | Elem | Cd2288 | Co2286 | Cr2677 | Cu2247 | Fe2611 | K_7664 | Li6707 | | Units | ppm | Avg | . 00020 | 00024 | . 00069 | 00054 | 01288 | . 19062 | . 00699 | | Stddev | .00037 | .00011 | .00119 | .00092 | .02520 | .14329 | .00090 | | %RSD | 187.93 | 45.128 | 172.26 | 170.08 | 195.70 | 75.168 | 12.915 | | #1 | 00019 | 00013 | 00010 | 00081 | .01477 | .06338 | .00792 | | #2 | .00054 | 00026 | .00206 | 00130 | 01885 | .16265 | .00611 | | #3 | .00024 | 00034 | .00011 | .00048 | 03455 | .34583 | .00695 | | Check ?
High Limit
Low Limit | Chk Pass | Elem | Mg2790 | Mn2576 | Mo2020 | Na5895 | Ni2316 | P_2149 | Pb2203 | | Units | ppm | Avg | . 09436 | 00033 | .00038 | 01570 | 00087 | 00780 | 00156 | | Stddev | .01222 | .00101 | .00042 | .01776 | .00082 | .00498 | .00229 | | %RSD | 12.950 | 303.88 | 109.17 | 113.17 | 93.519 | 63.845 | 147.01 | | #1 | .09808 | .00034 | 00009 | 01272 | 00053 | 01341 | 00283 | | #2 | .08071 | .00015 | .00054 | 03476 | 00028 | 00388 | .00109 | | #3 | .10429 | 00149 | .00070 | .00039 | 00181 | 00612 | 00293 | | Check ?
High Limit
Low Limit | Chk Pass Sample Name: PBW A1 Acquired: 5/16/2016 19:55:27 Type: Unk Method: ICP-THERMO3_6010_200.7WATER_3YLINES(v873) Mode: CONC Corr. Factor: 1.000000 User: JYH Custom ID1: Custom ID2: Custom ID3: Comment: WG568874-02 Elem Sb2068 Se1960 Si2124 Sn1899 Sr4077 Ti3372 TI1908 Units ppm ppm ppm ppm ppm ppm ppm .00200 -.02071 -.00081 .00056 -.00120 -.00521 Avg -.00078 Stddev .00275 .00805 .00080 .00015 .00042 .00302 .00326 402.59 250.65 %RSD 352.00 3.8752 18.385 76.415 62.473 #1 .00051 .01119 -.02152 -.00070 .00101 -.00467 -.00338 #2 .00109 -.00137 -.01991 -.00075 .00017 .00086 -.00329 #3 -.00394 -.00382 -.02069 -.00098 .00049 .00020 -.00897 **Chk Pass Chk Pass Chk Pass** Check? **Chk Pass Chk Pass Chk Pass Chk Pass** High Limit Low Limit Elem V_2924 Zn2062 Zr3391 Units ppm ppm ppm F -.10800 .00056 .00158 Avg .00066 .00017 .24388 Stddev %RSD 116.59 10.457 225.81 #1 .00131 .00151 -.15476 #2 .00008 .00146 -.32512#3 .00031 .00177 .15587 Check? Chk Pass **Chk Pass** Chk Fail 36.000 High Limit Low Limit -.04000 Int. Std. Y_2243 Y_3600 Y_3774 Units Cts/S Cts/S Cts/S 13198. 94637. 4241.4 Avg Stddev 462. 18.1 14. .42713 %RSD .10746 .48802 #1 13204. 94106. 4243.9 #2 94862. 4222.1 13182. 94943. 13208. 4258.1 Approved: May 17, 2016 #3 Sample Name: LCSW A1 Acquired: 5/16/2016 19:59:26 Type: Unk Method: ICP-THERMO3_6010_200.7WATER_3YLINES(v873) Mode: CONC Corr. Factor: 1.000000 User: JYH Custom ID1: Custom ID2: Custom ID3: Comment: WG568874-03 | Elem | Ag3280 | Al3082 | As1890 | B_2496 | Ba4554 | Be3131 | Ca4226 | Cd2288 | |--------|--------|--------|--------|--------|--------|--------|--------|--------| | Units | ppm | Avg | .20382 | 5.1568 | .20421 | 1.0652 | .51227 | .02511 | 5.0988 | .02518 | | Stddev | .00145 | .0131 | .00257 | .0044 | .00119 | .00005 | .0419 | .00026 | | %RSD | .71079 | .25366 | 1.2602 | .41729 | .23207 | .20890 | .82194 | 1.0201 | | #1 | .20333 | 5.1711 | .20401 | 1.0648 | .51160 | .02508 | 5.0703 | .02516 | | #2 | .20546 | 5.1539 | .20688 | 1.0610 | .51364 | .02509 | 5.1469 | .02493 | | #3 | .20269 | 5.1454 | .20174 | 1.0698 | .51156 | .02517 | 5.0791 | .02544 | Check? Chk Pass P | Elem | Co2286 | Cr2677 | Cu2247 | Fe2611 | K_7664 | Li6707 | Mg2790 | Mn2576 | |--------|----------------|----------------|----------------|---------------|---------------|----------------|---------------|----------------| | Units | ppm | Avg | . 10516 | . 26304 | . 26398 | 2.1049 | 26.125 | . 51500 | 5.2250 | . 25754 | | Stddev | .00047 | .00217 | .00174 | .0363 | .042 | .00407 | .0490 | .00162 | | %RSD | .44801 | .82566 | .65755 | 1.7259 | .16034 | .79087 | .93749 | .62810 | | #1 | .10534 | .26406 | .26317 | 2.1073 | 26.172 | .51633 | 5.2089 | .25571 | | #2 | .10463 | .26451 | .26597 | 2.0674 | 26.109 | .51043 | 5.2800 | .25811 | | #3 | .10551 | .26054 | .26280 | 2.1399 | 26.092 | .51825 | 5.1860 | .25879 | Check? Chk Pass P | Elem | Mo2020 | Na5895 | Ni2316 | P_2149 | Pb2203 | Sb2068 | Se1960 | Si2124 | |--------|----------------|---------------|----------------|---------------|----------------|----------------|--------|---------------| | Units | ppm | Avg | . 51555 | 26.141 | . 26784 | 5.0990 | . 26731 | . 62209 | .19179 | 2.5963 | | Stddev | .00082 | .066 | .00134 | .0159 | .00120 | .00277 | .00354 | .0040 | | %RSD | .15889 | .25432 | .49868 | .31080 | .44709 | .44501 | 1.8452 | .15606 | | #1 | .51557 | 26.145 | .26644 | 5.1019 | .26609 | .62471 | .19458 | 2.5938 | | #2 | .51636 | 26.206 | .26797 | 5.1131 | .26737 | .62238 | .19298 | 2.6010 | | #3 | .51472 | 26.073 | .26910 | 5.0819 | .26848 | .61919 | .18781 | 2.5941 | Check? Chk Pass P Sample Name: LCSW A1 Acquired: 5/16/2016 19:59:26 Type: Unk Method: ICP-THERMO3_6010_200.7WATER_3YLINES(v873) Mode: CONC Corr. Factor: 1.000000 User: JYH Custom ID1: Custom ID2: Custom ID3: Comment: WG568874-03 | Elem | Sn1899 | Sr4077 | Ti3372 | TI1908 | V_2924 | Zn2062 | Zr3391 | |--------|--------|--------|--------|--------|--------|--------|--------| | Units | ppm | Avg | .52665 | .51529 | .51359 | .25961 | .51766 | .53019 | 1.8378 | | Stddev | .00052 | .00053 | .00124 | .00266 | .00201 | .00074 | .2046 | | %RSD | .09926 | .10202 | .24062 | 1.0241 | .38798 | .14043 | 11.133 | | | | | | | | | | | #1 | .52606 | .51588 | .51490 | .26116 | .51998 | .52966 | 1.9697 | | #2 | .52682 | .51514 | .51343 | .26113 | .51648 | .53104 | 1.6021 | | #3 | .52706 | .51486 | .51244 | .25654 | .51653 | .52988 | 1.9415 | Check? Chk Pass P Low Limit | Int. Std. | Y_2243 | Y_3600 | Y_3774 | |-----------|----------------|---------------|---------------| | Units | Cts/S | Cts/S |
Cts/S | | Avg | 13155 . | 93910. | 4260.6 | | Stddev | 40. | 378. | 30.9 | | %RSD | .30661 | .40268 | .72497 | | #1 | 13120. | 93474. | 4226.3 | | #2 | 13199. | 94127. | 4269.2 | | #3 | 13146. | 94131. | 4286.3 | Sample Name: F BLANK Acquired: 5/16/2016 20:03:10 Type: Unk Method: ICP-THERMO3 6010 200.7WATER 3YLINES(v873) Mode: CONC Corr. Factor: 1.000000 User: JYH Custom ID1: Custom ID2: Custom ID3: Comment: WG568782-01 Al3082 As1890 B 2496 Ba4554 Ca4226 Cd2288 Elem Ag3280 Be3131 Units ppm ppm ppm ppm ppm ppm ppm ppm -.00280 .00090 -.00238 .00437 Avg .00039 .00012 -.02876 .00038 Stddev .00123 .00433 .00050 .00140 .00050 .00006 .03723 .00020 482.88 %RSD 43.837 20.942 32.124 125.87 51.283 129.47 51.292 #1 -.00420 .00113 -.00245 .00275 .00006 .00018 .00050 -.04686 #2 -.00229 -.00355 -.00185 .00512 .00015 .00010 .01406 .00049 .00511 #3 -.00191 -.00284 .00524 .00096 .00007 -.05348 .00016 Check? Chk Pass **High Limit** Low Limit Elem Co2286 Cr2677 Cu2247 Fe2611 K_7664 Li6707 Mg2790 Mn2576 Units ppm ppm ppm ppm ppm ppm ppm ppm .00005 .00090 -.00042 .19030 .00354 -.00000 Avg .04087 .00250 .00061 .00155 .01293 .00285 .08160 Stddev .00015 .04431 .00157 %RSD 313.63 68.207 368.97 31.634 23.283 80.514 3260.3 59682. #1 -.00010 .00126 -.00079 .04174 .23720 .00608 -.06599 .00180 #2 .00005 .00125 .00128 .05334 .18456 .00046 .09278 -.00110-.00175 .00408 #3 .00020 .00019 .02753 .14915 -.01928 -.00071 Check? Chk Pass High Limit Low Limit Elem Mo2020 Na5895 Ni2316 P_2149 Pb2203 Sb2068 Se1960 Si2124 Units ppm ppm ppm ppm ppm ppm ppm ppm .00056 129.58 -.00149 -.00361 -.00260 -.00103 .00560 -.01145 Avg Stddev .00053 .00088 .00252 .00097 .00246 .00585 .47 .00247 93.831 .36465 58.836 21.582 %RSD 69.725 37.417 238.24 104.45 #1 -.00085 .00032 130.08 -.00616 -.00364 .00175 .00823 -.00872 129.53 -.00114 -.00354 -.00194 -.01354 #2 .00116 -.00171 -.00110 #3 .00020 129.14 -.00249 -.00113 -.00246 -.00291 .00968 -.01208 Check? Chk Pass Chk Pass Chk Pass Chk Pass Chk Pass Chk Pass **Chk Pass** High Limit Approved: May 17, 2016 Low Limit Sample Name: F BLANK Acquired: 5/16/2016 20:03:10 Type: Unk Method: ICP-THERMO3_6010_200.7WATER_3YLINES(v873) Mode: CONC Corr. Factor: 1.000000 User: JYH Custom ID1: Custom ID2: Custom ID3: Comment: WG568782-01 Elem Sn1899 Sr4077 Ti3372 TI1908 V_2924 Zn2062 Zr3391 Units ppm ppm ppm ppm ppm ppm ppm -.00036 .00051 -.00574 -.00055 .00026 .00348 .00194 Avg Stddev .00031 .00021 .01282 .00220 .00089 .00033 .32440 40.893 223.34 396.81 9.4473 16702. %RSD 86.593 337.24 #1 -.00064 .00072 .00884 .00172 .00097 .00317 .09324 -.01079 #2 -.00041 .00050 -.00071 .00055 .00346 -.35833 #3 -.00002 .00030 -.01527 -.00267 -.00074 .00382 .27091 Check? Chk Pass Chk Pass Chk Pass Chk Pass Chk Pass Chk Pass High Limit Low Limit Y_3774 Int. Std. Y_2243 Y_3600 Units Cts/S Cts/S Cts/S 13103. 93290. Avg 4248.7 Stddev 59. 106. 46.3 %RSD .45225 .11371 1.0893 #1 13132. 93399. 4216.0 Approved: May 17, 2016 #2 #3 13143. 13035. 93187. 93282. 4228.4 4301.6 Sample Name: F BLANK Acquired: 5/16/2016 20:07:10 Type: Unk Method: ICP-THERMO3 6010 200.7WATER 3YLINES(v873) Mode: CONC Corr. Factor: 1.000000 User: JYH Custom ID1: Custom ID2: Custom ID3: Comment: WG568782-02 Al3082 As1890 B 2496 Ba4554 Ca4226 Cd2288 Elem Ag3280 Be3131 Units ppm ppm ppm ppm ppm ppm ppm ppm Avg -.00274 -.00984-.00237 .00115 .00144 .00006 -.00763 .00004 Stddev .00086 .00475 .00256 .00124 .00072 .00004 .03864 .00008 %RSD 31.159 48.336 108.07 107.94 49.618 61.621 506.52 181.56 #1 -.00360 -.00688 -.00529 .00029 .00069 .00008 -.03034 .00013 #2 -.00275 -.01532 -.00054 .00258 .00153 .00002 -.02954 .00002 #3 -.00189 -.00730 -.00127 .00059 .00212 80000. .03699 -.00002 Check? Chk Pass **High Limit** Low Limit Elem Co2286 Cr2677 Cu2247 Fe2611 K_7664 Li6707 Mg2790 Mn2576 Units ppm ppm ppm ppm ppm ppm ppm ppm -.00127 -.01727 .03626 -.00035 .00040 .00196 .00124 Avg .17219 .00008 .00049 .00020 .00519 Stddev .00731 .08184 .07730 .00267 %RSD 21.388 122.09 15.491 42.337 47.526 265.25 213.20 215.39 #1 -.00029 -.00010 -.00135 -.00883 .15497 .00436 .08848 .00405 #2 -.00033 .00087 -.00141 -.02122.10034 -.00400 .07284 -.00125.00043 -.00104 .00552 #3 -.00044-.02176.26127 -.05255 .00091 Check? Chk Pass High Limit Low Limit Elem Mo2020 Na5895 Ni2316 P_2149 Pb2203 Sb2068 Se1960 Si2124 Units ppm ppm ppm ppm ppm ppm ppm ppm -.00013 -.01524 -.00170 -.00451 .00038 -.00170 .00669 -.02075 Avg .00030 .02369 .00053 .00796 .00167 .00049 .00733 .00148 Stddev %RSD 155.41 31.160 239.82 176.32 437.48 28.739 109.60 7.1109 #1 -.00128 -.00031 -.00690 -.00226 .00156 -.00152 -.00114 -.02131 .00022 -.00161 .00132 -.00133 .00780 #2 -.04197 -.00153 -.01907 #3 -.00030 .00315 -.00122 -.01358 .00111 -.00225 .01339 -.02185 Check? Chk Pass Chk Pass Chk Pass Chk Pass Chk Pass Chk Pass **Chk Pass** High Limit Approved: May 17, 2016 Low Limit Sample Name: F BLANK Acquired: 5/16/2016 20:07:10 Type: Unk Method: ICP-THERMO3_6010_200.7WATER_3YLINES(v873) Mode: CONC Corr. Factor: 1.000000 User: JYH Custom ID1: Custom ID2: Custom ID3: Comment: WG568782-02 Elem Sn1899 Sr4077 Ti3372 TI1908 V_2924 Zn2062 Zr3391 Units ppm ppm ppm ppm ppm ppm ppm -.00118 .00047 .00230 -.00192 .00002 .00300 -.03616 Avg Stddev .00024 .00022 .00628 .00351 .00040 .00015 .10775 20.544 45.799 273.28 182.43 4.9364 %RSD 2174.3 297.99 #1 -.00134 .00033 -.00322 -.00074 .00041 .00314 -.10523 #2 -.00131 .00072 .00098 .00084 .00003 .00301 .08800 #3 -.00090 .00036 .00913 -.00588 -.00039 .00285 -.09124 Check? Chk Pass Chk Pass Chk Pass Chk Pass Chk Pass Chk Pass High Limit Low Limit Y_3774 Int. Std. Y_2243 Y_3600 Units Cts/S Cts/S Cts/S 13265. 95966. 4252.5 Avg Stddev 26. 333. 67.1 %RSD .19371 .34647 1.5783 #1 13277. 95981. 4175.1 #2 13282. 96291. 4294.6 Approved: May 17, 2016 #3 13236. 95626. 4287.7 Sample Name: L1605076402 Acquired: 5/16/2016 20:11:10 Type: Unk Method: ICP-THERMO3_6010_200.7WATER_3YLINES(v873) Mode: CONC Corr. Factor: 1.000000 User: JYH Custom ID1: Custom ID2: Custom ID3: Comment: WG568874-01 AI3082 As1890 B 2496 Ba4554 Be3131 Ca4226 Elem Ag3280 Units ppm ppm ppm ppm ppm ppm ppm F -.00408 .00005 .00422 .01989 Avg -.00046.02206 41.864 Stddev .00070 .00211 .00159 .00293 .00010 .00004 .065 %RSD 17.236 50.099 345.19 14.718 .47046 75.451 .15497 #1 -.00486 .00182 -.00096 .02226 .02210 .00001 41.807 #2 -.00349 .00580 .00132 .01662 .02213 .00005 41.849 #3 -.00391 .00505 -.00173 .02078 .02194 .00008 41.934 Chk Fail Check? Chk Pass **Chk Pass Chk Pass Chk Pass Chk Pass Chk Pass** High Limit 9.0000 Low Limit -.00400 Elem Cd2288 Co2286 Cr2677 Cu2247 Fe2611 K 7664 Li6707 Units ppm ppm ppm ppm ppm ppm ppm .00083 .00048 .00157 .00053 .02986 .64869 Avg .00913 .00016 .00014 .03239 .00132 Stddev .00212 .00036 .05168 %RSD 16.422 68.446 108.48 7.9666 14.441 32.772 135.17 #1 .00032 .00090 -.00031 .00034 .01768 .61424 .00777 #2 .00048 .00092 .00115 .00030 .00532 .62372 .01040 .00068 .00386 .06656 #3 .00064 .00095 .70811 .00922 Check? **Chk Pass Chk Pass Chk Pass Chk Pass Chk Pass Chk Pass Chk Pass** High Limit Low Limit Elem Mg2790 Mn2576 Mo2020 Na5895 Ni2316 P_2149 Pb2203 Units ppm ppm ppm ppm ppm ppm ppm 19.131 .71588 .00120 127.98 .01025 .00303 .00174 Avg .00232 .00010 .00040 .01006 .00154 Stddev .092 .40 %RSD .48120 .32350 8.5634 .30998 3.9126 332.31 88.602 #1 .00293 19.237 .71459 .00113 128.43 .01067 .00070 .01022 .71855 127.74 -.00566 .00000 #2 19.070 .00116 .71449 .00228 #3 19.087 .00132 127.75 .00987 .01405 Check? **Chk Pass** Chk Pass **Chk Pass Chk Pass Chk Pass Chk Pass Chk Pass** High Limit Approved: May 17, 2016 Low Limit | Sample Name: L1605076402 Acquired: 5/16/2016 20:11:10 Method: ICP-THERMO3_6010_200.7WATER_3YLINES(v873) User: JYH Custom ID1: Custom ID2: | | | | | Type: Unk
Mode: CON
ID3: | C Corr. F | Factor: 1.00000(| |---|---|---|---|--
---|--|--| | Elem
Units
Avg
Stddev
%RSD | Sb2068
ppm
. 00004
.00600
15733. | Se1960
ppm
00412
.00097
23.573 | Si2124
ppm
.18190
.00388
2.1336 | Sn1899
ppm
00016
.00018
107.83 | Sr4077
ppm
. 07197
.00014
.19227 | Ti3372
ppm
00818
.00524
64.074 | TI1908
ppm
00447
.00158
35.287 | | #1
#2
#3 | .00145
.00521
00654 | 00310
00421
00503 | .17759
.18299
.18512 | .00004
00023
00030 | .07194
.07213
.07186 | 01071
00216
01169 | 00495
00575
00271 | | Check ?
High Limit
Low Limit | Chk Pass | Elem
Units
Avg
Stddev
%RSD | V_2924
ppm
.00060
.00089
148.19 | Zn2062
ppm
. 22620
.00043
.18835 | Zr3391
ppm
. 06990
.37783
540.54 | | | | | | #1
#2
#3 | .00044
.00155
00020 | .22645
.22571
.22644 | 35388
.19197
.37161 | | | | | | Check ?
High Limit
Low Limit | Chk Pass | Chk Pass | Chk Pass | | | | | | Int. Std.
Units
Avg
Stddev
%RSD | Y_2243
Cts/S
12884.
38.
.29353 | Y_3600
Cts/S
91562.
501.
.54742 | Y_3774
Cts/S
4286.4
18.3
.42769 | | | | | | #1
#2
#3 | 12920.
12844.
12889. | 91129.
91447.
92111. | 4266.9
4288.9
4303.3 | | | | | Sample Name: L1605076402S Acquired: 5/16/2016 20:15:07 Type: Unk Mode: CONC Method: ICP-THERMO3 6010 200.7WATER 3YLINES(v873) Corr. Factor: 1.000000 User: JYH Custom ID1: Custom ID2: Custom ID3: Comment: WG568874-04 Al3082 B_2496 Ba4554 Ca4226 Cd2288 Elem Ag3280 As1890 Be3131 Units ppm ppm ppm ppm ppm ppm ppm ppm Avg .20397 5.1527 .20593 1.0463 .53208 .02563 47.404 .02545 Stddev .00201 .0099 .00222 .0012 .00214 .00011 .092 .00002 %RSD .98359 .19234 1.0776 .11139 .40131 .41852 .19475 .09104 #1 1.0454 .02575 .02544 .20172 5.1636 .20429 .53005 47.322 #2 .20464 5.1443 .20504 1.0459 .53431 .02554 47.504 .02543 5.1502 .20845 .02547 #3 .20556 1.0476 .53187 .02560 47.385 Check? Chk Pass **High Limit** Low Limit Mg2790 Elem Co2286 Cr2677 Cu2247 Fe2611 K_7664 Mn2576 Li6707 Units ppm ppm ppm ppm ppm ppm ppm ppm .26415 .26012 2.1126 26.594 .99147 Avg .10468 .51346 24.787 .00021 .00074 Stddev .00266 .0244 .111 .00328 .145 .00561 %RSD .20216 1.0086 .28522 1.1567 .41908 .63805 .58575 .56595 #1 .10492 .26270 .26039 2.1292 26.723 .51037 24.744 .98540 #2 .10458 .26253 .25929 2.0845 26.528 .51312 24.668 .99648 #3 .10454 .26723 .26070 2.1240 26.531 .51690 24.948 .99253 Check? Chk Pass High Limit Low Limit P_2149 Elem Mo2020 Na5895 Ni2316 Pb2203 Sb2068 Se1960 Si2124 Units ppm ppm ppm ppm ppm ppm ppm ppm Avg .52294 157.52 .27453 5.2790 .26422 .62969 .19386 2.8653 .00089 .0032 .00519 .00685 Stddev .43 .00116 .00136 .0049 .17019 .21624 3.5324 %RSD .27213 .42181 .05989 1.9653 .17097 #1 .52343 5.2771 .25826 157.17 .27557 .62861 .20165 2.8644 .52347 158.00 5.2773 2.8609 #2 .27328 .26667 .19118 .63122 #3 .52191 157.38 .27473 5.2826 .26774 .62924 .18877 2.8706 Check? Chk Pass High Limit Approved: May 17, 2016 Low Limit Sample Name: L1605076402S Acquired: 5/16/2016 20:15:07 Type: Unk Method: ICP-THERMO3_6010_200.7WATER_3YLINES(v873) Mode: CONC Corr. Factor: 1.000000 User: JYH Custom ID1: Custom ID2: Custom ID3: Comment: WG568874-04 | Elem | Sn1899 | Sr4077 | Ti3372 | TI1908 | V_2924 | Zn2062 | Zr3391 | |--------|--------|--------|--------|--------|--------|--------|--------| | Units | ppm | Avg | .52507 | .58682 | .50789 | .24570 | .52662 | .75427 | .78821 | | Stddev | .00058 | .00218 | .00353 | .00268 | .00154 | .00345 | .42778 | | %RSD | .11068 | .37074 | .69437 | 1.0918 | .29167 | .45729 | 54.272 | | #1 | .52461 | .58521 | .51102 | .24730 | .52487 | .75275 | .29535 | | #2 | .52487 | .58930 | .50859 | .24260 | .52726 | .75185 | 1.0632 | | #3 | .52572 | .58596 | .50407 | .24719 | .52774 | .75822 | 1.0061 | Check? Chk Pass P Low Limit | Int. Std. | Y_2243 | Y_3600 | Y_3774 | |-----------|---------------|----------------|---------------| | Units | Cts/S | Cts/S | Cts/S | | Avg | 12880. | 91049 . | 4273.7 | | Stddev | 18. | 203. | 19.2 | | %RSD | .13857 | .22342 | .45011 | | #1 | 12860. | 90815. | 4267.4 | | #2 | 12894. | 91156. | 4295.3 | | #3 | 12885. | 91177. | 4258.4 | Sample Name: L1605076402SD Acquired: 5/16/2016 20:18:50 Type: Unk Method: ICP-THERMO3_6010_200.7WATER_3YLINES(v873) Mode: CONC Corr. Factor: 1.000000 User: JYH Custom ID1: Custom ID2: Custom ID3: Comment: WG568874-05 Ag3280 Al3082 B_2496 Ba4554 Ca4226 Cd2288 Elem As1890 Be3131 Units ppm ppm ppm ppm ppm ppm ppm ppm 47.010 5.1487 .20796 Avg .20573 1.0463 .53511 .02563 .02568 Stddev .00082 .0142 .00142 .0057 .00101 .00004 .123 .00011 %RSD .39668 .27580 .68484 .54506 .18861 .15991 .26135 .41218 .02575 #1 .20565 .20692 1.0426 .02559 5.1363 .53536 47.142 #2 .20658 5.1456 .20738 1.0433 .53597 .02564 46.989 .02572 #3 .20496 5.1642 .20959 1.0528 .53400 .02567 46.899 .02556 Chk Pass Check? **High Limit** Low Limit Mg2790 Elem Co2286 Cr2677 Cu2247 Fe2611 K_7664 Li6707 Mn2576 Units ppm ppm ppm ppm ppm ppm ppm ppm .10534 .26210 .26040 2.0994 26.816 24.398 .98320 Avg .51167 .00091 .00044 .0231 .00392 Stddev .00023 .059 .00691 .136 .55865 %RSD .21987 .34870 .17011 1.1009 .21915 1.3510 .39820 #1 .10520 .26208 .26045 2.0734 26.800 .50453 24.554 .98684 #2 .10522 .26120 .25993 2.1075 26.881 .51833 24.302 .98371 .10561 26.767 #3 .26303 .26081 2.1174 .51215 24.338 .97906 Check? Chk Pass P | Elem | Mo2020 | Na5895 | Ni2316 | P_2149 | Pb2203 | Sb2068 | Se1960 | Si2124 | |--------|----------------|---------------|----------------|---------------|----------------|----------------|--------|---------------| | Units | ppm | Avg | . 52734 | 156.37 | . 27611 | 5.2830 | . 26684 | . 63782 | .19732 | 2.8855 | | Stddev | .00090 | .65 | .00181 | .0121 | .00077 | .00210 | .00344 | .0042 | | %RSD | .17097 | .41810 | .65503 | .22846 | .28908 | .32856 | 1.7439 | .14401 | | #1 | .52729 | 157.11 | .27542 | 5.2694 | .26596 | .63916 | .20071 | 2.8857 | | #2 | .52647 | 156.14 | .27475 | 5.2869 | .26741 | .63540 | .19383 | 2.8813 | | #3 | .52827 | 155.87 | .27817 | 5.2926 | .26715 | .63889 | .19743 | 2.8896 | Check? Chk Pass P Method: ICP-THERMO3_6010_200.7WATER_3YLINES(v873) Mode: CONC Corr. Factor: 1.000000 User: JYH Custom ID1: Custom ID2: Custom ID3: Comment: WG568874-05 | Elem | Sn1899 | Sr4077 | Ti3372 | TI1908 | V_2924 | Zn2062 | Zr3391 | |--------|--------|--------|--------|--------|--------|--------|--------| | Units | ppm | Avg | .52675 | .59007 | .51736 | .25432 | .52662 | .75580 | .76128 | | Stddev | .00254 | .00205 | .00334 | .00327 | .00313 | .00079 | .23757 | | %RSD | .48227 | .34763 | .64533 | 1.2848 | .59473 | .10417 | 31.207 | | | | | | | | | | | #1 | .52778 | .58813 | .51377 | .25280 | .53023 | .75613 | .91890 | | #2 | .52861 | .59222 | .51795 | .25807 | .52466 | .75637 | .87691 | | #3 | .52385 | .58986 | .52037 | .25210 | .52497 | .75490 | .48802 | Check? Chk Pass P Low Limit | Int. Std. | Y_2243 | Y_3600 | Y_3774 | |-----------|---------------|---------------|---------------| | Units | Cts/S | Cts/S | Cts/S | | Avg | 12809. | 91408. | 4269.6 | | Stddev | 20. | 94. | 43.5 | | %RSD | .15466 | .10261 | 1.0180 | | #1 | 12791. | 91367. | 4220.8 | | #2 | 12830. | 91515. | 4304.2 | | #3 | 12806. | 91342. | 4283.9 | | Sample Name: L1605062701 Acquired: 5/16/2016 20:22:30 Type: Unk Method: ICP-THERMO3_6010_200.7WATER_3YLINES(v873) Mode: CONC Corr. Factor: 1.000000 User: JYH Custom ID1: Custom ID2: Custom ID3: Comment: | | | | | | | | | |---|----------------|----------------|----------|----------------|----------------|----------------|---------------|----------------| | Elem | Ag3280 | Al3082 | As1890 | B_2496 | Ba4554 | Be3131 | Ca4226 | Cd2288 | | Units | ppm | Avg | 00245 | . 13213 | 00089 | . 01555 | . 04270 | .00008 | 28.941 | . 00058 | | Stddev | .00078 | .00186 | .00082 | .00188 | .00099 | .00004 | .073 | .00017 | | %RSD | 31.728 | 1.4085 | 92.783 | 12.088 | 2.3209 | 52.852 | .25348 | 29.721 | | #1 | 00311 | .13096 | .00002 | .01403 | .04158 | .00011 | 28.857 | .00070 | | #2 | 00159 | .13427 | 00110 | .01497 | .04302 | .00003 | 28.984 | .00038 | | #3 | 00264 | .13114 | 00158 | .01765 | .04348 | .00010 | 28.984 | .00065 | | Check ?
High Limit
Low Limit | Chk Pass | Elem | Co2286 | Cr2677 | Cu2247 | Fe2611 | K_7664 | Li6707 | Mg2790 | Mn2576 | | Units | ppm | Avg | 00018 | .00163 | .00086 | . 12602 | . 88001 | . 01120 | 5.7669 | . 00316 | | Stddev | .00036 | .00086 | .00119 | .01556 | .08171 | .00311 | .0860 | .00057 | | %RSD | 196.37 | 52.712 | 138.27 | 12.343 | 9.2853 | 27.793 | 1.4913 | 17.944 | | #1 | 00026 | .00107 | 00020 | .13833 | .93854 | .01393 | 5.8634 | .00366 | | #2 | 00050 | .00262 | .00064 | .10854 | .78666 | .01186 | 5.7386 | .00327 | | #3 | .00021 | .00120 | .00215 | .13120 | .91483 | .00781 | 5.6986 | .00254 | | Check ?
High Limit
Low Limit | Chk Pass | Elem | Mo2020 | Na5895 | Ni2316 | P_2149 | Pb2203 | Sb2068 | Se1960 | Si2124 | | Units | ppm | Avg | . 00119 | 4.7415 | 00204 | . 01021 | 00046 | 00564 | 00176 | 3.6516 | | Stddev | .00017 | .0348 | .00010 | .00233 | .00355 | .00240 | .00192 | .0102 | | %RSD | 13.843 | .73454 | 4.8593 | 22.813 | 765.80 | 42.541 | 109.30 | .27872 | | #1 | .00113 | 4.7345 | 00198 | .00767 | .00356 | 00317 | 00322 | 3.6526 | | #2 | .00107 | 4.7793 | 00200 | .01224 | 00314 | 00580 | 00246 | 3.6613 | | #3 | .00138 | 4.7107 | 00216 | .01072 | 00181 | 00796 | .00042 | 3.6410 | |
Check ?
High Limit
Low Limit | Chk Pass | Sample Nar
Method: ICF
User: JYH
Comment: | | 3_6010_200 | .cquired: 5/1
.7WATER_
Custom ID | 3YLINES(v8 | • | ype: Unk
ode: CONC
: | Corr. Fa | ctor: 1.00000(| |--|---|---|--|--|---|---|---|----------------| | Elem
Units
Avg
Stddev
%RSD | Sn1899
ppm
00010
.00110
1098.3 | Sr4077
ppm
. 13249
.00087
.65843 | Ti3372
ppm
00061
.00422
689.21 | TI1908
ppm
00296
.00398
134.51 | V_2924
ppm
. 00157
.00074
47.473 | Zn2062
ppm
. 00261
.00021
8.0780 | Zr3391
ppm
. 07038
.41849
594.57 | | | #1
#2
#3 | 00104
.00111
00037 | .13264
.13327
.13155 | .00425
00274
00334 | 00227
.00063
00723 | .00088
.00146
.00236 | .00248
.00286
.00251 | 40055
.39965
.21206 | | | Check ?
High Limit
Low Limit | Chk Pass | | Int. Std.
Units
Avg
Stddev
%RSD | Y_2243
Cts/S
13084.
40.
.30912 | Y_3600
Cts/S
94832 .
393.
.41393 | Y_3774
Cts/S
4239.4
31.9
.75258 | | | | | | | #1
#2
#3 | 13054.
13130.
13068. | 95116.
94384.
94995. | 4274.0
4233.2
4211.1 | | | | | | Sample Name: L1605062701PS Acquired: 5/16/2016 20:26:28 Type: Unk Method: ICP-THERMO3_6010_200.7WATER_3YLINES(v873) Mode: CONC Corr. Factor: 1.000000 User: JYH Custom ID1: Custom ID2: Custom ID3: Comment: WG569026-01 Elem Ag3280 Al3082 As1890 B_2496 Ba4554 Be3131 Ca4226 Cd2288 Units ppm ppm ppm ppm ppm ppm ppm ppm .02501 .20394 5.2501 .19898 1.0275 30.647 .02547 Avg .54519 Stddev .00084 .0159 .00115 .0013 .00233 .00003 .135 .00010 .30348 .12879 %RSD .41340 .57662 .42778 .13095 .44043 .39885 #1 .20322 5.2323 .19766 1.0271 .54256 .02500 30.509 .02547 #2 .20487 5.2551 .19968 1.0264 .54703 .02504 30.779 .02558 #3 .20374 5.2629 .19961 1.0289 .54597 .02498 30.654 .02537 Chk Pass Check? High Limit Low Limit | Elem | Co2286 | Cr2677 | Cu2247 | Fe2611 | K_7664 | Li6707 | Mg2790 | Mn2576 | |--------|--------|----------------|----------------|---------------|---------------|----------------|---------------|----------------| | Units | ppm | Avg | .10423 | . 26538 | . 26368 | 2.1679 | 26.648 | . 52052 | 10.307 | . 25654 | | Stddev | .00092 | .00189 | .00145 | .0568 | .057 | .00273 | .090 | .00431 | | %RSD | .88288 | .71209 | .54901 | 2.6209 | .21234 | .52504 | .87608 | 1.6799 | | #1 | .10526 | .26756 | .26501 | 2.2197 | 26.703 | .52290 | 10.378 | .25173 | | #2 | .10397 | .26439 | .26214 | 2.1769 | 26.651 | .51754 | 10.338 | .26006 | | #3 | .10347 | .26420 | .26388 | 2.1072 | 26.590 | .52113 | 10.206 | .25781 | Check? Chk Pass High Limit Low Limit | Elem | Mo2020 | Na5895 | Ni2316 | P_2149 | Pb2203 | Sb2068 | Se1960 | Si2124 | |--------|----------------|---------------|----------------|---------------|----------------|----------------|--------|---------------| | Units | ppm | Avg | . 51915 | 29.923 | . 26567 | 5.1301 | . 26636 | . 62577 | .19159 | 5.9762 | | Stddev | .00196 | .197 | .00092 | .0105 | .00438 | .00427 | .00450 | .0225 | | %RSD | .37799 | .65787 | .34601 | .20536 | 1.6434 | .68309 | 2.3506 | .37629 | | #1 | .52128 | 29.742 | .26575 | 5.1248 | .26407 | .62966 | .19621 | 6.0002 | | #2 | .51741 | 30.133 | .26471 | 5.1232 | .26360 | .62120 | .19135 | 5.9556 | | #3 | .51877 | 29.895 | .26654 | 5.1422 | .27140 | .62647 | .18722 | 5.9728 | Check? Chk Pass High Limit Low Limit Sample Name: L1605062701PS Acquired: 5/16/2016 20:26:28 Type: Unk Method: ICP-THERMO3_6010_200.7WATER_3YLINES(v873) Mode: CONC Corr. Factor: 1.000000 User: JYH Custom ID1: Custom ID2: Custom ID3: Comment: WG569026-01 | Elem | Sn1899 | Sr4077 | Ti3372 | TI1908 | V_2924 | Zn2062 | Zr3391 | |--------|--------|--------|--------|--------|--------|--------|--------| | Units | ppm | Avg | .52581 | .63016 | .50785 | .25764 | .52396 | .52533 | .67165 | | Stddev | .00167 | .00183 | .00604 | .00659 | .00244 | .00157 | .12794 | | %RSD | .31711 | .28988 | 1.1887 | 2.5566 | .46570 | .29894 | 19.049 | | #1 | .52727 | .62856 | .51388 | .26420 | .52483 | .52688 | .58440 | | | | | | | .000 | | | | #2 | .52399 | .63215 | .50786 | .25102 | .52584 | .52374 | .61204 | | #3 | .52617 | .62977 | .50181 | .25769 | .52120 | .52537 | .81852 | Check? Chk Pass P Low Limit | Int. Std. | Y_2243 | Y_3600 | Y_3774 | |-----------|---------------|---------------|---------------| | Units | Cts/S | Cts/S | Cts/S | | Avg | 12954. | 92409. | 4252.6 | | Stddev | 24. | 140. | 19.2 | | %RSD | .18171 | .15171 | .45211 | | #1 | 12968. | 92555. | 4230.4 | | #2 | 12927. | 92396. | 4262.6 | | #3 | 12968. | 92275. | 4264.8 | Sample Name: L1605062701SDL Acquired: 5/16/2016 20:30:11 Type: Unk Method: ICP-THERMO3 6010 200.7WATER 3YLINES(v873) Mode: CONC Corr. Factor: 1.000000 User: JYH Custom ID1: 5 Custom ID2: Custom ID3: Comment: WG569026-02 Al3082 As1890 B 2496 Ba4554 Be3131 Ca4226 Cd2288 Elem Ag3280 Units ppm ppm ppm ppm ppm ppm ppm ppm .00729 Avg -.00199 .01456 -.00261 .00831 .00008 5.1817 .00032 Stddev .00089 .00315 .00380 .00085 .00046 .00003 .0400 .00016 %RSD 44.590 21.660 145.57 11.641 5.5747 33.282 .77221 50.002 #1 -.00114 -.00249 .00637 .00884 .00005 .00014 .01093 5.1919 #2 -.00291 .01613 .00113 .00805 .00797 .00010 5.1376 .00045 #3 -.00193 .01662 -.00646 .00745 .00813 .00009 5.2157 .00038 Check? Chk Pass **High Limit** Low Limit Elem Co2286 Cr2677 Cu2247 Fe2611 K_7664 Li6707 Mg2790 Mn2576 Units ppm ppm ppm ppm ppm ppm ppm ppm -.00022 -.00086 -.00077 .00198 .00057 .00020 Avg .30250 1.0710 .00063 .00061 .05527 .00300 .00056 Stddev .00018 .01673 .1035 %RSD 79.394 73.413 79.206 844.17 18.270 521.45 9.6653 279.09 #1 -.00015 -.00144 -.00135 -.00977 .36151 -.00239.96366 .00078 #2 -.00010 -.00096 -.00014 .02114 .29405 .00360 1.1702 .00016 -.00019 -.00081 .00052 #3 -.00042-.00543.25195 1.0791 -.00034Check? Chk Pass High Limit Low Limit Elem Mo2020 Na5895 Ni2316 P_2149 Pb2203 Sb2068 Se1960 Si2124 Units ppm ppm ppm ppm ppm ppm ppm ppm .00034 .83446 -.00091 .00109 -.00006 -.00106 .00091 .64265 Avg .00036 .03972 .00028 .00716 .00255 .00154 .00018 .00185 Stddev %RSD 105.77 .28765 4.7602 30.966 658.86 4271.4 144.97 19.788 #1 .00076 .86403 -.00077 .00901 .00286 -.00036 .00088 .64072 .00011 .78931 -.00123 -.00080 .00001 #2 -.00117 .00075 .64281 #3 .00016 .85004 -.00072 -.00494 -.00187 -.00282 .00111 .64441 Check? Chk Pass High Limit Low Limit | Sample Name: L1605062701SDL Acquired: 5/16/2016 20:30:11 Type: Unk | | | | | | | | | |--|---|---|--|--|---|---|--|----------------| | Method: ICF | P-THERMO3 | 3_6010_200 | .7WATER_ | 3YLINES(v8 | 373) Mc | de: CONC | Corr. Fa | ctor: 1.00000(| | User: JYH | Custom | ID1: 5 | Custom I | D2: | Custom ID3 | 3: | | | | Comment: \ | NG569026-0 |)2 | | | | | | | | Elem
Units
Avg
Stddev
%RSD | Sn1899
ppm
00032
.00077
243.69 | Sr4077
ppm
.02388
.00008
.31958 | Ti3372
ppm
00464
.00415
89.499 | TI1908
ppm
00209
.00176
84.100 | V_2924
ppm
.00066
.00198
300.73 | Zn2062
ppm
.00163
.00012
7.5984 | Zr3391
ppm
00199
.09368
4716.8 | | | #1
#2
#3 | 00070
.00057
00082 | .02386
.02397
.02382 | 00223
00943
00226 | 00022
00235
00371 | .00290
00086
00007 | .00173
.00167
.00149 | .03746
.06552
10893 | | | Check ?
High Limit
Low Limit | Chk Pass | | Int. Std.
Units
Avg
Stddev
%RSD | Y_2243
Cts/S
14078.
20.
.14403 | Y_3600
Cts/S
100900.
156.
.15481 | Y_3774
Cts/S
4475.6
43.9
.98172 | | | | | | | #1
#2
#3 | 14097.
14081.
14057. | 101070.
100820.
100790. | 4505.2
4425.1
4496.6 | | | | | | | Sample Nam
Method: ICP
User: JYH
Comment: | | _ | | LINES(v873) | pe: QC
) Mode:
tom ID3: | CONC (| Corr. Factor: | 1.00000(| |--|----------------|----------------|----------------|----------------|-------------------------------|----------------|----------------|----------| | Elem | Ag3280 | Al3082 | As1890 | B_2496 | Ba4554 | Be3131 | Ca4226 | | | Units | ppm | | Avg | . 37201 | 9.3862 | . 37235 | . 47043 | . 92810 | . 04634 | 9.1229 | | | Stddev | .00212 | .0202 | .00344 | .00272 | .00301 | .00004 | .0592 | | | %RSD | .56969 | .21537 | .92387 | .57777 | .32463 | .09007 | .64861 | | | #1 | .37443 | 9.4075 | .37277 | .46801 | .92505 | .04639 | 9.1331 | | | #2 | .37049 | 9.3673 | .37556 | .46993 | .92818 | .04632 | 9.0593 | | | #3 | .37110 | 9.3839 | .36872 | .47337 | .93107 | .04631 | 9.1763 | | | Check ?
Value
Range | Chk Pass | | Elem | Cd2288 | Co2286 | Cr2677 | Cu2247 | Fe2611 | K_7664 | Li6707 | | | Units | ppm | | Avg | . 04616 | .19094 | . 47399 | . 47825 | 3.7865 | 46.947 | . 93226 | | | Stddev | .00010 | .00055 | .00173 | .00102 | .0356 | .171 | .00441 | | | %RSD | .21618 | .28868 | .36510 | .21284 | .94082 | .36383 | .47322 | | | #1 | .04621 | .19050 | .47438 |
.47792 | 3.7953 | 46.858 | .92750 | | | #2 | .04605 | .19075 | .47210 | .47744 | 3.8169 | 46.838 | .93307 | | | #3 | .04622 | .19155 | .47550 | .47940 | 3.7473 | 47.144 | .93621 | | | Check ?
Value
Range | Chk Pass | | Elem | Mg2790 | Mn2576 | Mo2020 | Na5895 | Ni2316 | P_2149 | Pb2203 | | | Units | ppm | | Avg | 9.3098 | . 47113 | . 92683 | 47.394 | . 48432 | 9.4319 | . 48675 | | | Stddev | .1208 | .00318 | .00416 | .192 | .00049 | .0124 | .00434 | | | %RSD | 1.2978 | .67459 | .44877 | .40449 | .10214 | .13197 | .89211 | | | #1 | 9.1994 | .46750 | .93093 | 47.254 | .48420 | 9.4412 | .48633 | | | #2 | 9.4389 | .47339 | .92695 | 47.315 | .48486 | 9.4367 | .49129 | | | #3 | 9.2909 | .47251 | .92262 | 47.613 | .48389 | 9.4177 | .48264 | | | Check ?
Value
Range | Chk Pass | | Sample Nam
Method: ICP
User: JYH
Comment: | | 6010_200.7 | 16/2016 20:3
WATER_3Y
Custom ID2: | LINES(v873 | pe: QC
) Mode:
tom ID3: | CONC (| Corr. Factor: 1 | .000000 | |--|---|---|--|---|---|---|---|---------| | Elem
Units
Avg
Stddev
%RSD | Sb2068
ppm
1.1293
.0029
.25700 | Se1960
ppm
.36028
.00448
1.2432 | Si2124
ppm
4.7203
.0053
.11317 | Sn1899
ppm
. 95409
.00225
.23626 | Sr4077
ppm
. 92423
.00366
.39568 | Ti3372
ppm
. 93215
.00528
.56668 | TI1908
ppm
. 47926
.00518
1.0800 | | | #1
#2
#3 | 1.1311
1.1309
1.1260 | .35917
.36521
.35646 | 4.7249
4.7216
4.7145 | .95472
.95596
.95159 | .92196
.92228
.92845 | .92630
.93656
.93360 | .48110
.47342
.48327 | | | Check ?
Value
Range | Chk Pass | | Elem
Units
Avg
Stddev
%RSD | V_2924
ppm
. 93360
.00328
.35152 | Zn2062
ppm
. 96969
.00138
.14183 | Zr3391
ppm
F .54548
.20830
38.187 | | | | | | | #1
#2
#3 | .93652
.93005
.93424 | .96816
.97081
.97010 | .31206
.61194
.71245 | | | | | | | Check ?
Value
Range | Chk Pass | Chk Pass | Chk Fail
1.0000
-10.000% | | | | | | | Int. Std.
Units
Avg
Stddev
%RSD | Y_2243
Cts/S
13754.
76.
.55552 | Y_3600
Cts/S
97794.
561.
.57406 | Y_3774
Cts/S
4449.9
17.6
.39621 | | | | | | | #1
#2
#3 | 13842.
13713.
13706. | 97771.
97243.
98366. | 4453.7
4465.3
4430.6 | | | | | | | Sample Nam
Method: ICP
User: JYH
Comment: | ne: CCB /
-THERMO3_
Custom I | _ | | LINES(v873 | pe: Blank
) Mode:
tom ID3: | CONC (| Corr. Factor: | 1.00000(| |--|------------------------------------|----------|----------------|----------------|----------------------------------|----------------|----------------|----------| | Elem | Ag3280 | Al3082 | As1890 | B_2496 | Ba4554 | Be3131 | Ca4226 | | | Units | ppm | | Avg | 00251 | 01236 | .00031 | . 00168 | .00077 | .00008 | 05050 | | | Stddev | .00197 | .00491 | .00285 | .00145 | .00109 | .00005 | .01496 | | | %RSD | 78.311 | 39.689 | 931.02 | 86.305 | 140.48 | 61.601 | 29.625 | | | #1 | 00065 | 00790 | 00080 | .00272 | 00043 | .00006 | 06458 | | | #2 | 00457 | 01158 | .00354 | .00002 | .00169 | .00004 | 05213 | | | #3 | 00231 | 01762 | 00182 | .00229 | .00106 | .00013 | 03479 | | | Check ?
High Limit
Low Limit | Chk Pass | | Elem | Cd2288 | Co2286 | Cr2677 | Cu2247 | Fe2611 | K_7664 | Li6707 | | | Units | ppm | | Avg | . 00017 | 00003 | 00062 | 00023 | .00748 | .13088 | . 00306 | | | Stddev | .00027 | .00008 | .00087 | .00101 | .01261 | .01065 | .00131 | | | %RSD | 160.43 | 241.33 | 139.55 | 445.92 | 168.61 | 8.1354 | 42.651 | | | #1 | 00014 | 00011 | 00149 | .00046 | .01355 | .14239 | .00199 | | | #2 | .00030 | 00003 | 00064 | .00025 | 00702 | .12139 | .00451 | | | #3 | .00035 | .00005 | .00026 | 00139 | .01591 | .12886 | .00268 | | | Check ?
High Limit
Low Limit | Chk Pass | | Elem | Mg2790 | Mn2576 | Mo2020 | Na5895 | Ni2316 | P_2149 | Pb2203 | | | Units | ppm | | Avg | . 07793 | 00091 | . 00398 | 03461 | 00047 | . 00437 | . 00006 | | | Stddev | .06430 | .00371 | .00049 | .02729 | .00043 | .00307 | .00206 | | | %RSD | 82.503 | 408.12 | 12.336 | 78.841 | 91.224 | 70.247 | 3557.7 | | | #1 | .02980 | 00136 | .00384 | 06169 | .00000 | .00610 | .00061 | | | #2 | .15095 | 00438 | .00453 | 03503 | 00083 | .00083 | 00222 | | | #3 | .05304 | .00300 | .00358 | 00712 | 00058 | .00619 | .00179 | | | Check ?
High Limit
Low Limit | Chk Pass | | Sample Nam
Method: ICP
User: JYH
Comment: | ne: CCB /
-THERMO3_
Custom I | | | LINES(v873) | pe: Blank
) Mode:
tom ID3: | CONC (| Corr. Factor: | 1.000000 | |--|---|--|--|--|---|--|---|----------| | Elem
Units
Avg
Stddev
%RSD | Sb2068
ppm
. 00127
.00127
100.33 | Se1960
ppm
.00374
.00268
71.776 | Si2124
ppm
02667
.00316
11.841 | Sn1899
ppm
00054
.00079
146.33 | Sr4077
ppm
. 00032
.00031
97.836 | Ti3372
ppm
00142
.00566
399.68 | TI1908
ppm
. 00022
.00341
1529.1 | | | #1
#2
#3 | 00011
.00152
.00240 | .00679
.00176
.00266 | 02787
02309
02906 | .00036
00089
00110 | 00004
.00045
.00055 | 00780
.00056
.00299 | .00350
.00047
00331 | | | Check ?
High Limit
Low Limit | Chk Pass | | Elem
Units
Avg
Stddev
%RSD | V_2924
ppm
.00042
.00011
25.637 | Zn2062
ppm
.00002
.00013
550.96 | Zr3391
ppm
F .21324
.38666
181.33 | | | | | | | #1
#2
#3 | .00039
.00033
.00054 | .00017
00005
00005 | .07619
.64977
08623 | | | | | | | Check ?
High Limit
Low Limit | Chk Pass | Chk Pass | Chk Fail
.04000
04000 | | | | | | | Int. Std.
Units
Avg
Stddev
%RSD | Y_2243
Cts/S
13728.
31.
.22803 | Y_3600
Cts/S
98489.
356.
.36154 | Y_3774
Cts/S
4378.2
65.5
1.4969 | | | | | | | #1
#2
#3 | 13752.
13693.
13739. | 98899.
98308.
98260. | 4396.0
4305.6
4433.0 | | | | | | | Sample Nam
Method: ICP
User: JYH
Comment: | | 6010_200.7 | | | | | Corr. Factor: | 1.00000(| |--|----------------|------------|----------------|-----------------------------|----------------|----------------|----------------|----------| | Elem | Ag3280 | Al3082 | As1890 | B_2496 | Ba4554 | Be3131 | Ca4226 | | | Units | ppm | | Avg | 00129 | .11981 | . 01401 | . 23418 | . 17034 | .00010 | 5.6697 | | | Stddev | .00064 | .01678 | .00154 | .00422 | .00062 | .00001 | .0306 | | | %RSD | 49.403 | 14.005 | 10.994 | 1.8014 | .36290 | 13.840 | .53920 | | | #1 | 00088 | .10903 | .01240 | .23308 | .17074 | .00010 | 5.6370 | | | #2 | 00202 | .11126 | .01415 | .23062 | .16963 | .00011 | 5.6975 | | | #3 | 00096 | .13914 | .01547 | .23884 | .17066 | .00009 | 5.6747 | | | Check ?
High Limit
Low Limit | Chk Pass | | Elem | Cd2288 | Co2286 | Cr2677 | Cu2247 | Fe2611 | K_7664 | Li6707 | | | Units | ppm | | Avg | .00035 | .00093 | .00165 | .00182 | . 15684 | 2.2544 | . 02512 | | | Stddev | .00043 | .00030 | .00144 | .00059 | .04070 | .1048 | .00333 | | | %RSD | 123.55 | 31.862 | 87.158 | 32.656 | 25.950 | 4.6472 | 13.270 | | | #1 | .00080 | .00064 | .00200 | .00122 | .11954 | 2.2072 | .02130 | | | #2 | 00006 | .00124 | .00007 | .00241 | .20025 | 2.1816 | .02740 | | | #3 | .00031 | .00092 | .00288 | .00182 | .15073 | 2.3745 | .02666 | | | Check ?
High Limit
Low Limit | Chk Pass | | Elem | Mg2790 | Mn2576 | Mo2020 | Na5895 | Ni2316 | P_2149 | Pb2203 | | | Units | ppm | | Avg | . 85842 | .00303 | .00693 | F 326.69 | .00078 | . 01942 | . 00115 | | | Stddev | .06384 | .00276 | .00008 | .97 | .00108 | .00883 | .00259 | | | %RSD | 7.4371 | 91.086 | 1.2136 | .29761 | 139.49 | 45.486 | 225.88 | | | #1 | .78599 | .00441 | .00701 | 327.71 | .00085 | .02939 | .00305 | | | #2 | .88278 | 00015 | .00693 | 325.77 | .00182 | .01258 | 00181 | | | #3 | .90650 | .00482 | .00684 | 326.60 | 00034 | .01628 | .00220 | | | Check ?
High Limit
Low Limit | Chk Pass | Chk Pass | Chk Pass | Chk Fail
270.00
50000 | Chk Pass | Chk Pass | Chk Pass | | | Sample Nam
Method: ICP-
User: JYH
Comment: | | 6010_200.7 | juired: 5/16/2
WATER_3Y
Custom ID2: | LINES(v873) | | | Corr. Factor: 1.00000(| |---|---|--|---|--|---|---|--| | Elem
Units
Avg
Stddev
%RSD | Sb2068
ppm
00566
.00354
62.611 | Se1960
ppm
00118
.00800
677.06 |
Si2124
ppm
4.1494
.0095
.22767 | Sn1899
ppm
00049
.00034
68.237 | Sr4077
ppm
. 23434
.00109
.46437 | Ti3372
ppm
. 00018
.00177
961.14 | TI1908
ppm
00465
.00243
52.350 | | #1
#2
#3 | 00891
00188
00618 | 00968
.00621
00007 | 4.1589
4.1493
4.1400 | 00012
00077
00058 | .23309
.23483
.23509 | .00139
00185
.00101 | 00556
00649
00189 | | Check ?
High Limit
Low Limit | Chk Pass | Elem
Units
Avg
Stddev
%RSD | V_2924
ppm
. 00135
.00107
79.420 | Zn2062
ppm
.00265
.00013
5.0549 | Zr3391
ppm
. 40379
.09743
24.128 | | | | | | #1
#2
#3 | .00017
.00161
.00227 | .00256
.00259
.00281 | .42287
.29823
.49026 | | | | | | Check ?
High Limit
Low Limit | Chk Pass | Chk Pass | Chk Pass | | | | | | Int. Std.
Units
Avg
Stddev
%RSD | Y_2243
Cts/S
12728.
20.
.16059 | Y_3600
Cts/S
89477.
245.
.27392 | Y_3774
Cts/S
4202.7
7.7
.18305 | | | | | | #1
#2
#3 | 12752.
12718.
12715. | 89358.
89759.
89315. | 4199.1
4211.6
4197.5 | | | | | | Sample Name
Method: ICP-1
User: JYH
Comment: | C Corr. F | Factor: 1.000000 | | | | | | |---|-----------------------------|------------------|----------|----------------|----------------|---------------|----------------| | Elem | Ag3280 | Al3082 | As1890 | B_2496 | Ba4554 | Be3131 | Ca4226 | | Units | ppm | Avg | F00412 | . 00695 | .00089 | . 02455 | .08243 | .00004 | 132.21 | | Stddev | .00092 | .00381 | .00204 | .00229 | .00022 | .00004 | .50 | | %RSD | 22.303 | 54.779 | 228.20 | 9.3450 | .26668 | 93.486 | .37528 | | #1 | 00468 | .00665 | .00210 | .02720 | .08263 | .00002 | 132.78 | | #2 | 00463 | .00330 | .00205 | .02308 | .08220 | .00009 | 131.94 | | #3 | 00306 | .01090 | 00146 | .02338 | .08247 | .00002 | 131.90 | | Check ?
High Limit
Low Limit | Chk Fail
9.0000
00400 | Chk Pass | Chk Pass | Chk Pass | Chk Pass | Chk Pass | Chk Pass | | Elem | Cd2288 | Co2286 | Cr2677 | Cu2247 | Fe2611 | K_7664 | Li6707 | | Units | ppm | Avg | . 00055 | .00044 | .00115 | . 00219 | . 17391 | 1.1320 | . 01880 | | Stddev | .00030 | .00039 | .00097 | .00112 | .03633 | .0757 | .00195 | | %RSD | 53.410 | 89.289 | 83.892 | 51.384 | 20.892 | 6.6901 | 10.387 | | #1 | .00026 | 00001 | .00226 | .00197 | .13458 | 1.0700 | .02099 | | #2 | .00056 | .00064 | .00069 | .00119 | .20622 | 1.1096 | .01815 | | #3 | .00085 | .00070 | .00050 | .00341 | .18092 | 1.2164 | .01725 | | Check ?
High Limit
Low Limit | Chk Pass | Elem | Mg2790 | Mn2576 | Mo2020 | Na5895 | Ni2316 | P_2149 | Pb2203 | | Units | ppm | Avg | 28.778 | . 33213 | .00098 | 28.452 | .00037 | 00345 | . 00363 | | Stddev | .340 | .00472 | .00022 | .118 | .00064 | .00197 | .00316 | | %RSD | 1.1832 | 1.4216 | 22.816 | .41301 | 174.29 | 57.192 | 86.952 | | #1 | 29.143 | .33697 | .00121 | 28.585 | .00028 | 00459 | .00156 | | #2 | 28.722 | .32753 | .00097 | 28.405 | .00105 | 00117 | .00727 | | #3 | 28.469 | .33188 | .00076 | 28.364 | 00023 | 00459 | .00207 | | Check ?
High Limit
Low Limit | Chk Pass | Sample Name: L1605065804 Acquired: 5/16 Method: ICP-THERMO3_6010_200.7WATER_3' User: JYH Custom ID1: Custom ID2 Comment: | | | | | Type: Unk
Mode: CONO
ID3: | C Corr. F | Factor: 1.00000(| |--|---|--|---|---|---|--|--| | Elem
Units
Avg
Stddev
%RSD | Sb2068
ppm
00090
.00302
335.80 | Se1960
ppm
00461
.00648
140.43 | Si2124
ppm
5.0205
.0077
.15261 | Sn1899
ppm
. 00023
.00121
526.73 | Sr4077
ppm
. 26778
.00036
.13448 | Ti3372
ppm
02379
.00330
13.876 | TI1908
ppm
00371
.00257
69.172 | | #1
#2
#3 | 00197
00324
.00251 | .00112
01165
00331 | 5.0278
5.0212
5.0125 | 00099
.00024
.00144 | .26816
.26745
.26774 | 02103
02289
02745 | 00097
00605
00411 | | Check ?
High Limit
Low Limit | Chk Pass | Elem
Units
Avg
Stddev
%RSD | V_2924
ppm
. 00021
.00130
619.87 | Zn2062
ppm
.00173
.00023
13.102 | Zr3391
ppm
. 09919
.08540
86.097 | | | | | | #1
#2
#3 | 00047
.00170
00061 | .00199
.00157
.00163 | .13226
.00220
.16311 | | | | | | Check ?
High Limit
Low Limit | Chk Pass | Chk Pass | Chk Pass | | | | | | Int. Std.
Units
Avg
Stddev
%RSD | Y_2243
Cts/S
12936.
25.
.19277 | Y_3600
Cts/S
92330.
317.
.34291 | Y_3774
Cts/S
4261.5
36.4
.85385 | | | | | | #1
#2
#3 | 12908.
12944.
12956. | 92683.
92234.
92072. | 4221.2
4271.1
4292.1 | | | | | | • | | | | | | | | | | | |------------------------------------|----------------|----------------|----------------|----------|----------------|----------------|---------------|----------------|--|--| | Elem | Ag3280 | Al3082 | As1890 | B_2496 | Ba4554 | Be3131 | Ca4226 | Cd2288 | | | | Units | ppm | | | Avg | 00278 | . 00395 | 00126 | .03290 | . 10169 | .00004 | 120.78 | . 00051 | | | | Stddev | .00233 | .00679 | .00165 | .00265 | .00137 | .00010 | .43 | .00015 | | | | %RSD | 83.872 | 171.75 | 130.78 | 8.0494 | 1.3470 | 261.58 | .35619 | 29.121 | | | | #1 | 00381 | .00296 | 00102 | .03072 | .10240 | 00008 | 120.63 | .00040 | | | | #2 | 00011 | 00229 | .00026 | .03213 | .10011 | .00010 | 120.45 | .00044 | | | | #3 | 00442 | .01119 | 00303 | .03584 | .10256 | .00009 | 121.27 | .00068 | | | | Check ?
High Limit
Low Limit | Chk Pass | | | Elem | Co2286 | Cr2677 | Cu2247 | Fe2611 | K_7664 | Li6707 | Mg2790 | Mn2576 | | | | Units | ppm | | | Avg | .00004 | .00238 | . 00152 | .01538 | 1.2898 | . 01262 | 53.041 | . 00490 | | | | Stddev | .00012 | .00078 | .00114 | .02703 | .0368 | .00108 | .459 | .00490 | | | | %RSD | 320.18 | 33.006 | 74.710 | 175.73 | 2.8508 | 8.5665 | .86534 | 100.08 | | | | #1 | .00016 | .00321 | .00056 | .04315 | 1.3243 | .01145 | 53.207 | .00860 | | | | #2 | 00007 | .00227 | .00124 | 01084 | 1.2511 | .01282 | 52.522 | .00676 | | | | #3 | .00002 | .00165 | .00278 | .01384 | 1.2941 | .01358 | 53.394 | 00066 | | | | Check ?
High Limit
Low Limit | Chk Pass | | | Elem | Mo2020 | Na5895 | Ni2316 | P_2149 | Pb2203 | Sb2068 | Se1960 | Si2124 | | | | Units | ppm | | | Avg | . 00026 | 28.089 | 00175 | .00748 | 00115 | 00262 | 00087 | 4.6839 | | | | Stddev | .00031 | .124 | .00077 | .00304 | .00494 | .00471 | .00480 | .0062 | | | | %RSD | 120.50 | .44243 | 44.046 | 40.633 | 429.70 | 179.73 | 550.97 | .13241 | | | | #1 | 00009 | 28.008 | 00166 | .01034 | .00453 | .00280 | .00441 | 4.6900 | | | | #2 | .00035 | 28.027 | 00256 | .00429 | 00360 | 00569 | 00495 | 4.6841 | | | | #3 | .00051 | 28.232 | 00103 | .00781 | 00438 | 00496 | 00207 | 4.6776 | | | | Check ?
High Limit
Low Limit | Chk Pass | | | Sample Nar
Method: ICF
User: JYH
Comment: | | 3_6010_200 | .cquired: 5/1
.7WATER_
Custom II | 3YLINES(v8 | | ype: Unk
ode: CONC
: | Corr. Fa | ctor: 1.00000(| |--|---|---|--|--|---|---|---|----------------| | Elem
Units
Avg
Stddev
%RSD | Sn1899
ppm
.00308
.00102
32.942 | Sr4077
ppm
. 35220
.00109
.31010 | Ti3372
ppm
02112
.00689
32.619 | TI1908
ppm
00268
.00165
61.553 | V_2924
ppm
. 00014
.00069
482.46 | Zn2062
ppm
. 00229
.00015
6.4798 | Zr3391
ppm
. 03554
.03844
108.14 | | | #1
#2
#3 | .00406
.00316
.00203 | .35127
.35194
.35340 | 02267
01358
02709 | 00379
00078
00346 | 00055
.00014
.00083 | .00222
.00245
.00218 | .01804
.07962
.00898 | | | Check ?
High Limit
Low Limit | Chk Pass | | Int. Std.
Units
Avg
Stddev
%RSD | Y_2243
Cts/S
12790.
39.
.30700 | Y_3600
Cts/S
91549.
226.
.24663 | Y_3774
Cts/S
4253.0
33.9
.79783 | | | | | | | #1
#2
#3 | 12812.
12814.
12745. | 91405.
91809.
91433. | 4218.1
4285.9
4255.1 | | | | | | | • | | | | | | | | | | | |------------------------------------|----------------|----------|----------------|-----------------------------|----------------|----------------|----------------|--|--|--| | Elem | Ag3280 | Al3082 | As1890 | B_2496 | Ba4554 | Be3131 | Ca4226 | | | | | Units | ppm | | | | Avg | 00276 | .10872 | .00762 | . 21028 | 3.2839 | . 00004 | 105.73 | | | | | Stddev | .00051 | .01002 | .00178 | .00177 | .0085 | .00004 | .31 | | | | | %RSD | 18.376 | 9.2155 | 23.425 | .84388 | .25821 | 92.571 | .29312 | | | | | #1 | 00220 | .11671 | .00961 | .20827 | 3.2748 | .00001 | 105.49 | | | | | #2 | 00318 | .09748 | .00618 | .21095 | 3.2851 | .00008 | 105.62 | | | | | #3 | 00289 | .11197 |
.00706 | .21163 | 3.2917 | .00003 | 106.08 | | | | | Check ?
High Limit
Low Limit | Chk Pass | | | | Elem | Cd2288 | Co2286 | Cr2677 | Cu2247 | Fe2611 | K_7664 | Li6707 | | | | | Units | ppm | | | | Avg | . 00062 | .00144 | .00880 | . 00097 | . 69249 | 3.2516 | . 04934 | | | | | Stddev | .00031 | .00029 | .00026 | .00077 | .02096 | .0802 | .00384 | | | | | %RSD | 49.889 | 20.237 | 2.9647 | 78.892 | 3.0266 | 2.4674 | 7.7857 | | | | | #1 | .00037 | .00158 | .00864 | .00022 | .71098 | 3.2980 | .04720 | | | | | #2 | .00097 | .00110 | .00866 | .00175 | .69677 | 3.1589 | .04705 | | | | | #3 | .00052 | .00163 | .00910 | .00095 | .66972 | 3.2978 | .05378 | | | | | Check ?
High Limit
Low Limit | Chk Pass | | | | Elem | Mg2790 | Mn2576 | Mo2020 | Na5895 | Ni2316 | P_2149 | Pb2203 | | | | | Units | ppm | | | | Avg | 29.570 | .18760 | . 00164 | F 634.25 | .00019 | . 00644 | 00290 | | | | | Stddev | .227 | .00213 | .00066 | 9.85 | .00090 | .00660 | .00428 | | | | | %RSD | .76739 | 1.1355 | 40.201 | 1.5531 | 474.58 | 102.53 | 147.95 | | | | | #1 | 29.766 | .18550 | .00138 | 642.23 | 00001 | .01321 | .00042 | | | | | #2 | 29.321 | .18755 | .00239 | 637.28 | 00059 | .00608 | 00137 | | | | | #3 | 29.622 | .18976 | .00115 | 623.24 | .00117 | .00002 | 00773 | | | | | Check ?
High Limit
Low Limit | Chk Pass | Chk Pass | Chk Pass | Chk Fail
270.00
50000 | Chk Pass | Chk Pass | Chk Pass | | | | | Sample Nam
Method: ICP-
User: JYH
Comment: | | 6010_200.7 | | , , | | | Corr. Factor: 1.0 | 00000 | |---|---|--|--|--|---|--|--|-------| | Elem
Units
Avg
Stddev
%RSD | Sb2068
ppm
00227
.00353
155.45 | Se1960
ppm
00560
.00532
95.044 | Si2124
ppm
4.3246
.0204
.47110 | Sn1899
ppm
00123
.00124
100.40 | Sr4077
ppm
3.9283
.0120
.30657 | Ti3372
ppm
01495
.00458
30.671 | TI1908
ppm
00421
.00258
61.298 | | | #1
#2
#3 | 00450
00412
.00180 | 00598
00010
01072 | 4.3315
4.3406
4.3017 | 00214
.00018
00173 | 3.9165
3.9277
3.9406 | 01293
01171
02019 | 00716
00309
00238 | | | Check ?
High Limit
Low Limit | Chk Pass | | Elem
Units
Avg
Stddev
%RSD | V_2924
ppm
. 00066
.00113
172.08 | Zn2062
ppm
.00261
.00011
4.2829 | Zr3391
ppm
.03711
.16328
440.02 | | | | | | | #1
#2
#3 | .00141
00064
.00121 | .00274
.00252
.00257 | 00819
09874
.21825 | | | | | | | Check ?
High Limit
Low Limit | Chk Pass | Chk Pass | Chk Pass | | | | | | | Int. Std.
Units
Avg
Stddev
%RSD | Y_2243
Cts/S
12272.
30.
.24120 | Y_3600
Cts/S
86071.
380.
.44096 | Y_3774
Cts/S
4196.0
45.0
1.0735 | | | | | | | #1
#2
#3 | 12306.
12252.
12257. | 86497.
85768.
85950. | 4155.0
4244.2
4188.8 | | | | | | | Sample Name
Method: ICP-T
User: JYH
Comment: | |)10_200.7W <i>A</i> | 10_200.7WATER_3YLINES(v873) | | | Type: Unk
Mode: CONC Corr. Fa
n ID3: | | | |---|-----------------------------|---------------------|-----------------------------|-----------------------------|----------------|--|----------------|--| | Elem | Ag3280 | Al3082 | As1890 | B_2496 | Ba4554 | Be3131 | Ca4226 | | | Units | ppm | | Avg | F00566 | . 09494 | . 00673 | . 21338 | 3.3668 | .00008 | 108.62 | | | Stddev | .00207 | .00355 | .00367 | .00419 | .0020 | .00006 | .03 | | | %RSD | 36.514 | 3.7358 | 54.558 | 1.9637 | .06061 | 80.043 | .02999 | | | #1 | 00636 | .09559 | .00999 | .20936 | 3.3676 | .00006 | 108.58 | | | #2 | 00334 | .09811 | .00746 | .21307 | 3.3644 | .00014 | 108.64 | | | #3 | 00729 | .09111 | .00275 | .21772 | 3.3682 | .00002 | 108.63 | | | Check ?
High Limit
Low Limit | Chk Fail
9.0000
00400 | Chk Pass | Chk Pass | Chk Pass | Chk Pass | Chk Pass | Chk Pass | | | Elem | Cd2288 | Co2286 | Cr2677 | Cu2247 | Fe2611 | K_7664 | Li6707 | | | Units | ppm | | Avg | . 00050 | .00163 | . 01302 | .00005 | . 66466 | 3.3253 | . 05678 | | | Stddev | .00023 | .00055 | .00066 | .00042 | .03116 | .0120 | .00353 | | | %RSD | 45.113 | 33.834 | 5.0370 | 830.44 | 4.6878 | .35979 | 6.2226 | | | #1 | .00025 | .00099 | .01282 | 00036 | .64897 | 3.3311 | .05320 | | | #2 | .00059 | .00193 | .01248 | .00048 | .64447 | 3.3115 | .05687 | | | #3 | .00068 | .00196 | .01375 | .00003 | .70055 | 3.3332 | .06027 | | | Check ?
High Limit
Low Limit | Chk Pass | | Elem | Mg2790 | Mn2576 | Mo2020 | Na5895 | Ni2316 | P_2149 | Pb2203 | | | Units | ppm | | Avg | 30.253 | .19055 | . 00150 | F 641.59 | . 00070 | . 00359 | . 00146 | | | Stddev | .205 | .00238 | .00009 | 13.79 | .00125 | .00449 | .00161 | | | %RSD | .67655 | 1.2504 | 5.7103 | 2.1499 | 179.13 | 125.01 | 110.62 | | | #1 | 30.435 | .18782 | .00146 | 643.31 | .00174 | .00490 | .00067 | | | #2 | 30.292 | .19215 | .00159 | 627.01 | 00068 | .00729 | .00332 | | | #3 | 30.031 | .19169 | .00143 | 654.44 | .00103 | 00141 | .00039 | | | Check ?
High Limit
Low Limit | Chk Pass | Chk Pass | Chk Pass | Chk Fail
270.00
50000 | Chk Pass | Chk Pass | Chk Pass | | | Sample Name: L1605065808 Acquired: 5/16/2016 20:57:33 Type: Unk Method: ICP-THERMO3_6010_200.7WATER_3YLINES(v873) Mode: CON User: JYH Custom ID1: Custom ID2: Custom ID3: Comment: | | | | | | | Factor: 1.00000(| |--|---|---|---|--|---|--|--| | Elem
Units
Avg
Stddev
%RSD | Sb2068
ppm
00443
.00110
24.755 | Se1960
ppm
.00044
.00125
286.20 | Si2124
ppm
4.3884
.0165
.37646 | Sn1899
ppm
00056
.00073
129.78 | Sr4077
ppm
4.0367
.0036
.08969 | Ti3372
ppm
01269
.00216
17.045 | TI1908
ppm
00449
.00131
29.218 | | #1
#2
#3 | 00446
00332
00551 | .00069
.00154
00092 | 4.3928
4.4023
4.3701 | 00139
00029
00001 | 4.0350
4.0342
4.0408 | 01516
01173
01117 | 00394
00599
00354 | | Check ?
High Limit
Low Limit | Chk Pass | Elem
Units
Avg
Stddev
%RSD | V_2924
ppm
00002
.00094
5310.4 | Zn2062
ppm
. 00251
.00023
9.0782 | Zr3391
ppm
. 10700
.42160
394.02 | | | | | | #1
#2
#3 | .00100
00019
00086 | .00230
.00275
.00247 | 22982
02899
.57982 | | | | | | Check ?
High Limit
Low Limit | Chk Pass | Chk Pass | Chk Pass | | | | | | Int. Std.
Units
Avg
Stddev
%RSD | Y_2243
Cts/S
12321.
19.
.15272 | Y_3600
Cts/S
85855.
160.
.18652 | Y_3774
Cts/S
4180.6
7.9
.18863 | | | | | | #1
#2
#3 | 12305.
12317.
12342. | 85966.
85927.
85671. | 4174.0
4189.3
4178.4 | | | | | | • | | | | | | | | | | | |------------------------------------|----------------|----------------|----------|-----------------------------|----------------|----------------|----------------|--|--|--| | Elem | Ag3280 | Al3082 | As1890 | B_2496 | Ba4554 | Be3131 | Ca4226 | | | | | Units | ppm | | | | Avg | 00161 | . 00936 | 00090 | . 05947 | . 05365 | .00005 | 217.34 | | | | | Stddev | .00137 | .00466 | .00059 | .00238 | .00061 | .00003 | .41 | | | | | %RSD | 85.007 | 49.821 | 66.083 | 3.9940 | 1.1369 | 70.683 | .18980 | | | | | #1 | 00111 | .01099 | 00076 | .05686 | .05296 | .00006 | 216.88 | | | | | #2 | 00056 | .00410 | 00155 | .06006 | .05385 | .00007 | 217.68 | | | | | #3 | 00315 | .01299 | 00039 | .06150 | .05413 | .00001 | 217.46 | | | | | Check ?
High Limit
Low Limit | Chk Pass | | | | Elem | Cd2288 | Co2286 | Cr2677 | Cu2247 | Fe2611 | K_7664 | Li6707 | | | | | Units | ppm | | | | Avg | . 00070 | .00227 | .00241 | .00324 | 7.1875 | 2.1110 | . 01382 | | | | | Stddev | .00045 | .00077 | .00125 | .00102 | .0675 | .1334 | .00389 | | | | | %RSD | 64.568 | 33.729 | 51.866 | 31.513 | .93932 | 6.3196 | 28.165 | | | | | #1 | .00023 | .00145 | .00210 | .00344 | 7.1260 | 2.1129 | .01256 | | | | | #2 | .00112 | .00241 | .00135 | .00214 | 7.2597 | 1.9767 | .01071 | | | | | #3 | .00074 | .00296 | .00379 | .00415 | 7.1767 | 2.2435 | .01818 | | | | | Check ?
High Limit
Low Limit | Chk Pass | | | | Elem | Mg2790 | Mn2576 | Mo2020 | Na5895 | Ni2316 | P_2149 | Pb2203 | | | | | Units | ppm | | | | Avg | 126.65 | 1.3876 | .00043 | F 558.40 | . 05798 | . 34944 | . 00053 | | | | | Stddev | .44 | .0140 | .00054 | 7.00 | .00091 | .01230 | .00495 | | | | | %RSD | .34605 | 1.0067 | 123.33 | 1.2539 | 1.5723 | 3.5203 | 940.05 | | | | | #1 | 126.15 | 1.3726 | 00012 | 562.80 | .05696 | .35505 | 00032 | | | | | #2 | 126.86 | 1.4002 | .00095 | 562.07 | .05829 | .33533 | 00395 | | | | | #3 | 126.95 | 1.3902 | .00047 | 550.32 | .05870 | .35794 | .00585 | | | | | Check ?
High
Limit
Low Limit | Chk Pass | Chk Pass | Chk Pass | Chk Fail
270.00
50000 | Chk Pass | Chk Pass | Chk Pass | | | | | Sample Nam
Method: ICP
User: JYH
Comment: | Corr. Factor: 1.000000 | | | | | | | |--|---|---|---|--|---|--|-------------------------------| | Elem
Units
Avg
Stddev
%RSD | Sb2068
ppm
00061
.00402
662.57 | Se1960
ppm
00282
.01106
391.71 | Si2124
ppm
4.1344
.0158
.38279 | Sn1899
ppm
00088
.00062
70.414 | Sr4077
ppm
1.3149
.0030
.22606 | Ti3372
ppm
02505
.00566
22.577 | ppm
00551
.00605 | | #1
#2
#3 | 00243
00339
.00400 | .00726
01466
00107 | 4.1520
4.1301
4.1212 | 00017
00132
00116 | 1.3117
1.3176
1.3153 | 02026
03129
02360 | | | Check ?
High Limit
Low Limit | Chk Pass | Elem
Units
Avg
Stddev
%RSD | V_2924
ppm
. 00106
.00077
72.734 | Zn2062
ppm
. 00236
.00021
8.7638 | Zr3391
ppm
. 22134
.41773
188.73 | | | | | | #1
#2
#3 | .00074
.00195
.00051 | .00226
.00222
.00260 | .18400
.65650
17646 | | | | | | Check ?
High Limit
Low Limit | Chk Pass | Chk Pass | Chk Pass | | | | | | Int. Std.
Units
Avg
Stddev
%RSD | Y_2243
Cts/S
12193.
3.
.02655 | Y_3600
Cts/S
85701 .
164.
.19103 | Y_3774
Cts/S
4191.9
6.9
.16391 | | | | | | #1
#2
#3 | 12189.
12194.
12195. | 85886.
85574.
85644. | 4194.4
4197.2
4184.1 | | | | | | • | | | | | | | | | | | |------------------------------------|----------------|----------------|----------------|----------------|---------------|----------------|---------------|----------------|--|--| | Elem | Ag3280 | Al3082 | As1890 | B_2496 | Ba4554 | Be3131 | Ca4226 | Cd2288 | | | | Units | ppm | | | Avg | 00341 | . 00726 | .00506 | . 01456 | .06995 | .00008 | 49.178 | . 00055 | | | | Stddev | .00211 | .00437 | .00221 | .00184 | .00044 | .00008 | .098 | .00014 | | | | %RSD | 61.938 | 60.187 | 43.700 | 12.636 | .62875 | 107.44 | .19852 | 26.082 | | | | #1 | 00150 | .00938 | .00349 | .01462 | .07043 | .00013 | 49.089 | .00040 | | | | #2 | 00568 | .00224 | .00409 | .01269 | .06987 | .00012 | 49.282 | .00069 | | | | #3 | 00305 | .01017 | .00758 | .01636 | .06956 | 00002 | 49.163 | .00058 | | | | Check ?
High Limit
Low Limit | Chk Pass | | | Elem | Co2286 | Cr2677 | Cu2247 | Fe2611 | K_7664 | Li6707 | Mg2790 | Mn2576 | | | | Units | ppm | | | Avg | .00008 | . 00146 | . 00139 | . 79753 | 1.1818 | . 00854 | 19.469 | . 84627 | | | | Stddev | .00018 | .00121 | .00100 | .00894 | .0559 | .00247 | .144 | .00330 | | | | %RSD | 237.69 | 83.090 | 72.014 | 1.1204 | 4.7296 | 28.979 | .74221 | .39036 | | | | #1 | 00013 | .00012 | .00131 | .78932 | 1.1436 | .01105 | 19.444 | .84401 | | | | #2 | .00023 | .00248 | .00043 | .80705 | 1.2460 | .00610 | 19.625 | .84473 | | | | #3 | .00014 | .00179 | .00242 | .79624 | 1.1558 | .00846 | 19.339 | .85006 | | | | Check ?
High Limit
Low Limit | Chk Pass | | | Elem | Mo2020 | Na5895 | Ni2316 | P_2149 | Pb2203 | Sb2068 | Se1960 | Si2124 | | | | Units | ppm | | | Avg | . 00054 | 32.728 | .00051 | . 05903 | .00145 | 00015 | 00248 | 1.4996 | | | | Stddev | .00020 | .129 | .00078 | .00344 | .00560 | .00332 | .00095 | .0005 | | | | %RSD | 36.217 | .39393 | 150.90 | 5.8236 | 385.22 | 2269.9 | 38.113 | .03612 | | | | #1 | .00049 | 32.823 | .00035 | .06278 | .00283 | 00293 | 00189 | 1.4992 | | | | #2 | .00076 | 32.780 | 00017 | .05602 | 00471 | .00353 | 00357 | 1.4995 | | | | #3 | .00038 | 32.581 | .00136 | .05829 | .00624 | 00104 | 00199 | 1.5002 | | | | Check ?
High Limit
Low Limit | Chk Pass | | | Sample Nar
Method: ICF
User: JYH
Comment: | | 3_6010_200 | • | • | | ype: Unk
ode: CONC
: | Corr. Fa | ctor: 1.00000(| |--|--|---|--|---|---|---|---|----------------| | Elem
Units
Avg
Stddev
%RSD | Sn1899
ppm
00135
.00098
72.574 | Sr4077
ppm
. 31177
.00105
.33524 | Ti3372
ppm
00751
.00408
54.285 | TI1908
ppm
. 00017
.00189
1100.1 | V_2924
ppm
. 00048
.00027
56.046 | Zn2062
ppm
. 01642
.00019
1.1609 | Zr3391
ppm
. 17353
.14449
83.265 | | | #1
#2
#3 | 00248
00081
00077 | .31233
.31056
.31241 | 00366
01179
00709 | .00210
.00009
00168 | .00073
.00051
.00020 | .01629
.01664
.01633 | .06324
.12025
.33709 | | | Check ?
High Limit
Low Limit | Chk Pass | | Int. Std.
Units
Avg
Stddev
%RSD | Y_2243
Cts/S
12948.
3.
.02616 | Y_3600
Cts/S
92811.
259.
.27888 | Y_3774
Cts/S
4259.7
47.3
1.1112 | | | | | | | #1
#2
#3 | 12947.
12951.
12944. | 92528.
92868.
93037. | 4205.0
4285.1
4288.8 | | | | | | | Sample Name: L1605065814 Acquired: 5/16/2016 21:09:40 Type: Unk Method: ICP-THERMO3_6010_200.7WATER_3YLINES(v873) Mode: CONC Corr. Factor: 1.000000 User: JYH Custom ID1: Custom ID2: Custom ID3: Comment: | | | | | | | | |---|-----------------------------|----------------|----------------|----------------|----------------|---------------|----------------| | Elem | Ag3280 | Al3082 | As1890 | B_2496 | Ba4554 | Be3131 | Ca4226 | | Units | ppm | Avg | F00412 | 00713 | .00028 | . 14373 | . 14756 | .00009 | 80.382 | | Stddev | .00117 | .00503 | .00091 | .00127 | .00058 | .00005 | .108 | | %RSD | 28.342 | 70.606 | 324.48 | .88472 | .39011 | 56.324 | .13455 | | #1 | 00493 | 00860 | .00132 | .14321 | .14800 | .00003 | 80.504 | | #2 | 00466 | 00152 | 00034 | .14518 | .14777 | .00011 | 80.298 | | #3 | 00278 | 01126 | 00015 | .14280 | .14691 | .00014 | 80.345 | | Check ?
High Limit
Low Limit | Chk Fail
9.0000
00400 | Chk Pass | Chk Pass | Chk Pass | Chk Pass | Chk Pass | Chk Pass | | Elem | Cd2288 | Co2286 | Cr2677 | Cu2247 | Fe2611 | K_7664 | Li6707 | | Units | ppm | Avg | . 00065 | .00043 | . 00216 | . 00102 | 1.3253 | 1.8146 | . 02978 | | Stddev | .00011 | .00009 | .00097 | .00134 | .0113 | .0677 | .00170 | | %RSD | 17.405 | 20.948 | 45.068 | 131.37 | .85535 | 3.7332 | 5.7153 | | #1 | .00052 | .00039 | .00106 | .00256 | 1.3264 | 1.7998 | .03110 | | #2 | .00074 | .00053 | .00253 | .00021 | 1.3134 | 1.7555 | .03040 | | #3 | .00069 | .00037 | .00290 | .00028 | 1.3360 | 1.8886 | .02786 | | Check ?
High Limit
Low Limit | Chk Pass | Elem | Mg2790 | Mn2576 | Mo2020 | Na5895 | Ni2316 | P_2149 | Pb2203 | | Units | ppm | Avg | 25.169 | . 09677 | .00085 | 74.846 | 00007 | .00079 | . 00278 | | Stddev | .086 | .00161 | .00042 | .075 | .00034 | .00293 | .00296 | | %RSD | .34028 | 1.6651 | 49.810 | .10049 | 462.06 | 368.93 | 106.73 | | #1 | 25.118 | .09492 | .00134 | 74.913 | 00046 | 00141 | .00511 | | #2 | 25.268 | .09786 | .00060 | 74.765 | .00007 | 00032 | 00056 | | #3 | 25.121 | .09753 | .00061 | 74.860 | .00017 | .00411 | .00378 | | Check ?
High Limit
Low Limit | Chk Pass | Sample Name: L1605065814 Acquired: 5/16/2016 21:09:40 Type: UMethod: ICP-THERMO3_6010_200.7WATER_3YLINES(v873) Mode: CUSer: JYH Custom ID1: Custom ID2: Custom ID3: Comment: | | | | | | C Corr. F | Factor: 1.000000 | |--|---|---|--|--|---|--|--| | Elem
Units
Avg
Stddev
%RSD | Sb2068
ppm
00349
.00540
154.82 | Se1960
ppm
00313
.00391
125.09 | Si2124
ppm
6.5740
.0051
.07765 | Sn1899
ppm
00087
.00050
57.916 | Sr4077
ppm
. 97344
.00103
.10606 | Ti3372
ppm
01642
.00566
34.507 | TI1908
ppm
00565
.00409
72.391 | | #1
#2
#3 | 00858
00407
.00218 | .00044
00731
00252 | 6.5799
6.5710
6.5711 | 00114
00029
00117 | .97261
.97312
.97460 | 01376
01257
02292 | 01021
00232
00441 | | Check ?
High Limit
Low Limit | Chk Pass | Elem
Units
Avg
Stddev
%RSD | V_2924
ppm
. 00077
.00047
60.852 | Zn2062
ppm
. 00296
.00017
5.8003 | Zr3391
ppm
01776
.17817
1003.2 | | | | | | #1
#2
#3 | .00069
.00035
.00128 | .00315
.00284
.00287 | .18352
15529
08151 | | | | | | Check ?
High Limit
Low Limit | Chk Pass | Chk Pass | Chk Pass | | | | | | Int.
Std.
Units
Avg
Stddev
%RSD | Y_2243
Cts/S
12667.
36.
.28426 | Y_3600
Cts/S
91233.
143.
.15667 | Y_3774
Cts/S
4210.6
49.2
1.1677 | | | | | | #1
#2
#3 | 12645.
12647.
12708. | 91240.
91087.
91372. | 4157.2
4220.8
4253.9 | | | | | | Sample Name
Method: ICP-T
User: JYH
Comment: | |)10_200.7W <i>A</i> | 10_200.7WATER_3YLINES(v873) | | | Type: Unk
Mode: CONC Corr. Facto
ID3: | | | |---|----------------|---------------------|-----------------------------|----------------|----------------|---|----------------|--| | Elem | Ag3280 | Al3082 | As1890 | B_2496 | Ba4554 | Be3131 | Ca4226 | | | Units | ppm | | Avg | 00337 | .22671 | .00009 | . 00270 | . 00369 | .00014 | . 51596 | | | Stddev | .00174 | .00638 | .00226 | .00453 | .00073 | .00003 | .03437 | | | %RSD | 51.530 | 2.8153 | 2419.5 | 167.96 | 19.749 | 21.625 | 6.6607 | | | #1 | 00165 | .22171 | .00145 | 00243 | .00285 | .00017 | .47659 | | | #2 | 00333 | .22451 | .00135 | .00436 | .00402 | .00012 | .53135 | | | #3 | 00512 | .23390 | 00252 | .00616 | .00420 | .00012 | .53995 | | | Check ?
High Limit
Low Limit | Chk Pass | | Elem | Cd2288 | Co2286 | Cr2677 | Cu2247 | Fe2611 | K_7664 | Li6707 | | | Units | ppm | | Avg | . 00013 | .00001 | . 00336 | . 02241 | . 52887 | . 43159 | . 00409 | | | Stddev | .00012 | .00037 | .00061 | .00191 | .03072 | .09998 | .00757 | | | %RSD | 93.846 | 4003.9 | 18.063 | 8.5229 | 5.8083 | 23.167 | 185.07 | | | #1 | 00001 | 00041 | .00406 | .02133 | .55723 | .40690 | .00218 | | | #2 | .00019 | .00014 | .00303 | .02461 | .49624 | .34626 | .01243 | | | #3 | .00020 | .00029 | .00299 | .02129 | .53313 | .54160 | 00234 | | | Check ?
High Limit
Low Limit | Chk Pass | | Elem | Mg2790 | Mn2576 | Mo2020 | Na5895 | Ni2316 | P_2149 | Pb2203 | | | Units | ppm | | Avg | . 31859 | . 00638 | . 00041 | . 37382 | . 00037 | . 00409 | 00165 | | | Stddev | .11978 | .00261 | .00034 | .01458 | .00158 | .01128 | .00171 | | | %RSD | 37.598 | 40.904 | 84.116 | 3.9006 | 427.06 | 275.74 | 103.89 | | | #1 | .32777 | .00766 | .00053 | .36222 | .00066 | 00803 | .00030 | | | #2 | .19448 | .00810 | .00002 | .36905 | .00178 | .00603 | 00289 | | | #3 | .43351 | .00338 | .00067 | .39019 | 00133 | .01427 | 00235 | | | Check ?
High Limit
Low Limit | Chk Pass | | Sample Name
Method: ICP-1
User: JYH
Comment: | |)10_200.7W <i>A</i> | red: 5/16/2010
ATER_3YLIN
stom ID2: | | Type: Unk
Mode: CONO
ID3: | C Corr. F | Factor: 1.00000(| |---|---|--|---|---|---|---|--| | Elem
Units
Avg
Stddev
%RSD | Sb2068
ppm
00218
.00299
136.76 | Se1960
ppm
00461
.00146
31.754 | Si2124
ppm
. 50548
.01062
2.1002 | Sn1899
ppm
. 00025
.00056
224.04 | Sr4077
ppm
. 00254
.00009
3.4209 | Ti3372
ppm
. 00859
.01115
129.72 | TI1908
ppm
00228
.00359
157.71 | | #1
#2
#3 | 00304
.00114
00465 | 00305
00595
00482 | .51521
.50706
.49416 | .00006
00019
.00089 | .00250
.00263
.00247 | .02146
.00203
.00228 | 00258
.00145
00571 | | Check ?
High Limit
Low Limit | Chk Pass | Elem
Units
Avg
Stddev
%RSD | V_2924
ppm
. 00150
.00074
49.150 | Zn2062
ppm
.02387
.00018
.76698 | Zr3391
ppm
F 05858
.08489
144.91 | | | | | | #1
#2
#3 | .00235
.00103
.00112 | .02398
.02396
.02366 | 12864
08294
.03582 | | | | | | Check ?
High Limit
Low Limit | Chk Pass | Chk Pass | Chk Fail
36.000
04000 | | | | | | Int. Std.
Units
Avg
Stddev
%RSD | Y_2243
Cts/S
13179.
25.
.19194 | Y_3600
Cts/S
94854.
220.
.23156 | Y_3774
Cts/S
4231.6
40.6
.96018 | | | | | | #1
#2
#3 | 13198.
13150.
13188. | 94705.
95107.
94752. | 4229.9
4273.1
4191.9 | | | | | | • | | | | | | | | | |------------------------------------|----------------|----------------|----------|----------------|----------------|----------------|---------------|----------------| | Elem | Ag3280 | Al3082 | As1890 | B_2496 | Ba4554 | Be3131 | Ca4226 | Cd2288 | | Units | ppm | Avg | 00273 | . 08237 | 00084 | . 02430 | . 04710 | .00012 | 139.25 | . 00069 | | Stddev | .00205 | .01414 | .00219 | .00392 | .00114 | .00003 | .50 | .00032 | | %RSD | 74.866 | 17.165 | 261.88 | 16.129 | 2.4210 | 21.693 | .35752 | 45.931 | | #1 | 00508 | .07278 | 00310 | .02326 | .04581 | .00014 | 138.69 | .00033 | | #2 | 00179 | .07573 | 00069 | .02101 | .04798 | .00010 | 139.64 | .00080 | | #3 | 00133 | .09861 | .00128 | .02864 | .04751 | .00010 | 139.43 | .00094 | | Check ?
High Limit
Low Limit | Chk Pass | Elem | Co2286 | Cr2677 | Cu2247 | Fe2611 | K_7664 | Li6707 | Mg2790 | Mn2576 | | Units | ppm | Avg | . 00217 | . 00244 | .00121 | 1.7741 | . 56122 | .00860 | 21.778 | 1.8867 | | Stddev | .00021 | .00043 | .00104 | .0289 | .09266 | .00192 | .119 | .0016 | | %RSD | 9.5347 | 17.738 | 85.648 | 1.6310 | 16.511 | 22.337 | .54662 | .08249 | | #1 | .00193 | .00202 | .00005 | 1.8075 | .66788 | .00961 | 21.896 | 1.8864 | | #2 | .00232 | .00243 | .00205 | 1.7588 | .50051 | .00639 | 21.781 | 1.8854 | | #3 | .00225 | .00289 | .00153 | 1.7561 | .51527 | .00981 | 21.658 | 1.8884 | | Check ?
High Limit
Low Limit | Chk Pass | Elem | Mo2020 | Na5895 | Ni2316 | P_2149 | Pb2203 | Sb2068 | Se1960 | Si2124 | | Units | ppm | Avg | .00018 | 4.3497 | .03060 | . 00665 | . 00361 | . 00256 | .00034 | . 42137 | | Stddev | .00022 | .0381 | .00129 | .00411 | .00233 | .00232 | .00462 | .00191 | | %RSD | 126.26 | .87573 | 4.2106 | 61.914 | 64.484 | 90.684 | 1360.3 | .45318 | | #1 | .00035 | 4.3147 | .03040 | .01115 | .00163 | .00379 | 00191 | .42301 | | #2 | .00024 | 4.3443 | .02942 | .00309 | .00302 | 00012 | 00273 | .41927 | | #3 | 00007 | 4.3903 | .03197 | .00569 | .00618 | .00402 | .00565 | .42184 | | Check ?
High Limit
Low Limit | Chk Pass | Sample Nar
Method: ICF
User: JYH
Comment: | | 3_6010_200 | • | • | | ype: Unk
ode: CONC
: | Corr. Fa | ctor: 1.00000(| |--|---|--|---|---|---|---|---|----------------| | Elem
Units
Avg
Stddev
%RSD | Sn1899
ppm
00116
.00058
49.917 | Sr4077
ppm
.17578
.00053
.30028 | Ti3372
ppm
02010
.00653
32.471 | TI1908
ppm
. 00095
.00368
387.62 | V_2924
ppm
. 00133
.00093
70.014 | Zn2062
ppm
. 76127
.00098
.12902 | Zr3391
ppm
. 09211
.05074
55.080 | | | #1
#2
#3 | 00053
00168
00128 | .17541
.17639
.17555 | 01732
02755
01542 | 00000
.00501
00216 | .00207
.00028
.00165 | .76081
.76240
.76061 | .07403
.14941
.05290 | | | Check ?
High Limit
Low Limit | Chk Pass | | Int. Std.
Units
Avg
Stddev
%RSD | Y_2243
Cts/S
12925.
21.
.16284 | Y_3600
Cts/S
92445.
141.
.15253 | Y_3774
Cts/S
4273.4
7.8
.18314 | | | | | | | #1
#2
#3 | 12942.
12902.
12932. | 92606.
92384.
92344. | 4269.7
4268.1
4282.4 | | | | | | | Sample Nam
Method: ICP
User: JYH
Comment: | | _ | | LINES(v873 | pe: QC
) Mode:
tom ID3: | CONC (| Corr. Factor: | 1.000000 | |--|----------------|----------------|----------------|----------------|-------------------------------|----------------|----------------|----------| | Elem | Ag3280 | Al3082 | As1890 | B_2496 | Ba4554 | Be3131 | Ca4226 | | | Units | ppm | | Avg | . 37147 | 9.3752 | . 37212 | . 46331 | . 92960 | . 04631 | 9.1612 | | | Stddev | .00197 | .0137 | .00195 | .00367 | .00134 | .00036 | .0335 | | | %RSD | .52929 | .14639 | .52363 | .79179 | .14378 | .77994 | .36580 | | | #1 | .37187 | 9.3612 | .37066 | .45932 | .92832 | .04612 | 9.1611 | | | #2 | .37320 | 9.3887 | .37136 | .46654 | .93099 | .04672 | 9.1947 | | | #3 | .36933 | 9.3758 | .37433 | .46406 | .92950 | .04608 | 9.1277 | | | Check ?
Value
Range | Chk Pass | | Elem | Cd2288 | Co2286 | Cr2677 | Cu2247 | Fe2611 | K_7664 | Li6707 | | | Units | ppm | | Avg | . 04639 | . 19100 | . 47775 | . 47794 | 3.7663 | 46.890 | . 93757 | | | Stddev | .00038 | .00027 | .00323 | .00119 | .0146 | .142 | .00421 | | | %RSD | .81604 | .14123 | .67675 | .24832 | .38706 | .30180 | .44943 | | | #1 | .04682 | .19096 | .47558 | .47779 | 3.7585 | 46.727 | .93513 | | | #2 | .04617 | .19075 | .48146 | .47920 | 3.7831 | 46.968 | .93515 | | | #3 | .04616 | .19129 | .47620 | .47684 | 3.7572 | 46.976 | .94244 | | | Check ?
Value
Range | Chk Pass | | Elem | Mg2790 | Mn2576 | Mo2020 | Na5895 | Ni2316 | P_2149 | Pb2203 | | | Units | ppm | | Avg |
9.5650 | . 46849 | . 92824 | 47.389 | . 48220 | 9.3473 | . 48774 | | | Stddev | .0702 | .00914 | .00451 | .137 | .00136 | .0023 | .00374 | | | %RSD | .73406 | 1.9517 | .48630 | .28869 | .28202 | .02448 | .76612 | | | #1 | 9.5392 | .46895 | .93309 | 47.299 | .48201 | 9.3476 | .48453 | | | #2 | 9.6445 | .45912 | .92746 | 47.547 | .48094 | 9.3449 | .49184 | | | #3 | 9.5113 | .47739 | .92417 | 47.322 | .48364 | 9.3495 | .48685 | | | Check ?
Value
Range | Chk Pass | | Sample Nam
Method: ICP
User: JYH
Comment: | ne: CCV /
-THERMO3_
Custom I | 6010_200.7 | 16/2016 21:2
WATER_3YI
Custom ID2: | LINES(v873) | pe: QC
) Mode:
tom ID3: | CONC (| Corr. Factor: | 1.00000(| |--|---|---|---|---|---|---|---|----------| | Elem
Units
Avg
Stddev
%RSD | Sb2068
ppm
1.1238
.0022
.19990 | Se1960
ppm
F .35588
.00231
.64877 | Si2124
ppm
4.6963
.0090
.19219 | Sn1899
ppm
. 95144
.00065
.06798 | Sr4077
ppm
. 92614
.00276
.29767 | Ti3372
ppm
. 92598
.00416
.44930 | TI1908
ppm
. 48063
.00360
.74821 | | | #1
#2
#3 | 1.1238
1.1216
1.1261 | .35844
.35524
.35395 | 4.6947
4.7060
4.6881 | .95217
.95093
.95122 | .92375
.92915
.92551 | .92165
.92635
.92995 | .47655
.48334
.48200 | | | Check ?
Value
Range | Chk Pass | Chk Fail
.40000
-10.000% | Chk Pass | Chk Pass | Chk Pass | Chk Pass | Chk Pass | | | Elem
Units
Avg
Stddev
%RSD | V_2924
ppm
. 93872
.00223
.23788 | Zn2062
ppm
. 96594
.00078
.08049 | Zr3391
ppm
F . 89536
.22918
25.597 | | | | | | | #1
#2
#3 | .93712
.94127
.93776 | .96524
.96678
.96582 | 1.1534
.81735
.71536 | | | | | | | Check ?
Value
Range | Chk Pass | Chk Pass | Chk Fail
1.0000
-10.000% | | | | | | | Int. Std.
Units
Avg
Stddev
%RSD | Y_2243
Cts/S
13781.
38.
.27277 | Y_3600
Cts/S
97901.
690.
.70488 | Y_3774
Cts/S
4393.5
12.2
.27653 | | | | | | | #1
#2
#3 | 13760.
13824.
13758. | 97428.
97582.
98693. | 4405.7
4381.4
4393.4 | | | | | | | • | | | | | | | | | |------------------------------------|----------------|----------------|----------|----------------|----------------|----------------|----------------|----------------| | Elem | Ag3280 | Al3082 | As1890 | B_2496 | Ba4554 | Be3131 | Ca4226 | Cd2288 | | Units | ppm | Avg | 00310 | 00819 | .00134 | . 00240 | .00074 | .00012 | 02907 | . 00008 | | Stddev | .00098 | .00047 | .00370 | .00061 | .00044 | .00002 | .01176 | .00021 | | %RSD | 31.671 | 5.7420 | 276.72 | 25.392 | 59.907 | 20.417 | 40.463 | 251.71 | | #1 | 00411 | 00872 | .00297 | .00281 | .00080 | .00011 | 03788 | 00011 | | #2 | 00215 | 00782 | 00290 | .00268 | .00027 | .00014 | 01571 | .00031 | | #3 | 00303 | 00802 | .00393 | .00170 | .00114 | .00010 | 03360 | .00005 | | Check ?
High Limit
Low Limit | Chk Pass | Elem | Co2286 | Cr2677 | Cu2247 | Fe2611 | K_7664 | Li6707 | Mg2790 | Mn2576 | | Units | ppm | Avg | 00007 | . 00057 | 00041 | . 01422 | . 15506 | . 00526 | . 14308 | . 00058 | | Stddev | .00048 | .00126 | .00146 | .01624 | .04444 | .00188 | .08370 | .00067 | | %RSD | 676.00 | 223.18 | 359.57 | 114.18 | 28.658 | 35.809 | 58.500 | 115.95 | | #1 | .00040 | 00063 | 00102 | 00433 | .20395 | .00450 | .07825 | .00020 | | #2 | 00004 | .00189 | .00126 | .02583 | .11711 | .00741 | .11341 | .00018 | | #3 | 00057 | .00044 | 00146 | .02117 | .14414 | .00388 | .23757 | .00135 | | Check ?
High Limit
Low Limit | Chk Pass | Elem | Mo2020 | Na5895 | Ni2316 | P_2149 | Pb2203 | Sb2068 | Se1960 | Si2124 | | Units | ppm | Avg | . 00424 | 00569 | 00099 | 00010 | . 00003 | . 00373 | 00413 | 02964 | | Stddev | .00016 | .01170 | .00033 | .00266 | .00197 | .00059 | .01119 | .00103 | | %RSD | 3.7189 | 205.76 | 33.255 | 2763.8 | 7741.5 | 15.744 | 271.20 | 3.4673 | | #1 | .00418 | 01724 | 00061 | .00093 | 00224 | .00376 | 00980 | 03082 | | #2 | .00412 | .00615 | 00118 | .00189 | .00134 | .00431 | .00876 | 02891 | | #3 | .00442 | 00597 | 00118 | 00311 | .00098 | .00314 | 01134 | 02919 | | Check ?
High Limit
Low Limit | Chk Pass | Sample Nar
Method: ICF
User: JYH
Comment: | | 3_6010_200 | 5/16/2016 2
.7WATER_
Custom II | 3YLINES(v8 | Type: Blan
373) Mc
Custom ID3 | de: CONC | Corr. Fa | ctor: 1.00000(| |--|---|---|---|--|---|---|---|----------------| | Elem
Units
Avg
Stddev
%RSD | Sn1899
ppm
00002
.00072
3533.5 | Sr4077
ppm
.00018
.00026
145.64 | Ti3372
ppm
. 00128
.00484
378.75 | TI1908
ppm
00079
.00179
227.78 | V_2924
ppm
. 00045
.00091
199.61 | Zn2062
ppm
. 00021
.00025
119.91 | Zr3391
ppm
.01053
.12934
1228.7 | | | #1
#2
#3 | 00009
.00073
00070 | .00047
.00011
00004 | 00424
.00480
.00327 | 00161
.00127
00202 | .00132
.00052
00048 | .00049
.00010
.00003 | 08205
04469
.15831 | | | Check ?
High Limit
Low Limit | Chk Pass | | Int. Std.
Units
Avg
Stddev
%RSD | Y_2243
Cts/S
13667.
31.
.22374 | Y_3600
Cts/S
97994 .
279.
.28521 | Y_3774
Cts/S
4355.9
25.6
.58662 | | | | | | | #1
#2
#3 | 13694.
13634.
13674. | 97676.
98103.
98202. | 4332.3
4383.1
4352.3 | | | | | | | • | | | | | | | | | |------------------------------------|----------------|----------------|----------------|----------------|----------------|----------------|---------------|----------------| | Elem | Ag3280 | Al3082 | As1890 | B_2496 | Ba4554 | Be3131 | Ca4226 | Cd2288 | | Units | ppm | Avg | 00332 | . 05110 | 00344 | . 13421 | . 04914 | .00017 | 2.8931 | . 00096 | | Stddev | .00186 | .00411 | .00321 | .00175 | .00074 | .00009 | .0116 | .00013 | | %RSD | 55.977 | 8.0414 | 93.305 | 1.3011 | 1.4999 | 53.277 | .40101 | 13.601 | | #1 | 00454 | .04666 | 00039 | .13516 | .04829 | .00023 | 2.8908 | .00088 | | #2 | 00425 | .05477 | 00314 | .13219 | .04953 | .00007 | 2.9056 | .00089 | | #3 | 00118 | .05186 | 00678 | .13527 | .04961 | .00021 | 2.8828 | .00111 | | Check ?
High Limit
Low Limit | Chk Pass | Elem | Co2286 | Cr2677 | Cu2247 | Fe2611 | K_7664 | Li6707 | Mg2790 | Mn2576 | | Units | ppm | Avg | . 00077 | . 01062 | . 00260 | 1.0442 | 11.453 | . 00359 | 162.68 | . 06417 | | Stddev | .00044 | .00071 | .00183 | .0086 | .130 | .00566 | 1.10 | .00309 | | %RSD | 56.927 | 6.6594 | 70.442 | .82679 | 1.1326 | 157.87 | .67786 | 4.8220 | | #1 | .00049 | .01028 | .00147 | 1.0457 | 11.360 | .00648 | 161.47 | .06221 | | #2 | .00128 | .01014 | .00471 | 1.0520 | 11.601 | 00294 | 163.63 | .06255 | | #3 | .00055 | .01143 | .00161 | 1.0349 | 11.399 | .00721 | 162.94 | .06774 | | Check ?
High Limit
Low Limit | Chk Pass | Elem | Mo2020 | Na5895 | Ni2316 | P_2149 | Pb2203 | Sb2068 | Se1960 | Si2124 | | Units | ppm | Avg | . 02677 | 189.97 | .00352 | . 25657 | 00191 | . 00501 | 00315 | . 48827 | | Stddev | .00060 | .73 | .00088 | .00707 | .00218 | .00275 | .00979 | .00223 | | %RSD | 2.2337 | .38466 | 25.018 | 2.7544 | 114.04 | 54.850 | 311.13 | .45593 | | #1 | .02647 | 189.66 | .00443 | .25979 | 00096 | .00196 | .00753 | .49083 | | #2 | .02746 | 190.81 | .00268 | .24847 | 00037 | .00580 | 00526 | .48678 | | #3 | .02638 | 189.45 | .00345 | .26145 | 00440 | .00728 | 01171 | .48720 | | Check ?
High Limit
Low Limit | Chk Pass | Sample Nar
Method: ICF
User: JYH
Comment: | | 3_6010_200 | .cquired: 5/1
.7WATER_
Custom IE | 3YLINES(v8 | | ype: Unk
ode: CONC
: | Corr. Fac | ctor: 1.00000(| |--|---|---|---|--|---|---|---|----------------| | Elem
Units
Avg
Stddev
%RSD | Sn1899
ppm
. 00054
.00042
76.898 | Sr4077
ppm
. 01298
.00023
1.8012 | Ti3372
ppm
. 00317
.00573
180.71 | TI1908
ppm
00458
.00334
72.818 | V_2924
ppm
. 01015
.00044
4.3294 | Zn2062
ppm
. 01577
.00016
.99939 | Zr3391
ppm
2.1107
.6917
32.770 | | | #1
#2
#3 | .00073
.00083
.00006 | .01301
.01319
.01273 | .00564
00338
.00724 | 00156
00817
00403 | .01016
.00971
.01059 | .01559
.01584
.01589 | 2.6912
2.2955
1.3454 | | | Check ?
High Limit
Low Limit | Chk Pass | | Int. Std.
Units
Avg
Stddev
%RSD |
Y_2243
Cts/S
12816.
32.
.24867 | Y_3600
Cts/S
90625.
50.
.05492 | Y_3774
Cts/S
4298.4
12.6
.29238 | | | | | | | #1
#2
#3 | 12780.
12826.
12841. | 90673.
90574.
90629. | 4302.6
4284.3
4308.3 | | | | | | | Sample Name: L1605076404 Acquired: 5/16/2016 21:33:14 Type: Unk Method: ICP-THERMO3_6010_200.7WATER_3YLINES(v873) Mode: CONC Corr. Factor: 1.000000 User: JYH Custom ID1: Custom ID2: Custom ID3: Comment: | | | | | | | | | | | |---|----------------|----------------|----------|----------------|----------------|----------|---------------|----------------|--|--| | Elem | Ag3280 | Al3082 | As1890 | B_2496 | Ba4554 | Be3131 | Ca4226 | Cd2288 | | | | Units | ppm | | | Avg | 00127 | . 00043 | .00060 | .08883 | . 00929 | .00010 | 4.2319 | . 00031 | | | | Stddev | .00224 | .01212 | .00123 | .00109 | .00104 | .00007 | .0211 | .00013 | | | | %RSD | 176.20 | 2812.2 | 204.08 | 1.2280 | 11.146 | 71.268 | .49826 | 42.466 | | | | #1 | 00385 | 00276 | .00103 | .08989 | .00874 | .00008 | 4.2376 | .00040 | | | | #2 | .00026 | .01382 | .00157 | .08891 | .00865 | .00017 | 4.2495 | .00016 | | | | #3 | 00023 | 00977 | 00079 | .08771 | .01049 | .00004 | 4.2085 | .00037 | | | | Check ?
High Limit
Low Limit | Chk Pass | | | Elem | Co2286 | Cr2677 | Cu2247 | Fe2611 | K_7664 | Li6707 | Mg2790 | Mn2576 | | | | Units | ppm | | | Avg | .00004 | .00398 | .00118 | . 11274 | 10.888 | .00518 | 42.091 | . 03070 | | | | Stddev | .00036 | .00049 | .00063 | .01610 | .106 | .00276 | .236 | .00156 | | | | %RSD | 971.64 | 12.400 | 53.567 | 14.281 | .97659 | 53.338 | .56163 | 5.0870 | | | | #1 | .00017 | .00396 | .00060 | .12685 | 11.003 | .00687 | 42.354 | .03250 | | | | #2 | .00031 | .00448 | .00185 | .11617 | 10.792 | .00668 | 41.895 | .02996 | | | | #3 | 00037 | .00349 | .00110 | .09520 | 10.870 | .00199 | 42.025 | .02965 | | | | Check ?
High Limit
Low Limit | Chk Pass | | | Elem | Mo2020 | Na5895 | Ni2316 | P_2149 | Pb2203 | Sb2068 | Se1960 | Si2124 | | | | Units | ppm | | | Avg | . 00462 | 119.83 | .00018 | . 17336 | .00110 | 00256 | 00427 | . 43765 | | | | Stddev | .00048 | .16 | .00032 | .00800 | .00402 | .00717 | .00075 | .00214 | | | | %RSD | 10.344 | .13186 | 178.38 | 4.6160 | 366.26 | 280.37 | 17.553 | .48937 | | | | #1 | .00500 | 119.75 | 00018 | .16443 | .00247 | 00859 | 00513 | .43803 | | | | #2 | .00478 | 120.01 | .00030 | .17989 | .00426 | .00537 | 00375 | .43957 | | | | #3 | .00408 | 119.72 | .00042 | .17576 | 00343 | 00446 | 00393 | .43534 | | | | Check ?
High Limit
Low Limit | Chk Pass | | | Sample Nar
Method: ICF
User: JYH
Comment: | | 3_6010_200 | cquired: 5/1
.7WATER_:
Custom IE | 3YLINES(v8 | • | ype: Unk
ode: CONC
: | Corr. Fa | ctor: 1.00000(| |--|---|---|--|--|---|---|---|----------------| | Elem
Units
Avg
Stddev
%RSD | Sn1899
ppm
. 00005
.00079
1683.1 | Sr4077
ppm
. 01815
.00047
2.5741 | Ti3372
ppm
00114
.00285
251.04 | TI1908
ppm
00274
.00213
77.628 | V_2924
ppm
. 00630
.00044
7.0413 | Zn2062
ppm
.00381
.00029
7.5895 | Zr3391
ppm
. 64982
.24842
38.230 | | | #1
#2
#3 | 00036
00046
.00095 | .01847
.01761
.01836 | 00345
00200
.00205 | 00251
00074
00498 | .00652
.00579
.00660 | .00360
.00368
.00414 | .36410
.77061
.81474 | | | Check ?
High Limit
Low Limit | Chk Pass | | Int. Std.
Units
Avg
Stddev
%RSD | Y_2243
Cts/S
12934.
14.
.10694 | Y_3600
Cts/S
92258.
277.
.29983 | Y_3774
Cts/S
4290.1
48.4
1.1277 | | | | | | | #1
#2
#3 | 12933.
12921.
12948. | 92043.
92570.
92162. | 4341.8
4282.6
4246.0 | | | | | | | Sample Name
Method: ICP-1
User: JYH
Comment: | | 010_200.7W | Acquired: 5/16/2016 21:37:15
0_200.7WATER_3YLINES(v873)
Custom ID2: Custom I | | | Type: Unk Mode: CONC Corr. Factor: 1.00 ID3: | | | |---|----------------|---------------|--|-----------------------------|---------------|---|-----------------------------|--| | Elem | Ag3280 | Al3082 | As1890 | B_2496 | Ba4554 | Be3131 | Ca4226 | | | Units | ppm | | Avg | 00261 | .33045 | 00706 | .09883 | 41.357 | 00008 | F 2307.6 | | | Stddev | .00168 | .01046 | .00319 | .00215 | .454 | .00005 | 37.0 | | | %RSD | 64.534 | 3.1662 | 45.124 | 2.1805 | 1.0968 | 70.071 | 1.6036 | | | #1 | 00225 | .33073 | 01061 | .09782 | 40.842 | 00005 | 2305.6 | | | #2 | 00113 | .34076 | 00611 | .09736 | 41.697 | 00014 | 2271.7 | | | #3 | 00444 | .31984 | 00446 | .10130 | 41.532 | 00004 | 2345.6 | | | Check ?
High Limit
Low Limit | Chk Pass | Chk Pass | Chk Pass | Chk Pass | Chk Pass | Chk Pass | Chk Fail
270.00
10000 | | | Elem | Cd2288 | Co2286 | Cr2677 | Cu2247 | Fe2611 | K_7664 | Li6707 | | | Units | ppm | | Avg | . 00606 | .00749 | . 00631 | . 01262 | 4.1654 | 76.470 | 1.1195 | | | Stddev | .00032 | .00076 | .00152 | .00223 | .0432 | .153 | .0035 | | | %RSD | 5.3219 | 10.156 | 24.167 | 17.668 | 1.0378 | .19997 | .30988 | | | #1 | .00631 | .00661 | .00774 | .01477 | 4.1792 | 76.646 | 1.1155 | | | #2 | .00617 | .00791 | .00647 | .01277 | 4.1170 | 76.390 | 1.1217 | | | #3 | .00569 | .00796 | .00471 | .01032 | 4.2001 | 76.374 | 1.1213 | | | Check ?
High Limit
Low Limit | Chk Pass | | Elem | Mg2790 | Mn2576 | Mo2020 | Na5895 | Ni2316 | P_2149 | Pb2203 | | | Units | ppm | | Avg | 217.54 | 15.991 | 00080 | F 521.34 | 00338 | . 09859 | . 00669 | | | Stddev | .57 | .070 | .00002 | 2.48 | .00165 | .01123 | .00748 | | | %RSD | .26327 | .43516 | 2.1532 | .47544 | 48.796 | 11.391 | 111.83 | | | #1 | 216.88 | 16.070 | 00078 | 524.16 | 00525 | .11148 | 00170 | | | #2 | 217.86 | 15.962 | 00079 | 519.50 | 00212 | .09092 | .01266 | | | #3 | 217.88 | 15.940 | 00081 | 520.35 | 00278 | .09338 | .00909 | | | Check ?
High Limit
Low Limit | Chk Pass | Chk Pass | Chk Pass | Chk Fail
270.00
50000 | Chk Pass | Chk Pass | Chk Pass | | | Sample Name:
Method: ICP-T
User: JYH
Comment: | |)10_200.7W <i>A</i> | ed: 5/16/2016
ATER_3YLINI
stom ID2: | | Type: Unk
Mode: CON
ID3: | C Corr. F | Factor: 1.00000(| |--|---|--|--|--|--|---|--| | Elem
Units
Avg
Stddev
%RSD | Sb2068
ppm
01834
.00418
22.778 | Se1960
ppm
F04115
.00983
23.899 | Si2124
ppm
3.9285
.0399
1.0162 | Sn1899
ppm
00358
.00165
45.998 | Sr4077
ppm
F 53.746
.994
1.8501 | Ti3372
ppm
F19636
.00206
1.0500 | TI1908
ppm
00305
.00521
170.56 | | #1
#2
#3 | 02007
01358
02137 | 02997
04845
04502 | 3.9572
3.9454
3.8829 | 00463
00443
00168 | 52.768
54.756
53.715 | 19758
19752
19398 | 00104
.00085
00897 | | Check ?
High Limit
Low Limit | Chk Pass | Chk Fail
90.000
01000 | Chk Pass | Chk Pass | Chk Fail
9.0000
01000 | Chk Fail
36.000
03000 | Chk Pass | | Elem
Units
Avg
Stddev
%RSD | V_2924
ppm
. 00271
.00015
5.4504 | Zn2062
ppm
.00941
.00035
3.7312 | Zr3391
ppm
F54340
.40048
73.699 | | | | | | #1
#2
#3 | .00254
.00278
.00281 | .00943
.00975
.00904 | 72457
08435
82129 | | | | | | Check ?
High Limit
Low Limit | Chk Pass | Chk Pass | Chk Fail
36.000
04000 | | | | | | Int. Std.
Units
Avg
Stddev
%RSD | Y_2243
Cts/S
10407.
21.
.20287 | Y_3600
Cts/S
74399.
310.
.41699 | Y_3774
Cts/S
3904.1
38.6
.98762 | | | | | | #1
#2
#3 | 10408.
10386.
10428. | 74049.
74640.
74508. | 3867.0
3944.0
3901.4 | | | | | | Sample Name
Method: ICP-T
User: JYH
Comment: | |)10_200.7W <i>A</i> | red: 5/16/2016
ATER_3YLINI
stom ID2: | | Type: Unk
Mode: CONO
ID3: | Factor: 1.00000(| | |---|----------------|---------------------|--|-----------------------------|---------------------------------|------------------|-----------------------------| | Elem | Ag3280 | Al3082 | As1890 | B_2496 | Ba4554 | Be3131 | Ca4226 | | Units | ppm | Avg | 00171 | .01315 | 00488 | .09886 | 29.074 | 00014 | F 2145.2 | | Stddev | .00105 | .00200 | .00388 | .00167 | .387 | .00011 | 21.1 | | %RSD | 61.831 | 15.175 | 79.511 | 1.6932 | 1.3295 | 78.155 | .98329 | | #1 | 00117 | .01385 | 00046 | .10066 | 29.377 | 00003 | 2168.6 | | #2 | 00292 | .01471 | 00771 | .09856 | 28.639 | 00024 | 2139.5 | | #3 | 00103 | .01090 |
00648 | .09735 | 29.208 | 00015 | 2127.6 | | Check ?
High Limit
Low Limit | Chk Pass | Chk Pass | Chk Pass | Chk Pass | Chk Pass | Chk Pass | Chk Fail
270.00
10000 | | Elem | Cd2288 | Co2286 | Cr2677 | Cu2247 | Fe2611 | K_7664 | Li6707 | | Units | ppm | Avg | . 00459 | . 00290 | . 00400 | .01010 | 24.670 | 34.683 | . 65790 | | Stddev | .00035 | .00044 | .00161 | .00160 | .269 | .109 | .00756 | | %RSD | 7.7016 | 15.148 | 40.204 | 15.855 | 1.0912 | .31297 | 1.1495 | | #1 | .00498 | .00341 | .00215 | .01141 | 24.929 | 34.732 | .66158 | | #2 | .00447 | .00262 | .00485 | .00832 | 24.392 | 34.559 | .64920 | | #3 | .00431 | .00267 | .00501 | .01056 | 24.688 | 34.758 | .66292 | | Check ?
High Limit
Low Limit | Chk Pass | Elem | Mg2790 | Mn2576 | Mo2020 | Na5895 | Ni2316 | P_2149 | Pb2203 | | Units | ppm | Avg | 312.36 | 10.254 | 00094 | F 493.33 | 00918 | . 06067 | . 00573 | | Stddev | 3.94 | .122 | .00038 | 3.16 | .00106 | .00749 | .00534 | | %RSD | 1.2601 | 1.1875 | 40.730 | .64109 | 11.537 | 12.346 | 93.226 | | #1 | 315.68 | 10.364 | 00062 | 496.98 | 00842 | .06031 | .00674 | | #2 | 308.01 | 10.124 | 00137 | 491.45 | 01039 | .06833 | 00005 | | #3 | 313.39 | 10.275 | 00084 | 491.56 | 00873 | .05336 | .01049 | | Check ?
High Limit
Low Limit | Chk Pass | Chk Pass | Chk Pass | Chk Fail
270.00
50000 | Chk Pass | Chk Pass | Chk Pass | | Sample Name
Method: ICP-T
User: JYH
Comment: | | 010_200.7W <i>A</i> | red: 5/16/2016
ATER_3YLINI
stom ID2: | | Type: Unk
Mode: CON
ID3: | C Corr. F | Factor: 1.00000(| |---|---|--|--|--|---|---|--| | Elem
Units
Avg
Stddev
%RSD | Sb2068
ppm
01299
.00249
19.181 | Se1960
ppm
F04209
.00554
13.167 | Si2124
ppm
5.1533
.0160
.30978 | Sn1899
ppm
00299
.00048
15.976 | Sr4077
ppm
F 65.612
1.240
1.8897 | Ti3372
ppm
F18636
.00828
4.4430 | TI1908
ppm
00594
.00425
71.545 | | #1
#2
#3 | 01524
01341
01031 | 04743
03637
04248 | 5.1717
5.1448
5.1435 | 00354
00281
00263 | 67.025
64.704
65.108 | 18594
17829
19484 | 00730
00118
00934 | | Check ?
High Limit
Low Limit | Chk Pass | Chk Fail
90.000
01000 | Chk Pass | Chk Pass | Chk Fail
9.0000
01000 | Chk Fail
36.000
03000 | Chk Pass | | Elem
Units
Avg
Stddev
%RSD | V_2924
ppm
. 00140
.00141
101.07 | Zn2062
ppm
.00814
.00021
2.5813 | Zr3391
ppm
F -1.5006
.2705
18.029 | | | | | | #1
#2
#3 | .00147
.00277
00005 | .00838
.00798
.00805 | -1.2596
-1.4490
-1.7932 | | | | | | Check ?
High Limit
Low Limit | Chk Pass | Chk Pass | Chk Fail
36.000
04000 | | | | | | Int. Std.
Units
Avg
Stddev
%RSD | Y_2243
Cts/S
10625.
31.
.29296 | Y_3600
Cts/S
75401.
116.
.15383 | Y_3774
Cts/S
3962.5
15.7
.39702 | | | | | | #1
#2
#3 | 10625.
10594.
10656. | 75354.
75533.
75315. | 3950.3
3956.9
3980.2 | | | | | | Sample Name
Method: ICP-
User: JYH
Comment: | | 010_200.7W | red: 5/16/201
ATER_3YLIN
stom ID2: | | Type: Unk
Mode: CON0
ID3: | C Corr. F | Factor: 1.00000(| |--|----------------|----------------|--|-----------------------------|---------------------------------|----------------|-----------------------------| | Elem | Ag3280 | Al3082 | As1890 | B_2496 | Ba4554 | Be3131 | Ca4226 | | Units | ppm | Avg | 00041 | . 02044 | 00292 | .10508 | 30.239 | 00004 | F 2101.9 | | Stddev | .00313 | .00884 | .00209 | .00090 | .269 | .00004 | 14.3 | | %RSD | 763.58 | 43.259 | 71.552 | .85882 | .88794 | 90.569 | .68087 | | #1 | 00336 | .02860 | 00450 | .10404 | 30.544 | 00004 | 2092.3 | | #2 | .00286 | .02169 | 00372 | .10565 | 30.040 | 00001 | 2095.0 | | #3 | 00073 | .01104 | 00055 | .10555 | 30.132 | 00009 | 2118.3 | | Check ?
High Limit
Low Limit | Chk Pass | Chk Pass | Chk Pass | Chk Pass | Chk Pass | Chk Pass | Chk Fail
270.00
10000 | | Elem | Cd2288 | Co2286 | Cr2677 | Cu2247 | Fe2611 | K_7664 | Li6707 | | Units | ppm | Avg | . 00510 | . 00279 | .00338 | .01013 | 25.414 | 36.579 | . 69229 | | Stddev | .00028 | .00059 | .00169 | .00129 | .077 | .228 | .00859 | | %RSD | 5.5400 | 21.143 | 49.923 | 12.712 | .30381 | .62330 | 1.2401 | | #1 | .00533 | .00211 | .00468 | .01064 | 25.340 | 36.438 | .69172 | | #2 | .00479 | .00315 | .00399 | .01108 | 25.494 | 36.842 | .70115 | | #3 | .00519 | .00311 | .00147 | .00867 | 25.409 | 36.456 | .68400 | | Check ?
High Limit
Low Limit | Chk Pass | Elem | Mg2790 | Mn2576 | Mo2020 | Na5895 | Ni2316 | P_2149 | Pb2203 | | Units | ppm | Avg | 322.12 | 10.631 | 00073 | F 516.38 | 00936 | . 05467 | . 00506 | | Stddev | 1.39 | .035 | .00023 | 1.53 | .00050 | .00398 | .00307 | | %RSD | .43137 | .32490 | 30.887 | .29686 | 5.3036 | 7.2894 | 60.712 | | #1 | 320.65 | 10.615 | 00072 | 515.34 | 00977 | .05925 | .00705 | | #2 | 323.41 | 10.671 | 00051 | 518.14 | 00951 | .05275 | .00660 | | #3 | 322.31 | 10.608 | 00097 | 515.67 | 00881 | .05200 | .00152 | | Check ?
High Limit
Low Limit | Chk Pass | Chk Pass | Chk Pass | Chk Fail
270.00
50000 | Chk Pass | Chk Pass | Chk Pass | | Sample Name:
Method: ICP-T
User: JYH
Comment: | | 6010_200.7WATER_3YLINES(v873) | | | Type: Unk Mode: CONC Corr. Factor: 1.000000 i ID3: | | | | |--|---|---|--|--|--|---|--|--| | Elem
Units
Avg
Stddev
%RSD | Sb2068
ppm
00838
.00221
26.375 | Se1960
ppm
F03393
.00840
24.753 | Si2124
ppm
5.3479
.0483
.90220 | Sn1899
ppm
00278
.00053
19.127 | Sr4077
ppm
F 68.453
.440
.64247 | Ti3372
ppm
F18862
.00445
2.3572 | TI1908
ppm
00201
.00510
254.35 | | | #1
#2
#3 | 01013
00910
00590 | 04361
02846
02974 | 5.3720
5.3794
5.2924 | 00339
00237
00260 | 68.945
68.317
68.097 | 19199
18358
19029 | .00228
00765
00065 | | | Check ?
High Limit
Low Limit | Chk Pass | Chk Fail
90.000
01000 | Chk Pass | Chk Pass | Chk Fail
9.0000
01000 | Chk Fail
36.000
03000 | Chk Pass | | | Elem
Units
Avg
Stddev
%RSD | V_2924
ppm
. 00167
.00049
29.206 | Zn2062
ppm
. 00832
.00009
1.0858 | Zr3391
ppm
F -1.4200
.1801
12.684 | | | | | | | #1
#2
#3 | .00218
.00161
.00121 | .00841
.00823
.00832 | -1.6277
-1.3256
-1.3067 | | | | | | | Check ?
High Limit
Low Limit | Chk Pass | Chk Pass | Chk Fail
36.000
04000 | | | | | | | Int. Std.
Units
Avg
Stddev
%RSD | Y_2243
Cts/S
10547.
21.
.19631 | Y_3600
Cts/S
75279.
119.
.15799 | Y_3774
Cts/S
3950.0
12.6
.31886 | | | | | | | #1
#2
#3 | 10523.
10558.
10560. | 75386.
75151.
75298. | 3963.8
3939.2
3946.9 | | | | | | | Sample Name
Method: ICP-1
User: JYH
Comment: | |)10_200.7W | red: 5/16/2010
ATER_3YLIN
stom ID2: | | Type: Unk Mode: CONC Corr. Factor: 1.00000 ID3: | | | |---|----------------|---------------|---|-----------------------------|--|----------------|-----------------------------| | Elem | Ag3280 | Al3082 | As1890 | B_2496 | Ba4554 | Be3131 | Ca4226 | | Units | ppm | Avg | 00223 | .01853 | 00369 | . 12120 | F 48.882 | 00014 | F 2259.9 | | Stddev | .00266 | .00678 | .00494 | .00240 | .936 | .00010 | 26.1 | | %RSD | 119.40 | 36.590 | 133.79 | 1.9840 | 1.9150 | 73.701 | 1.1530 | | #1 | .00076 | .02324 | .00189 | .12057 | 49.621 | 00006 | 2278.9 | | #2 | 00433 | .01076 | 00547 | .12386 | 49.196 | 00011 | 2270.6 | | #3 | 00312 | .02160 | 00749 | .11918 | 47.830 | 00026 | 2230.2 | | Check ?
High Limit
Low Limit | Chk Pass | Chk Pass | Chk Pass | Chk Pass | Chk Fail
45.000
00500 | Chk Pass | Chk Fail
270.00
10000 | | Elem | Cd2288 | Co2286 | Cr2677 | Cu2247 | Fe2611 | K_7664 | Li6707 | | Units | ppm | Avg | . 00581 | .00378 | . 00167 | . 01023 | 37.829 | 128.15 | 1.3834 | | Stddev | .00019 | .00061 | .00082 | .00113 | .137 | .65 | .0029 | | %RSD | 3.3332 | 16.145 | 49.225 | 11.080 | .36181 | .50591 | .21245 | | #1 | .00603 | .00371 | .00073 | .01050 | 37.845 | 128.29 | 1.3803 | | #2 | .00569 | .00443 | .00226 | .01120 | 37.957 | 128.72 | 1.3862 | | #3 | .00571 | .00321 | .00202 | .00899 | 37.685 | 127.45 | 1.3838 | | Check ?
High Limit
Low Limit | Chk Pass | Elem | Mg2790 | Mn2576 | Mo2020 | Na5895 | Ni2316 | P_2149 | Pb2203 | | Units | ppm | Avg | 189.37 | 17.533 | 00090 | F 540.21 | 00895 | . 08652 | . 00924 | | Stddev | .67 | .059 | .00050 | 3.54 | .00118 | .00348 | .00153 | | %RSD | .35300 | .33588 |
55.216 | .65509 | 13.210 | 4.0235 | 16.568 | | #1 | 189.06 | 17.535 | 00088 | 543.98 | 00963 | .08902 | .00963 | | #2 | 190.13 | 17.591 | 00041 | 536.96 | 00758 | .08254 | .01054 | | #3 | 188.91 | 17.473 | 00141 | 539.68 | 00963 | .08799 | .00755 | | Check ?
High Limit
Low Limit | Chk Pass | Chk Pass | Chk Pass | Chk Fail
270.00
50000 | Chk Pass | Chk Pass | Chk Pass | | Sample Name:
Method: ICP-T
User: JYH
Comment: | |)10_200.7W <i>A</i> | red: 5/16/2016
ATER_3YLINI
stom ID2: | | Type: Unk Mode: CONC Corr. Factor: 1.000000 1 ID3: | | | | |--|---|--|--|--|--|---|--|--| | Elem
Units
Avg
Stddev
%RSD | Sb2068
ppm
01144
.00684
59.789 | Se1960
ppm
F05361
.00526
9.8104 | Si2124
ppm
5.4918
.0276
.50285 | Sn1899
ppm
00259
.00207
80.202 | Sr4077
ppm
F 53.828
.631
1.1716 | Ti3372
ppm
F19451
.00097
.49999 | TI1908
ppm
00538
.00241
44.729 | | | #1
#2
#3 | 00731
00768
01934 | 05388
04822
05872 | 5.5008
5.5138
5.4608 | 00254
00054
00468 | 54.493
53.754
53.239 | 19352
19546
19456 | 00321
00797
00495 | | | Check ?
High Limit
Low Limit | Chk Pass | Chk Fail
90.000
01000 | Chk Pass | Chk Pass | Chk Fail
9.0000
01000 | Chk Fail
36.000
03000 | Chk Pass | | | Elem
Units
Avg
Stddev
%RSD | V_2924
ppm
. 00357
.00158
44.348 | Zn2062
ppm
.00355
.00028
7.9567 | Zr3391
ppm
F -1.5422
.2946
19.105 | | | | | | | #1
#2
#3 | .00510
.00367
.00194 | .00367
.00323
.00375 | -1.2069
-1.6599
-1.7598 | | | | | | | Check ?
High Limit
Low Limit | Chk Pass | Chk Pass | Chk Fail
36.000
04000 | | | | | | | Int. Std.
Units
Avg
Stddev
%RSD | Y_2243
Cts/S
10431.
15.
.14639 | Y_3600
Cts/S
74663.
204.
.27280 | Y_3774
Cts/S
3950.6
29.4
.74483 | | | | | | | #1
#2
#3 | 10441.
10414.
10439. | 74428.
74771.
74790. | 3953.2
3920.0
3978.7 | | | | | | | Sample Nam
Method: ICP
User: JYH
Comment: | | _ | | LINES(v873 | pe: QC
) Mode:
tom ID3: | CONC (| Corr. Factor: | 1.00000(| |--|----------------|----------------|----------------|----------------|-------------------------------|----------------|----------------|----------| | Elem | Ag3280 | Al3082 | As1890 | B_2496 | Ba4554 | Be3131 | Ca4226 | | | Units | ppm | | Avg | . 37547 | 9.4568 | . 37277 | . 46498 | . 92569 | . 04653 | 9.3667 | | | Stddev | .00065 | .0069 | .00449 | .00183 | .00710 | .00035 | .1112 | | | %RSD | .17405 | .07280 | 1.2053 | .39397 | .76702 | .74451 | 1.1872 | | | #1 | .37557 | 9.4575 | .37421 | .46628 | .92264 | .04693 | 9.3939 | | | #2 | .37478 | 9.4495 | .36774 | .46289 | .92061 | .04631 | 9.2445 | | | #3 | .37608 | 9.4632 | .37637 | .46577 | .93380 | .04635 | 9.4618 | | | Check ?
Value
Range | Chk Pass | | Elem | Cd2288 | Co2286 | Cr2677 | Cu2247 | Fe2611 | K_7664 | Li6707 | | | Units | ppm | | Avg | . 04687 | . 19224 | . 48330 | . 48110 | 3.8088 | 46.508 | . 94056 | | | Stddev | .00062 | .00026 | .00494 | .00074 | .0422 | .388 | .00714 | | | %RSD | 1.3310 | .13770 | 1.0230 | .15308 | 1.1077 | .83323 | .75914 | | | #1 | .04681 | .19208 | .48899 | .48112 | 3.7732 | 46.347 | .93639 | | | #2 | .04753 | .19255 | .48003 | .48035 | 3.7977 | 46.226 | .93649 | | | #3 | .04628 | .19209 | .48089 | .48183 | 3.8554 | 46.950 | .94881 | | | Check ?
Value
Range | Chk Pass | | Elem | Mg2790 | Mn2576 | Mo2020 | Na5895 | Ni2316 | P_2149 | Pb2203 | | | Units | ppm | | Avg | 9.5121 | . 46933 | . 93941 | 46.764 | . 48628 | 9.4615 | . 48531 | | | Stddev | .0859 | .00284 | .00446 | .409 | .00210 | .0102 | .00160 | | | %RSD | .90325 | .60506 | .47516 | .87366 | .43258 | .10742 | .33024 | | | #1 | 9.5487 | .46625 | .94381 | 46.620 | .48714 | 9.4647 | .48365 | | | #2 | 9.5736 | .46991 | .93954 | 46.448 | .48782 | 9.4501 | .48685 | | | #3 | 9.4139 | .47184 | .93489 | 47.225 | .48388 | 9.4696 | .48542 | | | Check ?
Value
Range | Chk Pass | | Sample Nam
Method: ICP
User: JYH
Comment: | | 6010_200.7 | 16/2016 21:5
WATER_3Y
Custom ID2: | LINES(v873 | pe: QC
) Mode:
tom ID3: | CONC (| Corr. Factor: 1 | .000000 | |--|---|---|--|---|---|---|---|---------| | Elem
Units
Avg
Stddev
%RSD | Sb2068
ppm
1.1275
.0050
.44770 | Se1960
ppm
. 36471
.00199
.54431 | Si2124
ppm
4.7398
.0002
.00392 | Sn1899
ppm
. 95861
.00129
.13431 | Sr4077
ppm
. 92229
.00675
.73154 | Ti3372
ppm
. 92015
.01225
1.3313 | TI1908
ppm
. 48371
.00199
.41225 | | | #1
#2
#3 | 1.1300
1.1309
1.1217 | .36544
.36623
.36247 | 4.7396
4.7398
4.7400 | .95739
.95995
.95848 | .91720
.91973
.92994 | .90837
.91926
.93282 | .48345
.48582
.48186 | | | Check ?
Value
Range | Chk Pass | | Elem
Units
Avg
Stddev
%RSD | V_2924
ppm
. 95212
.00279
.29285 | Zn2062
ppm
. 96910
.00062
.06438 | Zr3391
ppm
F 1.1747
.4280
36.435 | | | | | | | #1
#2
#3 | .95534
.95068
.95035 | .96981
.96881
.96867 | 1.0459
.82594
1.6523 | | | | | | | Check ?
Value
Range | Chk Pass | Chk Pass | Chk Fail
1.0000
10.000% | | | | | | | Int. Std.
Units
Avg
Stddev
%RSD | Y_2243
Cts/S
13825.
30.
.21473 | Y_3600
Cts/S
98210.
361.
.36711 | Y_3774
Cts/S
4507.7
22.0
.48907 | | | | | | | #1
#2
#3 | 13851.
13832.
13793. | 97950.
98060.
98622. | 4517.2
4523.4
4482.5 | | | | | | | Sample Name: CCB Acquired: 5/16/2016 21:58:03 Type: Blank Method: ICP-THERMO3_6010_200.7WATER_3YLINES(v873) Mode: CC User: JYH Custom ID1: Custom ID2: Custom ID3: Comment: | | | | | | de: CONC | Corr. Factor: 1.000000 | | |---|----------------|----------------|----------|----------------|----------------|----------------|------------------------|----------------| | Elem | Ag3280 | Al3082 | As1890 | B_2496 | Ba4554 | Be3131 | Ca4226 | Cd2288 | | Units | ppm | Avg | 00276 | 00893 | 00100 | . 00196 | .00032 | .00010 | 00710 | . 00024 | | Stddev | .00027 | .01175 | .00376 | .00133 | .00030 | .00003 | .03298 | .00020 | | %RSD | 9.8284 | 131.70 | 376.34 | 67.852 | 94.477 | 32.499 | 464.24 | 84.653 | | #1 | 00245 | 00001 | 00451 | .00298 | .00038 | .00014 | 00786 | .00041 | | #2 | 00295 | 00452 | 00144 | .00046 | 00001 | .00007 | .02624 | .00001 | | #3 | 00288 | 02225 | .00296 | .00243 | .00057 | .00009 | 03970 | .00030 | | Check ?
High Limit
Low Limit | Chk Pass | Elem | Co2286 | Cr2677 | Cu2247 | Fe2611 | K_7664 | Li6707 | Mg2790 | Mn2576 | | Units | ppm | Avg | 00039 | .00019 | 00048 | . 02649 | . 17306 | . 00430 | . 04367 | . 00050 | | Stddev | .00025 | .00034 | .00066 | .01305 | .09726 | .00401 | .13427 | .00128 | | %RSD | 65.622 | 176.43 | 137.74 | 49.267 | 56.202 | 93.234 | 307.50 | 254.83 | | #1 | 00057 | .00005 | 00010 | .03142 | .23891 | .00561 | 07869 | .00037 | | #2 | 00050 | .00058 | 00125 | .01170 | .06134 | .00749 | .02237 | 00071 | | #3 | 00010 | 00006 | 00010 | .03637 | .21892 | 00020 | .18731 | .00185 | | Check ?
High Limit
Low Limit | Chk Pass | Elem | Mo2020 | Na5895 | Ni2316 | P_2149 | Pb2203 | Sb2068 | Se1960 | Si2124 | | Units | ppm | Avg | . 00417 | . 01242 | 00164 | 00738 | 00206 | . 00164 | 00006 | 02623 | | Stddev | .00026 | .00979 | .00085 | .00627 | .00284 | .00345 | .01241 | .00201 | | %RSD | 6.2119 | 78.790 | 51.743 | 84.995 | 137.61 | 210.83 | 20845. | 7.6792 | | #1 | .00389 | .00225 | 00068 | 00509 | .00121 | 00231 | 01437 | 02846 | | #2 | .00423 | .01325 | 00227 | 01447 | 00389 | .00406 | .00778 | 02565 | | #3 | .00439 | .02178 | 00198 | 00257 | 00351 | .00316 | .00641 | 02456 | | Check ?
High Limit
Low Limit | Chk Pass | Sample Nar
Method: ICF
User: JYH
Comment: | | 6010_200 | 5/16/2016 2
.7WATER_
Custom IE | 3YLINES(v8 | Type: Blan
373) Mc
Custom ID3 | de: CONC | Corr. Fa | ctor: 1.00000(| |--|---|--|--|--|--|---|---|----------------| | Elem
Units
Avg
Stddev
%RSD | Sn1899
ppm
00005
.00111
2103.5 | Sr4077
ppm
.00053
.00032
60.092 |
Ti3372
ppm
00120
.00709
591.19 | TI1908
ppm
00194
.00179
92.646 | V_2924
ppm
00007
.00032
446.83 | Zn2062
ppm
. 00022
.00018
81.323 | Zr3391
ppm
. 01420
.12496
879.72 | | | #1
#2
#3 | 00034
00099
.00117 | .00088
.00043
.00027 | 00846
.00570
00083 | 00395
00052
00134 | .00015
.00007
00044 | .00012
.00043
.00012 | 10253
.14602
00088 | | | Check ?
High Limit
Low Limit | Chk Pass | | Int. Std.
Units
Avg
Stddev
%RSD | Y_2243
Cts/S
13763.
36.
.26289 | Y_3600
Cts/S
98536.
407.
.41266 | Y_3774
Cts/S
4462.8
67.0
1.5006 | | | | | | | #1
#2
#3 | 13781.
13721.
13786. | 98332.
98272.
99004. | 4387.4
4485.2
4515.6 | | | | | | | Sample Name: ICSA Acquired: 5/16/2016 22:02:03 Type: QC Method: ICP-THERMO3_6010_200.7WATER_3YLINES(v873) Mode: CONC Corr. Factor: 1.000000 User: JYH Custom ID1: Custom ID2: Custom ID3: Comment: | | | | | | | | | |---|----------------|----------------|----------|----------------|----------------|----------------|----------------|--| | Elem | Ag3280 | Al3082 | As1890 | B_2496 | Ba4554 | Be3131 | Ca4226 | | | Units | ppm | | Avg | 00151 | 271.58 | 00153 | . 02248 | . 00051 | . 00001 | 245.00 | | | Stddev | .00074 | .46 | .00154 | .00372 | .00076 | .00012 | 1.86 | | | %RSD | 48.951 | .16761 | 100.67 | 16.550 | 149.40 | 1176.6 | .76097 | | | #1 | 00076 | 271.47 | 00328 | .01818 | .00033 | .00006 | 243.00 | | | #2 | 00223 | 271.18 | 00093 | .02467 | .00135 | 00012 | 245.31 | | | #3 | 00154 | 272.07 | 00038 | .02458 | 00014 | .00009 | 246.69 | | | Check ?
High Limit
Low Limit | Chk Pass | | Elem | Cd2288 | Co2286 | Cr2677 | Cu2247 | Fe2611 | K_7664 | Li6707 | | | Units | ppm | | Avg | . 00060 | 00149 | 00141 | . 00186 | 99.992 | . 15679 | . 02027 | | | Stddev | .00038 | .00006 | .00052 | .00133 | .619 | .10614 | .00287 | | | %RSD | 63.714 | 4.0547 | 36.810 | 71.585 | .61902 | 67.693 | 14.181 | | | #1 | .00033 | 00154 | 00133 | .00051 | 99.464 | .11859 | .01729 | | | #2 | .00043 | 00142 | 00093 | .00318 | 99.839 | .07504 | .02049 | | | #3 | .00104 | 00151 | 00196 | .00190 | 100.67 | .27674 | .02303 | | | Check ?
High Limit
Low Limit | Chk Pass | | Elem | Mg2790 | Mn2576 | Mo2020 | Na5895 | Ni2316 | P_2149 | Pb2203 | | | Units | ppm | | Avg | 254.09 | . 00011 | 00045 | . 00649 | 00125 | . 04975 | .00068 | | | Stddev | 1.92 | .00295 | .00033 | .02474 | .00149 | .01426 | .00596 | | | %RSD | .75735 | 2647.7 | 73.740 | 381.40 | 119.27 | 28.664 | 881.66 | | | #1 | 252.72 | 00319 | 00023 | 02080 | 00246 | .04833 | .00159 | | | #2 | 253.26 | .00103 | 00029 | .01281 | .00041 | .03625 | .00612 | | | #3 | 256.29 | .00250 | 00083 | .02745 | 00170 | .06466 | 00569 | | | Check ?
High Limit
Low Limit | Chk Pass | | Sample Name: ICSA Acquired: 5/16/2016 22:02:03 Type: QC Method: ICP-THERMO3_6010_200.7WATER_3YLINES(v873) Mode: CONC Corr. Factor: 1.000000 User: JYH Custom ID1: Custom ID2: Custom ID3: Comment: | | | | | | | | | |---|---|---|---|--|---|--|--|--| | Elem
Units
Avg
Stddev
%RSD | Sb2068
ppm
00285
.00275
96.487 | Se1960
ppm
. 00260
.00472
181.14 | Si2124
ppm
. 22038
.00106
.47911 | Sn1899
ppm
00125
.00098
78.696 | Sr4077
ppm
. 00050
.00029
56.760 | Ti3372
ppm
00176
.00646
367.32 | TI1908
ppm
00547
.00377
68.819 | | | #1
#2
#3 | 00448
.00032
00438 | .00596
00279
.00464 | .22058
.22132
.21924 | 00040
00102
00232 | .00079
.00051
.00022 | 00768
00274
.00514 | 00948
00200
00494 | | | Check ?
High Limit
Low Limit | Chk Pass | | Elem
Units
Avg
Stddev
%RSD | V_2924
ppm
. 00207
.00074
35.904 | Zn2062
ppm
.00443
.00016
3.6985 | Zr3391
ppm
F -3.1999
.2476
7.7373 | | | | | | | #1
#2
#3 | .00157
.00293
.00173 | .00428
.00460
.00441 | -3.1027
-3.4814
-3.0157 | | | | | | | Check ?
High Limit
Low Limit | Chk Pass | Chk Pass | Chk Fail
.02000
02000 | | | | | | | Int. Std.
Units
Avg
Stddev
%RSD | Y_2243
Cts/S
12474.
62.
.49490 | Y_3600
Cts/S
88237.
503.
.56955 | Y_3774
Cts/S
4210.4
15.9
.37778 | | | | | | | #1
#2
#3 | 12532.
12480.
12409. | 88348.
87688.
88675. | 4214.2
4224.2
4193.0 | | | | | |